1 /*
2 * arch/s390/kernel/time.c
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/cpu.h>
28 #include <linux/stop_machine.h>
29 #include <linux/time.h>
30 #include <linux/sysdev.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/smp.h>
34 #include <linux/types.h>
35 #include <linux/profile.h>
36 #include <linux/timex.h>
37 #include <linux/notifier.h>
38 #include <linux/clocksource.h>
39 #include <linux/clockchips.h>
40 #include <linux/gfp.h>
41 #include <linux/kprobes.h>
42 #include <asm/uaccess.h>
43 #include <asm/delay.h>
44 #include <asm/s390_ext.h>
45 #include <asm/div64.h>
46 #include <asm/vdso.h>
47 #include <asm/irq.h>
48 #include <asm/irq_regs.h>
49 #include <asm/timer.h>
50 #include <asm/etr.h>
51 #include <asm/cio.h>
52
53 /* change this if you have some constant time drift */
54 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
55 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
56
57 u64 sched_clock_base_cc = -1; /* Force to data section. */
58 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
59
60 static DEFINE_PER_CPU(struct clock_event_device, comparators);
61
62 /*
63 * Scheduler clock - returns current time in nanosec units.
64 */
sched_clock(void)65 unsigned long long notrace __kprobes sched_clock(void)
66 {
67 return (get_clock_monotonic() * 125) >> 9;
68 }
69
70 /*
71 * Monotonic_clock - returns # of nanoseconds passed since time_init()
72 */
monotonic_clock(void)73 unsigned long long monotonic_clock(void)
74 {
75 return sched_clock();
76 }
77 EXPORT_SYMBOL(monotonic_clock);
78
tod_to_timeval(__u64 todval,struct timespec * xt)79 void tod_to_timeval(__u64 todval, struct timespec *xt)
80 {
81 unsigned long long sec;
82
83 sec = todval >> 12;
84 do_div(sec, 1000000);
85 xt->tv_sec = sec;
86 todval -= (sec * 1000000) << 12;
87 xt->tv_nsec = ((todval * 1000) >> 12);
88 }
89 EXPORT_SYMBOL(tod_to_timeval);
90
clock_comparator_work(void)91 void clock_comparator_work(void)
92 {
93 struct clock_event_device *cd;
94
95 S390_lowcore.clock_comparator = -1ULL;
96 set_clock_comparator(S390_lowcore.clock_comparator);
97 cd = &__get_cpu_var(comparators);
98 cd->event_handler(cd);
99 }
100
101 /*
102 * Fixup the clock comparator.
103 */
fixup_clock_comparator(unsigned long long delta)104 static void fixup_clock_comparator(unsigned long long delta)
105 {
106 /* If nobody is waiting there's nothing to fix. */
107 if (S390_lowcore.clock_comparator == -1ULL)
108 return;
109 S390_lowcore.clock_comparator += delta;
110 set_clock_comparator(S390_lowcore.clock_comparator);
111 }
112
s390_next_event(unsigned long delta,struct clock_event_device * evt)113 static int s390_next_event(unsigned long delta,
114 struct clock_event_device *evt)
115 {
116 S390_lowcore.clock_comparator = get_clock() + delta;
117 set_clock_comparator(S390_lowcore.clock_comparator);
118 return 0;
119 }
120
s390_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)121 static void s390_set_mode(enum clock_event_mode mode,
122 struct clock_event_device *evt)
123 {
124 }
125
126 /*
127 * Set up lowcore and control register of the current cpu to
128 * enable TOD clock and clock comparator interrupts.
129 */
init_cpu_timer(void)130 void init_cpu_timer(void)
131 {
132 struct clock_event_device *cd;
133 int cpu;
134
135 S390_lowcore.clock_comparator = -1ULL;
136 set_clock_comparator(S390_lowcore.clock_comparator);
137
138 cpu = smp_processor_id();
139 cd = &per_cpu(comparators, cpu);
140 cd->name = "comparator";
141 cd->features = CLOCK_EVT_FEAT_ONESHOT;
142 cd->mult = 16777;
143 cd->shift = 12;
144 cd->min_delta_ns = 1;
145 cd->max_delta_ns = LONG_MAX;
146 cd->rating = 400;
147 cd->cpumask = cpumask_of(cpu);
148 cd->set_next_event = s390_next_event;
149 cd->set_mode = s390_set_mode;
150
151 clockevents_register_device(cd);
152
153 /* Enable clock comparator timer interrupt. */
154 __ctl_set_bit(0,11);
155
156 /* Always allow the timing alert external interrupt. */
157 __ctl_set_bit(0, 4);
158 }
159
clock_comparator_interrupt(unsigned int ext_int_code,unsigned int param32,unsigned long param64)160 static void clock_comparator_interrupt(unsigned int ext_int_code,
161 unsigned int param32,
162 unsigned long param64)
163 {
164 kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++;
165 if (S390_lowcore.clock_comparator == -1ULL)
166 set_clock_comparator(S390_lowcore.clock_comparator);
167 }
168
169 static void etr_timing_alert(struct etr_irq_parm *);
170 static void stp_timing_alert(struct stp_irq_parm *);
171
timing_alert_interrupt(unsigned int ext_int_code,unsigned int param32,unsigned long param64)172 static void timing_alert_interrupt(unsigned int ext_int_code,
173 unsigned int param32, unsigned long param64)
174 {
175 kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++;
176 if (param32 & 0x00c40000)
177 etr_timing_alert((struct etr_irq_parm *) ¶m32);
178 if (param32 & 0x00038000)
179 stp_timing_alert((struct stp_irq_parm *) ¶m32);
180 }
181
182 static void etr_reset(void);
183 static void stp_reset(void);
184
read_persistent_clock(struct timespec * ts)185 void read_persistent_clock(struct timespec *ts)
186 {
187 tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
188 }
189
read_boot_clock(struct timespec * ts)190 void read_boot_clock(struct timespec *ts)
191 {
192 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
193 }
194
read_tod_clock(struct clocksource * cs)195 static cycle_t read_tod_clock(struct clocksource *cs)
196 {
197 return get_clock();
198 }
199
200 static struct clocksource clocksource_tod = {
201 .name = "tod",
202 .rating = 400,
203 .read = read_tod_clock,
204 .mask = -1ULL,
205 .mult = 1000,
206 .shift = 12,
207 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
208 };
209
clocksource_default_clock(void)210 struct clocksource * __init clocksource_default_clock(void)
211 {
212 return &clocksource_tod;
213 }
214
update_vsyscall(struct timespec * wall_time,struct timespec * wtm,struct clocksource * clock,u32 mult)215 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
216 struct clocksource *clock, u32 mult)
217 {
218 if (clock != &clocksource_tod)
219 return;
220
221 /* Make userspace gettimeofday spin until we're done. */
222 ++vdso_data->tb_update_count;
223 smp_wmb();
224 vdso_data->xtime_tod_stamp = clock->cycle_last;
225 vdso_data->xtime_clock_sec = wall_time->tv_sec;
226 vdso_data->xtime_clock_nsec = wall_time->tv_nsec;
227 vdso_data->wtom_clock_sec = wtm->tv_sec;
228 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
229 vdso_data->ntp_mult = mult;
230 smp_wmb();
231 ++vdso_data->tb_update_count;
232 }
233
234 extern struct timezone sys_tz;
235
update_vsyscall_tz(void)236 void update_vsyscall_tz(void)
237 {
238 /* Make userspace gettimeofday spin until we're done. */
239 ++vdso_data->tb_update_count;
240 smp_wmb();
241 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
242 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
243 smp_wmb();
244 ++vdso_data->tb_update_count;
245 }
246
247 /*
248 * Initialize the TOD clock and the CPU timer of
249 * the boot cpu.
