1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/ima.h>
28 #include <linux/cred.h>
29 #include "internal.h"
30 
31 /*
32  * inode locking rules.
33  *
34  * inode->i_lock protects:
35  *   inode->i_state, inode->i_hash, __iget()
36  * inode_lru_lock protects:
37  *   inode_lru, inode->i_lru
38  * inode_sb_list_lock protects:
39  *   sb->s_inodes, inode->i_sb_list
40  * inode_wb_list_lock protects:
41  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
42  * inode_hash_lock protects:
43  *   inode_hashtable, inode->i_hash
44  *
45  * Lock ordering:
46  *
47  * inode_sb_list_lock
48  *   inode->i_lock
49  *     inode_lru_lock
50  *
51  * inode_wb_list_lock
52  *   inode->i_lock
53  *
54  * inode_hash_lock
55  *   inode_sb_list_lock
56  *   inode->i_lock
57  *
58  * iunique_lock
59  *   inode_hash_lock
60  */
61 
62 /*
63  * This is needed for the following functions:
64  *  - inode_has_buffers
65  *  - invalidate_bdev
66  *
67  * FIXME: remove all knowledge of the buffer layer from this file
68  */
69 #include <linux/buffer_head.h>
70 
71 /*
72  * New inode.c implementation.
73  *
74  * This implementation has the basic premise of trying
75  * to be extremely low-overhead and SMP-safe, yet be
76  * simple enough to be "obviously correct".
77  *
78  * Famous last words.
79  */
80 
81 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
82 
83 /* #define INODE_PARANOIA 1 */
84 /* #define INODE_DEBUG 1 */
85 
86 /*
87  * Inode lookup is no longer as critical as it used to be:
88  * most of the lookups are going to be through the dcache.
89  */
90 #define I_HASHBITS	i_hash_shift
91 #define I_HASHMASK	i_hash_mask
92 
93 static unsigned int i_hash_mask __read_mostly;
94 static unsigned int i_hash_shift __read_mostly;
95 static struct hlist_head *inode_hashtable __read_mostly;
96 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
97 
98 /*
99  * Each inode can be on two separate lists. One is
100  * the hash list of the inode, used for lookups. The
101  * other linked list is the "type" list:
102  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
103  *  "dirty"  - as "in_use" but also dirty
104  *  "unused" - valid inode, i_count = 0
105  *
106  * A "dirty" list is maintained for each super block,
107  * allowing for low-overhead inode sync() operations.
108  */
109 
110 static LIST_HEAD(inode_lru);
111 static DEFINE_SPINLOCK(inode_lru_lock);
112 
113 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
114 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock);
115 
116 /*
117  * iprune_sem provides exclusion between the icache shrinking and the
118  * umount path.
119  *
120  * We don't actually need it to protect anything in the umount path,
121  * but only need to cycle through it to make sure any inode that
122  * prune_icache took off the LRU list has been fully torn down by the
123  * time we are past evict_inodes.
124  */
125 static DECLARE_RWSEM(iprune_sem);
126 
127 /*
128  * Empty aops. Can be used for the cases where the user does not
129  * define any of the address_space operations.
130  */
131 const struct address_space_operations empty_aops = {
132 };
133 EXPORT_SYMBOL(empty_aops);
134 
135 /*
136  * Statistics gathering..
137  */
138 struct inodes_stat_t inodes_stat;
139 
140 static DEFINE_PER_CPU(unsigned int, nr_inodes);
141 
142 static struct kmem_cache *inode_cachep __read_mostly;
143 
get_nr_inodes(void)144 static int get_nr_inodes(void)
145 {
146 	int i;
147 	int sum = 0;
148 	for_each_possible_cpu(i)
149 		sum += per_cpu(nr_inodes, i);
150 	return sum < 0 ? 0 : sum;
151 }
152 
get_nr_inodes_unused(void)153 static inline int get_nr_inodes_unused(void)
154 {
155 	return inodes_stat.nr_unused;
156 }
157 
get_nr_dirty_inodes(void)158 int get_nr_dirty_inodes(void)
159 {
160 	/* not actually dirty inodes, but a wild approximation */
161 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
162 	return nr_dirty > 0 ? nr_dirty : 0;
163 }
164 
165 /*
166  * Handle nr_inode sysctl
167  */
168 #ifdef CONFIG_SYSCTL
proc_nr_inodes(ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)169 int proc_nr_inodes(ctl_table *table, int write,
170 		   void __user *buffer, size_t *lenp, loff_t *ppos)
171 {
172 	inodes_stat.nr_inodes = get_nr_inodes();
173 	return proc_dointvec(table, write, buffer, lenp, ppos);
174 }
175 #endif
176 
177 /**
178  * inode_init_always - perform inode structure intialisation
179  * @sb: superblock inode belongs to
180  * @inode: inode to initialise
181  *
182  * These are initializations that need to be done on every inode
183  * allocation as the fields are not initialised by slab allocation.
184  */
inode_init_always(struct super_block * sb,struct inode * inode)185 int inode_init_always(struct super_block *sb, struct inode *inode)
186 {
187 	static const struct inode_operations empty_iops;
188 	static const struct file_operations empty_fops;
189 	struct address_space *const mapping = &inode->i_data;
190 
191 	inode->i_sb = sb;
192 	inode->i_blkbits = sb->s_blocksize_bits;
193 	inode->i_flags = 0;
194 	atomic_set(&inode->i_count, 1);
195 	inode->i_op = &empty_iops;
196 	inode->i_fop = &empty_fops;
197 	inode->i_nlink = 1;
198 	inode->i_uid = 0;
199 	inode->i_gid = 0;
200 	atomic_set(&inode->i_writecount, 0);
201 	inode->i_size = 0;
202 	inode->i_blocks = 0;
203 	inode->i_bytes = 0;
204 	inode->i_generation = 0;
205 #ifdef CONFIG_QUOTA
206 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
207 #endif
208 	inode->i_pipe = NULL;
209 	inode->i_bdev = NULL;
210 	inode->i_cdev = NULL;
211 	inode->i_rdev = 0;
212 	inode->dirtied_when = 0;
213 
214 	if (security_inode_alloc(inode))
215 		goto out;
216 	spin_lock_init(&inode->i_lock);
217 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
218 
219 	mutex_init(&inode->i_mutex);
220 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
221 
222 	init_rwsem(&inode->i_alloc_sem);
223 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
224 
225 	mapping->a_ops = &empty_aops;
226 	mapping->host = inode;
227 	mapping->flags = 0;
228 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
229 	mapping->assoc_mapping = NULL;
230 	mapping->backing_dev_info = &default_backing_dev_info;
231 	mapping->writeback_index = 0;
232 
233 	/*
234 	 * If the block_device provides a backing_dev_info for client
235 	 * inodes then use that.  Otherwise the inode share the bdev's
236 	 * backing_dev_info.
