1 /* irq.c: UltraSparc IRQ handling/init/registry.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
5  * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/ftrace.h>
24 #include <linux/irq.h>
25 #include <linux/kmemleak.h>
26 
27 #include <asm/ptrace.h>
28 #include <asm/processor.h>
29 #include <asm/atomic.h>
30 #include <asm/system.h>
31 #include <asm/irq.h>
32 #include <asm/io.h>
33 #include <asm/iommu.h>
34 #include <asm/upa.h>
35 #include <asm/oplib.h>
36 #include <asm/prom.h>
37 #include <asm/timer.h>
38 #include <asm/smp.h>
39 #include <asm/starfire.h>
40 #include <asm/uaccess.h>
41 #include <asm/cache.h>
42 #include <asm/cpudata.h>
43 #include <asm/auxio.h>
44 #include <asm/head.h>
45 #include <asm/hypervisor.h>
46 #include <asm/cacheflush.h>
47 
48 #include "entry.h"
49 #include "cpumap.h"
50 #include "kstack.h"
51 
52 #define NUM_IVECS	(IMAP_INR + 1)
53 
54 struct ino_bucket *ivector_table;
55 unsigned long ivector_table_pa;
56 
57 /* On several sun4u processors, it is illegal to mix bypass and
58  * non-bypass accesses.  Therefore we access all INO buckets
59  * using bypass accesses only.
60  */
bucket_get_chain_pa(unsigned long bucket_pa)61 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
62 {
63 	unsigned long ret;
64 
65 	__asm__ __volatile__("ldxa	[%1] %2, %0"
66 			     : "=&r" (ret)
67 			     : "r" (bucket_pa +
68 				    offsetof(struct ino_bucket,
69 					     __irq_chain_pa)),
70 			       "i" (ASI_PHYS_USE_EC));
71 
72 	return ret;
73 }
74 
bucket_clear_chain_pa(unsigned long bucket_pa)75 static void bucket_clear_chain_pa(unsigned long bucket_pa)
76 {
77 	__asm__ __volatile__("stxa	%%g0, [%0] %1"
78 			     : /* no outputs */
79 			     : "r" (bucket_pa +
80 				    offsetof(struct ino_bucket,
81 					     __irq_chain_pa)),
82 			       "i" (ASI_PHYS_USE_EC));
83 }
84 
bucket_get_irq(unsigned long bucket_pa)85 static unsigned int bucket_get_irq(unsigned long bucket_pa)
86 {
87 	unsigned int ret;
88 
89 	__asm__ __volatile__("lduwa	[%1] %2, %0"
90 			     : "=&r" (ret)
91 			     : "r" (bucket_pa +
92 				    offsetof(struct ino_bucket,
93 					     __irq)),
94 			       "i" (ASI_PHYS_USE_EC));
95 
96 	return ret;
97 }
98 
bucket_set_irq(unsigned long bucket_pa,unsigned int irq)99 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
100 {
101 	__asm__ __volatile__("stwa	%0, [%1] %2"
102 			     : /* no outputs */
103 			     : "r" (irq),
104 			       "r" (bucket_pa +
105 				    offsetof(struct ino_bucket,
106 					     __irq)),
107 			       "i" (ASI_PHYS_USE_EC));
108 }
109 
110 #define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
111 
112 static struct {
113 	unsigned int dev_handle;
114 	unsigned int dev_ino;
115 	unsigned int in_use;
116 } irq_table[NR_IRQS];
117 static DEFINE_SPINLOCK(irq_alloc_lock);
118 
irq_alloc(unsigned int dev_handle,unsigned int dev_ino)119 unsigned char irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
120 {
121 	unsigned long flags;
122 	unsigned char ent;
123 
124 	BUILD_BUG_ON(NR_IRQS >= 256);
125 
126 	spin_lock_irqsave(&irq_alloc_lock, flags);
127 
128 	for (ent = 1; ent < NR_IRQS; ent++) {
129 		if (!irq_table[ent].in_use)
130 			break;
131 	}
132 	if (ent >= NR_IRQS) {
133 		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
134 		ent = 0;
135 	} else {
136 		irq_table[ent].dev_handle = dev_handle;
137 		irq_table[ent].dev_ino = dev_ino;
138 		irq_table[ent].in_use = 1;
139 	}
140 
141 	spin_unlock_irqrestore(&irq_alloc_lock, flags);
142 
143 	return ent;
144 }
145 
146 #ifdef CONFIG_PCI_MSI
irq_free(unsigned int irq)147 void irq_free(unsigned int irq)
148 {
149 	unsigned long flags;
150 
151 	if (irq >= NR_IRQS)
152 		return;
153 
154 	spin_lock_irqsave(&irq_alloc_lock, flags);
155 
156 	irq_table[irq].in_use = 0;
157 
158 	spin_unlock_irqrestore(&irq_alloc_lock, flags);
159 }
160 #endif
161 
162 /*
