1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * NSA Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h> /* for local_port_range[] */
55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h> /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h> /* for Unix socket types */
73 #include <net/af_unix.h> /* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 #include <linux/kernfs.h>
90 #include <linux/stringhash.h> /* for hashlen_string() */
91 #include <uapi/linux/mount.h>
92 #include <linux/fsnotify.h>
93 #include <linux/fanotify.h>
94 #include <linux/io_uring.h>
95
96 #include "avc.h"
97 #include "objsec.h"
98 #include "netif.h"
99 #include "netnode.h"
100 #include "netport.h"
101 #include "ibpkey.h"
102 #include "xfrm.h"
103 #include "netlabel.h"
104 #include "audit.h"
105 #include "avc_ss.h"
106
107 struct selinux_state selinux_state;
108
109 /* SECMARK reference count */
110 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
111
112 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
113 static int selinux_enforcing_boot __initdata;
114
enforcing_setup(char * str)115 static int __init enforcing_setup(char *str)
116 {
117 unsigned long enforcing;
118 if (!kstrtoul(str, 0, &enforcing))
119 selinux_enforcing_boot = enforcing ? 1 : 0;
120 return 1;
121 }
122 __setup("enforcing=", enforcing_setup);
123 #else
124 #define selinux_enforcing_boot 1
125 #endif
126
127 int selinux_enabled_boot __initdata = 1;
128 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
selinux_enabled_setup(char * str)129 static int __init selinux_enabled_setup(char *str)
130 {
131 unsigned long enabled;
132 if (!kstrtoul(str, 0, &enabled))
133 selinux_enabled_boot = enabled ? 1 : 0;
134 return 1;
135 }
136 __setup("selinux=", selinux_enabled_setup);
137 #endif
138
139 static unsigned int selinux_checkreqprot_boot =
140 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
141
checkreqprot_setup(char * str)142 static int __init checkreqprot_setup(char *str)
143 {
144 unsigned long checkreqprot;
145
146 if (!kstrtoul(str, 0, &checkreqprot)) {
147 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
148 if (checkreqprot)
149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n");
150 }
151 return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154
155 /**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
selinux_secmark_enabled(void)166 static int selinux_secmark_enabled(void)
167 {
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170 }
171
172 /**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
selinux_peerlbl_enabled(void)182 static int selinux_peerlbl_enabled(void)
183 {
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186 }
187
selinux_netcache_avc_callback(u32 event)188 static int selinux_netcache_avc_callback(u32 event)
189 {
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197 }
198
selinux_lsm_notifier_avc_callback(u32 event)199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207 }
208
209 /*
210 * initialise the security for the init task
211 */
cred_init_security(void)212 static void cred_init_security(void)
213 {
214 struct task_security_struct *tsec;
215
216 tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219
220 /*
221 * get the security ID of a set of credentials
222 */
cred_sid(const struct cred * cred)223 static inline u32 cred_sid(const struct cred *cred)
224 {
225 const struct task_security_struct *tsec;
226
227 tsec = selinux_cred(cred);
228 return tsec->sid;
229 }
230
231 /*
232 * get the objective security ID of a task
233 */
task_sid_obj(const struct task_struct * task)234 static inline u32 task_sid_obj(const struct task_struct *task)
235 {
236 u32 sid;
237
238 rcu_read_lock();
239 sid = cred_sid(__task_cred(task));
240 rcu_read_unlock();
241 return sid;
242 }
243
244 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
245
246 /*
247 * Try reloading inode security labels that have been marked as invalid. The
248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
249 * allowed; when set to false, returns -ECHILD when the label is
250 * invalid. The @dentry parameter should be set to a dentry of the inode.
251 */
__inode_security_revalidate(struct inode * inode,struct dentry * dentry,bool may_sleep)252 static int __inode_security_revalidate(struct inode *inode,
253 struct dentry *dentry,
254 bool may_sleep)
255 {
256 struct inode_security_struct *isec = selinux_inode(inode);
257
258 might_sleep_if(may_sleep);
259
260 if (selinux_initialized(&selinux_state) &&
261 isec->initialized != LABEL_INITIALIZED) {
262 if (!may_sleep)
263 return -ECHILD;
264
265 /*
266 * Try reloading the inode security label. This will fail if
267 * @opt_dentry is NULL and no dentry for this inode can be
268 * found; in that case, continue using the old label.
269 */
270 inode_doinit_with_dentry(inode, dentry);
271 }
272 return 0;
273 }
274
inode_security_novalidate(struct inode * inode)275 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
276 {
277 return selinux_inode(inode);
278 }
279
inode_security_rcu(struct inode * inode,bool rcu)280 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
281 {
282 int error;
283
284 error = __inode_security_revalidate(inode, NULL, !rcu);
285 if (error)
286 return ERR_PTR(error);
287 return selinux_inode(inode);
288 }
289
290 /*
291 * Get the security label of an inode.
292 */
inode_security(struct inode * inode)293 static struct inode_security_struct *inode_security(struct inode *inode)
294 {
295 __inode_security_revalidate(inode, NULL, true);
296 return selinux_inode(inode);
297 }
298
backing_inode_security_novalidate(struct dentry * dentry)299 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
300 {
301 struct inode *inode = d_backing_inode(dentry);
302
303 return selinux_inode(inode);
304 }
305
306 /*
307 * Get the security label of a dentry's backing inode.
308 */
backing_inode_security(struct dentry * dentry)309 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
310 {
311 struct inode *inode = d_backing_inode(dentry);
312
313 __inode_security_revalidate(inode, dentry, true);
314 return selinux_inode(inode);
315 }
316
inode_free_security(struct inode * inode)317 static void inode_free_security(struct inode *inode)
318 {
319 struct inode_security_struct *isec = selinux_inode(inode);
320 struct superblock_security_struct *sbsec;
321
322 if (!isec)
323 return;
324 sbsec = selinux_superblock(inode->i_sb);
325 /*
326 * As not all inode security structures are in a list, we check for
327 * empty list outside of the lock to make sure that we won't waste
328 * time taking a lock doing nothing.
329 *
330 * The list_del_init() function can be safely called more than once.
331 * It should not be possible for this function to be called with
332 * concurrent list_add(), but for better safety against future changes
333 * in the code, we use list_empty_careful() here.
334 */
335 if (!list_empty_careful(&isec->list)) {
336 spin_lock(&sbsec->isec_lock);
337 list_del_init(&isec->list);
338 spin_unlock(&sbsec->isec_lock);
339 }
340 }
341
342 struct selinux_mnt_opts {
343 u32 fscontext_sid;
344 u32 context_sid;
345 u32 rootcontext_sid;
346 u32 defcontext_sid;
347 };
348
selinux_free_mnt_opts(void * mnt_opts)349 static void selinux_free_mnt_opts(void *mnt_opts)
350 {
351 kfree(mnt_opts);
352 }
353
354 enum {
355 Opt_error = -1,
356 Opt_context = 0,
357 Opt_defcontext = 1,
358 Opt_fscontext = 2,
359 Opt_rootcontext = 3,
360 Opt_seclabel = 4,
361 };
362
363 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
364 static struct {
365 const char *name;
366 int len;
367 int opt;
368 bool has_arg;
369 } tokens[] = {
370 A(context, true),
371 A(fscontext, true),
372 A(defcontext, true),
373 A(rootcontext, true),
374 A(seclabel, false),
375 };
376 #undef A
377
match_opt_prefix(char * s,int l,char ** arg)378 static int match_opt_prefix(char *s, int l, char **arg)
379 {
380 int i;
381
382 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
383 size_t len = tokens[i].len;
384 if (len > l || memcmp(s, tokens[i].name, len))
385 continue;
386 if (tokens[i].has_arg) {
387 if (len == l || s[len] != '=')
388 continue;
389 *arg = s + len + 1;
390 } else if (len != l)
391 continue;
392 return tokens[i].opt;
393 }
394 return Opt_error;
395 }
396
397 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
398
may_context_mount_sb_relabel(u32 sid,struct superblock_security_struct * sbsec,const struct cred * cred)399 static int may_context_mount_sb_relabel(u32 sid,
400 struct superblock_security_struct *sbsec,
401 const struct cred *cred)
402 {
403 const struct task_security_struct *tsec = selinux_cred(cred);
404 int rc;
405
406 rc = avc_has_perm(&selinux_state,
407 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
408 FILESYSTEM__RELABELFROM, NULL);
409 if (rc)
410 return rc;
411
412 rc = avc_has_perm(&selinux_state,
413 tsec->sid, sid, SECCLASS_FILESYSTEM,
414 FILESYSTEM__RELABELTO, NULL);
415 return rc;
416 }
417
may_context_mount_inode_relabel(u32 sid,struct superblock_security_struct * sbsec,const struct cred * cred)418 static int may_context_mount_inode_relabel(u32 sid,
419 struct superblock_security_struct *sbsec,
420 const struct cred *cred)
421 {
422 const struct task_security_struct *tsec = selinux_cred(cred);
423 int rc;
424 rc = avc_has_perm(&selinux_state,
425 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
426 FILESYSTEM__RELABELFROM, NULL);
427 if (rc)
428 return rc;
429
430 rc = avc_has_perm(&selinux_state,
431 sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 FILESYSTEM__ASSOCIATE, NULL);
433 return rc;
434 }
435
selinux_is_genfs_special_handling(struct super_block * sb)436 static int selinux_is_genfs_special_handling(struct super_block *sb)
437 {
438 /* Special handling. Genfs but also in-core setxattr handler */
439 return !strcmp(sb->s_type->name, "sysfs") ||
440 !strcmp(sb->s_type->name, "pstore") ||
441 !strcmp(sb->s_type->name, "debugfs") ||
442 !strcmp(sb->s_type->name, "tracefs") ||
443 !strcmp(sb->s_type->name, "rootfs") ||
444 (selinux_policycap_cgroupseclabel() &&
445 (!strcmp(sb->s_type->name, "cgroup") ||
446 !strcmp(sb->s_type->name, "cgroup2")));
447 }
448
selinux_is_sblabel_mnt(struct super_block * sb)449 static int selinux_is_sblabel_mnt(struct super_block *sb)
450 {
451 struct superblock_security_struct *sbsec = selinux_superblock(sb);
452
453 /*
454 * IMPORTANT: Double-check logic in this function when adding a new
455 * SECURITY_FS_USE_* definition!
456 */
457 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
458
459 switch (sbsec->behavior) {
460 case SECURITY_FS_USE_XATTR:
461 case SECURITY_FS_USE_TRANS:
462 case SECURITY_FS_USE_TASK:
463 case SECURITY_FS_USE_NATIVE:
464 return 1;
465
466 case SECURITY_FS_USE_GENFS:
467 return selinux_is_genfs_special_handling(sb);
468
469 /* Never allow relabeling on context mounts */
470 case SECURITY_FS_USE_MNTPOINT:
471 case SECURITY_FS_USE_NONE:
472 default:
473 return 0;
474 }
475 }
476
sb_check_xattr_support(struct super_block * sb)477 static int sb_check_xattr_support(struct super_block *sb)
478 {
479 struct superblock_security_struct *sbsec = selinux_superblock(sb);
480 struct dentry *root = sb->s_root;
481 struct inode *root_inode = d_backing_inode(root);
482 u32 sid;
483 int rc;
484
485 /*
486 * Make sure that the xattr handler exists and that no
487 * error other than -ENODATA is returned by getxattr on
488 * the root directory. -ENODATA is ok, as this may be
489 * the first boot of the SELinux kernel before we have
490 * assigned xattr values to the filesystem.
491 */
492 if (!(root_inode->i_opflags & IOP_XATTR)) {
493 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
494 sb->s_id, sb->s_type->name);
495 goto fallback;
496 }
497
498 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
499 if (rc < 0 && rc != -ENODATA) {
500 if (rc == -EOPNOTSUPP) {
501 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
502 sb->s_id, sb->s_type->name);
503 goto fallback;
504 } else {
505 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
506 sb->s_id, sb->s_type->name, -rc);
507 return rc;
508 }
509 }
510 return 0;
511
512 fallback:
513 /* No xattr support - try to fallback to genfs if possible. */
514 rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
515 SECCLASS_DIR, &sid);
516 if (rc)
517 return -EOPNOTSUPP;
518
519 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
520 sb->s_id, sb->s_type->name);
521 sbsec->behavior = SECURITY_FS_USE_GENFS;
522 sbsec->sid = sid;
523 return 0;
524 }
525
sb_finish_set_opts(struct super_block * sb)526 static int sb_finish_set_opts(struct super_block *sb)
527 {
528 struct superblock_security_struct *sbsec = selinux_superblock(sb);
529 struct dentry *root = sb->s_root;
530 struct inode *root_inode = d_backing_inode(root);
531 int rc = 0;
532
533 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
534 rc = sb_check_xattr_support(sb);
535 if (rc)
536 return rc;
537 }
538
539 sbsec->flags |= SE_SBINITIALIZED;
540
541 /*
542 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
543 * leave the flag untouched because sb_clone_mnt_opts might be handing
544 * us a superblock that needs the flag to be cleared.
545 */
546 if (selinux_is_sblabel_mnt(sb))
547 sbsec->flags |= SBLABEL_MNT;
548 else
549 sbsec->flags &= ~SBLABEL_MNT;
550
551 /* Initialize the root inode. */
552 rc = inode_doinit_with_dentry(root_inode, root);
553
554 /* Initialize any other inodes associated with the superblock, e.g.
555 inodes created prior to initial policy load or inodes created
556 during get_sb by a pseudo filesystem that directly
557 populates itself. */
558 spin_lock(&sbsec->isec_lock);
559 while (!list_empty(&sbsec->isec_head)) {
560 struct inode_security_struct *isec =
561 list_first_entry(&sbsec->isec_head,
562 struct inode_security_struct, list);
563 struct inode *inode = isec->inode;
564 list_del_init(&isec->list);
565 spin_unlock(&sbsec->isec_lock);
566 inode = igrab(inode);
567 if (inode) {
568 if (!IS_PRIVATE(inode))
569 inode_doinit_with_dentry(inode, NULL);
570 iput(inode);
571 }
572 spin_lock(&sbsec->isec_lock);
573 }
574 spin_unlock(&sbsec->isec_lock);
575 return rc;
576 }
577
bad_option(struct superblock_security_struct * sbsec,char flag,u32 old_sid,u32 new_sid)578 static int bad_option(struct superblock_security_struct *sbsec, char flag,
579 u32 old_sid, u32 new_sid)
580 {
581 char mnt_flags = sbsec->flags & SE_MNTMASK;
582
583 /* check if the old mount command had the same options */
584 if (sbsec->flags & SE_SBINITIALIZED)
585 if (!(sbsec->flags & flag) ||
586 (old_sid != new_sid))
587 return 1;
588
589 /* check if we were passed the same options twice,
590 * aka someone passed context=a,context=b
591 */
592 if (!(sbsec->flags & SE_SBINITIALIZED))
593 if (mnt_flags & flag)
594 return 1;
595 return 0;
596 }
597
598 /*
599 * Allow filesystems with binary mount data to explicitly set mount point
600 * labeling information.
601 */
selinux_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)602 static int selinux_set_mnt_opts(struct super_block *sb,
603 void *mnt_opts,
604 unsigned long kern_flags,
605 unsigned long *set_kern_flags)
606 {
607 const struct cred *cred = current_cred();
608 struct superblock_security_struct *sbsec = selinux_superblock(sb);
609 struct dentry *root = sb->s_root;
610 struct selinux_mnt_opts *opts = mnt_opts;
611 struct inode_security_struct *root_isec;
612 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
613 u32 defcontext_sid = 0;
614 int rc = 0;
615
616 mutex_lock(&sbsec->lock);
617
618 if (!selinux_initialized(&selinux_state)) {
619 if (!opts) {
620 /* Defer initialization until selinux_complete_init,
621 after the initial policy is loaded and the security
622 server is ready to handle calls. */
623 goto out;
624 }
625 rc = -EINVAL;
626 pr_warn("SELinux: Unable to set superblock options "
627 "before the security server is initialized\n");
628 goto out;
629 }
630 if (kern_flags && !set_kern_flags) {
631 /* Specifying internal flags without providing a place to
632 * place the results is not allowed */
633 rc = -EINVAL;
634 goto out;
635 }
636
637 /*
638 * Binary mount data FS will come through this function twice. Once
639 * from an explicit call and once from the generic calls from the vfs.
640 * Since the generic VFS calls will not contain any security mount data
641 * we need to skip the double mount verification.
642 *
643 * This does open a hole in which we will not notice if the first
644 * mount using this sb set explicit options and a second mount using
645 * this sb does not set any security options. (The first options
646 * will be used for both mounts)
647 */
648 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
649 && !opts)
650 goto out;
651
652 root_isec = backing_inode_security_novalidate(root);
653
654 /*
655 * parse the mount options, check if they are valid sids.
656 * also check if someone is trying to mount the same sb more
657 * than once with different security options.
658 */
659 if (opts) {
660 if (opts->fscontext_sid) {
661 fscontext_sid = opts->fscontext_sid;
662 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
663 fscontext_sid))
664 goto out_double_mount;
665 sbsec->flags |= FSCONTEXT_MNT;
666 }
667 if (opts->context_sid) {
668 context_sid = opts->context_sid;
669 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
670 context_sid))
671 goto out_double_mount;
672 sbsec->flags |= CONTEXT_MNT;
673 }
674 if (opts->rootcontext_sid) {
675 rootcontext_sid = opts->rootcontext_sid;
676 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
677 rootcontext_sid))
678 goto out_double_mount;
679 sbsec->flags |= ROOTCONTEXT_MNT;
680 }
681 if (opts->defcontext_sid) {
682 defcontext_sid = opts->defcontext_sid;
683 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
684 defcontext_sid))
685 goto out_double_mount;
686 sbsec->flags |= DEFCONTEXT_MNT;
687 }
688 }
689
690 if (sbsec->flags & SE_SBINITIALIZED) {
691 /* previously mounted with options, but not on this attempt? */
692 if ((sbsec->flags & SE_MNTMASK) && !opts)
693 goto out_double_mount;
694 rc = 0;
695 goto out;
696 }
697
698 if (strcmp(sb->s_type->name, "proc") == 0)
699 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
700
701 if (!strcmp(sb->s_type->name, "debugfs") ||
702 !strcmp(sb->s_type->name, "tracefs") ||
703 !strcmp(sb->s_type->name, "binder") ||
704 !strcmp(sb->s_type->name, "bpf") ||
705 !strcmp(sb->s_type->name, "pstore") ||
706 !strcmp(sb->s_type->name, "securityfs"))
707 sbsec->flags |= SE_SBGENFS;
708
709 if (!strcmp(sb->s_type->name, "sysfs") ||
710 !strcmp(sb->s_type->name, "cgroup") ||
711 !strcmp(sb->s_type->name, "cgroup2"))
712 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
713
714 if (!sbsec->behavior) {
715 /*
716 * Determine the labeling behavior to use for this
717 * filesystem type.
718 */
719 rc = security_fs_use(&selinux_state, sb);
720 if (rc) {
721 pr_warn("%s: security_fs_use(%s) returned %d\n",
722 __func__, sb->s_type->name, rc);
723 goto out;
724 }
725 }
726
727 /*
728 * If this is a user namespace mount and the filesystem type is not
729 * explicitly whitelisted, then no contexts are allowed on the command
730 * line and security labels must be ignored.
731 */
732 if (sb->s_user_ns != &init_user_ns &&
733 strcmp(sb->s_type->name, "tmpfs") &&
734 strcmp(sb->s_type->name, "ramfs") &&
735 strcmp(sb->s_type->name, "devpts") &&
736 strcmp(sb->s_type->name, "overlay")) {
737 if (context_sid || fscontext_sid || rootcontext_sid ||
738 defcontext_sid) {
739 rc = -EACCES;
740 goto out;
741 }
742 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
743 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
744 rc = security_transition_sid(&selinux_state,
745 current_sid(),
746 current_sid(),
747 SECCLASS_FILE, NULL,
748 &sbsec->mntpoint_sid);
749 if (rc)
750 goto out;
751 }
752 goto out_set_opts;
753 }
754
755 /* sets the context of the superblock for the fs being mounted. */
756 if (fscontext_sid) {
757 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
758 if (rc)
759 goto out;
760
761 sbsec->sid = fscontext_sid;
762 }
763
764 /*
765 * Switch to using mount point labeling behavior.
766 * sets the label used on all file below the mountpoint, and will set
767 * the superblock context if not already set.
768 */
769 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
770 sbsec->behavior = SECURITY_FS_USE_NATIVE;
771 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
772 }
773
774 if (context_sid) {
775 if (!fscontext_sid) {
776 rc = may_context_mount_sb_relabel(context_sid, sbsec,
777 cred);
778 if (rc)
779 goto out;
780 sbsec->sid = context_sid;
781 } else {
782 rc = may_context_mount_inode_relabel(context_sid, sbsec,
783 cred);
784 if (rc)
785 goto out;
786 }
787 if (!rootcontext_sid)
788 rootcontext_sid = context_sid;
789
790 sbsec->mntpoint_sid = context_sid;
791 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
792 }
793
794 if (rootcontext_sid) {
795 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
796 cred);
797 if (rc)
798 goto out;
799
800 root_isec->sid = rootcontext_sid;
801 root_isec->initialized = LABEL_INITIALIZED;
802 }
803
804 if (defcontext_sid) {
805 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
806 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
807 rc = -EINVAL;
808 pr_warn("SELinux: defcontext option is "
809 "invalid for this filesystem type\n");
810 goto out;
811 }
812
813 if (defcontext_sid != sbsec->def_sid) {
814 rc = may_context_mount_inode_relabel(defcontext_sid,
815 sbsec, cred);
816 if (rc)
817 goto out;
818 }
819
820 sbsec->def_sid = defcontext_sid;
821 }
822
823 out_set_opts:
824 rc = sb_finish_set_opts(sb);
825 out:
826 mutex_unlock(&sbsec->lock);
827 return rc;
828 out_double_mount:
829 rc = -EINVAL;
830 pr_warn("SELinux: mount invalid. Same superblock, different "
831 "security settings for (dev %s, type %s)\n", sb->s_id,
832 sb->s_type->name);
833 goto out;
834 }
835
selinux_cmp_sb_context(const struct super_block * oldsb,const struct super_block * newsb)836 static int selinux_cmp_sb_context(const struct super_block *oldsb,
837 const struct super_block *newsb)
838 {
839 struct superblock_security_struct *old = selinux_superblock(oldsb);
840 struct superblock_security_struct *new = selinux_superblock(newsb);
841 char oldflags = old->flags & SE_MNTMASK;
842 char newflags = new->flags & SE_MNTMASK;
843
844 if (oldflags != newflags)
845 goto mismatch;
846 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
847 goto mismatch;
848 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
849 goto mismatch;
850 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
851 goto mismatch;
852 if (oldflags & ROOTCONTEXT_MNT) {
853 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
854 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
855 if (oldroot->sid != newroot->sid)
856 goto mismatch;
857 }
858 return 0;
859 mismatch:
860 pr_warn("SELinux: mount invalid. Same superblock, "
861 "different security settings for (dev %s, "
862 "type %s)\n", newsb->s_id, newsb->s_type->name);
863 return -EBUSY;
864 }
865
selinux_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)866 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
867 struct super_block *newsb,
868 unsigned long kern_flags,
869 unsigned long *set_kern_flags)
870 {
871 int rc = 0;
872 const struct superblock_security_struct *oldsbsec =
873 selinux_superblock(oldsb);
874 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
875
876 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
877 int set_context = (oldsbsec->flags & CONTEXT_MNT);
878 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
879
880 /*
881 * if the parent was able to be mounted it clearly had no special lsm
882 * mount options. thus we can safely deal with this superblock later
883 */
884 if (!selinux_initialized(&selinux_state))
885 return 0;
886
887 /*
888 * Specifying internal flags without providing a place to
889 * place the results is not allowed.
890 */
891 if (kern_flags && !set_kern_flags)
892 return -EINVAL;
893
894 /* how can we clone if the old one wasn't set up?? */
895 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
896
897 /* if fs is reusing a sb, make sure that the contexts match */
898 if (newsbsec->flags & SE_SBINITIALIZED) {
899 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
900 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
901 return selinux_cmp_sb_context(oldsb, newsb);
902 }
903
904 mutex_lock(&newsbsec->lock);
905
906 newsbsec->flags = oldsbsec->flags;
907
908 newsbsec->sid = oldsbsec->sid;
909 newsbsec->def_sid = oldsbsec->def_sid;
910 newsbsec->behavior = oldsbsec->behavior;
911
912 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
913 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
914 rc = security_fs_use(&selinux_state, newsb);
915 if (rc)
916 goto out;
917 }
918
919 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
920 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
921 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
922 }
923
924 if (set_context) {
925 u32 sid = oldsbsec->mntpoint_sid;
926
927 if (!set_fscontext)
928 newsbsec->sid = sid;
929 if (!set_rootcontext) {
930 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
931 newisec->sid = sid;
932 }
933 newsbsec->mntpoint_sid = sid;
934 }
935 if (set_rootcontext) {
936 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
937 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
938
939 newisec->sid = oldisec->sid;
940 }
941
942 sb_finish_set_opts(newsb);
943 out:
944 mutex_unlock(&newsbsec->lock);
945 return rc;
946 }
947
948 /*
949 * NOTE: the caller is resposible for freeing the memory even if on error.