237 	 */
238 	if (sb->s_bdev) {
239 		struct backing_dev_info *bdi;
240 
241 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
242 		mapping->backing_dev_info = bdi;
243 	}
244 	inode->i_private = NULL;
245 	inode->i_mapping = mapping;
246 #ifdef CONFIG_FS_POSIX_ACL
247 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
248 #endif
249 
250 #ifdef CONFIG_FSNOTIFY
251 	inode->i_fsnotify_mask = 0;
252 #endif
253 
254 	this_cpu_inc(nr_inodes);
255 
256 	return 0;
257 out:
258 	return -ENOMEM;
259 }
260 EXPORT_SYMBOL(inode_init_always);
261 
alloc_inode(struct super_block * sb)262 static struct inode *alloc_inode(struct super_block *sb)
263 {
264 	struct inode *inode;
265 
266 	if (sb->s_op->alloc_inode)
267 		inode = sb->s_op->alloc_inode(sb);
268 	else
269 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
270 
271 	if (!inode)
272 		return NULL;
273 
274 	if (unlikely(inode_init_always(sb, inode))) {
275 		if (inode->i_sb->s_op->destroy_inode)
276 			inode->i_sb->s_op->destroy_inode(inode);
277 		else
278 			kmem_cache_free(inode_cachep, inode);
279 		return NULL;
280 	}
281 
282 	return inode;
283 }
284 
free_inode_nonrcu(struct inode * inode)285 void free_inode_nonrcu(struct inode *inode)
286 {
287 	kmem_cache_free(inode_cachep, inode);
288 }
289 EXPORT_SYMBOL(free_inode_nonrcu);
290 
__destroy_inode(struct inode * inode)291 void __destroy_inode(struct inode *inode)
292 {
293 	BUG_ON(inode_has_buffers(inode));
294 	security_inode_free(inode);
295 	fsnotify_inode_delete(inode);
296 #ifdef CONFIG_FS_POSIX_ACL
297 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
298 		posix_acl_release(inode->i_acl);
299 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
300 		posix_acl_release(inode->i_default_acl);
301 #endif
302 	this_cpu_dec(nr_inodes);
303 }
304 EXPORT_SYMBOL(__destroy_inode);
305 
i_callback(struct rcu_head * head)306 static void i_callback(struct rcu_head *head)
307 {
308 	struct inode *inode = container_of(head, struct inode, i_rcu);
309 	INIT_LIST_HEAD(&inode->i_dentry);
310 	kmem_cache_free(inode_cachep, inode);
311 }
312 
destroy_inode(struct inode * inode)313 static void destroy_inode(struct inode *inode)
314 {
315 	BUG_ON(!list_empty(&inode->i_lru));
316 	__destroy_inode(inode);
317 	if (inode->i_sb->s_op->destroy_inode)
318 		inode->i_sb->s_op->destroy_inode(inode);
319 	else
320 		call_rcu(&inode->i_rcu, i_callback);
321 }
322 
address_space_init_once(struct address_space * mapping)323 void address_space_init_once(struct address_space *mapping)
324 {
325 	memset(mapping, 0, sizeof(*mapping));
326 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
327 	spin_lock_init(&mapping->tree_lock);
328 	spin_lock_init(&mapping->i_mmap_lock);
329 	INIT_LIST_HEAD(&mapping->private_list);
330 	spin_lock_init(&mapping->private_lock);
331 	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
332 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
333 	mutex_init(&mapping->unmap_mutex);
334 }
335 EXPORT_SYMBOL(address_space_init_once);
336 
337 /*
338  * These are initializations that only need to be done
339  * once, because the fields are idempotent across use
340  * of the inode, so let the slab aware of that.
341  */
inode_init_once(struct inode * inode)342 void inode_init_once(struct inode *inode)
343 {
344 	memset(inode, 0, sizeof(*inode));
345 	INIT_HLIST_NODE(&inode->i_hash);
346 	INIT_LIST_HEAD(&inode->i_dentry);
347 	INIT_LIST_HEAD(&inode->i_devices);
348 	INIT_LIST_HEAD(&inode->i_wb_list);
349 	INIT_LIST_HEAD(&inode->i_lru);
350 	address_space_init_once(&inode->i_data);
351 	i_size_ordered_init(inode);
352 #ifdef CONFIG_FSNOTIFY
353 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
354 #endif
355 }
356 EXPORT_SYMBOL(inode_init_once);
357 
init_once(void * foo)358 static void init_once(void *foo)
359 {
360 	struct inode *inode = (struct inode *) foo;
361 
362 	inode_init_once(inode);
363 }
364 
365 /*
366  * inode->i_lock must be held
367  */
__iget(struct inode * inode)368 void __iget(struct inode *inode)
369 {
370 	atomic_inc(&inode->i_count);
371 }
372 
373 /*
374  * get additional reference to inode; caller must already hold one.
375  */
ihold(struct inode * inode)376 void ihold(struct inode *inode)
377 {
378 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
379 }
380 EXPORT_SYMBOL(ihold);
381 
inode_lru_list_add(struct inode * inode)382 static void inode_lru_list_add(struct inode *inode)
383 {
384 	spin_lock(&inode_lru_lock);
385 	if (list_empty(&inode->i_lru)) {
386 		list_add(&inode->i_lru, &inode_lru);
387 		inodes_stat.nr_unused++;
388 	}
389 	spin_unlock(&inode_lru_lock);
390 }
391 
inode_lru_list_del(struct inode * inode)392 static void inode_lru_list_del(struct inode *inode)
393 {
394 	spin_lock(&inode_lru_lock);
395 	if (!list_empty(&inode->i_lru)) {
396 		list_del_init(&inode->i_lru);
397 		inodes_stat.nr_unused--;
398 	}
399 	spin_unlock(&inode_lru_lock);
400 }
401 
402 /**
403  * inode_sb_list_add - add inode to the superblock list of inodes
404  * @inode: inode to add
405  */
inode_sb_list_add(struct inode * inode)406 void inode_sb_list_add(struct inode *inode)
407 {
408 	spin_lock(&inode_sb_list_lock);
409 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
410 	spin_unlock(&inode_sb_list_lock);
411 }
412 EXPORT_SYMBOL_GPL(inode_sb_list_add);
413 
inode_sb_list_del(struct inode * inode)414 static inline void inode_sb_list_del(struct inode *inode)
415 {
416 	spin_lock(&inode_sb_list_lock);
417 	list_del_init(&inode->i_sb_list);
418 	spin_unlock(&inode_sb_list_lock);
419 }
420 
hash(struct super_block * sb,unsigned long hashval)421 static unsigned long hash(struct super_block *sb, unsigned long hashval)
422 {
423 	unsigned long tmp;
424 
425 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
426 			L1_CACHE_BYTES;
427 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
428 	return tmp & I_HASHMASK;
429 }
430 
431 /**
432  *	__insert_inode_hash - hash an inode
433  *	@inode: unhashed inode
434  *	@hashval: unsigned long value used to locate this object in the
435  *		inode_hashtable.
436  *
437  *	Add an inode to the inode hash for this superblock.
438  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)439 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
440 {
441 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
442 
443 	spin_lock(&inode_hash_lock);
444 	spin_lock(&inode->i_lock);
445 	hlist_add_head(&inode->i_hash, b);
446 	spin_unlock(&inode->i_lock);
447 	spin_unlock(&inode_hash_lock);
448 }
449 EXPORT_SYMBOL(__insert_inode_hash);
450 
451 /**
452  *	remove_inode_hash - remove an inode from the hash
453  *	@inode: inode to unhash
454  *
455  *	Remove an inode from the superblock.