163  * /proc/interrupts printing:
164  */
arch_show_interrupts(struct seq_file * p,int prec)165 int arch_show_interrupts(struct seq_file *p, int prec)
166 {
167 	int j;
168 
169 	seq_printf(p, "NMI: ");
170 	for_each_online_cpu(j)
171 		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
172 	seq_printf(p, "     Non-maskable interrupts\n");
173 	return 0;
174 }
175 
sun4u_compute_tid(unsigned long imap,unsigned long cpuid)176 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
177 {
178 	unsigned int tid;
179 
180 	if (this_is_starfire) {
181 		tid = starfire_translate(imap, cpuid);
182 		tid <<= IMAP_TID_SHIFT;
183 		tid &= IMAP_TID_UPA;
184 	} else {
185 		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
186 			unsigned long ver;
187 
188 			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
189 			if ((ver >> 32UL) == __JALAPENO_ID ||
190 			    (ver >> 32UL) == __SERRANO_ID) {
191 				tid = cpuid << IMAP_TID_SHIFT;
192 				tid &= IMAP_TID_JBUS;
193 			} else {
194 				unsigned int a = cpuid & 0x1f;
195 				unsigned int n = (cpuid >> 5) & 0x1f;
196 
197 				tid = ((a << IMAP_AID_SHIFT) |
198 				       (n << IMAP_NID_SHIFT));
199 				tid &= (IMAP_AID_SAFARI |
200 					IMAP_NID_SAFARI);
201 			}
202 		} else {
203 			tid = cpuid << IMAP_TID_SHIFT;
204 			tid &= IMAP_TID_UPA;
205 		}
206 	}
207 
208 	return tid;
209 }
210 
211 struct irq_handler_data {
212 	unsigned long	iclr;
213 	unsigned long	imap;
214 
215 	void		(*pre_handler)(unsigned int, void *, void *);
216 	void		*arg1;
217 	void		*arg2;
218 };
219 
220 #ifdef CONFIG_SMP
irq_choose_cpu(unsigned int irq,const struct cpumask * affinity)221 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
222 {
223 	cpumask_t mask;
224 	int cpuid;
225 
226 	cpumask_copy(&mask, affinity);
227 	if (cpus_equal(mask, cpu_online_map)) {
228 		cpuid = map_to_cpu(irq);
229 	} else {
230 		cpumask_t tmp;
231 
232 		cpus_and(tmp, cpu_online_map, mask);
233 		cpuid = cpus_empty(tmp) ? map_to_cpu(irq) : first_cpu(tmp);
234 	}
235 
236 	return cpuid;
237 }
238 #else
239 #define irq_choose_cpu(irq, affinity)	\
240 	real_hard_smp_processor_id()
241 #endif
242 
sun4u_irq_enable(struct irq_data * data)243 static void sun4u_irq_enable(struct irq_data *data)
244 {
245 	struct irq_handler_data *handler_data = data->handler_data;
246 
247 	if (likely(handler_data)) {
248 		unsigned long cpuid, imap, val;
249 		unsigned int tid;
250 
251 		cpuid = irq_choose_cpu(data->irq, data->affinity);
252 		imap = handler_data->imap;
253 
254 		tid = sun4u_compute_tid(imap, cpuid);
255 
256 		val = upa_readq(imap);
257 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
258 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
259 		val |= tid | IMAP_VALID;
260 		upa_writeq(val, imap);
261 		upa_writeq(ICLR_IDLE, handler_data->iclr);
262 	}
263 }
264 
sun4u_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)265 static int sun4u_set_affinity(struct irq_data *data,
266 			       const struct cpumask *mask, bool force)
267 {
268 	struct irq_handler_data *handler_data = data->handler_data;
269 
270 	if (likely(handler_data)) {
271 		unsigned long cpuid, imap, val;
272 		unsigned int tid;
273 
274 		cpuid = irq_choose_cpu(data->irq, mask);
275 		imap = handler_data->imap;
276 
277 		tid = sun4u_compute_tid(imap, cpuid);
278 
279 		val = upa_readq(imap);
280 		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
281 			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
282 		val |= tid | IMAP_VALID;
283 		upa_writeq(val, imap);
284 		upa_writeq(ICLR_IDLE, handler_data->iclr);
285 	}
286 
287 	return 0;
288 }
289 
290 /* Don't do anything.  The desc->status check for IRQ_DISABLED in
291  * handler_irq() will skip the handler call and that will leave the
292  * interrupt in the sent state.  The next ->enable() call will hit the
293  * ICLR register to reset the state machine.
