1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <asm/current.h>
22 #include <asm/pgtable.h>
23 #include <asm/uaccess.h>
24 #include "as-layout.h"
25 #include "kern_util.h"
26 #include "os.h"
27 #include "skas.h"
28 #include "tlb.h"
29 
30 /*
31  * This is a per-cpu array.  A processor only modifies its entry and it only
32  * cares about its entry, so it's OK if another processor is modifying its
33  * entry.
34  */
35 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
36 
external_pid(void)37 static inline int external_pid(void)
38 {
39 	/* FIXME: Need to look up userspace_pid by cpu */
40 	return userspace_pid[0];
41 }
42 
pid_to_processor_id(int pid)43 int pid_to_processor_id(int pid)
44 {
45 	int i;
46 
47 	for (i = 0; i < ncpus; i++) {
48 		if (cpu_tasks[i].pid == pid)
49 			return i;
50 	}
51 	return -1;
52 }
53 
free_stack(unsigned long stack,int order)54 void free_stack(unsigned long stack, int order)
55 {
56 	free_pages(stack, order);
57 }
58 
alloc_stack(int order,int atomic)59 unsigned long alloc_stack(int order, int atomic)
60 {
61 	unsigned long page;
62 	gfp_t flags = GFP_KERNEL;
63 
64 	if (atomic)
65 		flags = GFP_ATOMIC;
66 	page = __get_free_pages(flags, order);
67 
68 	return page;
69 }
70 
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)71 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
72 {
73 	int pid;
74 
75 	current->thread.request.u.thread.proc = fn;
76 	current->thread.request.u.thread.arg = arg;
77 	pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
78 		      &current->thread.regs, 0, NULL, NULL);
79 	return pid;
80 }
81 
set_current(struct task_struct * task)82 static inline void set_current(struct task_struct *task)
83 {
84 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
85 		{ external_pid(), task });
86 }
87 
88 extern void arch_switch_to(struct task_struct *to);
89 
_switch_to(void * prev,void * next,void * last)90 void *_switch_to(void *prev, void *next, void *last)
91 {
92 	struct task_struct *from = prev;
93 	struct task_struct *to = next;
94 
95 	to->thread.prev_sched = from;
96 	set_current(to);
97 
98 	do {
99 		current->thread.saved_task = NULL;
100 
101 		switch_threads(&from->thread.switch_buf,
102 			       &to->thread.switch_buf);
103 
104 		arch_switch_to(current);
105 
106 		if (current->thread.saved_task)
107 			show_regs(&(current->thread.regs));
108 		to = current->thread.saved_task;
109 		from = current;
110 	} while (current->thread.saved_task);
111 
112 	return current->thread.prev_sched;
113 
114 }
115 
interrupt_end(void)116 void interrupt_end(void)
117 {
118 	if (need_resched())
119 		schedule();
120 	if (test_tsk_thread_flag(current, TIF_SIGPENDING))
121 		do_signal();
122 }
123 
exit_thread(void)124 void exit_thread(void)
125 {
126 }
127 
get_current(void)128 void *get_current(void)
129 {
130 	return current;
131 }
132 
133 /*
134  * This is called magically, by its address being stuffed in a jmp_buf
135  * and being longjmp-d to.