950 */
selinux_add_opt(int token,const char * s,void ** mnt_opts)951 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
952 {
953 struct selinux_mnt_opts *opts = *mnt_opts;
954 u32 *dst_sid;
955 int rc;
956
957 if (token == Opt_seclabel)
958 /* eaten and completely ignored */
959 return 0;
960 if (!s)
961 return -EINVAL;
962
963 if (!selinux_initialized(&selinux_state)) {
964 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
965 return -EINVAL;
966 }
967
968 if (!opts) {
969 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
970 if (!opts)
971 return -ENOMEM;
972 *mnt_opts = opts;
973 }
974
975 switch (token) {
976 case Opt_context:
977 if (opts->context_sid || opts->defcontext_sid)
978 goto err;
979 dst_sid = &opts->context_sid;
980 break;
981 case Opt_fscontext:
982 if (opts->fscontext_sid)
983 goto err;
984 dst_sid = &opts->fscontext_sid;
985 break;
986 case Opt_rootcontext:
987 if (opts->rootcontext_sid)
988 goto err;
989 dst_sid = &opts->rootcontext_sid;
990 break;
991 case Opt_defcontext:
992 if (opts->context_sid || opts->defcontext_sid)
993 goto err;
994 dst_sid = &opts->defcontext_sid;
995 break;
996 default:
997 WARN_ON(1);
998 return -EINVAL;
999 }
1000 rc = security_context_str_to_sid(&selinux_state, s, dst_sid, GFP_KERNEL);
1001 if (rc)
1002 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1003 s, rc);
1004 return rc;
1005
1006 err:
1007 pr_warn(SEL_MOUNT_FAIL_MSG);
1008 return -EINVAL;
1009 }
1010
show_sid(struct seq_file * m,u32 sid)1011 static int show_sid(struct seq_file *m, u32 sid)
1012 {
1013 char *context = NULL;
1014 u32 len;
1015 int rc;
1016
1017 rc = security_sid_to_context(&selinux_state, sid,
1018 &context, &len);
1019 if (!rc) {
1020 bool has_comma = strchr(context, ',');
1021
1022 seq_putc(m, '=');
1023 if (has_comma)
1024 seq_putc(m, '\"');
1025 seq_escape(m, context, "\"\n\\");
1026 if (has_comma)
1027 seq_putc(m, '\"');
1028 }
1029 kfree(context);
1030 return rc;
1031 }
1032
selinux_sb_show_options(struct seq_file * m,struct super_block * sb)1033 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1034 {
1035 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1036 int rc;
1037
1038 if (!(sbsec->flags & SE_SBINITIALIZED))
1039 return 0;
1040
1041 if (!selinux_initialized(&selinux_state))
1042 return 0;
1043
1044 if (sbsec->flags & FSCONTEXT_MNT) {
1045 seq_putc(m, ',');
1046 seq_puts(m, FSCONTEXT_STR);
1047 rc = show_sid(m, sbsec->sid);
1048 if (rc)
1049 return rc;
1050 }
1051 if (sbsec->flags & CONTEXT_MNT) {
1052 seq_putc(m, ',');
1053 seq_puts(m, CONTEXT_STR);
1054 rc = show_sid(m, sbsec->mntpoint_sid);
1055 if (rc)
1056 return rc;
1057 }
1058 if (sbsec->flags & DEFCONTEXT_MNT) {
1059 seq_putc(m, ',');
1060 seq_puts(m, DEFCONTEXT_STR);
1061 rc = show_sid(m, sbsec->def_sid);
1062 if (rc)
1063 return rc;
1064 }
1065 if (sbsec->flags & ROOTCONTEXT_MNT) {
1066 struct dentry *root = sb->s_root;
1067 struct inode_security_struct *isec = backing_inode_security(root);
1068 seq_putc(m, ',');
1069 seq_puts(m, ROOTCONTEXT_STR);
1070 rc = show_sid(m, isec->sid);
1071 if (rc)
1072 return rc;
1073 }
1074 if (sbsec->flags & SBLABEL_MNT) {
1075 seq_putc(m, ',');
1076 seq_puts(m, SECLABEL_STR);
1077 }
1078 return 0;
1079 }
1080
inode_mode_to_security_class(umode_t mode)1081 static inline u16 inode_mode_to_security_class(umode_t mode)
1082 {
1083 switch (mode & S_IFMT) {
1084 case S_IFSOCK:
1085 return SECCLASS_SOCK_FILE;
1086 case S_IFLNK:
1087 return SECCLASS_LNK_FILE;
1088 case S_IFREG:
1089 return SECCLASS_FILE;
1090 case S_IFBLK:
1091 return SECCLASS_BLK_FILE;
1092 case S_IFDIR:
1093 return SECCLASS_DIR;
1094 case S_IFCHR:
1095 return SECCLASS_CHR_FILE;
1096 case S_IFIFO:
1097 return SECCLASS_FIFO_FILE;
1098
1099 }
1100
1101 return SECCLASS_FILE;
1102 }
1103
default_protocol_stream(int protocol)1104 static inline int default_protocol_stream(int protocol)
1105 {
1106 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1107 protocol == IPPROTO_MPTCP);
1108 }
1109
default_protocol_dgram(int protocol)1110 static inline int default_protocol_dgram(int protocol)
1111 {
1112 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1113 }
1114
socket_type_to_security_class(int family,int type,int protocol)1115 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1116 {
1117 int extsockclass = selinux_policycap_extsockclass();
1118
1119 switch (family) {
1120 case PF_UNIX:
1121 switch (type) {
1122 case SOCK_STREAM:
1123 case SOCK_SEQPACKET:
1124 return SECCLASS_UNIX_STREAM_SOCKET;
1125 case SOCK_DGRAM:
1126 case SOCK_RAW:
1127 return SECCLASS_UNIX_DGRAM_SOCKET;
1128 }
1129 break;
1130 case PF_INET:
1131 case PF_INET6:
1132 switch (type) {
1133 case SOCK_STREAM:
1134 case SOCK_SEQPACKET:
1135 if (default_protocol_stream(protocol))
1136 return SECCLASS_TCP_SOCKET;
1137 else if (extsockclass && protocol == IPPROTO_SCTP)
1138 return SECCLASS_SCTP_SOCKET;
1139 else
1140 return SECCLASS_RAWIP_SOCKET;
1141 case SOCK_DGRAM:
1142 if (default_protocol_dgram(protocol))
1143 return SECCLASS_UDP_SOCKET;
1144 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1145 protocol == IPPROTO_ICMPV6))
1146 return SECCLASS_ICMP_SOCKET;
1147 else
1148 return SECCLASS_RAWIP_SOCKET;
1149 case SOCK_DCCP:
1150 return SECCLASS_DCCP_SOCKET;
1151 default:
1152 return SECCLASS_RAWIP_SOCKET;
1153 }
1154 break;
1155 case PF_NETLINK:
1156 switch (protocol) {
1157 case NETLINK_ROUTE:
1158 return SECCLASS_NETLINK_ROUTE_SOCKET;
1159 case NETLINK_SOCK_DIAG:
1160 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1161 case NETLINK_NFLOG:
1162 return SECCLASS_NETLINK_NFLOG_SOCKET;
1163 case NETLINK_XFRM:
1164 return SECCLASS_NETLINK_XFRM_SOCKET;
1165 case NETLINK_SELINUX:
1166 return SECCLASS_NETLINK_SELINUX_SOCKET;
1167 case NETLINK_ISCSI:
1168 return SECCLASS_NETLINK_ISCSI_SOCKET;
1169 case NETLINK_AUDIT:
1170 return SECCLASS_NETLINK_AUDIT_SOCKET;
1171 case NETLINK_FIB_LOOKUP:
1172 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1173 case NETLINK_CONNECTOR:
1174 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1175 case NETLINK_NETFILTER:
1176 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1177 case NETLINK_DNRTMSG:
1178 return SECCLASS_NETLINK_DNRT_SOCKET;
1179 case NETLINK_KOBJECT_UEVENT:
1180 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1181 case NETLINK_GENERIC:
1182 return SECCLASS_NETLINK_GENERIC_SOCKET;
1183 case NETLINK_SCSITRANSPORT:
1184 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1185 case NETLINK_RDMA:
1186 return SECCLASS_NETLINK_RDMA_SOCKET;
1187 case NETLINK_CRYPTO:
1188 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1189 default:
1190 return SECCLASS_NETLINK_SOCKET;
1191 }
1192 case PF_PACKET:
1193 return SECCLASS_PACKET_SOCKET;
1194 case PF_KEY:
1195 return SECCLASS_KEY_SOCKET;
1196 case PF_APPLETALK:
1197 return SECCLASS_APPLETALK_SOCKET;
1198 }
1199
1200 if (extsockclass) {
1201 switch (family) {
1202 case PF_AX25:
1203 return SECCLASS_AX25_SOCKET;
1204 case PF_IPX:
1205 return SECCLASS_IPX_SOCKET;
1206 case PF_NETROM:
1207 return SECCLASS_NETROM_SOCKET;
1208 case PF_ATMPVC:
1209 return SECCLASS_ATMPVC_SOCKET;
1210 case PF_X25:
1211 return SECCLASS_X25_SOCKET;
1212 case PF_ROSE:
1213 return SECCLASS_ROSE_SOCKET;
1214 case PF_DECnet:
1215 return SECCLASS_DECNET_SOCKET;
1216 case PF_ATMSVC:
1217 return SECCLASS_ATMSVC_SOCKET;
1218 case PF_RDS:
1219 return SECCLASS_RDS_SOCKET;
1220 case PF_IRDA:
1221 return SECCLASS_IRDA_SOCKET;
1222 case PF_PPPOX:
1223 return SECCLASS_PPPOX_SOCKET;
1224 case PF_LLC:
1225 return SECCLASS_LLC_SOCKET;
1226 case PF_CAN:
1227 return SECCLASS_CAN_SOCKET;
1228 case PF_TIPC:
1229 return SECCLASS_TIPC_SOCKET;
1230 case PF_BLUETOOTH:
1231 return SECCLASS_BLUETOOTH_SOCKET;
1232 case PF_IUCV:
1233 return SECCLASS_IUCV_SOCKET;
1234 case PF_RXRPC:
1235 return SECCLASS_RXRPC_SOCKET;
1236 case PF_ISDN:
1237 return SECCLASS_ISDN_SOCKET;
1238 case PF_PHONET:
1239 return SECCLASS_PHONET_SOCKET;
1240 case PF_IEEE802154:
1241 return SECCLASS_IEEE802154_SOCKET;
1242 case PF_CAIF:
1243 return SECCLASS_CAIF_SOCKET;
1244 case PF_ALG:
1245 return SECCLASS_ALG_SOCKET;
1246 case PF_NFC:
1247 return SECCLASS_NFC_SOCKET;
1248 case PF_VSOCK:
1249 return SECCLASS_VSOCK_SOCKET;
1250 case PF_KCM:
1251 return SECCLASS_KCM_SOCKET;
1252 case PF_QIPCRTR:
1253 return SECCLASS_QIPCRTR_SOCKET;
1254 case PF_SMC:
1255 return SECCLASS_SMC_SOCKET;
1256 case PF_XDP:
1257 return SECCLASS_XDP_SOCKET;
1258 case PF_MCTP:
1259 return SECCLASS_MCTP_SOCKET;
1260 #if PF_MAX > 46
1261 #error New address family defined, please update this function.
1262 #endif
1263 }
1264 }
1265
1266 return SECCLASS_SOCKET;
1267 }
1268
selinux_genfs_get_sid(struct dentry * dentry,u16 tclass,u16 flags,u32 * sid)1269 static int selinux_genfs_get_sid(struct dentry *dentry,
1270 u16 tclass,
1271 u16 flags,
1272 u32 *sid)
1273 {
1274 int rc;
1275 struct super_block *sb = dentry->d_sb;
1276 char *buffer, *path;
1277
1278 buffer = (char *)__get_free_page(GFP_KERNEL);
1279 if (!buffer)
1280 return -ENOMEM;
1281
1282 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1283 if (IS_ERR(path))
1284 rc = PTR_ERR(path);
1285 else {
1286 if (flags & SE_SBPROC) {
1287 /* each process gets a /proc/PID/ entry. Strip off the
1288 * PID part to get a valid selinux labeling.
1289 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1290 while (path[1] >= '0' && path[1] <= '9') {
1291 path[1] = '/';
1292 path++;
1293 }
1294 }
1295 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1296 path, tclass, sid);
1297 if (rc == -ENOENT) {
1298 /* No match in policy, mark as unlabeled. */
1299 *sid = SECINITSID_UNLABELED;
1300 rc = 0;
1301 }
1302 }
1303 free_page((unsigned long)buffer);
1304 return rc;
1305 }
1306
inode_doinit_use_xattr(struct inode * inode,struct dentry * dentry,u32 def_sid,u32 * sid)1307 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1308 u32 def_sid, u32 *sid)
1309 {
1310 #define INITCONTEXTLEN 255
1311 char *context;
1312 unsigned int len;
1313 int rc;
1314
1315 len = INITCONTEXTLEN;
1316 context = kmalloc(len + 1, GFP_NOFS);
1317 if (!context)
1318 return -ENOMEM;
1319
1320 context[len] = '\0';
1321 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1322 if (rc == -ERANGE) {
1323 kfree(context);
1324
1325 /* Need a larger buffer. Query for the right size. */
1326 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1327 if (rc < 0)
1328 return rc;
1329
1330 len = rc;
1331 context = kmalloc(len + 1, GFP_NOFS);
1332 if (!context)
1333 return -ENOMEM;
1334
1335 context[len] = '\0';
1336 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1337 context, len);
1338 }
1339 if (rc < 0) {
1340 kfree(context);
1341 if (rc != -ENODATA) {
1342 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1343 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1344 return rc;
1345 }
1346 *sid = def_sid;
1347 return 0;
1348 }
1349
1350 rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1351 def_sid, GFP_NOFS);
1352 if (rc) {
1353 char *dev = inode->i_sb->s_id;
1354 unsigned long ino = inode->i_ino;
1355
1356 if (rc == -EINVAL) {
1357 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1358 ino, dev, context);
1359 } else {
1360 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1361 __func__, context, -rc, dev, ino);
1362 }
1363 }
1364 kfree(context);
1365 return 0;
1366 }
1367
1368 /* The inode's security attributes must be initialized before first use. */
inode_doinit_with_dentry(struct inode * inode,struct dentry * opt_dentry)1369 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1370 {
1371 struct superblock_security_struct *sbsec = NULL;
1372 struct inode_security_struct *isec = selinux_inode(inode);
1373 u32 task_sid, sid = 0;
1374 u16 sclass;
1375 struct dentry *dentry;
1376 int rc = 0;
1377
1378 if (isec->initialized == LABEL_INITIALIZED)
1379 return 0;
1380
1381 spin_lock(&isec->lock);
1382 if (isec->initialized == LABEL_INITIALIZED)
1383 goto out_unlock;
1384
1385 if (isec->sclass == SECCLASS_FILE)
1386 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1387
1388 sbsec = selinux_superblock(inode->i_sb);
1389 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1390 /* Defer initialization until selinux_complete_init,
1391 after the initial policy is loaded and the security
1392 server is ready to handle calls. */
1393 spin_lock(&sbsec->isec_lock);
1394 if (list_empty(&isec->list))
1395 list_add(&isec->list, &sbsec->isec_head);
1396 spin_unlock(&sbsec->isec_lock);
1397 goto out_unlock;
1398 }
1399
1400 sclass = isec->sclass;
1401 task_sid = isec->task_sid;
1402 sid = isec->sid;
1403 isec->initialized = LABEL_PENDING;
1404 spin_unlock(&isec->lock);
1405
1406 switch (sbsec->behavior) {
1407 case SECURITY_FS_USE_NATIVE:
1408 break;
1409 case SECURITY_FS_USE_XATTR:
1410 if (!(inode->i_opflags & IOP_XATTR)) {
1411 sid = sbsec->def_sid;
1412 break;
1413 }
1414 /* Need a dentry, since the xattr API requires one.
1415 Life would be simpler if we could just pass the inode. */
1416 if (opt_dentry) {
1417 /* Called from d_instantiate or d_splice_alias. */
1418 dentry = dget(opt_dentry);
1419 } else {
1420 /*
1421 * Called from selinux_complete_init, try to find a dentry.
1422 * Some filesystems really want a connected one, so try
1423 * that first. We could split SECURITY_FS_USE_XATTR in
1424 * two, depending upon that...
1425 */
1426 dentry = d_find_alias(inode);
1427 if (!dentry)
1428 dentry = d_find_any_alias(inode);
1429 }
1430 if (!dentry) {
1431 /*
1432 * this is can be hit on boot when a file is accessed
1433 * before the policy is loaded. When we load policy we
1434 * may find inodes that have no dentry on the
1435 * sbsec->isec_head list. No reason to complain as these
1436 * will get fixed up the next time we go through
1437 * inode_doinit with a dentry, before these inodes could
1438 * be used again by userspace.
1439 */
1440 goto out_invalid;
1441 }
1442
1443 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1444 &sid);
1445 dput(dentry);
1446 if (rc)
1447 goto out;
1448 break;
1449 case SECURITY_FS_USE_TASK:
1450 sid = task_sid;
1451 break;
1452 case SECURITY_FS_USE_TRANS:
1453 /* Default to the fs SID. */
1454 sid = sbsec->sid;
1455
1456 /* Try to obtain a transition SID. */
1457 rc = security_transition_sid(&selinux_state, task_sid, sid,
1458 sclass, NULL, &sid);
1459 if (rc)
1460 goto out;
1461 break;
1462 case SECURITY_FS_USE_MNTPOINT:
1463 sid = sbsec->mntpoint_sid;
1464 break;
1465 default:
1466 /* Default to the fs superblock SID. */
1467 sid = sbsec->sid;
1468
1469 if ((sbsec->flags & SE_SBGENFS) &&
1470 (!S_ISLNK(inode->i_mode) ||
1471 selinux_policycap_genfs_seclabel_symlinks())) {
1472 /* We must have a dentry to determine the label on
1473 * procfs inodes */
1474 if (opt_dentry) {
1475 /* Called from d_instantiate or
1476 * d_splice_alias. */
1477 dentry = dget(opt_dentry);
1478 } else {
1479 /* Called from selinux_complete_init, try to
1480 * find a dentry. Some filesystems really want
1481 * a connected one, so try that first.
1482 */
1483 dentry = d_find_alias(inode);
1484 if (!dentry)
1485 dentry = d_find_any_alias(inode);
1486 }
1487 /*
1488 * This can be hit on boot when a file is accessed
1489 * before the policy is loaded. When we load policy we
1490 * may find inodes that have no dentry on the
1491 * sbsec->isec_head list. No reason to complain as
1492 * these will get fixed up the next time we go through
1493 * inode_doinit() with a dentry, before these inodes
1494 * could be used again by userspace.
1495 */
1496 if (!dentry)
1497 goto out_invalid;
1498 rc = selinux_genfs_get_sid(dentry, sclass,
1499 sbsec->flags, &sid);
1500 if (rc) {
1501 dput(dentry);
1502 goto out;
1503 }
1504
1505 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1506 (inode->i_opflags & IOP_XATTR)) {
1507 rc = inode_doinit_use_xattr(inode, dentry,
1508 sid, &sid);
1509 if (rc) {
1510 dput(dentry);
1511 goto out;
1512 }
1513 }
1514 dput(dentry);
1515 }
1516 break;
1517 }
1518
1519 out:
1520 spin_lock(&isec->lock);
1521 if (isec->initialized == LABEL_PENDING) {
1522 if (rc) {
1523 isec->initialized = LABEL_INVALID;
1524 goto out_unlock;
1525 }
1526 isec->initialized = LABEL_INITIALIZED;
1527 isec->sid = sid;
1528 }
1529
1530 out_unlock:
1531 spin_unlock(&isec->lock);
1532 return rc;
1533
1534 out_invalid:
1535 spin_lock(&isec->lock);
1536 if (isec->initialized == LABEL_PENDING) {
1537 isec->initialized = LABEL_INVALID;
1538 isec->sid = sid;
1539 }
1540 spin_unlock(&isec->lock);
1541 return 0;
1542 }
1543
1544 /* Convert a Linux signal to an access vector. */
signal_to_av(int sig)1545 static inline u32 signal_to_av(int sig)
1546 {
1547 u32 perm = 0;
1548
1549 switch (sig) {
1550 case SIGCHLD:
1551 /* Commonly granted from child to parent. */
1552 perm = PROCESS__SIGCHLD;
1553 break;
1554 case SIGKILL:
1555 /* Cannot be caught or ignored */
1556 perm = PROCESS__SIGKILL;
1557 break;
1558 case SIGSTOP:
1559 /* Cannot be caught or ignored */
1560 perm = PROCESS__SIGSTOP;
1561 break;
1562 default:
1563 /* All other signals. */
1564 perm = PROCESS__SIGNAL;
1565 break;
1566 }
1567
1568 return perm;
1569 }
1570
1571 #if CAP_LAST_CAP > 63
1572 #error Fix SELinux to handle capabilities > 63.
1573 #endif
1574
1575 /* Check whether a task is allowed to use a capability. */
cred_has_capability(const struct cred * cred,int cap,unsigned int opts,bool initns)1576 static int cred_has_capability(const struct cred *cred,
1577 int cap, unsigned int opts, bool initns)
1578 {
1579 struct common_audit_data ad;
1580 struct av_decision avd;
1581 u16 sclass;
1582 u32 sid = cred_sid(cred);
1583 u32 av = CAP_TO_MASK(cap);
1584 int rc;
1585
1586 ad.type = LSM_AUDIT_DATA_CAP;
1587 ad.u.cap = cap;
1588
1589 switch (CAP_TO_INDEX(cap)) {
1590 case 0:
1591 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1592 break;
1593 case 1:
1594 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1595 break;
1596 default:
1597 pr_err("SELinux: out of range capability %d\n", cap);
1598 BUG();
1599 return -EINVAL;
1600 }
1601
1602 rc = avc_has_perm_noaudit(&selinux_state,
1603 sid, sid, sclass, av, 0, &avd);
1604 if (!(opts & CAP_OPT_NOAUDIT)) {
1605 int rc2 = avc_audit(&selinux_state,
1606 sid, sid, sclass, av, &avd, rc, &ad);
1607 if (rc2)
1608 return rc2;
1609 }
1610 return rc;
1611 }
1612
1613 /* Check whether a task has a particular permission to an inode.
1614 The 'adp' parameter is optional and allows other audit
1615 data to be passed (e.g. the dentry). */
inode_has_perm(const struct cred * cred,struct inode * inode,u32 perms,struct common_audit_data * adp)1616 static int inode_has_perm(const struct cred *cred,
1617 struct inode *inode,
1618 u32 perms,
1619 struct common_audit_data *adp)
1620 {
1621 struct inode_security_struct *isec;
1622 u32 sid;
1623
1624 validate_creds(cred);
1625
1626 if (unlikely(IS_PRIVATE(inode)))
1627 return 0;
1628
1629 sid = cred_sid(cred);
1630 isec = selinux_inode(inode);
1631
1632 return avc_has_perm(&selinux_state,
1633 sid, isec->sid, isec->sclass, perms, adp);
1634 }
1635
1636 /* Same as inode_has_perm, but pass explicit audit data containing
1637 the dentry to help the auditing code to more easily generate the
1638 pathname if needed. */
dentry_has_perm(const struct cred * cred,struct dentry * dentry,u32 av)1639 static inline int dentry_has_perm(const struct cred *cred,
1640 struct dentry *dentry,
1641 u32 av)
1642 {
1643 struct inode *inode = d_backing_inode(dentry);
1644 struct common_audit_data ad;
1645
1646 ad.type = LSM_AUDIT_DATA_DENTRY;
1647 ad.u.dentry = dentry;
1648 __inode_security_revalidate(inode, dentry, true);
1649 return inode_has_perm(cred, inode, av, &ad);
1650 }
1651
1652 /* Same as inode_has_perm, but pass explicit audit data containing
1653 the path to help the auditing code to more easily generate the
1654 pathname if needed. */
path_has_perm(const struct cred * cred,const struct path * path,u32 av)1655 static inline int path_has_perm(const struct cred *cred,
1656 const struct path *path,
1657 u32 av)
1658 {
1659 struct inode *inode = d_backing_inode(path->dentry);
1660 struct common_audit_data ad;
1661
1662 ad.type = LSM_AUDIT_DATA_PATH;
1663 ad.u.path = *path;
1664 __inode_security_revalidate(inode, path->dentry, true);
1665 return inode_has_perm(cred, inode, av, &ad);
1666 }
1667
1668 /* Same as path_has_perm, but uses the inode from the file struct. */
file_path_has_perm(const struct cred * cred,struct file * file,u32 av)1669 static inline int file_path_has_perm(const struct cred *cred,
1670 struct file *file,
1671 u32 av)
1672 {
1673 struct common_audit_data ad;
1674
1675 ad.type = LSM_AUDIT_DATA_FILE;
1676 ad.u.file = file;
1677 return inode_has_perm(cred, file_inode(file), av, &ad);
1678 }
1679
1680 #ifdef CONFIG_BPF_SYSCALL
1681 static int bpf_fd_pass(struct file *file, u32 sid);
1682 #endif
1683
1684 /* Check whether a task can use an open file descriptor to
1685 access an inode in a given way. Check access to the
1686 descriptor itself, and then use dentry_has_perm to
1687 check a particular permission to the file.
1688 Access to the descriptor is implicitly granted if it
1689 has the same SID as the process. If av is zero, then
1690 access to the file is not checked, e.g. for cases
1691 where only the descriptor is affected like seek. */
file_has_perm(const struct cred * cred,struct file * file,u32 av)1692 static int file_has_perm(const struct cred *cred,
1693 struct file *file,
1694 u32 av)
1695 {
1696 struct file_security_struct *fsec = selinux_file(file);
1697 struct inode *inode = file_inode(file);
1698 struct common_audit_data ad;
1699 u32 sid = cred_sid(cred);
1700 int rc;
1701
1702 ad.type = LSM_AUDIT_DATA_FILE;
1703 ad.u.file = file;
1704
1705 if (sid != fsec->sid) {
1706 rc = avc_has_perm(&selinux_state,
1707 sid, fsec->sid,
1708 SECCLASS_FD,
1709 FD__USE,
1710 &ad);
1711 if (rc)
1712 goto out;
1713 }
1714
1715 #ifdef CONFIG_BPF_SYSCALL
1716 rc = bpf_fd_pass(file, cred_sid(cred));
1717 if (rc)
1718 return rc;
1719 #endif
1720
1721 /* av is zero if only checking access to the descriptor. */
1722 rc = 0;
1723 if (av)
1724 rc = inode_has_perm(cred, inode, av, &ad);
1725
1726 out:
1727 return rc;
1728 }
1729
1730 /*
1731 * Determine the label for an inode that might be unioned.
1732 */
1733 static int
selinux_determine_inode_label(const struct task_security_struct * tsec,struct inode * dir,const struct qstr * name,u16 tclass,u32 * _new_isid)1734 selinux_determine_inode_label(const struct task_security_struct *tsec,
1735 struct inode *dir,
1736 const struct qstr *name, u16 tclass,
1737 u32 *_new_isid)
1738 {
1739 const struct superblock_security_struct *sbsec =
1740 selinux_superblock(dir->i_sb);
1741
1742 if ((sbsec->flags & SE_SBINITIALIZED) &&
1743 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1744 *_new_isid = sbsec->mntpoint_sid;
1745 } else if ((sbsec->flags & SBLABEL_MNT) &&
1746 tsec->create_sid) {
1747 *_new_isid = tsec->create_sid;
1748 } else {
1749 const struct inode_security_struct *dsec = inode_security(dir);
1750 return security_transition_sid(&selinux_state, tsec->sid,
1751 dsec->sid, tclass,
1752 name, _new_isid);
1753 }
1754
1755 return 0;
1756 }
1757
1758 /* Check whether a task can create a file. */
may_create(struct inode * dir,struct dentry * dentry,u16 tclass)1759 static int may_create(struct inode *dir,
1760 struct dentry *dentry,
1761 u16 tclass)
1762 {
1763 const struct task_security_struct *tsec = selinux_cred(current_cred());
1764 struct inode_security_struct *dsec;
1765 struct superblock_security_struct *sbsec;
1766 u32 sid, newsid;
1767 struct common_audit_data ad;
1768 int rc;
1769
1770 dsec = inode_security(dir);
1771 sbsec = selinux_superblock(dir->i_sb);
1772
1773 sid = tsec->sid;
1774
1775 ad.type = LSM_AUDIT_DATA_DENTRY;
1776 ad.u.dentry = dentry;
1777
1778 rc = avc_has_perm(&selinux_state,
1779 sid, dsec->sid, SECCLASS_DIR,
1780 DIR__ADD_NAME | DIR__SEARCH,
1781 &ad);
1782 if (rc)
1783 return rc;
1784
1785 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1786 &newsid);
1787 if (rc)
1788 return rc;
1789
1790 rc = avc_has_perm(&selinux_state,
1791 sid, newsid, tclass, FILE__CREATE, &ad);
1792 if (rc)
1793 return rc;
1794
1795 return avc_has_perm(&selinux_state,
1796 newsid, sbsec->sid,
1797 SECCLASS_FILESYSTEM,
1798 FILESYSTEM__ASSOCIATE, &ad);
1799 }
1800
1801 #define MAY_LINK 0
1802 #define MAY_UNLINK 1
1803 #define MAY_RMDIR 2
1804
1805 /* Check whether a task can link, unlink, or rmdir a file/directory. */
may_link(struct inode * dir,struct dentry * dentry,int kind)1806 static int may_link(struct inode *dir,
1807 struct dentry *dentry,
1808 int kind)
1809
1810 {
1811 struct inode_security_struct *dsec, *isec;
1812 struct common_audit_data ad;
1813 u32 sid = current_sid();
1814 u32 av;
1815 int rc;
1816
1817 dsec = inode_security(dir);
1818 isec = backing_inode_security(dentry);
1819
1820 ad.type = LSM_AUDIT_DATA_DENTRY;
1821 ad.u.dentry = dentry;
1822
1823 av = DIR__SEARCH;
1824 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1825 rc = avc_has_perm(&selinux_state,
1826 sid, dsec->sid, SECCLASS_DIR, av, &ad);
1827 if (rc)
1828 return rc;
1829
1830 switch (kind) {
1831 case MAY_LINK:
1832 av = FILE__LINK;
1833 break;
1834 case MAY_UNLINK:
1835 av = FILE__UNLINK;
1836 break;
1837 case MAY_RMDIR:
1838 av = DIR__RMDIR;
1839 break;
1840 default:
1841 pr_warn("SELinux: %s: unrecognized kind %d\n",
1842 __func__, kind);
1843 return 0;
1844 }
1845
1846 rc = avc_has_perm(&selinux_state,
1847 sid, isec->sid, isec->sclass, av, &ad);
1848 return rc;
1849 }
1850
may_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)1851 static inline int may_rename(struct inode *old_dir,
1852 struct dentry *old_dentry,
1853 struct inode *new_dir,
1854 struct dentry *new_dentry)
1855 {
1856 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1857 struct common_audit_data ad;
1858 u32 sid = current_sid();
1859 u32 av;
1860 int old_is_dir, new_is_dir;
1861 int rc;
1862
1863 old_dsec = inode_security(old_dir);
1864 old_isec = backing_inode_security(old_dentry);
1865 old_is_dir = d_is_dir(old_dentry);
1866 new_dsec = inode_security(new_dir);
1867
1868 ad.type = LSM_AUDIT_DATA_DENTRY;
1869
1870 ad.u.dentry = old_dentry;
1871 rc = avc_has_perm(&selinux_state,
1872 sid, old_dsec->sid, SECCLASS_DIR,
1873 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1874 if (rc)
1875 return rc;
1876 rc = avc_has_perm(&selinux_state,
1877 sid, old_isec->sid,
1878 old_isec->sclass, FILE__RENAME, &ad);
1879 if (rc)
1880 return rc;
1881 if (old_is_dir && new_dir != old_dir) {
1882 rc = avc_has_perm(&selinux_state,
1883 sid, old_isec->sid,
1884 old_isec->sclass, DIR__REPARENT, &ad);
1885 if (rc)
1886 return rc;
1887 }
1888
1889 ad.u.dentry = new_dentry;
1890 av = DIR__ADD_NAME | DIR__SEARCH;
1891 if (d_is_positive(new_dentry))
1892 av |= DIR__REMOVE_NAME;
1893 rc = avc_has_perm(&selinux_state,
1894 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1895 if (rc)
1896 return rc;
1897 if (d_is_positive(new_dentry)) {
1898 new_isec = backing_inode_security(new_dentry);
1899 new_is_dir = d_is_dir(new_dentry);
1900 rc = avc_has_perm(&selinux_state,
1901 sid, new_isec->sid,
1902 new_isec->sclass,
1903 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1904 if (rc)
1905 return rc;
1906 }
1907
1908 return 0;
1909 }
1910
1911 /* Check whether a task can perform a filesystem operation. */
superblock_has_perm(const struct cred * cred,struct super_block * sb,u32 perms,struct common_audit_data * ad)1912 static int superblock_has_perm(const struct cred *cred,
1913 struct super_block *sb,
1914 u32 perms,
1915 struct common_audit_data *ad)
1916 {
1917 struct superblock_security_struct *sbsec;
1918 u32 sid = cred_sid(cred);
1919
1920 sbsec = selinux_superblock(sb);
1921 return avc_has_perm(&selinux_state,
1922 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1923 }
1924
1925 /* Convert a Linux mode and permission mask to an access vector. */
file_mask_to_av(int mode,int mask)1926 static inline u32 file_mask_to_av(int mode, int mask)
1927 {
1928 u32 av = 0;
1929
1930 if (!S_ISDIR(mode)) {
1931 if (mask & MAY_EXEC)
1932 av |= FILE__EXECUTE;
1933 if (mask & MAY_READ)
1934 av |= FILE__READ;
1935
1936 if (mask & MAY_APPEND)
1937 av |= FILE__APPEND;
1938 else if (mask & MAY_WRITE)
1939 av |= FILE__WRITE;
1940
1941 } else {
1942 if (mask & MAY_EXEC)
1943 av |= DIR__SEARCH;
1944 if (mask & MAY_WRITE)
1945 av |= DIR__WRITE;
1946 if (mask & MAY_READ)
1947 av |= DIR__READ;
1948 }
1949
1950 return av;
1951 }
1952
1953 /* Convert a Linux file to an access vector. */
file_to_av(struct file * file)1954 static inline u32 file_to_av(struct file *file)
1955 {
1956 u32 av = 0;
1957
1958 if (file->f_mode & FMODE_READ)
1959 av |= FILE__READ;
1960 if (file->f_mode & FMODE_WRITE) {
1961 if (file->f_flags & O_APPEND)
1962 av |= FILE__APPEND;
1963 else
1964 av |= FILE__WRITE;
1965 }
1966 if (!av) {
1967 /*
1968 * Special file opened with flags 3 for ioctl-only use.
