1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28 
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/libsas.h> /* For TASK_ATTR_* */
46 
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
54 
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
60 
61 /* #define DEBUG_CDB_HANDLER */
62 #ifdef DEBUG_CDB_HANDLER
63 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
64 #else
65 #define DEBUG_CDB_H(x...)
66 #endif
67 
68 /* #define DEBUG_CMD_MAP */
69 #ifdef DEBUG_CMD_MAP
70 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
71 #else
72 #define DEBUG_CMD_M(x...)
73 #endif
74 
75 /* #define DEBUG_MEM_ALLOC */
76 #ifdef DEBUG_MEM_ALLOC
77 #define DEBUG_MEM(x...) printk(KERN_INFO x)
78 #else
79 #define DEBUG_MEM(x...)
80 #endif
81 
82 /* #define DEBUG_MEM2_ALLOC */
83 #ifdef DEBUG_MEM2_ALLOC
84 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
85 #else
86 #define DEBUG_MEM2(x...)
87 #endif
88 
89 /* #define DEBUG_SG_CALC */
90 #ifdef DEBUG_SG_CALC
91 #define DEBUG_SC(x...) printk(KERN_INFO x)
92 #else
93 #define DEBUG_SC(x...)
94 #endif
95 
96 /* #define DEBUG_SE_OBJ */
97 #ifdef DEBUG_SE_OBJ
98 #define DEBUG_SO(x...) printk(KERN_INFO x)
99 #else
100 #define DEBUG_SO(x...)
101 #endif
102 
103 /* #define DEBUG_CMD_VOL */
104 #ifdef DEBUG_CMD_VOL
105 #define DEBUG_VOL(x...) printk(KERN_INFO x)
106 #else
107 #define DEBUG_VOL(x...)
108 #endif
109 
110 /* #define DEBUG_CMD_STOP */
111 #ifdef DEBUG_CMD_STOP
112 #define DEBUG_CS(x...) printk(KERN_INFO x)
113 #else
114 #define DEBUG_CS(x...)
115 #endif
116 
117 /* #define DEBUG_PASSTHROUGH */
118 #ifdef DEBUG_PASSTHROUGH
119 #define DEBUG_PT(x...) printk(KERN_INFO x)
120 #else
121 #define DEBUG_PT(x...)
122 #endif
123 
124 /* #define DEBUG_TASK_STOP */
125 #ifdef DEBUG_TASK_STOP
126 #define DEBUG_TS(x...) printk(KERN_INFO x)
127 #else
128 #define DEBUG_TS(x...)
129 #endif
130 
131 /* #define DEBUG_TRANSPORT_STOP */
132 #ifdef DEBUG_TRANSPORT_STOP
133 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
134 #else
135 #define DEBUG_TRANSPORT_S(x...)
136 #endif
137 
138 /* #define DEBUG_TASK_FAILURE */
139 #ifdef DEBUG_TASK_FAILURE
140 #define DEBUG_TF(x...) printk(KERN_INFO x)
141 #else
142 #define DEBUG_TF(x...)
143 #endif
144 
145 /* #define DEBUG_DEV_OFFLINE */
146 #ifdef DEBUG_DEV_OFFLINE
147 #define DEBUG_DO(x...) printk(KERN_INFO x)
148 #else
149 #define DEBUG_DO(x...)
150 #endif
151 
152 /* #define DEBUG_TASK_STATE */
153 #ifdef DEBUG_TASK_STATE
154 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
155 #else
156 #define DEBUG_TSTATE(x...)
157 #endif
158 
159 /* #define DEBUG_STATUS_THR */
160 #ifdef DEBUG_STATUS_THR
161 #define DEBUG_ST(x...) printk(KERN_INFO x)
162 #else
163 #define DEBUG_ST(x...)
164 #endif
165 
166 /* #define DEBUG_TASK_TIMEOUT */
167 #ifdef DEBUG_TASK_TIMEOUT
168 #define DEBUG_TT(x...) printk(KERN_INFO x)
169 #else
170 #define DEBUG_TT(x...)
171 #endif
172 
173 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
174 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
175 #define DEBUG_GRF(x...) printk(KERN_INFO x)
176 #else
177 #define DEBUG_GRF(x...)
178 #endif
179 
180 /* #define DEBUG_SAM_TASK_ATTRS */
181 #ifdef DEBUG_SAM_TASK_ATTRS
182 #define DEBUG_STA(x...) printk(KERN_INFO x)
183 #else
184 #define DEBUG_STA(x...)
185 #endif
186 
187 struct se_global *se_global;
188 
189 static struct kmem_cache *se_cmd_cache;
190 static struct kmem_cache *se_sess_cache;
191 struct kmem_cache *se_tmr_req_cache;
192 struct kmem_cache *se_ua_cache;
193 struct kmem_cache *se_mem_cache;
194 struct kmem_cache *t10_pr_reg_cache;
195 struct kmem_cache *t10_alua_lu_gp_cache;
196 struct kmem_cache *t10_alua_lu_gp_mem_cache;
197 struct kmem_cache *t10_alua_tg_pt_gp_cache;
198 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
199 
200 /* Used for transport_dev_get_map_*() */
201 typedef int (*map_func_t)(struct se_task *, u32);
202 
203 static int transport_generic_write_pending(struct se_cmd *);
204 static int transport_processing_thread(void *);
205 static int __transport_execute_tasks(struct se_device *dev);
206 static void transport_complete_task_attr(struct se_cmd *cmd);
207 static void transport_direct_request_timeout(struct se_cmd *cmd);
208 static void transport_free_dev_tasks(struct se_cmd *cmd);
209 static u32 transport_generic_get_cdb_count(struct se_cmd *cmd,
210 		unsigned long long starting_lba, u32 sectors,
211 		enum dma_data_direction data_direction,
212 		struct list_head *mem_list, int set_counts);
213 static int transport_generic_get_mem(struct se_cmd *cmd, u32 length,
214 		u32 dma_size);
215 static int transport_generic_remove(struct se_cmd *cmd,
216 		int release_to_pool, int session_reinstatement);
217 static int transport_get_sectors(struct se_cmd *cmd);
218 static struct list_head *transport_init_se_mem_list(void);
219 static int transport_map_sg_to_mem(struct se_cmd *cmd,
220 		struct list_head *se_mem_list, void *in_mem,
221 		u32 *se_mem_cnt);
222 static void transport_memcpy_se_mem_read_contig(struct se_cmd *cmd,
223 		unsigned char *dst, struct list_head *se_mem_list);
224 static void transport_release_fe_cmd(struct se_cmd *cmd);
225 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
226 		struct se_queue_obj *qobj);
227 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
228 static void transport_stop_all_task_timers(struct se_cmd *cmd);
229 
init_se_global(void)230 int init_se_global(void)
231 {
232 	struct se_global *global;
233 
234 	global = kzalloc(sizeof(struct se_global), GFP_KERNEL);
235 	if (!(global)) {
236 		printk(KERN_ERR "Unable to allocate memory for struct se_global\n");
237 		return -1;
238 	}
239 
240 	INIT_LIST_HEAD(&global->g_lu_gps_list);
241 	INIT_LIST_HEAD(&global->g_se_tpg_list);
242 	INIT_LIST_HEAD(&global->g_hba_list);
243 	INIT_LIST_HEAD(&global->g_se_dev_list);
244 	spin_lock_init(&global->g_device_lock);
245 	spin_lock_init(&global->hba_lock);
246 	spin_lock_init(&global->se_tpg_lock);
247 	spin_lock_init(&global->lu_gps_lock);
248 	spin_lock_init(&global->plugin_class_lock);
249 
250 	se_cmd_cache = kmem_cache_create("se_cmd_cache",
251 			sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
252 	if (!(se_cmd_cache)) {
253 		printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n");
254 		goto out;
255 	}
256 	se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
257 			sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
258 			0, NULL);
259 	if (!(se_tmr_req_cache)) {
260 		printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req"
261 				" failed\n");
262 		goto out;
263 	}
264 	se_sess_cache = kmem_cache_create("se_sess_cache",
265 			sizeof(struct se_session), __alignof__(struct se_session),
266 			0, NULL);
267 	if (!(se_sess_cache)) {
268 		printk(KERN_ERR "kmem_cache_create() for struct se_session"
269 				" failed\n");
270 		goto out;
271 	}
272 	se_ua_cache = kmem_cache_create("se_ua_cache",
273 			sizeof(struct se_ua), __alignof__(struct se_ua),
274 			0, NULL);
275 	if (!(se_ua_cache)) {
276 		printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n");
277 		goto out;
278 	}
279 	se_mem_cache = kmem_cache_create("se_mem_cache",
280 			sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL);
281 	if (!(se_mem_cache)) {
282 		printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n");
283 		goto out;
284 	}
285 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
286 			sizeof(struct t10_pr_registration),
287 			__alignof__(struct t10_pr_registration), 0, NULL);
288 	if (!(t10_pr_reg_cache)) {
289 		printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration"
290 				" failed\n");
291 		goto out;
292 	}
293 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
294 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
295 			0, NULL);
296 	if (!(t10_alua_lu_gp_cache)) {
297 		printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache"
298 				" failed\n");
299 		goto out;
300 	}
301 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
302 			sizeof(struct t10_alua_lu_gp_member),
303 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
304 	if (!(t10_alua_lu_gp_mem_cache)) {
305 		printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_"
306 				"cache failed\n");
307 		goto out;
308 	}
309 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
310 			sizeof(struct t10_alua_tg_pt_gp),
311 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
312 	if (!(t10_alua_tg_pt_gp_cache)) {
313 		printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
314 				"cache failed\n");
315 		goto out;
316 	}
317 	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
318 			"t10_alua_tg_pt_gp_mem_cache",
319 			sizeof(struct t10_alua_tg_pt_gp_member),
320 			__alignof__(struct t10_alua_tg_pt_gp_member),
321 			0, NULL);
322 	if (!(t10_alua_tg_pt_gp_mem_cache)) {
323 		printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
324 				"mem_t failed\n");
325 		goto out;
326 	}
327 
328 	se_global = global;
329 
330 	return 0;
331 out:
332 	if (se_cmd_cache)
333 		kmem_cache_destroy(se_cmd_cache);
334 	if (se_tmr_req_cache)
335 		kmem_cache_destroy(se_tmr_req_cache);
336 	if (se_sess_cache)
337 		kmem_cache_destroy(se_sess_cache);
338 	if (se_ua_cache)
339 		kmem_cache_destroy(se_ua_cache);
340 	if (se_mem_cache)
341 		kmem_cache_destroy(se_mem_cache);
342 	if (t10_pr_reg_cache)
343 		kmem_cache_destroy(t10_pr_reg_cache);
344 	if (t10_alua_lu_gp_cache)
345 		kmem_cache_destroy(t10_alua_lu_gp_cache);
346 	if (t10_alua_lu_gp_mem_cache)
347 		kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
348 	if (t10_alua_tg_pt_gp_cache)
349 		kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
350 	if (t10_alua_tg_pt_gp_mem_cache)
351 		kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
352 	kfree(global);
353 	return -1;
354 }
355 
release_se_global(void)356 void release_se_global(void)
357 {
358 	struct se_global *global;
359 
360 	global = se_global;
361 	if (!(global))
362 		return;
363 
364 	kmem_cache_destroy(se_cmd_cache);
365 	kmem_cache_destroy(se_tmr_req_cache);
366 	kmem_cache_destroy(se_sess_cache);
367 	kmem_cache_destroy(se_ua_cache);
368 	kmem_cache_destroy(se_mem_cache);
369 	kmem_cache_destroy(t10_pr_reg_cache);
370 	kmem_cache_destroy(t10_alua_lu_gp_cache);
371 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
372 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
373 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
374 	kfree(global);
375 
376 	se_global = NULL;
377 }
378 
379 /* SCSI statistics table index */
380 static struct scsi_index_table scsi_index_table;
381 
382 /*
383  * Initialize the index table for allocating unique row indexes to various mib
384  * tables.
385  */
init_scsi_index_table(void)386 void init_scsi_index_table(void)
387 {
388 	memset(&scsi_index_table, 0, sizeof(struct scsi_index_table));
389 	spin_lock_init(&scsi_index_table.lock);
390 }
391 
392 /*
393  * Allocate a new row index for the entry type specified
394  */
scsi_get_new_index(scsi_index_t type)395 u32 scsi_get_new_index(scsi_index_t type)
396 {
397 	u32 new_index;
398 
399 	if ((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)) {
400 		printk(KERN_ERR "Invalid index type %d\n", type);
401 		return -EINVAL;
402 	}
403 
404 	spin_lock(&scsi_index_table.lock);
405 	new_index = ++scsi_index_table.scsi_mib_index[type];
406 	if (new_index == 0)
407 		new_index = ++scsi_index_table.scsi_mib_index[type];
408 	spin_unlock(&scsi_index_table.lock);
409 
410 	return new_index;
411 }
412 
transport_init_queue_obj(struct se_queue_obj * qobj)413 void transport_init_queue_obj(struct se_queue_obj *qobj)
414 {
415 	atomic_set(&qobj->queue_cnt, 0);
416 	INIT_LIST_HEAD(&qobj->qobj_list);
417 	init_waitqueue_head(&qobj->thread_wq);
418 	spin_lock_init(&qobj->cmd_queue_lock);
419 }
420 EXPORT_SYMBOL(transport_init_queue_obj);
421 
transport_subsystem_reqmods(void)422 static int transport_subsystem_reqmods(void)
423 {
424 	int ret;
425 
426 	ret = request_module("target_core_iblock");
427 	if (ret != 0)
428 		printk(KERN_ERR "Unable to load target_core_iblock\n");
429 
430 	ret = request_module("target_core_file");
431 	if (ret != 0)
432 		printk(KERN_ERR "Unable to load target_core_file\n");
433 
434 	ret = request_module("target_core_pscsi");
435 	if (ret != 0)
436 		printk(KERN_ERR "Unable to load target_core_pscsi\n");
437 
438 	ret = request_module("target_core_stgt");
439 	if (ret != 0)
440 		printk(KERN_ERR "Unable to load target_core_stgt\n");
441 
442 	return 0;
443 }
444 
transport_subsystem_check_init(void)445 int transport_subsystem_check_init(void)
446 {
447 	if (se_global->g_sub_api_initialized)
448 		return 0;
449 	/*
450 	 * Request the loading of known TCM subsystem plugins..
451 	 */
452 	if (transport_subsystem_reqmods() < 0)
453 		return -1;
454 
455 	se_global->g_sub_api_initialized = 1;
456 	return 0;
457 }
458 
transport_init_session(void)459 struct se_session *transport_init_session(void)
460 {
461 	struct se_session *se_sess;
462 
463 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
464 	if (!(se_sess)) {
465 		printk(KERN_ERR "Unable to allocate struct se_session from"
466 				" se_sess_cache\n");
467 		return ERR_PTR(-ENOMEM);
468 	}
469 	INIT_LIST_HEAD(&se_sess->sess_list);
470 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
471 
472 	return se_sess;
473 }
474 EXPORT_SYMBOL(transport_init_session);
475 
476 /*
477  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
478  */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)479 void __transport_register_session(
480 	struct se_portal_group *se_tpg,
481 	struct se_node_acl *se_nacl,
482 	struct se_session *se_sess,
483 	void *fabric_sess_ptr)
484 {
485 	unsigned char buf[PR_REG_ISID_LEN];
486 
487 	se_sess->se_tpg = se_tpg;
488 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
489 	/*
490 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
491 	 *
492 	 * Only set for struct se_session's that will actually be moving I/O.
493 	 * eg: *NOT* discovery sessions.
494 	 */
495 	if (se_nacl) {
496 		/*
497 		 * If the fabric module supports an ISID based TransportID,
498 		 * save this value in binary from the fabric I_T Nexus now.
499 		 */
500 		if (TPG_TFO(se_tpg)->sess_get_initiator_sid != NULL) {
501 			memset(&buf[0], 0, PR_REG_ISID_LEN);
502 			TPG_TFO(se_tpg)->sess_get_initiator_sid(se_sess,
503 					&buf[0], PR_REG_ISID_LEN);
504 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
505 		}
506 		spin_lock_irq(&se_nacl->nacl_sess_lock);
507 		/*
508 		 * The se_nacl->nacl_sess pointer will be set to the
509 		 * last active I_T Nexus for each struct se_node_acl.
510 		 */
511 		se_nacl->nacl_sess = se_sess;
512 
513 		list_add_tail(&se_sess->sess_acl_list,
514 			      &se_nacl->acl_sess_list);
515 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
516 	}
517 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
518 
519 	printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
520 		TPG_TFO(se_tpg)->get_fabric_name(), se_sess->fabric_sess_ptr);
521 }
522 EXPORT_SYMBOL(__transport_register_session);
523 
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)524 void transport_register_session(
525 	struct se_portal_group *se_tpg,
526 	struct se_node_acl *se_nacl,
527 	struct se_session *se_sess,
528 	void *fabric_sess_ptr)
529 {
530 	spin_lock_bh(&se_tpg->session_lock);
531 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
532 	spin_unlock_bh(&se_tpg->session_lock);
533 }
534 EXPORT_SYMBOL(transport_register_session);
535 
transport_deregister_session_configfs(struct se_session * se_sess)536 void transport_deregister_session_configfs(struct se_session *se_sess)
537 {
538 	struct se_node_acl *se_nacl;
539 
540 	/*
541 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
542 	 */
543 	se_nacl = se_sess->se_node_acl;
544 	if ((se_nacl)) {
545 		spin_lock_irq(&se_nacl->nacl_sess_lock);
546 		list_del(&se_sess->sess_acl_list);
547 		/*
548 		 * If the session list is empty, then clear the pointer.
549 		 * Otherwise, set the struct se_session pointer from the tail
550 		 * element of the per struct se_node_acl active session list.
551 		 */
552 		if (list_empty(&se_nacl->acl_sess_list))
553 			se_nacl->nacl_sess = NULL;
554 		else {
555 			se_nacl->nacl_sess = container_of(
556 					se_nacl->acl_sess_list.prev,
557 					struct se_session, sess_acl_list);
558 		}
559 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
560 	}
561 }
562 EXPORT_SYMBOL(transport_deregister_session_configfs);
563 
transport_free_session(struct se_session * se_sess)564 void transport_free_session(struct se_session *se_sess)
565 {
566 	kmem_cache_free(se_sess_cache, se_sess);
567 }
568 EXPORT_SYMBOL(transport_free_session);
569 
transport_deregister_session(struct se_session * se_sess)570 void transport_deregister_session(struct se_session *se_sess)
571 {
572 	struct se_portal_group *se_tpg = se_sess->se_tpg;
573 	struct se_node_acl *se_nacl;
574 
575 	if (!(se_tpg)) {
576 		transport_free_session(se_sess);
577 		return;
578 	}
579 
580 	spin_lock_bh(&se_tpg->session_lock);
581 	list_del(&se_sess->sess_list);
582 	se_sess->se_tpg = NULL;
583 	se_sess->fabric_sess_ptr = NULL;
584 	spin_unlock_bh(&se_tpg->session_lock);
585 
586 	/*
587 	 * Determine if we need to do extra work for this initiator node's
588 	 * struct se_node_acl if it had been previously dynamically generated.
589 	 */
590 	se_nacl = se_sess->se_node_acl;
591 	if ((se_nacl)) {
592 		spin_lock_bh(&se_tpg->acl_node_lock);
593 		if (se_nacl->dynamic_node_acl) {
594 			if (!(TPG_TFO(se_tpg)->tpg_check_demo_mode_cache(
595 					se_tpg))) {
596 				list_del(&se_nacl->acl_list);
597 				se_tpg->num_node_acls--;
598 				spin_unlock_bh(&se_tpg->acl_node_lock);
599 
600 				core_tpg_wait_for_nacl_pr_ref(se_nacl);
601 				core_free_device_list_for_node(se_nacl, se_tpg);
602 				TPG_TFO(se_tpg)->tpg_release_fabric_acl(se_tpg,
603 						se_nacl);
604 				spin_lock_bh(&se_tpg->acl_node_lock);
605 			}
606 		}
607 		spin_unlock_bh(&se_tpg->acl_node_lock);
608 	}
609 
610 	transport_free_session(se_sess);
611 
612 	printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n",
613 		TPG_TFO(se_tpg)->get_fabric_name());
614 }
615 EXPORT_SYMBOL(transport_deregister_session);
616 
617 /*
618  * Called with T_TASK(cmd)->t_state_lock held.
619  */
transport_all_task_dev_remove_state(struct se_cmd * cmd)620 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
621 {
622 	struct se_device *dev;
623 	struct se_task *task;
624 	unsigned long flags;
625 
626 	if (!T_TASK(cmd))
627 		return;
628 
629 	list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
630 		dev = task->se_dev;
631 		if (!(dev))
632 			continue;
633 
634 		if (atomic_read(&task->task_active))
635 			continue;
636 
637 		if (!(atomic_read(&task->task_state_active)))
638 			continue;
639 
640 		spin_lock_irqsave(&dev->execute_task_lock, flags);
641 		list_del(&task->t_state_list);
642 		DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
643 			CMD_TFO(cmd)->tfo_get_task_tag(cmd), dev, task);
644 		spin_unlock_irqrestore(&dev->execute_task_lock, flags);
645 
646 		atomic_set(&task->task_state_active, 0);
647 		atomic_dec(&T_TASK(cmd)->t_task_cdbs_ex_left);
648 	}
649 }
650 
651 /*	transport_cmd_check_stop():
652  *
653  *	'transport_off = 1' determines if t_transport_active should be cleared.
654  *	'transport_off = 2' determines if task_dev_state should be removed.
655  *
656  *	A non-zero u8 t_state sets cmd->t_state.
657  *	Returns 1 when command is stopped, else 0.
658  */
transport_cmd_check_stop(struct se_cmd * cmd,int transport_off,u8 t_state)659 static int transport_cmd_check_stop(
660 	struct se_cmd *cmd,
661 	int transport_off,
662 	u8 t_state)
663 {
664 	unsigned long flags;
665 
666 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
667 	/*
668 	 * Determine if IOCTL context caller in requesting the stopping of this
669 	 * command for LUN shutdown purposes.
670 	 */
671 	if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
672 		DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)"
673 			" == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
674 			CMD_TFO(cmd)->get_task_tag(cmd));
675 
676 		cmd->deferred_t_state = cmd->t_state;
677 		cmd->t_state = TRANSPORT_DEFERRED_CMD;
678 		atomic_set(&T_TASK(cmd)->t_transport_active, 0);
679 		if (transport_off == 2)
680 			transport_all_task_dev_remove_state(cmd);
681 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
682 
683 		complete(&T_TASK(cmd)->transport_lun_stop_comp);
684 		return 1;
685 	}
686 	/*
687 	 * Determine if frontend context caller is requesting the stopping of
688 	 * this command for frontend excpections.
689 	 */
690 	if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
691 		DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) =="
692 			" TRUE for ITT: 0x%08x\n", __func__, __LINE__,
693 			CMD_TFO(cmd)->get_task_tag(cmd));
694 
695 		cmd->deferred_t_state = cmd->t_state;
696 		cmd->t_state = TRANSPORT_DEFERRED_CMD;
697 		if (transport_off == 2)
698 			transport_all_task_dev_remove_state(cmd);
699 
700 		/*
701 		 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
702 		 * to FE.
703 		 */
704 		if (transport_off == 2)
705 			cmd->se_lun = NULL;
706 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
707 
708 		complete(&T_TASK(cmd)->t_transport_stop_comp);
709 		return 1;
710 	}
711 	if (transport_off) {
712 		atomic_set(&T_TASK(cmd)->t_transport_active, 0);
713 		if (transport_off == 2) {
714 			transport_all_task_dev_remove_state(cmd);
715 			/*
716 			 * Clear struct se_cmd->se_lun before the transport_off == 2
717 			 * handoff to fabric module.
718 			 */
719 			cmd->se_lun = NULL;
720 			/*
721 			 * Some fabric modules like tcm_loop can release
722 			 * their internally allocated I/O reference now and
723 			 * struct se_cmd now.
724 			 */
725 			if (CMD_TFO(cmd)->check_stop_free != NULL) {
726 				spin_unlock_irqrestore(
727 					&T_TASK(cmd)->t_state_lock, flags);
728 
729 				CMD_TFO(cmd)->check_stop_free(cmd);
730 				return 1;
731 			}
732 		}
733 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
734 
735 		return 0;
736 	} else if (t_state)
737 		cmd->t_state = t_state;
738 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
739 
740 	return 0;
741 }
742 
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)743 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
744 {
745 	return transport_cmd_check_stop(cmd, 2, 0);
746 }
747 
transport_lun_remove_cmd(struct se_cmd * cmd)748 static void transport_lun_remove_cmd(struct se_cmd *cmd)
749 {
750 	struct se_lun *lun = SE_LUN(cmd);
751 	unsigned long flags;
752 
753 	if (!lun)
754 		return;
755 
756 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
757 	if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
758 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
759 		goto check_lun;
760 	}
761 	atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
762 	transport_all_task_dev_remove_state(cmd);
763 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
764 
765 	transport_free_dev_tasks(cmd);
766 
767 check_lun:
768 	spin_lock_irqsave(&lun->lun_cmd_lock, flags);
769 	if (atomic_read(&T_TASK(cmd)->transport_lun_active)) {
770 		list_del(&cmd->se_lun_list);
771 		atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
772 #if 0
773 		printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n"
774 			CMD_TFO(cmd)->get_task_tag(cmd), lun->unpacked_lun);
775 #endif
776 	}
777 	spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
778 }
779 
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)780 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
781 {
782 	transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
783 	transport_lun_remove_cmd(cmd);
784 
785 	if (transport_cmd_check_stop_to_fabric(cmd))
786 		return;
787 	if (remove)
788 		transport_generic_remove(cmd, 0, 0);
789 }
790 
transport_cmd_finish_abort_tmr(struct se_cmd * cmd)791 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
792 {
793 	transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
794 
795 	if (transport_cmd_check_stop_to_fabric(cmd))
796 		return;
797 
798 	transport_generic_remove(cmd, 0, 0);
799 }
800 
transport_add_cmd_to_queue(struct se_cmd * cmd,int t_state)801 static int transport_add_cmd_to_queue(
802 	struct se_cmd *cmd,
803 	int t_state)
804 {
805 	struct se_device *dev = cmd->se_dev;
806 	struct se_queue_obj *qobj = dev->dev_queue_obj;
807 	struct se_queue_req *qr;
808 	unsigned long flags;
809 
810 	qr = kzalloc(sizeof(struct se_queue_req), GFP_ATOMIC);
811 	if (!(qr)) {
812 		printk(KERN_ERR "Unable to allocate memory for"
813 				" struct se_queue_req\n");
814 		return -1;
815 	}
816 	INIT_LIST_HEAD(&qr->qr_list);
817 
818 	qr->cmd = (void *)cmd;
819 	qr->state = t_state;
820 
821 	if (t_state) {
822 		spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
823 		cmd->t_state = t_state;
824 		atomic_set(&T_TASK(cmd)->t_transport_active, 1);
825 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
826 	}
827 
828 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
829 	list_add_tail(&qr->qr_list, &qobj->qobj_list);
830 	atomic_inc(&T_TASK(cmd)->t_transport_queue_active);
831 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
832 
833 	atomic_inc(&qobj->queue_cnt);
834 	wake_up_interruptible(&qobj->thread_wq);
835 	return 0;
836 }
837 
838 /*
839  * Called with struct se_queue_obj->cmd_queue_lock held.