250 */
time_init(void)251 void __init time_init(void)
252 {
253 /* Reset time synchronization interfaces. */
254 etr_reset();
255 stp_reset();
256
257 /* request the clock comparator external interrupt */
258 if (register_external_interrupt(0x1004, clock_comparator_interrupt))
259 panic("Couldn't request external interrupt 0x1004");
260
261 /* request the timing alert external interrupt */
262 if (register_external_interrupt(0x1406, timing_alert_interrupt))
263 panic("Couldn't request external interrupt 0x1406");
264
265 if (clocksource_register(&clocksource_tod) != 0)
266 panic("Could not register TOD clock source");
267
268 /* Enable TOD clock interrupts on the boot cpu. */
269 init_cpu_timer();
270
271 /* Enable cpu timer interrupts on the boot cpu. */
272 vtime_init();
273 }
274
275 /*
276 * The time is "clock". old is what we think the time is.
277 * Adjust the value by a multiple of jiffies and add the delta to ntp.
278 * "delay" is an approximation how long the synchronization took. If
279 * the time correction is positive, then "delay" is subtracted from
280 * the time difference and only the remaining part is passed to ntp.
281 */
adjust_time(unsigned long long old,unsigned long long clock,unsigned long long delay)282 static unsigned long long adjust_time(unsigned long long old,
283 unsigned long long clock,
284 unsigned long long delay)
285 {
286 unsigned long long delta, ticks;
287 struct timex adjust;
288
289 if (clock > old) {
290 /* It is later than we thought. */
291 delta = ticks = clock - old;
292 delta = ticks = (delta < delay) ? 0 : delta - delay;
293 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
294 adjust.offset = ticks * (1000000 / HZ);
295 } else {
296 /* It is earlier than we thought. */
297 delta = ticks = old - clock;
298 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
299 delta = -delta;
300 adjust.offset = -ticks * (1000000 / HZ);
301 }
302 sched_clock_base_cc += delta;
303 if (adjust.offset != 0) {
304 pr_notice("The ETR interface has adjusted the clock "
305 "by %li microseconds\n", adjust.offset);
306 adjust.modes = ADJ_OFFSET_SINGLESHOT;
307 do_adjtimex(&adjust);
308 }
309 return delta;
310 }
311
312 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
313 static DEFINE_MUTEX(clock_sync_mutex);
314 static unsigned long clock_sync_flags;
315
316 #define CLOCK_SYNC_HAS_ETR 0
317 #define CLOCK_SYNC_HAS_STP 1
318 #define CLOCK_SYNC_ETR 2
319 #define CLOCK_SYNC_STP 3
320
321 /*
322 * The synchronous get_clock function. It will write the current clock
323 * value to the clock pointer and return 0 if the clock is in sync with
324 * the external time source. If the clock mode is local it will return
325 * -ENOSYS and -EAGAIN if the clock is not in sync with the external
326 * reference.
327 */
get_sync_clock(unsigned long long * clock)328 int get_sync_clock(unsigned long long *clock)
329 {
330 atomic_t *sw_ptr;
331 unsigned int sw0, sw1;
332
333 sw_ptr = &get_cpu_var(clock_sync_word);
334 sw0 = atomic_read(sw_ptr);
335 *clock = get_clock();
336 sw1 = atomic_read(sw_ptr);
337 put_cpu_var(clock_sync_word);
338 if (sw0 == sw1 && (sw0 & 0x80000000U))
339 /* Success: time is in sync. */
340 return 0;
341 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
342 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
343 return -ENOSYS;
344 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
345 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
346 return -EACCES;
347 return -EAGAIN;
348 }
349 EXPORT_SYMBOL(get_sync_clock);
350
351 /*
352 * Make get_sync_clock return -EAGAIN.
353 */
disable_sync_clock(void * dummy)354 static void disable_sync_clock(void *dummy)
355 {
356 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
357 /*
358 * Clear the in-sync bit 2^31. All get_sync_clock calls will
359 * fail until the sync bit is turned back on. In addition
360 * increase the "sequence" counter to avoid the race of an
361 * etr event and the complete recovery against get_sync_clock.
362 */
363 atomic_clear_mask(0x80000000, sw_ptr);
364 atomic_inc(sw_ptr);
365 }
366
367 /*
368 * Make get_sync_clock return 0 again.
369 * Needs to be called from a context disabled for preemption.
370 */
enable_sync_clock(void)371 static void enable_sync_clock(void)
372 {
373 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
374 atomic_set_mask(0x80000000, sw_ptr);
375 }
376
377 /*
378 * Function to check if the clock is in sync.
379 */
check_sync_clock(void)380 static inline int check_sync_clock(void)
381 {
382 atomic_t *sw_ptr;
383 int rc;
384
385 sw_ptr = &get_cpu_var(clock_sync_word);
386 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
387 put_cpu_var(clock_sync_word);
388 return rc;
389 }
390
391 /* Single threaded workqueue used for etr and stp sync events */
392 static struct workqueue_struct *time_sync_wq;
393
time_init_wq(void)394 static void __init time_init_wq(void)
395 {
396 if (time_sync_wq)
397 return;
398 time_sync_wq = create_singlethread_workqueue("timesync");
399 }
400
401 /*
402 * External Time Reference (ETR) code.
403 */
404 static int etr_port0_online;
405 static int etr_port1_online;
406 static int etr_steai_available;
407
early_parse_etr(char * p)408 static int __init early_parse_etr(char *p)
409 {
410 if (strncmp(p, "off", 3) == 0)
411 etr_port0_online = etr_port1_online = 0;
412 else if (strncmp(p, "port0", 5) == 0)
413 etr_port0_online = 1;
414 else if (strncmp(p, "port1", 5) == 0)
415 etr_port1_online = 1;
416 else if (strncmp(p, "on", 2) == 0)
417 etr_port0_online = etr_port1_online = 1;
418 return 0;
419 }
420 early_param("etr", early_parse_etr);
421
422 enum etr_event {
423 ETR_EVENT_PORT0_CHANGE,
424 ETR_EVENT_PORT1_CHANGE,
425 ETR_EVENT_PORT_ALERT,
426 ETR_EVENT_SYNC_CHECK,
427 ETR_EVENT_SWITCH_LOCAL,
428 ETR_EVENT_UPDATE,
429 };
430
431 /*
432 * Valid bit combinations of the eacr register are (x = don't care):
433 * e0 e1 dp p0 p1 ea es sl
434 * 0 0 x 0 0 0 0 0 initial, disabled state
435 * 0 0 x 0 1 1 0 0 port 1 online
436 * 0 0 x 1 0 1 0 0 port 0 online
437 * 0 0 x 1 1 1 0 0 both ports online
438 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
439 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
440 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
441 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
442 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable
443 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
444 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
445 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
446 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
447 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
448 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
449 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable
450 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
451 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
452 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
453 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
454 */
455 static struct etr_eacr etr_eacr;
456 static u64 etr_tolec; /* time of last eacr update */
457 static struct etr_aib etr_port0;
458 static int etr_port0_uptodate;
459 static struct etr_aib etr_port1;
460 static int etr_port1_uptodate;
461 static unsigned long etr_events;
462 static struct timer_list etr_timer;
463
464 static void etr_timeout(unsigned long dummy);
465 static void etr_work_fn(struct work_struct *work);
466 static DEFINE_MUTEX(etr_work_mutex);
467 static DECLARE_WORK(etr_work, etr_work_fn);
468
469 /*
470 * Reset ETR attachment.