1969 */
1970 av = FILE__IOCTL;
1971 }
1972
1973 return av;
1974 }
1975
1976 /*
1977 * Convert a file to an access vector and include the correct
1978 * open permission.
1979 */
open_file_to_av(struct file * file)1980 static inline u32 open_file_to_av(struct file *file)
1981 {
1982 u32 av = file_to_av(file);
1983 struct inode *inode = file_inode(file);
1984
1985 if (selinux_policycap_openperm() &&
1986 inode->i_sb->s_magic != SOCKFS_MAGIC)
1987 av |= FILE__OPEN;
1988
1989 return av;
1990 }
1991
1992 /* Hook functions begin here. */
1993
selinux_binder_set_context_mgr(const struct cred * mgr)1994 static int selinux_binder_set_context_mgr(const struct cred *mgr)
1995 {
1996 return avc_has_perm(&selinux_state,
1997 current_sid(), cred_sid(mgr), SECCLASS_BINDER,
1998 BINDER__SET_CONTEXT_MGR, NULL);
1999 }
2000
selinux_binder_transaction(const struct cred * from,const struct cred * to)2001 static int selinux_binder_transaction(const struct cred *from,
2002 const struct cred *to)
2003 {
2004 u32 mysid = current_sid();
2005 u32 fromsid = cred_sid(from);
2006 u32 tosid = cred_sid(to);
2007 int rc;
2008
2009 if (mysid != fromsid) {
2010 rc = avc_has_perm(&selinux_state,
2011 mysid, fromsid, SECCLASS_BINDER,
2012 BINDER__IMPERSONATE, NULL);
2013 if (rc)
2014 return rc;
2015 }
2016
2017 return avc_has_perm(&selinux_state, fromsid, tosid,
2018 SECCLASS_BINDER, BINDER__CALL, NULL);
2019 }
2020
selinux_binder_transfer_binder(const struct cred * from,const struct cred * to)2021 static int selinux_binder_transfer_binder(const struct cred *from,
2022 const struct cred *to)
2023 {
2024 return avc_has_perm(&selinux_state,
2025 cred_sid(from), cred_sid(to),
2026 SECCLASS_BINDER, BINDER__TRANSFER,
2027 NULL);
2028 }
2029
selinux_binder_transfer_file(const struct cred * from,const struct cred * to,struct file * file)2030 static int selinux_binder_transfer_file(const struct cred *from,
2031 const struct cred *to,
2032 struct file *file)
2033 {
2034 u32 sid = cred_sid(to);
2035 struct file_security_struct *fsec = selinux_file(file);
2036 struct dentry *dentry = file->f_path.dentry;
2037 struct inode_security_struct *isec;
2038 struct common_audit_data ad;
2039 int rc;
2040
2041 ad.type = LSM_AUDIT_DATA_PATH;
2042 ad.u.path = file->f_path;
2043
2044 if (sid != fsec->sid) {
2045 rc = avc_has_perm(&selinux_state,
2046 sid, fsec->sid,
2047 SECCLASS_FD,
2048 FD__USE,
2049 &ad);
2050 if (rc)
2051 return rc;
2052 }
2053
2054 #ifdef CONFIG_BPF_SYSCALL
2055 rc = bpf_fd_pass(file, sid);
2056 if (rc)
2057 return rc;
2058 #endif
2059
2060 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2061 return 0;
2062
2063 isec = backing_inode_security(dentry);
2064 return avc_has_perm(&selinux_state,
2065 sid, isec->sid, isec->sclass, file_to_av(file),
2066 &ad);
2067 }
2068
selinux_ptrace_access_check(struct task_struct * child,unsigned int mode)2069 static int selinux_ptrace_access_check(struct task_struct *child,
2070 unsigned int mode)
2071 {
2072 u32 sid = current_sid();
2073 u32 csid = task_sid_obj(child);
2074
2075 if (mode & PTRACE_MODE_READ)
2076 return avc_has_perm(&selinux_state,
2077 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2078
2079 return avc_has_perm(&selinux_state,
2080 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2081 }
2082
selinux_ptrace_traceme(struct task_struct * parent)2083 static int selinux_ptrace_traceme(struct task_struct *parent)
2084 {
2085 return avc_has_perm(&selinux_state,
2086 task_sid_obj(parent), task_sid_obj(current),
2087 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2088 }
2089
selinux_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)2090 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2091 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2092 {
2093 return avc_has_perm(&selinux_state,
2094 current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2095 PROCESS__GETCAP, NULL);
2096 }
2097
selinux_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)2098 static int selinux_capset(struct cred *new, const struct cred *old,
2099 const kernel_cap_t *effective,
2100 const kernel_cap_t *inheritable,
2101 const kernel_cap_t *permitted)
2102 {
2103 return avc_has_perm(&selinux_state,
2104 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2105 PROCESS__SETCAP, NULL);
2106 }
2107
2108 /*
2109 * (This comment used to live with the selinux_task_setuid hook,
2110 * which was removed).
2111 *
2112 * Since setuid only affects the current process, and since the SELinux
2113 * controls are not based on the Linux identity attributes, SELinux does not
2114 * need to control this operation. However, SELinux does control the use of
2115 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2116 */
2117
selinux_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)2118 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2119 int cap, unsigned int opts)
2120 {
2121 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2122 }
2123
selinux_quotactl(int cmds,int type,int id,struct super_block * sb)2124 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2125 {
2126 const struct cred *cred = current_cred();
2127 int rc = 0;
2128
2129 if (!sb)
2130 return 0;
2131
2132 switch (cmds) {
2133 case Q_SYNC:
2134 case Q_QUOTAON:
2135 case Q_QUOTAOFF:
2136 case Q_SETINFO:
2137 case Q_SETQUOTA:
2138 case Q_XQUOTAOFF:
2139 case Q_XQUOTAON:
2140 case Q_XSETQLIM:
2141 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2142 break;
2143 case Q_GETFMT:
2144 case Q_GETINFO:
2145 case Q_GETQUOTA:
2146 case Q_XGETQUOTA:
2147 case Q_XGETQSTAT:
2148 case Q_XGETQSTATV:
2149 case Q_XGETNEXTQUOTA:
2150 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2151 break;
2152 default:
2153 rc = 0; /* let the kernel handle invalid cmds */
2154 break;
2155 }
2156 return rc;
2157 }
2158
selinux_quota_on(struct dentry * dentry)2159 static int selinux_quota_on(struct dentry *dentry)
2160 {
2161 const struct cred *cred = current_cred();
2162
2163 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2164 }
2165
selinux_syslog(int type)2166 static int selinux_syslog(int type)
2167 {
2168 switch (type) {
2169 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2170 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2171 return avc_has_perm(&selinux_state,
2172 current_sid(), SECINITSID_KERNEL,
2173 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2174 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2175 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2176 /* Set level of messages printed to console */
2177 case SYSLOG_ACTION_CONSOLE_LEVEL:
2178 return avc_has_perm(&selinux_state,
2179 current_sid(), SECINITSID_KERNEL,
2180 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2181 NULL);
2182 }
2183 /* All other syslog types */
2184 return avc_has_perm(&selinux_state,
2185 current_sid(), SECINITSID_KERNEL,
2186 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2187 }
2188
2189 /*
2190 * Check that a process has enough memory to allocate a new virtual
2191 * mapping. 0 means there is enough memory for the allocation to
2192 * succeed and -ENOMEM implies there is not.
2193 *
2194 * Do not audit the selinux permission check, as this is applied to all
2195 * processes that allocate mappings.
2196 */
selinux_vm_enough_memory(struct mm_struct * mm,long pages)2197 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2198 {
2199 int rc, cap_sys_admin = 0;
2200
2201 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2202 CAP_OPT_NOAUDIT, true);
2203 if (rc == 0)
2204 cap_sys_admin = 1;
2205
2206 return cap_sys_admin;
2207 }
2208
2209 /* binprm security operations */
2210
ptrace_parent_sid(void)2211 static u32 ptrace_parent_sid(void)
2212 {
2213 u32 sid = 0;
2214 struct task_struct *tracer;
2215
2216 rcu_read_lock();
2217 tracer = ptrace_parent(current);
2218 if (tracer)
2219 sid = task_sid_obj(tracer);
2220 rcu_read_unlock();
2221
2222 return sid;
2223 }
2224
check_nnp_nosuid(const struct linux_binprm * bprm,const struct task_security_struct * old_tsec,const struct task_security_struct * new_tsec)2225 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2226 const struct task_security_struct *old_tsec,
2227 const struct task_security_struct *new_tsec)
2228 {
2229 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2230 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2231 int rc;
2232 u32 av;
2233
2234 if (!nnp && !nosuid)
2235 return 0; /* neither NNP nor nosuid */
2236
2237 if (new_tsec->sid == old_tsec->sid)
2238 return 0; /* No change in credentials */
2239
2240 /*
2241 * If the policy enables the nnp_nosuid_transition policy capability,
2242 * then we permit transitions under NNP or nosuid if the
2243 * policy allows the corresponding permission between
2244 * the old and new contexts.
2245 */
2246 if (selinux_policycap_nnp_nosuid_transition()) {
2247 av = 0;
2248 if (nnp)
2249 av |= PROCESS2__NNP_TRANSITION;
2250 if (nosuid)
2251 av |= PROCESS2__NOSUID_TRANSITION;
2252 rc = avc_has_perm(&selinux_state,
2253 old_tsec->sid, new_tsec->sid,
2254 SECCLASS_PROCESS2, av, NULL);
2255 if (!rc)
2256 return 0;
2257 }
2258
2259 /*
2260 * We also permit NNP or nosuid transitions to bounded SIDs,
2261 * i.e. SIDs that are guaranteed to only be allowed a subset
2262 * of the permissions of the current SID.
2263 */
2264 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2265 new_tsec->sid);
2266 if (!rc)
2267 return 0;
2268
2269 /*
2270 * On failure, preserve the errno values for NNP vs nosuid.
2271 * NNP: Operation not permitted for caller.
2272 * nosuid: Permission denied to file.
2273 */
2274 if (nnp)
2275 return -EPERM;
2276 return -EACCES;
2277 }
2278
selinux_bprm_creds_for_exec(struct linux_binprm * bprm)2279 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2280 {
2281 const struct task_security_struct *old_tsec;
2282 struct task_security_struct *new_tsec;
2283 struct inode_security_struct *isec;
2284 struct common_audit_data ad;
2285 struct inode *inode = file_inode(bprm->file);
2286 int rc;
2287
2288 /* SELinux context only depends on initial program or script and not
2289 * the script interpreter */
2290
2291 old_tsec = selinux_cred(current_cred());
2292 new_tsec = selinux_cred(bprm->cred);
2293 isec = inode_security(inode);
2294
2295 /* Default to the current task SID. */
2296 new_tsec->sid = old_tsec->sid;
2297 new_tsec->osid = old_tsec->sid;
2298
2299 /* Reset fs, key, and sock SIDs on execve. */
2300 new_tsec->create_sid = 0;
2301 new_tsec->keycreate_sid = 0;
2302 new_tsec->sockcreate_sid = 0;
2303
2304 if (old_tsec->exec_sid) {
2305 new_tsec->sid = old_tsec->exec_sid;
2306 /* Reset exec SID on execve. */
2307 new_tsec->exec_sid = 0;
2308
2309 /* Fail on NNP or nosuid if not an allowed transition. */
2310 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2311 if (rc)
2312 return rc;
2313 } else {
2314 /* Check for a default transition on this program. */
2315 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2316 isec->sid, SECCLASS_PROCESS, NULL,
2317 &new_tsec->sid);
2318 if (rc)
2319 return rc;
2320
2321 /*
2322 * Fallback to old SID on NNP or nosuid if not an allowed
2323 * transition.
2324 */
2325 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2326 if (rc)
2327 new_tsec->sid = old_tsec->sid;
2328 }
2329
2330 ad.type = LSM_AUDIT_DATA_FILE;
2331 ad.u.file = bprm->file;
2332
2333 if (new_tsec->sid == old_tsec->sid) {
2334 rc = avc_has_perm(&selinux_state,
2335 old_tsec->sid, isec->sid,
2336 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2337 if (rc)
2338 return rc;
2339 } else {
2340 /* Check permissions for the transition. */
2341 rc = avc_has_perm(&selinux_state,
2342 old_tsec->sid, new_tsec->sid,
2343 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2344 if (rc)
2345 return rc;
2346
2347 rc = avc_has_perm(&selinux_state,
2348 new_tsec->sid, isec->sid,
2349 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2350 if (rc)
2351 return rc;
2352
2353 /* Check for shared state */
2354 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2355 rc = avc_has_perm(&selinux_state,
2356 old_tsec->sid, new_tsec->sid,
2357 SECCLASS_PROCESS, PROCESS__SHARE,
2358 NULL);
2359 if (rc)
2360 return -EPERM;
2361 }
2362
2363 /* Make sure that anyone attempting to ptrace over a task that
2364 * changes its SID has the appropriate permit */
2365 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2366 u32 ptsid = ptrace_parent_sid();
2367 if (ptsid != 0) {
2368 rc = avc_has_perm(&selinux_state,
2369 ptsid, new_tsec->sid,
2370 SECCLASS_PROCESS,
2371 PROCESS__PTRACE, NULL);
2372 if (rc)
2373 return -EPERM;
2374 }
2375 }
2376
2377 /* Clear any possibly unsafe personality bits on exec: */
2378 bprm->per_clear |= PER_CLEAR_ON_SETID;
2379
2380 /* Enable secure mode for SIDs transitions unless
2381 the noatsecure permission is granted between
2382 the two SIDs, i.e. ahp returns 0. */
2383 rc = avc_has_perm(&selinux_state,
2384 old_tsec->sid, new_tsec->sid,
2385 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2386 NULL);
2387 bprm->secureexec |= !!rc;
2388 }
2389
2390 return 0;
2391 }
2392
match_file(const void * p,struct file * file,unsigned fd)2393 static int match_file(const void *p, struct file *file, unsigned fd)
2394 {
2395 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2396 }
2397
2398 /* Derived from fs/exec.c:flush_old_files. */
flush_unauthorized_files(const struct cred * cred,struct files_struct * files)2399 static inline void flush_unauthorized_files(const struct cred *cred,
2400 struct files_struct *files)
2401 {
2402 struct file *file, *devnull = NULL;
2403 struct tty_struct *tty;
2404 int drop_tty = 0;
2405 unsigned n;
2406
2407 tty = get_current_tty();
2408 if (tty) {
2409 spin_lock(&tty->files_lock);
2410 if (!list_empty(&tty->tty_files)) {
2411 struct tty_file_private *file_priv;
2412
2413 /* Revalidate access to controlling tty.
2414 Use file_path_has_perm on the tty path directly
2415 rather than using file_has_perm, as this particular
2416 open file may belong to another process and we are
2417 only interested in the inode-based check here. */
2418 file_priv = list_first_entry(&tty->tty_files,
2419 struct tty_file_private, list);
2420 file = file_priv->file;
2421 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2422 drop_tty = 1;
2423 }
2424 spin_unlock(&tty->files_lock);
2425 tty_kref_put(tty);
2426 }
2427 /* Reset controlling tty. */
2428 if (drop_tty)
2429 no_tty();
2430
2431 /* Revalidate access to inherited open files. */
2432 n = iterate_fd(files, 0, match_file, cred);
2433 if (!n) /* none found? */
2434 return;
2435
2436 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2437 if (IS_ERR(devnull))
2438 devnull = NULL;
2439 /* replace all the matching ones with this */
2440 do {
2441 replace_fd(n - 1, devnull, 0);
2442 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2443 if (devnull)
2444 fput(devnull);
2445 }
2446
2447 /*
2448 * Prepare a process for imminent new credential changes due to exec
2449 */
selinux_bprm_committing_creds(struct linux_binprm * bprm)2450 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2451 {
2452 struct task_security_struct *new_tsec;
2453 struct rlimit *rlim, *initrlim;
2454 int rc, i;
2455
2456 new_tsec = selinux_cred(bprm->cred);
2457 if (new_tsec->sid == new_tsec->osid)
2458 return;
2459
2460 /* Close files for which the new task SID is not authorized. */
2461 flush_unauthorized_files(bprm->cred, current->files);
2462
2463 /* Always clear parent death signal on SID transitions. */
2464 current->pdeath_signal = 0;
2465
2466 /* Check whether the new SID can inherit resource limits from the old
2467 * SID. If not, reset all soft limits to the lower of the current
2468 * task's hard limit and the init task's soft limit.
2469 *
2470 * Note that the setting of hard limits (even to lower them) can be
2471 * controlled by the setrlimit check. The inclusion of the init task's
2472 * soft limit into the computation is to avoid resetting soft limits
2473 * higher than the default soft limit for cases where the default is
2474 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2475 */
2476 rc = avc_has_perm(&selinux_state,
2477 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2478 PROCESS__RLIMITINH, NULL);
2479 if (rc) {
2480 /* protect against do_prlimit() */
2481 task_lock(current);
2482 for (i = 0; i < RLIM_NLIMITS; i++) {
2483 rlim = current->signal->rlim + i;
2484 initrlim = init_task.signal->rlim + i;
2485 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2486 }
2487 task_unlock(current);
2488 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2489 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2490 }
2491 }
2492
2493 /*
2494 * Clean up the process immediately after the installation of new credentials
2495 * due to exec
2496 */
selinux_bprm_committed_creds(struct linux_binprm * bprm)2497 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2498 {
2499 const struct task_security_struct *tsec = selinux_cred(current_cred());
2500 u32 osid, sid;
2501 int rc;
2502
2503 osid = tsec->osid;
2504 sid = tsec->sid;
2505
2506 if (sid == osid)
2507 return;
2508
2509 /* Check whether the new SID can inherit signal state from the old SID.
2510 * If not, clear itimers to avoid subsequent signal generation and
2511 * flush and unblock signals.
2512 *
2513 * This must occur _after_ the task SID has been updated so that any
2514 * kill done after the flush will be checked against the new SID.
2515 */
2516 rc = avc_has_perm(&selinux_state,
2517 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2518 if (rc) {
2519 clear_itimer();
2520
2521 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2522 if (!fatal_signal_pending(current)) {
2523 flush_sigqueue(¤t->pending);
2524 flush_sigqueue(¤t->signal->shared_pending);
2525 flush_signal_handlers(current, 1);
2526 sigemptyset(¤t->blocked);
2527 recalc_sigpending();
2528 }
2529 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2530 }
2531
2532 /* Wake up the parent if it is waiting so that it can recheck
2533 * wait permission to the new task SID. */
2534 read_lock(&tasklist_lock);
2535 __wake_up_parent(current, unrcu_pointer(current->real_parent));
2536 read_unlock(&tasklist_lock);
2537 }
2538
2539 /* superblock security operations */
2540
selinux_sb_alloc_security(struct super_block * sb)2541 static int selinux_sb_alloc_security(struct super_block *sb)
2542 {
2543 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2544
2545 mutex_init(&sbsec->lock);
2546 INIT_LIST_HEAD(&sbsec->isec_head);
2547 spin_lock_init(&sbsec->isec_lock);
2548 sbsec->sid = SECINITSID_UNLABELED;
2549 sbsec->def_sid = SECINITSID_FILE;
2550 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2551
2552 return 0;
2553 }
2554
opt_len(const char * s)2555 static inline int opt_len(const char *s)
2556 {
2557 bool open_quote = false;
2558 int len;
2559 char c;
2560
2561 for (len = 0; (c = s[len]) != '\0'; len++) {
2562 if (c == '"')
2563 open_quote = !open_quote;
2564 if (c == ',' && !open_quote)
2565 break;
2566 }
2567 return len;
2568 }
2569
selinux_sb_eat_lsm_opts(char * options,void ** mnt_opts)2570 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2571 {
2572 char *from = options;
2573 char *to = options;
2574 bool first = true;
2575 int rc;
2576
2577 while (1) {
2578 int len = opt_len(from);
2579 int token;
2580 char *arg = NULL;
2581
2582 token = match_opt_prefix(from, len, &arg);
2583
2584 if (token != Opt_error) {
2585 char *p, *q;
2586
2587 /* strip quotes */
2588 if (arg) {
2589 for (p = q = arg; p < from + len; p++) {
2590 char c = *p;
2591 if (c != '"')
2592 *q++ = c;
2593 }
2594 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2595 if (!arg) {
2596 rc = -ENOMEM;
2597 goto free_opt;
2598 }
2599 }
2600 rc = selinux_add_opt(token, arg, mnt_opts);
2601 kfree(arg);
2602 arg = NULL;
2603 if (unlikely(rc)) {
2604 goto free_opt;
2605 }
2606 } else {
2607 if (!first) { // copy with preceding comma
2608 from--;
2609 len++;
2610 }
2611 if (to != from)
2612 memmove(to, from, len);
2613 to += len;
2614 first = false;
2615 }
2616 if (!from[len])
2617 break;
2618 from += len + 1;
2619 }
2620 *to = '\0';
2621 return 0;
2622
2623 free_opt:
2624 if (*mnt_opts) {
2625 selinux_free_mnt_opts(*mnt_opts);
2626 *mnt_opts = NULL;
2627 }
2628 return rc;
2629 }
2630
selinux_sb_mnt_opts_compat(struct super_block * sb,void * mnt_opts)2631 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2632 {
2633 struct selinux_mnt_opts *opts = mnt_opts;
2634 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2635
2636 /*
2637 * Superblock not initialized (i.e. no options) - reject if any
2638 * options specified, otherwise accept.
2639 */
2640 if (!(sbsec->flags & SE_SBINITIALIZED))
2641 return opts ? 1 : 0;
2642
2643 /*
2644 * Superblock initialized and no options specified - reject if
2645 * superblock has any options set, otherwise accept.
2646 */
2647 if (!opts)
2648 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2649
2650 if (opts->fscontext_sid) {
2651 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2652 opts->fscontext_sid))
2653 return 1;
2654 }
2655 if (opts->context_sid) {
2656 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2657 opts->context_sid))
2658 return 1;
2659 }
2660 if (opts->rootcontext_sid) {
2661 struct inode_security_struct *root_isec;
2662
2663 root_isec = backing_inode_security(sb->s_root);
2664 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2665 opts->rootcontext_sid))
2666 return 1;
2667 }
2668 if (opts->defcontext_sid) {
2669 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2670 opts->defcontext_sid))
2671 return 1;
2672 }
2673 return 0;
2674 }
2675
selinux_sb_remount(struct super_block * sb,void * mnt_opts)2676 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2677 {
2678 struct selinux_mnt_opts *opts = mnt_opts;
2679 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2680
2681 if (!(sbsec->flags & SE_SBINITIALIZED))
2682 return 0;
2683
2684 if (!opts)
2685 return 0;
2686
2687 if (opts->fscontext_sid) {
2688 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2689 opts->fscontext_sid))
2690 goto out_bad_option;
2691 }
2692 if (opts->context_sid) {
2693 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2694 opts->context_sid))
2695 goto out_bad_option;
2696 }
2697 if (opts->rootcontext_sid) {
2698 struct inode_security_struct *root_isec;
2699 root_isec = backing_inode_security(sb->s_root);
2700 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2701 opts->rootcontext_sid))
2702 goto out_bad_option;
2703 }
2704 if (opts->defcontext_sid) {
2705 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2706 opts->defcontext_sid))
2707 goto out_bad_option;
2708 }
2709 return 0;
2710
2711 out_bad_option:
2712 pr_warn("SELinux: unable to change security options "
2713 "during remount (dev %s, type=%s)\n", sb->s_id,
2714 sb->s_type->name);
2715 return -EINVAL;
2716 }
2717
selinux_sb_kern_mount(struct super_block * sb)2718 static int selinux_sb_kern_mount(struct super_block *sb)
2719 {
2720 const struct cred *cred = current_cred();
2721 struct common_audit_data ad;
2722
2723 ad.type = LSM_AUDIT_DATA_DENTRY;
2724 ad.u.dentry = sb->s_root;
2725 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2726 }
2727
selinux_sb_statfs(struct dentry * dentry)2728 static int selinux_sb_statfs(struct dentry *dentry)
2729 {
2730 const struct cred *cred = current_cred();
2731 struct common_audit_data ad;
2732
2733 ad.type = LSM_AUDIT_DATA_DENTRY;
2734 ad.u.dentry = dentry->d_sb->s_root;
2735 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2736 }
2737
selinux_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)2738 static int selinux_mount(const char *dev_name,
2739 const struct path *path,
2740 const char *type,
2741 unsigned long flags,
2742 void *data)
2743 {
2744 const struct cred *cred = current_cred();
2745
2746 if (flags & MS_REMOUNT)
2747 return superblock_has_perm(cred, path->dentry->d_sb,
2748 FILESYSTEM__REMOUNT, NULL);
2749 else
2750 return path_has_perm(cred, path, FILE__MOUNTON);
2751 }
2752
selinux_move_mount(const struct path * from_path,const struct path * to_path)2753 static int selinux_move_mount(const struct path *from_path,
2754 const struct path *to_path)
2755 {
2756 const struct cred *cred = current_cred();
2757
2758 return path_has_perm(cred, to_path, FILE__MOUNTON);
2759 }
2760
selinux_umount(struct vfsmount * mnt,int flags)2761 static int selinux_umount(struct vfsmount *mnt, int flags)
2762 {
2763 const struct cred *cred = current_cred();
2764
2765 return superblock_has_perm(cred, mnt->mnt_sb,
2766 FILESYSTEM__UNMOUNT, NULL);
2767 }
2768
selinux_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)2769 static int selinux_fs_context_dup(struct fs_context *fc,
2770 struct fs_context *src_fc)
2771 {
2772 const struct selinux_mnt_opts *src = src_fc->security;
2773
2774 if (!src)
2775 return 0;
2776
2777 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2778 return fc->security ? 0 : -ENOMEM;
2779 }
2780
2781 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2782 fsparam_string(CONTEXT_STR, Opt_context),
2783 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2784 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2785 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2786 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2787 {}
2788 };
2789
selinux_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)2790 static int selinux_fs_context_parse_param(struct fs_context *fc,
2791 struct fs_parameter *param)
2792 {
2793 struct fs_parse_result result;
2794 int opt;
2795
2796 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2797 if (opt < 0)
2798 return opt;
2799
2800 return selinux_add_opt(opt, param->string, &fc->security);
2801 }
2802
2803 /* inode security operations */
2804
selinux_inode_alloc_security(struct inode * inode)2805 static int selinux_inode_alloc_security(struct inode *inode)
2806 {
2807 struct inode_security_struct *isec = selinux_inode(inode);
2808 u32 sid = current_sid();
2809
2810 spin_lock_init(&isec->lock);
2811 INIT_LIST_HEAD(&isec->list);
2812 isec->inode = inode;
2813 isec->sid = SECINITSID_UNLABELED;
2814 isec->sclass = SECCLASS_FILE;
2815 isec->task_sid = sid;
2816 isec->initialized = LABEL_INVALID;
2817
2818 return 0;
2819 }
2820
selinux_inode_free_security(struct inode * inode)2821 static void selinux_inode_free_security(struct inode *inode)
2822 {
2823 inode_free_security(inode);
2824 }
2825
selinux_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,const char ** xattr_name,void ** ctx,u32 * ctxlen)2826 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2827 const struct qstr *name,
2828 const char **xattr_name, void **ctx,
2829 u32 *ctxlen)
2830 {
2831 u32 newsid;
2832 int rc;
2833
2834 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2835 d_inode(dentry->d_parent), name,
2836 inode_mode_to_security_class(mode),
2837 &newsid);
2838 if (rc)
2839 return rc;
2840
2841 if (xattr_name)
2842 *xattr_name = XATTR_NAME_SELINUX;
2843
2844 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2845 ctxlen);
2846 }
2847
selinux_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)2848 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2849 struct qstr *name,
2850 const struct cred *old,
2851 struct cred *new)
2852 {
2853 u32 newsid;
2854 int rc;
2855 struct task_security_struct *tsec;
2856
2857 rc = selinux_determine_inode_label(selinux_cred(old),
2858 d_inode(dentry->d_parent), name,
2859 inode_mode_to_security_class(mode),
2860 &newsid);
2861 if (rc)
2862 return rc;
2863
2864 tsec = selinux_cred(new);
2865 tsec->create_sid = newsid;
2866 return 0;
2867 }
2868
selinux_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const char ** name,void ** value,size_t * len)2869 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2870 const struct qstr *qstr,
2871 const char **name,
2872 void **value, size_t *len)
2873 {
2874 const struct task_security_struct *tsec = selinux_cred(current_cred());
2875 struct superblock_security_struct *sbsec;
2876 u32 newsid, clen;
2877 int rc;
2878 char *context;
2879
2880 sbsec = selinux_superblock(dir->i_sb);
2881
2882 newsid = tsec->create_sid;
2883
2884 rc = selinux_determine_inode_label(tsec, dir, qstr,
2885 inode_mode_to_security_class(inode->i_mode),
2886 &newsid);
2887 if (rc)
2888 return rc;
2889
2890 /* Possibly defer initialization to selinux_complete_init. */
2891 if (sbsec->flags & SE_SBINITIALIZED) {
2892 struct inode_security_struct *isec = selinux_inode(inode);
2893 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2894 isec->sid = newsid;
2895 isec->initialized = LABEL_INITIALIZED;
2896 }
2897
2898 if (!selinux_initialized(&selinux_state) ||
2899 !(sbsec->flags & SBLABEL_MNT))
2900 return -EOPNOTSUPP;
2901
2902 if (name)
2903 *name = XATTR_SELINUX_SUFFIX;
2904
2905 if (value && len) {
2906 rc = security_sid_to_context_force(&selinux_state, newsid,
2907 &context, &clen);
2908 if (rc)
2909 return rc;
2910 *value = context;
2911 *len = clen;
2912 }
2913
2914 return 0;
2915 }
2916
selinux_inode_init_security_anon(struct inode * inode,const struct qstr * name,const struct inode * context_inode)2917 static int selinux_inode_init_security_anon(struct inode *inode,
2918 const struct qstr *name,
2919 const struct inode *context_inode)
2920 {
2921 const struct task_security_struct *tsec = selinux_cred(current_cred());
2922 struct common_audit_data ad;
2923 struct inode_security_struct *isec;
2924 int rc;
2925
2926 if (unlikely(!selinux_initialized(&selinux_state)))
2927 return 0;
2928
2929 isec = selinux_inode(inode);
2930
2931 /*
2932 * We only get here once per ephemeral inode. The inode has
2933 * been initialized via inode_alloc_security but is otherwise
2934 * untouched.
