1 #include "process.h"
2
3 #include <DragonOS/signal.h>
4 #include <common/compiler.h>
5 #include <common/completion.h>
6 #include <common/elf.h>
7 #include <common/kprint.h>
8 #include <common/kthread.h>
9 #include <common/lz4.h>
10 #include <common/printk.h>
11 #include <common/spinlock.h>
12 #include <common/stdio.h>
13 #include <common/string.h>
14 #include <common/sys/wait.h>
15 #include <common/time.h>
16 #include <common/unistd.h>
17 #include <debug/bug.h>
18 #include <debug/traceback/traceback.h>
19 #include <driver/disk/ahci/ahci.h>
20 #include <driver/usb/usb.h>
21 #include <driver/video/video.h>
22 #include <exception/gate.h>
23 #include <ktest/ktest.h>
24 #include <mm/mmio.h>
25 #include <mm/slab.h>
26 #include <sched/sched.h>
27 #include <syscall/syscall.h>
28 #include <syscall/syscall_num.h>
29 #include <driver/virtio/virtio.h>
30 extern int __rust_demo_func();
31 // #pragma GCC push_options
32 // #pragma GCC optimize("O0")
33
34 spinlock_t process_global_pid_write_lock; // 增加pid的写锁
35 long process_global_pid = 1; // 系统中最大的pid
36
37 extern void system_call(void);
38 extern void kernel_thread_func(void);
39 extern void rs_procfs_unregister_pid(uint64_t);
40
41 ul _stack_start; // initial proc的栈基地址(虚拟地址)
42 extern struct mm_struct initial_mm;
43 extern struct signal_struct INITIAL_SIGNALS;
44 extern struct sighand_struct INITIAL_SIGHAND;
45
46 extern void process_exit_sighand(struct process_control_block *pcb);
47 extern void process_exit_signal(struct process_control_block *pcb);
48 extern void initial_proc_init_signal(struct process_control_block *pcb);
49 extern int process_init_files();
50
51 // 设置初始进程的PCB
52 #define INITIAL_PROC(proc) \
53 { \
54 .state = PROC_UNINTERRUPTIBLE, .flags = PF_KTHREAD, .preempt_count = 0, .signal = 0, .cpu_id = 0, \
55 .mm = &initial_mm, .thread = &initial_thread, .addr_limit = 0xffffffffffffffff, .pid = 0, .priority = 2, \
56 .virtual_runtime = 0, .fds = {0}, .next_pcb = &proc, .prev_pcb = &proc, .parent_pcb = &proc, .exit_code = 0, \
57 .wait_child_proc_exit = 0, .worker_private = NULL, .policy = SCHED_NORMAL, .sig_blocked = 0, \
58 .signal = &INITIAL_SIGNALS, .sighand = &INITIAL_SIGHAND, \
59 }
60
61 struct thread_struct initial_thread = {
62 .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
63 .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
64 .fs = KERNEL_DS,
65 .gs = KERNEL_DS,
66 .cr2 = 0,
67 .trap_num = 0,
68 .err_code = 0,
69 };
70
71 // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
72 union proc_union initial_proc_union
73 __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
74
75 struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
76
77 // 为每个核心初始化初始进程的tss
78 struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
79
80 /**
81 * @brief 回收进程的所有文件描述符
82 *
83 * @param pcb 要被回收的进程的pcb
84 * @return uint64_t
85 */
86 extern int process_exit_files(struct process_control_block *pcb);
87
88 /**
89 * @brief 释放进程的页表
90 *
91 * @param pcb 要被释放页表的进程
92 * @return uint64_t
93 */
94 uint64_t process_exit_mm(struct process_control_block *pcb);
95
96 /**
97 * @brief 切换进程
98 *
99 * @param prev 上一个进程的pcb
100 * @param next 将要切换到的进程的pcb
101 * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
102 * 这里切换fs和gs寄存器
103 */