471 */
etr_reset(void)472 static void etr_reset(void)
473 {
474 etr_eacr = (struct etr_eacr) {
475 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
476 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
477 .es = 0, .sl = 0 };
478 if (etr_setr(&etr_eacr) == 0) {
479 etr_tolec = get_clock();
480 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
481 if (etr_port0_online && etr_port1_online)
482 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
483 } else if (etr_port0_online || etr_port1_online) {
484 pr_warning("The real or virtual hardware system does "
485 "not provide an ETR interface\n");
486 etr_port0_online = etr_port1_online = 0;
487 }
488 }
489
etr_init(void)490 static int __init etr_init(void)
491 {
492 struct etr_aib aib;
493
494 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
495 return 0;
496 time_init_wq();
497 /* Check if this machine has the steai instruction. */
498 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
499 etr_steai_available = 1;
500 setup_timer(&etr_timer, etr_timeout, 0UL);
501 if (etr_port0_online) {
502 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
503 queue_work(time_sync_wq, &etr_work);
504 }
505 if (etr_port1_online) {
506 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
507 queue_work(time_sync_wq, &etr_work);
508 }
509 return 0;
510 }
511
512 arch_initcall(etr_init);
513
514 /*
515 * Two sorts of ETR machine checks. The architecture reads:
516 * "When a machine-check niterruption occurs and if a switch-to-local or
517 * ETR-sync-check interrupt request is pending but disabled, this pending
518 * disabled interruption request is indicated and is cleared".
519 * Which means that we can get etr_switch_to_local events from the machine
520 * check handler although the interruption condition is disabled. Lovely..
521 */
522
523 /*
524 * Switch to local machine check. This is called when the last usable
525 * ETR port goes inactive. After switch to local the clock is not in sync.
526 */
etr_switch_to_local(void)527 void etr_switch_to_local(void)
528 {
529 if (!etr_eacr.sl)
530 return;
531 disable_sync_clock(NULL);
532 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
533 etr_eacr.es = etr_eacr.sl = 0;
534 etr_setr(&etr_eacr);
535 queue_work(time_sync_wq, &etr_work);
536 }
537 }
538
539 /*
540 * ETR sync check machine check. This is called when the ETR OTE and the
541 * local clock OTE are farther apart than the ETR sync check tolerance.
542 * After a ETR sync check the clock is not in sync. The machine check
543 * is broadcasted to all cpus at the same time.
544 */
etr_sync_check(void)545 void etr_sync_check(void)
546 {
547 if (!etr_eacr.es)
548 return;
549 disable_sync_clock(NULL);
550 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
551 etr_eacr.es = 0;
552 etr_setr(&etr_eacr);
553 queue_work(time_sync_wq, &etr_work);
554 }
555 }
556
557 /*
558 * ETR timing alert. There are two causes:
559 * 1) port state change, check the usability of the port
560 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
561 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
562 * or ETR-data word 4 (edf4) has changed.
563 */
etr_timing_alert(struct etr_irq_parm * intparm)564 static void etr_timing_alert(struct etr_irq_parm *intparm)
565 {
566 if (intparm->pc0)
567 /* ETR port 0 state change. */
568 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
569 if (intparm->pc1)
570 /* ETR port 1 state change. */
571 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
572 if (intparm->eai)
573 /*
574 * ETR port alert on either port 0, 1 or both.
575 * Both ports are not up-to-date now.
576 */
577 set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
578 queue_work(time_sync_wq, &etr_work);
579 }
580
etr_timeout(unsigned long dummy)581 static void etr_timeout(unsigned long dummy)
582 {
583 set_bit(ETR_EVENT_UPDATE, &etr_events);
584 queue_work(time_sync_wq, &etr_work);
585 }
586
587 /*
588 * Check if the etr mode is pss.
589 */
etr_mode_is_pps(struct etr_eacr eacr)590 static inline int etr_mode_is_pps(struct etr_eacr eacr)
591 {
592 return eacr.es && !eacr.sl;
593 }
594
595 /*
596 * Check if the etr mode is etr.
597 */
etr_mode_is_etr(struct etr_eacr eacr)598 static inline int etr_mode_is_etr(struct etr_eacr eacr)
599 {
600 return eacr.es && eacr.sl;
601 }
602
603 /*
604 * Check if the port can be used for TOD synchronization.
605 * For PPS mode the port has to receive OTEs. For ETR mode
606 * the port has to receive OTEs, the ETR stepping bit has to
607 * be zero and the validity bits for data frame 1, 2, and 3
608 * have to be 1.
609 */
etr_port_valid(struct etr_aib * aib,int port)610 static int etr_port_valid(struct etr_aib *aib, int port)
611 {
612 unsigned int psc;
613
614 /* Check that this port is receiving OTEs. */
615 if (aib->tsp == 0)
616 return 0;
617
618 psc = port ? aib->esw.psc1 : aib->esw.psc0;
619 if (psc == etr_lpsc_pps_mode)
620 return 1;
621 if (psc == etr_lpsc_operational_step)
622 return !aib->esw.y && aib->slsw.v1 &&
623 aib->slsw.v2 && aib->slsw.v3;
624 return 0;
625 }
626
627 /*
628 * Check if two ports are on the same network.
629 */
etr_compare_network(struct etr_aib * aib1,struct etr_aib * aib2)630 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
631 {
632 // FIXME: any other fields we have to compare?
633 return aib1->edf1.net_id == aib2->edf1.net_id;
634 }
635
636 /*
637 * Wrapper for etr_stei that converts physical port states
638 * to logical port states to be consistent with the output
639 * of stetr (see etr_psc vs. etr_lpsc).
640 */
etr_steai_cv(struct etr_aib * aib,unsigned int func)641 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
642 {
643 BUG_ON(etr_steai(aib, func) != 0);
644 /* Convert port state to logical port state. */
645 if (aib->esw.psc0 == 1)
646 aib->esw.psc0 = 2;
647 else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
648 aib->esw.psc0 = 1;
649 if (aib->esw.psc1 == 1)
650 aib->esw.psc1 = 2;
651 else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
652 aib->esw.psc1 = 1;
653 }
654
655 /*
656 * Check if the aib a2 is still connected to the same attachment as
657 * aib a1, the etv values differ by one and a2 is valid.
