1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <linux/stackprotector.h>
16 #include <linux/tick.h>
17 #include <linux/cpuidle.h>
18 #include <trace/events/power.h>
19 #include <linux/hw_breakpoint.h>
20 #include <asm/cpu.h>
21 #include <asm/apic.h>
22 #include <asm/syscalls.h>
23 #include <asm/idle.h>
24 #include <asm/uaccess.h>
25 #include <asm/i387.h>
26 #include <asm/fpu-internal.h>
27 #include <asm/debugreg.h>
28 #include <asm/nmi.h>
29
30 #ifdef CONFIG_X86_64
31 static DEFINE_PER_CPU(unsigned char, is_idle);
32 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
33
idle_notifier_register(struct notifier_block * n)34 void idle_notifier_register(struct notifier_block *n)
35 {
36 atomic_notifier_chain_register(&idle_notifier, n);
37 }
38 EXPORT_SYMBOL_GPL(idle_notifier_register);
39
idle_notifier_unregister(struct notifier_block * n)40 void idle_notifier_unregister(struct notifier_block *n)
41 {
42 atomic_notifier_chain_unregister(&idle_notifier, n);
43 }
44 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
45 #endif
46
47 struct kmem_cache *task_xstate_cachep;
48 EXPORT_SYMBOL_GPL(task_xstate_cachep);
49
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)50 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
51 {
52 int ret;
53
54 *dst = *src;
55 if (fpu_allocated(&src->thread.fpu)) {
56 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
57 ret = fpu_alloc(&dst->thread.fpu);
58 if (ret)
59 return ret;
60 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
61 }
62 return 0;
63 }
64
free_thread_xstate(struct task_struct * tsk)65 void free_thread_xstate(struct task_struct *tsk)
66 {
67 fpu_free(&tsk->thread.fpu);
68 }
69
free_thread_info(struct thread_info * ti)70 void free_thread_info(struct thread_info *ti)
71 {
72 free_thread_xstate(ti->task);
73 free_pages((unsigned long)ti, THREAD_ORDER);
74 }
75
arch_task_cache_init(void)76 void arch_task_cache_init(void)
77 {
78 task_xstate_cachep =
79 kmem_cache_create("task_xstate", xstate_size,
80 __alignof__(union thread_xstate),
81 SLAB_PANIC | SLAB_NOTRACK, NULL);
82 }
83
84 /*
85 * Free current thread data structures etc..
86 */
exit_thread(void)87 void exit_thread(void)
88 {
89 struct task_struct *me = current;
90 struct thread_struct *t = &me->thread;
91 unsigned long *bp = t->io_bitmap_ptr;
92
93 if (bp) {
94 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
95
96 t->io_bitmap_ptr = NULL;
97 clear_thread_flag(TIF_IO_BITMAP);
98 /*
99 * Careful, clear this in the TSS too:
100 */
101 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
102 t->io_bitmap_max = 0;
103 put_cpu();
104 kfree(bp);
105 }
106 }
107
show_regs(struct pt_regs * regs)108 void show_regs(struct pt_regs *regs)
109 {
110 show_registers(regs);
111 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
112 }
113
show_regs_common(void)114 void show_regs_common(void)
115 {
116 const char *vendor, *product, *board;
117
118 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
119 if (!vendor)
120 vendor = "";
121 product = dmi_get_system_info(DMI_PRODUCT_NAME);
122 if (!product)
123 product = "";
124
125 /* Board Name is optional */
126 board = dmi_get_system_info(DMI_BOARD_NAME);
127
128 printk(KERN_CONT "\n");
129 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
130 current->pid, current->comm, print_tainted(),
131 init_utsname()->release,
132 (int)strcspn(init_utsname()->version, " "),
133 init_utsname()->version);
134 printk(KERN_CONT " %s %s", vendor, product);
135 if (board)
136 printk(KERN_CONT "/%s", board);
137 printk(KERN_CONT "\n");
138 }
139
flush_thread(void)140 void flush_thread(void)
141 {
142 struct task_struct *tsk = current;
143
144 flush_ptrace_hw_breakpoint(tsk);
145 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
146 /*
147 * Forget coprocessor state..
148 */
149 tsk->fpu_counter = 0;
150 clear_fpu(tsk);
151 clear_used_math();
152 }
153
hard_disable_TSC(void)154 static void hard_disable_TSC(void)
155 {
156 write_cr4(read_cr4() | X86_CR4_TSD);
157 }
158
disable_TSC(void)159 void disable_TSC(void)
160 {
161 preempt_disable();
162 if (!test_and_set_thread_flag(TIF_NOTSC))
163 /*
164 * Must flip the CPU state synchronously with
165 * TIF_NOTSC in the current running context.