456  */
remove_inode_hash(struct inode * inode)457 void remove_inode_hash(struct inode *inode)
458 {
459 	spin_lock(&inode_hash_lock);
460 	spin_lock(&inode->i_lock);
461 	hlist_del_init(&inode->i_hash);
462 	spin_unlock(&inode->i_lock);
463 	spin_unlock(&inode_hash_lock);
464 }
465 EXPORT_SYMBOL(remove_inode_hash);
466 
end_writeback(struct inode * inode)467 void end_writeback(struct inode *inode)
468 {
469 	might_sleep();
470 	BUG_ON(inode->i_data.nrpages);
471 	BUG_ON(!list_empty(&inode->i_data.private_list));
472 	BUG_ON(!(inode->i_state & I_FREEING));
473 	BUG_ON(inode->i_state & I_CLEAR);
474 	inode_sync_wait(inode);
475 	/* don't need i_lock here, no concurrent mods to i_state */
476 	inode->i_state = I_FREEING | I_CLEAR;
477 }
478 EXPORT_SYMBOL(end_writeback);
479 
480 /*
481  * Free the inode passed in, removing it from the lists it is still connected
482  * to. We remove any pages still attached to the inode and wait for any IO that
483  * is still in progress before finally destroying the inode.
484  *
485  * An inode must already be marked I_FREEING so that we avoid the inode being
486  * moved back onto lists if we race with other code that manipulates the lists
487  * (e.g. writeback_single_inode). The caller is responsible for setting this.
488  *
489  * An inode must already be removed from the LRU list before being evicted from
490  * the cache. This should occur atomically with setting the I_FREEING state
491  * flag, so no inodes here should ever be on the LRU when being evicted.
492  */
evict(struct inode * inode)493 static void evict(struct inode *inode)
494 {
495 	const struct super_operations *op = inode->i_sb->s_op;
496 
497 	BUG_ON(!(inode->i_state & I_FREEING));
498 	BUG_ON(!list_empty(&inode->i_lru));
499 
500 	inode_wb_list_del(inode);
501 	inode_sb_list_del(inode);
502 
503 	if (op->evict_inode) {
504 		op->evict_inode(inode);
505 	} else {
506 		if (inode->i_data.nrpages)
507 			truncate_inode_pages(&inode->i_data, 0);
508 		end_writeback(inode);
509 	}
510 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
511 		bd_forget(inode);
512 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
513 		cd_forget(inode);
514 
515 	remove_inode_hash(inode);
516 
517 	spin_lock(&inode->i_lock);
518 	wake_up_bit(&inode->i_state, __I_NEW);
519 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
520 	spin_unlock(&inode->i_lock);
521 
522 	destroy_inode(inode);
523 }
524 
525 /*
526  * dispose_list - dispose of the contents of a local list
527  * @head: the head of the list to free
528  *
529  * Dispose-list gets a local list with local inodes in it, so it doesn't
530  * need to worry about list corruption and SMP locks.
531  */
dispose_list(struct list_head * head)532 static void dispose_list(struct list_head *head)
533 {
534 	while (!list_empty(head)) {
535 		struct inode *inode;
536 
537 		inode = list_first_entry(head, struct inode, i_lru);
538 		list_del_init(&inode->i_lru);
539 
540 		evict(inode);
541 	}
542 }
543 
544 /**
545  * evict_inodes	- evict all evictable inodes for a superblock
546  * @sb:		superblock to operate on
547  *
548  * Make sure that no inodes with zero refcount are retained.  This is
549  * called by superblock shutdown after having MS_ACTIVE flag removed,
550  * so any inode reaching zero refcount during or after that call will
551  * be immediately evicted.
552  */
evict_inodes(struct super_block * sb)553 void evict_inodes(struct super_block *sb)
554 {
555 	struct inode *inode, *next;
556 	LIST_HEAD(dispose);
557 
558 	spin_lock(&inode_sb_list_lock);
559 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
560 		if (atomic_read(&inode->i_count))
561 			continue;
562 
563 		spin_lock(&inode->i_lock);
564 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
565 			spin_unlock(&inode->i_lock);
566 			continue;
567 		}
568 
569 		inode->i_state |= I_FREEING;
570 		inode_lru_list_del(inode);
571 		spin_unlock(&inode->i_lock);
572 		list_add(&inode->i_lru, &dispose);
573 	}
574 	spin_unlock(&inode_sb_list_lock);
575 
576 	dispose_list(&dispose);
577 
578 	/*
579 	 * Cycle through iprune_sem to make sure any inode that prune_icache
580 	 * moved off the list before we took the lock has been fully torn
581 	 * down.
582 	 */
583 	down_write(&iprune_sem);
584 	up_write(&iprune_sem);
585 }
586 
587 /**
588  * invalidate_inodes	- attempt to free all inodes on a superblock
589  * @sb:		superblock to operate on
590  * @kill_dirty: flag to guide handling of dirty inodes
591  *
592  * Attempts to free all inodes for a given superblock.  If there were any
593  * busy inodes return a non-zero value, else zero.
594  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
595  * them as busy.
596  */
invalidate_inodes(struct super_block * sb,bool kill_dirty)597 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
598 {
599 	int busy = 0;
600 	struct inode *inode, *next;
601 	LIST_HEAD(dispose);
602 
603 	spin_lock(&inode_sb_list_lock);
604 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 		spin_lock(&inode->i_lock);
606 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
607 			spin_unlock(&inode->i_lock);
608 			continue;
609 		}
610 		if (inode->i_state & I_DIRTY && !kill_dirty) {
611 			spin_unlock(&inode->i_lock);
612 			busy = 1;
613 			continue;
614 		}
615 		if (atomic_read(&inode->i_count)) {
616 			spin_unlock(&inode->i_lock);
617 			busy = 1;
618 			continue;
619 		}
620 
621 		inode->i_state |= I_FREEING;
622 		inode_lru_list_del(inode);
623 		spin_unlock(&inode->i_lock);
624 		list_add(&inode->i_lru, &dispose);
625 	}
626 	spin_unlock(&inode_sb_list_lock);
627 
628 	dispose_list(&dispose);
629 
630 	return busy;
631 }
632 
can_unuse(struct inode * inode)633 static int can_unuse(struct inode *inode)
634 {
635 	if (inode->i_state & ~I_REFERENCED)
636 		return 0;
637 	if (inode_has_buffers(inode))
638 		return 0;
639 	if (atomic_read(&inode->i_count))
640 		return 0;
641 	if (inode->i_data.nrpages)
642 		return 0;
643 	return 1;
644 }
645 
646 /*
647  * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
648  * temporary list and then are freed outside inode_lru_lock by dispose_list().
649  *
650  * Any inodes which are pinned purely because of attached pagecache have their
651  * pagecache removed.  If the inode has metadata buffers attached to
652  * mapping->private_list then try to remove them.
653  *
654  * If the inode has the I_REFERENCED flag set, then it means that it has been
655  * used recently - the flag is set in iput_final(). When we encounter such an
656  * inode, clear the flag and move it to the back of the LRU so it gets another
657  * pass through the LRU before it gets reclaimed. This is necessary because of
658  * the fact we are doing lazy LRU updates to minimise lock contention so the
659  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
660  * with this flag set because they are the inodes that are out of order.
