1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 
10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
11 
12 struct rt_bandwidth def_rt_bandwidth;
13 
sched_rt_period_timer(struct hrtimer * timer)14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
15 {
16 	struct rt_bandwidth *rt_b =
17 		container_of(timer, struct rt_bandwidth, rt_period_timer);
18 	ktime_t now;
19 	int overrun;
20 	int idle = 0;
21 
22 	for (;;) {
23 		now = hrtimer_cb_get_time(timer);
24 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
25 
26 		if (!overrun)
27 			break;
28 
29 		idle = do_sched_rt_period_timer(rt_b, overrun);
30 	}
31 
32 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
33 }
34 
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
36 {
37 	rt_b->rt_period = ns_to_ktime(period);
38 	rt_b->rt_runtime = runtime;
39 
40 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
41 
42 	hrtimer_init(&rt_b->rt_period_timer,
43 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
44 	rt_b->rt_period_timer.function = sched_rt_period_timer;
45 }
46 
start_rt_bandwidth(struct rt_bandwidth * rt_b)47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
48 {
49 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
50 		return;
51 
52 	if (hrtimer_active(&rt_b->rt_period_timer))
53 		return;
54 
55 	raw_spin_lock(&rt_b->rt_runtime_lock);
56 	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
57 	raw_spin_unlock(&rt_b->rt_runtime_lock);
58 }
59 
init_rt_rq(struct rt_rq * rt_rq,struct rq * rq)60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
61 {
62 	struct rt_prio_array *array;
63 	int i;
64 
65 	array = &rt_rq->active;
66 	for (i = 0; i < MAX_RT_PRIO; i++) {
67 		INIT_LIST_HEAD(array->queue + i);
68 		__clear_bit(i, array->bitmap);
69 	}
70 	/* delimiter for bitsearch: */
71 	__set_bit(MAX_RT_PRIO, array->bitmap);
72 
73 #if defined CONFIG_SMP
74 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
75 	rt_rq->highest_prio.next = MAX_RT_PRIO;
76 	rt_rq->rt_nr_migratory = 0;
77 	rt_rq->overloaded = 0;
78 	plist_head_init(&rt_rq->pushable_tasks);
79 #endif
80 
81 	rt_rq->rt_time = 0;
82 	rt_rq->rt_throttled = 0;
83 	rt_rq->rt_runtime = 0;
84 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
85 }
86 
87 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
89 {
90 	hrtimer_cancel(&rt_b->rt_period_timer);
91 }
92 
93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
94 
rt_task_of(struct sched_rt_entity * rt_se)95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
96 {
97 #ifdef CONFIG_SCHED_DEBUG
98 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
99 #endif
100 	return container_of(rt_se, struct task_struct, rt);
101 }
102 
rq_of_rt_rq(struct rt_rq * rt_rq)103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
104 {
105 	return rt_rq->rq;
106 }
107 
rt_rq_of_se(struct sched_rt_entity * rt_se)108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
109 {
110 	return rt_se->rt_rq;
111 }
112 
free_rt_sched_group(struct task_group * tg)113 void free_rt_sched_group(struct task_group *tg)
114 {
115 	int i;
116 
117 	if (tg->rt_se)
118 		destroy_rt_bandwidth(&tg->rt_bandwidth);
119 
120 	for_each_possible_cpu(i) {
121 		if (tg->rt_rq)
122 			kfree(tg->rt_rq[i]);
123 		if (tg->rt_se)
124 			kfree(tg->rt_se[i]);
125 	}
126 
127 	kfree(tg->rt_rq);
128 	kfree(tg->rt_se);
129 }
130 
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
132 		struct sched_rt_entity *rt_se, int cpu,
133 		struct sched_rt_entity *parent)
134 {
135 	struct rq *rq = cpu_rq(cpu);
136 
137 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
138 	rt_rq->rt_nr_boosted = 0;
139 	rt_rq->rq = rq;
140 	rt_rq->tg = tg;
141 
142 	tg->rt_rq[cpu] = rt_rq;
143 	tg->rt_se[cpu] = rt_se;
144 
145 	if (!rt_se)
146 		return;
147 
148 	if (!parent)
149 		rt_se->rt_rq = &rq->rt;
150 	else
151 		rt_se->rt_rq = parent->my_q;
152 
153 	rt_se->my_q = rt_rq;
154 	rt_se->parent = parent;
155 	INIT_LIST_HEAD(&rt_se->run_list);
156 }
157 
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
159 {
160 	struct rt_rq *rt_rq;
161 	struct sched_rt_entity *rt_se;
162 	int i;
163 
164 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
165 	if (!tg->rt_rq)
166 		goto err;
167 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
168 	if (!tg->rt_se)
169 		goto err;
170 
171 	init_rt_bandwidth(&tg->rt_bandwidth,
172 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
173 
174 	for_each_possible_cpu(i) {
175 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
176 				     GFP_KERNEL, cpu_to_node(i));
177 		if (!rt_rq)
178 			goto err;
179 
180 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
181 				     GFP_KERNEL, cpu_to_node(i));
182 		if (!rt_se)
183 			goto err_free_rq;
184 
185 		init_rt_rq(rt_rq, cpu_rq(i));
186 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
187 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
188 	}
189 
190 	return 1;
191 
192 err_free_rq:
193 	kfree(rt_rq);
194 err:
195 	return 0;
196 }
197 
198 #else /* CONFIG_RT_GROUP_SCHED */
199 
200 #define rt_entity_is_task(rt_se) (1)
201 
rt_task_of(struct sched_rt_entity * rt_se)202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
203 {
204 	return container_of(rt_se, struct task_struct, rt);
205 }
206 
rq_of_rt_rq(struct rt_rq * rt_rq)207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
208 {
209 	return container_of(rt_rq, struct rq, rt);
210 }
211 
rt_rq_of_se(struct sched_rt_entity * rt_se)212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
213 {
214 	struct task_struct *p = rt_task_of(rt_se);
215 	struct rq *rq = task_rq(p);
216 
217 	return &rq->rt;
218 }
219 
free_rt_sched_group(struct task_group * tg)220 void free_rt_sched_group(struct task_group *tg) { }
221 
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
223 {
224 	return 1;
225 }
226 #endif /* CONFIG_RT_GROUP_SCHED */
227 
228 #ifdef CONFIG_SMP
229 
rt_overloaded(struct rq * rq)230 static inline int rt_overloaded(struct rq *rq)
231 {
232 	return atomic_read(&rq->rd->rto_count);
233 }
234 
rt_set_overload(struct rq * rq)235 static inline void rt_set_overload(struct rq *rq)
236 {
237 	if (!rq->online)
238 		return;
239 
240 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
241 	/*
242 	 * Make sure the mask is visible before we set
243 	 * the overload count. That is checked to determine
244 	 * if we should look at the mask. It would be a shame
245 	 * if we looked at the mask, but the mask was not
246 	 * updated yet.