166 */
167 hard_disable_TSC();
168 preempt_enable();
169 }
170
hard_enable_TSC(void)171 static void hard_enable_TSC(void)
172 {
173 write_cr4(read_cr4() & ~X86_CR4_TSD);
174 }
175
enable_TSC(void)176 static void enable_TSC(void)
177 {
178 preempt_disable();
179 if (test_and_clear_thread_flag(TIF_NOTSC))
180 /*
181 * Must flip the CPU state synchronously with
182 * TIF_NOTSC in the current running context.
183 */
184 hard_enable_TSC();
185 preempt_enable();
186 }
187
get_tsc_mode(unsigned long adr)188 int get_tsc_mode(unsigned long adr)
189 {
190 unsigned int val;
191
192 if (test_thread_flag(TIF_NOTSC))
193 val = PR_TSC_SIGSEGV;
194 else
195 val = PR_TSC_ENABLE;
196
197 return put_user(val, (unsigned int __user *)adr);
198 }
199
set_tsc_mode(unsigned int val)200 int set_tsc_mode(unsigned int val)
201 {
202 if (val == PR_TSC_SIGSEGV)
203 disable_TSC();
204 else if (val == PR_TSC_ENABLE)
205 enable_TSC();
206 else
207 return -EINVAL;
208
209 return 0;
210 }
211
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p,struct tss_struct * tss)212 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
213 struct tss_struct *tss)
214 {
215 struct thread_struct *prev, *next;
216
217 prev = &prev_p->thread;
218 next = &next_p->thread;
219
220 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
221 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
222 unsigned long debugctl = get_debugctlmsr();
223
224 debugctl &= ~DEBUGCTLMSR_BTF;
225 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
226 debugctl |= DEBUGCTLMSR_BTF;
227
228 update_debugctlmsr(debugctl);
229 }
230
231 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
232 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
233 /* prev and next are different */
234 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
235 hard_disable_TSC();
236 else
237 hard_enable_TSC();
238 }
239
240 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
241 /*
242 * Copy the relevant range of the IO bitmap.
243 * Normally this is 128 bytes or less:
244 */
245 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
246 max(prev->io_bitmap_max, next->io_bitmap_max));
247 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
248 /*
249 * Clear any possible leftover bits:
250 */
251 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
252 }
253 propagate_user_return_notify(prev_p, next_p);
254 }
255
sys_fork(struct pt_regs * regs)256 int sys_fork(struct pt_regs *regs)
257 {
258 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
259 }
260
261 /*
262 * This is trivial, and on the face of it looks like it
263 * could equally well be done in user mode.
264 *
265 * Not so, for quite unobvious reasons - register pressure.
266 * In user mode vfork() cannot have a stack frame, and if
267 * done by calling the "clone()" system call directly, you
268 * do not have enough call-clobbered registers to hold all
269 * the information you need.
270 */
sys_vfork(struct pt_regs * regs)271 int sys_vfork(struct pt_regs *regs)
272 {
273 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
274 NULL, NULL);
275 }
276
277 long
sys_clone(unsigned long clone_flags,unsigned long newsp,void __user * parent_tid,void __user * child_tid,struct pt_regs * regs)278 sys_clone(unsigned long clone_flags, unsigned long newsp,
279 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
280 {
281 if (!newsp)
282 newsp = regs->sp;
283 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
284 }
285
286 /*
287 * This gets run with %si containing the
288 * function to call, and %di containing
289 * the "args".
290 */
291 extern void kernel_thread_helper(void);
292
293 /*
294 * Create a kernel thread
295 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)296 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
297 {
298 struct pt_regs regs;
299
300 memset(®s, 0, sizeof(regs));
301
302 regs.si = (unsigned long) fn;
303 regs.di = (unsigned long) arg;
304
305 #ifdef CONFIG_X86_32
306 regs.ds = __USER_DS;
307 regs.es = __USER_DS;
308 regs.fs = __KERNEL_PERCPU;
309 regs.gs = __KERNEL_STACK_CANARY;
310 #else
311 regs.ss = __KERNEL_DS;
312 #endif
313
314 regs.orig_ax = -1;
315 regs.ip = (unsigned long) kernel_thread_helper;
316 regs.cs = __KERNEL_CS | get_kernel_rpl();
317 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
318
319 /* Ok, create the new process.. */
320 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL);
321 }
322 EXPORT_SYMBOL(kernel_thread);
323
324 /*
325 * sys_execve() executes a new program.