658 */
etr_aib_follows(struct etr_aib * a1,struct etr_aib * a2,int p)659 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
660 {
661 int state_a1, state_a2;
662
663 /* Paranoia check: e0/e1 should better be the same. */
664 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
665 a1->esw.eacr.e1 != a2->esw.eacr.e1)
666 return 0;
667
668 /* Still connected to the same etr ? */
669 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
670 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
671 if (state_a1 == etr_lpsc_operational_step) {
672 if (state_a2 != etr_lpsc_operational_step ||
673 a1->edf1.net_id != a2->edf1.net_id ||
674 a1->edf1.etr_id != a2->edf1.etr_id ||
675 a1->edf1.etr_pn != a2->edf1.etr_pn)
676 return 0;
677 } else if (state_a2 != etr_lpsc_pps_mode)
678 return 0;
679
680 /* The ETV value of a2 needs to be ETV of a1 + 1. */
681 if (a1->edf2.etv + 1 != a2->edf2.etv)
682 return 0;
683
684 if (!etr_port_valid(a2, p))
685 return 0;
686
687 return 1;
688 }
689
690 struct clock_sync_data {
691 atomic_t cpus;
692 int in_sync;
693 unsigned long long fixup_cc;
694 int etr_port;
695 struct etr_aib *etr_aib;
696 };
697
clock_sync_cpu(struct clock_sync_data * sync)698 static void clock_sync_cpu(struct clock_sync_data *sync)
699 {
700 atomic_dec(&sync->cpus);
701 enable_sync_clock();
702 /*
703 * This looks like a busy wait loop but it isn't. etr_sync_cpus
704 * is called on all other cpus while the TOD clocks is stopped.
705 * __udelay will stop the cpu on an enabled wait psw until the
706 * TOD is running again.
707 */
708 while (sync->in_sync == 0) {
709 __udelay(1);
710 /*
711 * A different cpu changes *in_sync. Therefore use
712 * barrier() to force memory access.
713 */
714 barrier();
715 }
716 if (sync->in_sync != 1)
717 /* Didn't work. Clear per-cpu in sync bit again. */
718 disable_sync_clock(NULL);
719 /*
720 * This round of TOD syncing is done. Set the clock comparator
721 * to the next tick and let the processor continue.
722 */
723 fixup_clock_comparator(sync->fixup_cc);
724 }
725
726 /*
727 * Sync the TOD clock using the port referred to by aibp. This port
728 * has to be enabled and the other port has to be disabled. The
729 * last eacr update has to be more than 1.6 seconds in the past.
730 */
etr_sync_clock(void * data)731 static int etr_sync_clock(void *data)
732 {
733 static int first;
734 unsigned long long clock, old_clock, delay, delta;
735 struct clock_sync_data *etr_sync;
736 struct etr_aib *sync_port, *aib;
737 int port;
738 int rc;
739
740 etr_sync = data;
741
742 if (xchg(&first, 1) == 1) {
743 /* Slave */
744 clock_sync_cpu(etr_sync);
745 return 0;
746 }
747
748 /* Wait until all other cpus entered the sync function. */
749 while (atomic_read(&etr_sync->cpus) != 0)
750 cpu_relax();
751
752 port = etr_sync->etr_port;
753 aib = etr_sync->etr_aib;
754 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
755 enable_sync_clock();
756
757 /* Set clock to next OTE. */
758 __ctl_set_bit(14, 21);
759 __ctl_set_bit(0, 29);
760 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
761 old_clock = get_clock();
762 if (set_clock(clock) == 0) {
763 __udelay(1); /* Wait for the clock to start. */
764 __ctl_clear_bit(0, 29);
765 __ctl_clear_bit(14, 21);
766 etr_stetr(aib);
767 /* Adjust Linux timing variables. */
768 delay = (unsigned long long)
769 (aib->edf2.etv - sync_port->edf2.etv) << 32;
770 delta = adjust_time(old_clock, clock, delay);
771 etr_sync->fixup_cc = delta;
772 fixup_clock_comparator(delta);
773 /* Verify that the clock is properly set. */
774 if (!etr_aib_follows(sync_port, aib, port)) {
775 /* Didn't work. */
776 disable_sync_clock(NULL);
777 etr_sync->in_sync = -EAGAIN;
778 rc = -EAGAIN;
779 } else {
780 etr_sync->in_sync = 1;
781 rc = 0;
782 }
783 } else {
784 /* Could not set the clock ?!? */
785 __ctl_clear_bit(0, 29);
786 __ctl_clear_bit(14, 21);
787 disable_sync_clock(NULL);
788 etr_sync->in_sync = -EAGAIN;
789 rc = -EAGAIN;
790 }
791 xchg(&first, 0);
792 return rc;
793 }
794
etr_sync_clock_stop(struct etr_aib * aib,int port)795 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
796 {
797 struct clock_sync_data etr_sync;
798 struct etr_aib *sync_port;
799 int follows;
800 int rc;
801
802 /* Check if the current aib is adjacent to the sync port aib. */
803 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
804 follows = etr_aib_follows(sync_port, aib, port);
805 memcpy(sync_port, aib, sizeof(*aib));
806 if (!follows)
807 return -EAGAIN;
808 memset(&etr_sync, 0, sizeof(etr_sync));
809 etr_sync.etr_aib = aib;
810 etr_sync.etr_port = port;
811 get_online_cpus();
812 atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
813 rc = stop_machine(etr_sync_clock, &etr_sync, &cpu_online_map);
814 put_online_cpus();
815 return rc;
816 }
817
818 /*
819 * Handle the immediate effects of the different events.
820 * The port change event is used for online/offline changes.
821 */
etr_handle_events(struct etr_eacr eacr)822 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
823 {
824 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
825 eacr.es = 0;
826 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
827 eacr.es = eacr.sl = 0;
828 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
829 etr_port0_uptodate = etr_port1_uptodate = 0;
830
831 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
832 if (eacr.e0)
833 /*
834 * Port change of an enabled port. We have to
835 * assume that this can have caused an stepping
836 * port switch.
837 */
838 etr_tolec = get_clock();
839 eacr.p0 = etr_port0_online;
840 if (!eacr.p0)
841 eacr.e0 = 0;
842 etr_port0_uptodate = 0;
843 }
844 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
845 if (eacr.e1)
846 /*
847 * Port change of an enabled port. We have to
848 * assume that this can have caused an stepping
849 * port switch.
850 */
851 etr_tolec = get_clock();
852 eacr.p1 = etr_port1_online;
853 if (!eacr.p1)
854 eacr.e1 = 0;
855 etr_port1_uptodate = 0;
856 }
857 clear_bit(ETR_EVENT_UPDATE, &etr_events);
858 return eacr;
859 }
860
861 /*
862 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
863 * one of the ports needs an update.
864 */
etr_set_tolec_timeout(unsigned long long now)865 static void etr_set_tolec_timeout(unsigned long long now)
866 {
867 unsigned long micros;
868
869 if ((!etr_eacr.p0 || etr_port0_uptodate) &&
870 (!etr_eacr.p1 || etr_port1_uptodate))
871 return;
872 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
873 micros = (micros > 1600000) ? 0 : 1600000 - micros;
874 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
875 }
876
877 /*
878 * Set up a time that expires after 1/2 second.
879 */
etr_set_sync_timeout(void)880 static void etr_set_sync_timeout(void)
881 {
882 mod_timer(&etr_timer, jiffies + HZ/2);
883 }
884
885 /*
886 * Update the aib information for one or both ports.