247 	 */
248 	wmb();
249 	atomic_inc(&rq->rd->rto_count);
250 }
251 
rt_clear_overload(struct rq * rq)252 static inline void rt_clear_overload(struct rq *rq)
253 {
254 	if (!rq->online)
255 		return;
256 
257 	/* the order here really doesn't matter */
258 	atomic_dec(&rq->rd->rto_count);
259 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
260 }
261 
update_rt_migration(struct rt_rq * rt_rq)262 static void update_rt_migration(struct rt_rq *rt_rq)
263 {
264 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265 		if (!rt_rq->overloaded) {
266 			rt_set_overload(rq_of_rt_rq(rt_rq));
267 			rt_rq->overloaded = 1;
268 		}
269 	} else if (rt_rq->overloaded) {
270 		rt_clear_overload(rq_of_rt_rq(rt_rq));
271 		rt_rq->overloaded = 0;
272 	}
273 }
274 
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
276 {
277 	if (!rt_entity_is_task(rt_se))
278 		return;
279 
280 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
281 
282 	rt_rq->rt_nr_total++;
283 	if (rt_se->nr_cpus_allowed > 1)
284 		rt_rq->rt_nr_migratory++;
285 
286 	update_rt_migration(rt_rq);
287 }
288 
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)289 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
290 {
291 	if (!rt_entity_is_task(rt_se))
292 		return;
293 
294 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
295 
296 	rt_rq->rt_nr_total--;
297 	if (rt_se->nr_cpus_allowed > 1)
298 		rt_rq->rt_nr_migratory--;
299 
300 	update_rt_migration(rt_rq);
301 }
302 
has_pushable_tasks(struct rq * rq)303 static inline int has_pushable_tasks(struct rq *rq)
304 {
305 	return !plist_head_empty(&rq->rt.pushable_tasks);
306 }
307 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)308 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
309 {
310 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
311 	plist_node_init(&p->pushable_tasks, p->prio);
312 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
313 
314 	/* Update the highest prio pushable task */
315 	if (p->prio < rq->rt.highest_prio.next)
316 		rq->rt.highest_prio.next = p->prio;
317 }
318 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)319 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
320 {
321 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
322 
323 	/* Update the new highest prio pushable task */
324 	if (has_pushable_tasks(rq)) {
325 		p = plist_first_entry(&rq->rt.pushable_tasks,
326 				      struct task_struct, pushable_tasks);
327 		rq->rt.highest_prio.next = p->prio;
328 	} else
329 		rq->rt.highest_prio.next = MAX_RT_PRIO;
330 }
331 
332 #else
333 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)334 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
335 {
336 }
337 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)338 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
339 {
340 }
341 
342 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)343 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344 {
345 }
346 
347 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)348 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
349 {
350 }
351 
352 #endif /* CONFIG_SMP */
353 
on_rt_rq(struct sched_rt_entity * rt_se)354 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
355 {
356 	return !list_empty(&rt_se->run_list);
357 }
358 
359 #ifdef CONFIG_RT_GROUP_SCHED
360 
sched_rt_runtime(struct rt_rq * rt_rq)361 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
362 {
363 	if (!rt_rq->tg)
364 		return RUNTIME_INF;
365 
366 	return rt_rq->rt_runtime;
367 }
368 
sched_rt_period(struct rt_rq * rt_rq)369 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
370 {
371 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
372 }
373 
374 typedef struct task_group *rt_rq_iter_t;
375 
next_task_group(struct task_group * tg)376 static inline struct task_group *next_task_group(struct task_group *tg)
377 {
378 	do {
379 		tg = list_entry_rcu(tg->list.next,
380 			typeof(struct task_group), list);
381 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
382 
383 	if (&tg->list == &task_groups)
384 		tg = NULL;
385 
386 	return tg;
387 }
388 
389 #define for_each_rt_rq(rt_rq, iter, rq)					\
390 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
391 		(iter = next_task_group(iter)) &&			\
392 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
393 
list_add_leaf_rt_rq(struct rt_rq * rt_rq)394 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
395 {
396 	list_add_rcu(&rt_rq->leaf_rt_rq_list,
397 			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
398 }
399 
list_del_leaf_rt_rq(struct rt_rq * rt_rq)400 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
401 {
402 	list_del_rcu(&rt_rq->leaf_rt_rq_list);
403 }
404 
405 #define for_each_leaf_rt_rq(rt_rq, rq) \
406 	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
407 
408 #define for_each_sched_rt_entity(rt_se) \
409 	for (; rt_se; rt_se = rt_se->parent)
410 
group_rt_rq(struct sched_rt_entity * rt_se)411 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
412 {
413 	return rt_se->my_q;
414 }
415 
416 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
417 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
418 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)419 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
420 {
421 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
422 	struct sched_rt_entity *rt_se;
423 
424 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
425 
426 	rt_se = rt_rq->tg->rt_se[cpu];
427 
428 	if (rt_rq->rt_nr_running) {
429 		if (rt_se && !on_rt_rq(rt_se))
430 			enqueue_rt_entity(rt_se, false);
431 		if (rt_rq->highest_prio.curr < curr->prio)
432 			resched_task(curr);
433 	}
434 }
435 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)436 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
437 {
438 	struct sched_rt_entity *rt_se;
439 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
440 
441 	rt_se = rt_rq->tg->rt_se[cpu];
442 
443 	if (rt_se && on_rt_rq(rt_se))
444 		dequeue_rt_entity(rt_se);
445 }
446 
rt_rq_throttled(struct rt_rq * rt_rq)447 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
448 {
449 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
450 }
451 
rt_se_boosted(struct sched_rt_entity * rt_se)452 static int rt_se_boosted(struct sched_rt_entity *rt_se)
453 {
454 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
455 	struct task_struct *p;
456 
457 	if (rt_rq)
458 		return !!rt_rq->rt_nr_boosted;
459 
460 	p = rt_task_of(rt_se);
461 	return p->prio != p->normal_prio;
462 }
463 
464 #ifdef CONFIG_SMP
sched_rt_period_mask(void)465 static inline const struct cpumask *sched_rt_period_mask(void)
466 {
467 	return cpu_rq(smp_processor_id())->rd->span;
468 }
469 #else
sched_rt_period_mask(void)470 static inline const struct cpumask *sched_rt_period_mask(void)
471 {
472 	return cpu_online_mask;
473 }
474 #endif
475 
476 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)477 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
478 {
479 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
480 }
481 
sched_rt_bandwidth(struct rt_rq * rt_rq)482 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
483 {
484 	return &rt_rq->tg->rt_bandwidth;
485 }
486 
487 #else /* !CONFIG_RT_GROUP_SCHED */
488 
sched_rt_runtime(struct rt_rq * rt_rq)489 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
490 {
491 	return rt_rq->rt_runtime;
492 }
493 
sched_rt_period(struct rt_rq * rt_rq)494 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
495 {
496 	return ktime_to_ns(def_rt_bandwidth.rt_period);
497 }
498 
499 typedef struct rt_rq *rt_rq_iter_t;
500 
501 #define for_each_rt_rq(rt_rq, iter, rq) \
502 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
503 
list_add_leaf_rt_rq(struct rt_rq * rt_rq)504 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
505 {
506 }
507 
list_del_leaf_rt_rq(struct rt_rq * rt_rq)508 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
509 {
510 }
511 
512 #define for_each_leaf_rt_rq(rt_rq, rq) \
513 	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
514 
515 #define for_each_sched_rt_entity(rt_se) \
516 	for (; rt_se; rt_se = NULL)
517 
group_rt_rq(struct sched_rt_entity * rt_se)518 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
519 {
520 	return NULL;
521 }
522 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)523 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
524 {
525 	if (rt_rq->rt_nr_running)
526 		resched_task(rq_of_rt_rq(rt_rq)->curr);
527 }
528 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)529 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
530 {
531 }
532 
rt_rq_throttled(struct rt_rq * rt_rq)533 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
534 {
535 	return rt_rq->rt_throttled;
536 }
537 
sched_rt_period_mask(void)538 static inline const struct cpumask *sched_rt_period_mask(void)
539 {
540 	return cpu_online_mask;
541 }
542 
543 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)544 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
545 {
546 	return &cpu_rq(cpu)->rt;
547 }
548 
sched_rt_bandwidth(struct rt_rq * rt_rq)549 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
550 {
551 	return &def_rt_bandwidth;
552 }
553 
554 #endif /* CONFIG_RT_GROUP_SCHED */
555 
556 #ifdef CONFIG_SMP
557 /*
558  * We ran out of runtime, see if we can borrow some from our neighbours.
559  */
do_balance_runtime(struct rt_rq * rt_rq)560 static int do_balance_runtime(struct rt_rq *rt_rq)
561 {
562 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
563 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
564 	int i, weight, more = 0;
565 	u64 rt_period;
566 
567 	weight = cpumask_weight(rd->span);
568 
569 	raw_spin_lock(&rt_b->rt_runtime_lock);
570 	rt_period = ktime_to_ns(rt_b->rt_period);
571 	for_each_cpu(i, rd->span) {
572 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
573 		s64 diff;
574 
575 		if (iter == rt_rq)
576 			continue;
577 
578 		raw_spin_lock(&iter->rt_runtime_lock);
579 		/*
580 		 * Either all rqs have inf runtime and there's nothing to steal
581 		 * or __disable_runtime() below sets a specific rq to inf to
582 		 * indicate its been disabled and disalow stealing.