840  */
841 static struct se_queue_req *
__transport_get_qr_from_queue(struct se_queue_obj * qobj)842 __transport_get_qr_from_queue(struct se_queue_obj *qobj)
843 {
844 	struct se_cmd *cmd;
845 	struct se_queue_req *qr = NULL;
846 
847 	if (list_empty(&qobj->qobj_list))
848 		return NULL;
849 
850 	list_for_each_entry(qr, &qobj->qobj_list, qr_list)
851 		break;
852 
853 	if (qr->cmd) {
854 		cmd = (struct se_cmd *)qr->cmd;
855 		atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
856 	}
857 	list_del(&qr->qr_list);
858 	atomic_dec(&qobj->queue_cnt);
859 
860 	return qr;
861 }
862 
863 static struct se_queue_req *
transport_get_qr_from_queue(struct se_queue_obj * qobj)864 transport_get_qr_from_queue(struct se_queue_obj *qobj)
865 {
866 	struct se_cmd *cmd;
867 	struct se_queue_req *qr;
868 	unsigned long flags;
869 
870 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
871 	if (list_empty(&qobj->qobj_list)) {
872 		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
873 		return NULL;
874 	}
875 
876 	list_for_each_entry(qr, &qobj->qobj_list, qr_list)
877 		break;
878 
879 	if (qr->cmd) {
880 		cmd = (struct se_cmd *)qr->cmd;
881 		atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
882 	}
883 	list_del(&qr->qr_list);
884 	atomic_dec(&qobj->queue_cnt);
885 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
886 
887 	return qr;
888 }
889 
transport_remove_cmd_from_queue(struct se_cmd * cmd,struct se_queue_obj * qobj)890 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
891 		struct se_queue_obj *qobj)
892 {
893 	struct se_cmd *q_cmd;
894 	struct se_queue_req *qr = NULL, *qr_p = NULL;
895 	unsigned long flags;
896 
897 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
898 	if (!(atomic_read(&T_TASK(cmd)->t_transport_queue_active))) {
899 		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
900 		return;
901 	}
902 
903 	list_for_each_entry_safe(qr, qr_p, &qobj->qobj_list, qr_list) {
904 		q_cmd = (struct se_cmd *)qr->cmd;
905 		if (q_cmd != cmd)
906 			continue;
907 
908 		atomic_dec(&T_TASK(q_cmd)->t_transport_queue_active);
909 		atomic_dec(&qobj->queue_cnt);
910 		list_del(&qr->qr_list);
911 		kfree(qr);
912 	}
913 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
914 
915 	if (atomic_read(&T_TASK(cmd)->t_transport_queue_active)) {
916 		printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n",
917 			CMD_TFO(cmd)->get_task_tag(cmd),
918 			atomic_read(&T_TASK(cmd)->t_transport_queue_active));
919 	}
920 }
921 
922 /*
923  * Completion function used by TCM subsystem plugins (such as FILEIO)
924  * for queueing up response from struct se_subsystem_api->do_task()
925  */
transport_complete_sync_cache(struct se_cmd * cmd,int good)926 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
927 {
928 	struct se_task *task = list_entry(T_TASK(cmd)->t_task_list.next,
929 				struct se_task, t_list);
930 
931 	if (good) {
932 		cmd->scsi_status = SAM_STAT_GOOD;
933 		task->task_scsi_status = GOOD;
934 	} else {
935 		task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
936 		task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
937 		TASK_CMD(task)->transport_error_status =
938 					PYX_TRANSPORT_ILLEGAL_REQUEST;
939 	}
940 
941 	transport_complete_task(task, good);
942 }
943 EXPORT_SYMBOL(transport_complete_sync_cache);
944 
945 /*	transport_complete_task():
946  *
947  *	Called from interrupt and non interrupt context depending
948  *	on the transport plugin.
949  */
transport_complete_task(struct se_task * task,int success)950 void transport_complete_task(struct se_task *task, int success)
951 {
952 	struct se_cmd *cmd = TASK_CMD(task);
953 	struct se_device *dev = task->se_dev;
954 	int t_state;
955 	unsigned long flags;
956 #if 0
957 	printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task,
958 			T_TASK(cmd)->t_task_cdb[0], dev);
959 #endif
960 	if (dev) {
961 		spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
962 		atomic_inc(&dev->depth_left);
963 		atomic_inc(&SE_HBA(dev)->left_queue_depth);
964 		spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
965 	}
966 
967 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
968 	atomic_set(&task->task_active, 0);
969 
970 	/*
971 	 * See if any sense data exists, if so set the TASK_SENSE flag.
972 	 * Also check for any other post completion work that needs to be
973 	 * done by the plugins.
974 	 */
975 	if (dev && dev->transport->transport_complete) {
976 		if (dev->transport->transport_complete(task) != 0) {
977 			cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
978 			task->task_sense = 1;
979 			success = 1;
980 		}
981 	}
982 
983 	/*
984 	 * See if we are waiting for outstanding struct se_task
985 	 * to complete for an exception condition
986 	 */
987 	if (atomic_read(&task->task_stop)) {
988 		/*
989 		 * Decrement T_TASK(cmd)->t_se_count if this task had
990 		 * previously thrown its timeout exception handler.
991 		 */
992 		if (atomic_read(&task->task_timeout)) {
993 			atomic_dec(&T_TASK(cmd)->t_se_count);
994 			atomic_set(&task->task_timeout, 0);
995 		}
996 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
997 
998 		complete(&task->task_stop_comp);
999 		return;
1000 	}
1001 	/*
1002 	 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
1003 	 * left counter to determine when the struct se_cmd is ready to be queued to
1004 	 * the processing thread.
1005 	 */
1006 	if (atomic_read(&task->task_timeout)) {
1007 		if (!(atomic_dec_and_test(
1008 				&T_TASK(cmd)->t_task_cdbs_timeout_left))) {
1009 			spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
1010 				flags);
1011 			return;
1012 		}
1013 		t_state = TRANSPORT_COMPLETE_TIMEOUT;
1014 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1015 
1016 		transport_add_cmd_to_queue(cmd, t_state);
1017 		return;
1018 	}
1019 	atomic_dec(&T_TASK(cmd)->t_task_cdbs_timeout_left);
1020 
1021 	/*
1022 	 * Decrement the outstanding t_task_cdbs_left count.  The last
1023 	 * struct se_task from struct se_cmd will complete itself into the
1024 	 * device queue depending upon int success.
1025 	 */
1026 	if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
1027 		if (!success)
1028 			T_TASK(cmd)->t_tasks_failed = 1;
1029 
1030 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1031 		return;
1032 	}
1033 
1034 	if (!success || T_TASK(cmd)->t_tasks_failed) {
1035 		t_state = TRANSPORT_COMPLETE_FAILURE;
1036 		if (!task->task_error_status) {
1037 			task->task_error_status =
1038 				PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1039 			cmd->transport_error_status =
1040 				PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1041 		}
1042 	} else {
1043 		atomic_set(&T_TASK(cmd)->t_transport_complete, 1);
1044 		t_state = TRANSPORT_COMPLETE_OK;
1045 	}
1046 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1047 
1048 	transport_add_cmd_to_queue(cmd, t_state);
1049 }
1050 EXPORT_SYMBOL(transport_complete_task);
1051 
1052 /*
1053  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
1054  * struct se_task list are ready to be added to the active execution list
1055  * struct se_device
1056 
1057  * Called with se_dev_t->execute_task_lock called.
1058  */
transport_add_task_check_sam_attr(struct se_task * task,struct se_task * task_prev,struct se_device * dev)1059 static inline int transport_add_task_check_sam_attr(
1060 	struct se_task *task,
1061 	struct se_task *task_prev,
1062 	struct se_device *dev)
1063 {
1064 	/*
1065 	 * No SAM Task attribute emulation enabled, add to tail of
1066 	 * execution queue
1067 	 */
1068 	if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
1069 		list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1070 		return 0;
1071 	}
1072 	/*
1073 	 * HEAD_OF_QUEUE attribute for received CDB, which means
1074 	 * the first task that is associated with a struct se_cmd goes to
1075 	 * head of the struct se_device->execute_task_list, and task_prev
1076 	 * after that for each subsequent task
1077 	 */
1078 	if (task->task_se_cmd->sam_task_attr == TASK_ATTR_HOQ) {
1079 		list_add(&task->t_execute_list,
1080 				(task_prev != NULL) ?
1081 				&task_prev->t_execute_list :
1082 				&dev->execute_task_list);
1083 
1084 		DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
1085 				" in execution queue\n",
1086 				T_TASK(task->task_se_cmd)->t_task_cdb[0]);
1087 		return 1;
1088 	}
1089 	/*
1090 	 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
1091 	 * transitioned from Dermant -> Active state, and are added to the end
1092 	 * of the struct se_device->execute_task_list
1093 	 */
1094 	list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1095 	return 0;
1096 }
1097 
1098 /*	__transport_add_task_to_execute_queue():
1099  *
1100  *	Called with se_dev_t->execute_task_lock called.
1101  */
__transport_add_task_to_execute_queue(struct se_task * task,struct se_task * task_prev,struct se_device * dev)1102 static void __transport_add_task_to_execute_queue(
1103 	struct se_task *task,
1104 	struct se_task *task_prev,
1105 	struct se_device *dev)
1106 {
1107 	int head_of_queue;
1108 
1109 	head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
1110 	atomic_inc(&dev->execute_tasks);
1111 
1112 	if (atomic_read(&task->task_state_active))
1113 		return;
1114 	/*
1115 	 * Determine if this task needs to go to HEAD_OF_QUEUE for the
1116 	 * state list as well.  Running with SAM Task Attribute emulation
1117 	 * will always return head_of_queue == 0 here
1118 	 */
1119 	if (head_of_queue)
1120 		list_add(&task->t_state_list, (task_prev) ?
1121 				&task_prev->t_state_list :
1122 				&dev->state_task_list);
1123 	else
1124 		list_add_tail(&task->t_state_list, &dev->state_task_list);
1125 
1126 	atomic_set(&task->task_state_active, 1);
1127 
1128 	DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1129 		CMD_TFO(task->task_se_cmd)->get_task_tag(task->task_se_cmd),
1130 		task, dev);
1131 }
1132 
transport_add_tasks_to_state_queue(struct se_cmd * cmd)1133 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
1134 {
1135 	struct se_device *dev;
1136 	struct se_task *task;
1137 	unsigned long flags;
1138 
1139 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1140 	list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1141 		dev = task->se_dev;
1142 
1143 		if (atomic_read(&task->task_state_active))
1144 			continue;
1145 
1146 		spin_lock(&dev->execute_task_lock);
1147 		list_add_tail(&task->t_state_list, &dev->state_task_list);
1148 		atomic_set(&task->task_state_active, 1);
1149 
1150 		DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1151 			CMD_TFO(task->task_se_cmd)->get_task_tag(
1152 			task->task_se_cmd), task, dev);
1153 
1154 		spin_unlock(&dev->execute_task_lock);
1155 	}
1156 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1157 }
1158 
transport_add_tasks_from_cmd(struct se_cmd * cmd)1159 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
1160 {
1161 	struct se_device *dev = SE_DEV(cmd);
1162 	struct se_task *task, *task_prev = NULL;
1163 	unsigned long flags;
1164 
1165 	spin_lock_irqsave(&dev->execute_task_lock, flags);
1166 	list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1167 		if (atomic_read(&task->task_execute_queue))
1168 			continue;
1169 		/*
1170 		 * __transport_add_task_to_execute_queue() handles the
1171 		 * SAM Task Attribute emulation if enabled
1172 		 */
1173 		__transport_add_task_to_execute_queue(task, task_prev, dev);
1174 		atomic_set(&task->task_execute_queue, 1);
1175 		task_prev = task;
1176 	}
1177 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1178 
1179 	return;
1180 }
1181 
1182 /*	transport_get_task_from_execute_queue():
1183  *
1184  *	Called with dev->execute_task_lock held.
1185  */
1186 static struct se_task *
transport_get_task_from_execute_queue(struct se_device * dev)1187 transport_get_task_from_execute_queue(struct se_device *dev)
1188 {
1189 	struct se_task *task;
1190 
1191 	if (list_empty(&dev->execute_task_list))
1192 		return NULL;
1193 
1194 	list_for_each_entry(task, &dev->execute_task_list, t_execute_list)
1195 		break;
1196 
1197 	list_del(&task->t_execute_list);
1198 	atomic_dec(&dev->execute_tasks);
1199 
1200 	return task;
1201 }
1202 
1203 /*	transport_remove_task_from_execute_queue():
1204  *
1205  *
1206  */
transport_remove_task_from_execute_queue(struct se_task * task,struct se_device * dev)1207 void transport_remove_task_from_execute_queue(
1208 	struct se_task *task,
1209 	struct se_device *dev)
1210 {
1211 	unsigned long flags;
1212 
1213 	spin_lock_irqsave(&dev->execute_task_lock, flags);
1214 	list_del(&task->t_execute_list);
1215 	atomic_dec(&dev->execute_tasks);
1216 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1217 }
1218 
transport_dump_cmd_direction(struct se_cmd * cmd)1219 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1220 {
1221 	switch (cmd->data_direction) {
1222 	case DMA_NONE:
1223 		return "NONE";
1224 	case DMA_FROM_DEVICE:
1225 		return "READ";
1226 	case DMA_TO_DEVICE:
1227 		return "WRITE";
1228 	case DMA_BIDIRECTIONAL:
1229 		return "BIDI";
1230 	default:
1231 		break;
1232 	}
1233 
1234 	return "UNKNOWN";
1235 }
1236 
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)1237 void transport_dump_dev_state(
1238 	struct se_device *dev,
1239 	char *b,
1240 	int *bl)
1241 {
1242 	*bl += sprintf(b + *bl, "Status: ");
1243 	switch (dev->dev_status) {
1244 	case TRANSPORT_DEVICE_ACTIVATED:
1245 		*bl += sprintf(b + *bl, "ACTIVATED");
1246 		break;
1247 	case TRANSPORT_DEVICE_DEACTIVATED:
1248 		*bl += sprintf(b + *bl, "DEACTIVATED");
1249 		break;
1250 	case TRANSPORT_DEVICE_SHUTDOWN:
1251 		*bl += sprintf(b + *bl, "SHUTDOWN");
1252 		break;
1253 	case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1254 	case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1255 		*bl += sprintf(b + *bl, "OFFLINE");
1256 		break;
1257 	default:
1258 		*bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1259 		break;
1260 	}
1261 
1262 	*bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1263 		atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1264 		dev->queue_depth);
1265 	*bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1266 		DEV_ATTRIB(dev)->block_size, DEV_ATTRIB(dev)->max_sectors);
1267 	*bl += sprintf(b + *bl, "        ");
1268 }
1269 
1270 /*	transport_release_all_cmds():
1271  *
1272  *
1273  */
transport_release_all_cmds(struct se_device * dev)1274 static void transport_release_all_cmds(struct se_device *dev)
1275 {
1276 	struct se_cmd *cmd = NULL;
1277 	struct se_queue_req *qr = NULL, *qr_p = NULL;
1278 	int bug_out = 0, t_state;
1279 	unsigned long flags;
1280 
1281 	spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1282 	list_for_each_entry_safe(qr, qr_p, &dev->dev_queue_obj->qobj_list,
1283 				qr_list) {
1284 
1285 		cmd = (struct se_cmd *)qr->cmd;
1286 		t_state = qr->state;
1287 		list_del(&qr->qr_list);
1288 		kfree(qr);
1289 		spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock,
1290 				flags);
1291 
1292 		printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u,"
1293 			" t_state: %u directly\n",
1294 			CMD_TFO(cmd)->get_task_tag(cmd),
1295 			CMD_TFO(cmd)->get_cmd_state(cmd), t_state);
1296 
1297 		transport_release_fe_cmd(cmd);
1298 		bug_out = 1;
1299 
1300 		spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1301 	}
1302 	spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
1303 #if 0
1304 	if (bug_out)
1305 		BUG();
1306 #endif
1307 }
1308 
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1309 void transport_dump_vpd_proto_id(
1310 	struct t10_vpd *vpd,
1311 	unsigned char *p_buf,
1312 	int p_buf_len)
1313 {
1314 	unsigned char buf[VPD_TMP_BUF_SIZE];
1315 	int len;
1316 
1317 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1318 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1319 
1320 	switch (vpd->protocol_identifier) {
1321 	case 0x00:
1322 		sprintf(buf+len, "Fibre Channel\n");
1323 		break;
1324 	case 0x10:
1325 		sprintf(buf+len, "Parallel SCSI\n");
1326 		break;
1327 	case 0x20:
1328 		sprintf(buf+len, "SSA\n");
1329 		break;
1330 	case 0x30:
1331 		sprintf(buf+len, "IEEE 1394\n");
1332 		break;
1333 	case 0x40:
1334 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
1335 				" Protocol\n");
1336 		break;
1337 	case 0x50:
1338 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1339 		break;
1340 	case 0x60:
1341 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1342 		break;
1343 	case 0x70:
1344 		sprintf(buf+len, "Automation/Drive Interface Transport"
1345 				" Protocol\n");
1346 		break;
1347 	case 0x80:
1348 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1349 		break;
1350 	default:
1351 		sprintf(buf+len, "Unknown 0x%02x\n",
1352 				vpd->protocol_identifier);
1353 		break;
1354 	}
1355 
1356 	if (p_buf)
1357 		strncpy(p_buf, buf, p_buf_len);
1358 	else
1359 		printk(KERN_INFO "%s", buf);
1360 }
1361 
1362 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1363 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1364 {
1365 	/*
1366 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1367 	 *
1368 	 * from spc3r23.pdf section 7.5.1
1369 	 */
1370 	 if (page_83[1] & 0x80) {
1371 		vpd->protocol_identifier = (page_83[0] & 0xf0);
1372 		vpd->protocol_identifier_set = 1;
1373 		transport_dump_vpd_proto_id(vpd, NULL, 0);
1374 	}
1375 }
1376 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1377 
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1378 int transport_dump_vpd_assoc(
1379 	struct t10_vpd *vpd,
1380 	unsigned char *p_buf,
1381 	int p_buf_len)
1382 {
1383 	unsigned char buf[VPD_TMP_BUF_SIZE];
1384 	int ret = 0, len;
1385 
1386 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1387 	len = sprintf(buf, "T10 VPD Identifier Association: ");
1388 
1389 	switch (vpd->association) {
1390 	case 0x00:
1391 		sprintf(buf+len, "addressed logical unit\n");
1392 		break;
1393 	case 0x10:
1394 		sprintf(buf+len, "target port\n");
1395 		break;
1396 	case 0x20:
1397 		sprintf(buf+len, "SCSI target device\n");
1398 		break;
1399 	default:
1400 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1401 		ret = -1;
1402 		break;
1403 	}
1404 
1405 	if (p_buf)
1406 		strncpy(p_buf, buf, p_buf_len);
1407 	else
1408 		printk("%s", buf);
1409 
1410 	return ret;
1411 }
1412 
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1413 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1414 {
1415 	/*
1416 	 * The VPD identification association..
1417 	 *
1418 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1419 	 */
1420 	vpd->association = (page_83[1] & 0x30);
1421 	return transport_dump_vpd_assoc(vpd, NULL, 0);
1422 }
1423 EXPORT_SYMBOL(transport_set_vpd_assoc);
1424 
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1425 int transport_dump_vpd_ident_type(
1426 	struct t10_vpd *vpd,
1427 	unsigned char *p_buf,
1428 	int p_buf_len)
1429 {
1430 	unsigned char buf[VPD_TMP_BUF_SIZE];
1431 	int ret = 0, len;
1432 
1433 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1434 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1435 
1436 	switch (vpd->device_identifier_type) {
1437 	case 0x00:
1438 		sprintf(buf+len, "Vendor specific\n");
1439 		break;
1440 	case 0x01:
1441 		sprintf(buf+len, "T10 Vendor ID based\n");
1442 		break;
1443 	case 0x02:
1444 		sprintf(buf+len, "EUI-64 based\n");
1445 		break;
1446 	case 0x03:
1447 		sprintf(buf+len, "NAA\n");
1448 		break;
1449 	case 0x04:
1450 		sprintf(buf+len, "Relative target port identifier\n");
1451 		break;
1452 	case 0x08:
1453 		sprintf(buf+len, "SCSI name string\n");
1454 		break;
1455 	default:
1456 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1457 				vpd->device_identifier_type);
1458 		ret = -1;
1459 		break;
1460 	}
1461 
1462 	if (p_buf)
1463 		strncpy(p_buf, buf, p_buf_len);
1464 	else
1465 		printk("%s", buf);
1466 
1467 	return ret;
1468 }
1469 
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1470 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1471 {
1472 	/*
1473 	 * The VPD identifier type..
1474 	 *
1475 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1476 	 */
1477 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1478 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1479 }
1480 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1481 
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1482 int transport_dump_vpd_ident(
1483 	struct t10_vpd *vpd,
1484 	unsigned char *p_buf,
1485 	int p_buf_len)
1486 {
1487 	unsigned char buf[VPD_TMP_BUF_SIZE];
1488 	int ret = 0;
1489 
1490 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1491 
1492 	switch (vpd->device_identifier_code_set) {
1493 	case 0x01: /* Binary */
1494 		sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1495 			&vpd->device_identifier[0]);
1496 		break;
1497 	case 0x02: /* ASCII */
1498 		sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1499 			&vpd->device_identifier[0]);
1500 		break;
1501 	case 0x03: /* UTF-8 */
1502 		sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1503 			&vpd->device_identifier[0]);
1504 		break;
1505 	default:
1506 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1507 			" 0x%02x", vpd->device_identifier_code_set);
1508 		ret = -1;
1509 		break;
1510 	}
1511 
1512 	if (p_buf)
1513 		strncpy(p_buf, buf, p_buf_len);
1514 	else
1515 		printk("%s", buf);
1516 
1517 	return ret;
1518 }
1519 
1520 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1521 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1522 {
1523 	static const char hex_str[] = "0123456789abcdef";
1524 	int j = 0, i = 4; /* offset to start of the identifer */
1525 
1526 	/*
1527 	 * The VPD Code Set (encoding)
1528 	 *
1529 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1530 	 */
1531 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1532 	switch (vpd->device_identifier_code_set) {
1533 	case 0x01: /* Binary */
1534 		vpd->device_identifier[j++] =
1535 				hex_str[vpd->device_identifier_type];
1536 		while (i < (4 + page_83[3])) {
1537 			vpd->device_identifier[j++] =
1538 				hex_str[(page_83[i] & 0xf0) >> 4];
1539 			vpd->device_identifier[j++] =
1540 				hex_str[page_83[i] & 0x0f];
1541 			i++;
1542 		}
1543 		break;
1544 	case 0x02: /* ASCII */
1545 	case 0x03: /* UTF-8 */
1546 		while (i < (4 + page_83[3]))
1547 			vpd->device_identifier[j++] = page_83[i++];
1548 		break;
1549 	default:
1550 		break;
1551 	}
1552 
1553 	return transport_dump_vpd_ident(vpd, NULL, 0);
1554 }
1555 EXPORT_SYMBOL(transport_set_vpd_ident);
1556 
core_setup_task_attr_emulation(struct se_device * dev)1557 static void core_setup_task_attr_emulation(struct se_device *dev)
1558 {
1559 	/*
1560 	 * If this device is from Target_Core_Mod/pSCSI, disable the
1561 	 * SAM Task Attribute emulation.
1562 	 *
1563 	 * This is currently not available in upsream Linux/SCSI Target
1564 	 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1565 	 */
1566 	if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1567 		dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1568 		return;
1569 	}
1570 
1571 	dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1572 	DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1573 		" device\n", TRANSPORT(dev)->name,
1574 		TRANSPORT(dev)->get_device_rev(dev));
1575 }
1576 
scsi_dump_inquiry(struct se_device * dev)1577 static void scsi_dump_inquiry(struct se_device *dev)
1578 {
1579 	struct t10_wwn *wwn = DEV_T10_WWN(dev);
1580 	int i, device_type;
1581 	/*
1582 	 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1583 	 */
1584 	printk("  Vendor: ");
1585 	for (i = 0; i < 8; i++)
1586 		if (wwn->vendor[i] >= 0x20)
1587 			printk("%c", wwn->vendor[i]);
1588 		else
1589 			printk(" ");
1590 
1591 	printk("  Model: ");
1592 	for (i = 0; i < 16; i++)
1593 		if (wwn->model[i] >= 0x20)
1594 			printk("%c", wwn->model[i]);
1595 		else
1596 			printk(" ");
1597 
1598 	printk("  Revision: ");
1599 	for (i = 0; i < 4; i++)
1600 		if (wwn->revision[i] >= 0x20)
1601 			printk("%c", wwn->revision[i]);
1602 		else
1603 			printk(" ");
1604 
1605 	printk("\n");
1606 
1607 	device_type = TRANSPORT(dev)->get_device_type(dev);
1608 	printk("  Type:   %s ", scsi_device_type(device_type));
1609 	printk("                 ANSI SCSI revision: %02x\n",
1610 				TRANSPORT(dev)->get_device_rev(dev));
1611 }
1612 
transport_add_device_to_core_hba(struct se_hba * hba,struct se_subsystem_api * transport,struct se_subsystem_dev * se_dev,u32 device_flags,void * transport_dev,struct se_dev_limits * dev_limits,const char * inquiry_prod,const char * inquiry_rev)1613 struct se_device *transport_add_device_to_core_hba(
1614 	struct se_hba *hba,
1615 	struct se_subsystem_api *transport,
1616 	struct se_subsystem_dev *se_dev,
1617 	u32 device_flags,
1618 	void *transport_dev,
1619 	struct se_dev_limits *dev_limits,
1620 	const char *inquiry_prod,
1621 	const char *inquiry_rev)
1622 {
1623 	int force_pt;
1624 	struct se_device  *dev;
1625 
1626 	dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1627 	if (!(dev)) {
1628 		printk(KERN_ERR "Unable to allocate memory for se_dev_t\n");
1629 		return NULL;
1630 	}
1631 	dev->dev_queue_obj = kzalloc(sizeof(struct se_queue_obj), GFP_KERNEL);
1632 	if (!(dev->dev_queue_obj)) {
1633 		printk(KERN_ERR "Unable to allocate memory for"
1634 				" dev->dev_queue_obj\n");
1635 		kfree(dev);
1636 		return NULL;
1637 	}
1638 	transport_init_queue_obj(dev->dev_queue_obj);
1639 
1640 	dev->dev_status_queue_obj = kzalloc(sizeof(struct se_queue_obj),
1641 					GFP_KERNEL);
1642 	if (!(dev->dev_status_queue_obj)) {
1643 		printk(KERN_ERR "Unable to allocate memory for"
1644 				" dev->dev_status_queue_obj\n");
1645 		kfree(dev->dev_queue_obj);
1646 		kfree(dev);
1647 		return NULL;
1648 	}
1649 	transport_init_queue_obj(dev->dev_status_queue_obj);
1650 
1651 	dev->dev_flags		= device_flags;
1652 	dev->dev_status		|= TRANSPORT_DEVICE_DEACTIVATED;
1653 	dev->dev_ptr		= (void *) transport_dev;
1654 	dev->se_hba		= hba;
1655 	dev->se_sub_dev		= se_dev;
1656 	dev->transport		= transport;
1657 	atomic_set(&dev->active_cmds, 0);
1658 	INIT_LIST_HEAD(&dev->dev_list);
1659 	INIT_LIST_HEAD(&dev->dev_sep_list);
1660 	INIT_LIST_HEAD(&dev->dev_tmr_list);
1661 	INIT_LIST_HEAD(&dev->execute_task_list);
1662 	INIT_LIST_HEAD(&dev->delayed_cmd_list);
1663 	INIT_LIST_HEAD(&dev->ordered_cmd_list);
1664 	INIT_LIST_HEAD(&dev->state_task_list);
1665 	spin_lock_init(&dev->execute_task_lock);
1666 	spin_lock_init(&dev->delayed_cmd_lock);
1667 	spin_lock_init(&dev->ordered_cmd_lock);
1668 	spin_lock_init(&dev->state_task_lock);
1669 	spin_lock_init(&dev->dev_alua_lock);
1670 	spin_lock_init(&dev->dev_reservation_lock);
1671 	spin_lock_init(&dev->dev_status_lock);
1672 	spin_lock_init(&dev->dev_status_thr_lock);
1673 	spin_lock_init(&dev->se_port_lock);
1674 	spin_lock_init(&dev->se_tmr_lock);
1675 
1676 	dev->queue_depth	= dev_limits->queue_depth;
1677 	atomic_set(&dev->depth_left, dev->queue_depth);
1678 	atomic_set(&dev->dev_ordered_id, 0);
1679 
1680 	se_dev_set_default_attribs(dev, dev_limits);
1681 
1682 	dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1683 	dev->creation_time = get_jiffies_64();
1684 	spin_lock_init(&dev->stats_lock);
1685 
1686 	spin_lock(&hba->device_lock);
1687 	list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1688 	hba->dev_count++;
1689 	spin_unlock(&hba->device_lock);
1690 	/*
1691 	 * Setup the SAM Task Attribute emulation for struct se_device
1692 	 */
1693 	core_setup_task_attr_emulation(dev);
1694 	/*
1695 	 * Force PR and ALUA passthrough emulation with internal object use.