294  *
295  * This scheme is necessary, instead of clearing the Valid bit in the
296  * IMAP register, to handle the case of IMAP registers being shared by
297  * multiple INOs (and thus ICLR registers).  Since we use a different
298  * virtual IRQ for each shared IMAP instance, the generic code thinks
299  * there is only one user so it prematurely calls ->disable() on
300  * free_irq().
301  *
302  * We have to provide an explicit ->disable() method instead of using
303  * NULL to get the default.  The reason is that if the generic code
304  * sees that, it also hooks up a default ->shutdown method which
305  * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
306  */
sun4u_irq_disable(struct irq_data * data)307 static void sun4u_irq_disable(struct irq_data *data)
308 {
309 }
310 
sun4u_irq_eoi(struct irq_data * data)311 static void sun4u_irq_eoi(struct irq_data *data)
312 {
313 	struct irq_handler_data *handler_data = data->handler_data;
314 
315 	if (likely(handler_data))
316 		upa_writeq(ICLR_IDLE, handler_data->iclr);
317 }
318 
sun4v_irq_enable(struct irq_data * data)319 static void sun4v_irq_enable(struct irq_data *data)
320 {
321 	unsigned int ino = irq_table[data->irq].dev_ino;
322 	unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
323 	int err;
324 
325 	err = sun4v_intr_settarget(ino, cpuid);
326 	if (err != HV_EOK)
327 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
328 		       "err(%d)\n", ino, cpuid, err);
329 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
330 	if (err != HV_EOK)
331 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
332 		       "err(%d)\n", ino, err);
333 	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
334 	if (err != HV_EOK)
335 		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
336 		       ino, err);
337 }
338 
sun4v_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)339 static int sun4v_set_affinity(struct irq_data *data,
340 			       const struct cpumask *mask, bool force)
341 {
342 	unsigned int ino = irq_table[data->irq].dev_ino;
343 	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
344 	int err;
345 
346 	err = sun4v_intr_settarget(ino, cpuid);
347 	if (err != HV_EOK)
348 		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
349 		       "err(%d)\n", ino, cpuid, err);
350 
351 	return 0;
352 }
353 
sun4v_irq_disable(struct irq_data * data)354 static void sun4v_irq_disable(struct irq_data *data)
355 {
356 	unsigned int ino = irq_table[data->irq].dev_ino;
357 	int err;
358 
359 	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
360 	if (err != HV_EOK)
361 		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
362 		       "err(%d)\n", ino, err);
363 }
364 
sun4v_irq_eoi(struct irq_data * data)365 static void sun4v_irq_eoi(struct irq_data *data)
366 {
367 	unsigned int ino = irq_table[data->irq].dev_ino;
368 	int err;
369 
370 	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
371 	if (err != HV_EOK)
372 		printk(KERN_ERR "sun4v_intr_setstate(%x): "
373 		       "err(%d)\n", ino, err);
374 }
375 
sun4v_virq_enable(struct irq_data * data)376 static void sun4v_virq_enable(struct irq_data *data)
377 {
378 	unsigned long cpuid, dev_handle, dev_ino;
379 	int err;
380 
381 	cpuid = irq_choose_cpu(data->irq, data->affinity);
382 
383 	dev_handle = irq_table[data->irq].dev_handle;
384 	dev_ino = irq_table[data->irq].dev_ino;
385 
386 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
387 	if (err != HV_EOK)
388 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