661  */
prune_icache(int nr_to_scan)662 static void prune_icache(int nr_to_scan)
663 {
664 	LIST_HEAD(freeable);
665 	int nr_scanned;
666 	unsigned long reap = 0;
667 
668 	down_read(&iprune_sem);
669 	spin_lock(&inode_lru_lock);
670 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
671 		struct inode *inode;
672 
673 		if (list_empty(&inode_lru))
674 			break;
675 
676 		inode = list_entry(inode_lru.prev, struct inode, i_lru);
677 
678 		/*
679 		 * we are inverting the inode_lru_lock/inode->i_lock here,
680 		 * so use a trylock. If we fail to get the lock, just move the
681 		 * inode to the back of the list so we don't spin on it.
682 		 */
683 		if (!spin_trylock(&inode->i_lock)) {
684 			list_move(&inode->i_lru, &inode_lru);
685 			continue;
686 		}
687 
688 		/*
689 		 * Referenced or dirty inodes are still in use. Give them
690 		 * another pass through the LRU as we canot reclaim them now.
691 		 */
692 		if (atomic_read(&inode->i_count) ||
693 		    (inode->i_state & ~I_REFERENCED)) {
694 			list_del_init(&inode->i_lru);
695 			spin_unlock(&inode->i_lock);
696 			inodes_stat.nr_unused--;
697 			continue;
698 		}
699 
700 		/* recently referenced inodes get one more pass */
701 		if (inode->i_state & I_REFERENCED) {
702 			inode->i_state &= ~I_REFERENCED;
703 			list_move(&inode->i_lru, &inode_lru);
704 			spin_unlock(&inode->i_lock);
705 			continue;
706 		}
707 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
708 			__iget(inode);
709 			spin_unlock(&inode->i_lock);
710 			spin_unlock(&inode_lru_lock);
711 			if (remove_inode_buffers(inode))
712 				reap += invalidate_mapping_pages(&inode->i_data,
713 								0, -1);
714 			iput(inode);
715 			spin_lock(&inode_lru_lock);
716 
717 			if (inode != list_entry(inode_lru.next,
718 						struct inode, i_lru))
719 				continue;	/* wrong inode or list_empty */
720 			/* avoid lock inversions with trylock */
721 			if (!spin_trylock(&inode->i_lock))
722 				continue;
723 			if (!can_unuse(inode)) {
724 				spin_unlock(&inode->i_lock);
725 				continue;
726 			}
727 		}
728 		WARN_ON(inode->i_state & I_NEW);
729 		inode->i_state |= I_FREEING;
730 		spin_unlock(&inode->i_lock);
731 
732 		list_move(&inode->i_lru, &freeable);
733 		inodes_stat.nr_unused--;
734 	}
735 	if (current_is_kswapd())
736 		__count_vm_events(KSWAPD_INODESTEAL, reap);
737 	else
738 		__count_vm_events(PGINODESTEAL, reap);
739 	spin_unlock(&inode_lru_lock);
740 
741 	dispose_list(&freeable);
742 	up_read(&iprune_sem);
743 }
744 
745 /*
746  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
747  * "unused" means that no dentries are referring to the inodes: the files are
748  * not open and the dcache references to those inodes have already been
749  * reclaimed.
750  *
751  * This function is passed the number of inodes to scan, and it returns the
752  * total number of remaining possibly-reclaimable inodes.
753  */
shrink_icache_memory(struct shrinker * shrink,int nr,gfp_t gfp_mask)754 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
755 {
756 	if (nr) {
757 		/*
758 		 * Nasty deadlock avoidance.  We may hold various FS locks,
759 		 * and we don't want to recurse into the FS that called us
760 		 * in clear_inode() and friends..
761 		 */
762 		if (!(gfp_mask & __GFP_FS))
763 			return -1;
764 		prune_icache(nr);
765 	}
766 	return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
767 }
768 
769 static struct shrinker icache_shrinker = {
770 	.shrink = shrink_icache_memory,
771 	.seeks = DEFAULT_SEEKS,
772 };
773 
774 static void __wait_on_freeing_inode(struct inode *inode);
775 /*
776  * Called with the inode lock held.
777  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)778 static struct inode *find_inode(struct super_block *sb,
779 				struct hlist_head *head,
780 				int (*test)(struct inode *, void *),
781 				void *data)
782 {
783 	struct hlist_node *node;
784 	struct inode *inode = NULL;
785 
786 repeat:
787 	hlist_for_each_entry(inode, node, head, i_hash) {
788 		spin_lock(&inode->i_lock);
789 		if (inode->i_sb != sb) {
790 			spin_unlock(&inode->i_lock);
791 			continue;
792 		}
793 		if (!test(inode, data)) {
794 			spin_unlock(&inode->i_lock);
795 			continue;
796 		}
797 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
798 			__wait_on_freeing_inode(inode);
799 			goto repeat;
800 		}
801 		__iget(inode);
802 		spin_unlock(&inode->i_lock);
803 		return inode;
804 	}
805 	return NULL;
806 }
807 
808 /*
809  * find_inode_fast is the fast path version of find_inode, see the comment at
810  * iget_locked for details.
811  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)812 static struct inode *find_inode_fast(struct super_block *sb,
813 				struct hlist_head *head, unsigned long ino)
814 {
815 	struct hlist_node *node;
816 	struct inode *inode = NULL;
817 
818 repeat:
819 	hlist_for_each_entry(inode, node, head, i_hash) {
820 		spin_lock(&inode->i_lock);
821 		if (inode->i_ino != ino) {
822 			spin_unlock(&inode->i_lock);
823 			continue;
824 		}
825 		if (inode->i_sb != sb) {
826 			spin_unlock(&inode->i_lock);
827 			continue;
828 		}
829 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
830 			__wait_on_freeing_inode(inode);
831 			goto repeat;
832 		}
833 		__iget(inode);
834 		spin_unlock(&inode->i_lock);
835 		return inode;
836 	}
837 	return NULL;
838 }
839 
840 /*
841  * Each cpu owns a range of LAST_INO_BATCH numbers.
842  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
843  * to renew the exhausted range.
844  *
845  * This does not significantly increase overflow rate because every CPU can
846  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
847  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
848  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
849  * overflow rate by 2x, which does not seem too significant.
850  *
851  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
852  * error if st_ino won't fit in target struct field. Use 32bit counter
853  * here to attempt to avoid that.