887 */
etr_handle_update(struct etr_aib * aib,struct etr_eacr eacr)888 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
889 struct etr_eacr eacr)
890 {
891 /* With both ports disabled the aib information is useless. */
892 if (!eacr.e0 && !eacr.e1)
893 return eacr;
894
895 /* Update port0 or port1 with aib stored in etr_work_fn. */
896 if (aib->esw.q == 0) {
897 /* Information for port 0 stored. */
898 if (eacr.p0 && !etr_port0_uptodate) {
899 etr_port0 = *aib;
900 if (etr_port0_online)
901 etr_port0_uptodate = 1;
902 }
903 } else {
904 /* Information for port 1 stored. */
905 if (eacr.p1 && !etr_port1_uptodate) {
906 etr_port1 = *aib;
907 if (etr_port0_online)
908 etr_port1_uptodate = 1;
909 }
910 }
911
912 /*
913 * Do not try to get the alternate port aib if the clock
914 * is not in sync yet.
915 */
916 if (!eacr.es || !check_sync_clock())
917 return eacr;
918
919 /*
920 * If steai is available we can get the information about
921 * the other port immediately. If only stetr is available the
922 * data-port bit toggle has to be used.
923 */
924 if (etr_steai_available) {
925 if (eacr.p0 && !etr_port0_uptodate) {
926 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
927 etr_port0_uptodate = 1;
928 }
929 if (eacr.p1 && !etr_port1_uptodate) {
930 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
931 etr_port1_uptodate = 1;
932 }
933 } else {
934 /*
935 * One port was updated above, if the other
936 * port is not uptodate toggle dp bit.
937 */
938 if ((eacr.p0 && !etr_port0_uptodate) ||
939 (eacr.p1 && !etr_port1_uptodate))
940 eacr.dp ^= 1;
941 else
942 eacr.dp = 0;
943 }
944 return eacr;
945 }
946
947 /*
948 * Write new etr control register if it differs from the current one.
949 * Return 1 if etr_tolec has been updated as well.
950 */
etr_update_eacr(struct etr_eacr eacr)951 static void etr_update_eacr(struct etr_eacr eacr)
952 {
953 int dp_changed;
954
955 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
956 /* No change, return. */
957 return;
958 /*
959 * The disable of an active port of the change of the data port
960 * bit can/will cause a change in the data port.
961 */
962 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
963 (etr_eacr.dp ^ eacr.dp) != 0;
964 etr_eacr = eacr;
965 etr_setr(&etr_eacr);
966 if (dp_changed)
967 etr_tolec = get_clock();
968 }
969
970 /*
971 * ETR work. In this function you'll find the main logic. In
972 * particular this is the only function that calls etr_update_eacr(),
973 * it "controls" the etr control register.
974 */
etr_work_fn(struct work_struct * work)975 static void etr_work_fn(struct work_struct *work)
976 {
977 unsigned long long now;
978 struct etr_eacr eacr;
979 struct etr_aib aib;
980 int sync_port;
981
982 /* prevent multiple execution. */
983 mutex_lock(&etr_work_mutex);
984
985 /* Create working copy of etr_eacr. */
986 eacr = etr_eacr;
987
988 /* Check for the different events and their immediate effects. */
989 eacr = etr_handle_events(eacr);
990
991 /* Check if ETR is supposed to be active. */
992 eacr.ea = eacr.p0 || eacr.p1;
993 if (!eacr.ea) {
994 /* Both ports offline. Reset everything. */
995 eacr.dp = eacr.es = eacr.sl = 0;
996 on_each_cpu(disable_sync_clock, NULL, 1);
997 del_timer_sync(&etr_timer);
998 etr_update_eacr(eacr);
999 goto out_unlock;
1000 }
1001
1002 /* Store aib to get the current ETR status word. */
1003 BUG_ON(etr_stetr(&aib) != 0);
1004 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
1005 now = get_clock();
1006
1007 /*
1008 * Update the port information if the last stepping port change
1009 * or data port change is older than 1.6 seconds.
1010 */
1011 if (now >= etr_tolec + (1600000 << 12))
1012 eacr = etr_handle_update(&aib, eacr);
1013
1014 /*
1015 * Select ports to enable. The preferred synchronization mode is PPS.
1016 * If a port can be enabled depends on a number of things:
1017 * 1) The port needs to be online and uptodate. A port is not
1018 * disabled just because it is not uptodate, but it is only
1019 * enabled if it is uptodate.
1020 * 2) The port needs to have the same mode (pps / etr).
1021 * 3) The port needs to be usable -> etr_port_valid() == 1
1022 * 4) To enable the second port the clock needs to be in sync.
1023 * 5) If both ports are useable and are ETR ports, the network id
1024 * has to be the same.
1025 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1026 */
1027 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1028 eacr.sl = 0;
1029 eacr.e0 = 1;
1030 if (!etr_mode_is_pps(etr_eacr))
1031 eacr.es = 0;
1032 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1033 eacr.e1 = 0;
1034 // FIXME: uptodate checks ?
1035 else if (etr_port0_uptodate && etr_port1_uptodate)
1036 eacr.e1 = 1;
1037 sync_port = (etr_port0_uptodate &&
1038 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1039 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1040 eacr.sl = 0;
1041 eacr.e0 = 0;
1042 eacr.e1 = 1;
1043 if (!etr_mode_is_pps(etr_eacr))
1044 eacr.es = 0;
1045 sync_port = (etr_port1_uptodate &&
1046 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1047 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1048 eacr.sl = 1;
1049 eacr.e0 = 1;
1050 if (!etr_mode_is_etr(etr_eacr))
1051 eacr.es = 0;
1052 if (!eacr.es || !eacr.p1 ||
1053 aib.esw.psc1 != etr_lpsc_operational_alt)
1054 eacr.e1 = 0;
1055 else if (etr_port0_uptodate && etr_port1_uptodate &&
1056 etr_compare_network(&etr_port0, &etr_port1))
1057 eacr.e1 = 1;
1058 sync_port = (etr_port0_uptodate &&
1059 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1060 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1061 eacr.sl = 1;
1062 eacr.e0 = 0;
1063 eacr.e1 = 1;
1064 if (!etr_mode_is_etr(etr_eacr))
1065 eacr.es = 0;
1066 sync_port = (etr_port1_uptodate &&
1067 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1068 } else {
1069 /* Both ports not usable. */
1070 eacr.es = eacr.sl = 0;
1071 sync_port = -1;
1072 }
1073
1074 /*
1075 * If the clock is in sync just update the eacr and return.
1076 * If there is no valid sync port wait for a port update.
1077 */
1078 if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1079 etr_update_eacr(eacr);
1080 etr_set_tolec_timeout(now);
1081 goto out_unlock;
1082 }
1083
1084 /*
1085 * Prepare control register for clock syncing
1086 * (reset data port bit, set sync check control.