389 		       "err(%d)\n",
390 		       dev_handle, dev_ino, cpuid, err);
391 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
392 				    HV_INTR_STATE_IDLE);
393 	if (err != HV_EOK)
394 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
395 		       "HV_INTR_STATE_IDLE): err(%d)\n",
396 		       dev_handle, dev_ino, err);
397 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
398 				    HV_INTR_ENABLED);
399 	if (err != HV_EOK)
400 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
401 		       "HV_INTR_ENABLED): err(%d)\n",
402 		       dev_handle, dev_ino, err);
403 }
404 
sun4v_virt_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)405 static int sun4v_virt_set_affinity(struct irq_data *data,
406 				    const struct cpumask *mask, bool force)
407 {
408 	unsigned long cpuid, dev_handle, dev_ino;
409 	int err;
410 
411 	cpuid = irq_choose_cpu(data->irq, mask);
412 
413 	dev_handle = irq_table[data->irq].dev_handle;
414 	dev_ino = irq_table[data->irq].dev_ino;
415 
416 	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
417 	if (err != HV_EOK)
418 		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
419 		       "err(%d)\n",
420 		       dev_handle, dev_ino, cpuid, err);
421 
422 	return 0;
423 }
424 
sun4v_virq_disable(struct irq_data * data)425 static void sun4v_virq_disable(struct irq_data *data)
426 {
427 	unsigned long dev_handle, dev_ino;
428 	int err;
429 
430 	dev_handle = irq_table[data->irq].dev_handle;
431 	dev_ino = irq_table[data->irq].dev_ino;
432 
433 	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
434 				    HV_INTR_DISABLED);
435 	if (err != HV_EOK)
436 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
437 		       "HV_INTR_DISABLED): err(%d)\n",
438 		       dev_handle, dev_ino, err);
439 }
440 
sun4v_virq_eoi(struct irq_data * data)441 static void sun4v_virq_eoi(struct irq_data *data)
442 {
443 	unsigned long dev_handle, dev_ino;
444 	int err;
445 
446 	dev_handle = irq_table[data->irq].dev_handle;
447 	dev_ino = irq_table[data->irq].dev_ino;
448 
449 	err = sun4v_vintr_set_state(dev_handle, dev_ino,
450 				    HV_INTR_STATE_IDLE);
451 	if (err != HV_EOK)
452 		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
453 		       "HV_INTR_STATE_IDLE): err(%d)\n",
454 		       dev_handle, dev_ino, err);
455 }
456 
457 static struct irq_chip sun4u_irq = {
458 	.name			= "sun4u",
459 	.irq_enable		= sun4u_irq_enable,
460 	.irq_disable		= sun4u_irq_disable,
461 	.irq_eoi		= sun4u_irq_eoi,
462 	.irq_set_affinity	= sun4u_set_affinity,
463 	.flags			= IRQCHIP_EOI_IF_HANDLED,
464 };
465 
466 static struct irq_chip sun4v_irq = {
467 	.name			= "sun4v",
468 	.irq_enable		= sun4v_irq_enable,
469 	.irq_disable		= sun4v_irq_disable,
470 	.irq_eoi		= sun4v_irq_eoi,
471 	.irq_set_affinity	= sun4v_set_affinity,
472 	.flags			= IRQCHIP_EOI_IF_HANDLED,
473 };
474 
475 static struct irq_chip sun4v_virq = {
476 	.name			= "vsun4v",
477 	.irq_enable		= sun4v_virq_enable,
478 	.irq_disable		= sun4v_virq_disable,
479 	.irq_eoi		= sun4v_virq_eoi,
480 	.irq_set_affinity	= sun4v_virt_set_affinity,
481 	.flags			= IRQCHIP_EOI_IF_HANDLED,
482 };
483 
pre_flow_handler(struct irq_data * d)484 static void pre_flow_handler(struct irq_data *d)
485 {
486 	struct irq_handler_data *handler_data = irq_data_get_irq_handler_data(d);
487 	unsigned int ino = irq_table[d->irq].dev_ino;
488 
489 	handler_data->pre_handler(ino, handler_data->arg1, handler_data->arg2);
490 }
491 