104 #pragma GCC push_options
105 #pragma GCC optimize("O0")
__switch_to(struct process_control_block * prev,struct process_control_block * next)106 void __switch_to(struct process_control_block *prev, struct process_control_block *next)
107 {
108 initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
109 // kdebug("next_rsp = %#018lx ", next->thread->rsp);
110 // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2,
111 // initial_tss[0].ist1,
112 // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5,
113 // initial_tss[0].ist6, initial_tss[0].ist7);
114
115 __asm__ __volatile__("movq %%fs, %0 \n\t" : "=a"(prev->thread->fs));
116 __asm__ __volatile__("movq %%gs, %0 \n\t" : "=a"(prev->thread->gs));
117
118 __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
119 __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
120 }
121 #pragma GCC pop_options
122
123 /**
124 * @brief 切换进程的fs、gs寄存器
125 * 注意,fs、gs的值在return的时候才会生效,因此本函数不能简化为一个单独的宏
126 * @param fs 目标fs值
127 * @param gs 目标gs值
128 */
process_switch_fsgs(uint64_t fs,uint64_t gs)129 void process_switch_fsgs(uint64_t fs, uint64_t gs)
130 {
131 asm volatile("movq %0, %%fs \n\t" ::"a"(fs));
132 asm volatile("movq %0, %%gs \n\t" ::"a"(gs));
133 }
134
135 /**
136 * @brief 打开要执行的程序文件
137 *
138 * @param path
139 * @return int 文件描述符编号
140 */
process_open_exec_file(char * path)141 int process_open_exec_file(char *path)
142 {
143 struct pt_regs tmp = {0};
144 tmp.r8 = (uint64_t)path;
145 tmp.r9 = O_RDONLY;
146 int fd = sys_open(&tmp);
147 return fd;
148 }
149
150 /**
151 * @brief 加载elf格式的程序文件到内存中,并设置regs
152 *
153 * @param regs 寄存器
154 * @param path 文件路径
155 * @return int
156 */
process_load_elf_file(struct pt_regs * regs,char * path)157 static int process_load_elf_file(struct pt_regs *regs, char *path)
158 {
159 int retval = 0;
160 int fd = process_open_exec_file(path);
161
162 if ((long)fd < 0)
163 {
164 kdebug("(long)fd=%ld", (long)fd);
165 return (unsigned long)fd;
166 }
167
168 void *buf = kzalloc(PAGE_4K_SIZE, 0);
169 uint64_t pos = 0;
170
171 struct pt_regs tmp_use_fs = {0};
172 tmp_use_fs.r8 = fd;
173 tmp_use_fs.r9 = 0;
174 tmp_use_fs.r10 = SEEK_SET;
175 retval = sys_lseek(&tmp_use_fs);
176
177 // 读取 Elf64_Ehdr
178 tmp_use_fs.r8 = fd;
179 tmp_use_fs.r9 = (uint64_t)buf;
180 tmp_use_fs.r10 = sizeof(Elf64_Ehdr);
181 retval = sys_read(&tmp_use_fs);
182
183 tmp_use_fs.r8 = fd;
184 tmp_use_fs.r9 = 0;
185 tmp_use_fs.r10 = SEEK_CUR;
186 pos = sys_lseek(&tmp_use_fs);
187
188 if (retval != sizeof(Elf64_Ehdr))
189 {
190 kerror("retval=%d, not equal to sizeof(Elf64_Ehdr):%d", retval, sizeof(Elf64_Ehdr));
191 }
192 retval = 0;
193 if (!elf_check(buf))
194 {
195 kerror("Not an ELF file: %s", path);
196 retval = -ENOTSUP;
197 goto load_elf_failed;
198 }
199
200 #if ARCH(X86_64)
201 // 暂时只支持64位的文件
202 if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
203 {
204 kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
205 retval = -EUNSUPPORTED;
206 goto load_elf_failed;
207 }
208 Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
209 // 暂时只支持AMD64架构
210 if (ehdr.e_machine != EM_AMD64)
211 {
212 kerror("e_machine=%d", ehdr.e_machine);
213 retval = -EUNSUPPORTED;
214 goto load_elf_failed;
215 }
216 #else
217 #error Unsupported architecture!