2935 */
2936
2937 if (context_inode) {
2938 struct inode_security_struct *context_isec =
2939 selinux_inode(context_inode);
2940 if (context_isec->initialized != LABEL_INITIALIZED) {
2941 pr_err("SELinux: context_inode is not initialized");
2942 return -EACCES;
2943 }
2944
2945 isec->sclass = context_isec->sclass;
2946 isec->sid = context_isec->sid;
2947 } else {
2948 isec->sclass = SECCLASS_ANON_INODE;
2949 rc = security_transition_sid(
2950 &selinux_state, tsec->sid, tsec->sid,
2951 isec->sclass, name, &isec->sid);
2952 if (rc)
2953 return rc;
2954 }
2955
2956 isec->initialized = LABEL_INITIALIZED;
2957 /*
2958 * Now that we've initialized security, check whether we're
2959 * allowed to actually create this type of anonymous inode.
2960 */
2961
2962 ad.type = LSM_AUDIT_DATA_ANONINODE;
2963 ad.u.anonclass = name ? (const char *)name->name : "?";
2964
2965 return avc_has_perm(&selinux_state,
2966 tsec->sid,
2967 isec->sid,
2968 isec->sclass,
2969 FILE__CREATE,
2970 &ad);
2971 }
2972
selinux_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)2973 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2974 {
2975 return may_create(dir, dentry, SECCLASS_FILE);
2976 }
2977
selinux_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2978 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2979 {
2980 return may_link(dir, old_dentry, MAY_LINK);
2981 }
2982
selinux_inode_unlink(struct inode * dir,struct dentry * dentry)2983 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2984 {
2985 return may_link(dir, dentry, MAY_UNLINK);
2986 }
2987
selinux_inode_symlink(struct inode * dir,struct dentry * dentry,const char * name)2988 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2989 {
2990 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2991 }
2992
selinux_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mask)2993 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2994 {
2995 return may_create(dir, dentry, SECCLASS_DIR);
2996 }
2997
selinux_inode_rmdir(struct inode * dir,struct dentry * dentry)2998 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2999 {
3000 return may_link(dir, dentry, MAY_RMDIR);
3001 }
3002
selinux_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3003 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3004 {
3005 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3006 }
3007
selinux_inode_rename(struct inode * old_inode,struct dentry * old_dentry,struct inode * new_inode,struct dentry * new_dentry)3008 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3009 struct inode *new_inode, struct dentry *new_dentry)
3010 {
3011 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3012 }
3013
selinux_inode_readlink(struct dentry * dentry)3014 static int selinux_inode_readlink(struct dentry *dentry)
3015 {
3016 const struct cred *cred = current_cred();
3017
3018 return dentry_has_perm(cred, dentry, FILE__READ);
3019 }
3020
selinux_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)3021 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3022 bool rcu)
3023 {
3024 const struct cred *cred = current_cred();
3025 struct common_audit_data ad;
3026 struct inode_security_struct *isec;
3027 u32 sid;
3028
3029 validate_creds(cred);
3030
3031 ad.type = LSM_AUDIT_DATA_DENTRY;
3032 ad.u.dentry = dentry;
3033 sid = cred_sid(cred);
3034 isec = inode_security_rcu(inode, rcu);
3035 if (IS_ERR(isec))
3036 return PTR_ERR(isec);
3037
3038 return avc_has_perm(&selinux_state,
3039 sid, isec->sid, isec->sclass, FILE__READ, &ad);
3040 }
3041
audit_inode_permission(struct inode * inode,u32 perms,u32 audited,u32 denied,int result)3042 static noinline int audit_inode_permission(struct inode *inode,
3043 u32 perms, u32 audited, u32 denied,
3044 int result)
3045 {
3046 struct common_audit_data ad;
3047 struct inode_security_struct *isec = selinux_inode(inode);
3048
3049 ad.type = LSM_AUDIT_DATA_INODE;
3050 ad.u.inode = inode;
3051
3052 return slow_avc_audit(&selinux_state,
3053 current_sid(), isec->sid, isec->sclass, perms,
3054 audited, denied, result, &ad);
3055 }
3056
selinux_inode_permission(struct inode * inode,int mask)3057 static int selinux_inode_permission(struct inode *inode, int mask)
3058 {
3059 const struct cred *cred = current_cred();
3060 u32 perms;
3061 bool from_access;
3062 bool no_block = mask & MAY_NOT_BLOCK;
3063 struct inode_security_struct *isec;
3064 u32 sid;
3065 struct av_decision avd;
3066 int rc, rc2;
3067 u32 audited, denied;
3068
3069 from_access = mask & MAY_ACCESS;
3070 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3071
3072 /* No permission to check. Existence test. */
3073 if (!mask)
3074 return 0;
3075
3076 validate_creds(cred);
3077
3078 if (unlikely(IS_PRIVATE(inode)))
3079 return 0;
3080
3081 perms = file_mask_to_av(inode->i_mode, mask);
3082
3083 sid = cred_sid(cred);
3084 isec = inode_security_rcu(inode, no_block);
3085 if (IS_ERR(isec))
3086 return PTR_ERR(isec);
3087
3088 rc = avc_has_perm_noaudit(&selinux_state,
3089 sid, isec->sid, isec->sclass, perms, 0,
3090 &avd);
3091 audited = avc_audit_required(perms, &avd, rc,
3092 from_access ? FILE__AUDIT_ACCESS : 0,
3093 &denied);
3094 if (likely(!audited))
3095 return rc;
3096
3097 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3098 if (rc2)
3099 return rc2;
3100 return rc;
3101 }
3102
selinux_inode_setattr(struct dentry * dentry,struct iattr * iattr)3103 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3104 {
3105 const struct cred *cred = current_cred();
3106 struct inode *inode = d_backing_inode(dentry);
3107 unsigned int ia_valid = iattr->ia_valid;
3108 __u32 av = FILE__WRITE;
3109
3110 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3111 if (ia_valid & ATTR_FORCE) {
3112 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3113 ATTR_FORCE);
3114 if (!ia_valid)
3115 return 0;
3116 }
3117
3118 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3119 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3120 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3121
3122 if (selinux_policycap_openperm() &&
3123 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3124 (ia_valid & ATTR_SIZE) &&
3125 !(ia_valid & ATTR_FILE))
3126 av |= FILE__OPEN;
3127
3128 return dentry_has_perm(cred, dentry, av);
3129 }
3130
selinux_inode_getattr(const struct path * path)3131 static int selinux_inode_getattr(const struct path *path)
3132 {
3133 return path_has_perm(current_cred(), path, FILE__GETATTR);
3134 }
3135
has_cap_mac_admin(bool audit)3136 static bool has_cap_mac_admin(bool audit)
3137 {
3138 const struct cred *cred = current_cred();
3139 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3140
3141 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3142 return false;
3143 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3144 return false;
3145 return true;
3146 }
3147
selinux_inode_setxattr(struct user_namespace * mnt_userns,struct dentry * dentry,const char * name,const void * value,size_t size,int flags)3148 static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3149 struct dentry *dentry, const char *name,
3150 const void *value, size_t size, int flags)
3151 {
3152 struct inode *inode = d_backing_inode(dentry);
3153 struct inode_security_struct *isec;
3154 struct superblock_security_struct *sbsec;
3155 struct common_audit_data ad;
3156 u32 newsid, sid = current_sid();
3157 int rc = 0;
3158
3159 if (strcmp(name, XATTR_NAME_SELINUX)) {
3160 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3161 if (rc)
3162 return rc;
3163
3164 /* Not an attribute we recognize, so just check the
3165 ordinary setattr permission. */
3166 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3167 }
3168
3169 if (!selinux_initialized(&selinux_state))
3170 return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3171
3172 sbsec = selinux_superblock(inode->i_sb);
3173 if (!(sbsec->flags & SBLABEL_MNT))
3174 return -EOPNOTSUPP;
3175
3176 if (!inode_owner_or_capable(mnt_userns, inode))
3177 return -EPERM;
3178
3179 ad.type = LSM_AUDIT_DATA_DENTRY;
3180 ad.u.dentry = dentry;
3181
3182 isec = backing_inode_security(dentry);
3183 rc = avc_has_perm(&selinux_state,
3184 sid, isec->sid, isec->sclass,
3185 FILE__RELABELFROM, &ad);
3186 if (rc)
3187 return rc;
3188
3189 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3190 GFP_KERNEL);
3191 if (rc == -EINVAL) {
3192 if (!has_cap_mac_admin(true)) {
3193 struct audit_buffer *ab;
3194 size_t audit_size;
3195
3196 /* We strip a nul only if it is at the end, otherwise the
3197 * context contains a nul and we should audit that */
3198 if (value) {
3199 const char *str = value;
3200
3201 if (str[size - 1] == '\0')
3202 audit_size = size - 1;
3203 else
3204 audit_size = size;
3205 } else {
3206 audit_size = 0;
3207 }
3208 ab = audit_log_start(audit_context(),
3209 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3210 if (!ab)
3211 return rc;
3212 audit_log_format(ab, "op=setxattr invalid_context=");
3213 audit_log_n_untrustedstring(ab, value, audit_size);
3214 audit_log_end(ab);
3215
3216 return rc;
3217 }
3218 rc = security_context_to_sid_force(&selinux_state, value,
3219 size, &newsid);
3220 }
3221 if (rc)
3222 return rc;
3223
3224 rc = avc_has_perm(&selinux_state,
3225 sid, newsid, isec->sclass,
3226 FILE__RELABELTO, &ad);
3227 if (rc)
3228 return rc;
3229
3230 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3231 sid, isec->sclass);
3232 if (rc)
3233 return rc;
3234
3235 return avc_has_perm(&selinux_state,
3236 newsid,
3237 sbsec->sid,
3238 SECCLASS_FILESYSTEM,
3239 FILESYSTEM__ASSOCIATE,
3240 &ad);
3241 }
3242
selinux_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)3243 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3244 const void *value, size_t size,
3245 int flags)
3246 {
3247 struct inode *inode = d_backing_inode(dentry);
3248 struct inode_security_struct *isec;
3249 u32 newsid;
3250 int rc;
3251
3252 if (strcmp(name, XATTR_NAME_SELINUX)) {
3253 /* Not an attribute we recognize, so nothing to do. */
3254 return;
3255 }
3256
3257 if (!selinux_initialized(&selinux_state)) {
3258 /* If we haven't even been initialized, then we can't validate
3259 * against a policy, so leave the label as invalid. It may
3260 * resolve to a valid label on the next revalidation try if
3261 * we've since initialized.
3262 */
3263 return;
3264 }
3265
3266 rc = security_context_to_sid_force(&selinux_state, value, size,
3267 &newsid);
3268 if (rc) {
3269 pr_err("SELinux: unable to map context to SID"
3270 "for (%s, %lu), rc=%d\n",
3271 inode->i_sb->s_id, inode->i_ino, -rc);
3272 return;
3273 }
3274
3275 isec = backing_inode_security(dentry);
3276 spin_lock(&isec->lock);
3277 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3278 isec->sid = newsid;
3279 isec->initialized = LABEL_INITIALIZED;
3280 spin_unlock(&isec->lock);
3281 }
3282
selinux_inode_getxattr(struct dentry * dentry,const char * name)3283 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3284 {
3285 const struct cred *cred = current_cred();
3286
3287 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3288 }
3289
selinux_inode_listxattr(struct dentry * dentry)3290 static int selinux_inode_listxattr(struct dentry *dentry)
3291 {
3292 const struct cred *cred = current_cred();
3293
3294 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3295 }
3296
selinux_inode_removexattr(struct user_namespace * mnt_userns,struct dentry * dentry,const char * name)3297 static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3298 struct dentry *dentry, const char *name)
3299 {
3300 if (strcmp(name, XATTR_NAME_SELINUX)) {
3301 int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3302 if (rc)
3303 return rc;
3304
3305 /* Not an attribute we recognize, so just check the
3306 ordinary setattr permission. */
3307 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3308 }
3309
3310 if (!selinux_initialized(&selinux_state))
3311 return 0;
3312
3313 /* No one is allowed to remove a SELinux security label.
3314 You can change the label, but all data must be labeled. */
3315 return -EACCES;
3316 }
3317
selinux_path_notify(const struct path * path,u64 mask,unsigned int obj_type)3318 static int selinux_path_notify(const struct path *path, u64 mask,
3319 unsigned int obj_type)
3320 {
3321 int ret;
3322 u32 perm;
3323
3324 struct common_audit_data ad;
3325
3326 ad.type = LSM_AUDIT_DATA_PATH;
3327 ad.u.path = *path;
3328
3329 /*
3330 * Set permission needed based on the type of mark being set.
3331 * Performs an additional check for sb watches.
3332 */
3333 switch (obj_type) {
3334 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3335 perm = FILE__WATCH_MOUNT;
3336 break;
3337 case FSNOTIFY_OBJ_TYPE_SB:
3338 perm = FILE__WATCH_SB;
3339 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3340 FILESYSTEM__WATCH, &ad);
3341 if (ret)
3342 return ret;
3343 break;
3344 case FSNOTIFY_OBJ_TYPE_INODE:
3345 perm = FILE__WATCH;
3346 break;
3347 default:
3348 return -EINVAL;
3349 }
3350
3351 /* blocking watches require the file:watch_with_perm permission */
3352 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3353 perm |= FILE__WATCH_WITH_PERM;
3354
3355 /* watches on read-like events need the file:watch_reads permission */
3356 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3357 perm |= FILE__WATCH_READS;
3358
3359 return path_has_perm(current_cred(), path, perm);
3360 }
3361
3362 /*
3363 * Copy the inode security context value to the user.
3364 *
3365 * Permission check is handled by selinux_inode_getxattr hook.
3366 */
selinux_inode_getsecurity(struct user_namespace * mnt_userns,struct inode * inode,const char * name,void ** buffer,bool alloc)3367 static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3368 struct inode *inode, const char *name,
3369 void **buffer, bool alloc)
3370 {
3371 u32 size;
3372 int error;
3373 char *context = NULL;
3374 struct inode_security_struct *isec;
3375
3376 /*
3377 * If we're not initialized yet, then we can't validate contexts, so
3378 * just let vfs_getxattr fall back to using the on-disk xattr.
3379 */
3380 if (!selinux_initialized(&selinux_state) ||
3381 strcmp(name, XATTR_SELINUX_SUFFIX))
3382 return -EOPNOTSUPP;
3383
3384 /*
3385 * If the caller has CAP_MAC_ADMIN, then get the raw context
3386 * value even if it is not defined by current policy; otherwise,
3387 * use the in-core value under current policy.
3388 * Use the non-auditing forms of the permission checks since
3389 * getxattr may be called by unprivileged processes commonly
3390 * and lack of permission just means that we fall back to the
3391 * in-core context value, not a denial.
3392 */
3393 isec = inode_security(inode);
3394 if (has_cap_mac_admin(false))
3395 error = security_sid_to_context_force(&selinux_state,
3396 isec->sid, &context,
3397 &size);
3398 else
3399 error = security_sid_to_context(&selinux_state, isec->sid,
3400 &context, &size);
3401 if (error)
3402 return error;
3403 error = size;
3404 if (alloc) {
3405 *buffer = context;
3406 goto out_nofree;
3407 }
3408 kfree(context);
3409 out_nofree:
3410 return error;
3411 }
3412
selinux_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)3413 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3414 const void *value, size_t size, int flags)
3415 {
3416 struct inode_security_struct *isec = inode_security_novalidate(inode);
3417 struct superblock_security_struct *sbsec;
3418 u32 newsid;
3419 int rc;
3420
3421 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3422 return -EOPNOTSUPP;
3423
3424 sbsec = selinux_superblock(inode->i_sb);
3425 if (!(sbsec->flags & SBLABEL_MNT))
3426 return -EOPNOTSUPP;
3427
3428 if (!value || !size)
3429 return -EACCES;
3430
3431 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3432 GFP_KERNEL);
3433 if (rc)
3434 return rc;
3435
3436 spin_lock(&isec->lock);
3437 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3438 isec->sid = newsid;
3439 isec->initialized = LABEL_INITIALIZED;
3440 spin_unlock(&isec->lock);
3441 return 0;
3442 }
3443
selinux_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)3444 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3445 {
3446 const int len = sizeof(XATTR_NAME_SELINUX);
3447
3448 if (!selinux_initialized(&selinux_state))
3449 return 0;
3450
3451 if (buffer && len <= buffer_size)
3452 memcpy(buffer, XATTR_NAME_SELINUX, len);
3453 return len;
3454 }
3455
selinux_inode_getsecid(struct inode * inode,u32 * secid)3456 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3457 {
3458 struct inode_security_struct *isec = inode_security_novalidate(inode);
3459 *secid = isec->sid;
3460 }
3461
selinux_inode_copy_up(struct dentry * src,struct cred ** new)3462 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3463 {
3464 u32 sid;
3465 struct task_security_struct *tsec;
3466 struct cred *new_creds = *new;
3467
3468 if (new_creds == NULL) {
3469 new_creds = prepare_creds();
3470 if (!new_creds)
3471 return -ENOMEM;
3472 }
3473
3474 tsec = selinux_cred(new_creds);
3475 /* Get label from overlay inode and set it in create_sid */
3476 selinux_inode_getsecid(d_inode(src), &sid);
3477 tsec->create_sid = sid;
3478 *new = new_creds;
3479 return 0;
3480 }
3481
selinux_inode_copy_up_xattr(const char * name)3482 static int selinux_inode_copy_up_xattr(const char *name)
3483 {
3484 /* The copy_up hook above sets the initial context on an inode, but we
3485 * don't then want to overwrite it by blindly copying all the lower
3486 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3487 */
3488 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3489 return 1; /* Discard */
3490 /*
3491 * Any other attribute apart from SELINUX is not claimed, supported
3492 * by selinux.
3493 */
3494 return -EOPNOTSUPP;
3495 }
3496
3497 /* kernfs node operations */
3498
selinux_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)3499 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3500 struct kernfs_node *kn)
3501 {
3502 const struct task_security_struct *tsec = selinux_cred(current_cred());
3503 u32 parent_sid, newsid, clen;
3504 int rc;
3505 char *context;
3506
3507 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3508 if (rc == -ENODATA)
3509 return 0;
3510 else if (rc < 0)
3511 return rc;
3512
3513 clen = (u32)rc;
3514 context = kmalloc(clen, GFP_KERNEL);
3515 if (!context)
3516 return -ENOMEM;
3517
3518 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3519 if (rc < 0) {
3520 kfree(context);
3521 return rc;
3522 }
3523
3524 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3525 GFP_KERNEL);
3526 kfree(context);
3527 if (rc)
3528 return rc;
3529
3530 if (tsec->create_sid) {
3531 newsid = tsec->create_sid;
3532 } else {
3533 u16 secclass = inode_mode_to_security_class(kn->mode);
3534 struct qstr q;
3535
3536 q.name = kn->name;
3537 q.hash_len = hashlen_string(kn_dir, kn->name);
3538
3539 rc = security_transition_sid(&selinux_state, tsec->sid,
3540 parent_sid, secclass, &q,
3541 &newsid);
3542 if (rc)
3543 return rc;
3544 }
3545
3546 rc = security_sid_to_context_force(&selinux_state, newsid,
3547 &context, &clen);
3548 if (rc)
3549 return rc;
3550
3551 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3552 XATTR_CREATE);
3553 kfree(context);
3554 return rc;
3555 }
3556
3557
3558 /* file security operations */
3559
selinux_revalidate_file_permission(struct file * file,int mask)3560 static int selinux_revalidate_file_permission(struct file *file, int mask)
3561 {
3562 const struct cred *cred = current_cred();
3563 struct inode *inode = file_inode(file);
3564
3565 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3566 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3567 mask |= MAY_APPEND;
3568
3569 return file_has_perm(cred, file,
3570 file_mask_to_av(inode->i_mode, mask));
3571 }
3572
selinux_file_permission(struct file * file,int mask)3573 static int selinux_file_permission(struct file *file, int mask)
3574 {
3575 struct inode *inode = file_inode(file);
3576 struct file_security_struct *fsec = selinux_file(file);
3577 struct inode_security_struct *isec;
3578 u32 sid = current_sid();
3579
3580 if (!mask)
3581 /* No permission to check. Existence test. */
3582 return 0;
3583
3584 isec = inode_security(inode);
3585 if (sid == fsec->sid && fsec->isid == isec->sid &&
3586 fsec->pseqno == avc_policy_seqno(&selinux_state))
3587 /* No change since file_open check. */
3588 return 0;
3589
3590 return selinux_revalidate_file_permission(file, mask);
3591 }
3592
selinux_file_alloc_security(struct file * file)3593 static int selinux_file_alloc_security(struct file *file)
3594 {
3595 struct file_security_struct *fsec = selinux_file(file);
3596 u32 sid = current_sid();
3597
3598 fsec->sid = sid;
3599 fsec->fown_sid = sid;
3600
3601 return 0;
3602 }
3603
3604 /*
3605 * Check whether a task has the ioctl permission and cmd
3606 * operation to an inode.
3607 */
ioctl_has_perm(const struct cred * cred,struct file * file,u32 requested,u16 cmd)3608 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3609 u32 requested, u16 cmd)
3610 {
3611 struct common_audit_data ad;
3612 struct file_security_struct *fsec = selinux_file(file);
3613 struct inode *inode = file_inode(file);
3614 struct inode_security_struct *isec;
3615 struct lsm_ioctlop_audit ioctl;
3616 u32 ssid = cred_sid(cred);
3617 int rc;
3618 u8 driver = cmd >> 8;
3619 u8 xperm = cmd & 0xff;
3620
3621 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3622 ad.u.op = &ioctl;
3623 ad.u.op->cmd = cmd;
3624 ad.u.op->path = file->f_path;
3625
3626 if (ssid != fsec->sid) {
3627 rc = avc_has_perm(&selinux_state,
3628 ssid, fsec->sid,
3629 SECCLASS_FD,
3630 FD__USE,
3631 &ad);
3632 if (rc)
3633 goto out;
3634 }
3635
3636 if (unlikely(IS_PRIVATE(inode)))
3637 return 0;
3638
3639 isec = inode_security(inode);
3640 rc = avc_has_extended_perms(&selinux_state,
3641 ssid, isec->sid, isec->sclass,
3642 requested, driver, xperm, &ad);
3643 out:
3644 return rc;
3645 }
3646
selinux_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3647 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3648 unsigned long arg)
3649 {
3650 const struct cred *cred = current_cred();
3651 int error = 0;
3652
3653 switch (cmd) {
3654 case FIONREAD:
3655 case FIBMAP:
3656 case FIGETBSZ:
3657 case FS_IOC_GETFLAGS:
3658 case FS_IOC_GETVERSION:
3659 error = file_has_perm(cred, file, FILE__GETATTR);
3660 break;
3661
3662 case FS_IOC_SETFLAGS:
3663 case FS_IOC_SETVERSION:
3664 error = file_has_perm(cred, file, FILE__SETATTR);
3665 break;
3666
3667 /* sys_ioctl() checks */
3668 case FIONBIO:
3669 case FIOASYNC:
3670 error = file_has_perm(cred, file, 0);
3671 break;
3672
3673 case KDSKBENT:
3674 case KDSKBSENT:
3675 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3676 CAP_OPT_NONE, true);
3677 break;
3678
3679 case FIOCLEX:
3680 case FIONCLEX:
3681 if (!selinux_policycap_ioctl_skip_cloexec())
3682 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3683 break;
3684
3685 /* default case assumes that the command will go
3686 * to the file's ioctl() function.
3687 */
3688 default:
3689 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3690 }
3691 return error;
3692 }
3693
3694 static int default_noexec __ro_after_init;
3695
file_map_prot_check(struct file * file,unsigned long prot,int shared)3696 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3697 {
3698 const struct cred *cred = current_cred();
3699 u32 sid = cred_sid(cred);
3700 int rc = 0;
3701
3702 if (default_noexec &&
3703 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3704 (!shared && (prot & PROT_WRITE)))) {
3705 /*
3706 * We are making executable an anonymous mapping or a
3707 * private file mapping that will also be writable.
3708 * This has an additional check.