irq_install_pre_handler(int irq,void (* func)(unsigned int,void *,void *),void * arg1,void * arg2)492 void irq_install_pre_handler(int irq,
493 			     void (*func)(unsigned int, void *, void *),
494 			     void *arg1, void *arg2)
495 {
496 	struct irq_handler_data *handler_data = irq_get_handler_data(irq);
497 
498 	handler_data->pre_handler = func;
499 	handler_data->arg1 = arg1;
500 	handler_data->arg2 = arg2;
501 
502 	__irq_set_preflow_handler(irq, pre_flow_handler);
503 }
504 
build_irq(int inofixup,unsigned long iclr,unsigned long imap)505 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
506 {
507 	struct ino_bucket *bucket;
508 	struct irq_handler_data *handler_data;
509 	unsigned int irq;
510 	int ino;
511 
512 	BUG_ON(tlb_type == hypervisor);
513 
514 	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
515 	bucket = &ivector_table[ino];
516 	irq = bucket_get_irq(__pa(bucket));
517 	if (!irq) {
518 		irq = irq_alloc(0, ino);
519 		bucket_set_irq(__pa(bucket), irq);
520 		irq_set_chip_and_handler_name(irq, &sun4u_irq,
521 					      handle_fasteoi_irq, "IVEC");
522 	}
523 
524 	handler_data = irq_get_handler_data(irq);
525 	if (unlikely(handler_data))
526 		goto out;
527 
528 	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
529 	if (unlikely(!handler_data)) {
530 		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
531 		prom_halt();
532 	}
533 	irq_set_handler_data(irq, handler_data);
534 
535 	handler_data->imap  = imap;
536 	handler_data->iclr  = iclr;
537 
538 out:
539 	return irq;
540 }
541 
sun4v_build_common(unsigned long sysino,struct irq_chip * chip)542 static unsigned int sun4v_build_common(unsigned long sysino,
543 				       struct irq_chip *chip)
544 {
545 	struct ino_bucket *bucket;
546 	struct irq_handler_data *handler_data;
547 	unsigned int irq;
548 
549 	BUG_ON(tlb_type != hypervisor);
550 
551 	bucket = &ivector_table[sysino];
552 	irq = bucket_get_irq(__pa(bucket));
553 	if (!irq) {
554 		irq = irq_alloc(0, sysino);
555 		bucket_set_irq(__pa(bucket), irq);
556 		irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq,
557 					      "IVEC");
558 	}
559 
560 	handler_data = irq_get_handler_data(irq);
561 	if (unlikely(handler_data))
562 		goto out;
563 
564 	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
565 	if (unlikely(!handler_data)) {
566 		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
567 		prom_halt();
568 	}
569 	irq_set_handler_data(irq, handler_data);
570 
571 	/* Catch accidental accesses to these things.  IMAP/ICLR handling
572 	 * is done by hypervisor calls on sun4v platforms, not by direct
573 	 * register accesses.
574 	 */
575 	handler_data->imap = ~0UL;
576 	handler_data->iclr = ~0UL;
577 
578 out:
579 	return irq;
580 }
581 
sun4v_build_irq(u32 devhandle,unsigned int devino)582 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
583 {
584 	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
585 
586 	return sun4v_build_common(sysino, &sun4v_irq);
587 }
588 
sun4v_build_virq(u32 devhandle,unsigned int devino)589 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
590 {
591 	struct irq_handler_data *handler_data;
592 	unsigned long hv_err, cookie;
593 	struct ino_bucket *bucket;
594 	unsigned int irq;
595 
596 	bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
597 	if (unlikely(!bucket))
598 		return 0;
599 
600 	/* The only reference we store to the IRQ bucket is
601 	 * by physical address which kmemleak can't see, tell
602 	 * it that this object explicitly is not a leak and
603 	 * should be scanned.