1696 	 */
1697 	force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1698 	/*
1699 	 * Setup the Reservations infrastructure for struct se_device
1700 	 */
1701 	core_setup_reservations(dev, force_pt);
1702 	/*
1703 	 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1704 	 */
1705 	if (core_setup_alua(dev, force_pt) < 0)
1706 		goto out;
1707 
1708 	/*
1709 	 * Startup the struct se_device processing thread
1710 	 */
1711 	dev->process_thread = kthread_run(transport_processing_thread, dev,
1712 					  "LIO_%s", TRANSPORT(dev)->name);
1713 	if (IS_ERR(dev->process_thread)) {
1714 		printk(KERN_ERR "Unable to create kthread: LIO_%s\n",
1715 			TRANSPORT(dev)->name);
1716 		goto out;
1717 	}
1718 
1719 	/*
1720 	 * Preload the initial INQUIRY const values if we are doing
1721 	 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1722 	 * passthrough because this is being provided by the backend LLD.
1723 	 * This is required so that transport_get_inquiry() copies these
1724 	 * originals once back into DEV_T10_WWN(dev) for the virtual device
1725 	 * setup.
1726 	 */
1727 	if (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1728 		if (!(inquiry_prod) || !(inquiry_prod)) {
1729 			printk(KERN_ERR "All non TCM/pSCSI plugins require"
1730 				" INQUIRY consts\n");
1731 			goto out;
1732 		}
1733 
1734 		strncpy(&DEV_T10_WWN(dev)->vendor[0], "LIO-ORG", 8);
1735 		strncpy(&DEV_T10_WWN(dev)->model[0], inquiry_prod, 16);
1736 		strncpy(&DEV_T10_WWN(dev)->revision[0], inquiry_rev, 4);
1737 	}
1738 	scsi_dump_inquiry(dev);
1739 
1740 	return dev;
1741 out:
1742 	kthread_stop(dev->process_thread);
1743 
1744 	spin_lock(&hba->device_lock);
1745 	list_del(&dev->dev_list);
1746 	hba->dev_count--;
1747 	spin_unlock(&hba->device_lock);
1748 
1749 	se_release_vpd_for_dev(dev);
1750 
1751 	kfree(dev->dev_status_queue_obj);
1752 	kfree(dev->dev_queue_obj);
1753 	kfree(dev);
1754 
1755 	return NULL;
1756 }
1757 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1758 
1759 /*	transport_generic_prepare_cdb():
1760  *
1761  *	Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1762  *	contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1763  *	The point of this is since we are mapping iSCSI LUNs to
1764  *	SCSI Target IDs having a non-zero LUN in the CDB will throw the
1765  *	devices and HBAs for a loop.
1766  */
transport_generic_prepare_cdb(unsigned char * cdb)1767 static inline void transport_generic_prepare_cdb(
1768 	unsigned char *cdb)
1769 {
1770 	switch (cdb[0]) {
1771 	case READ_10: /* SBC - RDProtect */
1772 	case READ_12: /* SBC - RDProtect */
1773 	case READ_16: /* SBC - RDProtect */
1774 	case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1775 	case VERIFY: /* SBC - VRProtect */
1776 	case VERIFY_16: /* SBC - VRProtect */
1777 	case WRITE_VERIFY: /* SBC - VRProtect */
1778 	case WRITE_VERIFY_12: /* SBC - VRProtect */
1779 		break;
1780 	default:
1781 		cdb[1] &= 0x1f; /* clear logical unit number */
1782 		break;
1783 	}
1784 }
1785 
1786 static struct se_task *
transport_generic_get_task(struct se_cmd * cmd,enum dma_data_direction data_direction)1787 transport_generic_get_task(struct se_cmd *cmd,
1788 		enum dma_data_direction data_direction)
1789 {
1790 	struct se_task *task;
1791 	struct se_device *dev = SE_DEV(cmd);
1792 	unsigned long flags;
1793 
1794 	task = dev->transport->alloc_task(cmd);
1795 	if (!task) {
1796 		printk(KERN_ERR "Unable to allocate struct se_task\n");
1797 		return NULL;
1798 	}
1799 
1800 	INIT_LIST_HEAD(&task->t_list);
1801 	INIT_LIST_HEAD(&task->t_execute_list);
1802 	INIT_LIST_HEAD(&task->t_state_list);
1803 	init_completion(&task->task_stop_comp);
1804 	task->task_no = T_TASK(cmd)->t_tasks_no++;
1805 	task->task_se_cmd = cmd;
1806 	task->se_dev = dev;
1807 	task->task_data_direction = data_direction;
1808 
1809 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1810 	list_add_tail(&task->t_list, &T_TASK(cmd)->t_task_list);
1811 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1812 
1813 	return task;
1814 }
1815 
1816 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1817 
transport_device_setup_cmd(struct se_cmd * cmd)1818 void transport_device_setup_cmd(struct se_cmd *cmd)
1819 {
1820 	cmd->se_dev = SE_LUN(cmd)->lun_se_dev;
1821 }
1822 EXPORT_SYMBOL(transport_device_setup_cmd);
1823 
1824 /*
1825  * Used by fabric modules containing a local struct se_cmd within their
1826  * fabric dependent per I/O descriptor.
1827  */
transport_init_se_cmd(struct se_cmd * cmd,struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1828 void transport_init_se_cmd(
1829 	struct se_cmd *cmd,
1830 	struct target_core_fabric_ops *tfo,
1831 	struct se_session *se_sess,
1832 	u32 data_length,
1833 	int data_direction,
1834 	int task_attr,
1835 	unsigned char *sense_buffer)
1836 {
1837 	INIT_LIST_HEAD(&cmd->se_lun_list);
1838 	INIT_LIST_HEAD(&cmd->se_delayed_list);
1839 	INIT_LIST_HEAD(&cmd->se_ordered_list);
1840 	/*
1841 	 * Setup t_task pointer to t_task_backstore
1842 	 */
1843 	cmd->t_task = &cmd->t_task_backstore;
1844 
1845 	INIT_LIST_HEAD(&T_TASK(cmd)->t_task_list);
1846 	init_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
1847 	init_completion(&T_TASK(cmd)->transport_lun_stop_comp);
1848 	init_completion(&T_TASK(cmd)->t_transport_stop_comp);
1849 	spin_lock_init(&T_TASK(cmd)->t_state_lock);
1850 	atomic_set(&T_TASK(cmd)->transport_dev_active, 1);
1851 
1852 	cmd->se_tfo = tfo;
1853 	cmd->se_sess = se_sess;
1854 	cmd->data_length = data_length;
1855 	cmd->data_direction = data_direction;
1856 	cmd->sam_task_attr = task_attr;
1857 	cmd->sense_buffer = sense_buffer;
1858 }
1859 EXPORT_SYMBOL(transport_init_se_cmd);
1860 
transport_check_alloc_task_attr(struct se_cmd * cmd)1861 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1862 {
1863 	/*
1864 	 * Check if SAM Task Attribute emulation is enabled for this
1865 	 * struct se_device storage object
1866 	 */
1867 	if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1868 		return 0;
1869 
1870 	if (cmd->sam_task_attr == TASK_ATTR_ACA) {
1871 		DEBUG_STA("SAM Task Attribute ACA"
1872 			" emulation is not supported\n");
1873 		return -1;
1874 	}
1875 	/*
1876 	 * Used to determine when ORDERED commands should go from
1877 	 * Dormant to Active status.
1878 	 */
1879 	cmd->se_ordered_id = atomic_inc_return(&SE_DEV(cmd)->dev_ordered_id);
1880 	smp_mb__after_atomic_inc();
1881 	DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1882 			cmd->se_ordered_id, cmd->sam_task_attr,
1883 			TRANSPORT(cmd->se_dev)->name);
1884 	return 0;
1885 }
1886 
transport_free_se_cmd(struct se_cmd * se_cmd)1887 void transport_free_se_cmd(
1888 	struct se_cmd *se_cmd)
1889 {
1890 	if (se_cmd->se_tmr_req)
1891 		core_tmr_release_req(se_cmd->se_tmr_req);
1892 	/*
1893 	 * Check and free any extended CDB buffer that was allocated
1894 	 */
1895 	if (T_TASK(se_cmd)->t_task_cdb != T_TASK(se_cmd)->__t_task_cdb)
1896 		kfree(T_TASK(se_cmd)->t_task_cdb);
1897 }
1898 EXPORT_SYMBOL(transport_free_se_cmd);
1899 
1900 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1901 
1902 /*	transport_generic_allocate_tasks():
1903  *
1904  *	Called from fabric RX Thread.
1905  */
transport_generic_allocate_tasks(struct se_cmd * cmd,unsigned char * cdb)1906 int transport_generic_allocate_tasks(
1907 	struct se_cmd *cmd,
1908 	unsigned char *cdb)
1909 {
1910 	int ret;
1911 
1912 	transport_generic_prepare_cdb(cdb);
1913 
1914 	/*
1915 	 * This is needed for early exceptions.
1916 	 */
1917 	cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1918 
1919 	transport_device_setup_cmd(cmd);
1920 	/*
1921 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1922 	 * for VARIABLE_LENGTH_CMD
1923 	 */
1924 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1925 		printk(KERN_ERR "Received SCSI CDB with command_size: %d that"
1926 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1927 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1928 		return -1;
1929 	}
1930 	/*
1931 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1932 	 * allocate the additional extended CDB buffer now..  Otherwise
1933 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1934 	 */
1935 	if (scsi_command_size(cdb) > sizeof(T_TASK(cmd)->__t_task_cdb)) {
1936 		T_TASK(cmd)->t_task_cdb = kzalloc(scsi_command_size(cdb),
1937 						GFP_KERNEL);
1938 		if (!(T_TASK(cmd)->t_task_cdb)) {
1939 			printk(KERN_ERR "Unable to allocate T_TASK(cmd)->t_task_cdb"
1940 				" %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n",
1941 				scsi_command_size(cdb),
1942 				(unsigned long)sizeof(T_TASK(cmd)->__t_task_cdb));
1943 			return -1;
1944 		}
1945 	} else
1946 		T_TASK(cmd)->t_task_cdb = &T_TASK(cmd)->__t_task_cdb[0];
1947 	/*
1948 	 * Copy the original CDB into T_TASK(cmd).
1949 	 */
1950 	memcpy(T_TASK(cmd)->t_task_cdb, cdb, scsi_command_size(cdb));
1951 	/*
1952 	 * Setup the received CDB based on SCSI defined opcodes and
1953 	 * perform unit attention, persistent reservations and ALUA
1954 	 * checks for virtual device backends.  The T_TASK(cmd)->t_task_cdb
1955 	 * pointer is expected to be setup before we reach this point.
1956 	 */
1957 	ret = transport_generic_cmd_sequencer(cmd, cdb);
1958 	if (ret < 0)
1959 		return ret;
1960 	/*
1961 	 * Check for SAM Task Attribute Emulation
1962 	 */
1963 	if (transport_check_alloc_task_attr(cmd) < 0) {
1964 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1965 		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1966 		return -2;
1967 	}
1968 	spin_lock(&cmd->se_lun->lun_sep_lock);
1969 	if (cmd->se_lun->lun_sep)
1970 		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1971 	spin_unlock(&cmd->se_lun->lun_sep_lock);
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1975 
1976 /*
1977  * Used by fabric module frontends not defining a TFO->new_cmd_map()
1978  * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1979  */
transport_generic_handle_cdb(struct se_cmd * cmd)1980 int transport_generic_handle_cdb(
1981 	struct se_cmd *cmd)
1982 {
1983 	if (!SE_LUN(cmd)) {
1984 		dump_stack();
1985 		printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
1986 		return -1;
1987 	}
1988 
1989 	transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1990 	return 0;
1991 }
1992 EXPORT_SYMBOL(transport_generic_handle_cdb);
1993 
1994 /*
1995  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1996  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1997  * complete setup in TCM process context w/ TFO->new_cmd_map().
1998  */
transport_generic_handle_cdb_map(struct se_cmd * cmd)1999 int transport_generic_handle_cdb_map(
2000 	struct se_cmd *cmd)
2001 {
2002 	if (!SE_LUN(cmd)) {
2003 		dump_stack();
2004 		printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
2005 		return -1;
2006 	}
2007 
2008 	transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
2009 	return 0;
2010 }
2011 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
2012 
2013 /*	transport_generic_handle_data():
2014  *
2015  *
2016  */
transport_generic_handle_data(struct se_cmd * cmd)2017 int transport_generic_handle_data(
2018 	struct se_cmd *cmd)
2019 {
2020 	/*
2021 	 * For the software fabric case, then we assume the nexus is being
2022 	 * failed/shutdown when signals are pending from the kthread context
2023 	 * caller, so we return a failure.  For the HW target mode case running
2024 	 * in interrupt code, the signal_pending() check is skipped.
2025 	 */
2026 	if (!in_interrupt() && signal_pending(current))
2027 		return -1;
2028 	/*
2029 	 * If the received CDB has aleady been ABORTED by the generic
2030 	 * target engine, we now call transport_check_aborted_status()
2031 	 * to queue any delated TASK_ABORTED status for the received CDB to the
2032 	 * fabric module as we are expecting no further incoming DATA OUT
2033 	 * sequences at this point.
2034 	 */
2035 	if (transport_check_aborted_status(cmd, 1) != 0)
2036 		return 0;
2037 
2038 	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
2039 	return 0;
2040 }
2041 EXPORT_SYMBOL(transport_generic_handle_data);
2042 
2043 /*	transport_generic_handle_tmr():
2044  *
2045  *
2046  */
transport_generic_handle_tmr(struct se_cmd * cmd)2047 int transport_generic_handle_tmr(
2048 	struct se_cmd *cmd)
2049 {
2050 	/*
2051 	 * This is needed for early exceptions.
2052 	 */
2053 	cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
2054 	transport_device_setup_cmd(cmd);
2055 
2056 	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
2057 	return 0;
2058 }
2059 EXPORT_SYMBOL(transport_generic_handle_tmr);
2060 
transport_stop_tasks_for_cmd(struct se_cmd * cmd)2061 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
2062 {
2063 	struct se_task *task, *task_tmp;
2064 	unsigned long flags;
2065 	int ret = 0;
2066 
2067 	DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
2068 		CMD_TFO(cmd)->get_task_tag(cmd));
2069 
2070 	/*
2071 	 * No tasks remain in the execution queue
2072 	 */
2073 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2074 	list_for_each_entry_safe(task, task_tmp,
2075 				&T_TASK(cmd)->t_task_list, t_list) {
2076 		DEBUG_TS("task_no[%d] - Processing task %p\n",
2077 				task->task_no, task);
2078 		/*
2079 		 * If the struct se_task has not been sent and is not active,
2080 		 * remove the struct se_task from the execution queue.
2081 		 */
2082 		if (!atomic_read(&task->task_sent) &&
2083 		    !atomic_read(&task->task_active)) {
2084 			spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2085 					flags);
2086 			transport_remove_task_from_execute_queue(task,
2087 					task->se_dev);
2088 
2089 			DEBUG_TS("task_no[%d] - Removed from execute queue\n",
2090 				task->task_no);
2091 			spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2092 			continue;
2093 		}
2094 
2095 		/*
2096 		 * If the struct se_task is active, sleep until it is returned
2097 		 * from the plugin.
2098 		 */
2099 		if (atomic_read(&task->task_active)) {
2100 			atomic_set(&task->task_stop, 1);
2101 			spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2102 					flags);
2103 
2104 			DEBUG_TS("task_no[%d] - Waiting to complete\n",
2105 				task->task_no);
2106 			wait_for_completion(&task->task_stop_comp);
2107 			DEBUG_TS("task_no[%d] - Stopped successfully\n",
2108 				task->task_no);
2109 
2110 			spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2111 			atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
2112 
2113 			atomic_set(&task->task_active, 0);
2114 			atomic_set(&task->task_stop, 0);
2115 		} else {
2116 			DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no);
2117 			ret++;
2118 		}
2119 
2120 		__transport_stop_task_timer(task, &flags);
2121 	}
2122 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2123 
2124 	return ret;
2125 }
2126 
transport_failure_reset_queue_depth(struct se_device * dev)2127 static void transport_failure_reset_queue_depth(struct se_device *dev)
2128 {
2129 	unsigned long flags;
2130 
2131 	spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);;
2132 	atomic_inc(&dev->depth_left);
2133 	atomic_inc(&SE_HBA(dev)->left_queue_depth);
2134 	spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2135 }
2136 
2137 /*
2138  * Handle SAM-esque emulation for generic transport request failures.
2139  */
transport_generic_request_failure(struct se_cmd * cmd,struct se_device * dev,int complete,int sc)2140 static void transport_generic_request_failure(
2141 	struct se_cmd *cmd,
2142 	struct se_device *dev,
2143 	int complete,
2144 	int sc)
2145 {
2146 	DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2147 		" CDB: 0x%02x\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
2148 		T_TASK(cmd)->t_task_cdb[0]);
2149 	DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2150 		" %d/%d transport_error_status: %d\n",
2151 		CMD_TFO(cmd)->get_cmd_state(cmd),
2152 		cmd->t_state, cmd->deferred_t_state,
2153 		cmd->transport_error_status);
2154 	DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2155 		" t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2156 		" t_transport_active: %d t_transport_stop: %d"
2157 		" t_transport_sent: %d\n", T_TASK(cmd)->t_task_cdbs,
2158 		atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
2159 		atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
2160 		atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left),
2161 		atomic_read(&T_TASK(cmd)->t_transport_active),
2162 		atomic_read(&T_TASK(cmd)->t_transport_stop),
2163 		atomic_read(&T_TASK(cmd)->t_transport_sent));
2164 
2165 	transport_stop_all_task_timers(cmd);
2166 
2167 	if (dev)
2168 		transport_failure_reset_queue_depth(dev);
2169 	/*
2170 	 * For SAM Task Attribute emulation for failed struct se_cmd
2171 	 */
2172 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2173 		transport_complete_task_attr(cmd);
2174 
2175 	if (complete) {
2176 		transport_direct_request_timeout(cmd);
2177 		cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2178 	}
2179 
2180 	switch (cmd->transport_error_status) {
2181 	case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
2182 		cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2183 		break;
2184 	case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
2185 		cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
2186 		break;
2187 	case PYX_TRANSPORT_INVALID_CDB_FIELD:
2188 		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2189 		break;
2190 	case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
2191 		cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
2192 		break;
2193 	case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
2194 		if (!sc)
2195 			transport_new_cmd_failure(cmd);
2196 		/*
2197 		 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2198 		 * we force this session to fall back to session
2199 		 * recovery.
2200 		 */
2201 		CMD_TFO(cmd)->fall_back_to_erl0(cmd->se_sess);
2202 		CMD_TFO(cmd)->stop_session(cmd->se_sess, 0, 0);
2203 
2204 		goto check_stop;
2205 	case PYX_TRANSPORT_LU_COMM_FAILURE:
2206 	case PYX_TRANSPORT_ILLEGAL_REQUEST:
2207 		cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2208 		break;
2209 	case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2210 		cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2211 		break;
2212 	case PYX_TRANSPORT_WRITE_PROTECTED:
2213 		cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2214 		break;
2215 	case PYX_TRANSPORT_RESERVATION_CONFLICT:
2216 		/*
2217 		 * No SENSE Data payload for this case, set SCSI Status
2218 		 * and queue the response to $FABRIC_MOD.
2219 		 *
2220 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
2221 		 */
2222 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2223 		/*
2224 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2225 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2226 		 * CONFLICT STATUS.
2227 		 *
2228 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2229 		 */
2230 		if (SE_SESS(cmd) &&
2231 		    DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
2232 			core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
2233 				cmd->orig_fe_lun, 0x2C,
2234 				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2235 
2236 		CMD_TFO(cmd)->queue_status(cmd);
2237 		goto check_stop;
2238 	case PYX_TRANSPORT_USE_SENSE_REASON:
2239 		/*
2240 		 * struct se_cmd->scsi_sense_reason already set
2241 		 */
2242 		break;
2243 	default:
2244 		printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n",
2245 			T_TASK(cmd)->t_task_cdb[0],
2246 			cmd->transport_error_status);
2247 		cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2248 		break;
2249 	}
2250 
2251 	if (!sc)
2252 		transport_new_cmd_failure(cmd);
2253 	else
2254 		transport_send_check_condition_and_sense(cmd,
2255 			cmd->scsi_sense_reason, 0);
2256 check_stop:
2257 	transport_lun_remove_cmd(cmd);
2258 	if (!(transport_cmd_check_stop_to_fabric(cmd)))
2259 		;
2260 }
2261 
transport_direct_request_timeout(struct se_cmd * cmd)2262 static void transport_direct_request_timeout(struct se_cmd *cmd)
2263 {
2264 	unsigned long flags;
2265 
2266 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2267 	if (!(atomic_read(&T_TASK(cmd)->t_transport_timeout))) {
2268 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2269 		return;
2270 	}
2271 	if (atomic_read(&T_TASK(cmd)->t_task_cdbs_timeout_left)) {
2272 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2273 		return;
2274 	}
2275 
2276 	atomic_sub(atomic_read(&T_TASK(cmd)->t_transport_timeout),
2277 		   &T_TASK(cmd)->t_se_count);
2278 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2279 }
2280 
transport_generic_request_timeout(struct se_cmd * cmd)2281 static void transport_generic_request_timeout(struct se_cmd *cmd)
2282 {
2283 	unsigned long flags;
2284 
2285 	/*
2286 	 * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove()
2287 	 * to allow last call to free memory resources.
2288 	 */
2289 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2290 	if (atomic_read(&T_TASK(cmd)->t_transport_timeout) > 1) {
2291 		int tmp = (atomic_read(&T_TASK(cmd)->t_transport_timeout) - 1);
2292 
2293 		atomic_sub(tmp, &T_TASK(cmd)->t_se_count);
2294 	}
2295 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2296 
2297 	transport_generic_remove(cmd, 0, 0);
2298 }
2299 
2300 static int
transport_generic_allocate_buf(struct se_cmd * cmd,u32 data_length)2301 transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length)
2302 {
2303 	unsigned char *buf;
2304 
2305 	buf = kzalloc(data_length, GFP_KERNEL);
2306 	if (!(buf)) {
2307 		printk(KERN_ERR "Unable to allocate memory for buffer\n");
2308 		return -1;
2309 	}
2310 
2311 	T_TASK(cmd)->t_tasks_se_num = 0;
2312 	T_TASK(cmd)->t_task_buf = buf;
2313 
2314 	return 0;
2315 }
2316 
transport_lba_21(unsigned char * cdb)2317 static inline u32 transport_lba_21(unsigned char *cdb)
2318 {
2319 	return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2320 }
2321 
transport_lba_32(unsigned char * cdb)2322 static inline u32 transport_lba_32(unsigned char *cdb)
2323 {
2324 	return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2325 }
2326 
transport_lba_64(unsigned char * cdb)2327 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2328 {
2329 	unsigned int __v1, __v2;
2330 
2331 	__v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2332 	__v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2333 
2334 	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2335 }
2336 
2337 /*
2338  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2339  */
transport_lba_64_ext(unsigned char * cdb)2340 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2341 {
2342 	unsigned int __v1, __v2;
2343 
2344 	__v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2345 	__v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2346 
2347 	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2348 }
2349 
transport_set_supported_SAM_opcode(struct se_cmd * se_cmd)2350 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2351 {
2352 	unsigned long flags;
2353 
2354 	spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2355 	se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2356 	spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2357 }
2358 
2359 /*
2360  * Called from interrupt context.
2361  */
transport_task_timeout_handler(unsigned long data)2362 static void transport_task_timeout_handler(unsigned long data)
2363 {
2364 	struct se_task *task = (struct se_task *)data;
2365 	struct se_cmd *cmd = TASK_CMD(task);
2366 	unsigned long flags;
2367 
2368 	DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2369 
2370 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2371 	if (task->task_flags & TF_STOP) {
2372 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2373 		return;
2374 	}
2375 	task->task_flags &= ~TF_RUNNING;
2376 
2377 	/*
2378 	 * Determine if transport_complete_task() has already been called.
2379 	 */
2380 	if (!(atomic_read(&task->task_active))) {
2381 		DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2382 				" == 0\n", task, cmd);
2383 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2384 		return;
2385 	}
2386 
2387 	atomic_inc(&T_TASK(cmd)->t_se_count);
2388 	atomic_inc(&T_TASK(cmd)->t_transport_timeout);
2389 	T_TASK(cmd)->t_tasks_failed = 1;
2390 
2391 	atomic_set(&task->task_timeout, 1);
2392 	task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2393 	task->task_scsi_status = 1;
2394 
2395 	if (atomic_read(&task->task_stop)) {
2396 		DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2397 				" == 1\n", task, cmd);
2398 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2399 		complete(&task->task_stop_comp);
2400 		return;
2401 	}
2402 
2403 	if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
2404 		DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2405 				" t_task_cdbs_left\n", task, cmd);
2406 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2407 		return;
2408 	}
2409 	DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2410 			task, cmd);
2411 
2412 	cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2413 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2414 
2415 	transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2416 }
2417 
2418 /*
2419  * Called with T_TASK(cmd)->t_state_lock held.