3709 */
3710 rc = avc_has_perm(&selinux_state,
3711 sid, sid, SECCLASS_PROCESS,
3712 PROCESS__EXECMEM, NULL);
3713 if (rc)
3714 goto error;
3715 }
3716
3717 if (file) {
3718 /* read access is always possible with a mapping */
3719 u32 av = FILE__READ;
3720
3721 /* write access only matters if the mapping is shared */
3722 if (shared && (prot & PROT_WRITE))
3723 av |= FILE__WRITE;
3724
3725 if (prot & PROT_EXEC)
3726 av |= FILE__EXECUTE;
3727
3728 return file_has_perm(cred, file, av);
3729 }
3730
3731 error:
3732 return rc;
3733 }
3734
selinux_mmap_addr(unsigned long addr)3735 static int selinux_mmap_addr(unsigned long addr)
3736 {
3737 int rc = 0;
3738
3739 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3740 u32 sid = current_sid();
3741 rc = avc_has_perm(&selinux_state,
3742 sid, sid, SECCLASS_MEMPROTECT,
3743 MEMPROTECT__MMAP_ZERO, NULL);
3744 }
3745
3746 return rc;
3747 }
3748
selinux_mmap_file(struct file * file,unsigned long reqprot,unsigned long prot,unsigned long flags)3749 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3750 unsigned long prot, unsigned long flags)
3751 {
3752 struct common_audit_data ad;
3753 int rc;
3754
3755 if (file) {
3756 ad.type = LSM_AUDIT_DATA_FILE;
3757 ad.u.file = file;
3758 rc = inode_has_perm(current_cred(), file_inode(file),
3759 FILE__MAP, &ad);
3760 if (rc)
3761 return rc;
3762 }
3763
3764 if (checkreqprot_get(&selinux_state))
3765 prot = reqprot;
3766
3767 return file_map_prot_check(file, prot,
3768 (flags & MAP_TYPE) == MAP_SHARED);
3769 }
3770
selinux_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)3771 static int selinux_file_mprotect(struct vm_area_struct *vma,
3772 unsigned long reqprot,
3773 unsigned long prot)
3774 {
3775 const struct cred *cred = current_cred();
3776 u32 sid = cred_sid(cred);
3777
3778 if (checkreqprot_get(&selinux_state))
3779 prot = reqprot;
3780
3781 if (default_noexec &&
3782 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3783 int rc = 0;
3784 if (vma->vm_start >= vma->vm_mm->start_brk &&
3785 vma->vm_end <= vma->vm_mm->brk) {
3786 rc = avc_has_perm(&selinux_state,
3787 sid, sid, SECCLASS_PROCESS,
3788 PROCESS__EXECHEAP, NULL);
3789 } else if (!vma->vm_file &&
3790 ((vma->vm_start <= vma->vm_mm->start_stack &&
3791 vma->vm_end >= vma->vm_mm->start_stack) ||
3792 vma_is_stack_for_current(vma))) {
3793 rc = avc_has_perm(&selinux_state,
3794 sid, sid, SECCLASS_PROCESS,
3795 PROCESS__EXECSTACK, NULL);
3796 } else if (vma->vm_file && vma->anon_vma) {
3797 /*
3798 * We are making executable a file mapping that has
3799 * had some COW done. Since pages might have been
3800 * written, check ability to execute the possibly
3801 * modified content. This typically should only
3802 * occur for text relocations.
3803 */
3804 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3805 }
3806 if (rc)
3807 return rc;
3808 }
3809
3810 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3811 }
3812
selinux_file_lock(struct file * file,unsigned int cmd)3813 static int selinux_file_lock(struct file *file, unsigned int cmd)
3814 {
3815 const struct cred *cred = current_cred();
3816
3817 return file_has_perm(cred, file, FILE__LOCK);
3818 }
3819
selinux_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)3820 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3821 unsigned long arg)
3822 {
3823 const struct cred *cred = current_cred();
3824 int err = 0;
3825
3826 switch (cmd) {
3827 case F_SETFL:
3828 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3829 err = file_has_perm(cred, file, FILE__WRITE);
3830 break;
3831 }
3832 fallthrough;
3833 case F_SETOWN:
3834 case F_SETSIG:
3835 case F_GETFL:
3836 case F_GETOWN:
3837 case F_GETSIG:
3838 case F_GETOWNER_UIDS:
3839 /* Just check FD__USE permission */
3840 err = file_has_perm(cred, file, 0);
3841 break;
3842 case F_GETLK:
3843 case F_SETLK:
3844 case F_SETLKW:
3845 case F_OFD_GETLK:
3846 case F_OFD_SETLK:
3847 case F_OFD_SETLKW:
3848 #if BITS_PER_LONG == 32
3849 case F_GETLK64:
3850 case F_SETLK64:
3851 case F_SETLKW64:
3852 #endif
3853 err = file_has_perm(cred, file, FILE__LOCK);
3854 break;
3855 }
3856
3857 return err;
3858 }
3859
selinux_file_set_fowner(struct file * file)3860 static void selinux_file_set_fowner(struct file *file)
3861 {
3862 struct file_security_struct *fsec;
3863
3864 fsec = selinux_file(file);
3865 fsec->fown_sid = current_sid();
3866 }
3867
selinux_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int signum)3868 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3869 struct fown_struct *fown, int signum)
3870 {
3871 struct file *file;
3872 u32 sid = task_sid_obj(tsk);
3873 u32 perm;
3874 struct file_security_struct *fsec;
3875
3876 /* struct fown_struct is never outside the context of a struct file */
3877 file = container_of(fown, struct file, f_owner);
3878
3879 fsec = selinux_file(file);
3880
3881 if (!signum)
3882 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3883 else
3884 perm = signal_to_av(signum);
3885
3886 return avc_has_perm(&selinux_state,
3887 fsec->fown_sid, sid,
3888 SECCLASS_PROCESS, perm, NULL);
3889 }
3890
selinux_file_receive(struct file * file)3891 static int selinux_file_receive(struct file *file)
3892 {
3893 const struct cred *cred = current_cred();
3894
3895 return file_has_perm(cred, file, file_to_av(file));
3896 }
3897
selinux_file_open(struct file * file)3898 static int selinux_file_open(struct file *file)
3899 {
3900 struct file_security_struct *fsec;
3901 struct inode_security_struct *isec;
3902
3903 fsec = selinux_file(file);
3904 isec = inode_security(file_inode(file));
3905 /*
3906 * Save inode label and policy sequence number
3907 * at open-time so that selinux_file_permission
3908 * can determine whether revalidation is necessary.
3909 * Task label is already saved in the file security
3910 * struct as its SID.
3911 */
3912 fsec->isid = isec->sid;
3913 fsec->pseqno = avc_policy_seqno(&selinux_state);
3914 /*
3915 * Since the inode label or policy seqno may have changed
3916 * between the selinux_inode_permission check and the saving
3917 * of state above, recheck that access is still permitted.
3918 * Otherwise, access might never be revalidated against the
3919 * new inode label or new policy.
3920 * This check is not redundant - do not remove.
3921 */
3922 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3923 }
3924
3925 /* task security operations */
3926
selinux_task_alloc(struct task_struct * task,unsigned long clone_flags)3927 static int selinux_task_alloc(struct task_struct *task,
3928 unsigned long clone_flags)
3929 {
3930 u32 sid = current_sid();
3931
3932 return avc_has_perm(&selinux_state,
3933 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3934 }
3935
3936 /*
3937 * prepare a new set of credentials for modification
3938 */
selinux_cred_prepare(struct cred * new,const struct cred * old,gfp_t gfp)3939 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3940 gfp_t gfp)
3941 {
3942 const struct task_security_struct *old_tsec = selinux_cred(old);
3943 struct task_security_struct *tsec = selinux_cred(new);
3944
3945 *tsec = *old_tsec;
3946 return 0;
3947 }
3948
3949 /*
3950 * transfer the SELinux data to a blank set of creds
3951 */
selinux_cred_transfer(struct cred * new,const struct cred * old)3952 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3953 {
3954 const struct task_security_struct *old_tsec = selinux_cred(old);
3955 struct task_security_struct *tsec = selinux_cred(new);
3956
3957 *tsec = *old_tsec;
3958 }
3959
selinux_cred_getsecid(const struct cred * c,u32 * secid)3960 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3961 {
3962 *secid = cred_sid(c);
3963 }
3964
3965 /*
3966 * set the security data for a kernel service
3967 * - all the creation contexts are set to unlabelled
3968 */
selinux_kernel_act_as(struct cred * new,u32 secid)3969 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3970 {
3971 struct task_security_struct *tsec = selinux_cred(new);
3972 u32 sid = current_sid();
3973 int ret;
3974
3975 ret = avc_has_perm(&selinux_state,
3976 sid, secid,
3977 SECCLASS_KERNEL_SERVICE,
3978 KERNEL_SERVICE__USE_AS_OVERRIDE,
3979 NULL);
3980 if (ret == 0) {
3981 tsec->sid = secid;
3982 tsec->create_sid = 0;
3983 tsec->keycreate_sid = 0;
3984 tsec->sockcreate_sid = 0;
3985 }
3986 return ret;
3987 }
3988
3989 /*
3990 * set the file creation context in a security record to the same as the
3991 * objective context of the specified inode
3992 */
selinux_kernel_create_files_as(struct cred * new,struct inode * inode)3993 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3994 {
3995 struct inode_security_struct *isec = inode_security(inode);
3996 struct task_security_struct *tsec = selinux_cred(new);
3997 u32 sid = current_sid();
3998 int ret;
3999
4000 ret = avc_has_perm(&selinux_state,
4001 sid, isec->sid,
4002 SECCLASS_KERNEL_SERVICE,
4003 KERNEL_SERVICE__CREATE_FILES_AS,
4004 NULL);
4005
4006 if (ret == 0)
4007 tsec->create_sid = isec->sid;
4008 return ret;
4009 }
4010
selinux_kernel_module_request(char * kmod_name)4011 static int selinux_kernel_module_request(char *kmod_name)
4012 {
4013 struct common_audit_data ad;
4014
4015 ad.type = LSM_AUDIT_DATA_KMOD;
4016 ad.u.kmod_name = kmod_name;
4017
4018 return avc_has_perm(&selinux_state,
4019 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4020 SYSTEM__MODULE_REQUEST, &ad);
4021 }
4022
selinux_kernel_module_from_file(struct file * file)4023 static int selinux_kernel_module_from_file(struct file *file)
4024 {
4025 struct common_audit_data ad;
4026 struct inode_security_struct *isec;
4027 struct file_security_struct *fsec;
4028 u32 sid = current_sid();
4029 int rc;
4030
4031 /* init_module */
4032 if (file == NULL)
4033 return avc_has_perm(&selinux_state,
4034 sid, sid, SECCLASS_SYSTEM,
4035 SYSTEM__MODULE_LOAD, NULL);
4036
4037 /* finit_module */
4038
4039 ad.type = LSM_AUDIT_DATA_FILE;
4040 ad.u.file = file;
4041
4042 fsec = selinux_file(file);
4043 if (sid != fsec->sid) {
4044 rc = avc_has_perm(&selinux_state,
4045 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4046 if (rc)
4047 return rc;
4048 }
4049
4050 isec = inode_security(file_inode(file));
4051 return avc_has_perm(&selinux_state,
4052 sid, isec->sid, SECCLASS_SYSTEM,
4053 SYSTEM__MODULE_LOAD, &ad);
4054 }
4055
selinux_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)4056 static int selinux_kernel_read_file(struct file *file,
4057 enum kernel_read_file_id id,
4058 bool contents)
4059 {
4060 int rc = 0;
4061
4062 switch (id) {
4063 case READING_MODULE:
4064 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4065 break;
4066 default:
4067 break;
4068 }
4069
4070 return rc;
4071 }
4072
selinux_kernel_load_data(enum kernel_load_data_id id,bool contents)4073 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4074 {
4075 int rc = 0;
4076
4077 switch (id) {
4078 case LOADING_MODULE:
4079 rc = selinux_kernel_module_from_file(NULL);
4080 break;
4081 default:
4082 break;
4083 }
4084
4085 return rc;
4086 }
4087
selinux_task_setpgid(struct task_struct * p,pid_t pgid)4088 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4089 {
4090 return avc_has_perm(&selinux_state,
4091 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4092 PROCESS__SETPGID, NULL);
4093 }
4094
selinux_task_getpgid(struct task_struct * p)4095 static int selinux_task_getpgid(struct task_struct *p)
4096 {
4097 return avc_has_perm(&selinux_state,
4098 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4099 PROCESS__GETPGID, NULL);
4100 }
4101
selinux_task_getsid(struct task_struct * p)4102 static int selinux_task_getsid(struct task_struct *p)
4103 {
4104 return avc_has_perm(&selinux_state,
4105 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4106 PROCESS__GETSESSION, NULL);
4107 }
4108
selinux_current_getsecid_subj(u32 * secid)4109 static void selinux_current_getsecid_subj(u32 *secid)
4110 {
4111 *secid = current_sid();
4112 }
4113
selinux_task_getsecid_obj(struct task_struct * p,u32 * secid)4114 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4115 {
4116 *secid = task_sid_obj(p);
4117 }
4118
selinux_task_setnice(struct task_struct * p,int nice)4119 static int selinux_task_setnice(struct task_struct *p, int nice)
4120 {
4121 return avc_has_perm(&selinux_state,
4122 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4123 PROCESS__SETSCHED, NULL);
4124 }
4125
selinux_task_setioprio(struct task_struct * p,int ioprio)4126 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4127 {
4128 return avc_has_perm(&selinux_state,
4129 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4130 PROCESS__SETSCHED, NULL);
4131 }
4132
selinux_task_getioprio(struct task_struct * p)4133 static int selinux_task_getioprio(struct task_struct *p)
4134 {
4135 return avc_has_perm(&selinux_state,
4136 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4137 PROCESS__GETSCHED, NULL);
4138 }
4139
selinux_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)4140 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4141 unsigned int flags)
4142 {
4143 u32 av = 0;
4144
4145 if (!flags)
4146 return 0;
4147 if (flags & LSM_PRLIMIT_WRITE)
4148 av |= PROCESS__SETRLIMIT;
4149 if (flags & LSM_PRLIMIT_READ)
4150 av |= PROCESS__GETRLIMIT;
4151 return avc_has_perm(&selinux_state,
4152 cred_sid(cred), cred_sid(tcred),
4153 SECCLASS_PROCESS, av, NULL);
4154 }
4155
selinux_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)4156 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4157 struct rlimit *new_rlim)
4158 {
4159 struct rlimit *old_rlim = p->signal->rlim + resource;
4160
4161 /* Control the ability to change the hard limit (whether
4162 lowering or raising it), so that the hard limit can
4163 later be used as a safe reset point for the soft limit
4164 upon context transitions. See selinux_bprm_committing_creds. */
4165 if (old_rlim->rlim_max != new_rlim->rlim_max)
4166 return avc_has_perm(&selinux_state,
4167 current_sid(), task_sid_obj(p),
4168 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4169
4170 return 0;
4171 }
4172
selinux_task_setscheduler(struct task_struct * p)4173 static int selinux_task_setscheduler(struct task_struct *p)
4174 {
4175 return avc_has_perm(&selinux_state,
4176 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4177 PROCESS__SETSCHED, NULL);
4178 }
4179
selinux_task_getscheduler(struct task_struct * p)4180 static int selinux_task_getscheduler(struct task_struct *p)
4181 {
4182 return avc_has_perm(&selinux_state,
4183 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4184 PROCESS__GETSCHED, NULL);
4185 }
4186
selinux_task_movememory(struct task_struct * p)4187 static int selinux_task_movememory(struct task_struct *p)
4188 {
4189 return avc_has_perm(&selinux_state,
4190 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4191 PROCESS__SETSCHED, NULL);
4192 }
4193
selinux_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)4194 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4195 int sig, const struct cred *cred)
4196 {
4197 u32 secid;
4198 u32 perm;
4199
4200 if (!sig)
4201 perm = PROCESS__SIGNULL; /* null signal; existence test */
4202 else
4203 perm = signal_to_av(sig);
4204 if (!cred)
4205 secid = current_sid();
4206 else
4207 secid = cred_sid(cred);
4208 return avc_has_perm(&selinux_state,
4209 secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4210 }
4211
selinux_task_to_inode(struct task_struct * p,struct inode * inode)4212 static void selinux_task_to_inode(struct task_struct *p,
4213 struct inode *inode)
4214 {
4215 struct inode_security_struct *isec = selinux_inode(inode);
4216 u32 sid = task_sid_obj(p);
4217
4218 spin_lock(&isec->lock);
4219 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4220 isec->sid = sid;
4221 isec->initialized = LABEL_INITIALIZED;
4222 spin_unlock(&isec->lock);
4223 }
4224
selinux_userns_create(const struct cred * cred)4225 static int selinux_userns_create(const struct cred *cred)
4226 {
4227 u32 sid = current_sid();
4228
4229 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_USER_NAMESPACE,
4230 USER_NAMESPACE__CREATE, NULL);
4231 }
4232
4233 /* Returns error only if unable to parse addresses */
selinux_parse_skb_ipv4(struct sk_buff * skb,struct common_audit_data * ad,u8 * proto)4234 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4235 struct common_audit_data *ad, u8 *proto)
4236 {
4237 int offset, ihlen, ret = -EINVAL;
4238 struct iphdr _iph, *ih;
4239
4240 offset = skb_network_offset(skb);
4241 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4242 if (ih == NULL)
4243 goto out;
4244
4245 ihlen = ih->ihl * 4;
4246 if (ihlen < sizeof(_iph))
4247 goto out;
4248
4249 ad->u.net->v4info.saddr = ih->saddr;
4250 ad->u.net->v4info.daddr = ih->daddr;
4251 ret = 0;
4252
4253 if (proto)
4254 *proto = ih->protocol;
4255
4256 switch (ih->protocol) {
4257 case IPPROTO_TCP: {
4258 struct tcphdr _tcph, *th;
4259
4260 if (ntohs(ih->frag_off) & IP_OFFSET)
4261 break;
4262
4263 offset += ihlen;
4264 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4265 if (th == NULL)
4266 break;
4267
4268 ad->u.net->sport = th->source;
4269 ad->u.net->dport = th->dest;
4270 break;
4271 }
4272
4273 case IPPROTO_UDP: {
4274 struct udphdr _udph, *uh;
4275
4276 if (ntohs(ih->frag_off) & IP_OFFSET)
4277 break;
4278
4279 offset += ihlen;
4280 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4281 if (uh == NULL)
4282 break;
4283
4284 ad->u.net->sport = uh->source;
4285 ad->u.net->dport = uh->dest;
4286 break;
4287 }
4288
4289 case IPPROTO_DCCP: {
4290 struct dccp_hdr _dccph, *dh;
4291
4292 if (ntohs(ih->frag_off) & IP_OFFSET)
4293 break;
4294
4295 offset += ihlen;
4296 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4297 if (dh == NULL)
4298 break;
4299
4300 ad->u.net->sport = dh->dccph_sport;
4301 ad->u.net->dport = dh->dccph_dport;
4302 break;
4303 }
4304
4305 #if IS_ENABLED(CONFIG_IP_SCTP)
4306 case IPPROTO_SCTP: {
4307 struct sctphdr _sctph, *sh;
4308
4309 if (ntohs(ih->frag_off) & IP_OFFSET)
4310 break;
4311
4312 offset += ihlen;
4313 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4314 if (sh == NULL)
4315 break;
4316
4317 ad->u.net->sport = sh->source;
4318 ad->u.net->dport = sh->dest;
4319 break;
4320 }
4321 #endif
4322 default:
4323 break;
4324 }
4325 out:
4326 return ret;
4327 }
4328
4329 #if IS_ENABLED(CONFIG_IPV6)
4330
4331 /* Returns error only if unable to parse addresses */
selinux_parse_skb_ipv6(struct sk_buff * skb,struct common_audit_data * ad,u8 * proto)4332 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4333 struct common_audit_data *ad, u8 *proto)
4334 {
4335 u8 nexthdr;
4336 int ret = -EINVAL, offset;
4337 struct ipv6hdr _ipv6h, *ip6;
4338 __be16 frag_off;
4339
4340 offset = skb_network_offset(skb);
4341 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4342 if (ip6 == NULL)
4343 goto out;
4344
4345 ad->u.net->v6info.saddr = ip6->saddr;
4346 ad->u.net->v6info.daddr = ip6->daddr;
4347 ret = 0;
4348
4349 nexthdr = ip6->nexthdr;
4350 offset += sizeof(_ipv6h);
4351 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4352 if (offset < 0)
4353 goto out;
4354
4355 if (proto)
4356 *proto = nexthdr;
4357
4358 switch (nexthdr) {
4359 case IPPROTO_TCP: {
4360 struct tcphdr _tcph, *th;
4361
4362 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4363 if (th == NULL)
4364 break;
4365
4366 ad->u.net->sport = th->source;
4367 ad->u.net->dport = th->dest;
4368 break;
4369 }
4370
4371 case IPPROTO_UDP: {
4372 struct udphdr _udph, *uh;
4373
4374 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4375 if (uh == NULL)
4376 break;
4377
4378 ad->u.net->sport = uh->source;
4379 ad->u.net->dport = uh->dest;
4380 break;
4381 }
4382
4383 case IPPROTO_DCCP: {
4384 struct dccp_hdr _dccph, *dh;
4385
4386 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4387 if (dh == NULL)
4388 break;
4389
4390 ad->u.net->sport = dh->dccph_sport;
4391 ad->u.net->dport = dh->dccph_dport;
4392 break;
4393 }
4394
4395 #if IS_ENABLED(CONFIG_IP_SCTP)
4396 case IPPROTO_SCTP: {
4397 struct sctphdr _sctph, *sh;
4398
4399 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4400 if (sh == NULL)
4401 break;
4402
4403 ad->u.net->sport = sh->source;
4404 ad->u.net->dport = sh->dest;
4405 break;
4406 }
4407 #endif
4408 /* includes fragments */
4409 default:
4410 break;
4411 }
4412 out:
4413 return ret;
4414 }
4415
4416 #endif /* IPV6 */
4417
selinux_parse_skb(struct sk_buff * skb,struct common_audit_data * ad,char ** _addrp,int src,u8 * proto)4418 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4419 char **_addrp, int src, u8 *proto)
4420 {
4421 char *addrp;
4422 int ret;
4423
4424 switch (ad->u.net->family) {
4425 case PF_INET:
4426 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4427 if (ret)
4428 goto parse_error;
4429 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4430 &ad->u.net->v4info.daddr);
4431 goto okay;
4432
4433 #if IS_ENABLED(CONFIG_IPV6)
4434 case PF_INET6:
4435 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4436 if (ret)
4437 goto parse_error;
4438 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4439 &ad->u.net->v6info.daddr);
4440 goto okay;
4441 #endif /* IPV6 */
4442 default:
4443 addrp = NULL;
4444 goto okay;
4445 }
4446
4447 parse_error:
4448 pr_warn(
4449 "SELinux: failure in selinux_parse_skb(),"
4450 " unable to parse packet\n");
4451 return ret;
4452
4453 okay:
4454 if (_addrp)
4455 *_addrp = addrp;
4456 return 0;
4457 }
4458
4459 /**
4460 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4461 * @skb: the packet
4462 * @family: protocol family
4463 * @sid: the packet's peer label SID
4464 *
4465 * Description:
4466 * Check the various different forms of network peer labeling and determine
4467 * the peer label/SID for the packet; most of the magic actually occurs in
4468 * the security server function security_net_peersid_cmp(). The function
4469 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4470 * or -EACCES if @sid is invalid due to inconsistencies with the different
4471 * peer labels.
4472 *
4473 */
selinux_skb_peerlbl_sid(struct sk_buff * skb,u16 family,u32 * sid)4474 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4475 {
4476 int err;
4477 u32 xfrm_sid;
4478 u32 nlbl_sid;
4479 u32 nlbl_type;
4480
4481 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4482 if (unlikely(err))
4483 return -EACCES;
4484 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4485 if (unlikely(err))
4486 return -EACCES;
4487
4488 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4489 nlbl_type, xfrm_sid, sid);
4490 if (unlikely(err)) {
4491 pr_warn(
4492 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4493 " unable to determine packet's peer label\n");
4494 return -EACCES;
4495 }
4496
4497 return 0;
4498 }
4499
4500 /**
4501 * selinux_conn_sid - Determine the child socket label for a connection
4502 * @sk_sid: the parent socket's SID
4503 * @skb_sid: the packet's SID
4504 * @conn_sid: the resulting connection SID
4505 *
4506 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4507 * combined with the MLS information from @skb_sid in order to create
4508 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4509 * of @sk_sid. Returns zero on success, negative values on failure.
4510 *
4511 */
selinux_conn_sid(u32 sk_sid,u32 skb_sid,u32 * conn_sid)4512 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4513 {
4514 int err = 0;
4515
4516 if (skb_sid != SECSID_NULL)
4517 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4518 conn_sid);
4519 else
4520 *conn_sid = sk_sid;
4521
4522 return err;
4523 }
4524
4525 /* socket security operations */
4526
socket_sockcreate_sid(const struct task_security_struct * tsec,u16 secclass,u32 * socksid)4527 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4528 u16 secclass, u32 *socksid)
4529 {
4530 if (tsec->sockcreate_sid > SECSID_NULL) {
4531 *socksid = tsec->sockcreate_sid;
4532 return 0;
4533 }
4534
4535 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4536 secclass, NULL, socksid);
4537 }
4538
sock_has_perm(struct sock * sk,u32 perms)4539 static int sock_has_perm(struct sock *sk, u32 perms)
4540 {
4541 struct sk_security_struct *sksec = sk->sk_security;
4542 struct common_audit_data ad;
4543 struct lsm_network_audit net = {0,};
4544
4545 if (sksec->sid == SECINITSID_KERNEL)
4546 return 0;
4547
4548 ad.type = LSM_AUDIT_DATA_NET;
4549 ad.u.net = &net;
4550 ad.u.net->sk = sk;
4551
4552 return avc_has_perm(&selinux_state,
4553 current_sid(), sksec->sid, sksec->sclass, perms,
4554 &ad);
4555 }
4556
selinux_socket_create(int family,int type,int protocol,int kern)4557 static int selinux_socket_create(int family, int type,
4558 int protocol, int kern)
4559 {
4560 const struct task_security_struct *tsec = selinux_cred(current_cred());
4561 u32 newsid;
4562 u16 secclass;
4563 int rc;
4564
4565 if (kern)
4566 return 0;
4567
4568 secclass = socket_type_to_security_class(family, type, protocol);
4569 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4570 if (rc)
4571 return rc;
4572
4573 return avc_has_perm(&selinux_state,
4574 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4575 }
4576
selinux_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)4577 static int selinux_socket_post_create(struct socket *sock, int family,
4578 int type, int protocol, int kern)
4579 {
4580 const struct task_security_struct *tsec = selinux_cred(current_cred());
4581 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4582 struct sk_security_struct *sksec;
4583 u16 sclass = socket_type_to_security_class(family, type, protocol);
4584 u32 sid = SECINITSID_KERNEL;
4585 int err = 0;
4586
4587 if (!kern) {
4588 err = socket_sockcreate_sid(tsec, sclass, &sid);
4589 if (err)
4590 return err;
4591 }
4592
4593 isec->sclass = sclass;
4594 isec->sid = sid;
4595 isec->initialized = LABEL_INITIALIZED;
4596
4597 if (sock->sk) {
4598 sksec = sock->sk->sk_security;
4599 sksec->sclass = sclass;
4600 sksec->sid = sid;
4601 /* Allows detection of the first association on this socket */
4602 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4603 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4604
4605 err = selinux_netlbl_socket_post_create(sock->sk, family);
4606 }
4607
4608 return err;
4609 }
4610
selinux_socket_socketpair(struct socket * socka,struct socket * sockb)4611 static int selinux_socket_socketpair(struct socket *socka,
4612 struct socket *sockb)
4613 {
4614 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4615 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4616
4617 sksec_a->peer_sid = sksec_b->sid;
4618 sksec_b->peer_sid = sksec_a->sid;
4619
4620 return 0;
4621 }
4622
4623 /* Range of port numbers used to automatically bind.