1087 */
1088 eacr.dp = 0;
1089 eacr.es = 1;
1090
1091 /*
1092 * Update eacr and try to synchronize the clock. If the update
1093 * of eacr caused a stepping port switch (or if we have to
1094 * assume that a stepping port switch has occurred) or the
1095 * clock syncing failed, reset the sync check control bit
1096 * and set up a timer to try again after 0.5 seconds
1097 */
1098 etr_update_eacr(eacr);
1099 if (now < etr_tolec + (1600000 << 12) ||
1100 etr_sync_clock_stop(&aib, sync_port) != 0) {
1101 /* Sync failed. Try again in 1/2 second. */
1102 eacr.es = 0;
1103 etr_update_eacr(eacr);
1104 etr_set_sync_timeout();
1105 } else
1106 etr_set_tolec_timeout(now);
1107 out_unlock:
1108 mutex_unlock(&etr_work_mutex);
1109 }
1110
1111 /*
1112 * Sysfs interface functions
1113 */
1114 static struct sysdev_class etr_sysclass = {
1115 .name = "etr",
1116 };
1117
1118 static struct sys_device etr_port0_dev = {
1119 .id = 0,
1120 .cls = &etr_sysclass,
1121 };
1122
1123 static struct sys_device etr_port1_dev = {
1124 .id = 1,
1125 .cls = &etr_sysclass,
1126 };
1127
1128 /*
1129 * ETR class attributes
1130 */
etr_stepping_port_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1131 static ssize_t etr_stepping_port_show(struct sysdev_class *class,
1132 struct sysdev_class_attribute *attr,
1133 char *buf)
1134 {
1135 return sprintf(buf, "%i\n", etr_port0.esw.p);
1136 }
1137
1138 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1139
etr_stepping_mode_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1140 static ssize_t etr_stepping_mode_show(struct sysdev_class *class,
1141 struct sysdev_class_attribute *attr,
1142 char *buf)
1143 {
1144 char *mode_str;
1145
1146 if (etr_mode_is_pps(etr_eacr))
1147 mode_str = "pps";
1148 else if (etr_mode_is_etr(etr_eacr))
1149 mode_str = "etr";
1150 else
1151 mode_str = "local";
1152 return sprintf(buf, "%s\n", mode_str);
1153 }
1154
1155 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1156
1157 /*
1158 * ETR port attributes
1159 */
etr_aib_from_dev(struct sys_device * dev)1160 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1161 {
1162 if (dev == &etr_port0_dev)
1163 return etr_port0_online ? &etr_port0 : NULL;
1164 else
1165 return etr_port1_online ? &etr_port1 : NULL;
1166 }
1167
etr_online_show(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)1168 static ssize_t etr_online_show(struct sys_device *dev,
1169 struct sysdev_attribute *attr,
1170 char *buf)
1171 {
1172 unsigned int online;
1173
1174 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1175 return sprintf(buf, "%i\n", online);
1176 }
1177
etr_online_store(struct sys_device * dev,struct sysdev_attribute * attr,const char * buf,size_t count)1178 static ssize_t etr_online_store(struct sys_device *dev,
1179 struct sysdev_attribute *attr,
1180 const char *buf, size_t count)
1181 {
1182 unsigned int value;
1183
1184 value = simple_strtoul(buf, NULL, 0);
1185 if (value != 0 && value != 1)
1186 return -EINVAL;
1187 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1188 return -EOPNOTSUPP;
1189 mutex_lock(&clock_sync_mutex);
1190 if (dev == &etr_port0_dev) {
1191 if (etr_port0_online == value)
1192 goto out; /* Nothing to do. */
1193 etr_port0_online = value;
1194 if (etr_port0_online && etr_port1_online)
1195 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1196 else
1197 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1198 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1199 queue_work(time_sync_wq, &etr_work);
1200 } else {
1201 if (etr_port1_online == value)
1202 goto out; /* Nothing to do. */
1203 etr_port1_online = value;
1204 if (etr_port0_online && etr_port1_online)
1205 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1206 else
1207 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1208 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1209 queue_work(time_sync_wq, &etr_work);
1210 }
1211 out:
1212 mutex_unlock(&clock_sync_mutex);
1213 return count;
1214 }
1215
1216 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1217
etr_stepping_control_show(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)1218 static ssize_t etr_stepping_control_show(struct sys_device *dev,
1219 struct sysdev_attribute *attr,
1220 char *buf)
1221 {
1222 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1223 etr_eacr.e0 : etr_eacr.e1);
1224 }
1225
1226 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1227
etr_mode_code_show(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)1228 static ssize_t etr_mode_code_show(struct sys_device *dev,
1229 struct sysdev_attribute *attr, char *buf)
1230 {
1231 if (!etr_port0_online && !etr_port1_online)
1232 /* Status word is not uptodate if both ports are offline. */
1233 return -ENODATA;
1234 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1235 etr_port0.esw.psc0 : etr_port0.esw.psc1);
1236 }
1237
1238 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1239
etr_untuned_show(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)1240 static ssize_t etr_untuned_show(struct sys_device *dev,
1241 struct sysdev_attribute *attr, char *buf)
1242 {
1243 struct etr_aib *aib = etr_aib_from_dev(dev);
1244
1245 if (!aib || !aib->slsw.v1)
1246 return -ENODATA;
1247 return sprintf(buf, "%i\n", aib->edf1.u);
1248 }
1249
1250 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1251
etr_network_id_show(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)1252 static ssize_t etr_network_id_show(struct sys_device *dev,
1253 struct sysdev_attribute *attr, char *buf)
1254 {
1255 struct etr_aib *aib = etr_aib_from_dev(dev);
1256
1257 if (!aib || !aib->slsw.v1)
1258 return -ENODATA;
1259 return sprintf(buf, "%i\n", aib->edf1.net_id);
1260 }
1261
1262 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1263
etr_id_show(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)1264 static ssize_t etr_id_show(struct sys_device *dev,
1265 struct sysdev_attribute *attr, char *buf)
1266 {
1267 struct etr_aib *aib = etr_aib_from_dev(dev);
1268
1269 if (!aib || !aib->slsw.v1)
1270 return -ENODATA;
1271 return sprintf(buf, "%i\n", aib->edf1.etr_id);
1272 }
1273
1274 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1275
etr_port_number_show(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)1276 static ssize_t etr_port_number_show(struct sys_device *dev,
1277 struct sysdev_attribute *attr, char *buf)
1278 {
1279 struct etr_aib *aib = etr_aib_from_dev(dev);
1280
1281 if (!aib || !aib->slsw.v1)
1282 return -ENODATA;
1283 return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1284 }
1285
1286 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1287
etr_coupled_show(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)1288 static ssize_t etr_coupled_show(struct sys_device *dev,
1289 struct sysdev_attribute *attr, char *buf)
1290 {
1291 struct etr_aib *aib = etr_aib_from_dev(dev);
1292
1293 if (!aib || !aib->slsw.v3)
1294 return -ENODATA;
1295 return sprintf(buf, "%i\n", aib->edf3.c);
1296 }
1297
1298 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1299
etr_local_time_show(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)1300 static ssize_t etr_local_time_show(struct sys_device *dev,