583 		 */
584 		if (iter->rt_runtime == RUNTIME_INF)
585 			goto next;
586 
587 		/*
588 		 * From runqueues with spare time, take 1/n part of their
589 		 * spare time, but no more than our period.
590 		 */
591 		diff = iter->rt_runtime - iter->rt_time;
592 		if (diff > 0) {
593 			diff = div_u64((u64)diff, weight);
594 			if (rt_rq->rt_runtime + diff > rt_period)
595 				diff = rt_period - rt_rq->rt_runtime;
596 			iter->rt_runtime -= diff;
597 			rt_rq->rt_runtime += diff;
598 			more = 1;
599 			if (rt_rq->rt_runtime == rt_period) {
600 				raw_spin_unlock(&iter->rt_runtime_lock);
601 				break;
602 			}
603 		}
604 next:
605 		raw_spin_unlock(&iter->rt_runtime_lock);
606 	}
607 	raw_spin_unlock(&rt_b->rt_runtime_lock);
608 
609 	return more;
610 }
611 
612 /*
613  * Ensure this RQ takes back all the runtime it lend to its neighbours.
614  */
__disable_runtime(struct rq * rq)615 static void __disable_runtime(struct rq *rq)
616 {
617 	struct root_domain *rd = rq->rd;
618 	rt_rq_iter_t iter;
619 	struct rt_rq *rt_rq;
620 
621 	if (unlikely(!scheduler_running))
622 		return;
623 
624 	for_each_rt_rq(rt_rq, iter, rq) {
625 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
626 		s64 want;
627 		int i;
628 
629 		raw_spin_lock(&rt_b->rt_runtime_lock);
630 		raw_spin_lock(&rt_rq->rt_runtime_lock);
631 		/*
632 		 * Either we're all inf and nobody needs to borrow, or we're
633 		 * already disabled and thus have nothing to do, or we have
634 		 * exactly the right amount of runtime to take out.
635 		 */
636 		if (rt_rq->rt_runtime == RUNTIME_INF ||
637 				rt_rq->rt_runtime == rt_b->rt_runtime)
638 			goto balanced;
639 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
640 
641 		/*
642 		 * Calculate the difference between what we started out with
643 		 * and what we current have, that's the amount of runtime
644 		 * we lend and now have to reclaim.
645 		 */
646 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
647 
648 		/*
649 		 * Greedy reclaim, take back as much as we can.
650 		 */
651 		for_each_cpu(i, rd->span) {
652 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
653 			s64 diff;
654 
655 			/*
656 			 * Can't reclaim from ourselves or disabled runqueues.
657 			 */
658 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
659 				continue;
660 
661 			raw_spin_lock(&iter->rt_runtime_lock);
662 			if (want > 0) {
663 				diff = min_t(s64, iter->rt_runtime, want);
664 				iter->rt_runtime -= diff;
665 				want -= diff;
666 			} else {
667 				iter->rt_runtime -= want;
668 				want -= want;
669 			}
670 			raw_spin_unlock(&iter->rt_runtime_lock);
671 
672 			if (!want)
673 				break;
674 		}
675 
676 		raw_spin_lock(&rt_rq->rt_runtime_lock);
677 		/*
678 		 * We cannot be left wanting - that would mean some runtime
679 		 * leaked out of the system.
680 		 */
681 		BUG_ON(want);
682 balanced:
683 		/*
684 		 * Disable all the borrow logic by pretending we have inf
685 		 * runtime - in which case borrowing doesn't make sense.
686 		 */
687 		rt_rq->rt_runtime = RUNTIME_INF;
688 		rt_rq->rt_throttled = 0;
689 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
690 		raw_spin_unlock(&rt_b->rt_runtime_lock);
691 	}
692 }
693 
disable_runtime(struct rq * rq)694 static void disable_runtime(struct rq *rq)
695 {
696 	unsigned long flags;
697 
698 	raw_spin_lock_irqsave(&rq->lock, flags);
699 	__disable_runtime(rq);
700 	raw_spin_unlock_irqrestore(&rq->lock, flags);
701 }
702 
__enable_runtime(struct rq * rq)703 static void __enable_runtime(struct rq *rq)
704 {
705 	rt_rq_iter_t iter;
706 	struct rt_rq *rt_rq;
707 
708 	if (unlikely(!scheduler_running))
709 		return;
710 
711 	/*
712 	 * Reset each runqueue's bandwidth settings
713 	 */
714 	for_each_rt_rq(rt_rq, iter, rq) {
715 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
716 
717 		raw_spin_lock(&rt_b->rt_runtime_lock);
718 		raw_spin_lock(&rt_rq->rt_runtime_lock);
719 		rt_rq->rt_runtime = rt_b->rt_runtime;
720 		rt_rq->rt_time = 0;
721 		rt_rq->rt_throttled = 0;
722 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
723 		raw_spin_unlock(&rt_b->rt_runtime_lock);
724 	}
725 }
726 
enable_runtime(struct rq * rq)727 static void enable_runtime(struct rq *rq)
728 {
729 	unsigned long flags;
730 
731 	raw_spin_lock_irqsave(&rq->lock, flags);
732 	__enable_runtime(rq);
733 	raw_spin_unlock_irqrestore(&rq->lock, flags);
734 }
735 
update_runtime(struct notifier_block * nfb,unsigned long action,void * hcpu)736 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
737 {
738 	int cpu = (int)(long)hcpu;
739 
740 	switch (action) {
741 	case CPU_DOWN_PREPARE:
742 	case CPU_DOWN_PREPARE_FROZEN:
743 		disable_runtime(cpu_rq(cpu));
744 		return NOTIFY_OK;
745 
746 	case CPU_DOWN_FAILED:
747 	case CPU_DOWN_FAILED_FROZEN:
748 	case CPU_ONLINE:
749 	case CPU_ONLINE_FROZEN:
750 		enable_runtime(cpu_rq(cpu));
751 		return NOTIFY_OK;
752 
753 	default:
754 		return NOTIFY_DONE;
755 	}
756 }
757 
balance_runtime(struct rt_rq * rt_rq)758 static int balance_runtime(struct rt_rq *rt_rq)
759 {
760 	int more = 0;
761 
762 	if (!sched_feat(RT_RUNTIME_SHARE))
763 		return more;
764 
765 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
766 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
767 		more = do_balance_runtime(rt_rq);
768 		raw_spin_lock(&rt_rq->rt_runtime_lock);
769 	}
770 
771 	return more;
772 }
773 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)774 static inline int balance_runtime(struct rt_rq *rt_rq)
775 {
776 	return 0;
777 }
778 #endif /* CONFIG_SMP */
779 
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)780 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
781 {
782 	int i, idle = 1, throttled = 0;
783 	const struct cpumask *span;
784 
785 	span = sched_rt_period_mask();
786 #ifdef CONFIG_RT_GROUP_SCHED
787 	/*
788 	 * FIXME: isolated CPUs should really leave the root task group,
789 	 * whether they are isolcpus or were isolated via cpusets, lest
790 	 * the timer run on a CPU which does not service all runqueues,
791 	 * potentially leaving other CPUs indefinitely throttled.  If
792 	 * isolation is really required, the user will turn the throttle
793 	 * off to kill the perturbations it causes anyway.  Meanwhile,
794 	 * this maintains functionality for boot and/or troubleshooting.
795 	 */
796 	if (rt_b == &root_task_group.rt_bandwidth)
797 		span = cpu_online_mask;
798 #endif
799 	for_each_cpu(i, span) {
800 		int enqueue = 0;
801 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
802 		struct rq *rq = rq_of_rt_rq(rt_rq);
803 
804 		raw_spin_lock(&rq->lock);
805 		if (rt_rq->rt_time) {
806 			u64 runtime;
807 
808 			raw_spin_lock(&rt_rq->rt_runtime_lock);
809 			if (rt_rq->rt_throttled)
810 				balance_runtime(rt_rq);
811 			runtime = rt_rq->rt_runtime;
812 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
813 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
814 				rt_rq->rt_throttled = 0;
815 				enqueue = 1;
816 
817 				/*
818 				 * Force a clock update if the CPU was idle,
819 				 * lest wakeup -> unthrottle time accumulate.