218 #endif
219 if (ehdr.e_type != ET_EXEC)
220 {
221 kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
222 retval = -EUNSUPPORTED;
223 goto load_elf_failed;
224 }
225 // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
226 regs->rip = ehdr.e_entry;
227 current_pcb->mm->code_addr_start = ehdr.e_entry;
228
229 // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize,
230 // ehdr.e_phnum); 将指针移动到program header处
231
232 // 读取所有的phdr
233 pos = ehdr.e_phoff;
234 tmp_use_fs.r8 = fd;
235 tmp_use_fs.r9 = pos;
236 tmp_use_fs.r10 = SEEK_SET;
237 pos = sys_lseek(&tmp_use_fs);
238
239 memset(buf, 0, PAGE_4K_SIZE);
240 tmp_use_fs.r8 = fd;
241 tmp_use_fs.r9 = (uint64_t)buf;
242 tmp_use_fs.r10 = (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum;
243 sys_read(&tmp_use_fs);
244
245 tmp_use_fs.r8 = fd;
246 tmp_use_fs.r9 = 0;
247 tmp_use_fs.r10 = SEEK_CUR;
248 pos = sys_lseek(&tmp_use_fs);
249
250 if ((long)retval < 0)
251 {
252 kdebug("(unsigned long)filp=%d", (long)retval);
253 retval = -ENOEXEC;
254 goto load_elf_failed;
255 }
256
257 Elf64_Phdr *phdr = buf;
258 // 将程序加载到内存中
259 for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
260 {
261 // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld
262 // phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
263
264 // 不是可加载的段
265 if (phdr->p_type != PT_LOAD)
266 continue;
267
268 int64_t remain_mem_size = phdr->p_memsz;
269 int64_t remain_file_size = phdr->p_filesz;
270 pos = phdr->p_offset;
271
272 uint64_t virt_base = 0;
273 uint64_t beginning_offset = 0; // 由于页表映射导致的virtbase与实际的p_vaddr之间的偏移量
274
275 if (remain_mem_size >= PAGE_2M_SIZE) // 接下来存在映射2M页的情况,因此将vaddr按2M向下对齐
276 virt_base = phdr->p_vaddr & PAGE_2M_MASK;
277 else // 接下来只有4K页的映射
278 virt_base = phdr->p_vaddr & PAGE_4K_MASK;
279
280 beginning_offset = phdr->p_vaddr - virt_base;
281 remain_mem_size += beginning_offset;
282
283 while (remain_mem_size > 0)
284 {
285 // kdebug("loading...");
286 int64_t map_size = 0;
287 if (remain_mem_size >= PAGE_2M_SIZE)
288 {
289 uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
290 struct vm_area_struct *vma = NULL;
291 int ret =
292 mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
293
294 // 防止内存泄露
295 if (ret == -EEXIST)
296 free_pages(Phy_to_2M_Page(pa), 1);
297 else
298 mm_map(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa);
299 // mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
300 io_mfence();
301 memset((void *)virt_base, 0, PAGE_2M_SIZE);
302 map_size = PAGE_2M_SIZE;
303 }
304 else
305 {
306 // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
307 map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
308 // 循环分配4K大小内存块
309 for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
310 {
311 uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
312
313 struct vm_area_struct *vma = NULL;
314 int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS,
315 NULL, &vma);
316 // kdebug("virt_base=%#018lx", virt_base + off);
317 if (val == -EEXIST)
318 kfree(phys_2_virt(paddr));
319 else
320 mm_map(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr);
321 // mm_map_vma(vma, paddr, 0, PAGE_4K_SIZE);
322 io_mfence();
323 memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
324 }
325 }
326
327 tmp_use_fs.r8 = fd;
328 tmp_use_fs.r9 = pos;
329 tmp_use_fs.r10 = SEEK_SET;
330 pos = sys_lseek(&tmp_use_fs);
331
332 int64_t val = 0;
333 if (remain_file_size > 0)
334 {
335 int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
336
337 void *buf3 = kzalloc(PAGE_4K_SIZE, 0);
338 while (to_trans > 0)
339 {
340 int64_t x = 0;
341 tmp_use_fs.r8 = fd;
342 tmp_use_fs.r9 = (uint64_t)buf3;