4624 Need to determine whether we should perform a name_bind
4625 permission check between the socket and the port number. */
4626
selinux_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)4627 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4628 {
4629 struct sock *sk = sock->sk;
4630 struct sk_security_struct *sksec = sk->sk_security;
4631 u16 family;
4632 int err;
4633
4634 err = sock_has_perm(sk, SOCKET__BIND);
4635 if (err)
4636 goto out;
4637
4638 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4639 family = sk->sk_family;
4640 if (family == PF_INET || family == PF_INET6) {
4641 char *addrp;
4642 struct common_audit_data ad;
4643 struct lsm_network_audit net = {0,};
4644 struct sockaddr_in *addr4 = NULL;
4645 struct sockaddr_in6 *addr6 = NULL;
4646 u16 family_sa;
4647 unsigned short snum;
4648 u32 sid, node_perm;
4649
4650 /*
4651 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4652 * that validates multiple binding addresses. Because of this
4653 * need to check address->sa_family as it is possible to have
4654 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4655 */
4656 if (addrlen < offsetofend(struct sockaddr, sa_family))
4657 return -EINVAL;
4658 family_sa = address->sa_family;
4659 switch (family_sa) {
4660 case AF_UNSPEC:
4661 case AF_INET:
4662 if (addrlen < sizeof(struct sockaddr_in))
4663 return -EINVAL;
4664 addr4 = (struct sockaddr_in *)address;
4665 if (family_sa == AF_UNSPEC) {
4666 /* see __inet_bind(), we only want to allow
4667 * AF_UNSPEC if the address is INADDR_ANY
4668 */
4669 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4670 goto err_af;
4671 family_sa = AF_INET;
4672 }
4673 snum = ntohs(addr4->sin_port);
4674 addrp = (char *)&addr4->sin_addr.s_addr;
4675 break;
4676 case AF_INET6:
4677 if (addrlen < SIN6_LEN_RFC2133)
4678 return -EINVAL;
4679 addr6 = (struct sockaddr_in6 *)address;
4680 snum = ntohs(addr6->sin6_port);
4681 addrp = (char *)&addr6->sin6_addr.s6_addr;
4682 break;
4683 default:
4684 goto err_af;
4685 }
4686
4687 ad.type = LSM_AUDIT_DATA_NET;
4688 ad.u.net = &net;
4689 ad.u.net->sport = htons(snum);
4690 ad.u.net->family = family_sa;
4691
4692 if (snum) {
4693 int low, high;
4694
4695 inet_get_local_port_range(sock_net(sk), &low, &high);
4696
4697 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4698 snum < low || snum > high) {
4699 err = sel_netport_sid(sk->sk_protocol,
4700 snum, &sid);
4701 if (err)
4702 goto out;
4703 err = avc_has_perm(&selinux_state,
4704 sksec->sid, sid,
4705 sksec->sclass,
4706 SOCKET__NAME_BIND, &ad);
4707 if (err)
4708 goto out;
4709 }
4710 }
4711
4712 switch (sksec->sclass) {
4713 case SECCLASS_TCP_SOCKET:
4714 node_perm = TCP_SOCKET__NODE_BIND;
4715 break;
4716
4717 case SECCLASS_UDP_SOCKET:
4718 node_perm = UDP_SOCKET__NODE_BIND;
4719 break;
4720
4721 case SECCLASS_DCCP_SOCKET:
4722 node_perm = DCCP_SOCKET__NODE_BIND;
4723 break;
4724
4725 case SECCLASS_SCTP_SOCKET:
4726 node_perm = SCTP_SOCKET__NODE_BIND;
4727 break;
4728
4729 default:
4730 node_perm = RAWIP_SOCKET__NODE_BIND;
4731 break;
4732 }
4733
4734 err = sel_netnode_sid(addrp, family_sa, &sid);
4735 if (err)
4736 goto out;
4737
4738 if (family_sa == AF_INET)
4739 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4740 else
4741 ad.u.net->v6info.saddr = addr6->sin6_addr;
4742
4743 err = avc_has_perm(&selinux_state,
4744 sksec->sid, sid,
4745 sksec->sclass, node_perm, &ad);
4746 if (err)
4747 goto out;
4748 }
4749 out:
4750 return err;
4751 err_af:
4752 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4753 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4754 return -EINVAL;
4755 return -EAFNOSUPPORT;
4756 }
4757
4758 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4759 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4760 */
selinux_socket_connect_helper(struct socket * sock,struct sockaddr * address,int addrlen)4761 static int selinux_socket_connect_helper(struct socket *sock,
4762 struct sockaddr *address, int addrlen)
4763 {
4764 struct sock *sk = sock->sk;
4765 struct sk_security_struct *sksec = sk->sk_security;
4766 int err;
4767
4768 err = sock_has_perm(sk, SOCKET__CONNECT);
4769 if (err)
4770 return err;
4771 if (addrlen < offsetofend(struct sockaddr, sa_family))
4772 return -EINVAL;
4773
4774 /* connect(AF_UNSPEC) has special handling, as it is a documented
4775 * way to disconnect the socket
4776 */
4777 if (address->sa_family == AF_UNSPEC)
4778 return 0;
4779
4780 /*
4781 * If a TCP, DCCP or SCTP socket, check name_connect permission
4782 * for the port.
4783 */
4784 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4785 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4786 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4787 struct common_audit_data ad;
4788 struct lsm_network_audit net = {0,};
4789 struct sockaddr_in *addr4 = NULL;
4790 struct sockaddr_in6 *addr6 = NULL;
4791 unsigned short snum;
4792 u32 sid, perm;
4793
4794 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4795 * that validates multiple connect addresses. Because of this
4796 * need to check address->sa_family as it is possible to have
4797 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4798 */
4799 switch (address->sa_family) {
4800 case AF_INET:
4801 addr4 = (struct sockaddr_in *)address;
4802 if (addrlen < sizeof(struct sockaddr_in))
4803 return -EINVAL;
4804 snum = ntohs(addr4->sin_port);
4805 break;
4806 case AF_INET6:
4807 addr6 = (struct sockaddr_in6 *)address;
4808 if (addrlen < SIN6_LEN_RFC2133)
4809 return -EINVAL;
4810 snum = ntohs(addr6->sin6_port);
4811 break;
4812 default:
4813 /* Note that SCTP services expect -EINVAL, whereas
4814 * others expect -EAFNOSUPPORT.
4815 */
4816 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4817 return -EINVAL;
4818 else
4819 return -EAFNOSUPPORT;
4820 }
4821
4822 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4823 if (err)
4824 return err;
4825
4826 switch (sksec->sclass) {
4827 case SECCLASS_TCP_SOCKET:
4828 perm = TCP_SOCKET__NAME_CONNECT;
4829 break;
4830 case SECCLASS_DCCP_SOCKET:
4831 perm = DCCP_SOCKET__NAME_CONNECT;
4832 break;
4833 case SECCLASS_SCTP_SOCKET:
4834 perm = SCTP_SOCKET__NAME_CONNECT;
4835 break;
4836 }
4837
4838 ad.type = LSM_AUDIT_DATA_NET;
4839 ad.u.net = &net;
4840 ad.u.net->dport = htons(snum);
4841 ad.u.net->family = address->sa_family;
4842 err = avc_has_perm(&selinux_state,
4843 sksec->sid, sid, sksec->sclass, perm, &ad);
4844 if (err)
4845 return err;
4846 }
4847
4848 return 0;
4849 }
4850
4851 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
selinux_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)4852 static int selinux_socket_connect(struct socket *sock,
4853 struct sockaddr *address, int addrlen)
4854 {
4855 int err;
4856 struct sock *sk = sock->sk;
4857
4858 err = selinux_socket_connect_helper(sock, address, addrlen);
4859 if (err)
4860 return err;
4861
4862 return selinux_netlbl_socket_connect(sk, address);
4863 }
4864
selinux_socket_listen(struct socket * sock,int backlog)4865 static int selinux_socket_listen(struct socket *sock, int backlog)
4866 {
4867 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4868 }
4869
selinux_socket_accept(struct socket * sock,struct socket * newsock)4870 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4871 {
4872 int err;
4873 struct inode_security_struct *isec;
4874 struct inode_security_struct *newisec;
4875 u16 sclass;
4876 u32 sid;
4877
4878 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4879 if (err)
4880 return err;
4881
4882 isec = inode_security_novalidate(SOCK_INODE(sock));
4883 spin_lock(&isec->lock);
4884 sclass = isec->sclass;
4885 sid = isec->sid;
4886 spin_unlock(&isec->lock);
4887
4888 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4889 newisec->sclass = sclass;
4890 newisec->sid = sid;
4891 newisec->initialized = LABEL_INITIALIZED;
4892
4893 return 0;
4894 }
4895
selinux_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)4896 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4897 int size)
4898 {
4899 return sock_has_perm(sock->sk, SOCKET__WRITE);
4900 }
4901
selinux_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)4902 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4903 int size, int flags)
4904 {
4905 return sock_has_perm(sock->sk, SOCKET__READ);
4906 }
4907
selinux_socket_getsockname(struct socket * sock)4908 static int selinux_socket_getsockname(struct socket *sock)
4909 {
4910 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4911 }
4912
selinux_socket_getpeername(struct socket * sock)4913 static int selinux_socket_getpeername(struct socket *sock)
4914 {
4915 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4916 }
4917
selinux_socket_setsockopt(struct socket * sock,int level,int optname)4918 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4919 {
4920 int err;
4921
4922 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4923 if (err)
4924 return err;
4925
4926 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4927 }
4928
selinux_socket_getsockopt(struct socket * sock,int level,int optname)4929 static int selinux_socket_getsockopt(struct socket *sock, int level,
4930 int optname)
4931 {
4932 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4933 }
4934
selinux_socket_shutdown(struct socket * sock,int how)4935 static int selinux_socket_shutdown(struct socket *sock, int how)
4936 {
4937 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4938 }
4939
selinux_socket_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)4940 static int selinux_socket_unix_stream_connect(struct sock *sock,
4941 struct sock *other,
4942 struct sock *newsk)
4943 {
4944 struct sk_security_struct *sksec_sock = sock->sk_security;
4945 struct sk_security_struct *sksec_other = other->sk_security;
4946 struct sk_security_struct *sksec_new = newsk->sk_security;
4947 struct common_audit_data ad;
4948 struct lsm_network_audit net = {0,};
4949 int err;
4950
4951 ad.type = LSM_AUDIT_DATA_NET;
4952 ad.u.net = &net;
4953 ad.u.net->sk = other;
4954
4955 err = avc_has_perm(&selinux_state,
4956 sksec_sock->sid, sksec_other->sid,
4957 sksec_other->sclass,
4958 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4959 if (err)
4960 return err;
4961
4962 /* server child socket */
4963 sksec_new->peer_sid = sksec_sock->sid;
4964 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4965 sksec_sock->sid, &sksec_new->sid);
4966 if (err)
4967 return err;
4968
4969 /* connecting socket */
4970 sksec_sock->peer_sid = sksec_new->sid;
4971
4972 return 0;
4973 }
4974
selinux_socket_unix_may_send(struct socket * sock,struct socket * other)4975 static int selinux_socket_unix_may_send(struct socket *sock,
4976 struct socket *other)
4977 {
4978 struct sk_security_struct *ssec = sock->sk->sk_security;
4979 struct sk_security_struct *osec = other->sk->sk_security;
4980 struct common_audit_data ad;
4981 struct lsm_network_audit net = {0,};
4982
4983 ad.type = LSM_AUDIT_DATA_NET;
4984 ad.u.net = &net;
4985 ad.u.net->sk = other->sk;
4986
4987 return avc_has_perm(&selinux_state,
4988 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4989 &ad);
4990 }
4991
selinux_inet_sys_rcv_skb(struct net * ns,int ifindex,char * addrp,u16 family,u32 peer_sid,struct common_audit_data * ad)4992 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4993 char *addrp, u16 family, u32 peer_sid,
4994 struct common_audit_data *ad)
4995 {
4996 int err;
4997 u32 if_sid;
4998 u32 node_sid;
4999
5000 err = sel_netif_sid(ns, ifindex, &if_sid);
5001 if (err)
5002 return err;
5003 err = avc_has_perm(&selinux_state,
5004 peer_sid, if_sid,
5005 SECCLASS_NETIF, NETIF__INGRESS, ad);
5006 if (err)
5007 return err;
5008
5009 err = sel_netnode_sid(addrp, family, &node_sid);
5010 if (err)
5011 return err;
5012 return avc_has_perm(&selinux_state,
5013 peer_sid, node_sid,
5014 SECCLASS_NODE, NODE__RECVFROM, ad);
5015 }
5016
selinux_sock_rcv_skb_compat(struct sock * sk,struct sk_buff * skb,u16 family)5017 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5018 u16 family)
5019 {
5020 int err = 0;
5021 struct sk_security_struct *sksec = sk->sk_security;
5022 u32 sk_sid = sksec->sid;
5023 struct common_audit_data ad;
5024 struct lsm_network_audit net = {0,};
5025 char *addrp;
5026
5027 ad.type = LSM_AUDIT_DATA_NET;
5028 ad.u.net = &net;
5029 ad.u.net->netif = skb->skb_iif;
5030 ad.u.net->family = family;
5031 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5032 if (err)
5033 return err;
5034
5035 if (selinux_secmark_enabled()) {
5036 err = avc_has_perm(&selinux_state,
5037 sk_sid, skb->secmark, SECCLASS_PACKET,
5038 PACKET__RECV, &ad);
5039 if (err)
5040 return err;
5041 }
5042
5043 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5044 if (err)
5045 return err;
5046 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5047
5048 return err;
5049 }
5050
selinux_socket_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)5051 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5052 {
5053 int err;
5054 struct sk_security_struct *sksec = sk->sk_security;
5055 u16 family = sk->sk_family;
5056 u32 sk_sid = sksec->sid;
5057 struct common_audit_data ad;
5058 struct lsm_network_audit net = {0,};
5059 char *addrp;
5060 u8 secmark_active;
5061 u8 peerlbl_active;
5062
5063 if (family != PF_INET && family != PF_INET6)
5064 return 0;
5065
5066 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5067 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5068 family = PF_INET;
5069
5070 /* If any sort of compatibility mode is enabled then handoff processing
5071 * to the selinux_sock_rcv_skb_compat() function to deal with the
5072 * special handling. We do this in an attempt to keep this function
5073 * as fast and as clean as possible. */
5074 if (!selinux_policycap_netpeer())
5075 return selinux_sock_rcv_skb_compat(sk, skb, family);
5076
5077 secmark_active = selinux_secmark_enabled();
5078 peerlbl_active = selinux_peerlbl_enabled();
5079 if (!secmark_active && !peerlbl_active)
5080 return 0;
5081
5082 ad.type = LSM_AUDIT_DATA_NET;
5083 ad.u.net = &net;
5084 ad.u.net->netif = skb->skb_iif;
5085 ad.u.net->family = family;
5086 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5087 if (err)
5088 return err;
5089
5090 if (peerlbl_active) {
5091 u32 peer_sid;
5092
5093 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5094 if (err)
5095 return err;
5096 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5097 addrp, family, peer_sid, &ad);
5098 if (err) {
5099 selinux_netlbl_err(skb, family, err, 0);
5100 return err;
5101 }
5102 err = avc_has_perm(&selinux_state,
5103 sk_sid, peer_sid, SECCLASS_PEER,
5104 PEER__RECV, &ad);
5105 if (err) {
5106 selinux_netlbl_err(skb, family, err, 0);
5107 return err;
5108 }
5109 }
5110
5111 if (secmark_active) {
5112 err = avc_has_perm(&selinux_state,
5113 sk_sid, skb->secmark, SECCLASS_PACKET,
5114 PACKET__RECV, &ad);
5115 if (err)
5116 return err;
5117 }
5118
5119 return err;
5120 }
5121
selinux_socket_getpeersec_stream(struct socket * sock,char __user * optval,int __user * optlen,unsigned len)5122 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5123 int __user *optlen, unsigned len)
5124 {
5125 int err = 0;
5126 char *scontext;
5127 u32 scontext_len;
5128 struct sk_security_struct *sksec = sock->sk->sk_security;
5129 u32 peer_sid = SECSID_NULL;
5130
5131 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5132 sksec->sclass == SECCLASS_TCP_SOCKET ||
5133 sksec->sclass == SECCLASS_SCTP_SOCKET)
5134 peer_sid = sksec->peer_sid;
5135 if (peer_sid == SECSID_NULL)
5136 return -ENOPROTOOPT;
5137
5138 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5139 &scontext_len);
5140 if (err)
5141 return err;
5142
5143 if (scontext_len > len) {
5144 err = -ERANGE;
5145 goto out_len;
5146 }
5147
5148 if (copy_to_user(optval, scontext, scontext_len))
5149 err = -EFAULT;
5150
5151 out_len:
5152 if (put_user(scontext_len, optlen))
5153 err = -EFAULT;
5154 kfree(scontext);
5155 return err;
5156 }
5157
selinux_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)5158 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5159 {
5160 u32 peer_secid = SECSID_NULL;
5161 u16 family;
5162 struct inode_security_struct *isec;
5163
5164 if (skb && skb->protocol == htons(ETH_P_IP))
5165 family = PF_INET;
5166 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5167 family = PF_INET6;
5168 else if (sock)
5169 family = sock->sk->sk_family;
5170 else
5171 goto out;
5172
5173 if (sock && family == PF_UNIX) {
5174 isec = inode_security_novalidate(SOCK_INODE(sock));
5175 peer_secid = isec->sid;
5176 } else if (skb)
5177 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5178
5179 out:
5180 *secid = peer_secid;
5181 if (peer_secid == SECSID_NULL)
5182 return -EINVAL;
5183 return 0;
5184 }
5185
selinux_sk_alloc_security(struct sock * sk,int family,gfp_t priority)5186 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5187 {
5188 struct sk_security_struct *sksec;
5189
5190 sksec = kzalloc(sizeof(*sksec), priority);
5191 if (!sksec)
5192 return -ENOMEM;
5193
5194 sksec->peer_sid = SECINITSID_UNLABELED;
5195 sksec->sid = SECINITSID_UNLABELED;
5196 sksec->sclass = SECCLASS_SOCKET;
5197 selinux_netlbl_sk_security_reset(sksec);
5198 sk->sk_security = sksec;
5199
5200 return 0;
5201 }
5202
selinux_sk_free_security(struct sock * sk)5203 static void selinux_sk_free_security(struct sock *sk)
5204 {
5205 struct sk_security_struct *sksec = sk->sk_security;
5206
5207 sk->sk_security = NULL;
5208 selinux_netlbl_sk_security_free(sksec);
5209 kfree(sksec);
5210 }
5211
selinux_sk_clone_security(const struct sock * sk,struct sock * newsk)5212 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5213 {
5214 struct sk_security_struct *sksec = sk->sk_security;
5215 struct sk_security_struct *newsksec = newsk->sk_security;
5216
5217 newsksec->sid = sksec->sid;
5218 newsksec->peer_sid = sksec->peer_sid;
5219 newsksec->sclass = sksec->sclass;
5220
5221 selinux_netlbl_sk_security_reset(newsksec);
5222 }
5223
selinux_sk_getsecid(struct sock * sk,u32 * secid)5224 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5225 {
5226 if (!sk)
5227 *secid = SECINITSID_ANY_SOCKET;
5228 else {
5229 struct sk_security_struct *sksec = sk->sk_security;
5230
5231 *secid = sksec->sid;
5232 }
5233 }
5234
selinux_sock_graft(struct sock * sk,struct socket * parent)5235 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5236 {
5237 struct inode_security_struct *isec =
5238 inode_security_novalidate(SOCK_INODE(parent));
5239 struct sk_security_struct *sksec = sk->sk_security;
5240
5241 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5242 sk->sk_family == PF_UNIX)
5243 isec->sid = sksec->sid;
5244 sksec->sclass = isec->sclass;
5245 }
5246
5247 /*
5248 * Determines peer_secid for the asoc and updates socket's peer label
5249 * if it's the first association on the socket.
5250 */
selinux_sctp_process_new_assoc(struct sctp_association * asoc,struct sk_buff * skb)5251 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5252 struct sk_buff *skb)
5253 {
5254 struct sock *sk = asoc->base.sk;
5255 u16 family = sk->sk_family;
5256 struct sk_security_struct *sksec = sk->sk_security;
5257 struct common_audit_data ad;
5258 struct lsm_network_audit net = {0,};
5259 int err;
5260
5261 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5262 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5263 family = PF_INET;
5264
5265 if (selinux_peerlbl_enabled()) {
5266 asoc->peer_secid = SECSID_NULL;
5267
5268 /* This will return peer_sid = SECSID_NULL if there are
5269 * no peer labels, see security_net_peersid_resolve().
5270 */
5271 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5272 if (err)
5273 return err;
5274
5275 if (asoc->peer_secid == SECSID_NULL)
5276 asoc->peer_secid = SECINITSID_UNLABELED;
5277 } else {
5278 asoc->peer_secid = SECINITSID_UNLABELED;
5279 }
5280
5281 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5282 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5283
5284 /* Here as first association on socket. As the peer SID
5285 * was allowed by peer recv (and the netif/node checks),
5286 * then it is approved by policy and used as the primary
5287 * peer SID for getpeercon(3).
5288 */
5289 sksec->peer_sid = asoc->peer_secid;
5290 } else if (sksec->peer_sid != asoc->peer_secid) {
5291 /* Other association peer SIDs are checked to enforce
5292 * consistency among the peer SIDs.
5293 */
5294 ad.type = LSM_AUDIT_DATA_NET;
5295 ad.u.net = &net;
5296 ad.u.net->sk = asoc->base.sk;
5297 err = avc_has_perm(&selinux_state,
5298 sksec->peer_sid, asoc->peer_secid,
5299 sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5300 &ad);
5301 if (err)
5302 return err;
5303 }
5304 return 0;
5305 }
5306
5307 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5308 * happens on an incoming connect(2), sctp_connectx(3) or
5309 * sctp_sendmsg(3) (with no association already present).
5310 */
selinux_sctp_assoc_request(struct sctp_association * asoc,struct sk_buff * skb)5311 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5312 struct sk_buff *skb)
5313 {
5314 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5315 u32 conn_sid;
5316 int err;
5317
5318 if (!selinux_policycap_extsockclass())
5319 return 0;
5320
5321 err = selinux_sctp_process_new_assoc(asoc, skb);
5322 if (err)
5323 return err;
5324
5325 /* Compute the MLS component for the connection and store
5326 * the information in asoc. This will be used by SCTP TCP type
5327 * sockets and peeled off connections as they cause a new
5328 * socket to be generated. selinux_sctp_sk_clone() will then
5329 * plug this into the new socket.
5330 */
5331 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5332 if (err)
5333 return err;
5334
5335 asoc->secid = conn_sid;
5336
5337 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5338 return selinux_netlbl_sctp_assoc_request(asoc, skb);
5339 }
5340
5341 /* Called when SCTP receives a COOKIE ACK chunk as the final
5342 * response to an association request (initited by us).
5343 */
selinux_sctp_assoc_established(struct sctp_association * asoc,struct sk_buff * skb)5344 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5345 struct sk_buff *skb)
5346 {
5347 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5348
5349 if (!selinux_policycap_extsockclass())
5350 return 0;
5351
5352 /* Inherit secid from the parent socket - this will be picked up
5353 * by selinux_sctp_sk_clone() if the association gets peeled off
5354 * into a new socket.
5355 */
5356 asoc->secid = sksec->sid;
5357
5358 return selinux_sctp_process_new_assoc(asoc, skb);
5359 }
5360
5361 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5362 * based on their @optname.
5363 */
selinux_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)5364 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5365 struct sockaddr *address,
5366 int addrlen)
5367 {
5368 int len, err = 0, walk_size = 0;
5369 void *addr_buf;
5370 struct sockaddr *addr;
5371 struct socket *sock;
5372
5373 if (!selinux_policycap_extsockclass())
5374 return 0;
5375
5376 /* Process one or more addresses that may be IPv4 or IPv6 */
5377 sock = sk->sk_socket;
5378 addr_buf = address;
5379
5380 while (walk_size < addrlen) {
5381 if (walk_size + sizeof(sa_family_t) > addrlen)
5382 return -EINVAL;
5383
5384 addr = addr_buf;
5385 switch (addr->sa_family) {
5386 case AF_UNSPEC:
5387 case AF_INET:
5388 len = sizeof(struct sockaddr_in);
5389 break;
5390 case AF_INET6:
5391 len = sizeof(struct sockaddr_in6);
5392 break;
5393 default:
5394 return -EINVAL;
5395 }
5396
5397 if (walk_size + len > addrlen)
5398 return -EINVAL;
5399
5400 err = -EINVAL;
5401 switch (optname) {
5402 /* Bind checks */
5403 case SCTP_PRIMARY_ADDR:
5404 case SCTP_SET_PEER_PRIMARY_ADDR:
5405 case SCTP_SOCKOPT_BINDX_ADD:
5406 err = selinux_socket_bind(sock, addr, len);
5407 break;
5408 /* Connect checks */
5409 case SCTP_SOCKOPT_CONNECTX:
5410 case SCTP_PARAM_SET_PRIMARY:
5411 case SCTP_PARAM_ADD_IP:
5412 case SCTP_SENDMSG_CONNECT:
5413 err = selinux_socket_connect_helper(sock, addr, len);
5414 if (err)
5415 return err;
5416
5417 /* As selinux_sctp_bind_connect() is called by the
5418 * SCTP protocol layer, the socket is already locked,
5419 * therefore selinux_netlbl_socket_connect_locked()
5420 * is called here. The situations handled are:
5421 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5422 * whenever a new IP address is added or when a new
5423 * primary address is selected.
5424 * Note that an SCTP connect(2) call happens before
5425 * the SCTP protocol layer and is handled via
5426 * selinux_socket_connect().
5427 */
5428 err = selinux_netlbl_socket_connect_locked(sk, addr);
5429 break;
5430 }
5431
5432 if (err)
5433 return err;
5434
5435 addr_buf += len;
5436 walk_size += len;
5437 }
5438
5439 return 0;
5440 }
5441
5442 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
selinux_sctp_sk_clone(struct sctp_association * asoc,struct sock * sk,struct sock * newsk)5443 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5444 struct sock *newsk)
5445 {
5446 struct sk_security_struct *sksec = sk->sk_security;
5447 struct sk_security_struct *newsksec = newsk->sk_security;
5448
5449 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5450 * the non-sctp clone version.
5451 */
5452 if (!selinux_policycap_extsockclass())
5453 return selinux_sk_clone_security(sk, newsk);
5454
5455 newsksec->sid = asoc->secid;
5456 newsksec->peer_sid = asoc->peer_secid;
5457 newsksec->sclass = sksec->sclass;
5458 selinux_netlbl_sctp_sk_clone(sk, newsk);
5459 }
5460
selinux_inet_conn_request(const struct sock * sk,struct sk_buff * skb,struct request_sock * req)5461 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5462 struct request_sock *req)
5463 {
5464 struct sk_security_struct *sksec = sk->sk_security;
5465 int err;
5466 u16 family = req->rsk_ops->family;
5467 u32 connsid;
5468 u32 peersid;
5469
5470 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5471 if (err)
5472 return err;
5473 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5474 if (err)
5475 return err;
5476 req->secid = connsid;
5477 req->peer_secid = peersid;
5478
5479 return selinux_netlbl_inet_conn_request(req, family);
5480 }
5481
selinux_inet_csk_clone(struct sock * newsk,const struct request_sock * req)5482 static void selinux_inet_csk_clone(struct sock *newsk,
5483 const struct request_sock *req)
5484 {
5485 struct sk_security_struct *newsksec = newsk->sk_security;
5486
5487 newsksec->sid = req->secid;
5488 newsksec->peer_sid = req->peer_secid;
5489 /* NOTE: Ideally, we should also get the isec->sid for the
5490 new socket in sync, but we don't have the isec available yet.
5491 So we will wait until sock_graft to do it, by which
5492 time it will have been created and available. */
5493
5494 /* We don't need to take any sort of lock here as we are the only
5495 * thread with access to newsksec */
5496 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5497 }
5498
selinux_inet_conn_established(struct sock * sk,struct sk_buff * skb)5499 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5500 {
5501 u16 family = sk->sk_family;
5502 struct sk_security_struct *sksec = sk->sk_security;
5503
5504 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5505 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5506 family = PF_INET;
5507
5508 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5509 }
5510
selinux_secmark_relabel_packet(u32 sid)5511 static int selinux_secmark_relabel_packet(u32 sid)
5512 {
5513 const struct task_security_struct *__tsec;
5514 u32 tsid;
5515
5516 __tsec = selinux_cred(current_cred());
5517 tsid = __tsec->sid;
5518
5519 return avc_has_perm(&selinux_state,
5520 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5521 NULL);
5522 }
5523
selinux_secmark_refcount_inc(void)5524 static void selinux_secmark_refcount_inc(void)
5525 {
5526 atomic_inc(&selinux_secmark_refcount);
5527 }
5528
selinux_secmark_refcount_dec(void)5529 static void selinux_secmark_refcount_dec(void)
5530 {
5531 atomic_dec(&selinux_secmark_refcount);
5532 }
5533
selinux_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)5534 static void selinux_req_classify_flow(const struct request_sock *req,
5535 struct flowi_common *flic)
5536 {
5537 flic->flowic_secid = req->secid;
5538 }
5539
selinux_tun_dev_alloc_security(void ** security)5540 static int selinux_tun_dev_alloc_security(void **security)
5541 {
5542 struct tun_security_struct *tunsec;
5543
5544 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5545 if (!tunsec)
5546 return -ENOMEM;
5547 tunsec->sid = current_sid();
5548
5549 *security = tunsec;
5550 return 0;
5551 }
5552
selinux_tun_dev_free_security(void * security)5553 static void selinux_tun_dev_free_security(void *security)
5554 {
5555 kfree(security);
5556 }
5557
selinux_tun_dev_create(void)5558 static int selinux_tun_dev_create(void)
5559 {
5560 u32 sid = current_sid();
5561
5562 /* we aren't taking into account the "sockcreate" SID since the socket
5563 * that is being created here is not a socket in the traditional sense,
5564 * instead it is a private sock, accessible only to the kernel, and
5565 * representing a wide range of network traffic spanning multiple
5566 * connections unlike traditional sockets - check the TUN driver to
5567 * get a better understanding of why this socket is special */
5568
5569 return avc_has_perm(&selinux_state,
5570 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5571 NULL);
5572 }
5573
selinux_tun_dev_attach_queue(void * security)5574 static int selinux_tun_dev_attach_queue(void *security)
5575 {
5576 struct tun_security_struct *tunsec = security;
5577
5578 return avc_has_perm(&selinux_state,
5579 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5580 TUN_SOCKET__ATTACH_QUEUE, NULL);
5581 }
5582
selinux_tun_dev_attach(struct sock * sk,void * security)5583 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5584 {
5585 struct tun_security_struct *tunsec = security;
5586 struct sk_security_struct *sksec = sk->sk_security;
5587
5588 /* we don't currently perform any NetLabel based labeling here and it
5589 * isn't clear that we would want to do so anyway; while we could apply
5590 * labeling without the support of the TUN user the resulting labeled
5591 * traffic from the other end of the connection would almost certainly
5592 * cause confusion to the TUN user that had no idea network labeling
5593 * protocols were being used */
5594
5595 sksec->sid = tunsec->sid;
5596 sksec->sclass = SECCLASS_TUN_SOCKET;
5597
5598 return 0;
5599 }
5600
selinux_tun_dev_open(void * security)5601 static int selinux_tun_dev_open(void *security)
5602 {
5603 struct tun_security_struct *tunsec = security;
5604 u32 sid = current_sid();
5605 int err;
5606
5607 err = avc_has_perm(&selinux_state,
5608 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5609 TUN_SOCKET__RELABELFROM, NULL);
5610 if (err)
5611 return err;
5612 err = avc_has_perm(&selinux_state,
5613 sid, sid, SECCLASS_TUN_SOCKET,
5614 TUN_SOCKET__RELABELTO, NULL);
5615 if (err)
5616 return err;
5617 tunsec->sid = sid;
5618
5619 return 0;
5620 }
5621
5622 #ifdef CONFIG_NETFILTER
5623
selinux_ip_forward(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)5624 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5625 const struct nf_hook_state *state)
5626 {
5627 int ifindex;
5628 u16 family;
5629 char *addrp;
5630 u32 peer_sid;
5631 struct common_audit_data ad;
5632 struct lsm_network_audit net = {0,};
5633 int secmark_active, peerlbl_active;
5634
5635 if (!selinux_policycap_netpeer())
5636 return NF_ACCEPT;
5637
5638 secmark_active = selinux_secmark_enabled();
5639 peerlbl_active = selinux_peerlbl_enabled();
5640 if (!secmark_active && !peerlbl_active)
5641 return NF_ACCEPT;
5642
5643 family = state->pf;
5644 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5645 return NF_DROP;
5646
5647 ifindex = state->in->ifindex;
5648 ad.type = LSM_AUDIT_DATA_NET;
5649 ad.u.net = &net;
5650 ad.u.net->netif = ifindex;
5651 ad.u.net->family = family;
5652 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5653 return NF_DROP;
5654
5655 if (peerlbl_active) {
5656 int err;
5657
5658 err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5659 addrp, family, peer_sid, &ad);
5660 if (err) {
5661 selinux_netlbl_err(skb, family, err, 1);
5662 return NF_DROP;
5663 }
5664 }
5665
5666 if (secmark_active)
5667 if (avc_has_perm(&selinux_state,
5668 peer_sid, skb->secmark,
5669 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5670 return NF_DROP;
5671
5672 if (netlbl_enabled())
5673 /* we do this in the FORWARD path and not the POST_ROUTING
5674 * path because we want to make sure we apply the necessary
5675 * labeling before IPsec is applied so we can leverage AH
5676 * protection */
5677 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5678 return NF_DROP;
5679
5680 return NF_ACCEPT;
5681 }
5682
selinux_ip_output(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)5683 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5684 const struct nf_hook_state *state)
5685 {
5686 struct sock *sk;
5687 u32 sid;
5688
5689 if (!netlbl_enabled())
5690 return NF_ACCEPT;
5691
5692 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5693 * because we want to make sure we apply the necessary labeling
5694 * before IPsec is applied so we can leverage AH protection */
5695 sk = skb->sk;
5696 if (sk) {
5697 struct sk_security_struct *sksec;
5698
5699 if (sk_listener(sk))
5700 /* if the socket is the listening state then this
5701 * packet is a SYN-ACK packet which means it needs to
5702 * be labeled based on the connection/request_sock and
5703 * not the parent socket. unfortunately, we can't
5704 * lookup the request_sock yet as it isn't queued on
5705 * the parent socket until after the SYN-ACK is sent.