820 				 */
821 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
822 					rq->skip_clock_update = -1;
823 			}
824 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
825 				idle = 0;
826 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
827 		} else if (rt_rq->rt_nr_running) {
828 			idle = 0;
829 			if (!rt_rq_throttled(rt_rq))
830 				enqueue = 1;
831 		}
832 		if (rt_rq->rt_throttled)
833 			throttled = 1;
834 
835 		if (enqueue)
836 			sched_rt_rq_enqueue(rt_rq);
837 		raw_spin_unlock(&rq->lock);
838 	}
839 
840 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
841 		return 1;
842 
843 	return idle;
844 }
845 
rt_se_prio(struct sched_rt_entity * rt_se)846 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
847 {
848 #ifdef CONFIG_RT_GROUP_SCHED
849 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
850 
851 	if (rt_rq)
852 		return rt_rq->highest_prio.curr;
853 #endif
854 
855 	return rt_task_of(rt_se)->prio;
856 }
857 
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)858 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
859 {
860 	u64 runtime = sched_rt_runtime(rt_rq);
861 
862 	if (rt_rq->rt_throttled)
863 		return rt_rq_throttled(rt_rq);
864 
865 	if (runtime >= sched_rt_period(rt_rq))
866 		return 0;
867 
868 	balance_runtime(rt_rq);
869 	runtime = sched_rt_runtime(rt_rq);
870 	if (runtime == RUNTIME_INF)
871 		return 0;
872 
873 	if (rt_rq->rt_time > runtime) {
874 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
875 
876 		/*
877 		 * Don't actually throttle groups that have no runtime assigned
878 		 * but accrue some time due to boosting.
879 		 */
880 		if (likely(rt_b->rt_runtime)) {
881 			static bool once = false;
882 
883 			rt_rq->rt_throttled = 1;
884 
885 			if (!once) {
886 				once = true;
887 				printk_sched("sched: RT throttling activated\n");
888 			}
889 		} else {
890 			/*
891 			 * In case we did anyway, make it go away,
892 			 * replenishment is a joke, since it will replenish us
893 			 * with exactly 0 ns.
894 			 */
895 			rt_rq->rt_time = 0;
896 		}
897 
898 		if (rt_rq_throttled(rt_rq)) {
899 			sched_rt_rq_dequeue(rt_rq);
900 			return 1;
901 		}
902 	}
903 
904 	return 0;
905 }
906 
907 /*
908  * Update the current task's runtime statistics. Skip current tasks that
909  * are not in our scheduling class.
910  */
update_curr_rt(struct rq * rq)911 static void update_curr_rt(struct rq *rq)
912 {
913 	struct task_struct *curr = rq->curr;
914 	struct sched_rt_entity *rt_se = &curr->rt;
915 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
916 	u64 delta_exec;
917 
918 	if (curr->sched_class != &rt_sched_class)
919 		return;
920 
921 	delta_exec = rq->clock_task - curr->se.exec_start;
922 	if (unlikely((s64)delta_exec < 0))
923 		delta_exec = 0;
924 
925 	schedstat_set(curr->se.statistics.exec_max,
926 		      max(curr->se.statistics.exec_max, delta_exec));
927 
928 	curr->se.sum_exec_runtime += delta_exec;
929 	account_group_exec_runtime(curr, delta_exec);
930 
931 	curr->se.exec_start = rq->clock_task;
932 	cpuacct_charge(curr, delta_exec);
933 
934 	sched_rt_avg_update(rq, delta_exec);
935 
936 	if (!rt_bandwidth_enabled())
937 		return;
938 
939 	for_each_sched_rt_entity(rt_se) {
940 		rt_rq = rt_rq_of_se(rt_se);
941 
942 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
943 			raw_spin_lock(&rt_rq->rt_runtime_lock);
944 			rt_rq->rt_time += delta_exec;
945 			if (sched_rt_runtime_exceeded(rt_rq))
946 				resched_task(curr);
947 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
948 		}
949 	}
950 }
951 
952 #if defined CONFIG_SMP
953 
954 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)955 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
956 {
957 	struct rq *rq = rq_of_rt_rq(rt_rq);
958 
959 #ifdef CONFIG_RT_GROUP_SCHED
960 	/*
961 	 * Change rq's cpupri only if rt_rq is the top queue.
962 	 */
963 	if (&rq->rt != rt_rq)
964 		return;
965 #endif
966 	if (rq->online && prio < prev_prio)
967 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
968 }
969 
970 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)971 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
972 {
973 	struct rq *rq = rq_of_rt_rq(rt_rq);
974 
975 #ifdef CONFIG_RT_GROUP_SCHED
976 	/*
977 	 * Change rq's cpupri only if rt_rq is the top queue.
978 	 */
979 	if (&rq->rt != rt_rq)
980 		return;
981 #endif
982 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
983 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
984 }
985 
986 #else /* CONFIG_SMP */
987 
988 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)989 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
990 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)991 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
992 
993 #endif /* CONFIG_SMP */
994 
995 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
996 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)997 inc_rt_prio(struct rt_rq *rt_rq, int prio)
998 {
999 	int prev_prio = rt_rq->highest_prio.curr;
1000 
1001 	if (prio < prev_prio)
1002 		rt_rq->highest_prio.curr = prio;
1003 
1004 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1005 }
1006 
1007 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1008 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1009 {
1010 	int prev_prio = rt_rq->highest_prio.curr;
1011 
1012 	if (rt_rq->rt_nr_running) {
1013 
1014 		WARN_ON(prio < prev_prio);
1015 
1016 		/*
1017 		 * This may have been our highest task, and therefore
1018 		 * we may have some recomputation to do
1019 		 */
1020 		if (prio == prev_prio) {
1021 			struct rt_prio_array *array = &rt_rq->active;
1022 
1023 			rt_rq->highest_prio.curr =
1024 				sched_find_first_bit(array->bitmap);
1025 		}
1026 
1027 	} else
1028 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1029 
1030 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1031 }
1032 
1033 #else
1034 
inc_rt_prio(struct rt_rq * rt_rq,int prio)1035 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1036 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1037 
1038 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1039 
1040 #ifdef CONFIG_RT_GROUP_SCHED
1041 
1042 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1043 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1044 {
1045 	if (rt_se_boosted(rt_se))
1046 		rt_rq->rt_nr_boosted++;
1047 
1048 	if (rt_rq->tg)
1049 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1050 }
1051 
1052 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1053 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1054 {
1055 	if (rt_se_boosted(rt_se))
1056 		rt_rq->rt_nr_boosted--;
1057 
1058 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1059 }
1060 
1061 #else /* CONFIG_RT_GROUP_SCHED */
1062 
1063 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1064 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1065 {
1066 	start_rt_bandwidth(&def_rt_bandwidth);
1067 }
1068 
1069 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1070 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1071 
1072 #endif /* CONFIG_RT_GROUP_SCHED */
1073 
1074 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1075 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1076 {
1077 	int prio = rt_se_prio(rt_se);
1078 
1079 	WARN_ON(!rt_prio(prio));
1080 	rt_rq->rt_nr_running++;
1081 
1082 	inc_rt_prio(rt_rq, prio);
1083 	inc_rt_migration(rt_se, rt_rq);
1084 	inc_rt_group(rt_se, rt_rq);
1085 }
1086 
1087 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1088 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1089 {
1090 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1091 	WARN_ON(!rt_rq->rt_nr_running);
1092 	rt_rq->rt_nr_running--;
1093 
1094 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1095 	dec_rt_migration(rt_se, rt_rq);
1096 	dec_rt_group(rt_se, rt_rq);
1097 }
1098 
__enqueue_rt_entity(struct sched_rt_entity * rt_se,bool head)1099 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1100 {
1101 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1102 	struct rt_prio_array *array = &rt_rq->active;
1103 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1104 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1105 
1106 	/*
1107 	 * Don't enqueue the group if its throttled, or when empty.
1108 	 * The latter is a consequence of the former when a child group
1109 	 * get throttled and the current group doesn't have any other
1110 	 * active members.