604 	 */
605 	kmemleak_not_leak(bucket);
606 
607 	__flush_dcache_range((unsigned long) bucket,
608 			     ((unsigned long) bucket +
609 			      sizeof(struct ino_bucket)));
610 
611 	irq = irq_alloc(devhandle, devino);
612 	bucket_set_irq(__pa(bucket), irq);
613 
614 	irq_set_chip_and_handler_name(irq, &sun4v_virq, handle_fasteoi_irq,
615 				      "IVEC");
616 
617 	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
618 	if (unlikely(!handler_data))
619 		return 0;
620 
621 	/* In order to make the LDC channel startup sequence easier,
622 	 * especially wrt. locking, we do not let request_irq() enable
623 	 * the interrupt.
624 	 */
625 	irq_set_status_flags(irq, IRQ_NOAUTOEN);
626 	irq_set_handler_data(irq, handler_data);
627 
628 	/* Catch accidental accesses to these things.  IMAP/ICLR handling
629 	 * is done by hypervisor calls on sun4v platforms, not by direct
630 	 * register accesses.
631 	 */
632 	handler_data->imap = ~0UL;
633 	handler_data->iclr = ~0UL;
634 
635 	cookie = ~__pa(bucket);
636 	hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
637 	if (hv_err) {
638 		prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
639 			    "err=%lu\n", devhandle, devino, hv_err);
640 		prom_halt();
641 	}
642 
643 	return irq;
644 }
645 
ack_bad_irq(unsigned int irq)646 void ack_bad_irq(unsigned int irq)
647 {
648 	unsigned int ino = irq_table[irq].dev_ino;
649 
650 	if (!ino)
651 		ino = 0xdeadbeef;
652 
653 	printk(KERN_CRIT "Unexpected IRQ from ino[%x] irq[%u]\n",
654 	       ino, irq);
655 }
656 
657 void *hardirq_stack[NR_CPUS];
658 void *softirq_stack[NR_CPUS];
659 
handler_irq(int pil,struct pt_regs * regs)660 void __irq_entry handler_irq(int pil, struct pt_regs *regs)
661 {
662 	unsigned long pstate, bucket_pa;
663 	struct pt_regs *old_regs;
664 	void *orig_sp;
665 
666 	clear_softint(1 << pil);
667 
668 	old_regs = set_irq_regs(regs);
669 	irq_enter();
670 
671 	/* Grab an atomic snapshot of the pending IVECs.  */
672 	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
673 			     "wrpr	%0, %3, %%pstate\n\t"
674 			     "ldx	[%2], %1\n\t"
675 			     "stx	%%g0, [%2]\n\t"
676 			     "wrpr	%0, 0x0, %%pstate\n\t"
677 			     : "=&r" (pstate), "=&r" (bucket_pa)
678 			     : "r" (irq_work_pa(smp_processor_id())),
679 			       "i" (PSTATE_IE)
680 			     : "memory");
681 
682 	orig_sp = set_hardirq_stack();
683 
684 	while (bucket_pa) {
685 		unsigned long next_pa;
686 		unsigned int irq;
687 
688 		next_pa = bucket_get_chain_pa(bucket_pa);
689 		irq = bucket_get_irq(bucket_pa);
690 		bucket_clear_chain_pa(bucket_pa);
691 
692 		generic_handle_irq(irq);
693 
694 		bucket_pa = next_pa;
695 	}
696 
697 	restore_hardirq_stack(orig_sp);
698 
699 	irq_exit();
700 	set_irq_regs(old_regs);
701 }
702 
do_softirq(void)703 void do_softirq(void)
704 {
705 	unsigned long flags;
706 
707 	if (in_interrupt())
708 		return;
709 
710 	local_irq_save(flags);
711 
712 	if (local_softirq_pending()) {
713 		void *orig_sp, *sp = softirq_stack[smp_processor_id()];
714 
715 		sp += THREAD_SIZE - 192 - STACK_BIAS;
716 
717 		__asm__ __volatile__("mov %%sp, %0\n\t"
718 				     "mov %1, %%sp"
719 				     : "=&r" (orig_sp)
720 				     : "r" (sp));
721 		__do_softirq();
722 		__asm__ __volatile__("mov %0, %%sp"
723 				     : : "r" (orig_sp));
724 	}
725 
726 	local_irq_restore(flags);
727 }
728 
729 #ifdef CONFIG_HOTPLUG_CPU
fixup_irqs(void)730 void fixup_irqs(void)
731 {
732 	unsigned int irq;
733 
734 	for (irq = 0; irq < NR_IRQS; irq++) {
735 		struct irq_desc *desc = irq_to_desc(irq);
736 		struct irq_data *data = irq_desc_get_irq_data(desc);
737 		unsigned long flags;
738 
739 		raw_spin_lock_irqsave(&desc->lock, flags);
740 		if (desc->action && !irqd_is_per_cpu(data)) {
741 			if (data->chip->irq_set_affinity)
742 				data->chip->irq_set_affinity(data,
743 							     data->affinity,