5706 * the "solution" is to simply pass the packet as-is
5707 * as any IP option based labeling should be copied
5708 * from the initial connection request (in the IP
5709 * layer). it is far from ideal, but until we get a
5710 * security label in the packet itself this is the
5711 * best we can do. */
5712 return NF_ACCEPT;
5713
5714 /* standard practice, label using the parent socket */
5715 sksec = sk->sk_security;
5716 sid = sksec->sid;
5717 } else
5718 sid = SECINITSID_KERNEL;
5719 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5720 return NF_DROP;
5721
5722 return NF_ACCEPT;
5723 }
5724
5725
selinux_ip_postroute_compat(struct sk_buff * skb,const struct nf_hook_state * state)5726 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5727 const struct nf_hook_state *state)
5728 {
5729 struct sock *sk;
5730 struct sk_security_struct *sksec;
5731 struct common_audit_data ad;
5732 struct lsm_network_audit net = {0,};
5733 u8 proto = 0;
5734
5735 sk = skb_to_full_sk(skb);
5736 if (sk == NULL)
5737 return NF_ACCEPT;
5738 sksec = sk->sk_security;
5739
5740 ad.type = LSM_AUDIT_DATA_NET;
5741 ad.u.net = &net;
5742 ad.u.net->netif = state->out->ifindex;
5743 ad.u.net->family = state->pf;
5744 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5745 return NF_DROP;
5746
5747 if (selinux_secmark_enabled())
5748 if (avc_has_perm(&selinux_state,
5749 sksec->sid, skb->secmark,
5750 SECCLASS_PACKET, PACKET__SEND, &ad))
5751 return NF_DROP_ERR(-ECONNREFUSED);
5752
5753 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5754 return NF_DROP_ERR(-ECONNREFUSED);
5755
5756 return NF_ACCEPT;
5757 }
5758
selinux_ip_postroute(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)5759 static unsigned int selinux_ip_postroute(void *priv,
5760 struct sk_buff *skb,
5761 const struct nf_hook_state *state)
5762 {
5763 u16 family;
5764 u32 secmark_perm;
5765 u32 peer_sid;
5766 int ifindex;
5767 struct sock *sk;
5768 struct common_audit_data ad;
5769 struct lsm_network_audit net = {0,};
5770 char *addrp;
5771 int secmark_active, peerlbl_active;
5772
5773 /* If any sort of compatibility mode is enabled then handoff processing
5774 * to the selinux_ip_postroute_compat() function to deal with the
5775 * special handling. We do this in an attempt to keep this function
5776 * as fast and as clean as possible. */
5777 if (!selinux_policycap_netpeer())
5778 return selinux_ip_postroute_compat(skb, state);
5779
5780 secmark_active = selinux_secmark_enabled();
5781 peerlbl_active = selinux_peerlbl_enabled();
5782 if (!secmark_active && !peerlbl_active)
5783 return NF_ACCEPT;
5784
5785 sk = skb_to_full_sk(skb);
5786
5787 #ifdef CONFIG_XFRM
5788 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5789 * packet transformation so allow the packet to pass without any checks
5790 * since we'll have another chance to perform access control checks
5791 * when the packet is on it's final way out.
5792 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5793 * is NULL, in this case go ahead and apply access control.
5794 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5795 * TCP listening state we cannot wait until the XFRM processing
5796 * is done as we will miss out on the SA label if we do;
5797 * unfortunately, this means more work, but it is only once per
5798 * connection. */
5799 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5800 !(sk && sk_listener(sk)))
5801 return NF_ACCEPT;
5802 #endif
5803
5804 family = state->pf;
5805 if (sk == NULL) {
5806 /* Without an associated socket the packet is either coming
5807 * from the kernel or it is being forwarded; check the packet
5808 * to determine which and if the packet is being forwarded
5809 * query the packet directly to determine the security label. */
5810 if (skb->skb_iif) {
5811 secmark_perm = PACKET__FORWARD_OUT;
5812 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5813 return NF_DROP;
5814 } else {
5815 secmark_perm = PACKET__SEND;
5816 peer_sid = SECINITSID_KERNEL;
5817 }
5818 } else if (sk_listener(sk)) {
5819 /* Locally generated packet but the associated socket is in the
5820 * listening state which means this is a SYN-ACK packet. In
5821 * this particular case the correct security label is assigned
5822 * to the connection/request_sock but unfortunately we can't
5823 * query the request_sock as it isn't queued on the parent
5824 * socket until after the SYN-ACK packet is sent; the only
5825 * viable choice is to regenerate the label like we do in
5826 * selinux_inet_conn_request(). See also selinux_ip_output()
5827 * for similar problems. */
5828 u32 skb_sid;
5829 struct sk_security_struct *sksec;
5830
5831 sksec = sk->sk_security;
5832 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5833 return NF_DROP;
5834 /* At this point, if the returned skb peerlbl is SECSID_NULL
5835 * and the packet has been through at least one XFRM
5836 * transformation then we must be dealing with the "final"
5837 * form of labeled IPsec packet; since we've already applied
5838 * all of our access controls on this packet we can safely
5839 * pass the packet. */
5840 if (skb_sid == SECSID_NULL) {
5841 switch (family) {
5842 case PF_INET:
5843 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5844 return NF_ACCEPT;
5845 break;
5846 case PF_INET6:
5847 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5848 return NF_ACCEPT;
5849 break;
5850 default:
5851 return NF_DROP_ERR(-ECONNREFUSED);
5852 }
5853 }
5854 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5855 return NF_DROP;
5856 secmark_perm = PACKET__SEND;
5857 } else {
5858 /* Locally generated packet, fetch the security label from the
5859 * associated socket. */
5860 struct sk_security_struct *sksec = sk->sk_security;
5861 peer_sid = sksec->sid;
5862 secmark_perm = PACKET__SEND;
5863 }
5864
5865 ifindex = state->out->ifindex;
5866 ad.type = LSM_AUDIT_DATA_NET;
5867 ad.u.net = &net;
5868 ad.u.net->netif = ifindex;
5869 ad.u.net->family = family;
5870 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5871 return NF_DROP;
5872
5873 if (secmark_active)
5874 if (avc_has_perm(&selinux_state,
5875 peer_sid, skb->secmark,
5876 SECCLASS_PACKET, secmark_perm, &ad))
5877 return NF_DROP_ERR(-ECONNREFUSED);
5878
5879 if (peerlbl_active) {
5880 u32 if_sid;
5881 u32 node_sid;
5882
5883 if (sel_netif_sid(state->net, ifindex, &if_sid))
5884 return NF_DROP;
5885 if (avc_has_perm(&selinux_state,
5886 peer_sid, if_sid,
5887 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5888 return NF_DROP_ERR(-ECONNREFUSED);
5889
5890 if (sel_netnode_sid(addrp, family, &node_sid))
5891 return NF_DROP;
5892 if (avc_has_perm(&selinux_state,
5893 peer_sid, node_sid,
5894 SECCLASS_NODE, NODE__SENDTO, &ad))
5895 return NF_DROP_ERR(-ECONNREFUSED);
5896 }
5897
5898 return NF_ACCEPT;
5899 }
5900 #endif /* CONFIG_NETFILTER */
5901
selinux_netlink_send(struct sock * sk,struct sk_buff * skb)5902 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5903 {
5904 int rc = 0;
5905 unsigned int msg_len;
5906 unsigned int data_len = skb->len;
5907 unsigned char *data = skb->data;
5908 struct nlmsghdr *nlh;
5909 struct sk_security_struct *sksec = sk->sk_security;
5910 u16 sclass = sksec->sclass;
5911 u32 perm;
5912
5913 while (data_len >= nlmsg_total_size(0)) {
5914 nlh = (struct nlmsghdr *)data;
5915
5916 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5917 * users which means we can't reject skb's with bogus
5918 * length fields; our solution is to follow what
5919 * netlink_rcv_skb() does and simply skip processing at
5920 * messages with length fields that are clearly junk
5921 */
5922 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5923 return 0;
5924
5925 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5926 if (rc == 0) {
5927 rc = sock_has_perm(sk, perm);
5928 if (rc)
5929 return rc;
5930 } else if (rc == -EINVAL) {
5931 /* -EINVAL is a missing msg/perm mapping */
5932 pr_warn_ratelimited("SELinux: unrecognized netlink"
5933 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5934 " pid=%d comm=%s\n",
5935 sk->sk_protocol, nlh->nlmsg_type,
5936 secclass_map[sclass - 1].name,
5937 task_pid_nr(current), current->comm);
5938 if (enforcing_enabled(&selinux_state) &&
5939 !security_get_allow_unknown(&selinux_state))
5940 return rc;
5941 rc = 0;
5942 } else if (rc == -ENOENT) {
5943 /* -ENOENT is a missing socket/class mapping, ignore */
5944 rc = 0;
5945 } else {
5946 return rc;
5947 }
5948
5949 /* move to the next message after applying netlink padding */
5950 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5951 if (msg_len >= data_len)
5952 return 0;
5953 data_len -= msg_len;
5954 data += msg_len;
5955 }
5956
5957 return rc;
5958 }
5959
ipc_init_security(struct ipc_security_struct * isec,u16 sclass)5960 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5961 {
5962 isec->sclass = sclass;
5963 isec->sid = current_sid();
5964 }
5965
ipc_has_perm(struct kern_ipc_perm * ipc_perms,u32 perms)5966 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5967 u32 perms)
5968 {
5969 struct ipc_security_struct *isec;
5970 struct common_audit_data ad;
5971 u32 sid = current_sid();
5972
5973 isec = selinux_ipc(ipc_perms);
5974
5975 ad.type = LSM_AUDIT_DATA_IPC;
5976 ad.u.ipc_id = ipc_perms->key;
5977
5978 return avc_has_perm(&selinux_state,
5979 sid, isec->sid, isec->sclass, perms, &ad);
5980 }
5981
selinux_msg_msg_alloc_security(struct msg_msg * msg)5982 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5983 {
5984 struct msg_security_struct *msec;
5985
5986 msec = selinux_msg_msg(msg);
5987 msec->sid = SECINITSID_UNLABELED;
5988
5989 return 0;
5990 }
5991
5992 /* message queue security operations */
selinux_msg_queue_alloc_security(struct kern_ipc_perm * msq)5993 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5994 {
5995 struct ipc_security_struct *isec;
5996 struct common_audit_data ad;
5997 u32 sid = current_sid();
5998
5999 isec = selinux_ipc(msq);
6000 ipc_init_security(isec, SECCLASS_MSGQ);
6001
6002 ad.type = LSM_AUDIT_DATA_IPC;
6003 ad.u.ipc_id = msq->key;
6004
6005 return avc_has_perm(&selinux_state,
6006 sid, isec->sid, SECCLASS_MSGQ,
6007 MSGQ__CREATE, &ad);
6008 }
6009
selinux_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)6010 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6011 {
6012 struct ipc_security_struct *isec;
6013 struct common_audit_data ad;
6014 u32 sid = current_sid();
6015
6016 isec = selinux_ipc(msq);
6017
6018 ad.type = LSM_AUDIT_DATA_IPC;
6019 ad.u.ipc_id = msq->key;
6020
6021 return avc_has_perm(&selinux_state,
6022 sid, isec->sid, SECCLASS_MSGQ,
6023 MSGQ__ASSOCIATE, &ad);
6024 }
6025
selinux_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)6026 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6027 {
6028 int err;
6029 int perms;
6030
6031 switch (cmd) {
6032 case IPC_INFO:
6033 case MSG_INFO:
6034 /* No specific object, just general system-wide information. */
6035 return avc_has_perm(&selinux_state,
6036 current_sid(), SECINITSID_KERNEL,
6037 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6038 case IPC_STAT:
6039 case MSG_STAT:
6040 case MSG_STAT_ANY:
6041 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6042 break;
6043 case IPC_SET:
6044 perms = MSGQ__SETATTR;
6045 break;
6046 case IPC_RMID:
6047 perms = MSGQ__DESTROY;
6048 break;
6049 default:
6050 return 0;
6051 }
6052
6053 err = ipc_has_perm(msq, perms);
6054 return err;
6055 }
6056
selinux_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)6057 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6058 {
6059 struct ipc_security_struct *isec;
6060 struct msg_security_struct *msec;
6061 struct common_audit_data ad;
6062 u32 sid = current_sid();
6063 int rc;
6064
6065 isec = selinux_ipc(msq);
6066 msec = selinux_msg_msg(msg);
6067
6068 /*
6069 * First time through, need to assign label to the message
6070 */
6071 if (msec->sid == SECINITSID_UNLABELED) {
6072 /*
6073 * Compute new sid based on current process and
6074 * message queue this message will be stored in
6075 */
6076 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6077 SECCLASS_MSG, NULL, &msec->sid);
6078 if (rc)
6079 return rc;
6080 }
6081
6082 ad.type = LSM_AUDIT_DATA_IPC;
6083 ad.u.ipc_id = msq->key;
6084
6085 /* Can this process write to the queue? */
6086 rc = avc_has_perm(&selinux_state,
6087 sid, isec->sid, SECCLASS_MSGQ,
6088 MSGQ__WRITE, &ad);
6089 if (!rc)
6090 /* Can this process send the message */
6091 rc = avc_has_perm(&selinux_state,
6092 sid, msec->sid, SECCLASS_MSG,
6093 MSG__SEND, &ad);
6094 if (!rc)
6095 /* Can the message be put in the queue? */
6096 rc = avc_has_perm(&selinux_state,
6097 msec->sid, isec->sid, SECCLASS_MSGQ,
6098 MSGQ__ENQUEUE, &ad);
6099
6100 return rc;
6101 }
6102
selinux_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)6103 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6104 struct task_struct *target,
6105 long type, int mode)
6106 {
6107 struct ipc_security_struct *isec;
6108 struct msg_security_struct *msec;
6109 struct common_audit_data ad;
6110 u32 sid = task_sid_obj(target);
6111 int rc;
6112
6113 isec = selinux_ipc(msq);
6114 msec = selinux_msg_msg(msg);
6115
6116 ad.type = LSM_AUDIT_DATA_IPC;
6117 ad.u.ipc_id = msq->key;
6118
6119 rc = avc_has_perm(&selinux_state,
6120 sid, isec->sid,
6121 SECCLASS_MSGQ, MSGQ__READ, &ad);
6122 if (!rc)
6123 rc = avc_has_perm(&selinux_state,
6124 sid, msec->sid,
6125 SECCLASS_MSG, MSG__RECEIVE, &ad);
6126 return rc;
6127 }
6128
6129 /* Shared Memory security operations */
selinux_shm_alloc_security(struct kern_ipc_perm * shp)6130 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6131 {
6132 struct ipc_security_struct *isec;
6133 struct common_audit_data ad;
6134 u32 sid = current_sid();
6135
6136 isec = selinux_ipc(shp);
6137 ipc_init_security(isec, SECCLASS_SHM);
6138
6139 ad.type = LSM_AUDIT_DATA_IPC;
6140 ad.u.ipc_id = shp->key;
6141
6142 return avc_has_perm(&selinux_state,
6143 sid, isec->sid, SECCLASS_SHM,
6144 SHM__CREATE, &ad);
6145 }
6146
selinux_shm_associate(struct kern_ipc_perm * shp,int shmflg)6147 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6148 {
6149 struct ipc_security_struct *isec;
6150 struct common_audit_data ad;
6151 u32 sid = current_sid();
6152
6153 isec = selinux_ipc(shp);
6154
6155 ad.type = LSM_AUDIT_DATA_IPC;
6156 ad.u.ipc_id = shp->key;
6157
6158 return avc_has_perm(&selinux_state,
6159 sid, isec->sid, SECCLASS_SHM,
6160 SHM__ASSOCIATE, &ad);
6161 }
6162
6163 /* Note, at this point, shp is locked down */
selinux_shm_shmctl(struct kern_ipc_perm * shp,int cmd)6164 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6165 {
6166 int perms;
6167 int err;
6168
6169 switch (cmd) {
6170 case IPC_INFO:
6171 case SHM_INFO:
6172 /* No specific object, just general system-wide information. */
6173 return avc_has_perm(&selinux_state,
6174 current_sid(), SECINITSID_KERNEL,
6175 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6176 case IPC_STAT:
6177 case SHM_STAT:
6178 case SHM_STAT_ANY:
6179 perms = SHM__GETATTR | SHM__ASSOCIATE;
6180 break;
6181 case IPC_SET:
6182 perms = SHM__SETATTR;
6183 break;
6184 case SHM_LOCK:
6185 case SHM_UNLOCK:
6186 perms = SHM__LOCK;
6187 break;
6188 case IPC_RMID:
6189 perms = SHM__DESTROY;
6190 break;
6191 default:
6192 return 0;
6193 }
6194
6195 err = ipc_has_perm(shp, perms);
6196 return err;
6197 }
6198
selinux_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)6199 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6200 char __user *shmaddr, int shmflg)
6201 {
6202 u32 perms;
6203
6204 if (shmflg & SHM_RDONLY)
6205 perms = SHM__READ;
6206 else
6207 perms = SHM__READ | SHM__WRITE;
6208
6209 return ipc_has_perm(shp, perms);
6210 }
6211
6212 /* Semaphore security operations */
selinux_sem_alloc_security(struct kern_ipc_perm * sma)6213 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6214 {
6215 struct ipc_security_struct *isec;
6216 struct common_audit_data ad;
6217 u32 sid = current_sid();
6218
6219 isec = selinux_ipc(sma);
6220 ipc_init_security(isec, SECCLASS_SEM);
6221
6222 ad.type = LSM_AUDIT_DATA_IPC;
6223 ad.u.ipc_id = sma->key;
6224
6225 return avc_has_perm(&selinux_state,
6226 sid, isec->sid, SECCLASS_SEM,
6227 SEM__CREATE, &ad);
6228 }
6229
selinux_sem_associate(struct kern_ipc_perm * sma,int semflg)6230 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6231 {
6232 struct ipc_security_struct *isec;
6233 struct common_audit_data ad;
6234 u32 sid = current_sid();
6235
6236 isec = selinux_ipc(sma);
6237
6238 ad.type = LSM_AUDIT_DATA_IPC;
6239 ad.u.ipc_id = sma->key;
6240
6241 return avc_has_perm(&selinux_state,
6242 sid, isec->sid, SECCLASS_SEM,
6243 SEM__ASSOCIATE, &ad);
6244 }
6245
6246 /* Note, at this point, sma is locked down */
selinux_sem_semctl(struct kern_ipc_perm * sma,int cmd)6247 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6248 {
6249 int err;
6250 u32 perms;
6251
6252 switch (cmd) {
6253 case IPC_INFO:
6254 case SEM_INFO:
6255 /* No specific object, just general system-wide information. */
6256 return avc_has_perm(&selinux_state,
6257 current_sid(), SECINITSID_KERNEL,
6258 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6259 case GETPID:
6260 case GETNCNT:
6261 case GETZCNT:
6262 perms = SEM__GETATTR;
6263 break;
6264 case GETVAL:
6265 case GETALL:
6266 perms = SEM__READ;
6267 break;
6268 case SETVAL:
6269 case SETALL:
6270 perms = SEM__WRITE;
6271 break;
6272 case IPC_RMID:
6273 perms = SEM__DESTROY;
6274 break;
6275 case IPC_SET:
6276 perms = SEM__SETATTR;
6277 break;
6278 case IPC_STAT:
6279 case SEM_STAT:
6280 case SEM_STAT_ANY:
6281 perms = SEM__GETATTR | SEM__ASSOCIATE;
6282 break;
6283 default:
6284 return 0;
6285 }
6286
6287 err = ipc_has_perm(sma, perms);
6288 return err;
6289 }
6290
selinux_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)6291 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6292 struct sembuf *sops, unsigned nsops, int alter)
6293 {
6294 u32 perms;
6295
6296 if (alter)
6297 perms = SEM__READ | SEM__WRITE;
6298 else
6299 perms = SEM__READ;
6300
6301 return ipc_has_perm(sma, perms);
6302 }
6303
selinux_ipc_permission(struct kern_ipc_perm * ipcp,short flag)6304 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6305 {
6306 u32 av = 0;
6307
6308 av = 0;
6309 if (flag & S_IRUGO)
6310 av |= IPC__UNIX_READ;
6311 if (flag & S_IWUGO)
6312 av |= IPC__UNIX_WRITE;
6313
6314 if (av == 0)
6315 return 0;
6316
6317 return ipc_has_perm(ipcp, av);
6318 }
6319
selinux_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)6320 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6321 {
6322 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6323 *secid = isec->sid;
6324 }
6325
selinux_d_instantiate(struct dentry * dentry,struct inode * inode)6326 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6327 {
6328 if (inode)
6329 inode_doinit_with_dentry(inode, dentry);
6330 }
6331
selinux_getprocattr(struct task_struct * p,const char * name,char ** value)6332 static int selinux_getprocattr(struct task_struct *p,
6333 const char *name, char **value)
6334 {
6335 const struct task_security_struct *__tsec;
6336 u32 sid;
6337 int error;
6338 unsigned len;
6339
6340 rcu_read_lock();
6341 __tsec = selinux_cred(__task_cred(p));
6342
6343 if (current != p) {
6344 error = avc_has_perm(&selinux_state,
6345 current_sid(), __tsec->sid,
6346 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6347 if (error)
6348 goto bad;
6349 }
6350
6351 if (!strcmp(name, "current"))
6352 sid = __tsec->sid;
6353 else if (!strcmp(name, "prev"))
6354 sid = __tsec->osid;
6355 else if (!strcmp(name, "exec"))
6356 sid = __tsec->exec_sid;
6357 else if (!strcmp(name, "fscreate"))
6358 sid = __tsec->create_sid;
6359 else if (!strcmp(name, "keycreate"))
6360 sid = __tsec->keycreate_sid;
6361 else if (!strcmp(name, "sockcreate"))
6362 sid = __tsec->sockcreate_sid;
6363 else {
6364 error = -EINVAL;
6365 goto bad;
6366 }
6367 rcu_read_unlock();
6368
6369 if (!sid)
6370 return 0;
6371
6372 error = security_sid_to_context(&selinux_state, sid, value, &len);
6373 if (error)
6374 return error;
6375 return len;
6376
6377 bad:
6378 rcu_read_unlock();
6379 return error;
6380 }
6381
selinux_setprocattr(const char * name,void * value,size_t size)6382 static int selinux_setprocattr(const char *name, void *value, size_t size)
6383 {
6384 struct task_security_struct *tsec;
6385 struct cred *new;
6386 u32 mysid = current_sid(), sid = 0, ptsid;
6387 int error;
6388 char *str = value;
6389
6390 /*
6391 * Basic control over ability to set these attributes at all.
6392 */
6393 if (!strcmp(name, "exec"))
6394 error = avc_has_perm(&selinux_state,
6395 mysid, mysid, SECCLASS_PROCESS,
6396 PROCESS__SETEXEC, NULL);
6397 else if (!strcmp(name, "fscreate"))
6398 error = avc_has_perm(&selinux_state,
6399 mysid, mysid, SECCLASS_PROCESS,
6400 PROCESS__SETFSCREATE, NULL);
6401 else if (!strcmp(name, "keycreate"))
6402 error = avc_has_perm(&selinux_state,
6403 mysid, mysid, SECCLASS_PROCESS,
6404 PROCESS__SETKEYCREATE, NULL);
6405 else if (!strcmp(name, "sockcreate"))
6406 error = avc_has_perm(&selinux_state,
6407 mysid, mysid, SECCLASS_PROCESS,
6408 PROCESS__SETSOCKCREATE, NULL);
6409 else if (!strcmp(name, "current"))
6410 error = avc_has_perm(&selinux_state,
6411 mysid, mysid, SECCLASS_PROCESS,
6412 PROCESS__SETCURRENT, NULL);
6413 else
6414 error = -EINVAL;
6415 if (error)
6416 return error;
6417
6418 /* Obtain a SID for the context, if one was specified. */
6419 if (size && str[0] && str[0] != '\n') {
6420 if (str[size-1] == '\n') {
6421 str[size-1] = 0;
6422 size--;
6423 }
6424 error = security_context_to_sid(&selinux_state, value, size,
6425 &sid, GFP_KERNEL);
6426 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6427 if (!has_cap_mac_admin(true)) {
6428 struct audit_buffer *ab;
6429 size_t audit_size;
6430
6431 /* We strip a nul only if it is at the end, otherwise the
6432 * context contains a nul and we should audit that */
6433 if (str[size - 1] == '\0')
6434 audit_size = size - 1;
6435 else
6436 audit_size = size;
6437 ab = audit_log_start(audit_context(),
6438 GFP_ATOMIC,
6439 AUDIT_SELINUX_ERR);
6440 if (!ab)
6441 return error;
6442 audit_log_format(ab, "op=fscreate invalid_context=");
6443 audit_log_n_untrustedstring(ab, value, audit_size);
6444 audit_log_end(ab);
6445
6446 return error;
6447 }
6448 error = security_context_to_sid_force(
6449 &selinux_state,
6450 value, size, &sid);
6451 }
6452 if (error)
6453 return error;
6454 }
6455
6456 new = prepare_creds();
6457 if (!new)
6458 return -ENOMEM;
6459
6460 /* Permission checking based on the specified context is
6461 performed during the actual operation (execve,
6462 open/mkdir/...), when we know the full context of the
6463 operation. See selinux_bprm_creds_for_exec for the execve
6464 checks and may_create for the file creation checks. The
6465 operation will then fail if the context is not permitted. */
6466 tsec = selinux_cred(new);
6467 if (!strcmp(name, "exec")) {
6468 tsec->exec_sid = sid;
6469 } else if (!strcmp(name, "fscreate")) {
6470 tsec->create_sid = sid;
6471 } else if (!strcmp(name, "keycreate")) {
6472 if (sid) {
6473 error = avc_has_perm(&selinux_state, mysid, sid,
6474 SECCLASS_KEY, KEY__CREATE, NULL);
6475 if (error)
6476 goto abort_change;
6477 }
6478 tsec->keycreate_sid = sid;
6479 } else if (!strcmp(name, "sockcreate")) {
6480 tsec->sockcreate_sid = sid;
6481 } else if (!strcmp(name, "current")) {
6482 error = -EINVAL;
6483 if (sid == 0)
6484 goto abort_change;
6485
6486 /* Only allow single threaded processes to change context */
6487 if (!current_is_single_threaded()) {
6488 error = security_bounded_transition(&selinux_state,
6489 tsec->sid, sid);
6490 if (error)
6491 goto abort_change;
6492 }
6493
6494 /* Check permissions for the transition. */
6495 error = avc_has_perm(&selinux_state,
6496 tsec->sid, sid, SECCLASS_PROCESS,
6497 PROCESS__DYNTRANSITION, NULL);
6498 if (error)
6499 goto abort_change;
6500
6501 /* Check for ptracing, and update the task SID if ok.