854  */
855 #define LAST_INO_BATCH 1024
856 static DEFINE_PER_CPU(unsigned int, last_ino);
857 
get_next_ino(void)858 unsigned int get_next_ino(void)
859 {
860 	unsigned int *p = &get_cpu_var(last_ino);
861 	unsigned int res = *p;
862 
863 #ifdef CONFIG_SMP
864 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
865 		static atomic_t shared_last_ino;
866 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
867 
868 		res = next - LAST_INO_BATCH;
869 	}
870 #endif
871 
872 	*p = ++res;
873 	put_cpu_var(last_ino);
874 	return res;
875 }
876 EXPORT_SYMBOL(get_next_ino);
877 
878 /**
879  *	new_inode 	- obtain an inode
880  *	@sb: superblock
881  *
882  *	Allocates a new inode for given superblock. The default gfp_mask
883  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
884  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
885  *	for the page cache are not reclaimable or migratable,
886  *	mapping_set_gfp_mask() must be called with suitable flags on the
887  *	newly created inode's mapping
888  *
889  */
new_inode(struct super_block * sb)890 struct inode *new_inode(struct super_block *sb)
891 {
892 	struct inode *inode;
893 
894 	spin_lock_prefetch(&inode_sb_list_lock);
895 
896 	inode = alloc_inode(sb);
897 	if (inode) {
898 		spin_lock(&inode->i_lock);
899 		inode->i_state = 0;
900 		spin_unlock(&inode->i_lock);
901 		inode_sb_list_add(inode);
902 	}
903 	return inode;
904 }
905 EXPORT_SYMBOL(new_inode);
906 
907 /**
908  * unlock_new_inode - clear the I_NEW state and wake up any waiters
909  * @inode:	new inode to unlock
910  *
911  * Called when the inode is fully initialised to clear the new state of the
912  * inode and wake up anyone waiting for the inode to finish initialisation.
913  */
unlock_new_inode(struct inode * inode)914 void unlock_new_inode(struct inode *inode)
915 {
916 #ifdef CONFIG_DEBUG_LOCK_ALLOC
917 	if (S_ISDIR(inode->i_mode)) {
918 		struct file_system_type *type = inode->i_sb->s_type;
919 
920 		/* Set new key only if filesystem hasn't already changed it */
921 		if (!lockdep_match_class(&inode->i_mutex,
922 		    &type->i_mutex_key)) {
923 			/*
924 			 * ensure nobody is actually holding i_mutex
925 			 */
926 			mutex_destroy(&inode->i_mutex);
927 			mutex_init(&inode->i_mutex);
928 			lockdep_set_class(&inode->i_mutex,
929 					  &type->i_mutex_dir_key);
930 		}
931 	}
932 #endif
933 	spin_lock(&inode->i_lock);
934 	WARN_ON(!(inode->i_state & I_NEW));
935 	inode->i_state &= ~I_NEW;
936 	wake_up_bit(&inode->i_state, __I_NEW);
937 	spin_unlock(&inode->i_lock);
938 }
939 EXPORT_SYMBOL(unlock_new_inode);
940 
941 /**
942  * iget5_locked - obtain an inode from a mounted file system
943  * @sb:		super block of file system
944  * @hashval:	hash value (usually inode number) to get
945  * @test:	callback used for comparisons between inodes
946  * @set:	callback used to initialize a new struct inode
947  * @data:	opaque data pointer to pass to @test and @set
948  *
949  * Search for the inode specified by @hashval and @data in the inode cache,
950  * and if present it is return it with an increased reference count. This is
951  * a generalized version of iget_locked() for file systems where the inode
952  * number is not sufficient for unique identification of an inode.
953  *
954  * If the inode is not in cache, allocate a new inode and return it locked,
955  * hashed, and with the I_NEW flag set. The file system gets to fill it in
956  * before unlocking it via unlock_new_inode().
957  *
958  * Note both @test and @set are called with the inode_hash_lock held, so can't
959  * sleep.
960  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)961 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
962 		int (*test)(struct inode *, void *),
963 		int (*set)(struct inode *, void *), void *data)
964 {
965 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
966 	struct inode *inode;
967 
968 	spin_lock(&inode_hash_lock);
969 	inode = find_inode(sb, head, test, data);
970 	spin_unlock(&inode_hash_lock);
971 
972 	if (inode) {
973 		wait_on_inode(inode);
974 		return inode;
975 	}
976 
977 	inode = alloc_inode(sb);
978 	if (inode) {
979 		struct inode *old;
980 
981 		spin_lock(&inode_hash_lock);
982 		/* We released the lock, so.. */
983 		old = find_inode(sb, head, test, data);
984 		if (!old) {
985 			if (set(inode, data))
986 				goto set_failed;
987 
988 			spin_lock(&inode->i_lock);
989 			inode->i_state = I_NEW;
990 			hlist_add_head(&inode->i_hash, head);
991 			spin_unlock(&inode->i_lock);
992 			inode_sb_list_add(inode);
993 			spin_unlock(&inode_hash_lock);
994 
995 			/* Return the locked inode with I_NEW set, the
996 			 * caller is responsible for filling in the contents
997 			 */
998 			return inode;
999 		}
1000 
1001 		/*
1002 		 * Uhhuh, somebody else created the same inode under
1003 		 * us. Use the old inode instead of the one we just
1004 		 * allocated.
1005 		 */
1006 		spin_unlock(&inode_hash_lock);
1007 		destroy_inode(inode);
1008 		inode = old;
1009 		wait_on_inode(inode);
1010 	}
1011 	return inode;
1012 
1013 set_failed:
1014 	spin_unlock(&inode_hash_lock);
1015 	destroy_inode(inode);
1016 	return NULL;
1017 }
1018 EXPORT_SYMBOL(iget5_locked);
1019 
1020 /**
1021  * iget_locked - obtain an inode from a mounted file system
1022  * @sb:		super block of file system
1023  * @ino:	inode number to get
1024  *
1025  * Search for the inode specified by @ino in the inode cache and if present
1026  * return it with an increased reference count. This is for file systems
1027  * where the inode number is sufficient for unique identification of an inode.
1028  *
1029  * If the inode is not in cache, allocate a new inode and return it locked,
1030  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1031  * before unlocking it via unlock_new_inode().
1032  */
iget_locked(struct super_block * sb,unsigned long ino)1033 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1034 {
1035 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1036 	struct inode *inode;
1037 
1038 	spin_lock(&inode_hash_lock);
1039 	inode = find_inode_fast(sb, head, ino);
1040 	spin_unlock(&inode_hash_lock);
1041 	if (inode) {
1042 		wait_on_inode(inode);
1043 		return inode;
1044 	}
1045 
1046 	inode = alloc_inode(sb);
1047 	if (inode) {
1048 		struct inode *old;
1049 
1050 		spin_lock(&inode_hash_lock);
1051 		/* We released the lock, so.. */
1052 		old = find_inode_fast(sb, head, ino);
1053 		if (!old) {
1054 			inode->i_ino = ino;
1055 			spin_lock(&inode->i_lock);
1056 			inode->i_state = I_NEW;
1057 			hlist_add_head(&inode->i_hash, head);
1058 			spin_unlock(&inode->i_lock);
1059 			inode_sb_list_add(inode);
1060 			spin_unlock(&inode_hash_lock);
1061 
1062 			/* Return the locked inode with I_NEW set, the
1063 			 * caller is responsible for filling in the contents
1064 			 */
1065 			return inode;
1066 		}
1067 
1068 		/*
1069 		 * Uhhuh, somebody else created the same inode under
1070 		 * us. Use the old inode instead of the one we just
1071 		 * allocated.
1072 		 */
1073 		spin_unlock(&inode_hash_lock);
1074 		destroy_inode(inode);
1075 		inode = old;
1076 		wait_on_inode(inode);
1077 	}
1078 	return inode;
1079 }
1080 EXPORT_SYMBOL(iget_locked);
1081 
1082 /*
1083  * search the inode cache for a matching inode number.