1111 	 */
1112 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1113 		return;
1114 
1115 	if (!rt_rq->rt_nr_running)
1116 		list_add_leaf_rt_rq(rt_rq);
1117 
1118 	if (head)
1119 		list_add(&rt_se->run_list, queue);
1120 	else
1121 		list_add_tail(&rt_se->run_list, queue);
1122 	__set_bit(rt_se_prio(rt_se), array->bitmap);
1123 
1124 	inc_rt_tasks(rt_se, rt_rq);
1125 }
1126 
__dequeue_rt_entity(struct sched_rt_entity * rt_se)1127 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1128 {
1129 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1130 	struct rt_prio_array *array = &rt_rq->active;
1131 
1132 	list_del_init(&rt_se->run_list);
1133 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1134 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1135 
1136 	dec_rt_tasks(rt_se, rt_rq);
1137 	if (!rt_rq->rt_nr_running)
1138 		list_del_leaf_rt_rq(rt_rq);
1139 }
1140 
1141 /*
1142  * Because the prio of an upper entry depends on the lower
1143  * entries, we must remove entries top - down.
1144  */
dequeue_rt_stack(struct sched_rt_entity * rt_se)1145 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1146 {
1147 	struct sched_rt_entity *back = NULL;
1148 
1149 	for_each_sched_rt_entity(rt_se) {
1150 		rt_se->back = back;
1151 		back = rt_se;
1152 	}
1153 
1154 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1155 		if (on_rt_rq(rt_se))
1156 			__dequeue_rt_entity(rt_se);
1157 	}
1158 }
1159 
enqueue_rt_entity(struct sched_rt_entity * rt_se,bool head)1160 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1161 {
1162 	dequeue_rt_stack(rt_se);
1163 	for_each_sched_rt_entity(rt_se)
1164 		__enqueue_rt_entity(rt_se, head);
1165 }
1166 
dequeue_rt_entity(struct sched_rt_entity * rt_se)1167 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1168 {
1169 	dequeue_rt_stack(rt_se);
1170 
1171 	for_each_sched_rt_entity(rt_se) {
1172 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1173 
1174 		if (rt_rq && rt_rq->rt_nr_running)
1175 			__enqueue_rt_entity(rt_se, false);
1176 	}
1177 }
1178 
1179 /*
1180  * Adding/removing a task to/from a priority array:
1181  */
1182 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1183 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1184 {
1185 	struct sched_rt_entity *rt_se = &p->rt;
1186 
1187 	if (flags & ENQUEUE_WAKEUP)
1188 		rt_se->timeout = 0;
1189 
1190 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1191 
1192 	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
1193 		enqueue_pushable_task(rq, p);
1194 
1195 	inc_nr_running(rq);
1196 }
1197 
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1198 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1199 {
1200 	struct sched_rt_entity *rt_se = &p->rt;
1201 
1202 	update_curr_rt(rq);
1203 	dequeue_rt_entity(rt_se);
1204 
1205 	dequeue_pushable_task(rq, p);
1206 
1207 	dec_nr_running(rq);
1208 }
1209 
1210 /*
1211  * Put task to the head or the end of the run list without the overhead of
1212  * dequeue followed by enqueue.
1213  */
1214 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1215 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1216 {
1217 	if (on_rt_rq(rt_se)) {
1218 		struct rt_prio_array *array = &rt_rq->active;
1219 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1220 
1221 		if (head)
1222 			list_move(&rt_se->run_list, queue);
1223 		else
1224 			list_move_tail(&rt_se->run_list, queue);
1225 	}
1226 }
1227 
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1228 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1229 {
1230 	struct sched_rt_entity *rt_se = &p->rt;
1231 	struct rt_rq *rt_rq;
1232 
1233 	for_each_sched_rt_entity(rt_se) {
1234 		rt_rq = rt_rq_of_se(rt_se);
1235 		requeue_rt_entity(rt_rq, rt_se, head);
1236 	}
1237 }
1238 
yield_task_rt(struct rq * rq)1239 static void yield_task_rt(struct rq *rq)
1240 {
1241 	requeue_task_rt(rq, rq->curr, 0);
1242 }
1243 
1244 #ifdef CONFIG_SMP
1245 static int find_lowest_rq(struct task_struct *task);
1246 
1247 static int
select_task_rq_rt(struct task_struct * p,int sd_flag,int flags)1248 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1249 {
1250 	struct task_struct *curr;
1251 	struct rq *rq;
1252 	int cpu;
1253 
1254 	cpu = task_cpu(p);
1255 
1256 	if (p->rt.nr_cpus_allowed == 1)
1257 		goto out;
1258 
1259 	/* For anything but wake ups, just return the task_cpu */
1260 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1261 		goto out;
1262 
1263 	rq = cpu_rq(cpu);
1264 
1265 	rcu_read_lock();
1266 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1267 
1268 	/*
1269 	 * If the current task on @p's runqueue is an RT task, then
1270 	 * try to see if we can wake this RT task up on another
1271 	 * runqueue. Otherwise simply start this RT task
1272 	 * on its current runqueue.
1273 	 *
1274 	 * We want to avoid overloading runqueues. If the woken
1275 	 * task is a higher priority, then it will stay on this CPU
1276 	 * and the lower prio task should be moved to another CPU.
1277 	 * Even though this will probably make the lower prio task
1278 	 * lose its cache, we do not want to bounce a higher task
1279 	 * around just because it gave up its CPU, perhaps for a
1280 	 * lock?
1281 	 *
1282 	 * For equal prio tasks, we just let the scheduler sort it out.
1283 	 *
1284 	 * Otherwise, just let it ride on the affined RQ and the
1285 	 * post-schedule router will push the preempted task away
1286 	 *
1287 	 * This test is optimistic, if we get it wrong the load-balancer
1288 	 * will have to sort it out.
1289 	 */
1290 	if (curr && unlikely(rt_task(curr)) &&
1291 	    (curr->rt.nr_cpus_allowed < 2 ||
1292 	     curr->prio <= p->prio) &&
1293 	    (p->rt.nr_cpus_allowed > 1)) {
1294 		int target = find_lowest_rq(p);
1295 
1296 		if (target != -1)
1297 			cpu = target;
1298 	}
1299 	rcu_read_unlock();
1300 
1301 out:
1302 	return cpu;
1303 }
1304 
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1305 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1306 {
1307 	if (rq->curr->rt.nr_cpus_allowed == 1)
1308 		return;
1309 
1310 	if (p->rt.nr_cpus_allowed != 1
1311 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1312 		return;
1313 
1314 	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1315 		return;
1316 
1317 	/*
1318 	 * There appears to be other cpus that can accept
1319 	 * current and none to run 'p', so lets reschedule
1320 	 * to try and push current away:
1321 	 */
1322 	requeue_task_rt(rq, p, 1);
1323 	resched_task(rq->curr);
1324 }
1325 
1326 #endif /* CONFIG_SMP */
1327 
1328 /*
1329  * Preempt the current task with a newly woken task if needed:
1330  */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1331 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1332 {
1333 	if (p->prio < rq->curr->prio) {
1334 		resched_task(rq->curr);
1335 		return;
1336 	}
1337 
1338 #ifdef CONFIG_SMP
1339 	/*
1340 	 * If:
1341 	 *
1342 	 * - the newly woken task is of equal priority to the current task
1343 	 * - the newly woken task is non-migratable while current is migratable
1344 	 * - current will be preempted on the next reschedule
1345 	 *
1346 	 * we should check to see if current can readily move to a different
1347 	 * cpu.  If so, we will reschedule to allow the push logic to try
1348 	 * to move current somewhere else, making room for our non-migratable
1349 	 * task.