343 tmp_use_fs.r10 = to_trans;
344 x = sys_read(&tmp_use_fs);
345 memcpy(virt_base + beginning_offset + val, buf3, x);
346 val += x;
347 to_trans -= x;
348 tmp_use_fs.r8 = fd;
349 tmp_use_fs.r9 = 0;
350 tmp_use_fs.r10 = SEEK_CUR;
351 pos = sys_lseek(&tmp_use_fs);
352 }
353 kfree(buf3);
354
355 // kdebug("virt_base + beginning_offset=%#018lx, val=%d, to_trans=%d", virt_base + beginning_offset,
356 // val,
357 // to_trans);
358 // kdebug("to_trans=%d", to_trans);
359 }
360
361 if (val < 0)
362 goto load_elf_failed;
363
364 remain_mem_size -= map_size;
365 remain_file_size -= val;
366 virt_base += map_size;
367 }
368 }
369
370 // 分配2MB的栈内存空间
371 regs->rsp = current_pcb->mm->stack_start;
372 regs->rbp = current_pcb->mm->stack_start;
373
374 {
375 struct vm_area_struct *vma = NULL;
376 uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
377 int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE,
378 VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
379 if (val == -EEXIST)
380 free_pages(Phy_to_2M_Page(pa), 1);
381 else
382 mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
383 }
384
385 // 清空栈空间
386 memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
387
388 load_elf_failed:;
389 {
390 struct pt_regs tmp = {0};
391 tmp.r8 = fd;
392 sys_close(&tmp);
393 }
394
395 if (buf != NULL)
396 kfree(buf);
397 return retval;
398 }
399 /**
400 * @brief 使当前进程去执行新的代码
401 *
402 * @param regs 当前进程的寄存器
403 * @param path 可执行程序的路径
404 * @param argv 参数列表
405 * @param envp 环境变量
406 * @return ul 错误码
407 */
408 #pragma GCC push_options
409 #pragma GCC optimize("O0")
do_execve(struct pt_regs * regs,char * path,char * argv[],char * envp[])410 ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
411 {
412
413 // kdebug("do_execve is running...");
414
415 // 当前进程正在与父进程共享地址空间,需要创建
416 // 独立的地址空间才能使新程序正常运行
417 if (current_pcb->flags & PF_VFORK)
418 {
419 // kdebug("proc:%d creating new mem space", current_pcb->pid);
420 // 分配新的内存空间分布结构体
421 struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
422 memset(new_mms, 0, sizeof(struct mm_struct));
423 current_pcb->mm = new_mms;
424
425 // 分配顶层页表, 并设置顶层页表的物理地址
426 new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
427
428 // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
429 memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
430
431 // 拷贝内核空间的页表指针
432 memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
433 }
434
435 // 设置用户栈和用户堆的基地址
436 unsigned long stack_start_addr = 0x6ffff0a00000UL;
437 const uint64_t brk_start_addr = 0x700000000000UL;
438
439 process_switch_mm(current_pcb);
440
441 // 为用户态程序设置地址边界
442 if (!(current_pcb->flags & PF_KTHREAD))
443 current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
444
445 current_pcb->mm->code_addr_end = 0;
446 current_pcb->mm->data_addr_start = 0;
447 current_pcb->mm->data_addr_end = 0;
448 current_pcb->mm->rodata_addr_start = 0;
449 current_pcb->mm->rodata_addr_end = 0;
450 current_pcb->mm->bss_start = 0;
451 current_pcb->mm->bss_end = 0;
452 current_pcb->mm->brk_start = brk_start_addr;
453 current_pcb->mm->brk_end = brk_start_addr;
454 current_pcb->mm->stack_start = stack_start_addr;
455
456 // 关闭之前的文件描述符
457 process_exit_files(current_pcb);
458 process_init_files();
459
460 // 清除进程的vfork标志位
461 current_pcb->flags &= ~PF_VFORK;
462
463 // 加载elf格式的可执行文件
464 int tmp = process_load_elf_file(regs, path);
465 if (tmp < 0)
466 goto exec_failed;
467
468 // 拷贝参数列表
469 if (argv != NULL)
470 {
471 int argc = 0;
472
473 // 目标程序的argv基地址指针,最大8个参数
474 char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
475 uint64_t str_addr = (uint64_t)dst_argv;
476