1084  * If we find one, then the inode number we are trying to
1085  * allocate is not unique and so we should not use it.
1086  *
1087  * Returns 1 if the inode number is unique, 0 if it is not.
1088  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1089 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1090 {
1091 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1092 	struct hlist_node *node;
1093 	struct inode *inode;
1094 
1095 	spin_lock(&inode_hash_lock);
1096 	hlist_for_each_entry(inode, node, b, i_hash) {
1097 		if (inode->i_ino == ino && inode->i_sb == sb) {
1098 			spin_unlock(&inode_hash_lock);
1099 			return 0;
1100 		}
1101 	}
1102 	spin_unlock(&inode_hash_lock);
1103 
1104 	return 1;
1105 }
1106 
1107 /**
1108  *	iunique - get a unique inode number
1109  *	@sb: superblock
1110  *	@max_reserved: highest reserved inode number
1111  *
1112  *	Obtain an inode number that is unique on the system for a given
1113  *	superblock. This is used by file systems that have no natural
1114  *	permanent inode numbering system. An inode number is returned that
1115  *	is higher than the reserved limit but unique.
1116  *
1117  *	BUGS:
1118  *	With a large number of inodes live on the file system this function
1119  *	currently becomes quite slow.
1120  */
iunique(struct super_block * sb,ino_t max_reserved)1121 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1122 {
1123 	/*
1124 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1125 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1126 	 * here to attempt to avoid that.
1127 	 */
1128 	static DEFINE_SPINLOCK(iunique_lock);
1129 	static unsigned int counter;
1130 	ino_t res;
1131 
1132 	spin_lock(&iunique_lock);
1133 	do {
1134 		if (counter <= max_reserved)
1135 			counter = max_reserved + 1;
1136 		res = counter++;
1137 	} while (!test_inode_iunique(sb, res));
1138 	spin_unlock(&iunique_lock);
1139 
1140 	return res;
1141 }
1142 EXPORT_SYMBOL(iunique);
1143 
igrab(struct inode * inode)1144 struct inode *igrab(struct inode *inode)
1145 {
1146 	spin_lock(&inode->i_lock);
1147 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1148 		__iget(inode);
1149 		spin_unlock(&inode->i_lock);
1150 	} else {
1151 		spin_unlock(&inode->i_lock);
1152 		/*
1153 		 * Handle the case where s_op->clear_inode is not been
1154 		 * called yet, and somebody is calling igrab
1155 		 * while the inode is getting freed.
1156 		 */
1157 		inode = NULL;
1158 	}
1159 	return inode;
1160 }
1161 EXPORT_SYMBOL(igrab);
1162 
1163 /**
1164  * ilookup5_nowait - search for an inode in the inode cache
1165  * @sb:		super block of file system to search
1166  * @hashval:	hash value (usually inode number) to search for
1167  * @test:	callback used for comparisons between inodes
1168  * @data:	opaque data pointer to pass to @test
1169  *
1170  * Search for the inode specified by @hashval and @data in the inode cache.
1171  * If the inode is in the cache, the inode is returned with an incremented
1172  * reference count.
1173  *
1174  * Note: I_NEW is not waited upon so you have to be very careful what you do
1175  * with the returned inode.  You probably should be using ilookup5() instead.
1176  *
1177  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1178  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1179 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1180 		int (*test)(struct inode *, void *), void *data)
1181 {
1182 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1183 	struct inode *inode;
1184 
1185 	spin_lock(&inode_hash_lock);
1186 	inode = find_inode(sb, head, test, data);
1187 	spin_unlock(&inode_hash_lock);
1188 
1189 	return inode;
1190 }
1191 EXPORT_SYMBOL(ilookup5_nowait);
1192 
1193 /**
1194  * ilookup5 - search for an inode in the inode cache
1195  * @sb:		super block of file system to search
1196  * @hashval:	hash value (usually inode number) to search for
1197  * @test:	callback used for comparisons between inodes
1198  * @data:	opaque data pointer to pass to @test
1199  *
1200  * Search for the inode specified by @hashval and @data in the inode cache,
1201  * and if the inode is in the cache, return the inode with an incremented
1202  * reference count.  Waits on I_NEW before returning the inode.
1203  * returned with an incremented reference count.
1204  *
1205  * This is a generalized version of ilookup() for file systems where the
1206  * inode number is not sufficient for unique identification of an inode.
1207  *
1208  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1209  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1210 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1211 		int (*test)(struct inode *, void *), void *data)
1212 {
1213 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1214 
1215 	if (inode)
1216 		wait_on_inode(inode);
1217 	return inode;
1218 }
1219 EXPORT_SYMBOL(ilookup5);
1220 
1221 /**
1222  * ilookup - search for an inode in the inode cache
1223  * @sb:		super block of file system to search
1224  * @ino:	inode number to search for
1225  *
1226  * Search for the inode @ino in the inode cache, and if the inode is in the
1227  * cache, the inode is returned with an incremented reference count.
1228  */
ilookup(struct super_block * sb,unsigned long ino)1229 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1230 {
1231 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1232 	struct inode *inode;
1233 
1234 	spin_lock(&inode_hash_lock);
1235 	inode = find_inode_fast(sb, head, ino);
1236 	spin_unlock(&inode_hash_lock);
1237 
1238 	if (inode)
1239 		wait_on_inode(inode);
1240 	return inode;
1241 }
1242 EXPORT_SYMBOL(ilookup);
1243 
insert_inode_locked(struct inode * inode)1244 int insert_inode_locked(struct inode *inode)
1245 {
1246 	struct super_block *sb = inode->i_sb;
1247 	ino_t ino = inode->i_ino;
1248 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1249 
1250 	while (1) {
1251 		struct hlist_node *node;
1252 		struct inode *old = NULL;
1253 		spin_lock(&inode_hash_lock);
1254 		hlist_for_each_entry(old, node, head, i_hash) {
1255 			if (old->i_ino != ino)
1256 				continue;
1257 			if (old->i_sb != sb)
1258 				continue;
1259 			spin_lock(&old->i_lock);
1260 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1261 				spin_unlock(&old->i_lock);
1262 				continue;
1263 			}
1264 			break;
1265 		}
1266 		if (likely(!node)) {
1267 			spin_lock(&inode->i_lock);
1268 			inode->i_state |= I_NEW;
1269 			hlist_add_head(&inode->i_hash, head);
1270 			spin_unlock(&inode->i_lock);
1271 			spin_unlock(&inode_hash_lock);
1272 			return 0;
1273 		}
1274 		__iget(old);
1275 		spin_unlock(&old->i_lock);
1276 		spin_unlock(&inode_hash_lock);
1277 		wait_on_inode(old);
1278 		if (unlikely(!inode_unhashed(old))) {
1279 			iput(old);
1280 			return -EBUSY;
1281 		}
1282 		iput(old);
1283 	}
1284 }
1285 EXPORT_SYMBOL(insert_inode_locked);
1286 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1287 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1288 		int (*test)(struct inode *, void *), void *data)
1289 {
1290 	struct super_block *sb = inode->i_sb;
1291 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1292 
1293 	while (1) {
1294 		struct hlist_node *node;
1295 		struct inode *old = NULL;
1296 
1297 		spin_lock(&inode_hash_lock);
1298 		hlist_for_each_entry(old, node, head, i_hash) {
1299 			if (old->i_sb != sb)
1300 				continue;
1301 			if (!test(old, data))
1302 				continue;
1303 			spin_lock(&old->i_lock);
1304 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1305 				spin_unlock(&old->i_lock);
1306 				continue;
1307 			}
1308 			break;
1309 		}
1310 		if (likely(!node)) {
1311 			spin_lock(&inode->i_lock);
1312 			inode->i_state |= I_NEW;
1313 			hlist_add_head(&inode->i_hash, head);
1314 			spin_unlock(&inode->i_lock);
1315 			spin_unlock(&inode_hash_lock);
1316 			return 0;
1317 		}
1318 		__iget(old);
1319 		spin_unlock(&old->i_lock);
1320 		spin_unlock(&inode_hash_lock);
1321 		wait_on_inode(old);
1322 		if (unlikely(!inode_unhashed(old))) {
1323 			iput(old);
1324 			return -EBUSY;
1325 		}
1326 		iput(old);
1327 	}
1328 }
1329 EXPORT_SYMBOL(insert_inode_locked4);
1330 
1331 
generic_delete_inode(struct inode * inode)1332 int generic_delete_inode(struct inode *inode)
1333 {
1334 	return 1;
1335 }
1336 EXPORT_SYMBOL(generic_delete_inode);
1337 
1338 /*
1339  * Normal UNIX filesystem behaviour: delete the
1340  * inode when the usage count drops to zero, and
1341  * i_nlink is zero.