1350 	 */
1351 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1352 		check_preempt_equal_prio(rq, p);
1353 #endif
1354 }
1355 
pick_next_rt_entity(struct rq * rq,struct rt_rq * rt_rq)1356 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1357 						   struct rt_rq *rt_rq)
1358 {
1359 	struct rt_prio_array *array = &rt_rq->active;
1360 	struct sched_rt_entity *next = NULL;
1361 	struct list_head *queue;
1362 	int idx;
1363 
1364 	idx = sched_find_first_bit(array->bitmap);
1365 	BUG_ON(idx >= MAX_RT_PRIO);
1366 
1367 	queue = array->queue + idx;
1368 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1369 
1370 	return next;
1371 }
1372 
_pick_next_task_rt(struct rq * rq)1373 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1374 {
1375 	struct sched_rt_entity *rt_se;
1376 	struct task_struct *p;
1377 	struct rt_rq *rt_rq;
1378 
1379 	rt_rq = &rq->rt;
1380 
1381 	if (!rt_rq->rt_nr_running)
1382 		return NULL;
1383 
1384 	if (rt_rq_throttled(rt_rq))
1385 		return NULL;
1386 
1387 	do {
1388 		rt_se = pick_next_rt_entity(rq, rt_rq);
1389 		BUG_ON(!rt_se);
1390 		rt_rq = group_rt_rq(rt_se);
1391 	} while (rt_rq);
1392 
1393 	p = rt_task_of(rt_se);
1394 	p->se.exec_start = rq->clock_task;
1395 
1396 	return p;
1397 }
1398 
pick_next_task_rt(struct rq * rq)1399 static struct task_struct *pick_next_task_rt(struct rq *rq)
1400 {
1401 	struct task_struct *p = _pick_next_task_rt(rq);
1402 
1403 	/* The running task is never eligible for pushing */
1404 	if (p)
1405 		dequeue_pushable_task(rq, p);
1406 
1407 #ifdef CONFIG_SMP
1408 	/*
1409 	 * We detect this state here so that we can avoid taking the RQ
1410 	 * lock again later if there is no need to push
1411 	 */
1412 	rq->post_schedule = has_pushable_tasks(rq);
1413 #endif
1414 
1415 	return p;
1416 }
1417 
put_prev_task_rt(struct rq * rq,struct task_struct * p)1418 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1419 {
1420 	update_curr_rt(rq);
1421 
1422 	/*
1423 	 * The previous task needs to be made eligible for pushing
1424 	 * if it is still active
1425 	 */
1426 	if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1427 		enqueue_pushable_task(rq, p);
1428 }
1429 
1430 #ifdef CONFIG_SMP
1431 
1432 /* Only try algorithms three times */
1433 #define RT_MAX_TRIES 3
1434 
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1435 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1436 {
1437 	if (!task_running(rq, p) &&
1438 	    (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1439 	    (p->rt.nr_cpus_allowed > 1))
1440 		return 1;
1441 	return 0;
1442 }
1443 
1444 /* Return the second highest RT task, NULL otherwise */
pick_next_highest_task_rt(struct rq * rq,int cpu)1445 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1446 {
1447 	struct task_struct *next = NULL;
1448 	struct sched_rt_entity *rt_se;
1449 	struct rt_prio_array *array;
1450 	struct rt_rq *rt_rq;
1451 	int idx;
1452 
1453 	for_each_leaf_rt_rq(rt_rq, rq) {
1454 		array = &rt_rq->active;
1455 		idx = sched_find_first_bit(array->bitmap);
1456 next_idx:
1457 		if (idx >= MAX_RT_PRIO)
1458 			continue;
1459 		if (next && next->prio <= idx)
1460 			continue;
1461 		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1462 			struct task_struct *p;
1463 
1464 			if (!rt_entity_is_task(rt_se))
1465 				continue;
1466 
1467 			p = rt_task_of(rt_se);
1468 			if (pick_rt_task(rq, p, cpu)) {
1469 				next = p;
1470 				break;
1471 			}
1472 		}
1473 		if (!next) {
1474 			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1475 			goto next_idx;
1476 		}
1477 	}
1478 
1479 	return next;
1480 }
1481 
1482 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1483 
find_lowest_rq(struct task_struct * task)1484 static int find_lowest_rq(struct task_struct *task)
1485 {
1486 	struct sched_domain *sd;
1487 	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1488 	int this_cpu = smp_processor_id();
1489 	int cpu      = task_cpu(task);
1490 
1491 	/* Make sure the mask is initialized first */
1492 	if (unlikely(!lowest_mask))
1493 		return -1;
1494 
1495 	if (task->rt.nr_cpus_allowed == 1)
1496 		return -1; /* No other targets possible */
1497 
1498 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1499 		return -1; /* No targets found */
1500 
1501 	/*
1502 	 * At this point we have built a mask of cpus representing the
1503 	 * lowest priority tasks in the system.  Now we want to elect
1504 	 * the best one based on our affinity and topology.
1505 	 *
1506 	 * We prioritize the last cpu that the task executed on since
1507 	 * it is most likely cache-hot in that location.
1508 	 */
1509 	if (cpumask_test_cpu(cpu, lowest_mask))
1510 		return cpu;
1511 
1512 	/*
1513 	 * Otherwise, we consult the sched_domains span maps to figure
1514 	 * out which cpu is logically closest to our hot cache data.
1515 	 */
1516 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1517 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1518 
1519 	rcu_read_lock();
1520 	for_each_domain(cpu, sd) {
1521 		if (sd->flags & SD_WAKE_AFFINE) {
1522 			int best_cpu;
1523 
1524 			/*
1525 			 * "this_cpu" is cheaper to preempt than a
1526 			 * remote processor.
1527 			 */
1528 			if (this_cpu != -1 &&
1529 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1530 				rcu_read_unlock();
1531 				return this_cpu;
1532 			}
1533 
1534 			best_cpu = cpumask_first_and(lowest_mask,
1535 						     sched_domain_span(sd));
1536 			if (best_cpu < nr_cpu_ids) {
1537 				rcu_read_unlock();
1538 				return best_cpu;
1539 			}
1540 		}
1541 	}
1542 	rcu_read_unlock();
1543 
1544 	/*
1545 	 * And finally, if there were no matches within the domains
1546 	 * just give the caller *something* to work with from the compatible
1547 	 * locations.
1548 	 */
1549 	if (this_cpu != -1)
1550 		return this_cpu;
1551 
1552 	cpu = cpumask_any(lowest_mask);
1553 	if (cpu < nr_cpu_ids)
1554 		return cpu;
1555 	return -1;
1556 }
1557 
1558 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1559 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1560 {
1561 	struct rq *lowest_rq = NULL;
1562 	int tries;
1563 	int cpu;
1564 
1565 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1566 		cpu = find_lowest_rq(task);
1567 
1568 		if ((cpu == -1) || (cpu == rq->cpu))
1569 			break;
1570 
1571 		lowest_rq = cpu_rq(cpu);
1572 
1573 		/* if the prio of this runqueue changed, try again */
1574 		if (double_lock_balance(rq, lowest_rq)) {
1575 			/*
1576 			 * We had to unlock the run queue. In
1577 			 * the mean time, task could have
1578 			 * migrated already or had its affinity changed.
1579 			 * Also make sure that it wasn't scheduled on its rq.
1580 			 */
1581 			if (unlikely(task_rq(task) != rq ||
1582 				     !cpumask_test_cpu(lowest_rq->cpu,
1583 						       tsk_cpus_allowed(task)) ||
1584 				     task_running(rq, task) ||
1585 				     !task->on_rq)) {
1586 
1587 				raw_spin_unlock(&lowest_rq->lock);
1588 				lowest_rq = NULL;
1589 				break;
1590 			}
1591 		}
1592 
1593 		/* If this rq is still suitable use it. */
1594 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1595 			break;
1596 
1597 		/* try again */
1598 		double_unlock_balance(rq, lowest_rq);
1599 		lowest_rq = NULL;
1600 	}
1601 
1602 	return lowest_rq;
1603 }
1604 
pick_next_pushable_task(struct rq * rq)1605 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1606 {
1607 	struct task_struct *p;
1608 
1609 	if (!has_pushable_tasks(rq))
1610 		return NULL;
1611 
1612 	p = plist_first_entry(&rq->rt.pushable_tasks,
1613 			      struct task_struct, pushable_tasks);
1614 
1615 	BUG_ON(rq->cpu != task_cpu(p));
1616 	BUG_ON(task_current(rq, p));
1617 	BUG_ON(p->rt.nr_cpus_allowed <= 1);
1618 
1619 	BUG_ON(!p->on_rq);
1620 	BUG_ON(!rt_task(p));
1621 
1622 	return p;
1623 }
1624 
1625 /*
1626  * If the current CPU has more than one RT task, see if the non
1627  * running task can migrate over to a CPU that is running a task
1628  * of lesser priority.