477 for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
478 {
479
480 if (*argv[argc] == NULL)
481 break;
482
483 // 测量参数的长度(最大1023)
484 int argv_len = strnlen_user(argv[argc], 1023) + 1;
485 strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
486 str_addr -= argv_len;
487 dst_argv[argc] = (char *)str_addr;
488 // 字符串加上结尾字符
489 ((char *)str_addr)[argv_len] = '\0';
490 }
491
492 // 重新设定栈基址,并预留空间防止越界
493 stack_start_addr = str_addr - 8;
494 current_pcb->mm->stack_start = stack_start_addr;
495 regs->rsp = regs->rbp = stack_start_addr;
496
497 // 传递参数
498 regs->rdi = argc;
499 regs->rsi = (uint64_t)dst_argv;
500 }
501 // kdebug("execve ok");
502 // 设置进程的段选择子为用户态可访问
503 regs->cs = USER_CS | 3;
504 regs->ds = USER_DS | 3;
505 regs->ss = USER_DS | 0x3;
506 regs->rflags = 0x200246;
507 regs->rax = 1;
508 regs->es = 0;
509
510 return 0;
511
512 exec_failed:;
513 process_do_exit(tmp);
514 }
515 #pragma GCC pop_options
516
517 /**
518 * @brief 初始化实时进程rt_pcb
519 *
520 * @return 初始化后的进程
521 *
522 */
process_init_rt_pcb(struct process_control_block * rt_pcb)523 struct process_control_block *process_init_rt_pcb(struct process_control_block *rt_pcb)
524 {
525 // 暂时将实时进程的优先级设置为10
526 rt_pcb->priority = 10;
527 rt_pcb->policy = SCHED_RR;
528 rt_pcb->rt_time_slice = 80;
529 rt_pcb->virtual_runtime = 0x7fffffffffffffff;
530 return rt_pcb;
531 }
532
533 /**
534 * @brief 内核init进程
535 *
536 * @param arg
537 * @return ul 参数
538 */
539 #pragma GCC push_options
540 #pragma GCC optimize("O0")
initial_kernel_thread(ul arg)541 ul initial_kernel_thread(ul arg)
542 {
543 kinfo("initial proc running...\targ:%#018lx, vruntime=%d", arg, current_pcb->virtual_runtime);
544
545 scm_enable_double_buffer();
546
547 // block_io_scheduler_init();
548 ahci_init();
549 mount_root_fs();
550 c_virtio_probe();
551 // 使用单独的内核线程来初始化usb驱动程序
552 // 注释:由于目前usb驱动程序不完善,因此先将其注释掉
553 // int usb_pid = kernel_thread(usb_init, 0, 0);
554
555 kinfo("LZ4 lib Version=%s", LZ4_versionString());
556 __rust_demo_func();
557 // while (1)
558 // {
559 // /* code */
560 // }
561
562 // 对completion完成量进行测试
563 // __test_completion();
564
565 // // 对一些组件进行单元测试
566 // uint64_t tpid[] = {
567 // ktest_start(ktest_test_bitree, 0), ktest_start(ktest_test_kfifo, 0), ktest_start(ktest_test_mutex, 0),
568 // ktest_start(ktest_test_idr, 0),
569 // // usb_pid,
570 // };
571 // kinfo("Waiting test thread exit...");
572 // // 等待测试进程退出
573 // for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
574 // waitpid(tpid[i], NULL, NULL);
575 // kinfo("All test done.");
576
577 // 测试实时进程
578
579 // struct process_control_block *test_rt1 = kthread_run_rt(&test, NULL, "test rt");
580 // kdebug("process:rt test kthread is created!!!!");
581
582 // 准备切换到用户态
583 struct pt_regs *regs;
584
585 // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
586 cli();
587 current_pcb->thread->rip = (ul)ret_from_system_call;
588 current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
589 current_pcb->thread->fs = USER_DS | 0x3;
590 barrier();
591 current_pcb->thread->gs = USER_DS | 0x3;
592 process_switch_fsgs(current_pcb->thread->fs, current_pcb->thread->gs);
593
594 // 主动放弃内核线程身份
595 current_pcb->flags &= (~PF_KTHREAD);
596 kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
597
598 regs = (struct pt_regs *)current_pcb->thread->rsp;
599 // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
600 current_pcb->flags = 0;
601 // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数
602 // 这里的设计思路和switch_to类似 加载用户态程序:shell.elf
603 __asm__ __volatile__("movq %1, %%rsp \n\t"
604 "pushq %2 \n\t"
605 "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