1342  */
generic_drop_inode(struct inode * inode)1343 int generic_drop_inode(struct inode *inode)
1344 {
1345 	return !inode->i_nlink || inode_unhashed(inode);
1346 }
1347 EXPORT_SYMBOL_GPL(generic_drop_inode);
1348 
1349 /*
1350  * Called when we're dropping the last reference
1351  * to an inode.
1352  *
1353  * Call the FS "drop_inode()" function, defaulting to
1354  * the legacy UNIX filesystem behaviour.  If it tells
1355  * us to evict inode, do so.  Otherwise, retain inode
1356  * in cache if fs is alive, sync and evict if fs is
1357  * shutting down.
1358  */
iput_final(struct inode * inode)1359 static void iput_final(struct inode *inode)
1360 {
1361 	struct super_block *sb = inode->i_sb;
1362 	const struct super_operations *op = inode->i_sb->s_op;
1363 	int drop;
1364 
1365 	WARN_ON(inode->i_state & I_NEW);
1366 
1367 	if (op && op->drop_inode)
1368 		drop = op->drop_inode(inode);
1369 	else
1370 		drop = generic_drop_inode(inode);
1371 
1372 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1373 		inode->i_state |= I_REFERENCED;
1374 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1375 			inode_lru_list_add(inode);
1376 		spin_unlock(&inode->i_lock);
1377 		return;
1378 	}
1379 
1380 	if (!drop) {
1381 		inode->i_state |= I_WILL_FREE;
1382 		spin_unlock(&inode->i_lock);
1383 		write_inode_now(inode, 1);
1384 		spin_lock(&inode->i_lock);
1385 		WARN_ON(inode->i_state & I_NEW);
1386 		inode->i_state &= ~I_WILL_FREE;
1387 	}
1388 
1389 	inode->i_state |= I_FREEING;
1390 	inode_lru_list_del(inode);
1391 	spin_unlock(&inode->i_lock);
1392 
1393 	evict(inode);
1394 }
1395 
1396 /**
1397  *	iput	- put an inode
1398  *	@inode: inode to put
1399  *
1400  *	Puts an inode, dropping its usage count. If the inode use count hits
1401  *	zero, the inode is then freed and may also be destroyed.
1402  *
1403  *	Consequently, iput() can sleep.
1404  */
iput(struct inode * inode)1405 void iput(struct inode *inode)
1406 {
1407 	if (inode) {
1408 		BUG_ON(inode->i_state & I_CLEAR);
1409 
1410 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1411 			iput_final(inode);
1412 	}
1413 }
1414 EXPORT_SYMBOL(iput);
1415 
1416 /**
1417  *	bmap	- find a block number in a file
1418  *	@inode: inode of file
1419  *	@block: block to find
1420  *
1421  *	Returns the block number on the device holding the inode that
1422  *	is the disk block number for the block of the file requested.
1423  *	That is, asked for block 4 of inode 1 the function will return the
1424  *	disk block relative to the disk start that holds that block of the
1425  *	file.
1426  */
bmap(struct inode * inode,sector_t block)1427 sector_t bmap(struct inode *inode, sector_t block)
1428 {
1429 	sector_t res = 0;
1430 	if (inode->i_mapping->a_ops->bmap)
1431 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1432 	return res;
1433 }
1434 EXPORT_SYMBOL(bmap);
1435 
1436 /*
1437  * With relative atime, only update atime if the previous atime is
1438  * earlier than either the ctime or mtime or if at least a day has
1439  * passed since the last atime update.
1440  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec now)1441 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1442 			     struct timespec now)
1443 {
1444 
1445 	if (!(mnt->mnt_flags & MNT_RELATIME))
1446 		return 1;
1447 	/*
1448 	 * Is mtime younger than atime? If yes, update atime:
1449 	 */
1450 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1451 		return 1;
1452 	/*
1453 	 * Is ctime younger than atime? If yes, update atime:
1454 	 */
1455 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1456 		return 1;
1457 
1458 	/*
1459 	 * Is the previous atime value older than a day? If yes,
1460 	 * update atime:
1461 	 */
1462 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1463 		return 1;
1464 	/*
1465 	 * Good, we can skip the atime update:
1466 	 */
1467 	return 0;
1468 }
1469 
1470 /**
1471  *	touch_atime	-	update the access time
1472  *	@mnt: mount the inode is accessed on
1473  *	@dentry: dentry accessed
1474  *
1475  *	Update the accessed time on an inode and mark it for writeback.
1476  *	This function automatically handles read only file systems and media,
1477  *	as well as the "noatime" flag and inode specific "noatime" markers.
1478  */
touch_atime(struct vfsmount * mnt,struct dentry * dentry)1479 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1480 {
1481 	struct inode *inode = dentry->d_inode;
1482 	struct timespec now;
1483 
1484 	if (inode->i_flags & S_NOATIME)
1485 		return;
1486 	if (IS_NOATIME(inode))
1487 		return;
1488 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1489 		return;
1490 
1491 	if (mnt->mnt_flags & MNT_NOATIME)
1492 		return;
1493 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1494 		return;
1495 
1496 	now = current_fs_time(inode->i_sb);
1497 
1498 	if (!relatime_need_update(mnt, inode, now))
1499 		return;
1500 
1501 	if (timespec_equal(&inode->i_atime, &now))
1502 		return;
1503 
1504 	if (mnt_want_write(mnt))
1505 		return;
1506 
1507 	inode->i_atime = now;
1508 	mark_inode_dirty_sync(inode);
1509 	mnt_drop_write(mnt);
1510 }
1511 EXPORT_SYMBOL(touch_atime);
1512 
1513 /**
1514  *	file_update_time	-	update mtime and ctime time
1515  *	@file: file accessed
1516  *
1517  *	Update the mtime and ctime members of an inode and mark the inode
1518  *	for writeback.  Note that this function is meant exclusively for
1519  *	usage in the file write path of filesystems, and filesystems may
1520  *	choose to explicitly ignore update via this function with the
1521  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1522  *	timestamps are handled by the server.