2420  */
transport_start_task_timer(struct se_task * task)2421 static void transport_start_task_timer(struct se_task *task)
2422 {
2423 	struct se_device *dev = task->se_dev;
2424 	int timeout;
2425 
2426 	if (task->task_flags & TF_RUNNING)
2427 		return;
2428 	/*
2429 	 * If the task_timeout is disabled, exit now.
2430 	 */
2431 	timeout = DEV_ATTRIB(dev)->task_timeout;
2432 	if (!(timeout))
2433 		return;
2434 
2435 	init_timer(&task->task_timer);
2436 	task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2437 	task->task_timer.data = (unsigned long) task;
2438 	task->task_timer.function = transport_task_timeout_handler;
2439 
2440 	task->task_flags |= TF_RUNNING;
2441 	add_timer(&task->task_timer);
2442 #if 0
2443 	printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:"
2444 		" %d\n", task->task_se_cmd, task, timeout);
2445 #endif
2446 }
2447 
2448 /*
2449  * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held.
2450  */
__transport_stop_task_timer(struct se_task * task,unsigned long * flags)2451 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2452 {
2453 	struct se_cmd *cmd = TASK_CMD(task);
2454 
2455 	if (!(task->task_flags & TF_RUNNING))
2456 		return;
2457 
2458 	task->task_flags |= TF_STOP;
2459 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, *flags);
2460 
2461 	del_timer_sync(&task->task_timer);
2462 
2463 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, *flags);
2464 	task->task_flags &= ~TF_RUNNING;
2465 	task->task_flags &= ~TF_STOP;
2466 }
2467 
transport_stop_all_task_timers(struct se_cmd * cmd)2468 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2469 {
2470 	struct se_task *task = NULL, *task_tmp;
2471 	unsigned long flags;
2472 
2473 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2474 	list_for_each_entry_safe(task, task_tmp,
2475 				&T_TASK(cmd)->t_task_list, t_list)
2476 		__transport_stop_task_timer(task, &flags);
2477 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2478 }
2479 
transport_tcq_window_closed(struct se_device * dev)2480 static inline int transport_tcq_window_closed(struct se_device *dev)
2481 {
2482 	if (dev->dev_tcq_window_closed++ <
2483 			PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2484 		msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2485 	} else
2486 		msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2487 
2488 	wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
2489 	return 0;
2490 }
2491 
2492 /*
2493  * Called from Fabric Module context from transport_execute_tasks()
2494  *
2495  * The return of this function determins if the tasks from struct se_cmd
2496  * get added to the execution queue in transport_execute_tasks(),
2497  * or are added to the delayed or ordered lists here.
2498  */
transport_execute_task_attr(struct se_cmd * cmd)2499 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2500 {
2501 	if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2502 		return 1;
2503 	/*
2504 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2505 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
2506 	 */
2507 	 if (cmd->sam_task_attr == TASK_ATTR_HOQ) {
2508 		atomic_inc(&SE_DEV(cmd)->dev_hoq_count);
2509 		smp_mb__after_atomic_inc();
2510 		DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2511 			" 0x%02x, se_ordered_id: %u\n",
2512 			T_TASK(cmd)->t_task_cdb[0],
2513 			cmd->se_ordered_id);
2514 		return 1;
2515 	} else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) {
2516 		spin_lock(&SE_DEV(cmd)->ordered_cmd_lock);
2517 		list_add_tail(&cmd->se_ordered_list,
2518 				&SE_DEV(cmd)->ordered_cmd_list);
2519 		spin_unlock(&SE_DEV(cmd)->ordered_cmd_lock);
2520 
2521 		atomic_inc(&SE_DEV(cmd)->dev_ordered_sync);
2522 		smp_mb__after_atomic_inc();
2523 
2524 		DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2525 				" list, se_ordered_id: %u\n",
2526 				T_TASK(cmd)->t_task_cdb[0],
2527 				cmd->se_ordered_id);
2528 		/*
2529 		 * Add ORDERED command to tail of execution queue if
2530 		 * no other older commands exist that need to be
2531 		 * completed first.
2532 		 */
2533 		if (!(atomic_read(&SE_DEV(cmd)->simple_cmds)))
2534 			return 1;
2535 	} else {
2536 		/*
2537 		 * For SIMPLE and UNTAGGED Task Attribute commands
2538 		 */
2539 		atomic_inc(&SE_DEV(cmd)->simple_cmds);
2540 		smp_mb__after_atomic_inc();
2541 	}
2542 	/*
2543 	 * Otherwise if one or more outstanding ORDERED task attribute exist,
2544 	 * add the dormant task(s) built for the passed struct se_cmd to the
2545 	 * execution queue and become in Active state for this struct se_device.
2546 	 */
2547 	if (atomic_read(&SE_DEV(cmd)->dev_ordered_sync) != 0) {
2548 		/*
2549 		 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2550 		 * will be drained upon completion of HEAD_OF_QUEUE task.
2551 		 */
2552 		spin_lock(&SE_DEV(cmd)->delayed_cmd_lock);
2553 		cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2554 		list_add_tail(&cmd->se_delayed_list,
2555 				&SE_DEV(cmd)->delayed_cmd_list);
2556 		spin_unlock(&SE_DEV(cmd)->delayed_cmd_lock);
2557 
2558 		DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2559 			" delayed CMD list, se_ordered_id: %u\n",
2560 			T_TASK(cmd)->t_task_cdb[0], cmd->sam_task_attr,
2561 			cmd->se_ordered_id);
2562 		/*
2563 		 * Return zero to let transport_execute_tasks() know
2564 		 * not to add the delayed tasks to the execution list.
2565 		 */
2566 		return 0;
2567 	}
2568 	/*
2569 	 * Otherwise, no ORDERED task attributes exist..
2570 	 */
2571 	return 1;
2572 }
2573 
2574 /*
2575  * Called from fabric module context in transport_generic_new_cmd() and
2576  * transport_generic_process_write()
2577  */
transport_execute_tasks(struct se_cmd * cmd)2578 static int transport_execute_tasks(struct se_cmd *cmd)
2579 {
2580 	int add_tasks;
2581 
2582 	if (!(cmd->se_cmd_flags & SCF_SE_DISABLE_ONLINE_CHECK)) {
2583 		if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2584 			cmd->transport_error_status =
2585 				PYX_TRANSPORT_LU_COMM_FAILURE;
2586 			transport_generic_request_failure(cmd, NULL, 0, 1);
2587 			return 0;
2588 		}
2589 	}
2590 	/*
2591 	 * Call transport_cmd_check_stop() to see if a fabric exception
2592 	 * has occurred that prevents execution.
2593 	 */
2594 	if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) {
2595 		/*
2596 		 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2597 		 * attribute for the tasks of the received struct se_cmd CDB
2598 		 */
2599 		add_tasks = transport_execute_task_attr(cmd);
2600 		if (add_tasks == 0)
2601 			goto execute_tasks;
2602 		/*
2603 		 * This calls transport_add_tasks_from_cmd() to handle
2604 		 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2605 		 * (if enabled) in __transport_add_task_to_execute_queue() and
2606 		 * transport_add_task_check_sam_attr().
2607 		 */
2608 		transport_add_tasks_from_cmd(cmd);
2609 	}
2610 	/*
2611 	 * Kick the execution queue for the cmd associated struct se_device
2612 	 * storage object.
2613 	 */
2614 execute_tasks:
2615 	__transport_execute_tasks(SE_DEV(cmd));
2616 	return 0;
2617 }
2618 
2619 /*
2620  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2621  * from struct se_device->execute_task_list and
2622  *
2623  * Called from transport_processing_thread()
2624  */
__transport_execute_tasks(struct se_device * dev)2625 static int __transport_execute_tasks(struct se_device *dev)
2626 {
2627 	int error;
2628 	struct se_cmd *cmd = NULL;
2629 	struct se_task *task;
2630 	unsigned long flags;
2631 
2632 	/*
2633 	 * Check if there is enough room in the device and HBA queue to send
2634 	 * struct se_transport_task's to the selected transport.
2635 	 */
2636 check_depth:
2637 	spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
2638 	if (!(atomic_read(&dev->depth_left)) ||
2639 	    !(atomic_read(&SE_HBA(dev)->left_queue_depth))) {
2640 		spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2641 		return transport_tcq_window_closed(dev);
2642 	}
2643 	dev->dev_tcq_window_closed = 0;
2644 
2645 	spin_lock(&dev->execute_task_lock);
2646 	task = transport_get_task_from_execute_queue(dev);
2647 	spin_unlock(&dev->execute_task_lock);
2648 
2649 	if (!task) {
2650 		spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2651 		return 0;
2652 	}
2653 
2654 	atomic_dec(&dev->depth_left);
2655 	atomic_dec(&SE_HBA(dev)->left_queue_depth);
2656 	spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2657 
2658 	cmd = TASK_CMD(task);
2659 
2660 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2661 	atomic_set(&task->task_active, 1);
2662 	atomic_set(&task->task_sent, 1);
2663 	atomic_inc(&T_TASK(cmd)->t_task_cdbs_sent);
2664 
2665 	if (atomic_read(&T_TASK(cmd)->t_task_cdbs_sent) ==
2666 	    T_TASK(cmd)->t_task_cdbs)
2667 		atomic_set(&cmd->transport_sent, 1);
2668 
2669 	transport_start_task_timer(task);
2670 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2671 	/*
2672 	 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2673 	 * to grab REPORT_LUNS CDBs before they hit the
2674 	 * struct se_subsystem_api->do_task() caller below.
2675 	 */
2676 	if (cmd->transport_emulate_cdb) {
2677 		error = cmd->transport_emulate_cdb(cmd);
2678 		if (error != 0) {
2679 			cmd->transport_error_status = error;
2680 			atomic_set(&task->task_active, 0);
2681 			atomic_set(&cmd->transport_sent, 0);
2682 			transport_stop_tasks_for_cmd(cmd);
2683 			transport_generic_request_failure(cmd, dev, 0, 1);
2684 			goto check_depth;
2685 		}
2686 		/*
2687 		 * Handle the successful completion for transport_emulate_cdb()
2688 		 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2689 		 * Otherwise the caller is expected to complete the task with
2690 		 * proper status.
2691 		 */
2692 		if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2693 			cmd->scsi_status = SAM_STAT_GOOD;
2694 			task->task_scsi_status = GOOD;
2695 			transport_complete_task(task, 1);
2696 		}
2697 	} else {
2698 		/*
2699 		 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2700 		 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2701 		 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2702 		 * LUN emulation code.
2703 		 *
2704 		 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2705 		 * call ->do_task() directly and let the underlying TCM subsystem plugin
2706 		 * code handle the CDB emulation.
2707 		 */
2708 		if ((TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2709 		    (!(TASK_CMD(task)->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2710 			error = transport_emulate_control_cdb(task);
2711 		else
2712 			error = TRANSPORT(dev)->do_task(task);
2713 
2714 		if (error != 0) {
2715 			cmd->transport_error_status = error;
2716 			atomic_set(&task->task_active, 0);
2717 			atomic_set(&cmd->transport_sent, 0);
2718 			transport_stop_tasks_for_cmd(cmd);
2719 			transport_generic_request_failure(cmd, dev, 0, 1);
2720 		}
2721 	}
2722 
2723 	goto check_depth;
2724 
2725 	return 0;
2726 }
2727 
transport_new_cmd_failure(struct se_cmd * se_cmd)2728 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2729 {
2730 	unsigned long flags;
2731 	/*
2732 	 * Any unsolicited data will get dumped for failed command inside of
2733 	 * the fabric plugin
2734 	 */
2735 	spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2736 	se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2737 	se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2738 	spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2739 
2740 	CMD_TFO(se_cmd)->new_cmd_failure(se_cmd);
2741 }
2742 
2743 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2744 
transport_get_sectors_6(unsigned char * cdb,struct se_cmd * cmd,int * ret)2745 static inline u32 transport_get_sectors_6(
2746 	unsigned char *cdb,
2747 	struct se_cmd *cmd,
2748 	int *ret)
2749 {
2750 	struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2751 
2752 	/*
2753 	 * Assume TYPE_DISK for non struct se_device objects.
2754 	 * Use 8-bit sector value.
2755 	 */
2756 	if (!dev)
2757 		goto type_disk;
2758 
2759 	/*
2760 	 * Use 24-bit allocation length for TYPE_TAPE.
2761 	 */
2762 	if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2763 		return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2764 
2765 	/*
2766 	 * Everything else assume TYPE_DISK Sector CDB location.
2767 	 * Use 8-bit sector value.
2768 	 */
2769 type_disk:
2770 	return (u32)cdb[4];
2771 }
2772 
transport_get_sectors_10(unsigned char * cdb,struct se_cmd * cmd,int * ret)2773 static inline u32 transport_get_sectors_10(
2774 	unsigned char *cdb,
2775 	struct se_cmd *cmd,
2776 	int *ret)
2777 {
2778 	struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2779 
2780 	/*
2781 	 * Assume TYPE_DISK for non struct se_device objects.
2782 	 * Use 16-bit sector value.
2783 	 */
2784 	if (!dev)
2785 		goto type_disk;
2786 
2787 	/*
2788 	 * XXX_10 is not defined in SSC, throw an exception
2789 	 */
2790 	if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2791 		*ret = -1;
2792 		return 0;
2793 	}
2794 
2795 	/*
2796 	 * Everything else assume TYPE_DISK Sector CDB location.
2797 	 * Use 16-bit sector value.
2798 	 */
2799 type_disk:
2800 	return (u32)(cdb[7] << 8) + cdb[8];
2801 }
2802 
transport_get_sectors_12(unsigned char * cdb,struct se_cmd * cmd,int * ret)2803 static inline u32 transport_get_sectors_12(
2804 	unsigned char *cdb,
2805 	struct se_cmd *cmd,
2806 	int *ret)
2807 {
2808 	struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2809 
2810 	/*
2811 	 * Assume TYPE_DISK for non struct se_device objects.
2812 	 * Use 32-bit sector value.
2813 	 */
2814 	if (!dev)
2815 		goto type_disk;
2816 
2817 	/*
2818 	 * XXX_12 is not defined in SSC, throw an exception
2819 	 */
2820 	if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2821 		*ret = -1;
2822 		return 0;
2823 	}
2824 
2825 	/*
2826 	 * Everything else assume TYPE_DISK Sector CDB location.
2827 	 * Use 32-bit sector value.
2828 	 */
2829 type_disk:
2830 	return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2831 }
2832 
transport_get_sectors_16(unsigned char * cdb,struct se_cmd * cmd,int * ret)2833 static inline u32 transport_get_sectors_16(
2834 	unsigned char *cdb,
2835 	struct se_cmd *cmd,
2836 	int *ret)
2837 {
2838 	struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2839 
2840 	/*
2841 	 * Assume TYPE_DISK for non struct se_device objects.
2842 	 * Use 32-bit sector value.
2843 	 */
2844 	if (!dev)
2845 		goto type_disk;
2846 
2847 	/*
2848 	 * Use 24-bit allocation length for TYPE_TAPE.
2849 	 */
2850 	if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2851 		return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2852 
2853 type_disk:
2854 	return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2855 		    (cdb[12] << 8) + cdb[13];
2856 }
2857 
2858 /*
2859  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2860  */
transport_get_sectors_32(unsigned char * cdb,struct se_cmd * cmd,int * ret)2861 static inline u32 transport_get_sectors_32(
2862 	unsigned char *cdb,
2863 	struct se_cmd *cmd,
2864 	int *ret)
2865 {
2866 	/*
2867 	 * Assume TYPE_DISK for non struct se_device objects.
2868 	 * Use 32-bit sector value.
2869 	 */
2870 	return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2871 		    (cdb[30] << 8) + cdb[31];
2872 
2873 }
2874 
transport_get_size(u32 sectors,unsigned char * cdb,struct se_cmd * cmd)2875 static inline u32 transport_get_size(
2876 	u32 sectors,
2877 	unsigned char *cdb,
2878 	struct se_cmd *cmd)
2879 {
2880 	struct se_device *dev = SE_DEV(cmd);
2881 
2882 	if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2883 		if (cdb[1] & 1) { /* sectors */
2884 			return DEV_ATTRIB(dev)->block_size * sectors;
2885 		} else /* bytes */
2886 			return sectors;
2887 	}
2888 #if 0
2889 	printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for"
2890 			" %s object\n", DEV_ATTRIB(dev)->block_size, sectors,
2891 			DEV_ATTRIB(dev)->block_size * sectors,
2892 			TRANSPORT(dev)->name);
2893 #endif
2894 	return DEV_ATTRIB(dev)->block_size * sectors;
2895 }
2896 
transport_asciihex_to_binaryhex(unsigned char val[2])2897 unsigned char transport_asciihex_to_binaryhex(unsigned char val[2])
2898 {
2899 	unsigned char result = 0;
2900 	/*
2901 	 * MSB
2902 	 */
2903 	if ((val[0] >= 'a') && (val[0] <= 'f'))
2904 		result = ((val[0] - 'a' + 10) & 0xf) << 4;
2905 	else
2906 		if ((val[0] >= 'A') && (val[0] <= 'F'))
2907 			result = ((val[0] - 'A' + 10) & 0xf) << 4;
2908 		else /* digit */
2909 			result = ((val[0] - '0') & 0xf) << 4;
2910 	/*
2911 	 * LSB
2912 	 */
2913 	if ((val[1] >= 'a') && (val[1] <= 'f'))
2914 		result |= ((val[1] - 'a' + 10) & 0xf);
2915 	else
2916 		if ((val[1] >= 'A') && (val[1] <= 'F'))
2917 			result |= ((val[1] - 'A' + 10) & 0xf);
2918 		else /* digit */
2919 			result |= ((val[1] - '0') & 0xf);
2920 
2921 	return result;
2922 }
2923 EXPORT_SYMBOL(transport_asciihex_to_binaryhex);
2924 
transport_xor_callback(struct se_cmd * cmd)2925 static void transport_xor_callback(struct se_cmd *cmd)
2926 {
2927 	unsigned char *buf, *addr;
2928 	struct se_mem *se_mem;
2929 	unsigned int offset;
2930 	int i;
2931 	/*
2932 	 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2933 	 *
2934 	 * 1) read the specified logical block(s);
2935 	 * 2) transfer logical blocks from the data-out buffer;
2936 	 * 3) XOR the logical blocks transferred from the data-out buffer with
2937 	 *    the logical blocks read, storing the resulting XOR data in a buffer;
2938 	 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2939 	 *    blocks transferred from the data-out buffer; and
2940 	 * 5) transfer the resulting XOR data to the data-in buffer.
2941 	 */
2942 	buf = kmalloc(cmd->data_length, GFP_KERNEL);
2943 	if (!(buf)) {
2944 		printk(KERN_ERR "Unable to allocate xor_callback buf\n");
2945 		return;
2946 	}
2947 	/*
2948 	 * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list
2949 	 * into the locally allocated *buf
2950 	 */
2951 	transport_memcpy_se_mem_read_contig(cmd, buf, T_TASK(cmd)->t_mem_list);
2952 	/*
2953 	 * Now perform the XOR against the BIDI read memory located at
2954 	 * T_TASK(cmd)->t_mem_bidi_list
2955 	 */
2956 
2957 	offset = 0;
2958 	list_for_each_entry(se_mem, T_TASK(cmd)->t_mem_bidi_list, se_list) {
2959 		addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0);
2960 		if (!(addr))
2961 			goto out;
2962 
2963 		for (i = 0; i < se_mem->se_len; i++)
2964 			*(addr + se_mem->se_off + i) ^= *(buf + offset + i);
2965 
2966 		offset += se_mem->se_len;
2967 		kunmap_atomic(addr, KM_USER0);
2968 	}
2969 out:
2970 	kfree(buf);
2971 }
2972 
2973 /*
2974  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2975  */
transport_get_sense_data(struct se_cmd * cmd)2976 static int transport_get_sense_data(struct se_cmd *cmd)
2977 {
2978 	unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2979 	struct se_device *dev;
2980 	struct se_task *task = NULL, *task_tmp;
2981 	unsigned long flags;
2982 	u32 offset = 0;
2983 
2984 	if (!SE_LUN(cmd)) {
2985 		printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
2986 		return -1;
2987 	}
2988 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2989 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2990 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2991 		return 0;
2992 	}
2993 
2994 	list_for_each_entry_safe(task, task_tmp,
2995 				&T_TASK(cmd)->t_task_list, t_list) {
2996 
2997 		if (!task->task_sense)
2998 			continue;
2999 
3000 		dev = task->se_dev;
3001 		if (!(dev))
3002 			continue;
3003 
3004 		if (!TRANSPORT(dev)->get_sense_buffer) {
3005 			printk(KERN_ERR "TRANSPORT(dev)->get_sense_buffer"
3006 					" is NULL\n");
3007 			continue;
3008 		}
3009 
3010 		sense_buffer = TRANSPORT(dev)->get_sense_buffer(task);
3011 		if (!(sense_buffer)) {
3012 			printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate"
3013 				" sense buffer for task with sense\n",
3014 				CMD_TFO(cmd)->get_task_tag(cmd), task->task_no);
3015 			continue;
3016 		}
3017 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3018 
3019 		offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
3020 				TRANSPORT_SENSE_BUFFER);
3021 
3022 		memcpy((void *)&buffer[offset], (void *)sense_buffer,
3023 				TRANSPORT_SENSE_BUFFER);
3024 		cmd->scsi_status = task->task_scsi_status;
3025 		/* Automatically padded */
3026 		cmd->scsi_sense_length =
3027 				(TRANSPORT_SENSE_BUFFER + offset);
3028 
3029 		printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
3030 				" and sense\n",
3031 			dev->se_hba->hba_id, TRANSPORT(dev)->name,
3032 				cmd->scsi_status);
3033 		return 0;
3034 	}
3035 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3036 
3037 	return -1;
3038 }
3039 
transport_allocate_resources(struct se_cmd * cmd)3040 static int transport_allocate_resources(struct se_cmd *cmd)
3041 {
3042 	u32 length = cmd->data_length;
3043 
3044 	if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3045 	    (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB))
3046 		return transport_generic_get_mem(cmd, length, PAGE_SIZE);
3047 	else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB)
3048 		return transport_generic_allocate_buf(cmd, length);
3049 	else
3050 		return 0;
3051 }
3052 
3053 static int
transport_handle_reservation_conflict(struct se_cmd * cmd)3054 transport_handle_reservation_conflict(struct se_cmd *cmd)
3055 {
3056 	cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3057 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3058 	cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
3059 	cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
3060 	/*
3061 	 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
3062 	 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
3063 	 * CONFLICT STATUS.
3064 	 *
3065 	 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
3066 	 */
3067 	if (SE_SESS(cmd) &&
3068 	    DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
3069 		core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
3070 			cmd->orig_fe_lun, 0x2C,
3071 			ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
3072 	return -2;
3073 }
3074 
3075 /*	transport_generic_cmd_sequencer():
3076  *
3077  *	Generic Command Sequencer that should work for most DAS transport
3078  *	drivers.
3079  *
3080  *	Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
3081  *	RX Thread.
3082  *
3083  *	FIXME: Need to support other SCSI OPCODES where as well.
3084  */
transport_generic_cmd_sequencer(struct se_cmd * cmd,unsigned char * cdb)3085 static int transport_generic_cmd_sequencer(
3086 	struct se_cmd *cmd,
3087 	unsigned char *cdb)
3088 {
3089 	struct se_device *dev = SE_DEV(cmd);
3090 	struct se_subsystem_dev *su_dev = dev->se_sub_dev;
3091 	int ret = 0, sector_ret = 0, passthrough;
3092 	u32 sectors = 0, size = 0, pr_reg_type = 0;
3093 	u16 service_action;
3094 	u8 alua_ascq = 0;
3095 	/*
3096 	 * Check for an existing UNIT ATTENTION condition
3097 	 */
3098 	if (core_scsi3_ua_check(cmd, cdb) < 0) {
3099 		cmd->transport_wait_for_tasks =
3100 				&transport_nop_wait_for_tasks;
3101 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3102 		cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
3103 		return -2;
3104 	}
3105 	/*
3106 	 * Check status of Asymmetric Logical Unit Assignment port
3107 	 */
3108 	ret = T10_ALUA(su_dev)->alua_state_check(cmd, cdb, &alua_ascq);
3109 	if (ret != 0) {
3110 		cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3111 		/*
3112 		 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
3113 		 * The ALUA additional sense code qualifier (ASCQ) is determined
3114 		 * by the ALUA primary or secondary access state..
3115 		 */
3116 		if (ret > 0) {
3117 #if 0
3118 			printk(KERN_INFO "[%s]: ALUA TG Port not available,"
3119 				" SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
3120 				CMD_TFO(cmd)->get_fabric_name(), alua_ascq);
3121 #endif
3122 			transport_set_sense_codes(cmd, 0x04, alua_ascq);
3123 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3124 			cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
3125 			return -2;
3126 		}
3127 		goto out_invalid_cdb_field;
3128 	}
3129 	/*
3130 	 * Check status for SPC-3 Persistent Reservations
3131 	 */
3132 	if (T10_PR_OPS(su_dev)->t10_reservation_check(cmd, &pr_reg_type) != 0) {
3133 		if (T10_PR_OPS(su_dev)->t10_seq_non_holder(
3134 					cmd, cdb, pr_reg_type) != 0)
3135 			return transport_handle_reservation_conflict(cmd);
3136 		/*
3137 		 * This means the CDB is allowed for the SCSI Initiator port
3138 		 * when said port is *NOT* holding the legacy SPC-2 or
3139 		 * SPC-3 Persistent Reservation.
3140 		 */
3141 	}
3142 
3143 	switch (cdb[0]) {
3144 	case READ_6:
3145 		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3146 		if (sector_ret)
3147 			goto out_unsupported_cdb;
3148 		size = transport_get_size(sectors, cdb, cmd);
3149 		cmd->transport_split_cdb = &split_cdb_XX_6;
3150 		T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3151 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3152 		break;
3153 	case READ_10:
3154 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3155 		if (sector_ret)
3156 			goto out_unsupported_cdb;
3157 		size = transport_get_size(sectors, cdb, cmd);
3158 		cmd->transport_split_cdb = &split_cdb_XX_10;
3159 		T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3160 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3161 		break;
3162 	case READ_12:
3163 		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3164 		if (sector_ret)
3165 			goto out_unsupported_cdb;
3166 		size = transport_get_size(sectors, cdb, cmd);
3167 		cmd->transport_split_cdb = &split_cdb_XX_12;
3168 		T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3169 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3170 		break;
3171 	case READ_16:
3172 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3173 		if (sector_ret)
3174 			goto out_unsupported_cdb;
3175 		size = transport_get_size(sectors, cdb, cmd);
3176 		cmd->transport_split_cdb = &split_cdb_XX_16;
3177 		T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3178 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3179 		break;
3180 	case WRITE_6:
3181 		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3182 		if (sector_ret)
3183 			goto out_unsupported_cdb;
3184 		size = transport_get_size(sectors, cdb, cmd);
3185 		cmd->transport_split_cdb = &split_cdb_XX_6;
3186 		T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3187 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3188 		break;
3189 	case WRITE_10:
3190 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3191 		if (sector_ret)
3192 			goto out_unsupported_cdb;
3193 		size = transport_get_size(sectors, cdb, cmd);
3194 		cmd->transport_split_cdb = &split_cdb_XX_10;
3195 		T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3196 		T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3197 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3198 		break;
3199 	case WRITE_12:
3200 		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3201 		if (sector_ret)
3202 			goto out_unsupported_cdb;
3203 		size = transport_get_size(sectors, cdb, cmd);
3204 		cmd->transport_split_cdb = &split_cdb_XX_12;
3205 		T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3206 		T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3207 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3208 		break;
3209 	case WRITE_16:
3210 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3211 		if (sector_ret)
3212 			goto out_unsupported_cdb;
3213 		size = transport_get_size(sectors, cdb, cmd);
3214 		cmd->transport_split_cdb = &split_cdb_XX_16;
3215 		T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3216 		T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3217 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3218 		break;
3219 	case XDWRITEREAD_10:
3220 		if ((cmd->data_direction != DMA_TO_DEVICE) ||
3221 		    !(T_TASK(cmd)->t_tasks_bidi))
3222 			goto out_invalid_cdb_field;
3223 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3224 		if (sector_ret)
3225 			goto out_unsupported_cdb;
3226 		size = transport_get_size(sectors, cdb, cmd);
3227 		cmd->transport_split_cdb = &split_cdb_XX_10;
3228 		T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3229 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3230 		passthrough = (TRANSPORT(dev)->transport_type ==
3231 				TRANSPORT_PLUGIN_PHBA_PDEV);
3232 		/*
3233 		 * Skip the remaining assignments for TCM/PSCSI passthrough
3234 		 */
3235 		if (passthrough)
3236 			break;
3237 		/*
3238 		 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3239 		 */
3240 		cmd->transport_complete_callback = &transport_xor_callback;
3241 		T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3242 		break;
3243 	case VARIABLE_LENGTH_CMD:
3244 		service_action = get_unaligned_be16(&cdb[8]);
3245 		/*
3246 		 * Determine if this is TCM/PSCSI device and we should disable
3247 		 * internal emulation for this CDB.