1629  */
push_rt_task(struct rq * rq)1630 static int push_rt_task(struct rq *rq)
1631 {
1632 	struct task_struct *next_task;
1633 	struct rq *lowest_rq;
1634 	int ret = 0;
1635 
1636 	if (!rq->rt.overloaded)
1637 		return 0;
1638 
1639 	next_task = pick_next_pushable_task(rq);
1640 	if (!next_task)
1641 		return 0;
1642 
1643 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1644        if (unlikely(task_running(rq, next_task)))
1645                return 0;
1646 #endif
1647 
1648 retry:
1649 	if (unlikely(next_task == rq->curr)) {
1650 		WARN_ON(1);
1651 		return 0;
1652 	}
1653 
1654 	/*
1655 	 * It's possible that the next_task slipped in of
1656 	 * higher priority than current. If that's the case
1657 	 * just reschedule current.
1658 	 */
1659 	if (unlikely(next_task->prio < rq->curr->prio)) {
1660 		resched_task(rq->curr);
1661 		return 0;
1662 	}
1663 
1664 	/* We might release rq lock */
1665 	get_task_struct(next_task);
1666 
1667 	/* find_lock_lowest_rq locks the rq if found */
1668 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1669 	if (!lowest_rq) {
1670 		struct task_struct *task;
1671 		/*
1672 		 * find_lock_lowest_rq releases rq->lock
1673 		 * so it is possible that next_task has migrated.
1674 		 *
1675 		 * We need to make sure that the task is still on the same
1676 		 * run-queue and is also still the next task eligible for
1677 		 * pushing.
1678 		 */
1679 		task = pick_next_pushable_task(rq);
1680 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1681 			/*
1682 			 * The task hasn't migrated, and is still the next
1683 			 * eligible task, but we failed to find a run-queue
1684 			 * to push it to.  Do not retry in this case, since
1685 			 * other cpus will pull from us when ready.
1686 			 */
1687 			goto out;
1688 		}
1689 
1690 		if (!task)
1691 			/* No more tasks, just exit */
1692 			goto out;
1693 
1694 		/*
1695 		 * Something has shifted, try again.
1696 		 */
1697 		put_task_struct(next_task);
1698 		next_task = task;
1699 		goto retry;
1700 	}
1701 
1702 	deactivate_task(rq, next_task, 0);
1703 	set_task_cpu(next_task, lowest_rq->cpu);
1704 	activate_task(lowest_rq, next_task, 0);
1705 	ret = 1;
1706 
1707 	resched_task(lowest_rq->curr);
1708 
1709 	double_unlock_balance(rq, lowest_rq);
1710 
1711 out:
1712 	put_task_struct(next_task);
1713 
1714 	return ret;
1715 }
1716 
push_rt_tasks(struct rq * rq)1717 static void push_rt_tasks(struct rq *rq)
1718 {
1719 	/* push_rt_task will return true if it moved an RT */
1720 	while (push_rt_task(rq))
1721 		;
1722 }
1723 
pull_rt_task(struct rq * this_rq)1724 static int pull_rt_task(struct rq *this_rq)
1725 {
1726 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1727 	struct task_struct *p;
1728 	struct rq *src_rq;
1729 
1730 	if (likely(!rt_overloaded(this_rq)))
1731 		return 0;
1732 
1733 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1734 		if (this_cpu == cpu)
1735 			continue;
1736 
1737 		src_rq = cpu_rq(cpu);
1738 
1739 		/*
1740 		 * Don't bother taking the src_rq->lock if the next highest
1741 		 * task is known to be lower-priority than our current task.
1742 		 * This may look racy, but if this value is about to go
1743 		 * logically higher, the src_rq will push this task away.
1744 		 * And if its going logically lower, we do not care
1745 		 */
1746 		if (src_rq->rt.highest_prio.next >=
1747 		    this_rq->rt.highest_prio.curr)
1748 			continue;
1749 
1750 		/*
1751 		 * We can potentially drop this_rq's lock in
1752 		 * double_lock_balance, and another CPU could
1753 		 * alter this_rq
1754 		 */
1755 		double_lock_balance(this_rq, src_rq);
1756 
1757 		/*
1758 		 * Are there still pullable RT tasks?
1759 		 */
1760 		if (src_rq->rt.rt_nr_running <= 1)
1761 			goto skip;
1762 
1763 		p = pick_next_highest_task_rt(src_rq, this_cpu);
1764 
1765 		/*
1766 		 * Do we have an RT task that preempts
1767 		 * the to-be-scheduled task?
1768 		 */
1769 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1770 			WARN_ON(p == src_rq->curr);
1771 			WARN_ON(!p->on_rq);
1772 
1773 			/*
1774 			 * There's a chance that p is higher in priority
1775 			 * than what's currently running on its cpu.
1776 			 * This is just that p is wakeing up and hasn't
1777 			 * had a chance to schedule. We only pull
1778 			 * p if it is lower in priority than the
1779 			 * current task on the run queue
1780 			 */
1781 			if (p->prio < src_rq->curr->prio)
1782 				goto skip;
1783 
1784 			ret = 1;
1785 
1786 			deactivate_task(src_rq, p, 0);
1787 			set_task_cpu(p, this_cpu);
1788 			activate_task(this_rq, p, 0);
1789 			/*
1790 			 * We continue with the search, just in
1791 			 * case there's an even higher prio task
1792 			 * in another runqueue. (low likelihood
1793 			 * but possible)
1794 			 */
1795 		}
1796 skip:
1797 		double_unlock_balance(this_rq, src_rq);
1798 	}
1799 
1800 	return ret;
1801 }
1802 
pre_schedule_rt(struct rq * rq,struct task_struct * prev)1803 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1804 {
1805 	/* Try to pull RT tasks here if we lower this rq's prio */
1806 	if (rq->rt.highest_prio.curr > prev->prio)
1807 		pull_rt_task(rq);
1808 }
1809 
post_schedule_rt(struct rq * rq)1810 static void post_schedule_rt(struct rq *rq)
1811 {
1812 	push_rt_tasks(rq);
1813 }
1814 
1815 /*
1816  * If we are not running and we are not going to reschedule soon, we should
1817  * try to push tasks away now
1818  */
task_woken_rt(struct rq * rq,struct task_struct * p)1819 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1820 {
1821 	if (!task_running(rq, p) &&
1822 	    !test_tsk_need_resched(rq->curr) &&
1823 	    has_pushable_tasks(rq) &&
1824 	    p->rt.nr_cpus_allowed > 1 &&
1825 	    rt_task(rq->curr) &&
1826 	    (rq->curr->rt.nr_cpus_allowed < 2 ||
1827 	     rq->curr->prio <= p->prio))
1828 		push_rt_tasks(rq);
1829 }
1830 
set_cpus_allowed_rt(struct task_struct * p,const struct cpumask * new_mask)1831 static void set_cpus_allowed_rt(struct task_struct *p,
1832 				const struct cpumask *new_mask)
1833 {
1834 	int weight = cpumask_weight(new_mask);
1835 
1836 	BUG_ON(!rt_task(p));
1837 
1838 	/*
1839 	 * Update the migration status of the RQ if we have an RT task
1840 	 * which is running AND changing its weight value.
1841 	 */
1842 	if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1843 		struct rq *rq = task_rq(p);
1844 
1845 		if (!task_current(rq, p)) {
1846 			/*
1847 			 * Make sure we dequeue this task from the pushable list
1848 			 * before going further.  It will either remain off of
1849 			 * the list because we are no longer pushable, or it
1850 			 * will be requeued.