1523  */
1524 
file_update_time(struct file * file)1525 void file_update_time(struct file *file)
1526 {
1527 	struct inode *inode = file->f_path.dentry->d_inode;
1528 	struct timespec now;
1529 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1530 
1531 	/* First try to exhaust all avenues to not sync */
1532 	if (IS_NOCMTIME(inode))
1533 		return;
1534 
1535 	now = current_fs_time(inode->i_sb);
1536 	if (!timespec_equal(&inode->i_mtime, &now))
1537 		sync_it = S_MTIME;
1538 
1539 	if (!timespec_equal(&inode->i_ctime, &now))
1540 		sync_it |= S_CTIME;
1541 
1542 	if (IS_I_VERSION(inode))
1543 		sync_it |= S_VERSION;
1544 
1545 	if (!sync_it)
1546 		return;
1547 
1548 	/* Finally allowed to write? Takes lock. */
1549 	if (mnt_want_write_file(file))
1550 		return;
1551 
1552 	/* Only change inode inside the lock region */
1553 	if (sync_it & S_VERSION)
1554 		inode_inc_iversion(inode);
1555 	if (sync_it & S_CTIME)
1556 		inode->i_ctime = now;
1557 	if (sync_it & S_MTIME)
1558 		inode->i_mtime = now;
1559 	mark_inode_dirty_sync(inode);
1560 	mnt_drop_write(file->f_path.mnt);
1561 }
1562 EXPORT_SYMBOL(file_update_time);
1563 
inode_needs_sync(struct inode * inode)1564 int inode_needs_sync(struct inode *inode)
1565 {
1566 	if (IS_SYNC(inode))
1567 		return 1;
1568 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1569 		return 1;
1570 	return 0;
1571 }
1572 EXPORT_SYMBOL(inode_needs_sync);
1573 
inode_wait(void * word)1574 int inode_wait(void *word)
1575 {
1576 	schedule();
1577 	return 0;
1578 }
1579 EXPORT_SYMBOL(inode_wait);
1580 
1581 /*
1582  * If we try to find an inode in the inode hash while it is being
1583  * deleted, we have to wait until the filesystem completes its
1584  * deletion before reporting that it isn't found.  This function waits
1585  * until the deletion _might_ have completed.  Callers are responsible
1586  * to recheck inode state.
1587  *
1588  * It doesn't matter if I_NEW is not set initially, a call to
1589  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1590  * will DTRT.
1591  */
__wait_on_freeing_inode(struct inode * inode)1592 static void __wait_on_freeing_inode(struct inode *inode)
1593 {
1594 	wait_queue_head_t *wq;
1595 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1596 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1597 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1598 	spin_unlock(&inode->i_lock);
1599 	spin_unlock(&inode_hash_lock);
1600 	schedule();
1601 	finish_wait(wq, &wait.wait);
1602 	spin_lock(&inode_hash_lock);
1603 }
1604 
1605 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)1606 static int __init set_ihash_entries(char *str)
1607 {
1608 	if (!str)
1609 		return 0;
1610 	ihash_entries = simple_strtoul(str, &str, 0);
1611 	return 1;
1612 }
1613 __setup("ihash_entries=", set_ihash_entries);
1614 
1615 /*
1616  * Initialize the waitqueues and inode hash table.
1617  */
inode_init_early(void)1618 void __init inode_init_early(void)
1619 {
1620 	int loop;
1621 
1622 	/* If hashes are distributed across NUMA nodes, defer
1623 	 * hash allocation until vmalloc space is available.
1624 	 */
1625 	if (hashdist)
1626 		return;
1627 
1628 	inode_hashtable =
1629 		alloc_large_system_hash("Inode-cache",
1630 					sizeof(struct hlist_head),
1631 					ihash_entries,
1632 					14,
1633 					HASH_EARLY,
1634 					&i_hash_shift,
1635 					&i_hash_mask,
1636 					0);
1637 
1638 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1639 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1640 }
1641 
inode_init(void)1642 void __init inode_init(void)
1643 {
1644 	int loop;
1645 
1646 	/* inode slab cache */
1647 	inode_cachep = kmem_cache_create("inode_cache",
1648 					 sizeof(struct inode),
1649 					 0,
1650 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1651 					 SLAB_MEM_SPREAD),
1652 					 init_once);
1653 	register_shrinker(&icache_shrinker);
1654 
1655 	/* Hash may have been set up in inode_init_early */
1656 	if (!hashdist)
1657 		return;
1658 
1659 	inode_hashtable =
1660 		alloc_large_system_hash("Inode-cache",
1661 					sizeof(struct hlist_head),
1662 					ihash_entries,
1663 					14,
1664 					0,
1665 					&i_hash_shift,
1666 					&i_hash_mask,
1667 					0);
1668 
1669 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1670 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1671 }
1672 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)1673 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1674 {
1675 	inode->i_mode = mode;
1676 	if (S_ISCHR(mode)) {
1677 		inode->i_fop = &def_chr_fops;
1678 		inode->i_rdev = rdev;
1679 	} else if (S_ISBLK(mode)) {
1680 		inode->i_fop = &def_blk_fops;
1681 		inode->i_rdev = rdev;
1682 	} else if (S_ISFIFO(mode))
1683 		inode->i_fop = &def_fifo_fops;
1684 	else if (S_ISSOCK(mode))
1685 		inode->i_fop = &bad_sock_fops;
1686 	else
1687 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1688 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1689 				  inode->i_ino);
1690 }
1691 EXPORT_SYMBOL(init_special_inode);
1692 
1693 /**
1694  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1695  * @inode: New inode
1696  * @dir: Directory inode
1697  * @mode: mode of the new inode
1698  */
inode_init_owner(struct inode * inode,const struct inode * dir,mode_t mode)1699 void inode_init_owner(struct inode *inode, const struct inode *dir,
1700 			mode_t mode)
1701 {
1702 	inode->i_uid = current_fsuid();
1703 	if (dir && dir->i_mode & S_ISGID) {
1704 		inode->i_gid = dir->i_gid;
1705 		if (S_ISDIR(mode))
1706 			mode |= S_ISGID;
1707 	} else
1708 		inode->i_gid = current_fsgid();
1709 	inode->i_mode = mode;
1710 }
1711 EXPORT_SYMBOL(inode_init_owner);
1712 
1713 /**
1714  * inode_owner_or_capable - check current task permissions to inode
1715  * @inode: inode being checked
1716  *
1717  * Return true if current either has CAP_FOWNER to the inode, or
1718  * owns the file.
1719  */
inode_owner_or_capable(const struct inode * inode)1720 bool inode_owner_or_capable(const struct inode *inode)
1721 {
1722 	struct user_namespace *ns = inode_userns(inode);
1723 
1724 	if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1725 		return true;
1726 	if (ns_capable(ns, CAP_FOWNER))
1727 		return true;
1728 	return false;
1729 }
1730 EXPORT_SYMBOL(inode_owner_or_capable);
1731