744 							     false);
745 		}
746 		raw_spin_unlock_irqrestore(&desc->lock, flags);
747 	}
748 
749 	tick_ops->disable_irq();
750 }
751 #endif
752 
753 struct sun5_timer {
754 	u64	count0;
755 	u64	limit0;
756 	u64	count1;
757 	u64	limit1;
758 };
759 
760 static struct sun5_timer *prom_timers;
761 static u64 prom_limit0, prom_limit1;
762 
map_prom_timers(void)763 static void map_prom_timers(void)
764 {
765 	struct device_node *dp;
766 	const unsigned int *addr;
767 
768 	/* PROM timer node hangs out in the top level of device siblings... */
769 	dp = of_find_node_by_path("/");
770 	dp = dp->child;
771 	while (dp) {
772 		if (!strcmp(dp->name, "counter-timer"))
773 			break;
774 		dp = dp->sibling;
775 	}
776 
777 	/* Assume if node is not present, PROM uses different tick mechanism
778 	 * which we should not care about.
779 	 */
780 	if (!dp) {
781 		prom_timers = (struct sun5_timer *) 0;
782 		return;
783 	}
784 
785 	/* If PROM is really using this, it must be mapped by him. */
786 	addr = of_get_property(dp, "address", NULL);
787 	if (!addr) {
788 		prom_printf("PROM does not have timer mapped, trying to continue.\n");
789 		prom_timers = (struct sun5_timer *) 0;
790 		return;
791 	}
792 	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
793 }
794 
kill_prom_timer(void)795 static void kill_prom_timer(void)
796 {
797 	if (!prom_timers)
798 		return;
799 
800 	/* Save them away for later. */
801 	prom_limit0 = prom_timers->limit0;
802 	prom_limit1 = prom_timers->limit1;
803 
804 	/* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
805 	 * We turn both off here just to be paranoid.
806 	 */
807 	prom_timers->limit0 = 0;
808 	prom_timers->limit1 = 0;
809 
810 	/* Wheee, eat the interrupt packet too... */
811 	__asm__ __volatile__(
812 "	mov	0x40, %%g2\n"
813 "	ldxa	[%%g0] %0, %%g1\n"
814 "	ldxa	[%%g2] %1, %%g1\n"
815 "	stxa	%%g0, [%%g0] %0\n"
816 "	membar	#Sync\n"
817 	: /* no outputs */
818 	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
819 	: "g1", "g2");
820 }
821 
init_irqwork_curcpu(void)822 void notrace init_irqwork_curcpu(void)
823 {
824 	int cpu = hard_smp_processor_id();
825 
826 	trap_block[cpu].irq_worklist_pa = 0UL;
827 }
828 
829 /* Please be very careful with register_one_mondo() and
830  * sun4v_register_mondo_queues().
831  *
832  * On SMP this gets invoked from the CPU trampoline before
833  * the cpu has fully taken over the trap table from OBP,
834  * and it's kernel stack + %g6 thread register state is
835  * not fully cooked yet.
836  *
837  * Therefore you cannot make any OBP calls, not even prom_printf,
838  * from these two routines.
839  */
register_one_mondo(unsigned long paddr,unsigned long type,unsigned long qmask)840 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
841 {
842 	unsigned long num_entries = (qmask + 1) / 64;
843 	unsigned long status;
844 
845 	status = sun4v_cpu_qconf(type, paddr, num_entries);
846 	if (status != HV_EOK) {
847 		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
848 			    "err %lu\n", type, paddr, num_entries, status);
849 		prom_halt();
850 	}
851 }
852 
sun4v_register_mondo_queues(int this_cpu)853 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
854 {
855 	struct trap_per_cpu *tb = &trap_block[this_cpu];
856 
857 	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
858 			   tb->cpu_mondo_qmask);
859 	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
860 			   tb->dev_mondo_qmask);
861 	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
862 			   tb->resum_qmask);
863 	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
864 			   tb->nonresum_qmask);
865 }
866 
867 /* Each queue region must be a power of 2 multiple of 64 bytes in
868  * size.  The base real address must be aligned to the size of the
869  * region.  Thus, an 8KB queue must be 8KB aligned, for example.