136  */
new_thread_handler(void)137 void new_thread_handler(void)
138 {
139 	int (*fn)(void *), n;
140 	void *arg;
141 
142 	if (current->thread.prev_sched != NULL)
143 		schedule_tail(current->thread.prev_sched);
144 	current->thread.prev_sched = NULL;
145 
146 	fn = current->thread.request.u.thread.proc;
147 	arg = current->thread.request.u.thread.arg;
148 
149 	/*
150 	 * The return value is 1 if the kernel thread execs a process,
151 	 * 0 if it just exits
152 	 */
153 	n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
154 	if (n == 1) {
155 		/* Handle any immediate reschedules or signals */
156 		interrupt_end();
157 		userspace(&current->thread.regs.regs);
158 	}
159 	else do_exit(0);
160 }
161 
162 /* Called magically, see new_thread_handler above */
fork_handler(void)163 void fork_handler(void)
164 {
165 	force_flush_all();
166 
167 	schedule_tail(current->thread.prev_sched);
168 
169 	/*
170 	 * XXX: if interrupt_end() calls schedule, this call to
171 	 * arch_switch_to isn't needed. We could want to apply this to
172 	 * improve performance. -bb
173 	 */
174 	arch_switch_to(current);
175 
176 	current->thread.prev_sched = NULL;
177 
178 	/* Handle any immediate reschedules or signals */
179 	interrupt_end();
180 
181 	userspace(&current->thread.regs.regs);
182 }
183 
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long stack_top,struct task_struct * p,struct pt_regs * regs)184 int copy_thread(unsigned long clone_flags, unsigned long sp,
185 		unsigned long stack_top, struct task_struct * p,
186 		struct pt_regs *regs)
187 {
188 	void (*handler)(void);
189 	int ret = 0;
190 
191 	p->thread = (struct thread_struct) INIT_THREAD;
192 
193 	if (current->thread.forking) {
194 	  	memcpy(&p->thread.regs.regs, &regs->regs,
195 		       sizeof(p->thread.regs.regs));
196 		REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
197 		if (sp != 0)
198 			REGS_SP(p->thread.regs.regs.gp) = sp;
199 
200 		handler = fork_handler;
201 
202 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
203 	}
204 	else {
205 		get_safe_registers(p->thread.regs.regs.gp);
206 		p->thread.request.u.thread = current->thread.request.u.thread;
207 		handler = new_thread_handler;
208 	}
209 
210 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
211 
212 	if (current->thread.forking) {
213 		clear_flushed_tls(p);
214 
215 		/*
216 		 * Set a new TLS for the child thread?
217 		 */
218 		if (clone_flags & CLONE_SETTLS)
219 			ret = arch_copy_tls(p);
220 	}
221 
222 	return ret;
223 }
224 
initial_thread_cb(void (* proc)(void *),void * arg)225 void initial_thread_cb(void (*proc)(void *), void *arg)
226 {
227 	int save_kmalloc_ok = kmalloc_ok;
228 
229 	kmalloc_ok = 0;
230 	initial_thread_cb_skas(proc, arg);
231 	kmalloc_ok = save_kmalloc_ok;
232 }
233 
default_idle(void)234 void default_idle(void)
235 {
236 	unsigned long long nsecs;
237 
238 	while (1) {
239 		/* endless idle loop with no priority at all */
240 
241 		/*
242 		 * although we are an idle CPU, we do not want to
243 		 * get into the scheduler unnecessarily.
244 		 */
245 		if (need_resched())
246 			schedule();
247 
248 		tick_nohz_stop_sched_tick(1);
249 		nsecs = disable_timer();
250 		idle_sleep(nsecs);
251 		tick_nohz_restart_sched_tick();
252 	}
253 }
254 
cpu_idle(void)255 void cpu_idle(void)
256 {
257 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
258 	default_idle();
259 }
260 
__cant_sleep(void)261 int __cant_sleep(void) {
262 	return in_atomic() || irqs_disabled() || in_interrupt();
263 	/* Is in_interrupt() really needed? */
264 }
265 
user_context(unsigned long sp)266 int user_context(unsigned long sp)
267 {
268 	unsigned long stack;
269 
270 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
271 	return stack != (unsigned long) current_thread_info();
272 }
273 
274 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
275 
do_uml_exitcalls(void)276 void do_uml_exitcalls(void)
277 {
278 	exitcall_t *call;
279 
280 	call = &__uml_exitcall_end;
281 	while (--call >= &__uml_exitcall_begin)
282 		(*call)();
283 }
284 
uml_strdup(const char * string)285 char *uml_strdup(const char *string)
286 {
287 	return kstrdup(string, GFP_KERNEL);
288 }
289 
copy_to_user_proc(void __user * to,void * from,int size)290 int copy_to_user_proc(void __user *to, void *from, int size)
291 {
292 	return copy_to_user(to, from, size);
293 }
294 
copy_from_user_proc(void * to,void __user * from,int size)295 int copy_from_user_proc(void *to, void __user *from, int size)