606 "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/bin/shell.elf"), "c"(NULL),
607 "d"(NULL)
608 : "memory");
609
610 return 1;
611 }
612 #pragma GCC pop_options
613 /**
614 * @brief 当子进程退出后向父进程发送通知
615 *
616 */
process_exit_notify()617 void process_exit_notify()
618 {
619
620 wait_queue_wakeup(¤t_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
621 }
622 /**
623 * @brief 进程退出时执行的函数
624 *
625 * @param code 返回码
626 * @return ul
627 */
process_do_exit(ul code)628 ul process_do_exit(ul code)
629 {
630 // kinfo("process exiting..., code is %ld.", (long)code);
631 cli();
632 struct process_control_block *pcb = current_pcb;
633
634 // 进程退出时释放资源
635 process_exit_files(pcb);
636 process_exit_thread(pcb);
637 // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
638
639 pcb->state = PROC_ZOMBIE;
640 pcb->exit_code = code;
641 sti();
642
643 process_exit_notify();
644 sched();
645
646 while (1)
647 pause();
648 }
649
650 /**
651 * @brief 初始化内核进程
652 *
653 * @param fn 目标程序的地址
654 * @param arg 向目标程序传入的参数
655 * @param flags
656 * @return int
657 */
658
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)659 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
660 {
661 struct pt_regs regs;
662 barrier();
663 memset(®s, 0, sizeof(regs));
664 barrier();
665 // 在rbx寄存器中保存进程的入口地址
666 regs.rbx = (ul)fn;
667 // 在rdx寄存器中保存传入的参数
668 regs.rdx = (ul)arg;
669 barrier();
670 regs.ds = KERNEL_DS;
671 barrier();
672 regs.es = KERNEL_DS;
673 barrier();
674 regs.cs = KERNEL_CS;
675 barrier();
676 regs.ss = KERNEL_DS;
677 barrier();
678
679 // 置位中断使能标志位
680 regs.rflags = (1 << 9);
681 barrier();
682 // rip寄存器指向内核线程的引导程序
683 regs.rip = (ul)kernel_thread_func;
684 barrier();
685 // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
686 // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
687 // kdebug("1111\tregs.rip = %#018lx", regs.rip);
688 return do_fork(®s, flags | CLONE_VM, 0, 0);
689 }
690
691 /**
692 * @brief 初始化进程模块
693 * ☆前置条件:已完成系统调用模块的初始化
694 */
process_init()695 void process_init()
696 {
697 kinfo("Initializing process...");
698
699 initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
700
701 // 初始化pid的写锁
702
703 spin_init(&process_global_pid_write_lock);
704
705 // 初始化进程的循环链表
706 list_init(&initial_proc_union.pcb.list);
707 wait_queue_init(&initial_proc_union.pcb.wait_child_proc_exit, NULL);
708
709 // 初始化init进程的signal相关的信息
710 initial_proc_init_signal(current_pcb);
711 kdebug("Initial process to init files");
712 process_init_files();
713 kdebug("Initial process init files ok");
714
715 // 临时设置IDLE进程的的虚拟运行时间为0,防止下面的这些内核线程的虚拟运行时间出错
716 current_pcb->virtual_runtime = 0;
717 barrier();
718 kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
719 barrier();
720 kthread_mechanism_init(); // 初始化kthread机制
721
722 initial_proc_union.pcb.state = PROC_RUNNING;
723 initial_proc_union.pcb.preempt_count = 0;
724 initial_proc_union.pcb.cpu_id = 0;
725 initial_proc_union.pcb.virtual_runtime = (1UL << 60);
726 // 将IDLE进程的虚拟运行时间设置为一个很大的数值
727 current_pcb->virtual_runtime = (1UL << 60);
728 }
729
730 /**
731 * @brief 根据pid获取进程的pcb。存在对应的pcb时,返回对应的pcb的指针,否则返回NULL
732 * 当进程管理模块拥有pcblist_lock之后,调用本函数之前,应当对其加锁
733 * @param pid
734 * @return struct process_control_block*
735 */
process_find_pcb_by_pid(pid_t pid)736 struct process_control_block *process_find_pcb_by_pid(pid_t pid)
737 {
738 // todo: 当进程管理模块拥有pcblist_lock之后,对其加锁
739 struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
740 // 使用蛮力法搜索指定pid的pcb
741 // todo: 使用哈希表来管理pcb
742 for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
743 {
744 if (pcb->pid == pid)
745 return pcb;
746 }
747 return NULL;
748 }
749
750 /**
751 * @brief 将进程加入到调度器的就绪队列中.