3248 		 */
3249 		passthrough = (TRANSPORT(dev)->transport_type ==
3250 					TRANSPORT_PLUGIN_PHBA_PDEV);
3251 
3252 		switch (service_action) {
3253 		case XDWRITEREAD_32:
3254 			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3255 			if (sector_ret)
3256 				goto out_unsupported_cdb;
3257 			size = transport_get_size(sectors, cdb, cmd);
3258 			/*
3259 			 * Use WRITE_32 and READ_32 opcodes for the emulated
3260 			 * XDWRITE_READ_32 logic.
3261 			 */
3262 			cmd->transport_split_cdb = &split_cdb_XX_32;
3263 			T_TASK(cmd)->t_task_lba = transport_lba_64_ext(cdb);
3264 			cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3265 
3266 			/*
3267 			 * Skip the remaining assignments for TCM/PSCSI passthrough
3268 			 */
3269 			if (passthrough)
3270 				break;
3271 
3272 			/*
3273 			 * Setup BIDI XOR callback to be run during
3274 			 * transport_generic_complete_ok()
3275 			 */
3276 			cmd->transport_complete_callback = &transport_xor_callback;
3277 			T_TASK(cmd)->t_tasks_fua = (cdb[10] & 0x8);
3278 			break;
3279 		case WRITE_SAME_32:
3280 			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3281 			if (sector_ret)
3282 				goto out_unsupported_cdb;
3283 			size = transport_get_size(sectors, cdb, cmd);
3284 			T_TASK(cmd)->t_task_lba = get_unaligned_be64(&cdb[12]);
3285 			cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3286 
3287 			/*
3288 			 * Skip the remaining assignments for TCM/PSCSI passthrough
3289 			 */
3290 			if (passthrough)
3291 				break;
3292 
3293 			if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
3294 				printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3295 					" bits not supported for Block Discard"
3296 					" Emulation\n");
3297 				goto out_invalid_cdb_field;
3298 			}
3299 			/*
3300 			 * Currently for the emulated case we only accept
3301 			 * tpws with the UNMAP=1 bit set.
3302 			 */
3303 			if (!(cdb[10] & 0x08)) {
3304 				printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not"
3305 					" supported for Block Discard Emulation\n");
3306 				goto out_invalid_cdb_field;
3307 			}
3308 			break;
3309 		default:
3310 			printk(KERN_ERR "VARIABLE_LENGTH_CMD service action"
3311 				" 0x%04x not supported\n", service_action);
3312 			goto out_unsupported_cdb;
3313 		}
3314 		break;
3315 	case 0xa3:
3316 		if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3317 			/* MAINTENANCE_IN from SCC-2 */
3318 			/*
3319 			 * Check for emulated MI_REPORT_TARGET_PGS.
3320 			 */
3321 			if (cdb[1] == MI_REPORT_TARGET_PGS) {
3322 				cmd->transport_emulate_cdb =
3323 				(T10_ALUA(su_dev)->alua_type ==
3324 				 SPC3_ALUA_EMULATED) ?
3325 				&core_emulate_report_target_port_groups :
3326 				NULL;
3327 			}
3328 			size = (cdb[6] << 24) | (cdb[7] << 16) |
3329 			       (cdb[8] << 8) | cdb[9];
3330 		} else {
3331 			/* GPCMD_SEND_KEY from multi media commands */
3332 			size = (cdb[8] << 8) + cdb[9];
3333 		}
3334 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3335 		break;
3336 	case MODE_SELECT:
3337 		size = cdb[4];
3338 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3339 		break;
3340 	case MODE_SELECT_10:
3341 		size = (cdb[7] << 8) + cdb[8];
3342 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3343 		break;
3344 	case MODE_SENSE:
3345 		size = cdb[4];
3346 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3347 		break;
3348 	case MODE_SENSE_10:
3349 	case GPCMD_READ_BUFFER_CAPACITY:
3350 	case GPCMD_SEND_OPC:
3351 	case LOG_SELECT:
3352 	case LOG_SENSE:
3353 		size = (cdb[7] << 8) + cdb[8];
3354 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3355 		break;
3356 	case READ_BLOCK_LIMITS:
3357 		size = READ_BLOCK_LEN;
3358 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3359 		break;
3360 	case GPCMD_GET_CONFIGURATION:
3361 	case GPCMD_READ_FORMAT_CAPACITIES:
3362 	case GPCMD_READ_DISC_INFO:
3363 	case GPCMD_READ_TRACK_RZONE_INFO:
3364 		size = (cdb[7] << 8) + cdb[8];
3365 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3366 		break;
3367 	case PERSISTENT_RESERVE_IN:
3368 	case PERSISTENT_RESERVE_OUT:
3369 		cmd->transport_emulate_cdb =
3370 			(T10_RES(su_dev)->res_type ==
3371 			 SPC3_PERSISTENT_RESERVATIONS) ?
3372 			&core_scsi3_emulate_pr : NULL;
3373 		size = (cdb[7] << 8) + cdb[8];
3374 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3375 		break;
3376 	case GPCMD_MECHANISM_STATUS:
3377 	case GPCMD_READ_DVD_STRUCTURE:
3378 		size = (cdb[8] << 8) + cdb[9];
3379 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3380 		break;
3381 	case READ_POSITION:
3382 		size = READ_POSITION_LEN;
3383 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3384 		break;
3385 	case 0xa4:
3386 		if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3387 			/* MAINTENANCE_OUT from SCC-2
3388 			 *
3389 			 * Check for emulated MO_SET_TARGET_PGS.
3390 			 */
3391 			if (cdb[1] == MO_SET_TARGET_PGS) {
3392 				cmd->transport_emulate_cdb =
3393 				(T10_ALUA(su_dev)->alua_type ==
3394 					SPC3_ALUA_EMULATED) ?
3395 				&core_emulate_set_target_port_groups :
3396 				NULL;
3397 			}
3398 
3399 			size = (cdb[6] << 24) | (cdb[7] << 16) |
3400 			       (cdb[8] << 8) | cdb[9];
3401 		} else  {
3402 			/* GPCMD_REPORT_KEY from multi media commands */
3403 			size = (cdb[8] << 8) + cdb[9];
3404 		}
3405 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3406 		break;
3407 	case INQUIRY:
3408 		size = (cdb[3] << 8) + cdb[4];
3409 		/*
3410 		 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3411 		 * See spc4r17 section 5.3
3412 		 */
3413 		if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3414 			cmd->sam_task_attr = TASK_ATTR_HOQ;
3415 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3416 		break;
3417 	case READ_BUFFER:
3418 		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3419 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3420 		break;
3421 	case READ_CAPACITY:
3422 		size = READ_CAP_LEN;
3423 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3424 		break;
3425 	case READ_MEDIA_SERIAL_NUMBER:
3426 	case SECURITY_PROTOCOL_IN:
3427 	case SECURITY_PROTOCOL_OUT:
3428 		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3429 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3430 		break;
3431 	case SERVICE_ACTION_IN:
3432 	case ACCESS_CONTROL_IN:
3433 	case ACCESS_CONTROL_OUT:
3434 	case EXTENDED_COPY:
3435 	case READ_ATTRIBUTE:
3436 	case RECEIVE_COPY_RESULTS:
3437 	case WRITE_ATTRIBUTE:
3438 		size = (cdb[10] << 24) | (cdb[11] << 16) |
3439 		       (cdb[12] << 8) | cdb[13];
3440 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3441 		break;
3442 	case RECEIVE_DIAGNOSTIC:
3443 	case SEND_DIAGNOSTIC:
3444 		size = (cdb[3] << 8) | cdb[4];
3445 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3446 		break;
3447 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3448 #if 0
3449 	case GPCMD_READ_CD:
3450 		sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3451 		size = (2336 * sectors);
3452 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3453 		break;
3454 #endif
3455 	case READ_TOC:
3456 		size = cdb[8];
3457 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3458 		break;
3459 	case REQUEST_SENSE:
3460 		size = cdb[4];
3461 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3462 		break;
3463 	case READ_ELEMENT_STATUS:
3464 		size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3465 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3466 		break;
3467 	case WRITE_BUFFER:
3468 		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3469 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3470 		break;
3471 	case RESERVE:
3472 	case RESERVE_10:
3473 		/*
3474 		 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3475 		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3476 		 */
3477 		if (cdb[0] == RESERVE_10)
3478 			size = (cdb[7] << 8) | cdb[8];
3479 		else
3480 			size = cmd->data_length;
3481 
3482 		/*
3483 		 * Setup the legacy emulated handler for SPC-2 and
3484 		 * >= SPC-3 compatible reservation handling (CRH=1)
3485 		 * Otherwise, we assume the underlying SCSI logic is
3486 		 * is running in SPC_PASSTHROUGH, and wants reservations
3487 		 * emulation disabled.
3488 		 */
3489 		cmd->transport_emulate_cdb =
3490 				(T10_RES(su_dev)->res_type !=
3491 				 SPC_PASSTHROUGH) ?
3492 				&core_scsi2_emulate_crh : NULL;
3493 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3494 		break;
3495 	case RELEASE:
3496 	case RELEASE_10:
3497 		/*
3498 		 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3499 		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3500 		*/
3501 		if (cdb[0] == RELEASE_10)
3502 			size = (cdb[7] << 8) | cdb[8];
3503 		else
3504 			size = cmd->data_length;
3505 
3506 		cmd->transport_emulate_cdb =
3507 				(T10_RES(su_dev)->res_type !=
3508 				 SPC_PASSTHROUGH) ?
3509 				&core_scsi2_emulate_crh : NULL;
3510 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3511 		break;
3512 	case SYNCHRONIZE_CACHE:
3513 	case 0x91: /* SYNCHRONIZE_CACHE_16: */
3514 		/*
3515 		 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3516 		 */
3517 		if (cdb[0] == SYNCHRONIZE_CACHE) {
3518 			sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3519 			T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3520 		} else {
3521 			sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3522 			T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3523 		}
3524 		if (sector_ret)
3525 			goto out_unsupported_cdb;
3526 
3527 		size = transport_get_size(sectors, cdb, cmd);
3528 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3529 
3530 		/*
3531 		 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3532 		 */
3533 		if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3534 			break;
3535 		/*
3536 		 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3537 		 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3538 		 */
3539 		cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3540 		/*
3541 		 * Check to ensure that LBA + Range does not exceed past end of
3542 		 * device.
3543 		 */
3544 		if (transport_get_sectors(cmd) < 0)
3545 			goto out_invalid_cdb_field;
3546 		break;
3547 	case UNMAP:
3548 		size = get_unaligned_be16(&cdb[7]);
3549 		passthrough = (TRANSPORT(dev)->transport_type ==
3550 				TRANSPORT_PLUGIN_PHBA_PDEV);
3551 		/*
3552 		 * Determine if the received UNMAP used to for direct passthrough
3553 		 * into Linux/SCSI with struct request via TCM/pSCSI or we are
3554 		 * signaling the use of internal transport_generic_unmap() emulation
3555 		 * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
3556 		 * subsystem plugin backstores.
3557 		 */
3558 		if (!(passthrough))
3559 			cmd->se_cmd_flags |= SCF_EMULATE_SYNC_UNMAP;
3560 
3561 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3562 		break;
3563 	case WRITE_SAME_16:
3564 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3565 		if (sector_ret)
3566 			goto out_unsupported_cdb;
3567 		size = transport_get_size(sectors, cdb, cmd);
3568 		T_TASK(cmd)->t_task_lba = get_unaligned_be16(&cdb[2]);
3569 		passthrough = (TRANSPORT(dev)->transport_type ==
3570 				TRANSPORT_PLUGIN_PHBA_PDEV);
3571 		/*
3572 		 * Determine if the received WRITE_SAME_16 is used to for direct
3573 		 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3574 		 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3575 		 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3576 		 * TCM/FILEIO subsystem plugin backstores.
3577 		 */
3578 		if (!(passthrough)) {
3579 			if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
3580 				printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3581 					" bits not supported for Block Discard"
3582 					" Emulation\n");
3583 				goto out_invalid_cdb_field;
3584 			}
3585 			/*
3586 			 * Currently for the emulated case we only accept
3587 			 * tpws with the UNMAP=1 bit set.
3588 			 */
3589 			if (!(cdb[1] & 0x08)) {
3590 				printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not "
3591 					" supported for Block Discard Emulation\n");
3592 				goto out_invalid_cdb_field;
3593 			}
3594 		}
3595 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3596 		break;
3597 	case ALLOW_MEDIUM_REMOVAL:
3598 	case GPCMD_CLOSE_TRACK:
3599 	case ERASE:
3600 	case INITIALIZE_ELEMENT_STATUS:
3601 	case GPCMD_LOAD_UNLOAD:
3602 	case REZERO_UNIT:
3603 	case SEEK_10:
3604 	case GPCMD_SET_SPEED:
3605 	case SPACE:
3606 	case START_STOP:
3607 	case TEST_UNIT_READY:
3608 	case VERIFY:
3609 	case WRITE_FILEMARKS:
3610 	case MOVE_MEDIUM:
3611 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3612 		break;
3613 	case REPORT_LUNS:
3614 		cmd->transport_emulate_cdb =
3615 				&transport_core_report_lun_response;
3616 		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3617 		/*
3618 		 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3619 		 * See spc4r17 section 5.3
3620 		 */
3621 		if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3622 			cmd->sam_task_attr = TASK_ATTR_HOQ;
3623 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3624 		break;
3625 	default:
3626 		printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode"
3627 			" 0x%02x, sending CHECK_CONDITION.\n",
3628 			CMD_TFO(cmd)->get_fabric_name(), cdb[0]);
3629 		cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3630 		goto out_unsupported_cdb;
3631 	}
3632 
3633 	if (size != cmd->data_length) {
3634 		printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:"
3635 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
3636 			" 0x%02x\n", CMD_TFO(cmd)->get_fabric_name(),
3637 				cmd->data_length, size, cdb[0]);
3638 
3639 		cmd->cmd_spdtl = size;
3640 
3641 		if (cmd->data_direction == DMA_TO_DEVICE) {
3642 			printk(KERN_ERR "Rejecting underflow/overflow"
3643 					" WRITE data\n");
3644 			goto out_invalid_cdb_field;
3645 		}
3646 		/*
3647 		 * Reject READ_* or WRITE_* with overflow/underflow for
3648 		 * type SCF_SCSI_DATA_SG_IO_CDB.
3649 		 */
3650 		if (!(ret) && (DEV_ATTRIB(dev)->block_size != 512))  {
3651 			printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op"
3652 				" CDB on non 512-byte sector setup subsystem"
3653 				" plugin: %s\n", TRANSPORT(dev)->name);
3654 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3655 			goto out_invalid_cdb_field;
3656 		}
3657 
3658 		if (size > cmd->data_length) {
3659 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3660 			cmd->residual_count = (size - cmd->data_length);
3661 		} else {
3662 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3663 			cmd->residual_count = (cmd->data_length - size);
3664 		}
3665 		cmd->data_length = size;
3666 	}
3667 
3668 	transport_set_supported_SAM_opcode(cmd);
3669 	return ret;
3670 
3671 out_unsupported_cdb:
3672 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3673 	cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3674 	return -2;
3675 out_invalid_cdb_field:
3676 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3677 	cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3678 	return -2;
3679 }
3680 
3681 static inline void transport_release_tasks(struct se_cmd *);
3682 
3683 /*
3684  * This function will copy a contiguous *src buffer into a destination
3685  * struct scatterlist array.
3686  */
transport_memcpy_write_contig(struct se_cmd * cmd,struct scatterlist * sg_d,unsigned char * src)3687 static void transport_memcpy_write_contig(
3688 	struct se_cmd *cmd,
3689 	struct scatterlist *sg_d,
3690 	unsigned char *src)
3691 {
3692 	u32 i = 0, length = 0, total_length = cmd->data_length;
3693 	void *dst;
3694 
3695 	while (total_length) {
3696 		length = sg_d[i].length;
3697 
3698 		if (length > total_length)
3699 			length = total_length;
3700 
3701 		dst = sg_virt(&sg_d[i]);
3702 
3703 		memcpy(dst, src, length);
3704 
3705 		if (!(total_length -= length))
3706 			return;
3707 
3708 		src += length;
3709 		i++;
3710 	}
3711 }
3712 
3713 /*
3714  * This function will copy a struct scatterlist array *sg_s into a destination
3715  * contiguous *dst buffer.
3716  */
transport_memcpy_read_contig(struct se_cmd * cmd,unsigned char * dst,struct scatterlist * sg_s)3717 static void transport_memcpy_read_contig(
3718 	struct se_cmd *cmd,
3719 	unsigned char *dst,
3720 	struct scatterlist *sg_s)
3721 {
3722 	u32 i = 0, length = 0, total_length = cmd->data_length;
3723 	void *src;
3724 
3725 	while (total_length) {
3726 		length = sg_s[i].length;
3727 
3728 		if (length > total_length)
3729 			length = total_length;
3730 
3731 		src = sg_virt(&sg_s[i]);
3732 
3733 		memcpy(dst, src, length);
3734 
3735 		if (!(total_length -= length))
3736 			return;
3737 
3738 		dst += length;
3739 		i++;
3740 	}
3741 }
3742 
transport_memcpy_se_mem_read_contig(struct se_cmd * cmd,unsigned char * dst,struct list_head * se_mem_list)3743 static void transport_memcpy_se_mem_read_contig(
3744 	struct se_cmd *cmd,
3745 	unsigned char *dst,
3746 	struct list_head *se_mem_list)
3747 {
3748 	struct se_mem *se_mem;
3749 	void *src;
3750 	u32 length = 0, total_length = cmd->data_length;
3751 
3752 	list_for_each_entry(se_mem, se_mem_list, se_list) {
3753 		length = se_mem->se_len;
3754 
3755 		if (length > total_length)
3756 			length = total_length;
3757 
3758 		src = page_address(se_mem->se_page) + se_mem->se_off;
3759 
3760 		memcpy(dst, src, length);
3761 
3762 		if (!(total_length -= length))
3763 			return;
3764 
3765 		dst += length;
3766 	}
3767 }
3768 
3769 /*
3770  * Called from transport_generic_complete_ok() and
3771  * transport_generic_request_failure() to determine which dormant/delayed
3772  * and ordered cmds need to have their tasks added to the execution queue.
3773  */
transport_complete_task_attr(struct se_cmd * cmd)3774 static void transport_complete_task_attr(struct se_cmd *cmd)
3775 {
3776 	struct se_device *dev = SE_DEV(cmd);
3777 	struct se_cmd *cmd_p, *cmd_tmp;
3778 	int new_active_tasks = 0;
3779 
3780 	if (cmd->sam_task_attr == TASK_ATTR_SIMPLE) {
3781 		atomic_dec(&dev->simple_cmds);
3782 		smp_mb__after_atomic_dec();
3783 		dev->dev_cur_ordered_id++;
3784 		DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3785 			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
3786 			cmd->se_ordered_id);
3787 	} else if (cmd->sam_task_attr == TASK_ATTR_HOQ) {
3788 		atomic_dec(&dev->dev_hoq_count);
3789 		smp_mb__after_atomic_dec();
3790 		dev->dev_cur_ordered_id++;
3791 		DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3792 			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3793 			cmd->se_ordered_id);
3794 	} else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) {
3795 		spin_lock(&dev->ordered_cmd_lock);
3796 		list_del(&cmd->se_ordered_list);
3797 		atomic_dec(&dev->dev_ordered_sync);
3798 		smp_mb__after_atomic_dec();
3799 		spin_unlock(&dev->ordered_cmd_lock);
3800 
3801 		dev->dev_cur_ordered_id++;
3802 		DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3803 			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3804 	}
3805 	/*
3806 	 * Process all commands up to the last received
3807 	 * ORDERED task attribute which requires another blocking
3808 	 * boundary
3809 	 */
3810 	spin_lock(&dev->delayed_cmd_lock);
3811 	list_for_each_entry_safe(cmd_p, cmd_tmp,
3812 			&dev->delayed_cmd_list, se_delayed_list) {
3813 
3814 		list_del(&cmd_p->se_delayed_list);
3815 		spin_unlock(&dev->delayed_cmd_lock);
3816 
3817 		DEBUG_STA("Calling add_tasks() for"
3818 			" cmd_p: 0x%02x Task Attr: 0x%02x"
3819 			" Dormant -> Active, se_ordered_id: %u\n",
3820 			T_TASK(cmd_p)->t_task_cdb[0],
3821 			cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3822 
3823 		transport_add_tasks_from_cmd(cmd_p);
3824 		new_active_tasks++;
3825 
3826 		spin_lock(&dev->delayed_cmd_lock);
3827 		if (cmd_p->sam_task_attr == TASK_ATTR_ORDERED)
3828 			break;
3829 	}
3830 	spin_unlock(&dev->delayed_cmd_lock);
3831 	/*
3832 	 * If new tasks have become active, wake up the transport thread
3833 	 * to do the processing of the Active tasks.
3834 	 */
3835 	if (new_active_tasks != 0)
3836 		wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
3837 }
3838 
transport_generic_complete_ok(struct se_cmd * cmd)3839 static void transport_generic_complete_ok(struct se_cmd *cmd)
3840 {
3841 	int reason = 0;
3842 	/*
3843 	 * Check if we need to move delayed/dormant tasks from cmds on the
3844 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3845 	 * Attribute.
3846 	 */
3847 	if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3848 		transport_complete_task_attr(cmd);
3849 	/*
3850 	 * Check if we need to retrieve a sense buffer from
3851 	 * the struct se_cmd in question.
3852 	 */
3853 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3854 		if (transport_get_sense_data(cmd) < 0)
3855 			reason = TCM_NON_EXISTENT_LUN;
3856 
3857 		/*
3858 		 * Only set when an struct se_task->task_scsi_status returned
3859 		 * a non GOOD status.
3860 		 */
3861 		if (cmd->scsi_status) {
3862 			transport_send_check_condition_and_sense(
3863 					cmd, reason, 1);
3864 			transport_lun_remove_cmd(cmd);
3865 			transport_cmd_check_stop_to_fabric(cmd);
3866 			return;
3867 		}
3868 	}
3869 	/*
3870 	 * Check for a callback, used by amongst other things
3871 	 * XDWRITE_READ_10 emulation.
3872 	 */
3873 	if (cmd->transport_complete_callback)
3874 		cmd->transport_complete_callback(cmd);
3875 
3876 	switch (cmd->data_direction) {
3877 	case DMA_FROM_DEVICE:
3878 		spin_lock(&cmd->se_lun->lun_sep_lock);
3879 		if (SE_LUN(cmd)->lun_sep) {
3880 			SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3881 					cmd->data_length;
3882 		}
3883 		spin_unlock(&cmd->se_lun->lun_sep_lock);
3884 		/*
3885 		 * If enabled by TCM fabirc module pre-registered SGL
3886 		 * memory, perform the memcpy() from the TCM internal
3887 		 * contigious buffer back to the original SGL.
3888 		 */
3889 		if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
3890 			transport_memcpy_write_contig(cmd,
3891 				 T_TASK(cmd)->t_task_pt_sgl,
3892 				 T_TASK(cmd)->t_task_buf);
3893 
3894 		CMD_TFO(cmd)->queue_data_in(cmd);
3895 		break;
3896 	case DMA_TO_DEVICE:
3897 		spin_lock(&cmd->se_lun->lun_sep_lock);
3898 		if (SE_LUN(cmd)->lun_sep) {
3899 			SE_LUN(cmd)->lun_sep->sep_stats.rx_data_octets +=
3900 				cmd->data_length;
3901 		}
3902 		spin_unlock(&cmd->se_lun->lun_sep_lock);
3903 		/*
3904 		 * Check if we need to send READ payload for BIDI-COMMAND
3905 		 */
3906 		if (T_TASK(cmd)->t_mem_bidi_list != NULL) {
3907 			spin_lock(&cmd->se_lun->lun_sep_lock);
3908 			if (SE_LUN(cmd)->lun_sep) {
3909 				SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3910 					cmd->data_length;
3911 			}
3912 			spin_unlock(&cmd->se_lun->lun_sep_lock);
3913 			CMD_TFO(cmd)->queue_data_in(cmd);
3914 			break;
3915 		}
3916 		/* Fall through for DMA_TO_DEVICE */
3917 	case DMA_NONE:
3918 		CMD_TFO(cmd)->queue_status(cmd);
3919 		break;
3920 	default:
3921 		break;
3922 	}
3923 
3924 	transport_lun_remove_cmd(cmd);
3925 	transport_cmd_check_stop_to_fabric(cmd);
3926 }
3927 
transport_free_dev_tasks(struct se_cmd * cmd)3928 static void transport_free_dev_tasks(struct se_cmd *cmd)
3929 {
3930 	struct se_task *task, *task_tmp;
3931 	unsigned long flags;
3932 
3933 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3934 	list_for_each_entry_safe(task, task_tmp,
3935 				&T_TASK(cmd)->t_task_list, t_list) {
3936 		if (atomic_read(&task->task_active))
3937 			continue;
3938 
3939 		kfree(task->task_sg_bidi);
3940 		kfree(task->task_sg);
3941 
3942 		list_del(&task->t_list);
3943 
3944 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3945 		if (task->se_dev)
3946 			TRANSPORT(task->se_dev)->free_task(task);
3947 		else
3948 			printk(KERN_ERR "task[%u] - task->se_dev is NULL\n",
3949 				task->task_no);
3950 		spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3951 	}
3952 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3953 }
3954 
transport_free_pages(struct se_cmd * cmd)3955 static inline void transport_free_pages(struct se_cmd *cmd)
3956 {
3957 	struct se_mem *se_mem, *se_mem_tmp;
3958 	int free_page = 1;
3959 
3960 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3961 		free_page = 0;
3962 	if (cmd->se_dev->transport->do_se_mem_map)
3963 		free_page = 0;
3964 
3965 	if (T_TASK(cmd)->t_task_buf) {
3966 		kfree(T_TASK(cmd)->t_task_buf);
3967 		T_TASK(cmd)->t_task_buf = NULL;
3968 		return;
3969 	}
3970 
3971 	/*
3972 	 * Caller will handle releasing of struct se_mem.