296 {
297 	return copy_from_user(to, from, size);
298 }
299 
clear_user_proc(void __user * buf,int size)300 int clear_user_proc(void __user *buf, int size)
301 {
302 	return clear_user(buf, size);
303 }
304 
strlen_user_proc(char __user * str)305 int strlen_user_proc(char __user *str)
306 {
307 	return strlen_user(str);
308 }
309 
smp_sigio_handler(void)310 int smp_sigio_handler(void)
311 {
312 #ifdef CONFIG_SMP
313 	int cpu = current_thread_info()->cpu;
314 	IPI_handler(cpu);
315 	if (cpu != 0)
316 		return 1;
317 #endif
318 	return 0;
319 }
320 
cpu(void)321 int cpu(void)
322 {
323 	return current_thread_info()->cpu;
324 }
325 
326 static atomic_t using_sysemu = ATOMIC_INIT(0);
327 int sysemu_supported;
328 
set_using_sysemu(int value)329 void set_using_sysemu(int value)
330 {
331 	if (value > sysemu_supported)
332 		return;
333 	atomic_set(&using_sysemu, value);
334 }
335 
get_using_sysemu(void)336 int get_using_sysemu(void)
337 {
338 	return atomic_read(&using_sysemu);
339 }
340 
sysemu_proc_show(struct seq_file * m,void * v)341 static int sysemu_proc_show(struct seq_file *m, void *v)
342 {
343 	seq_printf(m, "%d\n", get_using_sysemu());
344 	return 0;
345 }
346 
sysemu_proc_open(struct inode * inode,struct file * file)347 static int sysemu_proc_open(struct inode *inode, struct file *file)
348 {
349 	return single_open(file, sysemu_proc_show, NULL);
350 }
351 
sysemu_proc_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)352 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
353 				 size_t count, loff_t *pos)
354 {
355 	char tmp[2];
356 
357 	if (copy_from_user(tmp, buf, 1))
358 		return -EFAULT;
359 
360 	if (tmp[0] >= '0' && tmp[0] <= '2')
361 		set_using_sysemu(tmp[0] - '0');
362 	/* We use the first char, but pretend to write everything */
363 	return count;
364 }
365 
366 static const struct file_operations sysemu_proc_fops = {
367 	.owner		= THIS_MODULE,
368 	.open		= sysemu_proc_open,
369 	.read		= seq_read,
370 	.llseek		= seq_lseek,
371 	.release	= single_release,
372 	.write		= sysemu_proc_write,
373 };
374 
make_proc_sysemu(void)375 int __init make_proc_sysemu(void)
376 {
377 	struct proc_dir_entry *ent;
378 	if (!sysemu_supported)
379 		return 0;
380 
381 	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
382 
383 	if (ent == NULL)
384 	{
385 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
386 		return 0;
387 	}
388 
389 	return 0;
390 }
391 
392 late_initcall(make_proc_sysemu);
393 
singlestepping(void * t)394 int singlestepping(void * t)
395 {
396 	struct task_struct *task = t ? t : current;
397 
398 	if (!(task->ptrace & PT_DTRACE))
399 		return 0;
400 
401 	if (task->thread.singlestep_syscall)
402 		return 1;
403 
404 	return 2;
405 }
406 
407 /*
408  * Only x86 and x86_64 have an arch_align_stack().
409  * All other arches have "#define arch_align_stack(x) (x)"
410  * in their asm/system.h
411  * As this is included in UML from asm-um/system-generic.h,
412  * we can use it to behave as the subarch does.
413  */
414 #ifndef arch_align_stack
arch_align_stack(unsigned long sp)415 unsigned long arch_align_stack(unsigned long sp)
416 {
417 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
418 		sp -= get_random_int() % 8192;
419 	return sp & ~0xf;
420 }
421 #endif
422 
get_wchan(struct task_struct * p)423 unsigned long get_wchan(struct task_struct *p)
424 {
425 	unsigned long stack_page, sp, ip;
426 	bool seen_sched = 0;
427 
428 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
429 		return 0;
430 
431 	stack_page = (unsigned long) task_stack_page(p);
432 	/* Bail if the process has no kernel stack for some reason */
433 	if (stack_page == 0)
434 		return 0;
435 
436 	sp = p->thread.switch_buf->JB_SP;
437 	/*
438 	 * Bail if the stack pointer is below the bottom of the kernel
439 	 * stack for some reason
440 	 */
441 	if (sp < stack_page)
442 		return 0;
443 
444 	while (sp < stack_page + THREAD_SIZE) {
445 		ip = *((unsigned long *) sp);
446 		if (in_sched_functions(ip))
447 			/* Ignore everything until we're above the scheduler */
448 			seen_sched = 1;
449 		else if (kernel_text_address(ip) && seen_sched)
450 			return ip;
451 
452 		sp += sizeof(unsigned long);
453 	}
454 
455 	return 0;
456 }
457 
elf_core_copy_fpregs(struct task_struct * t,elf_fpregset_t * fpu)458 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
459 {
460 	int cpu = current_thread_info()->cpu;
461 
462 	return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
463 }
464 
465