752 *
753 * @param pcb 进程的pcb
754 *
755 * @return true 成功加入调度队列
756 * @return false 进程已经在运行
757 */
process_wakeup(struct process_control_block * pcb)758 int process_wakeup(struct process_control_block *pcb)
759 {
760
761 BUG_ON(pcb == NULL);
762 if (pcb == NULL)
763 return -EINVAL;
764 // 如果pcb正在调度队列中,则不重复加入调度队列
765 if (pcb->state & PROC_RUNNING)
766 return 0;
767
768 pcb->state |= PROC_RUNNING;
769 sched_enqueue(pcb, true);
770 return 0;
771 }
772
773 /**
774 * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
775 *
776 * @param pcb 进程的pcb
777 */
process_wakeup_immediately(struct process_control_block * pcb)778 int process_wakeup_immediately(struct process_control_block *pcb)
779 {
780 if (pcb->state & PROC_RUNNING)
781 return 0;
782 int retval = process_wakeup(pcb);
783 if (retval != 0)
784 return retval;
785 // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
786 current_pcb->flags |= PF_NEED_SCHED;
787
788 if (pcb->cpu_id == current_pcb->cpu_id)
789 sched();
790 else
791 kick_cpu(pcb->cpu_id);
792 return 0;
793 }
794
795 /**
796 * @brief 释放进程的页表
797 *
798 * @param pcb 要被释放页表的进程
799 * @return uint64_t
800 */
process_exit_mm(struct process_control_block * pcb)801 uint64_t process_exit_mm(struct process_control_block *pcb)
802 {
803 if (pcb->flags & CLONE_VM)
804 return 0;
805 if (pcb->mm == NULL)
806 {
807 kdebug("pcb->mm==NULL");
808 return 0;
809 }
810 if (pcb->mm->pgd == NULL)
811 {
812 kdebug("pcb->mm->pgd==NULL");
813 return 0;
814 }
815
816 // // 获取顶层页表
817 pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
818
819 // 循环释放VMA中的内存
820 struct vm_area_struct *vma = pcb->mm->vmas;
821 while (vma != NULL)
822 {
823
824 struct vm_area_struct *cur_vma = vma;
825 vma = cur_vma->vm_next;
826
827 uint64_t pa;
828 mm_unmap_vma(pcb->mm, cur_vma, &pa);
829
830 uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
831
832 // 释放内存
833 switch (size)
834 {
835 case PAGE_4K_SIZE:
836 kfree(phys_2_virt(pa));
837 break;
838 default:
839 break;
840 }
841 vm_area_del(cur_vma);
842 vm_area_free(cur_vma);
843 }
844
845 // 释放顶层页表
846 kfree(current_pgd);
847 if (unlikely(pcb->mm->vmas != NULL))
848 {
849 kwarn("pcb.mm.vmas!=NULL");
850 }
851 // 释放内存空间分布结构体
852 kfree(pcb->mm);
853
854 return 0;
855 }
856
857 /**
858 * @brief todo: 回收线程结构体
859 *
860 * @param pcb
861 */
process_exit_thread(struct process_control_block * pcb)862 void process_exit_thread(struct process_control_block *pcb)
863 {
864 }
865
866 /**
867 * @brief 释放pcb
868 *
869 * @param pcb 要被释放的pcb
870 * @return int
871 */
process_release_pcb(struct process_control_block * pcb)872 int process_release_pcb(struct process_control_block *pcb)
873 {
874 // 释放子进程的页表
875 process_exit_mm(pcb);
876 if ((pcb->flags & PF_KTHREAD)) // 释放内核线程的worker private结构体
877 free_kthread_struct(pcb);
878
879 // 将pcb从pcb链表中移除
880 // todo: 对相关的pcb加锁
881 pcb->prev_pcb->next_pcb = pcb->next_pcb;
882 pcb->next_pcb->prev_pcb = pcb->prev_pcb;
883 process_exit_sighand(pcb);
884 process_exit_signal(pcb);
885 rs_procfs_unregister_pid(pcb->pid);
886 // 释放当前pcb
887 kfree(pcb);
888 return 0;
889 }
890
891 /**
892 * @brief 给pcb设置名字
893 *
894 * @param pcb 需要设置名字的pcb
895 * @param pcb_name 保存名字的char数组
896 */
__set_pcb_name(struct process_control_block * pcb,const char * pcb_name)897 static void __set_pcb_name(struct process_control_block *pcb, const char *pcb_name)
898 {
899 // todo:给pcb加锁
900 // spin_lock(&pcb->alloc_lock);
901 strncpy(pcb->name, pcb_name, PCB_NAME_LEN);
902 // spin_unlock(&pcb->alloc_lock);
903 }
904
905 /**
906 * @brief 给pcb设置名字
907 *
908 * @param pcb 需要设置名字的pcb
909 * @param pcb_name 保存名字的char数组
910 */
process_set_pcb_name(struct process_control_block * pcb,const char * pcb_name)911 void process_set_pcb_name(struct process_control_block *pcb, const char *pcb_name)
912 {
913 __set_pcb_name(pcb, pcb_name);
914 }
915