3973 	 */
3974 	if (cmd->se_cmd_flags & SCF_CMD_PASSTHROUGH_NOALLOC)
3975 		return;
3976 
3977 	if (!(T_TASK(cmd)->t_tasks_se_num))
3978 		return;
3979 
3980 	list_for_each_entry_safe(se_mem, se_mem_tmp,
3981 			T_TASK(cmd)->t_mem_list, se_list) {
3982 		/*
3983 		 * We only release call __free_page(struct se_mem->se_page) when
3984 		 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3985 		 */
3986 		if (free_page)
3987 			__free_page(se_mem->se_page);
3988 
3989 		list_del(&se_mem->se_list);
3990 		kmem_cache_free(se_mem_cache, se_mem);
3991 	}
3992 
3993 	if (T_TASK(cmd)->t_mem_bidi_list && T_TASK(cmd)->t_tasks_se_bidi_num) {
3994 		list_for_each_entry_safe(se_mem, se_mem_tmp,
3995 				T_TASK(cmd)->t_mem_bidi_list, se_list) {
3996 			/*
3997 			 * We only release call __free_page(struct se_mem->se_page) when
3998 			 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3999 			 */
4000 			if (free_page)
4001 				__free_page(se_mem->se_page);
4002 
4003 			list_del(&se_mem->se_list);
4004 			kmem_cache_free(se_mem_cache, se_mem);
4005 		}
4006 	}
4007 
4008 	kfree(T_TASK(cmd)->t_mem_bidi_list);
4009 	T_TASK(cmd)->t_mem_bidi_list = NULL;
4010 	kfree(T_TASK(cmd)->t_mem_list);
4011 	T_TASK(cmd)->t_mem_list = NULL;
4012 	T_TASK(cmd)->t_tasks_se_num = 0;
4013 }
4014 
transport_release_tasks(struct se_cmd * cmd)4015 static inline void transport_release_tasks(struct se_cmd *cmd)
4016 {
4017 	transport_free_dev_tasks(cmd);
4018 }
4019 
transport_dec_and_check(struct se_cmd * cmd)4020 static inline int transport_dec_and_check(struct se_cmd *cmd)
4021 {
4022 	unsigned long flags;
4023 
4024 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4025 	if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
4026 		if (!(atomic_dec_and_test(&T_TASK(cmd)->t_fe_count))) {
4027 			spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4028 					flags);
4029 			return 1;
4030 		}
4031 	}
4032 
4033 	if (atomic_read(&T_TASK(cmd)->t_se_count)) {
4034 		if (!(atomic_dec_and_test(&T_TASK(cmd)->t_se_count))) {
4035 			spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4036 					flags);
4037 			return 1;
4038 		}
4039 	}
4040 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4041 
4042 	return 0;
4043 }
4044 
transport_release_fe_cmd(struct se_cmd * cmd)4045 static void transport_release_fe_cmd(struct se_cmd *cmd)
4046 {
4047 	unsigned long flags;
4048 
4049 	if (transport_dec_and_check(cmd))
4050 		return;
4051 
4052 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4053 	if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4054 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4055 		goto free_pages;
4056 	}
4057 	atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4058 	transport_all_task_dev_remove_state(cmd);
4059 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4060 
4061 	transport_release_tasks(cmd);
4062 free_pages:
4063 	transport_free_pages(cmd);
4064 	transport_free_se_cmd(cmd);
4065 	CMD_TFO(cmd)->release_cmd_direct(cmd);
4066 }
4067 
transport_generic_remove(struct se_cmd * cmd,int release_to_pool,int session_reinstatement)4068 static int transport_generic_remove(
4069 	struct se_cmd *cmd,
4070 	int release_to_pool,
4071 	int session_reinstatement)
4072 {
4073 	unsigned long flags;
4074 
4075 	if (!(T_TASK(cmd)))
4076 		goto release_cmd;
4077 
4078 	if (transport_dec_and_check(cmd)) {
4079 		if (session_reinstatement) {
4080 			spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4081 			transport_all_task_dev_remove_state(cmd);
4082 			spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4083 					flags);
4084 		}
4085 		return 1;
4086 	}
4087 
4088 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4089 	if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4090 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4091 		goto free_pages;
4092 	}
4093 	atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4094 	transport_all_task_dev_remove_state(cmd);
4095 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4096 
4097 	transport_release_tasks(cmd);
4098 free_pages:
4099 	transport_free_pages(cmd);
4100 
4101 release_cmd:
4102 	if (release_to_pool) {
4103 		transport_release_cmd_to_pool(cmd);
4104 	} else {
4105 		transport_free_se_cmd(cmd);
4106 		CMD_TFO(cmd)->release_cmd_direct(cmd);
4107 	}
4108 
4109 	return 0;
4110 }
4111 
4112 /*
4113  * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
4114  * @cmd:  Associated se_cmd descriptor
4115  * @mem:  SGL style memory for TCM WRITE / READ
4116  * @sg_mem_num: Number of SGL elements
4117  * @mem_bidi_in: SGL style memory for TCM BIDI READ
4118  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
4119  *
4120  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
4121  * of parameters.
4122  */
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * mem,u32 sg_mem_num,struct scatterlist * mem_bidi_in,u32 sg_mem_bidi_num)4123 int transport_generic_map_mem_to_cmd(
4124 	struct se_cmd *cmd,
4125 	struct scatterlist *mem,
4126 	u32 sg_mem_num,
4127 	struct scatterlist *mem_bidi_in,
4128 	u32 sg_mem_bidi_num)
4129 {
4130 	u32 se_mem_cnt_out = 0;
4131 	int ret;
4132 
4133 	if (!(mem) || !(sg_mem_num))
4134 		return 0;
4135 	/*
4136 	 * Passed *mem will contain a list_head containing preformatted
4137 	 * struct se_mem elements...
4138 	 */
4139 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM)) {
4140 		if ((mem_bidi_in) || (sg_mem_bidi_num)) {
4141 			printk(KERN_ERR "SCF_CMD_PASSTHROUGH_NOALLOC not supported"
4142 				" with BIDI-COMMAND\n");
4143 			return -ENOSYS;
4144 		}
4145 
4146 		T_TASK(cmd)->t_mem_list = (struct list_head *)mem;
4147 		T_TASK(cmd)->t_tasks_se_num = sg_mem_num;
4148 		cmd->se_cmd_flags |= SCF_CMD_PASSTHROUGH_NOALLOC;
4149 		return 0;
4150 	}
4151 	/*
4152 	 * Otherwise, assume the caller is passing a struct scatterlist
4153 	 * array from include/linux/scatterlist.h
4154 	 */
4155 	if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
4156 	    (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
4157 		/*
4158 		 * For CDB using TCM struct se_mem linked list scatterlist memory
4159 		 * processed into a TCM struct se_subsystem_dev, we do the mapping
4160 		 * from the passed physical memory to struct se_mem->se_page here.
4161 		 */
4162 		T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4163 		if (!(T_TASK(cmd)->t_mem_list))
4164 			return -ENOMEM;
4165 
4166 		ret = transport_map_sg_to_mem(cmd,
4167 			T_TASK(cmd)->t_mem_list, mem, &se_mem_cnt_out);
4168 		if (ret < 0)
4169 			return -ENOMEM;
4170 
4171 		T_TASK(cmd)->t_tasks_se_num = se_mem_cnt_out;
4172 		/*
4173 		 * Setup BIDI READ list of struct se_mem elements
4174 		 */
4175 		if ((mem_bidi_in) && (sg_mem_bidi_num)) {
4176 			T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4177 			if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4178 				kfree(T_TASK(cmd)->t_mem_list);
4179 				return -ENOMEM;
4180 			}
4181 			se_mem_cnt_out = 0;
4182 
4183 			ret = transport_map_sg_to_mem(cmd,
4184 				T_TASK(cmd)->t_mem_bidi_list, mem_bidi_in,
4185 				&se_mem_cnt_out);
4186 			if (ret < 0) {
4187 				kfree(T_TASK(cmd)->t_mem_list);
4188 				return -ENOMEM;
4189 			}
4190 
4191 			T_TASK(cmd)->t_tasks_se_bidi_num = se_mem_cnt_out;
4192 		}
4193 		cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
4194 
4195 	} else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
4196 		if (mem_bidi_in || sg_mem_bidi_num) {
4197 			printk(KERN_ERR "BIDI-Commands not supported using "
4198 				"SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
4199 			return -ENOSYS;
4200 		}
4201 		/*
4202 		 * For incoming CDBs using a contiguous buffer internall with TCM,
4203 		 * save the passed struct scatterlist memory.  After TCM storage object
4204 		 * processing has completed for this struct se_cmd, TCM core will call
4205 		 * transport_memcpy_[write,read]_contig() as necessary from
4206 		 * transport_generic_complete_ok() and transport_write_pending() in order
4207 		 * to copy the TCM buffer to/from the original passed *mem in SGL ->
4208 		 * struct scatterlist format.
4209 		 */
4210 		cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG;
4211 		T_TASK(cmd)->t_task_pt_sgl = mem;
4212 	}
4213 
4214 	return 0;
4215 }
4216 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
4217 
4218 
transport_dev_end_lba(struct se_device * dev)4219 static inline long long transport_dev_end_lba(struct se_device *dev)
4220 {
4221 	return dev->transport->get_blocks(dev) + 1;
4222 }
4223 
transport_get_sectors(struct se_cmd * cmd)4224 static int transport_get_sectors(struct se_cmd *cmd)
4225 {
4226 	struct se_device *dev = SE_DEV(cmd);
4227 
4228 	T_TASK(cmd)->t_tasks_sectors =
4229 		(cmd->data_length / DEV_ATTRIB(dev)->block_size);
4230 	if (!(T_TASK(cmd)->t_tasks_sectors))
4231 		T_TASK(cmd)->t_tasks_sectors = 1;
4232 
4233 	if (TRANSPORT(dev)->get_device_type(dev) != TYPE_DISK)
4234 		return 0;
4235 
4236 	if ((T_TASK(cmd)->t_task_lba + T_TASK(cmd)->t_tasks_sectors) >
4237 	     transport_dev_end_lba(dev)) {
4238 		printk(KERN_ERR "LBA: %llu Sectors: %u exceeds"
4239 			" transport_dev_end_lba(): %llu\n",
4240 			T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4241 			transport_dev_end_lba(dev));
4242 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4243 		cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
4244 		return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS;
4245 	}
4246 
4247 	return 0;
4248 }
4249 
transport_new_cmd_obj(struct se_cmd * cmd)4250 static int transport_new_cmd_obj(struct se_cmd *cmd)
4251 {
4252 	struct se_device *dev = SE_DEV(cmd);
4253 	u32 task_cdbs = 0, rc;
4254 
4255 	if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
4256 		task_cdbs++;
4257 		T_TASK(cmd)->t_task_cdbs++;
4258 	} else {
4259 		int set_counts = 1;
4260 
4261 		/*
4262 		 * Setup any BIDI READ tasks and memory from
4263 		 * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks
4264 		 * are queued first for the non pSCSI passthrough case.
4265 		 */
4266 		if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4267 		    (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
4268 			rc = transport_generic_get_cdb_count(cmd,
4269 				T_TASK(cmd)->t_task_lba,
4270 				T_TASK(cmd)->t_tasks_sectors,
4271 				DMA_FROM_DEVICE, T_TASK(cmd)->t_mem_bidi_list,
4272 				set_counts);
4273 			if (!(rc)) {
4274 				cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4275 				cmd->scsi_sense_reason =
4276 					TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4277 				return PYX_TRANSPORT_LU_COMM_FAILURE;
4278 			}
4279 			set_counts = 0;
4280 		}
4281 		/*
4282 		 * Setup the tasks and memory from T_TASK(cmd)->t_mem_list
4283 		 * Note for BIDI transfers this will contain the WRITE payload
4284 		 */
4285 		task_cdbs = transport_generic_get_cdb_count(cmd,
4286 				T_TASK(cmd)->t_task_lba,
4287 				T_TASK(cmd)->t_tasks_sectors,
4288 				cmd->data_direction, T_TASK(cmd)->t_mem_list,
4289 				set_counts);
4290 		if (!(task_cdbs)) {
4291 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4292 			cmd->scsi_sense_reason =
4293 					TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4294 			return PYX_TRANSPORT_LU_COMM_FAILURE;
4295 		}
4296 		T_TASK(cmd)->t_task_cdbs += task_cdbs;
4297 
4298 #if 0
4299 		printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:"
4300 			" %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length,
4301 			T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4302 			T_TASK(cmd)->t_task_cdbs);
4303 #endif
4304 	}
4305 
4306 	atomic_set(&T_TASK(cmd)->t_task_cdbs_left, task_cdbs);
4307 	atomic_set(&T_TASK(cmd)->t_task_cdbs_ex_left, task_cdbs);
4308 	atomic_set(&T_TASK(cmd)->t_task_cdbs_timeout_left, task_cdbs);
4309 	return 0;
4310 }
4311 
transport_init_se_mem_list(void)4312 static struct list_head *transport_init_se_mem_list(void)
4313 {
4314 	struct list_head *se_mem_list;
4315 
4316 	se_mem_list = kzalloc(sizeof(struct list_head), GFP_KERNEL);
4317 	if (!(se_mem_list)) {
4318 		printk(KERN_ERR "Unable to allocate memory for se_mem_list\n");
4319 		return NULL;
4320 	}
4321 	INIT_LIST_HEAD(se_mem_list);
4322 
4323 	return se_mem_list;
4324 }
4325 
4326 static int
transport_generic_get_mem(struct se_cmd * cmd,u32 length,u32 dma_size)4327 transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size)
4328 {
4329 	unsigned char *buf;
4330 	struct se_mem *se_mem;
4331 
4332 	T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4333 	if (!(T_TASK(cmd)->t_mem_list))
4334 		return -ENOMEM;
4335 
4336 	/*
4337 	 * If the device uses memory mapping this is enough.
4338 	 */
4339 	if (cmd->se_dev->transport->do_se_mem_map)
4340 		return 0;
4341 
4342 	/*
4343 	 * Setup BIDI-COMMAND READ list of struct se_mem elements
4344 	 */
4345 	if (T_TASK(cmd)->t_tasks_bidi) {
4346 		T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4347 		if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4348 			kfree(T_TASK(cmd)->t_mem_list);
4349 			return -ENOMEM;
4350 		}
4351 	}
4352 
4353 	while (length) {
4354 		se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4355 		if (!(se_mem)) {
4356 			printk(KERN_ERR "Unable to allocate struct se_mem\n");
4357 			goto out;
4358 		}
4359 
4360 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4361 		se_mem->se_page = alloc_pages(GFP_KERNEL, 0);
4362 		if (!(se_mem->se_page)) {
4363 			printk(KERN_ERR "alloc_pages() failed\n");
4364 			goto out;
4365 		}
4366 
4367 		buf = kmap_atomic(se_mem->se_page, KM_IRQ0);
4368 		if (!(buf)) {
4369 			printk(KERN_ERR "kmap_atomic() failed\n");
4370 			goto out;
4371 		}
4372 		INIT_LIST_HEAD(&se_mem->se_list);
4373 		se_mem->se_len = (length > dma_size) ? dma_size : length;
4374 		memset(buf, 0, se_mem->se_len);
4375 		kunmap_atomic(buf, KM_IRQ0);
4376 
4377 		list_add_tail(&se_mem->se_list, T_TASK(cmd)->t_mem_list);
4378 		T_TASK(cmd)->t_tasks_se_num++;
4379 
4380 		DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4381 			" Offset(%u)\n", se_mem->se_page, se_mem->se_len,
4382 			se_mem->se_off);
4383 
4384 		length -= se_mem->se_len;
4385 	}
4386 
4387 	DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4388 			T_TASK(cmd)->t_tasks_se_num);
4389 
4390 	return 0;
4391 out:
4392 	if (se_mem)
4393 		__free_pages(se_mem->se_page, 0);
4394 	kmem_cache_free(se_mem_cache, se_mem);
4395 	return -1;
4396 }
4397 
transport_calc_sg_num(struct se_task * task,struct se_mem * in_se_mem,u32 task_offset)4398 u32 transport_calc_sg_num(
4399 	struct se_task *task,
4400 	struct se_mem *in_se_mem,
4401 	u32 task_offset)
4402 {
4403 	struct se_cmd *se_cmd = task->task_se_cmd;
4404 	struct se_device *se_dev = SE_DEV(se_cmd);
4405 	struct se_mem *se_mem = in_se_mem;
4406 	struct target_core_fabric_ops *tfo = CMD_TFO(se_cmd);
4407 	u32 sg_length, task_size = task->task_size, task_sg_num_padded;
4408 
4409 	while (task_size != 0) {
4410 		DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4411 			" se_mem->se_off(%u) task_offset(%u)\n",
4412 			se_mem->se_page, se_mem->se_len,
4413 			se_mem->se_off, task_offset);
4414 
4415 		if (task_offset == 0) {
4416 			if (task_size >= se_mem->se_len) {
4417 				sg_length = se_mem->se_len;
4418 
4419 				if (!(list_is_last(&se_mem->se_list,
4420 						T_TASK(se_cmd)->t_mem_list)))
4421 					se_mem = list_entry(se_mem->se_list.next,
4422 							struct se_mem, se_list);
4423 			} else {
4424 				sg_length = task_size;
4425 				task_size -= sg_length;
4426 				goto next;
4427 			}
4428 
4429 			DEBUG_SC("sg_length(%u) task_size(%u)\n",
4430 					sg_length, task_size);
4431 		} else {
4432 			if ((se_mem->se_len - task_offset) > task_size) {
4433 				sg_length = task_size;
4434 				task_size -= sg_length;
4435 				goto next;
4436 			 } else {
4437 				sg_length = (se_mem->se_len - task_offset);
4438 
4439 				if (!(list_is_last(&se_mem->se_list,
4440 						T_TASK(se_cmd)->t_mem_list)))
4441 					se_mem = list_entry(se_mem->se_list.next,
4442 							struct se_mem, se_list);
4443 			}
4444 
4445 			DEBUG_SC("sg_length(%u) task_size(%u)\n",
4446 					sg_length, task_size);
4447 
4448 			task_offset = 0;
4449 		}
4450 		task_size -= sg_length;
4451 next:
4452 		DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4453 			task->task_no, task_size);
4454 
4455 		task->task_sg_num++;
4456 	}
4457 	/*
4458 	 * Check if the fabric module driver is requesting that all
4459 	 * struct se_task->task_sg[] be chained together..  If so,
4460 	 * then allocate an extra padding SG entry for linking and
4461 	 * marking the end of the chained SGL.
4462 	 */
4463 	if (tfo->task_sg_chaining) {
4464 		task_sg_num_padded = (task->task_sg_num + 1);
4465 		task->task_padded_sg = 1;
4466 	} else
4467 		task_sg_num_padded = task->task_sg_num;
4468 
4469 	task->task_sg = kzalloc(task_sg_num_padded *
4470 			sizeof(struct scatterlist), GFP_KERNEL);
4471 	if (!(task->task_sg)) {
4472 		printk(KERN_ERR "Unable to allocate memory for"
4473 				" task->task_sg\n");
4474 		return 0;
4475 	}
4476 	sg_init_table(&task->task_sg[0], task_sg_num_padded);
4477 	/*
4478 	 * Setup task->task_sg_bidi for SCSI READ payload for
4479 	 * TCM/pSCSI passthrough if present for BIDI-COMMAND
4480 	 */
4481 	if ((T_TASK(se_cmd)->t_mem_bidi_list != NULL) &&
4482 	    (TRANSPORT(se_dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) {
4483 		task->task_sg_bidi = kzalloc(task_sg_num_padded *
4484 				sizeof(struct scatterlist), GFP_KERNEL);
4485 		if (!(task->task_sg_bidi)) {
4486 			printk(KERN_ERR "Unable to allocate memory for"
4487 				" task->task_sg_bidi\n");
4488 			return 0;
4489 		}
4490 		sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded);
4491 	}
4492 	/*
4493 	 * For the chaining case, setup the proper end of SGL for the
4494 	 * initial submission struct task into struct se_subsystem_api.
4495 	 * This will be cleared later by transport_do_task_sg_chain()
4496 	 */
4497 	if (task->task_padded_sg) {
4498 		sg_mark_end(&task->task_sg[task->task_sg_num - 1]);
4499 		/*
4500 		 * Added the 'if' check before marking end of bi-directional
4501 		 * scatterlist (which gets created only in case of request
4502 		 * (RD + WR).
4503 		 */
4504 		if (task->task_sg_bidi)
4505 			sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]);
4506 	}
4507 
4508 	DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4509 		" task_sg_num_padded(%u)\n", task->task_sg_num,
4510 		task_sg_num_padded);
4511 
4512 	return task->task_sg_num;
4513 }
4514 
transport_set_tasks_sectors_disk(struct se_task * task,struct se_device * dev,unsigned long long lba,u32 sectors,int * max_sectors_set)4515 static inline int transport_set_tasks_sectors_disk(
4516 	struct se_task *task,
4517 	struct se_device *dev,
4518 	unsigned long long lba,
4519 	u32 sectors,
4520 	int *max_sectors_set)
4521 {
4522 	if ((lba + sectors) > transport_dev_end_lba(dev)) {
4523 		task->task_sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4524 
4525 		if (task->task_sectors > DEV_ATTRIB(dev)->max_sectors) {
4526 			task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4527 			*max_sectors_set = 1;
4528 		}
4529 	} else {
4530 		if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4531 			task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4532 			*max_sectors_set = 1;
4533 		} else
4534 			task->task_sectors = sectors;
4535 	}
4536 
4537 	return 0;
4538 }
4539 
transport_set_tasks_sectors_non_disk(struct se_task * task,struct se_device * dev,unsigned long long lba,u32 sectors,int * max_sectors_set)4540 static inline int transport_set_tasks_sectors_non_disk(
4541 	struct se_task *task,
4542 	struct se_device *dev,
4543 	unsigned long long lba,
4544 	u32 sectors,
4545 	int *max_sectors_set)
4546 {
4547 	if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4548 		task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4549 		*max_sectors_set = 1;
4550 	} else
4551 		task->task_sectors = sectors;
4552 
4553 	return 0;
4554 }
4555 
transport_set_tasks_sectors(struct se_task * task,struct se_device * dev,unsigned long long lba,u32 sectors,int * max_sectors_set)4556 static inline int transport_set_tasks_sectors(
4557 	struct se_task *task,
4558 	struct se_device *dev,
4559 	unsigned long long lba,
4560 	u32 sectors,
4561 	int *max_sectors_set)
4562 {
4563 	return (TRANSPORT(dev)->get_device_type(dev) == TYPE_DISK) ?
4564 		transport_set_tasks_sectors_disk(task, dev, lba, sectors,
4565 				max_sectors_set) :
4566 		transport_set_tasks_sectors_non_disk(task, dev, lba, sectors,
4567 				max_sectors_set);
4568 }
4569 
transport_map_sg_to_mem(struct se_cmd * cmd,struct list_head * se_mem_list,void * in_mem,u32 * se_mem_cnt)4570 static int transport_map_sg_to_mem(
4571 	struct se_cmd *cmd,
4572 	struct list_head *se_mem_list,
4573 	void *in_mem,
4574 	u32 *se_mem_cnt)
4575 {
4576 	struct se_mem *se_mem;
4577 	struct scatterlist *sg;
4578 	u32 sg_count = 1, cmd_size = cmd->data_length;
4579 
4580 	if (!in_mem) {
4581 		printk(KERN_ERR "No source scatterlist\n");
4582 		return -1;
4583 	}
4584 	sg = (struct scatterlist *)in_mem;
4585 
4586 	while (cmd_size) {
4587 		se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4588 		if (!(se_mem)) {
4589 			printk(KERN_ERR "Unable to allocate struct se_mem\n");
4590 			return -1;
4591 		}
4592 		INIT_LIST_HEAD(&se_mem->se_list);
4593 		DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4594 			" sg_page: %p offset: %d length: %d\n", cmd_size,
4595 			sg_page(sg), sg->offset, sg->length);
4596 
4597 		se_mem->se_page = sg_page(sg);
4598 		se_mem->se_off = sg->offset;
4599 
4600 		if (cmd_size > sg->length) {
4601 			se_mem->se_len = sg->length;
4602 			sg = sg_next(sg);
4603 			sg_count++;
4604 		} else
4605 			se_mem->se_len = cmd_size;
4606 
4607 		cmd_size -= se_mem->se_len;
4608 
4609 		DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n",
4610 				*se_mem_cnt, cmd_size);
4611 		DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4612 				se_mem->se_page, se_mem->se_off, se_mem->se_len);
4613 
4614 		list_add_tail(&se_mem->se_list, se_mem_list);
4615 		(*se_mem_cnt)++;
4616 	}
4617 
4618 	DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)"
4619 		" struct se_mem\n", sg_count, *se_mem_cnt);
4620 
4621 	if (sg_count != *se_mem_cnt)
4622 		BUG();
4623 
4624 	return 0;
4625 }
4626 
4627 /*	transport_map_mem_to_sg():
4628  *
4629  *
4630  */
transport_map_mem_to_sg(struct se_task * task,struct list_head * se_mem_list,void * in_mem,struct se_mem * in_se_mem,struct se_mem ** out_se_mem,u32 * se_mem_cnt,u32 * task_offset)4631 int transport_map_mem_to_sg(
4632 	struct se_task *task,
4633 	struct list_head *se_mem_list,
4634 	void *in_mem,
4635 	struct se_mem *in_se_mem,
4636 	struct se_mem **out_se_mem,
4637 	u32 *se_mem_cnt,
4638 	u32 *task_offset)
4639 {
4640 	struct se_cmd *se_cmd = task->task_se_cmd;
4641 	struct se_mem *se_mem = in_se_mem;
4642 	struct scatterlist *sg = (struct scatterlist *)in_mem;
4643 	u32 task_size = task->task_size, sg_no = 0;
4644 
4645 	if (!sg) {
4646 		printk(KERN_ERR "Unable to locate valid struct"
4647 				" scatterlist pointer\n");
4648 		return -1;
4649 	}
4650 
4651 	while (task_size != 0) {
4652 		/*
4653 		 * Setup the contigious array of scatterlists for
4654 		 * this struct se_task.
4655 		 */
4656 		sg_assign_page(sg, se_mem->se_page);
4657 
4658 		if (*task_offset == 0) {
4659 			sg->offset = se_mem->se_off;
4660 
4661 			if (task_size >= se_mem->se_len) {
4662 				sg->length = se_mem->se_len;
4663 
4664 				if (!(list_is_last(&se_mem->se_list,
4665 						T_TASK(se_cmd)->t_mem_list))) {
4666 					se_mem = list_entry(se_mem->se_list.next,
4667 							struct se_mem, se_list);
4668 					(*se_mem_cnt)++;
4669 				}
4670 			} else {
4671 				sg->length = task_size;
4672 				/*
4673 				 * Determine if we need to calculate an offset
4674 				 * into the struct se_mem on the next go around..