6502 Otherwise, leave SID unchanged and fail. */
6503 ptsid = ptrace_parent_sid();
6504 if (ptsid != 0) {
6505 error = avc_has_perm(&selinux_state,
6506 ptsid, sid, SECCLASS_PROCESS,
6507 PROCESS__PTRACE, NULL);
6508 if (error)
6509 goto abort_change;
6510 }
6511
6512 tsec->sid = sid;
6513 } else {
6514 error = -EINVAL;
6515 goto abort_change;
6516 }
6517
6518 commit_creds(new);
6519 return size;
6520
6521 abort_change:
6522 abort_creds(new);
6523 return error;
6524 }
6525
selinux_ismaclabel(const char * name)6526 static int selinux_ismaclabel(const char *name)
6527 {
6528 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6529 }
6530
selinux_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)6531 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6532 {
6533 return security_sid_to_context(&selinux_state, secid,
6534 secdata, seclen);
6535 }
6536
selinux_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)6537 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6538 {
6539 return security_context_to_sid(&selinux_state, secdata, seclen,
6540 secid, GFP_KERNEL);
6541 }
6542
selinux_release_secctx(char * secdata,u32 seclen)6543 static void selinux_release_secctx(char *secdata, u32 seclen)
6544 {
6545 kfree(secdata);
6546 }
6547
selinux_inode_invalidate_secctx(struct inode * inode)6548 static void selinux_inode_invalidate_secctx(struct inode *inode)
6549 {
6550 struct inode_security_struct *isec = selinux_inode(inode);
6551
6552 spin_lock(&isec->lock);
6553 isec->initialized = LABEL_INVALID;
6554 spin_unlock(&isec->lock);
6555 }
6556
6557 /*
6558 * called with inode->i_mutex locked
6559 */
selinux_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)6560 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6561 {
6562 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6563 ctx, ctxlen, 0);
6564 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6565 return rc == -EOPNOTSUPP ? 0 : rc;
6566 }
6567
6568 /*
6569 * called with inode->i_mutex locked
6570 */
selinux_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)6571 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6572 {
6573 return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6574 ctx, ctxlen, 0);
6575 }
6576
selinux_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)6577 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6578 {
6579 int len = 0;
6580 len = selinux_inode_getsecurity(&init_user_ns, inode,
6581 XATTR_SELINUX_SUFFIX, ctx, true);
6582 if (len < 0)
6583 return len;
6584 *ctxlen = len;
6585 return 0;
6586 }
6587 #ifdef CONFIG_KEYS
6588
selinux_key_alloc(struct key * k,const struct cred * cred,unsigned long flags)6589 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6590 unsigned long flags)
6591 {
6592 const struct task_security_struct *tsec;
6593 struct key_security_struct *ksec;
6594
6595 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6596 if (!ksec)
6597 return -ENOMEM;
6598
6599 tsec = selinux_cred(cred);
6600 if (tsec->keycreate_sid)
6601 ksec->sid = tsec->keycreate_sid;
6602 else
6603 ksec->sid = tsec->sid;
6604
6605 k->security = ksec;
6606 return 0;
6607 }
6608
selinux_key_free(struct key * k)6609 static void selinux_key_free(struct key *k)
6610 {
6611 struct key_security_struct *ksec = k->security;
6612
6613 k->security = NULL;
6614 kfree(ksec);
6615 }
6616
selinux_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)6617 static int selinux_key_permission(key_ref_t key_ref,
6618 const struct cred *cred,
6619 enum key_need_perm need_perm)
6620 {
6621 struct key *key;
6622 struct key_security_struct *ksec;
6623 u32 perm, sid;
6624
6625 switch (need_perm) {
6626 case KEY_NEED_VIEW:
6627 perm = KEY__VIEW;
6628 break;
6629 case KEY_NEED_READ:
6630 perm = KEY__READ;
6631 break;
6632 case KEY_NEED_WRITE:
6633 perm = KEY__WRITE;
6634 break;
6635 case KEY_NEED_SEARCH:
6636 perm = KEY__SEARCH;
6637 break;
6638 case KEY_NEED_LINK:
6639 perm = KEY__LINK;
6640 break;
6641 case KEY_NEED_SETATTR:
6642 perm = KEY__SETATTR;
6643 break;
6644 case KEY_NEED_UNLINK:
6645 case KEY_SYSADMIN_OVERRIDE:
6646 case KEY_AUTHTOKEN_OVERRIDE:
6647 case KEY_DEFER_PERM_CHECK:
6648 return 0;
6649 default:
6650 WARN_ON(1);
6651 return -EPERM;
6652
6653 }
6654
6655 sid = cred_sid(cred);
6656 key = key_ref_to_ptr(key_ref);
6657 ksec = key->security;
6658
6659 return avc_has_perm(&selinux_state,
6660 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6661 }
6662
selinux_key_getsecurity(struct key * key,char ** _buffer)6663 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6664 {
6665 struct key_security_struct *ksec = key->security;
6666 char *context = NULL;
6667 unsigned len;
6668 int rc;
6669
6670 rc = security_sid_to_context(&selinux_state, ksec->sid,
6671 &context, &len);
6672 if (!rc)
6673 rc = len;
6674 *_buffer = context;
6675 return rc;
6676 }
6677
6678 #ifdef CONFIG_KEY_NOTIFICATIONS
selinux_watch_key(struct key * key)6679 static int selinux_watch_key(struct key *key)
6680 {
6681 struct key_security_struct *ksec = key->security;
6682 u32 sid = current_sid();
6683
6684 return avc_has_perm(&selinux_state,
6685 sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6686 }
6687 #endif
6688 #endif
6689
6690 #ifdef CONFIG_SECURITY_INFINIBAND
selinux_ib_pkey_access(void * ib_sec,u64 subnet_prefix,u16 pkey_val)6691 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6692 {
6693 struct common_audit_data ad;
6694 int err;
6695 u32 sid = 0;
6696 struct ib_security_struct *sec = ib_sec;
6697 struct lsm_ibpkey_audit ibpkey;
6698
6699 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6700 if (err)
6701 return err;
6702
6703 ad.type = LSM_AUDIT_DATA_IBPKEY;
6704 ibpkey.subnet_prefix = subnet_prefix;
6705 ibpkey.pkey = pkey_val;
6706 ad.u.ibpkey = &ibpkey;
6707 return avc_has_perm(&selinux_state,
6708 sec->sid, sid,
6709 SECCLASS_INFINIBAND_PKEY,
6710 INFINIBAND_PKEY__ACCESS, &ad);
6711 }
6712
selinux_ib_endport_manage_subnet(void * ib_sec,const char * dev_name,u8 port_num)6713 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6714 u8 port_num)
6715 {
6716 struct common_audit_data ad;
6717 int err;
6718 u32 sid = 0;
6719 struct ib_security_struct *sec = ib_sec;
6720 struct lsm_ibendport_audit ibendport;
6721
6722 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6723 &sid);
6724
6725 if (err)
6726 return err;
6727
6728 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6729 ibendport.dev_name = dev_name;
6730 ibendport.port = port_num;
6731 ad.u.ibendport = &ibendport;
6732 return avc_has_perm(&selinux_state,
6733 sec->sid, sid,
6734 SECCLASS_INFINIBAND_ENDPORT,
6735 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6736 }
6737
selinux_ib_alloc_security(void ** ib_sec)6738 static int selinux_ib_alloc_security(void **ib_sec)
6739 {
6740 struct ib_security_struct *sec;
6741
6742 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6743 if (!sec)
6744 return -ENOMEM;
6745 sec->sid = current_sid();
6746
6747 *ib_sec = sec;
6748 return 0;
6749 }
6750
selinux_ib_free_security(void * ib_sec)6751 static void selinux_ib_free_security(void *ib_sec)
6752 {
6753 kfree(ib_sec);
6754 }
6755 #endif
6756
6757 #ifdef CONFIG_BPF_SYSCALL
selinux_bpf(int cmd,union bpf_attr * attr,unsigned int size)6758 static int selinux_bpf(int cmd, union bpf_attr *attr,
6759 unsigned int size)
6760 {
6761 u32 sid = current_sid();
6762 int ret;
6763
6764 switch (cmd) {
6765 case BPF_MAP_CREATE:
6766 ret = avc_has_perm(&selinux_state,
6767 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6768 NULL);
6769 break;
6770 case BPF_PROG_LOAD:
6771 ret = avc_has_perm(&selinux_state,
6772 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6773 NULL);
6774 break;
6775 default:
6776 ret = 0;
6777 break;
6778 }
6779
6780 return ret;
6781 }
6782
bpf_map_fmode_to_av(fmode_t fmode)6783 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6784 {
6785 u32 av = 0;
6786
6787 if (fmode & FMODE_READ)
6788 av |= BPF__MAP_READ;
6789 if (fmode & FMODE_WRITE)
6790 av |= BPF__MAP_WRITE;
6791 return av;
6792 }
6793
6794 /* This function will check the file pass through unix socket or binder to see
6795 * if it is a bpf related object. And apply corresponding checks on the bpf
6796 * object based on the type. The bpf maps and programs, not like other files and
6797 * socket, are using a shared anonymous inode inside the kernel as their inode.
6798 * So checking that inode cannot identify if the process have privilege to
6799 * access the bpf object and that's why we have to add this additional check in
6800 * selinux_file_receive and selinux_binder_transfer_files.
6801 */
bpf_fd_pass(struct file * file,u32 sid)6802 static int bpf_fd_pass(struct file *file, u32 sid)
6803 {
6804 struct bpf_security_struct *bpfsec;
6805 struct bpf_prog *prog;
6806 struct bpf_map *map;
6807 int ret;
6808
6809 if (file->f_op == &bpf_map_fops) {
6810 map = file->private_data;
6811 bpfsec = map->security;
6812 ret = avc_has_perm(&selinux_state,
6813 sid, bpfsec->sid, SECCLASS_BPF,
6814 bpf_map_fmode_to_av(file->f_mode), NULL);
6815 if (ret)
6816 return ret;
6817 } else if (file->f_op == &bpf_prog_fops) {
6818 prog = file->private_data;
6819 bpfsec = prog->aux->security;
6820 ret = avc_has_perm(&selinux_state,
6821 sid, bpfsec->sid, SECCLASS_BPF,
6822 BPF__PROG_RUN, NULL);
6823 if (ret)
6824 return ret;
6825 }
6826 return 0;
6827 }
6828
selinux_bpf_map(struct bpf_map * map,fmode_t fmode)6829 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6830 {
6831 u32 sid = current_sid();
6832 struct bpf_security_struct *bpfsec;
6833
6834 bpfsec = map->security;
6835 return avc_has_perm(&selinux_state,
6836 sid, bpfsec->sid, SECCLASS_BPF,
6837 bpf_map_fmode_to_av(fmode), NULL);
6838 }
6839
selinux_bpf_prog(struct bpf_prog * prog)6840 static int selinux_bpf_prog(struct bpf_prog *prog)
6841 {
6842 u32 sid = current_sid();
6843 struct bpf_security_struct *bpfsec;
6844
6845 bpfsec = prog->aux->security;
6846 return avc_has_perm(&selinux_state,
6847 sid, bpfsec->sid, SECCLASS_BPF,
6848 BPF__PROG_RUN, NULL);
6849 }
6850
selinux_bpf_map_alloc(struct bpf_map * map)6851 static int selinux_bpf_map_alloc(struct bpf_map *map)
6852 {
6853 struct bpf_security_struct *bpfsec;
6854
6855 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6856 if (!bpfsec)
6857 return -ENOMEM;
6858
6859 bpfsec->sid = current_sid();
6860 map->security = bpfsec;
6861
6862 return 0;
6863 }
6864
selinux_bpf_map_free(struct bpf_map * map)6865 static void selinux_bpf_map_free(struct bpf_map *map)
6866 {
6867 struct bpf_security_struct *bpfsec = map->security;
6868
6869 map->security = NULL;
6870 kfree(bpfsec);
6871 }
6872
selinux_bpf_prog_alloc(struct bpf_prog_aux * aux)6873 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6874 {
6875 struct bpf_security_struct *bpfsec;
6876
6877 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6878 if (!bpfsec)
6879 return -ENOMEM;
6880
6881 bpfsec->sid = current_sid();
6882 aux->security = bpfsec;
6883
6884 return 0;
6885 }
6886
selinux_bpf_prog_free(struct bpf_prog_aux * aux)6887 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6888 {
6889 struct bpf_security_struct *bpfsec = aux->security;
6890
6891 aux->security = NULL;
6892 kfree(bpfsec);
6893 }
6894 #endif
6895
6896 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6897 .lbs_cred = sizeof(struct task_security_struct),
6898 .lbs_file = sizeof(struct file_security_struct),
6899 .lbs_inode = sizeof(struct inode_security_struct),
6900 .lbs_ipc = sizeof(struct ipc_security_struct),
6901 .lbs_msg_msg = sizeof(struct msg_security_struct),
6902 .lbs_superblock = sizeof(struct superblock_security_struct),
6903 };
6904
6905 #ifdef CONFIG_PERF_EVENTS
selinux_perf_event_open(struct perf_event_attr * attr,int type)6906 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6907 {
6908 u32 requested, sid = current_sid();
6909
6910 if (type == PERF_SECURITY_OPEN)
6911 requested = PERF_EVENT__OPEN;
6912 else if (type == PERF_SECURITY_CPU)
6913 requested = PERF_EVENT__CPU;
6914 else if (type == PERF_SECURITY_KERNEL)
6915 requested = PERF_EVENT__KERNEL;
6916 else if (type == PERF_SECURITY_TRACEPOINT)
6917 requested = PERF_EVENT__TRACEPOINT;
6918 else
6919 return -EINVAL;
6920
6921 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6922 requested, NULL);
6923 }
6924
selinux_perf_event_alloc(struct perf_event * event)6925 static int selinux_perf_event_alloc(struct perf_event *event)
6926 {
6927 struct perf_event_security_struct *perfsec;
6928
6929 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6930 if (!perfsec)
6931 return -ENOMEM;
6932
6933 perfsec->sid = current_sid();
6934 event->security = perfsec;
6935
6936 return 0;
6937 }
6938
selinux_perf_event_free(struct perf_event * event)6939 static void selinux_perf_event_free(struct perf_event *event)
6940 {
6941 struct perf_event_security_struct *perfsec = event->security;
6942
6943 event->security = NULL;
6944 kfree(perfsec);
6945 }
6946
selinux_perf_event_read(struct perf_event * event)6947 static int selinux_perf_event_read(struct perf_event *event)
6948 {
6949 struct perf_event_security_struct *perfsec = event->security;
6950 u32 sid = current_sid();
6951
6952 return avc_has_perm(&selinux_state, sid, perfsec->sid,
6953 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6954 }
6955
selinux_perf_event_write(struct perf_event * event)6956 static int selinux_perf_event_write(struct perf_event *event)
6957 {
6958 struct perf_event_security_struct *perfsec = event->security;
6959 u32 sid = current_sid();
6960
6961 return avc_has_perm(&selinux_state, sid, perfsec->sid,
6962 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6963 }
6964 #endif
6965
6966 #ifdef CONFIG_IO_URING
6967 /**
6968 * selinux_uring_override_creds - check the requested cred override
6969 * @new: the target creds
6970 *
6971 * Check to see if the current task is allowed to override it's credentials
6972 * to service an io_uring operation.
6973 */
selinux_uring_override_creds(const struct cred * new)6974 static int selinux_uring_override_creds(const struct cred *new)
6975 {
6976 return avc_has_perm(&selinux_state, current_sid(), cred_sid(new),
6977 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
6978 }
6979
6980 /**
6981 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
6982 *
6983 * Check to see if the current task is allowed to create a new io_uring
6984 * kernel polling thread.
6985 */
selinux_uring_sqpoll(void)6986 static int selinux_uring_sqpoll(void)
6987 {
6988 int sid = current_sid();
6989
6990 return avc_has_perm(&selinux_state, sid, sid,
6991 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
6992 }
6993
6994 /**
6995 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
6996 * @ioucmd: the io_uring command structure
6997 *
6998 * Check to see if the current domain is allowed to execute an
6999 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7000 *
7001 */
selinux_uring_cmd(struct io_uring_cmd * ioucmd)7002 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7003 {
7004 struct file *file = ioucmd->file;
7005 struct inode *inode = file_inode(file);
7006 struct inode_security_struct *isec = selinux_inode(inode);
7007 struct common_audit_data ad;
7008
7009 ad.type = LSM_AUDIT_DATA_FILE;
7010 ad.u.file = file;
7011
7012 return avc_has_perm(&selinux_state, current_sid(), isec->sid,
7013 SECCLASS_IO_URING, IO_URING__CMD, &ad);
7014 }
7015 #endif /* CONFIG_IO_URING */
7016
7017 /*
7018 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7019 * 1. any hooks that don't belong to (2.) or (3.) below,
7020 * 2. hooks that both access structures allocated by other hooks, and allocate
7021 * structures that can be later accessed by other hooks (mostly "cloning"
7022 * hooks),
7023 * 3. hooks that only allocate structures that can be later accessed by other
7024 * hooks ("allocating" hooks).
7025 *
7026 * Please follow block comment delimiters in the list to keep this order.
7027 *
7028 * This ordering is needed for SELinux runtime disable to work at least somewhat
7029 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7030 * when disabling SELinux at runtime.
7031 */
7032 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7033 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7034 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7035 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7036 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7037
7038 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7039 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7040 LSM_HOOK_INIT(capget, selinux_capget),
7041 LSM_HOOK_INIT(capset, selinux_capset),
7042 LSM_HOOK_INIT(capable, selinux_capable),
7043 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7044 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7045 LSM_HOOK_INIT(syslog, selinux_syslog),
7046 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7047
7048 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7049
7050 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7051 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7052 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7053
7054 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7055 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7056 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7057 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7058 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7059 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7060 LSM_HOOK_INIT(sb_mount, selinux_mount),
7061 LSM_HOOK_INIT(sb_umount, selinux_umount),
7062 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7063 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7064
7065 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7066
7067 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7068 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7069
7070 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7071 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7072 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7073 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7074 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7075 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7076 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7077 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7078 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7079 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7080 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7081 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7082 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7083 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7084 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7085 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7086 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7087 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7088 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7089 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7090 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7091 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7092 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7093 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7094 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7095 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7096 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7097 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7098
7099 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7100
7101 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7102 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7103 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7104 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7105 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7106 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7107 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7108 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7109 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7110 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7111 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7112
7113 LSM_HOOK_INIT(file_open, selinux_file_open),
7114
7115 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7116 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7117 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7118 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7119 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7120 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7121 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7122 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7123 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7124 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7125 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7126 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7127 LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7128 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7129 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7130 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7131 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7132 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7133 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7134 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7135 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7136 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7137 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7138 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7139 LSM_HOOK_INIT(userns_create, selinux_userns_create),
7140
7141 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7142 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7143
7144 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7145 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7146 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7147 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7148
7149 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7150 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7151 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7152
7153 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7154 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7155 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7156
7157 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7158
7159 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7160 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7161
7162 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7163 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7164 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7165 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7166 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7167 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7168
7169 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7170 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7171
7172 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7173 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7174 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7175 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7176 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7177 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7178 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7179 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7180 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7181 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7182 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7183 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7184 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7185 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7186 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7187 LSM_HOOK_INIT(socket_getpeersec_stream,
7188 selinux_socket_getpeersec_stream),
7189 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7190 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7191 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7192 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7193 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7194 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7195 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7196 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7197 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7198 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7199 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7200 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7201 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7202 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7203 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7204 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7205 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7206 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7207 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7208 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7209 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7210 #ifdef CONFIG_SECURITY_INFINIBAND
7211 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7212 LSM_HOOK_INIT(ib_endport_manage_subnet,
7213 selinux_ib_endport_manage_subnet),
7214 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7215 #endif
7216 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7217 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7218 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7219 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7220 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7221 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7222 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7223 selinux_xfrm_state_pol_flow_match),
7224 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7225 #endif
7226
7227 #ifdef CONFIG_KEYS
7228 LSM_HOOK_INIT(key_free, selinux_key_free),
7229 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7230 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7231 #ifdef CONFIG_KEY_NOTIFICATIONS
7232 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7233 #endif
7234 #endif
7235
7236 #ifdef CONFIG_AUDIT
7237 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7238 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7239 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7240 #endif
7241
7242 #ifdef CONFIG_BPF_SYSCALL
7243 LSM_HOOK_INIT(bpf, selinux_bpf),
7244 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7245 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7246 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7247 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7248 #endif
7249
7250 #ifdef CONFIG_PERF_EVENTS
7251 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7252 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7253 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7254 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7255 #endif
7256
7257 #ifdef CONFIG_IO_URING
7258 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7259 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7260 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7261 #endif
7262
7263 /*
7264 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7265 */
7266 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7267 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7268 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7269 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7270 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7271 #endif
7272
7273 /*
7274 * PUT "ALLOCATING" HOOKS HERE
7275 */
7276 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7277 LSM_HOOK_INIT(msg_queue_alloc_security,
7278 selinux_msg_queue_alloc_security),
7279 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7280 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7281 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7282 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7283 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7284 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7285 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7286 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7287 #ifdef CONFIG_SECURITY_INFINIBAND
7288 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7289 #endif
7290 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7291 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7292 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7293 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7294 selinux_xfrm_state_alloc_acquire),
7295 #endif
7296 #ifdef CONFIG_KEYS
7297 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7298 #endif
7299 #ifdef CONFIG_AUDIT
7300 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7301 #endif
7302 #ifdef CONFIG_BPF_SYSCALL
7303 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7304 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7305 #endif
7306 #ifdef CONFIG_PERF_EVENTS
7307 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7308 #endif
7309 };
7310
selinux_init(void)7311 static __init int selinux_init(void)
7312 {
7313 pr_info("SELinux: Initializing.\n");
7314
7315 memset(&selinux_state, 0, sizeof(selinux_state));
7316 enforcing_set(&selinux_state, selinux_enforcing_boot);
7317 if (CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE)
7318 pr_err("SELinux: CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE is non-zero. This is deprecated and will be rejected in a future kernel release.\n");
7319 checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7320 selinux_avc_init(&selinux_state.avc);
7321 mutex_init(&selinux_state.status_lock);
7322 mutex_init(&selinux_state.policy_mutex);
7323
7324 /* Set the security state for the initial task. */
7325 cred_init_security();
7326
7327 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7328
7329 avc_init();
7330
7331 avtab_cache_init();
7332
7333 ebitmap_cache_init();
7334
7335 hashtab_cache_init();
7336
7337 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7338
7339 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7340 panic("SELinux: Unable to register AVC netcache callback\n");
7341
7342 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7343 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7344
7345 if (selinux_enforcing_boot)
7346 pr_debug("SELinux: Starting in enforcing mode\n");
7347 else
7348 pr_debug("SELinux: Starting in permissive mode\n");
7349
7350 fs_validate_description("selinux", selinux_fs_parameters);
7351
7352 return 0;
7353 }
7354
delayed_superblock_init(struct super_block * sb,void * unused)7355 static void delayed_superblock_init(struct super_block *sb, void *unused)
7356 {
7357 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7358 }
7359
selinux_complete_init(void)7360 void selinux_complete_init(void)
7361 {
7362 pr_debug("SELinux: Completing initialization.\n");
7363
7364 /* Set up any superblocks initialized prior to the policy load. */
7365 pr_debug("SELinux: Setting up existing superblocks.\n");
7366 iterate_supers(delayed_superblock_init, NULL);
7367 }
7368
7369 /* SELinux requires early initialization in order to label
7370 all processes and objects when they are created. */
7371 DEFINE_LSM(selinux) = {
7372 .name = "selinux",
7373 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7374 .enabled = &selinux_enabled_boot,
7375 .blobs = &selinux_blob_sizes,
7376 .init = selinux_init,
7377 };
7378
7379 #if defined(CONFIG_NETFILTER)
7380
7381 static const struct nf_hook_ops selinux_nf_ops[] = {
7382 {
7383 .hook = selinux_ip_postroute,
7384 .pf = NFPROTO_IPV4,
7385 .hooknum = NF_INET_POST_ROUTING,
7386 .priority = NF_IP_PRI_SELINUX_LAST,
7387 },
7388 {
7389 .hook = selinux_ip_forward,
7390 .pf = NFPROTO_IPV4,
7391 .hooknum = NF_INET_FORWARD,
7392 .priority = NF_IP_PRI_SELINUX_FIRST,
7393 },
7394 {
7395 .hook = selinux_ip_output,
7396 .pf = NFPROTO_IPV4,
7397 .hooknum = NF_INET_LOCAL_OUT,
7398 .priority = NF_IP_PRI_SELINUX_FIRST,
7399 },
7400 #if IS_ENABLED(CONFIG_IPV6)
7401 {
7402 .hook = selinux_ip_postroute,
7403 .pf = NFPROTO_IPV6,
7404 .hooknum = NF_INET_POST_ROUTING,
7405 .priority = NF_IP6_PRI_SELINUX_LAST,
7406 },
7407 {
7408 .hook = selinux_ip_forward,
7409 .pf = NFPROTO_IPV6,
7410 .hooknum = NF_INET_FORWARD,
7411 .priority = NF_IP6_PRI_SELINUX_FIRST,
7412 },
7413 {
7414 .hook = selinux_ip_output,
7415 .pf = NFPROTO_IPV6,
7416 .hooknum = NF_INET_LOCAL_OUT,
7417 .priority = NF_IP6_PRI_SELINUX_FIRST,
7418 },
7419 #endif /* IPV6 */
7420 };
7421
selinux_nf_register(struct net * net)7422 static int __net_init selinux_nf_register(struct net *net)
7423 {
7424 return nf_register_net_hooks(net, selinux_nf_ops,
7425 ARRAY_SIZE(selinux_nf_ops));
7426 }
7427
selinux_nf_unregister(struct net * net)7428 static void __net_exit selinux_nf_unregister(struct net *net)
7429 {
7430 nf_unregister_net_hooks(net, selinux_nf_ops,
7431 ARRAY_SIZE(selinux_nf_ops));
7432 }
7433
7434 static struct pernet_operations selinux_net_ops = {
7435 .init = selinux_nf_register,
7436 .exit = selinux_nf_unregister,
7437 };
7438
selinux_nf_ip_init(void)7439 static int __init selinux_nf_ip_init(void)
7440 {
7441 int err;
7442
7443 if (!selinux_enabled_boot)
7444 return 0;
7445
7446 pr_debug("SELinux: Registering netfilter hooks\n");
7447
7448 err = register_pernet_subsys(&selinux_net_ops);
7449 if (err)
7450 panic("SELinux: register_pernet_subsys: error %d\n", err);
7451
7452 return 0;
7453 }
7454 __initcall(selinux_nf_ip_init);
7455
7456 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
selinux_nf_ip_exit(void)7457 static void selinux_nf_ip_exit(void)
7458 {
7459 pr_debug("SELinux: Unregistering netfilter hooks\n");
7460
7461 unregister_pernet_subsys(&selinux_net_ops);
7462 }
7463 #endif
7464
7465 #else /* CONFIG_NETFILTER */
7466
7467 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7468 #define selinux_nf_ip_exit()
7469 #endif
7470
7471 #endif /* CONFIG_NETFILTER */
7472
7473 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
selinux_disable(struct selinux_state * state)7474 int selinux_disable(struct selinux_state *state)
7475 {
7476 if (selinux_initialized(state)) {
7477 /* Not permitted after initial policy load. */
7478 return -EINVAL;
7479 }
7480
7481 if (selinux_disabled(state)) {
7482 /* Only do this once. */
7483 return -EINVAL;
7484 }
7485
7486 selinux_mark_disabled(state);
7487
7488 pr_info("SELinux: Disabled at runtime.\n");
7489
7490 /*
7491 * Unregister netfilter hooks.
7492 * Must be done before security_delete_hooks() to avoid breaking
7493 * runtime disable.
7494 */
7495 selinux_nf_ip_exit();
7496
7497 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7498
7499 /* Try to destroy the avc node cache */
7500 avc_disable();
7501
7502 /* Unregister selinuxfs. */
7503 exit_sel_fs();
7504
7505 return 0;
7506 }
7507 #endif
7508