870  */
alloc_one_queue(unsigned long * pa_ptr,unsigned long qmask)871 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
872 {
873 	unsigned long size = PAGE_ALIGN(qmask + 1);
874 	unsigned long order = get_order(size);
875 	unsigned long p;
876 
877 	p = __get_free_pages(GFP_KERNEL, order);
878 	if (!p) {
879 		prom_printf("SUN4V: Error, cannot allocate queue.\n");
880 		prom_halt();
881 	}
882 
883 	*pa_ptr = __pa(p);
884 }
885 
init_cpu_send_mondo_info(struct trap_per_cpu * tb)886 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
887 {
888 #ifdef CONFIG_SMP
889 	unsigned long page;
890 
891 	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
892 
893 	page = get_zeroed_page(GFP_KERNEL);
894 	if (!page) {
895 		prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
896 		prom_halt();
897 	}
898 
899 	tb->cpu_mondo_block_pa = __pa(page);
900 	tb->cpu_list_pa = __pa(page + 64);
901 #endif
902 }
903 
904 /* Allocate mondo and error queues for all possible cpus.  */
sun4v_init_mondo_queues(void)905 static void __init sun4v_init_mondo_queues(void)
906 {
907 	int cpu;
908 
909 	for_each_possible_cpu(cpu) {
910 		struct trap_per_cpu *tb = &trap_block[cpu];
911 
912 		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
913 		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
914 		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
915 		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
916 		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
917 		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
918 				tb->nonresum_qmask);
919 	}
920 }
921 
init_send_mondo_info(void)922 static void __init init_send_mondo_info(void)
923 {
924 	int cpu;
925 
926 	for_each_possible_cpu(cpu) {
927 		struct trap_per_cpu *tb = &trap_block[cpu];
928 
929 		init_cpu_send_mondo_info(tb);
930 	}
931 }
932 
933 static struct irqaction timer_irq_action = {
934 	.name = "timer",
935 };
936 
937 /* Only invoked on boot processor. */
init_IRQ(void)938 void __init init_IRQ(void)
939 {
940 	unsigned long size;
941 
942 	map_prom_timers();
943 	kill_prom_timer();
944 
945 	size = sizeof(struct ino_bucket) * NUM_IVECS;
946 	ivector_table = kzalloc(size, GFP_KERNEL);
947 	if (!ivector_table) {
948 		prom_printf("Fatal error, cannot allocate ivector_table\n");
949 		prom_halt();
950 	}
951 	__flush_dcache_range((unsigned long) ivector_table,
952 			     ((unsigned long) ivector_table) + size);
953 
954 	ivector_table_pa = __pa(ivector_table);
955 
956 	if (tlb_type == hypervisor)
957 		sun4v_init_mondo_queues();
958 
959 	init_send_mondo_info();
960 
961 	if (tlb_type == hypervisor) {
962 		/* Load up the boot cpu's entries.  */
963 		sun4v_register_mondo_queues(hard_smp_processor_id());
964 	}
965 
966 	/* We need to clear any IRQ's pending in the soft interrupt
967 	 * registers, a spurious one could be left around from the
968 	 * PROM timer which we just disabled.
969 	 */
970 	clear_softint(get_softint());
971 
972 	/* Now that ivector table is initialized, it is safe
973 	 * to receive IRQ vector traps.  We will normally take
974 	 * one or two right now, in case some device PROM used
975 	 * to boot us wants to speak to us.  We just ignore them.
976 	 */
977 	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
978 			     "or	%%g1, %0, %%g1\n\t"
979 			     "wrpr	%%g1, 0x0, %%pstate"
980 			     : /* No outputs */
981 			     : "i" (PSTATE_IE)
982 			     : "g1");
983 
984 	irq_to_desc(0)->action = &timer_irq_action;
985 }
986