4675 				 */
4676 				task_size -= sg->length;
4677 				if (!(task_size))
4678 					*task_offset = sg->length;
4679 
4680 				goto next;
4681 			}
4682 
4683 		} else {
4684 			sg->offset = (*task_offset + se_mem->se_off);
4685 
4686 			if ((se_mem->se_len - *task_offset) > task_size) {
4687 				sg->length = task_size;
4688 				/*
4689 				 * Determine if we need to calculate an offset
4690 				 * into the struct se_mem on the next go around..
4691 				 */
4692 				task_size -= sg->length;
4693 				if (!(task_size))
4694 					*task_offset += sg->length;
4695 
4696 				goto next;
4697 			} else {
4698 				sg->length = (se_mem->se_len - *task_offset);
4699 
4700 				if (!(list_is_last(&se_mem->se_list,
4701 						T_TASK(se_cmd)->t_mem_list))) {
4702 					se_mem = list_entry(se_mem->se_list.next,
4703 							struct se_mem, se_list);
4704 					(*se_mem_cnt)++;
4705 				}
4706 			}
4707 
4708 			*task_offset = 0;
4709 		}
4710 		task_size -= sg->length;
4711 next:
4712 		DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4713 			" task_size to(%u), task_offset: %u\n", task->task_no, sg_no,
4714 			sg_page(sg), sg->length, sg->offset, task_size, *task_offset);
4715 
4716 		sg_no++;
4717 		if (!(task_size))
4718 			break;
4719 
4720 		sg = sg_next(sg);
4721 
4722 		if (task_size > se_cmd->data_length)
4723 			BUG();
4724 	}
4725 	*out_se_mem = se_mem;
4726 
4727 	DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4728 		" SGs\n", task->task_no, *se_mem_cnt, sg_no);
4729 
4730 	return 0;
4731 }
4732 
4733 /*
4734  * This function can be used by HW target mode drivers to create a linked
4735  * scatterlist from all contiguously allocated struct se_task->task_sg[].
4736  * This is intended to be called during the completion path by TCM Core
4737  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4738  */
transport_do_task_sg_chain(struct se_cmd * cmd)4739 void transport_do_task_sg_chain(struct se_cmd *cmd)
4740 {
4741 	struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL;
4742 	struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL;
4743 	struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL;
4744 	struct se_task *task;
4745 	struct target_core_fabric_ops *tfo = CMD_TFO(cmd);
4746 	u32 task_sg_num = 0, sg_count = 0;
4747 	int i;
4748 
4749 	if (tfo->task_sg_chaining == 0) {
4750 		printk(KERN_ERR "task_sg_chaining is diabled for fabric module:"
4751 				" %s\n", tfo->get_fabric_name());
4752 		dump_stack();
4753 		return;
4754 	}
4755 	/*
4756 	 * Walk the struct se_task list and setup scatterlist chains
4757 	 * for each contiguosly allocated struct se_task->task_sg[].
4758 	 */
4759 	list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
4760 		if (!(task->task_sg) || !(task->task_padded_sg))
4761 			continue;
4762 
4763 		if (sg_head && sg_link) {
4764 			sg_head_cur = &task->task_sg[0];
4765 			sg_link_cur = &task->task_sg[task->task_sg_num];
4766 			/*
4767 			 * Either add chain or mark end of scatterlist
4768 			 */
4769 			if (!(list_is_last(&task->t_list,
4770 					&T_TASK(cmd)->t_task_list))) {
4771 				/*
4772 				 * Clear existing SGL termination bit set in
4773 				 * transport_calc_sg_num(), see sg_mark_end()
4774 				 */
4775 				sg_end_cur = &task->task_sg[task->task_sg_num - 1];
4776 				sg_end_cur->page_link &= ~0x02;
4777 
4778 				sg_chain(sg_head, task_sg_num, sg_head_cur);
4779 				sg_count += (task->task_sg_num + 1);
4780 			} else
4781 				sg_count += task->task_sg_num;
4782 
4783 			sg_head = sg_head_cur;
4784 			sg_link = sg_link_cur;
4785 			task_sg_num = task->task_sg_num;
4786 			continue;
4787 		}
4788 		sg_head = sg_first = &task->task_sg[0];
4789 		sg_link = &task->task_sg[task->task_sg_num];
4790 		task_sg_num = task->task_sg_num;
4791 		/*
4792 		 * Check for single task..
4793 		 */
4794 		if (!(list_is_last(&task->t_list, &T_TASK(cmd)->t_task_list))) {
4795 			/*
4796 			 * Clear existing SGL termination bit set in
4797 			 * transport_calc_sg_num(), see sg_mark_end()
4798 			 */
4799 			sg_end = &task->task_sg[task->task_sg_num - 1];
4800 			sg_end->page_link &= ~0x02;
4801 			sg_count += (task->task_sg_num + 1);
4802 		} else
4803 			sg_count += task->task_sg_num;
4804 	}
4805 	/*
4806 	 * Setup the starting pointer and total t_tasks_sg_linked_no including
4807 	 * padding SGs for linking and to mark the end.
4808 	 */
4809 	T_TASK(cmd)->t_tasks_sg_chained = sg_first;
4810 	T_TASK(cmd)->t_tasks_sg_chained_no = sg_count;
4811 
4812 	DEBUG_CMD_M("Setup T_TASK(cmd)->t_tasks_sg_chained: %p and"
4813 		" t_tasks_sg_chained_no: %u\n", T_TASK(cmd)->t_tasks_sg_chained,
4814 		T_TASK(cmd)->t_tasks_sg_chained_no);
4815 
4816 	for_each_sg(T_TASK(cmd)->t_tasks_sg_chained, sg,
4817 			T_TASK(cmd)->t_tasks_sg_chained_no, i) {
4818 
4819 		DEBUG_CMD_M("SG: %p page: %p length: %d offset: %d\n",
4820 			sg, sg_page(sg), sg->length, sg->offset);
4821 		if (sg_is_chain(sg))
4822 			DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg);
4823 		if (sg_is_last(sg))
4824 			DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg);
4825 	}
4826 
4827 }
4828 EXPORT_SYMBOL(transport_do_task_sg_chain);
4829 
transport_do_se_mem_map(struct se_device * dev,struct se_task * task,struct list_head * se_mem_list,void * in_mem,struct se_mem * in_se_mem,struct se_mem ** out_se_mem,u32 * se_mem_cnt,u32 * task_offset_in)4830 static int transport_do_se_mem_map(
4831 	struct se_device *dev,
4832 	struct se_task *task,
4833 	struct list_head *se_mem_list,
4834 	void *in_mem,
4835 	struct se_mem *in_se_mem,
4836 	struct se_mem **out_se_mem,
4837 	u32 *se_mem_cnt,
4838 	u32 *task_offset_in)
4839 {
4840 	u32 task_offset = *task_offset_in;
4841 	int ret = 0;
4842 	/*
4843 	 * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4844 	 * has been done by the transport plugin.
4845 	 */
4846 	if (TRANSPORT(dev)->do_se_mem_map) {
4847 		ret = TRANSPORT(dev)->do_se_mem_map(task, se_mem_list,
4848 				in_mem, in_se_mem, out_se_mem, se_mem_cnt,
4849 				task_offset_in);
4850 		if (ret == 0)
4851 			T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt;
4852 
4853 		return ret;
4854 	}
4855 
4856 	BUG_ON(list_empty(se_mem_list));
4857 	/*
4858 	 * This is the normal path for all normal non BIDI and BIDI-COMMAND
4859 	 * WRITE payloads..  If we need to do BIDI READ passthrough for
4860 	 * TCM/pSCSI the first call to transport_do_se_mem_map ->
4861 	 * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the
4862 	 * allocation for task->task_sg_bidi, and the subsequent call to
4863 	 * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4864 	 */
4865 	if (!(task->task_sg_bidi)) {
4866 		/*
4867 		 * Assume default that transport plugin speaks preallocated
4868 		 * scatterlists.
4869 		 */
4870 		if (!(transport_calc_sg_num(task, in_se_mem, task_offset)))
4871 			return -1;
4872 		/*
4873 		 * struct se_task->task_sg now contains the struct scatterlist array.
4874 		 */
4875 		return transport_map_mem_to_sg(task, se_mem_list, task->task_sg,
4876 					in_se_mem, out_se_mem, se_mem_cnt,
4877 					task_offset_in);
4878 	}
4879 	/*
4880 	 * Handle the se_mem_list -> struct task->task_sg_bidi
4881 	 * memory map for the extra BIDI READ payload
4882 	 */
4883 	return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi,
4884 				in_se_mem, out_se_mem, se_mem_cnt,
4885 				task_offset_in);
4886 }
4887 
transport_generic_get_cdb_count(struct se_cmd * cmd,unsigned long long lba,u32 sectors,enum dma_data_direction data_direction,struct list_head * mem_list,int set_counts)4888 static u32 transport_generic_get_cdb_count(
4889 	struct se_cmd *cmd,
4890 	unsigned long long lba,
4891 	u32 sectors,
4892 	enum dma_data_direction data_direction,
4893 	struct list_head *mem_list,
4894 	int set_counts)
4895 {
4896 	unsigned char *cdb = NULL;
4897 	struct se_task *task;
4898 	struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
4899 	struct se_mem *se_mem_bidi = NULL, *se_mem_bidi_lout = NULL;
4900 	struct se_device *dev = SE_DEV(cmd);
4901 	int max_sectors_set = 0, ret;
4902 	u32 task_offset_in = 0, se_mem_cnt = 0, se_mem_bidi_cnt = 0, task_cdbs = 0;
4903 
4904 	if (!mem_list) {
4905 		printk(KERN_ERR "mem_list is NULL in transport_generic_get"
4906 				"_cdb_count()\n");
4907 		return 0;
4908 	}
4909 	/*
4910 	 * While using RAMDISK_DR backstores is the only case where
4911 	 * mem_list will ever be empty at this point.
4912 	 */
4913 	if (!(list_empty(mem_list)))
4914 		se_mem = list_entry(mem_list->next, struct se_mem, se_list);
4915 	/*
4916 	 * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4917 	 * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4918 	 */
4919 	if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4920 	    !(list_empty(T_TASK(cmd)->t_mem_bidi_list)) &&
4921 	    (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV))
4922 		se_mem_bidi = list_entry(T_TASK(cmd)->t_mem_bidi_list->next,
4923 					struct se_mem, se_list);
4924 
4925 	while (sectors) {
4926 		DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4927 			CMD_TFO(cmd)->get_task_tag(cmd), lba, sectors,
4928 			transport_dev_end_lba(dev));
4929 
4930 		task = transport_generic_get_task(cmd, data_direction);
4931 		if (!(task))
4932 			goto out;
4933 
4934 		transport_set_tasks_sectors(task, dev, lba, sectors,
4935 				&max_sectors_set);
4936 
4937 		task->task_lba = lba;
4938 		lba += task->task_sectors;
4939 		sectors -= task->task_sectors;
4940 		task->task_size = (task->task_sectors *
4941 				   DEV_ATTRIB(dev)->block_size);
4942 
4943 		cdb = TRANSPORT(dev)->get_cdb(task);
4944 		if ((cdb)) {
4945 			memcpy(cdb, T_TASK(cmd)->t_task_cdb,
4946 				scsi_command_size(T_TASK(cmd)->t_task_cdb));
4947 			cmd->transport_split_cdb(task->task_lba,
4948 					&task->task_sectors, cdb);
4949 		}
4950 
4951 		/*
4952 		 * Perform the SE OBJ plugin and/or Transport plugin specific
4953 		 * mapping for T_TASK(cmd)->t_mem_list. And setup the
4954 		 * task->task_sg and if necessary task->task_sg_bidi
4955 		 */
4956 		ret = transport_do_se_mem_map(dev, task, mem_list,
4957 				NULL, se_mem, &se_mem_lout, &se_mem_cnt,
4958 				&task_offset_in);
4959 		if (ret < 0)
4960 			goto out;
4961 
4962 		se_mem = se_mem_lout;
4963 		/*
4964 		 * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi
4965 		 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4966 		 *
4967 		 * Note that the first call to transport_do_se_mem_map() above will
4968 		 * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4969 		 * -> transport_calc_sg_num(), and the second here will do the
4970 		 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4971 		 */
4972 		if (task->task_sg_bidi != NULL) {
4973 			ret = transport_do_se_mem_map(dev, task,
4974 				T_TASK(cmd)->t_mem_bidi_list, NULL,
4975 				se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt,
4976 				&task_offset_in);
4977 			if (ret < 0)
4978 				goto out;
4979 
4980 			se_mem_bidi = se_mem_bidi_lout;
4981 		}
4982 		task_cdbs++;
4983 
4984 		DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
4985 				task_cdbs, task->task_sg_num);
4986 
4987 		if (max_sectors_set) {
4988 			max_sectors_set = 0;
4989 			continue;
4990 		}
4991 
4992 		if (!sectors)
4993 			break;
4994 	}
4995 
4996 	if (set_counts) {
4997 		atomic_inc(&T_TASK(cmd)->t_fe_count);
4998 		atomic_inc(&T_TASK(cmd)->t_se_count);
4999 	}
5000 
5001 	DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
5002 		CMD_TFO(cmd)->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE)
5003 		? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs);
5004 
5005 	return task_cdbs;
5006 out:
5007 	return 0;
5008 }
5009 
5010 static int
transport_map_control_cmd_to_task(struct se_cmd * cmd)5011 transport_map_control_cmd_to_task(struct se_cmd *cmd)
5012 {
5013 	struct se_device *dev = SE_DEV(cmd);
5014 	unsigned char *cdb;
5015 	struct se_task *task;
5016 	int ret;
5017 
5018 	task = transport_generic_get_task(cmd, cmd->data_direction);
5019 	if (!task)
5020 		return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5021 
5022 	cdb = TRANSPORT(dev)->get_cdb(task);
5023 	if (cdb)
5024 		memcpy(cdb, cmd->t_task->t_task_cdb,
5025 			scsi_command_size(cmd->t_task->t_task_cdb));
5026 
5027 	task->task_size = cmd->data_length;
5028 	task->task_sg_num =
5029 		(cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0;
5030 
5031 	atomic_inc(&cmd->t_task->t_fe_count);
5032 	atomic_inc(&cmd->t_task->t_se_count);
5033 
5034 	if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
5035 		struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
5036 		u32 se_mem_cnt = 0, task_offset = 0;
5037 
5038 		if (!list_empty(T_TASK(cmd)->t_mem_list))
5039 			se_mem = list_entry(T_TASK(cmd)->t_mem_list->next,
5040 					struct se_mem, se_list);
5041 
5042 		ret = transport_do_se_mem_map(dev, task,
5043 				cmd->t_task->t_mem_list, NULL, se_mem,
5044 				&se_mem_lout, &se_mem_cnt, &task_offset);
5045 		if (ret < 0)
5046 			return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5047 
5048 		if (dev->transport->map_task_SG)
5049 			return dev->transport->map_task_SG(task);
5050 		return 0;
5051 	} else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
5052 		if (dev->transport->map_task_non_SG)
5053 			return dev->transport->map_task_non_SG(task);
5054 		return 0;
5055 	} else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
5056 		if (dev->transport->cdb_none)
5057 			return dev->transport->cdb_none(task);
5058 		return 0;
5059 	} else {
5060 		BUG();
5061 		return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5062 	}
5063 }
5064 
5065 /*	 transport_generic_new_cmd(): Called from transport_processing_thread()
5066  *
5067  *	 Allocate storage transport resources from a set of values predefined
5068  *	 by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
5069  *	 Any non zero return here is treated as an "out of resource' op here.
5070  */
5071 	/*
5072 	 * Generate struct se_task(s) and/or their payloads for this CDB.
5073 	 */
transport_generic_new_cmd(struct se_cmd * cmd)5074 static int transport_generic_new_cmd(struct se_cmd *cmd)
5075 {
5076 	struct se_portal_group *se_tpg;
5077 	struct se_task *task;
5078 	struct se_device *dev = SE_DEV(cmd);
5079 	int ret = 0;
5080 
5081 	/*
5082 	 * Determine is the TCM fabric module has already allocated physical
5083 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
5084 	 * to setup beforehand the linked list of physical memory at
5085 	 * T_TASK(cmd)->t_mem_list of struct se_mem->se_page
5086 	 */
5087 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) {
5088 		ret = transport_allocate_resources(cmd);
5089 		if (ret < 0)
5090 			return ret;
5091 	}
5092 
5093 	ret = transport_get_sectors(cmd);
5094 	if (ret < 0)
5095 		return ret;
5096 
5097 	ret = transport_new_cmd_obj(cmd);
5098 	if (ret < 0)
5099 		return ret;
5100 
5101 	/*
5102 	 * Determine if the calling TCM fabric module is talking to
5103 	 * Linux/NET via kernel sockets and needs to allocate a
5104 	 * struct iovec array to complete the struct se_cmd
5105 	 */
5106 	se_tpg = SE_LUN(cmd)->lun_sep->sep_tpg;
5107 	if (TPG_TFO(se_tpg)->alloc_cmd_iovecs != NULL) {
5108 		ret = TPG_TFO(se_tpg)->alloc_cmd_iovecs(cmd);
5109 		if (ret < 0)
5110 			return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5111 	}
5112 
5113 	if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
5114 		list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
5115 			if (atomic_read(&task->task_sent))
5116 				continue;
5117 			if (!dev->transport->map_task_SG)
5118 				continue;
5119 
5120 			ret = dev->transport->map_task_SG(task);
5121 			if (ret < 0)
5122 				return ret;
5123 		}
5124 	} else {
5125 		ret = transport_map_control_cmd_to_task(cmd);
5126 		if (ret < 0)
5127 			return ret;
5128 	}
5129 
5130 	/*
5131 	 * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
5132 	 * This WRITE struct se_cmd (and all of its associated struct se_task's)
5133 	 * will be added to the struct se_device execution queue after its WRITE
5134 	 * data has arrived. (ie: It gets handled by the transport processing
5135 	 * thread a second time)
5136 	 */
5137 	if (cmd->data_direction == DMA_TO_DEVICE) {
5138 		transport_add_tasks_to_state_queue(cmd);
5139 		return transport_generic_write_pending(cmd);
5140 	}
5141 	/*
5142 	 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
5143 	 * to the execution queue.
5144 	 */
5145 	transport_execute_tasks(cmd);
5146 	return 0;
5147 }
5148 
5149 /*	transport_generic_process_write():
5150  *
5151  *
5152  */
transport_generic_process_write(struct se_cmd * cmd)5153 void transport_generic_process_write(struct se_cmd *cmd)
5154 {
5155 #if 0
5156 	/*
5157 	 * Copy SCSI Presented DTL sector(s) from received buffers allocated to
5158 	 * original EDTL
5159 	 */
5160 	if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
5161 		if (!T_TASK(cmd)->t_tasks_se_num) {
5162 			unsigned char *dst, *buf =
5163 				(unsigned char *)T_TASK(cmd)->t_task_buf;
5164 
5165 			dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL);
5166 			if (!(dst)) {
5167 				printk(KERN_ERR "Unable to allocate memory for"
5168 						" WRITE underflow\n");
5169 				transport_generic_request_failure(cmd, NULL,
5170 					PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5171 				return;
5172 			}
5173 			memcpy(dst, buf, cmd->cmd_spdtl);
5174 
5175 			kfree(T_TASK(cmd)->t_task_buf);
5176 			T_TASK(cmd)->t_task_buf = dst;
5177 		} else {
5178 			struct scatterlist *sg =
5179 				(struct scatterlist *sg)T_TASK(cmd)->t_task_buf;
5180 			struct scatterlist *orig_sg;
5181 
5182 			orig_sg = kzalloc(sizeof(struct scatterlist) *
5183 					T_TASK(cmd)->t_tasks_se_num,
5184 					GFP_KERNEL))) {
5185 			if (!(orig_sg)) {
5186 				printk(KERN_ERR "Unable to allocate memory"
5187 						" for WRITE underflow\n");
5188 				transport_generic_request_failure(cmd, NULL,
5189 					PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5190 				return;
5191 			}
5192 
5193 			memcpy(orig_sg, T_TASK(cmd)->t_task_buf,
5194 					sizeof(struct scatterlist) *
5195 					T_TASK(cmd)->t_tasks_se_num);
5196 
5197 			cmd->data_length = cmd->cmd_spdtl;
5198 			/*
5199 			 * FIXME, clear out original struct se_task and state
5200 			 * information.
5201 			 */
5202 			if (transport_generic_new_cmd(cmd) < 0) {
5203 				transport_generic_request_failure(cmd, NULL,
5204 					PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5205 				kfree(orig_sg);
5206 				return;
5207 			}
5208 
5209 			transport_memcpy_write_sg(cmd, orig_sg);
5210 		}
5211 	}
5212 #endif
5213 	transport_execute_tasks(cmd);
5214 }
5215 EXPORT_SYMBOL(transport_generic_process_write);
5216 
5217 /*	transport_generic_write_pending():
5218  *
5219  *
5220  */
5221 static int transport_generic_write_pending(struct se_cmd *cmd)
5222 {
5223 	unsigned long flags;
5224 	int ret;
5225 
5226 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5227 	cmd->t_state = TRANSPORT_WRITE_PENDING;
5228 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5229 	/*
5230 	 * For the TCM control CDBs using a contiguous buffer, do the memcpy
5231 	 * from the passed Linux/SCSI struct scatterlist located at
5232 	 * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at
5233 	 * T_TASK(se_cmd)->t_task_buf.
5234 	 */
5235 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
5236 		transport_memcpy_read_contig(cmd,
5237 				T_TASK(cmd)->t_task_buf,
5238 				T_TASK(cmd)->t_task_pt_sgl);
5239 	/*
5240 	 * Clear the se_cmd for WRITE_PENDING status in order to set
5241 	 * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data
5242 	 * can be called from HW target mode interrupt code.  This is safe
5243 	 * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending
5244 	 * because the se_cmd->se_lun pointer is not being cleared.
5245 	 */
5246 	transport_cmd_check_stop(cmd, 1, 0);
5247 
5248 	/*
5249 	 * Call the fabric write_pending function here to let the
5250 	 * frontend know that WRITE buffers are ready.
5251 	 */
5252 	ret = CMD_TFO(cmd)->write_pending(cmd);
5253 	if (ret < 0)
5254 		return ret;
5255 
5256 	return PYX_TRANSPORT_WRITE_PENDING;
5257 }
5258 
5259 /*	transport_release_cmd_to_pool():
5260  *
5261  *
5262  */
5263 void transport_release_cmd_to_pool(struct se_cmd *cmd)
5264 {
5265 	BUG_ON(!T_TASK(cmd));
5266 	BUG_ON(!CMD_TFO(cmd));
5267 
5268 	transport_free_se_cmd(cmd);
5269 	CMD_TFO(cmd)->release_cmd_to_pool(cmd);
5270 }
5271 EXPORT_SYMBOL(transport_release_cmd_to_pool);
5272 
5273 /*	transport_generic_free_cmd():
5274  *
5275  *	Called from processing frontend to release storage engine resources
5276  */
5277 void transport_generic_free_cmd(
5278 	struct se_cmd *cmd,
5279 	int wait_for_tasks,
5280 	int release_to_pool,
5281 	int session_reinstatement)
5282 {
5283 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) || !T_TASK(cmd))
5284 		transport_release_cmd_to_pool(cmd);
5285 	else {
5286 		core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
5287 
5288 		if (SE_LUN(cmd)) {
5289 #if 0
5290 			printk(KERN_INFO "cmd: %p ITT: 0x%08x contains"
5291 				" SE_LUN(cmd)\n", cmd,
5292 				CMD_TFO(cmd)->get_task_tag(cmd));
5293 #endif
5294 			transport_lun_remove_cmd(cmd);
5295 		}
5296 
5297 		if (wait_for_tasks && cmd->transport_wait_for_tasks)
5298 			cmd->transport_wait_for_tasks(cmd, 0, 0);
5299 
5300 		transport_generic_remove(cmd, release_to_pool,
5301 				session_reinstatement);
5302 	}
5303 }
5304 EXPORT_SYMBOL(transport_generic_free_cmd);
5305 
5306 static void transport_nop_wait_for_tasks(
5307 	struct se_cmd *cmd,
5308 	int remove_cmd,
5309 	int session_reinstatement)
5310 {
5311 	return;
5312 }
5313 
5314 /*	transport_lun_wait_for_tasks():
5315  *
5316  *	Called from ConfigFS context to stop the passed struct se_cmd to allow
5317  *	an struct se_lun to be successfully shutdown.
5318  */
5319 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
5320 {
5321 	unsigned long flags;
5322 	int ret;
5323 	/*
5324 	 * If the frontend has already requested this struct se_cmd to
5325 	 * be stopped, we can safely ignore this struct se_cmd.
5326 	 */
5327 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5328 	if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
5329 		atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5330 		DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5331 			" TRUE, skipping\n", CMD_TFO(cmd)->get_task_tag(cmd));
5332 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5333 		transport_cmd_check_stop(cmd, 1, 0);
5334 		return -1;
5335 	}
5336 	atomic_set(&T_TASK(cmd)->transport_lun_fe_stop, 1);
5337 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5338 
5339 	wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5340 
5341 	ret = transport_stop_tasks_for_cmd(cmd);
5342 
5343 	DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5344 			" %d\n", cmd, T_TASK(cmd)->t_task_cdbs, ret);
5345 	if (!ret) {
5346 		DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5347 				CMD_TFO(cmd)->get_task_tag(cmd));
5348 		wait_for_completion(&T_TASK(cmd)->transport_lun_stop_comp);
5349 		DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5350 				CMD_TFO(cmd)->get_task_tag(cmd));
5351 	}
5352 	transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
5353 
5354 	return 0;
5355 }
5356 
5357 /* #define DEBUG_CLEAR_LUN */
5358 #ifdef DEBUG_CLEAR_LUN
5359 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5360 #else
5361 #define DEBUG_CLEAR_L(x...)
5362 #endif
5363 
5364 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
5365 {
5366 	struct se_cmd *cmd = NULL;
5367 	unsigned long lun_flags, cmd_flags;
5368 	/*
5369 	 * Do exception processing and return CHECK_CONDITION status to the
5370 	 * Initiator Port.
5371 	 */
5372 	spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5373 	while (!list_empty_careful(&lun->lun_cmd_list)) {
5374 		cmd = list_entry(lun->lun_cmd_list.next,
5375 			struct se_cmd, se_lun_list);
5376 		list_del(&cmd->se_lun_list);
5377 
5378 		if (!(T_TASK(cmd))) {
5379 			printk(KERN_ERR "ITT: 0x%08x, T_TASK(cmd) = NULL"
5380 				"[i,t]_state: %u/%u\n",
5381 				CMD_TFO(cmd)->get_task_tag(cmd),
5382 				CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5383 			BUG();
5384 		}
5385 		atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
5386 		/*
5387 		 * This will notify iscsi_target_transport.c:
5388 		 * transport_cmd_check_stop() that a LUN shutdown is in
5389 		 * progress for the iscsi_cmd_t.