1301 struct sysdev_attribute *attr, char *buf)
1302 {
1303 struct etr_aib *aib = etr_aib_from_dev(dev);
1304
1305 if (!aib || !aib->slsw.v3)
1306 return -ENODATA;
1307 return sprintf(buf, "%i\n", aib->edf3.blto);
1308 }
1309
1310 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1311
etr_utc_offset_show(struct sys_device * dev,struct sysdev_attribute * attr,char * buf)1312 static ssize_t etr_utc_offset_show(struct sys_device *dev,
1313 struct sysdev_attribute *attr, char *buf)
1314 {
1315 struct etr_aib *aib = etr_aib_from_dev(dev);
1316
1317 if (!aib || !aib->slsw.v3)
1318 return -ENODATA;
1319 return sprintf(buf, "%i\n", aib->edf3.buo);
1320 }
1321
1322 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1323
1324 static struct sysdev_attribute *etr_port_attributes[] = {
1325 &attr_online,
1326 &attr_stepping_control,
1327 &attr_state_code,
1328 &attr_untuned,
1329 &attr_network,
1330 &attr_id,
1331 &attr_port,
1332 &attr_coupled,
1333 &attr_local_time,
1334 &attr_utc_offset,
1335 NULL
1336 };
1337
etr_register_port(struct sys_device * dev)1338 static int __init etr_register_port(struct sys_device *dev)
1339 {
1340 struct sysdev_attribute **attr;
1341 int rc;
1342
1343 rc = sysdev_register(dev);
1344 if (rc)
1345 goto out;
1346 for (attr = etr_port_attributes; *attr; attr++) {
1347 rc = sysdev_create_file(dev, *attr);
1348 if (rc)
1349 goto out_unreg;
1350 }
1351 return 0;
1352 out_unreg:
1353 for (; attr >= etr_port_attributes; attr--)
1354 sysdev_remove_file(dev, *attr);
1355 sysdev_unregister(dev);
1356 out:
1357 return rc;
1358 }
1359
etr_unregister_port(struct sys_device * dev)1360 static void __init etr_unregister_port(struct sys_device *dev)
1361 {
1362 struct sysdev_attribute **attr;
1363
1364 for (attr = etr_port_attributes; *attr; attr++)
1365 sysdev_remove_file(dev, *attr);
1366 sysdev_unregister(dev);
1367 }
1368
etr_init_sysfs(void)1369 static int __init etr_init_sysfs(void)
1370 {
1371 int rc;
1372
1373 rc = sysdev_class_register(&etr_sysclass);
1374 if (rc)
1375 goto out;
1376 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1377 if (rc)
1378 goto out_unreg_class;
1379 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1380 if (rc)
1381 goto out_remove_stepping_port;
1382 rc = etr_register_port(&etr_port0_dev);
1383 if (rc)
1384 goto out_remove_stepping_mode;
1385 rc = etr_register_port(&etr_port1_dev);
1386 if (rc)
1387 goto out_remove_port0;
1388 return 0;
1389
1390 out_remove_port0:
1391 etr_unregister_port(&etr_port0_dev);
1392 out_remove_stepping_mode:
1393 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1394 out_remove_stepping_port:
1395 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1396 out_unreg_class:
1397 sysdev_class_unregister(&etr_sysclass);
1398 out:
1399 return rc;
1400 }
1401
1402 device_initcall(etr_init_sysfs);
1403
1404 /*
1405 * Server Time Protocol (STP) code.
1406 */
1407 static int stp_online;
1408 static struct stp_sstpi stp_info;
1409 static void *stp_page;
1410
1411 static void stp_work_fn(struct work_struct *work);
1412 static DEFINE_MUTEX(stp_work_mutex);
1413 static DECLARE_WORK(stp_work, stp_work_fn);
1414 static struct timer_list stp_timer;
1415
early_parse_stp(char * p)1416 static int __init early_parse_stp(char *p)
1417 {
1418 if (strncmp(p, "off", 3) == 0)
1419 stp_online = 0;
1420 else if (strncmp(p, "on", 2) == 0)
1421 stp_online = 1;
1422 return 0;
1423 }
1424 early_param("stp", early_parse_stp);
1425
1426 /*
1427 * Reset STP attachment.
1428 */
stp_reset(void)1429 static void __init stp_reset(void)
1430 {
1431 int rc;
1432
1433 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1434 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1435 if (rc == 0)
1436 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1437 else if (stp_online) {
1438 pr_warning("The real or virtual hardware system does "
1439 "not provide an STP interface\n");
1440 free_page((unsigned long) stp_page);
1441 stp_page = NULL;
1442 stp_online = 0;
1443 }
1444 }
1445
stp_timeout(unsigned long dummy)1446 static void stp_timeout(unsigned long dummy)
1447 {
1448 queue_work(time_sync_wq, &stp_work);
1449 }
1450
stp_init(void)1451 static int __init stp_init(void)
1452 {
1453 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1454 return 0;
1455 setup_timer(&stp_timer, stp_timeout, 0UL);
1456 time_init_wq();
1457 if (!stp_online)
1458 return 0;
1459 queue_work(time_sync_wq, &stp_work);
1460 return 0;
1461 }
1462
1463 arch_initcall(stp_init);
1464
1465 /*
1466 * STP timing alert. There are three causes:
1467 * 1) timing status change
1468 * 2) link availability change
1469 * 3) time control parameter change
1470 * In all three cases we are only interested in the clock source state.
1471 * If a STP clock source is now available use it.
1472 */
stp_timing_alert(struct stp_irq_parm * intparm)1473 static void stp_timing_alert(struct stp_irq_parm *intparm)
1474 {
1475 if (intparm->tsc || intparm->lac || intparm->tcpc)
1476 queue_work(time_sync_wq, &stp_work);
1477 }
1478
1479 /*
1480 * STP sync check machine check. This is called when the timing state
1481 * changes from the synchronized state to the unsynchronized state.
1482 * After a STP sync check the clock is not in sync. The machine check
1483 * is broadcasted to all cpus at the same time.
1484 */
stp_sync_check(void)1485 void stp_sync_check(void)
1486 {
1487 disable_sync_clock(NULL);
1488 queue_work(time_sync_wq, &stp_work);
1489 }
1490
1491 /*
1492 * STP island condition machine check. This is called when an attached
1493 * server attempts to communicate over an STP link and the servers
1494 * have matching CTN ids and have a valid stratum-1 configuration
1495 * but the configurations do not match.
1496 */
stp_island_check(void)1497 void stp_island_check(void)
1498 {
1499 disable_sync_clock(NULL);
1500 queue_work(time_sync_wq, &stp_work);
1501 }
1502
1503
stp_sync_clock(void * data)1504 static int stp_sync_clock(void *data)
1505 {
1506 static int first;
1507 unsigned long long old_clock, delta;
1508 struct clock_sync_data *stp_sync;
1509 int rc;
1510
1511 stp_sync = data;
1512
1513 if (xchg(&first, 1) == 1) {
1514 /* Slave */
1515 clock_sync_cpu(stp_sync);
1516 return 0;
1517 }
1518
1519 /* Wait until all other cpus entered the sync function. */
1520 while (atomic_read(&stp_sync->cpus) != 0)
1521 cpu_relax();
1522
1523 enable_sync_clock();
1524
1525 rc = 0;
1526 if (stp_info.todoff[0] || stp_info.todoff[1] ||
1527 stp_info.todoff[2] || stp_info.todoff[3] ||
1528 stp_info.tmd != 2) {
1529 old_clock = get_clock();
1530 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1531 if (rc == 0) {
1532 delta = adjust_time(old_clock, get_clock(), 0);
1533 fixup_clock_comparator(delta);
1534 rc = chsc_sstpi(stp_page, &stp_info,
1535 sizeof(struct stp_sstpi));
1536 if (rc == 0 && stp_info.tmd != 2)
1537 rc = -EAGAIN;
1538 }
1539 }
1540 if (rc) {
1541 disable_sync_clock(NULL);
1542 stp_sync->in_sync = -EAGAIN;
1543 } else
1544 stp_sync->in_sync = 1;
1545 xchg(&first, 0);
1546 return 0;
1547 }
1548
1549 /*
1550 * STP work. Check for the STP state and take over the clock
1551 * synchronization if the STP clock source is usable.