1851 			 */
1852 			if (p->rt.nr_cpus_allowed > 1)
1853 				dequeue_pushable_task(rq, p);
1854 
1855 			/*
1856 			 * Requeue if our weight is changing and still > 1
1857 			 */
1858 			if (weight > 1)
1859 				enqueue_pushable_task(rq, p);
1860 
1861 		}
1862 
1863 		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1864 			rq->rt.rt_nr_migratory++;
1865 		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1866 			BUG_ON(!rq->rt.rt_nr_migratory);
1867 			rq->rt.rt_nr_migratory--;
1868 		}
1869 
1870 		update_rt_migration(&rq->rt);
1871 	}
1872 }
1873 
1874 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)1875 static void rq_online_rt(struct rq *rq)
1876 {
1877 	if (rq->rt.overloaded)
1878 		rt_set_overload(rq);
1879 
1880 	__enable_runtime(rq);
1881 
1882 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1883 }
1884 
1885 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)1886 static void rq_offline_rt(struct rq *rq)
1887 {
1888 	if (rq->rt.overloaded)
1889 		rt_clear_overload(rq);
1890 
1891 	__disable_runtime(rq);
1892 
1893 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1894 }
1895 
1896 /*
1897  * When switch from the rt queue, we bring ourselves to a position
1898  * that we might want to pull RT tasks from other runqueues.
1899  */
switched_from_rt(struct rq * rq,struct task_struct * p)1900 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1901 {
1902 	/*
1903 	 * If there are other RT tasks then we will reschedule
1904 	 * and the scheduling of the other RT tasks will handle
1905 	 * the balancing. But if we are the last RT task
1906 	 * we may need to handle the pulling of RT tasks
1907 	 * now.
1908 	 */
1909 	if (p->on_rq && !rq->rt.rt_nr_running)
1910 		pull_rt_task(rq);
1911 }
1912 
init_sched_rt_class(void)1913 void init_sched_rt_class(void)
1914 {
1915 	unsigned int i;
1916 
1917 	for_each_possible_cpu(i) {
1918 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1919 					GFP_KERNEL, cpu_to_node(i));
1920 	}
1921 }
1922 #endif /* CONFIG_SMP */
1923 
1924 /*
1925  * When switching a task to RT, we may overload the runqueue
1926  * with RT tasks. In this case we try to push them off to
1927  * other runqueues.
1928  */
switched_to_rt(struct rq * rq,struct task_struct * p)1929 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1930 {
1931 	int check_resched = 1;
1932 
1933 	/*
1934 	 * If we are already running, then there's nothing
1935 	 * that needs to be done. But if we are not running
1936 	 * we may need to preempt the current running task.
1937 	 * If that current running task is also an RT task
1938 	 * then see if we can move to another run queue.
1939 	 */
1940 	if (p->on_rq && rq->curr != p) {
1941 #ifdef CONFIG_SMP
1942 		if (rq->rt.overloaded && push_rt_task(rq) &&
1943 		    /* Don't resched if we changed runqueues */
1944 		    rq != task_rq(p))
1945 			check_resched = 0;
1946 #endif /* CONFIG_SMP */
1947 		if (check_resched && p->prio < rq->curr->prio)
1948 			resched_task(rq->curr);
1949 	}
1950 }
1951 
1952 /*
1953  * Priority of the task has changed. This may cause
1954  * us to initiate a push or pull.
1955  */
1956 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)1957 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1958 {
1959 	if (!p->on_rq)
1960 		return;
1961 
1962 	if (rq->curr == p) {
1963 #ifdef CONFIG_SMP
1964 		/*
1965 		 * If our priority decreases while running, we
1966 		 * may need to pull tasks to this runqueue.
1967 		 */
1968 		if (oldprio < p->prio)
1969 			pull_rt_task(rq);
1970 		/*
1971 		 * If there's a higher priority task waiting to run
1972 		 * then reschedule. Note, the above pull_rt_task
1973 		 * can release the rq lock and p could migrate.
1974 		 * Only reschedule if p is still on the same runqueue.
1975 		 */
1976 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1977 			resched_task(p);
1978 #else
1979 		/* For UP simply resched on drop of prio */
1980 		if (oldprio < p->prio)
1981 			resched_task(p);
1982 #endif /* CONFIG_SMP */
1983 	} else {
1984 		/*
1985 		 * This task is not running, but if it is
1986 		 * greater than the current running task
1987 		 * then reschedule.
1988 		 */
1989 		if (p->prio < rq->curr->prio)
1990 			resched_task(rq->curr);
1991 	}
1992 }
1993 
watchdog(struct rq * rq,struct task_struct * p)1994 static void watchdog(struct rq *rq, struct task_struct *p)
1995 {
1996 	unsigned long soft, hard;
1997 
1998 	/* max may change after cur was read, this will be fixed next tick */
1999 	soft = task_rlimit(p, RLIMIT_RTTIME);
2000 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2001 
2002 	if (soft != RLIM_INFINITY) {
2003 		unsigned long next;
2004 
2005 		if (p->rt.watchdog_stamp != jiffies) {
2006 			p->rt.timeout++;
2007 			p->rt.watchdog_stamp = jiffies;
2008 		}
2009 
2010 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2011 		if (p->rt.timeout > next)
2012 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2013 	}
2014 }
2015 
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2016 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2017 {
2018 	struct sched_rt_entity *rt_se = &p->rt;
2019 
2020 	update_curr_rt(rq);
2021 
2022 	watchdog(rq, p);
2023 
2024 	/*
2025 	 * RR tasks need a special form of timeslice management.
2026 	 * FIFO tasks have no timeslices.
2027 	 */
2028 	if (p->policy != SCHED_RR)
2029 		return;
2030 
2031 	if (--p->rt.time_slice)
2032 		return;
2033 
2034 	p->rt.time_slice = RR_TIMESLICE;
2035 
2036 	/*
2037 	 * Requeue to the end of queue if we (and all of our ancestors) are the
2038 	 * only element on the queue
2039 	 */
2040 	for_each_sched_rt_entity(rt_se) {
2041 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2042 			requeue_task_rt(rq, p, 0);
2043 			set_tsk_need_resched(p);
2044 			return;
2045 		}
2046 	}
2047 }
2048 
set_curr_task_rt(struct rq * rq)2049 static void set_curr_task_rt(struct rq *rq)
2050 {
2051 	struct task_struct *p = rq->curr;
2052 
2053 	p->se.exec_start = rq->clock_task;
2054 
2055 	/* The running task is never eligible for pushing */
2056 	dequeue_pushable_task(rq, p);
2057 }
2058 
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2059 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2060 {
2061 	/*
2062 	 * Time slice is 0 for SCHED_FIFO tasks
2063 	 */
2064 	if (task->policy == SCHED_RR)
2065 		return RR_TIMESLICE;
2066 	else
2067 		return 0;
2068 }
2069 
2070 const struct sched_class rt_sched_class = {
2071 	.next			= &fair_sched_class,
2072 	.enqueue_task		= enqueue_task_rt,
2073 	.dequeue_task		= dequeue_task_rt,
2074 	.yield_task		= yield_task_rt,
2075 
2076 	.check_preempt_curr	= check_preempt_curr_rt,
2077 
2078 	.pick_next_task		= pick_next_task_rt,
2079 	.put_prev_task		= put_prev_task_rt,
2080 
2081 #ifdef CONFIG_SMP
2082 	.select_task_rq		= select_task_rq_rt,
2083 
2084 	.set_cpus_allowed       = set_cpus_allowed_rt,
2085 	.rq_online              = rq_online_rt,
2086 	.rq_offline             = rq_offline_rt,
2087 	.pre_schedule		= pre_schedule_rt,
2088 	.post_schedule		= post_schedule_rt,
2089 	.task_woken		= task_woken_rt,
2090 	.switched_from		= switched_from_rt,
2091 #endif
2092 
2093 	.set_curr_task          = set_curr_task_rt,
2094 	.task_tick		= task_tick_rt,
2095 
2096 	.get_rr_interval	= get_rr_interval_rt,
2097 
2098 	.prio_changed		= prio_changed_rt,
2099 	.switched_to		= switched_to_rt,
2100 };
2101 
2102 #ifdef CONFIG_SCHED_DEBUG
2103 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2104 
print_rt_stats(struct seq_file * m,int cpu)2105 void print_rt_stats(struct seq_file *m, int cpu)
2106 {
2107 	rt_rq_iter_t iter;
2108 	struct rt_rq *rt_rq;
2109 
2110 	rcu_read_lock();
2111 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2112 		print_rt_rq(m, cpu, rt_rq);
2113 	rcu_read_unlock();
2114 }
2115 #endif /* CONFIG_SCHED_DEBUG */
2116