5390 		 */
5391 		spin_lock(&T_TASK(cmd)->t_state_lock);
5392 		DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport"
5393 			"_lun_stop for  ITT: 0x%08x\n",
5394 			SE_LUN(cmd)->unpacked_lun,
5395 			CMD_TFO(cmd)->get_task_tag(cmd));
5396 		atomic_set(&T_TASK(cmd)->transport_lun_stop, 1);
5397 		spin_unlock(&T_TASK(cmd)->t_state_lock);
5398 
5399 		spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5400 
5401 		if (!(SE_LUN(cmd))) {
5402 			printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n",
5403 				CMD_TFO(cmd)->get_task_tag(cmd),
5404 				CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5405 			BUG();
5406 		}
5407 		/*
5408 		 * If the Storage engine still owns the iscsi_cmd_t, determine
5409 		 * and/or stop its context.
5410 		 */
5411 		DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5412 			"_lun_wait_for_tasks()\n", SE_LUN(cmd)->unpacked_lun,
5413 			CMD_TFO(cmd)->get_task_tag(cmd));
5414 
5415 		if (transport_lun_wait_for_tasks(cmd, SE_LUN(cmd)) < 0) {
5416 			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5417 			continue;
5418 		}
5419 
5420 		DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5421 			"_wait_for_tasks(): SUCCESS\n",
5422 			SE_LUN(cmd)->unpacked_lun,
5423 			CMD_TFO(cmd)->get_task_tag(cmd));
5424 
5425 		spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5426 		if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
5427 			spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5428 			goto check_cond;
5429 		}
5430 		atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
5431 		transport_all_task_dev_remove_state(cmd);
5432 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5433 
5434 		transport_free_dev_tasks(cmd);
5435 		/*
5436 		 * The Storage engine stopped this struct se_cmd before it was
5437 		 * send to the fabric frontend for delivery back to the
5438 		 * Initiator Node.  Return this SCSI CDB back with an
5439 		 * CHECK_CONDITION status.
5440 		 */
5441 check_cond:
5442 		transport_send_check_condition_and_sense(cmd,
5443 				TCM_NON_EXISTENT_LUN, 0);
5444 		/*
5445 		 *  If the fabric frontend is waiting for this iscsi_cmd_t to
5446 		 * be released, notify the waiting thread now that LU has
5447 		 * finished accessing it.
5448 		 */
5449 		spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5450 		if (atomic_read(&T_TASK(cmd)->transport_lun_fe_stop)) {
5451 			DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5452 				" struct se_cmd: %p ITT: 0x%08x\n",
5453 				lun->unpacked_lun,
5454 				cmd, CMD_TFO(cmd)->get_task_tag(cmd));
5455 
5456 			spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
5457 					cmd_flags);
5458 			transport_cmd_check_stop(cmd, 1, 0);
5459 			complete(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5460 			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5461 			continue;
5462 		}
5463 		DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5464 			lun->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd));
5465 
5466 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5467 		spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5468 	}
5469 	spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5470 }
5471 
5472 static int transport_clear_lun_thread(void *p)
5473 {
5474 	struct se_lun *lun = (struct se_lun *)p;
5475 
5476 	__transport_clear_lun_from_sessions(lun);
5477 	complete(&lun->lun_shutdown_comp);
5478 
5479 	return 0;
5480 }
5481 
5482 int transport_clear_lun_from_sessions(struct se_lun *lun)
5483 {
5484 	struct task_struct *kt;
5485 
5486 	kt = kthread_run(transport_clear_lun_thread, (void *)lun,
5487 			"tcm_cl_%u", lun->unpacked_lun);
5488 	if (IS_ERR(kt)) {
5489 		printk(KERN_ERR "Unable to start clear_lun thread\n");
5490 		return -1;
5491 	}
5492 	wait_for_completion(&lun->lun_shutdown_comp);
5493 
5494 	return 0;
5495 }
5496 
5497 /*	transport_generic_wait_for_tasks():
5498  *
5499  *	Called from frontend or passthrough context to wait for storage engine
5500  *	to pause and/or release frontend generated struct se_cmd.
5501  */
5502 static void transport_generic_wait_for_tasks(
5503 	struct se_cmd *cmd,
5504 	int remove_cmd,
5505 	int session_reinstatement)
5506 {
5507 	unsigned long flags;
5508 
5509 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
5510 		return;
5511 
5512 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5513 	/*
5514 	 * If we are already stopped due to an external event (ie: LUN shutdown)
5515 	 * sleep until the connection can have the passed struct se_cmd back.
5516 	 * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by
5517 	 * transport_clear_lun_from_sessions() once the ConfigFS context caller
5518 	 * has completed its operation on the struct se_cmd.
5519 	 */
5520 	if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
5521 
5522 		DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5523 			" wait_for_completion(&T_TASK(cmd)transport_lun_fe"
5524 			"_stop_comp); for ITT: 0x%08x\n",
5525 			CMD_TFO(cmd)->get_task_tag(cmd));
5526 		/*
5527 		 * There is a special case for WRITES where a FE exception +
5528 		 * LUN shutdown means ConfigFS context is still sleeping on
5529 		 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5530 		 * We go ahead and up transport_lun_stop_comp just to be sure
5531 		 * here.
5532 		 */
5533 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5534 		complete(&T_TASK(cmd)->transport_lun_stop_comp);
5535 		wait_for_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5536 		spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5537 
5538 		transport_all_task_dev_remove_state(cmd);
5539 		/*
5540 		 * At this point, the frontend who was the originator of this
5541 		 * struct se_cmd, now owns the structure and can be released through
5542 		 * normal means below.
5543 		 */
5544 		DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5545 			" wait_for_completion(&T_TASK(cmd)transport_lun_fe_"
5546 			"stop_comp); for ITT: 0x%08x\n",
5547 			CMD_TFO(cmd)->get_task_tag(cmd));
5548 
5549 		atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5550 	}
5551 	if (!atomic_read(&T_TASK(cmd)->t_transport_active) ||
5552 	     atomic_read(&T_TASK(cmd)->t_transport_aborted))
5553 		goto remove;
5554 
5555 	atomic_set(&T_TASK(cmd)->t_transport_stop, 1);
5556 
5557 	DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5558 		" i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5559 		" = TRUE\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
5560 		CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state,
5561 		cmd->deferred_t_state);
5562 
5563 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5564 
5565 	wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5566 
5567 	wait_for_completion(&T_TASK(cmd)->t_transport_stop_comp);
5568 
5569 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5570 	atomic_set(&T_TASK(cmd)->t_transport_active, 0);
5571 	atomic_set(&T_TASK(cmd)->t_transport_stop, 0);
5572 
5573 	DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5574 		"&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n",
5575 		CMD_TFO(cmd)->get_task_tag(cmd));
5576 remove:
5577 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5578 	if (!remove_cmd)
5579 		return;
5580 
5581 	transport_generic_free_cmd(cmd, 0, 0, session_reinstatement);
5582 }
5583 
5584 static int transport_get_sense_codes(
5585 	struct se_cmd *cmd,
5586 	u8 *asc,
5587 	u8 *ascq)
5588 {
5589 	*asc = cmd->scsi_asc;
5590 	*ascq = cmd->scsi_ascq;
5591 
5592 	return 0;
5593 }
5594 
5595 static int transport_set_sense_codes(
5596 	struct se_cmd *cmd,
5597 	u8 asc,
5598 	u8 ascq)
5599 {
5600 	cmd->scsi_asc = asc;
5601 	cmd->scsi_ascq = ascq;
5602 
5603 	return 0;
5604 }
5605 
5606 int transport_send_check_condition_and_sense(
5607 	struct se_cmd *cmd,
5608 	u8 reason,
5609 	int from_transport)
5610 {
5611 	unsigned char *buffer = cmd->sense_buffer;
5612 	unsigned long flags;
5613 	int offset;
5614 	u8 asc = 0, ascq = 0;
5615 
5616 	spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5617 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
5618 		spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5619 		return 0;
5620 	}
5621 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
5622 	spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5623 
5624 	if (!reason && from_transport)
5625 		goto after_reason;
5626 
5627 	if (!from_transport)
5628 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
5629 	/*
5630 	 * Data Segment and SenseLength of the fabric response PDU.
5631 	 *
5632 	 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5633 	 * from include/scsi/scsi_cmnd.h
5634 	 */
5635 	offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
5636 				TRANSPORT_SENSE_BUFFER);
5637 	/*
5638 	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
5639 	 * SENSE KEY values from include/scsi/scsi.h
5640 	 */
5641 	switch (reason) {
5642 	case TCM_NON_EXISTENT_LUN:
5643 	case TCM_UNSUPPORTED_SCSI_OPCODE:
5644 	case TCM_SECTOR_COUNT_TOO_MANY:
5645 		/* CURRENT ERROR */
5646 		buffer[offset] = 0x70;
5647 		/* ILLEGAL REQUEST */
5648 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5649 		/* INVALID COMMAND OPERATION CODE */
5650 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
5651 		break;
5652 	case TCM_UNKNOWN_MODE_PAGE:
5653 		/* CURRENT ERROR */
5654 		buffer[offset] = 0x70;
5655 		/* ILLEGAL REQUEST */
5656 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5657 		/* INVALID FIELD IN CDB */
5658 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5659 		break;
5660 	case TCM_CHECK_CONDITION_ABORT_CMD:
5661 		/* CURRENT ERROR */
5662 		buffer[offset] = 0x70;
5663 		/* ABORTED COMMAND */
5664 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5665 		/* BUS DEVICE RESET FUNCTION OCCURRED */
5666 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
5667 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
5668 		break;
5669 	case TCM_INCORRECT_AMOUNT_OF_DATA:
5670 		/* CURRENT ERROR */
5671 		buffer[offset] = 0x70;
5672 		/* ABORTED COMMAND */
5673 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5674 		/* WRITE ERROR */
5675 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5676 		/* NOT ENOUGH UNSOLICITED DATA */
5677 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
5678 		break;
5679 	case TCM_INVALID_CDB_FIELD:
5680 		/* CURRENT ERROR */
5681 		buffer[offset] = 0x70;
5682 		/* ABORTED COMMAND */
5683 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5684 		/* INVALID FIELD IN CDB */
5685 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5686 		break;
5687 	case TCM_INVALID_PARAMETER_LIST:
5688 		/* CURRENT ERROR */
5689 		buffer[offset] = 0x70;
5690 		/* ABORTED COMMAND */
5691 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5692 		/* INVALID FIELD IN PARAMETER LIST */
5693 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
5694 		break;
5695 	case TCM_UNEXPECTED_UNSOLICITED_DATA:
5696 		/* CURRENT ERROR */
5697 		buffer[offset] = 0x70;
5698 		/* ABORTED COMMAND */
5699 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5700 		/* WRITE ERROR */
5701 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5702 		/* UNEXPECTED_UNSOLICITED_DATA */
5703 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
5704 		break;
5705 	case TCM_SERVICE_CRC_ERROR:
5706 		/* CURRENT ERROR */
5707 		buffer[offset] = 0x70;
5708 		/* ABORTED COMMAND */
5709 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5710 		/* PROTOCOL SERVICE CRC ERROR */
5711 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
5712 		/* N/A */
5713 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
5714 		break;
5715 	case TCM_SNACK_REJECTED:
5716 		/* CURRENT ERROR */
5717 		buffer[offset] = 0x70;
5718 		/* ABORTED COMMAND */
5719 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5720 		/* READ ERROR */
5721 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
5722 		/* FAILED RETRANSMISSION REQUEST */
5723 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
5724 		break;
5725 	case TCM_WRITE_PROTECTED:
5726 		/* CURRENT ERROR */
5727 		buffer[offset] = 0x70;
5728 		/* DATA PROTECT */
5729 		buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
5730 		/* WRITE PROTECTED */
5731 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
5732 		break;
5733 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
5734 		/* CURRENT ERROR */
5735 		buffer[offset] = 0x70;
5736 		/* UNIT ATTENTION */
5737 		buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
5738 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
5739 		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5740 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5741 		break;
5742 	case TCM_CHECK_CONDITION_NOT_READY:
5743 		/* CURRENT ERROR */
5744 		buffer[offset] = 0x70;
5745 		/* Not Ready */
5746 		buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
5747 		transport_get_sense_codes(cmd, &asc, &ascq);
5748 		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5749 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5750 		break;
5751 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
5752 	default:
5753 		/* CURRENT ERROR */
5754 		buffer[offset] = 0x70;
5755 		/* ILLEGAL REQUEST */
5756 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5757 		/* LOGICAL UNIT COMMUNICATION FAILURE */
5758 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
5759 		break;
5760 	}
5761 	/*
5762 	 * This code uses linux/include/scsi/scsi.h SAM status codes!
5763 	 */
5764 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
5765 	/*
5766 	 * Automatically padded, this value is encoded in the fabric's
5767 	 * data_length response PDU containing the SCSI defined sense data.
5768 	 */
5769 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
5770 
5771 after_reason:
5772 	CMD_TFO(cmd)->queue_status(cmd);
5773 	return 0;
5774 }
5775 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
5776 
5777 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
5778 {
5779 	int ret = 0;
5780 
5781 	if (atomic_read(&T_TASK(cmd)->t_transport_aborted) != 0) {
5782 		if (!(send_status) ||
5783 		     (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
5784 			return 1;
5785 #if 0
5786 		printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED"
5787 			" status for CDB: 0x%02x ITT: 0x%08x\n",
5788 			T_TASK(cmd)->t_task_cdb[0],
5789 			CMD_TFO(cmd)->get_task_tag(cmd));
5790 #endif
5791 		cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
5792 		CMD_TFO(cmd)->queue_status(cmd);
5793 		ret = 1;
5794 	}
5795 	return ret;
5796 }
5797 EXPORT_SYMBOL(transport_check_aborted_status);
5798 
5799 void transport_send_task_abort(struct se_cmd *cmd)
5800 {
5801 	/*
5802 	 * If there are still expected incoming fabric WRITEs, we wait
5803 	 * until until they have completed before sending a TASK_ABORTED
5804 	 * response.  This response with TASK_ABORTED status will be
5805 	 * queued back to fabric module by transport_check_aborted_status().
5806 	 */
5807 	if (cmd->data_direction == DMA_TO_DEVICE) {
5808 		if (CMD_TFO(cmd)->write_pending_status(cmd) != 0) {
5809 			atomic_inc(&T_TASK(cmd)->t_transport_aborted);
5810 			smp_mb__after_atomic_inc();
5811 			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5812 			transport_new_cmd_failure(cmd);
5813 			return;
5814 		}
5815 	}
5816 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5817 #if 0
5818 	printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5819 		" ITT: 0x%08x\n", T_TASK(cmd)->t_task_cdb[0],
5820 		CMD_TFO(cmd)->get_task_tag(cmd));
5821 #endif
5822 	CMD_TFO(cmd)->queue_status(cmd);
5823 }
5824 
5825 /*	transport_generic_do_tmr():
5826  *
5827  *
5828  */
5829 int transport_generic_do_tmr(struct se_cmd *cmd)
5830 {
5831 	struct se_cmd *ref_cmd;
5832 	struct se_device *dev = SE_DEV(cmd);
5833 	struct se_tmr_req *tmr = cmd->se_tmr_req;
5834 	int ret;
5835 
5836 	switch (tmr->function) {
5837 	case TMR_ABORT_TASK:
5838 		ref_cmd = tmr->ref_cmd;
5839 		tmr->response = TMR_FUNCTION_REJECTED;
5840 		break;
5841 	case TMR_ABORT_TASK_SET:
5842 	case TMR_CLEAR_ACA:
5843 	case TMR_CLEAR_TASK_SET:
5844 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
5845 		break;
5846 	case TMR_LUN_RESET:
5847 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
5848 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
5849 					 TMR_FUNCTION_REJECTED;
5850 		break;
5851 	case TMR_TARGET_WARM_RESET:
5852 		tmr->response = TMR_FUNCTION_REJECTED;
5853 		break;
5854 	case TMR_TARGET_COLD_RESET:
5855 		tmr->response = TMR_FUNCTION_REJECTED;
5856 		break;
5857 	default:
5858 		printk(KERN_ERR "Uknown TMR function: 0x%02x.\n",
5859 				tmr->function);
5860 		tmr->response = TMR_FUNCTION_REJECTED;
5861 		break;
5862 	}
5863 
5864 	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
5865 	CMD_TFO(cmd)->queue_tm_rsp(cmd);
5866 
5867 	transport_cmd_check_stop(cmd, 2, 0);
5868 	return 0;
5869 }
5870 
5871 /*
5872  *	Called with spin_lock_irq(&dev->execute_task_lock); held
5873  *
5874  */
5875 static struct se_task *
5876 transport_get_task_from_state_list(struct se_device *dev)
5877 {
5878 	struct se_task *task;
5879 
5880 	if (list_empty(&dev->state_task_list))
5881 		return NULL;
5882 
5883 	list_for_each_entry(task, &dev->state_task_list, t_state_list)
5884 		break;
5885 
5886 	list_del(&task->t_state_list);
5887 	atomic_set(&task->task_state_active, 0);
5888 
5889 	return task;
5890 }
5891 
5892 static void transport_processing_shutdown(struct se_device *dev)
5893 {
5894 	struct se_cmd *cmd;
5895 	struct se_queue_req *qr;
5896 	struct se_task *task;
5897 	u8 state;
5898 	unsigned long flags;
5899 	/*
5900 	 * Empty the struct se_device's struct se_task state list.
5901 	 */
5902 	spin_lock_irqsave(&dev->execute_task_lock, flags);
5903 	while ((task = transport_get_task_from_state_list(dev))) {
5904 		if (!(TASK_CMD(task))) {
5905 			printk(KERN_ERR "TASK_CMD(task) is NULL!\n");
5906 			continue;
5907 		}
5908 		cmd = TASK_CMD(task);
5909 
5910 		if (!T_TASK(cmd)) {
5911 			printk(KERN_ERR "T_TASK(cmd) is NULL for task: %p cmd:"
5912 				" %p ITT: 0x%08x\n", task, cmd,
5913 				CMD_TFO(cmd)->get_task_tag(cmd));
5914 			continue;
5915 		}
5916 		spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5917 
5918 		spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5919 
5920 		DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
5921 			" i_state/def_i_state: %d/%d, t_state/def_t_state:"
5922 			" %d/%d cdb: 0x%02x\n", cmd, task,
5923 			CMD_TFO(cmd)->get_task_tag(cmd), cmd->cmd_sn,
5924 			CMD_TFO(cmd)->get_cmd_state(cmd), cmd->deferred_i_state,
5925 			cmd->t_state, cmd->deferred_t_state,
5926 			T_TASK(cmd)->t_task_cdb[0]);
5927 		DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
5928 			" %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5929 			" t_transport_stop: %d t_transport_sent: %d\n",
5930 			CMD_TFO(cmd)->get_task_tag(cmd),
5931 			T_TASK(cmd)->t_task_cdbs,
5932 			atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
5933 			atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
5934 			atomic_read(&T_TASK(cmd)->t_transport_active),
5935 			atomic_read(&T_TASK(cmd)->t_transport_stop),
5936 			atomic_read(&T_TASK(cmd)->t_transport_sent));
5937 
5938 		if (atomic_read(&task->task_active)) {
5939 			atomic_set(&task->task_stop, 1);
5940 			spin_unlock_irqrestore(
5941 				&T_TASK(cmd)->t_state_lock, flags);
5942 
5943 			DEBUG_DO("Waiting for task: %p to shutdown for dev:"
5944 				" %p\n", task, dev);
5945 			wait_for_completion(&task->task_stop_comp);
5946 			DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
5947 				task, dev);
5948 
5949 			spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5950 			atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
5951 
5952 			atomic_set(&task->task_active, 0);
5953 			atomic_set(&task->task_stop, 0);
5954 		} else {
5955 			if (atomic_read(&task->task_execute_queue) != 0)
5956 				transport_remove_task_from_execute_queue(task, dev);
5957 		}
5958 		__transport_stop_task_timer(task, &flags);
5959 
5960 		if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_ex_left))) {
5961 			spin_unlock_irqrestore(
5962 					&T_TASK(cmd)->t_state_lock, flags);
5963 
5964 			DEBUG_DO("Skipping task: %p, dev: %p for"
5965 				" t_task_cdbs_ex_left: %d\n", task, dev,
5966 				atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left));
5967 
5968 			spin_lock_irqsave(&dev->execute_task_lock, flags);
5969 			continue;
5970 		}
5971 
5972 		if (atomic_read(&T_TASK(cmd)->t_transport_active)) {
5973 			DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
5974 					" %p\n", task, dev);
5975 
5976 			if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
5977 				spin_unlock_irqrestore(
5978 					&T_TASK(cmd)->t_state_lock, flags);
5979 				transport_send_check_condition_and_sense(
5980 					cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5981 					0);
5982 				transport_remove_cmd_from_queue(cmd,
5983 					SE_DEV(cmd)->dev_queue_obj);
5984 
5985 				transport_lun_remove_cmd(cmd);
5986 				transport_cmd_check_stop(cmd, 1, 0);
5987 			} else {
5988 				spin_unlock_irqrestore(
5989 					&T_TASK(cmd)->t_state_lock, flags);
5990 
5991 				transport_remove_cmd_from_queue(cmd,
5992 					SE_DEV(cmd)->dev_queue_obj);
5993 
5994 				transport_lun_remove_cmd(cmd);
5995 
5996 				if (transport_cmd_check_stop(cmd, 1, 0))
5997 					transport_generic_remove(cmd, 0, 0);
5998 			}
5999 
6000 			spin_lock_irqsave(&dev->execute_task_lock, flags);
6001 			continue;
6002 		}
6003 		DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
6004 				task, dev);
6005 
6006 		if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
6007 			spin_unlock_irqrestore(
6008 				&T_TASK(cmd)->t_state_lock, flags);
6009 			transport_send_check_condition_and_sense(cmd,
6010 				TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
6011 			transport_remove_cmd_from_queue(cmd,
6012 				SE_DEV(cmd)->dev_queue_obj);
6013 
6014 			transport_lun_remove_cmd(cmd);
6015 			transport_cmd_check_stop(cmd, 1, 0);
6016 		} else {
6017 			spin_unlock_irqrestore(
6018 				&T_TASK(cmd)->t_state_lock, flags);
6019 
6020 			transport_remove_cmd_from_queue(cmd,
6021 				SE_DEV(cmd)->dev_queue_obj);
6022 			transport_lun_remove_cmd(cmd);
6023 
6024 			if (transport_cmd_check_stop(cmd, 1, 0))
6025 				transport_generic_remove(cmd, 0, 0);
6026 		}
6027 
6028 		spin_lock_irqsave(&dev->execute_task_lock, flags);
6029 	}
6030 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
6031 	/*
6032 	 * Empty the struct se_device's struct se_cmd list.
6033 	 */
6034 	spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
6035 	while ((qr = __transport_get_qr_from_queue(dev->dev_queue_obj))) {
6036 		spin_unlock_irqrestore(
6037 				&dev->dev_queue_obj->cmd_queue_lock, flags);
6038 		cmd = (struct se_cmd *)qr->cmd;
6039 		state = qr->state;
6040 		kfree(qr);
6041 
6042 		DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
6043 				cmd, state);
6044 
6045 		if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
6046 			transport_send_check_condition_and_sense(cmd,
6047 				TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
6048 
6049 			transport_lun_remove_cmd(cmd);
6050 			transport_cmd_check_stop(cmd, 1, 0);
6051 		} else {
6052 			transport_lun_remove_cmd(cmd);
6053 			if (transport_cmd_check_stop(cmd, 1, 0))
6054 				transport_generic_remove(cmd, 0, 0);
6055 		}
6056 		spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
6057 	}
6058 	spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
6059 }
6060 
6061 /*	transport_processing_thread():
6062  *
6063  *
6064  */
6065 static int transport_processing_thread(void *param)
6066 {
6067 	int ret, t_state;
6068 	struct se_cmd *cmd;
6069 	struct se_device *dev = (struct se_device *) param;
6070 	struct se_queue_req *qr;
6071 
6072 	set_user_nice(current, -20);
6073 
6074 	while (!kthread_should_stop()) {
6075 		ret = wait_event_interruptible(dev->dev_queue_obj->thread_wq,
6076 				atomic_read(&dev->dev_queue_obj->queue_cnt) ||
6077 				kthread_should_stop());
6078 		if (ret < 0)
6079 			goto out;
6080 
6081 		spin_lock_irq(&dev->dev_status_lock);
6082 		if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
6083 			spin_unlock_irq(&dev->dev_status_lock);
6084 			transport_processing_shutdown(dev);
6085 			continue;
6086 		}
6087 		spin_unlock_irq(&dev->dev_status_lock);
6088 
6089 get_cmd:
6090 		__transport_execute_tasks(dev);
6091 
6092 		qr = transport_get_qr_from_queue(dev->dev_queue_obj);
6093 		if (!(qr))
6094 			continue;
6095 
6096 		cmd = (struct se_cmd *)qr->cmd;
6097 		t_state = qr->state;
6098 		kfree(qr);
6099 
6100 		switch (t_state) {
6101 		case TRANSPORT_NEW_CMD_MAP:
6102 			if (!(CMD_TFO(cmd)->new_cmd_map)) {
6103 				printk(KERN_ERR "CMD_TFO(cmd)->new_cmd_map is"
6104 					" NULL for TRANSPORT_NEW_CMD_MAP\n");
6105 				BUG();
6106 			}
6107 			ret = CMD_TFO(cmd)->new_cmd_map(cmd);
6108 			if (ret < 0) {
6109 				cmd->transport_error_status = ret;
6110 				transport_generic_request_failure(cmd, NULL,
6111 						0, (cmd->data_direction !=
6112 						    DMA_TO_DEVICE));
6113 				break;
6114 			}
6115 			/* Fall through */
6116 		case TRANSPORT_NEW_CMD:
6117 			ret = transport_generic_new_cmd(cmd);
6118 			if (ret < 0) {
6119 				cmd->transport_error_status = ret;
6120 				transport_generic_request_failure(cmd, NULL,
6121 					0, (cmd->data_direction !=
6122 					 DMA_TO_DEVICE));
6123 			}
6124 			break;
6125 		case TRANSPORT_PROCESS_WRITE:
6126 			transport_generic_process_write(cmd);
6127 			break;
6128 		case TRANSPORT_COMPLETE_OK:
6129 			transport_stop_all_task_timers(cmd);
6130 			transport_generic_complete_ok(cmd);
6131 			break;
6132 		case TRANSPORT_REMOVE:
6133 			transport_generic_remove(cmd, 1, 0);
6134 			break;
6135 		case TRANSPORT_PROCESS_TMR:
6136 			transport_generic_do_tmr(cmd);
6137 			break;
6138 		case TRANSPORT_COMPLETE_FAILURE:
6139 			transport_generic_request_failure(cmd, NULL, 1, 1);
6140 			break;
6141 		case TRANSPORT_COMPLETE_TIMEOUT:
6142 			transport_stop_all_task_timers(cmd);
6143 			transport_generic_request_timeout(cmd);
6144 			break;
6145 		default:
6146 			printk(KERN_ERR "Unknown t_state: %d deferred_t_state:"
6147 				" %d for ITT: 0x%08x i_state: %d on SE LUN:"
6148 				" %u\n", t_state, cmd->deferred_t_state,
6149 				CMD_TFO(cmd)->get_task_tag(cmd),
6150 				CMD_TFO(cmd)->get_cmd_state(cmd),
6151 				SE_LUN(cmd)->unpacked_lun);
6152 			BUG();
6153 		}
6154 
6155 		goto get_cmd;
6156 	}
6157 
6158 out:
6159 	transport_release_all_cmds(dev);
6160 	dev->process_thread = NULL;
6161 	return 0;
6162 }
6163