1552 */
stp_work_fn(struct work_struct * work)1553 static void stp_work_fn(struct work_struct *work)
1554 {
1555 struct clock_sync_data stp_sync;
1556 int rc;
1557
1558 /* prevent multiple execution. */
1559 mutex_lock(&stp_work_mutex);
1560
1561 if (!stp_online) {
1562 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1563 del_timer_sync(&stp_timer);
1564 goto out_unlock;
1565 }
1566
1567 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1568 if (rc)
1569 goto out_unlock;
1570
1571 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1572 if (rc || stp_info.c == 0)
1573 goto out_unlock;
1574
1575 /* Skip synchronization if the clock is already in sync. */
1576 if (check_sync_clock())
1577 goto out_unlock;
1578
1579 memset(&stp_sync, 0, sizeof(stp_sync));
1580 get_online_cpus();
1581 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1582 stop_machine(stp_sync_clock, &stp_sync, &cpu_online_map);
1583 put_online_cpus();
1584
1585 if (!check_sync_clock())
1586 /*
1587 * There is a usable clock but the synchonization failed.
1588 * Retry after a second.
1589 */
1590 mod_timer(&stp_timer, jiffies + HZ);
1591
1592 out_unlock:
1593 mutex_unlock(&stp_work_mutex);
1594 }
1595
1596 /*
1597 * STP class sysfs interface functions
1598 */
1599 static struct sysdev_class stp_sysclass = {
1600 .name = "stp",
1601 };
1602
stp_ctn_id_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1603 static ssize_t stp_ctn_id_show(struct sysdev_class *class,
1604 struct sysdev_class_attribute *attr,
1605 char *buf)
1606 {
1607 if (!stp_online)
1608 return -ENODATA;
1609 return sprintf(buf, "%016llx\n",
1610 *(unsigned long long *) stp_info.ctnid);
1611 }
1612
1613 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1614
stp_ctn_type_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1615 static ssize_t stp_ctn_type_show(struct sysdev_class *class,
1616 struct sysdev_class_attribute *attr,
1617 char *buf)
1618 {
1619 if (!stp_online)
1620 return -ENODATA;
1621 return sprintf(buf, "%i\n", stp_info.ctn);
1622 }
1623
1624 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1625
stp_dst_offset_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1626 static ssize_t stp_dst_offset_show(struct sysdev_class *class,
1627 struct sysdev_class_attribute *attr,
1628 char *buf)
1629 {
1630 if (!stp_online || !(stp_info.vbits & 0x2000))
1631 return -ENODATA;
1632 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1633 }
1634
1635 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1636
stp_leap_seconds_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1637 static ssize_t stp_leap_seconds_show(struct sysdev_class *class,
1638 struct sysdev_class_attribute *attr,
1639 char *buf)
1640 {
1641 if (!stp_online || !(stp_info.vbits & 0x8000))
1642 return -ENODATA;
1643 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1644 }
1645
1646 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1647
stp_stratum_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1648 static ssize_t stp_stratum_show(struct sysdev_class *class,
1649 struct sysdev_class_attribute *attr,
1650 char *buf)
1651 {
1652 if (!stp_online)
1653 return -ENODATA;
1654 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1655 }
1656
1657 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1658
stp_time_offset_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1659 static ssize_t stp_time_offset_show(struct sysdev_class *class,
1660 struct sysdev_class_attribute *attr,
1661 char *buf)
1662 {
1663 if (!stp_online || !(stp_info.vbits & 0x0800))
1664 return -ENODATA;
1665 return sprintf(buf, "%i\n", (int) stp_info.tto);
1666 }
1667
1668 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1669
stp_time_zone_offset_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1670 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class,
1671 struct sysdev_class_attribute *attr,
1672 char *buf)
1673 {
1674 if (!stp_online || !(stp_info.vbits & 0x4000))
1675 return -ENODATA;
1676 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1677 }
1678
1679 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1680 stp_time_zone_offset_show, NULL);
1681
stp_timing_mode_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1682 static ssize_t stp_timing_mode_show(struct sysdev_class *class,
1683 struct sysdev_class_attribute *attr,
1684 char *buf)
1685 {
1686 if (!stp_online)
1687 return -ENODATA;
1688 return sprintf(buf, "%i\n", stp_info.tmd);
1689 }
1690
1691 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1692
stp_timing_state_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1693 static ssize_t stp_timing_state_show(struct sysdev_class *class,
1694 struct sysdev_class_attribute *attr,
1695 char *buf)
1696 {
1697 if (!stp_online)
1698 return -ENODATA;
1699 return sprintf(buf, "%i\n", stp_info.tst);
1700 }
1701
1702 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1703
stp_online_show(struct sysdev_class * class,struct sysdev_class_attribute * attr,char * buf)1704 static ssize_t stp_online_show(struct sysdev_class *class,
1705 struct sysdev_class_attribute *attr,
1706 char *buf)
1707 {
1708 return sprintf(buf, "%i\n", stp_online);
1709 }
1710
stp_online_store(struct sysdev_class * class,struct sysdev_class_attribute * attr,const char * buf,size_t count)1711 static ssize_t stp_online_store(struct sysdev_class *class,
1712 struct sysdev_class_attribute *attr,
1713 const char *buf, size_t count)
1714 {
1715 unsigned int value;
1716
1717 value = simple_strtoul(buf, NULL, 0);
1718 if (value != 0 && value != 1)
1719 return -EINVAL;
1720 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1721 return -EOPNOTSUPP;
1722 mutex_lock(&clock_sync_mutex);
1723 stp_online = value;
1724 if (stp_online)
1725 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1726 else
1727 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1728 queue_work(time_sync_wq, &stp_work);
1729 mutex_unlock(&clock_sync_mutex);
1730 return count;
1731 }
1732
1733 /*
1734 * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1735 * stp/online but attr_online already exists in this file ..
1736 */
1737 static struct sysdev_class_attribute attr_stp_online = {
1738 .attr = { .name = "online", .mode = 0600 },
1739 .show = stp_online_show,
1740 .store = stp_online_store,
1741 };
1742
1743 static struct sysdev_class_attribute *stp_attributes[] = {
1744 &attr_ctn_id,
1745 &attr_ctn_type,
1746 &attr_dst_offset,
1747 &attr_leap_seconds,
1748 &attr_stp_online,
1749 &attr_stratum,
1750 &attr_time_offset,
1751 &attr_time_zone_offset,
1752 &attr_timing_mode,
1753 &attr_timing_state,
1754 NULL
1755 };
1756
stp_init_sysfs(void)1757 static int __init stp_init_sysfs(void)
1758 {
1759 struct sysdev_class_attribute **attr;
1760 int rc;
1761
1762 rc = sysdev_class_register(&stp_sysclass);
1763 if (rc)
1764 goto out;
1765 for (attr = stp_attributes; *attr; attr++) {
1766 rc = sysdev_class_create_file(&stp_sysclass, *attr);
1767 if (rc)
1768 goto out_unreg;
1769 }
1770 return 0;
1771 out_unreg:
1772 for (; attr >= stp_attributes; attr--)
1773 sysdev_class_remove_file(&stp_sysclass, *attr);
1774 sysdev_class_unregister(&stp_sysclass);
1775 out:
1776 return rc;
1777 }
1778
1779 device_initcall(stp_init_sysfs);
1780