326 */
sys_execve(const char __user * name,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)327 long sys_execve(const char __user *name,
328 const char __user *const __user *argv,
329 const char __user *const __user *envp, struct pt_regs *regs)
330 {
331 long error;
332 char *filename;
333
334 filename = getname(name);
335 error = PTR_ERR(filename);
336 if (IS_ERR(filename))
337 return error;
338 error = do_execve(filename, argv, envp, regs);
339
340 #ifdef CONFIG_X86_32
341 if (error == 0) {
342 /* Make sure we don't return using sysenter.. */
343 set_thread_flag(TIF_IRET);
344 }
345 #endif
346
347 putname(filename);
348 return error;
349 }
350
351 /*
352 * Idle related variables and functions
353 */
354 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
355 EXPORT_SYMBOL(boot_option_idle_override);
356
357 /*
358 * Powermanagement idle function, if any..
359 */
360 void (*pm_idle)(void);
361 #ifdef CONFIG_APM_MODULE
362 EXPORT_SYMBOL(pm_idle);
363 #endif
364
hlt_use_halt(void)365 static inline int hlt_use_halt(void)
366 {
367 return 1;
368 }
369
370 #ifndef CONFIG_SMP
play_dead(void)371 static inline void play_dead(void)
372 {
373 BUG();
374 }
375 #endif
376
377 #ifdef CONFIG_X86_64
enter_idle(void)378 void enter_idle(void)
379 {
380 percpu_write(is_idle, 1);
381 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
382 }
383
__exit_idle(void)384 static void __exit_idle(void)
385 {
386 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
387 return;
388 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
389 }
390
391 /* Called from interrupts to signify idle end */
exit_idle(void)392 void exit_idle(void)
393 {
394 /* idle loop has pid 0 */
395 if (current->pid)
396 return;
397 __exit_idle();
398 }
399 #endif
400
401 /*
402 * The idle thread. There's no useful work to be
403 * done, so just try to conserve power and have a
404 * low exit latency (ie sit in a loop waiting for
405 * somebody to say that they'd like to reschedule)
406 */
cpu_idle(void)407 void cpu_idle(void)
408 {
409 /*
410 * If we're the non-boot CPU, nothing set the stack canary up
411 * for us. CPU0 already has it initialized but no harm in
412 * doing it again. This is a good place for updating it, as
413 * we wont ever return from this function (so the invalid
414 * canaries already on the stack wont ever trigger).
415 */
416 boot_init_stack_canary();
417 current_thread_info()->status |= TS_POLLING;
418
419 while (1) {
420 tick_nohz_idle_enter();
421
422 while (!need_resched()) {
423 rmb();
424
425 if (cpu_is_offline(smp_processor_id()))
426 play_dead();
427
428 /*
429 * Idle routines should keep interrupts disabled
430 * from here on, until they go to idle.
431 * Otherwise, idle callbacks can misfire.
432 */
433 local_touch_nmi();
434 local_irq_disable();
435
436 enter_idle();
437
438 /* Don't trace irqs off for idle */
439 stop_critical_timings();
440
441 /* enter_idle() needs rcu for notifiers */
442 rcu_idle_enter();
443
444 if (cpuidle_idle_call())
445 pm_idle();
446
447 rcu_idle_exit();
448 start_critical_timings();
449
450 /* In many cases the interrupt that ended idle
451 has already called exit_idle. But some idle
452 loops can be woken up without interrupt. */
453 __exit_idle();
454 }
455
456 tick_nohz_idle_exit();
457 preempt_enable_no_resched();
458 schedule();
459 preempt_disable();
460 }
461 }
462
463 /*
464 * We use this if we don't have any better
465 * idle routine..
466 */
default_idle(void)467 void default_idle(void)
468 {
469 if (hlt_use_halt()) {
470 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
471 trace_cpu_idle_rcuidle(1, smp_processor_id());
472 current_thread_info()->status &= ~TS_POLLING;
473 /*
474 * TS_POLLING-cleared state must be visible before we
475 * test NEED_RESCHED:
476 */
477 smp_mb();
478
479 if (!need_resched())
480 safe_halt(); /* enables interrupts racelessly */
481 else
482 local_irq_enable();
483 current_thread_info()->status |= TS_POLLING;
484 trace_power_end_rcuidle(smp_processor_id());
485 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
486 } else {
487 local_irq_enable();
488 /* loop is done by the caller */
489 cpu_relax();
490 }
491 }
492 #ifdef CONFIG_APM_MODULE
493 EXPORT_SYMBOL(default_idle);
494 #endif
495
set_pm_idle_to_default(void)496 bool set_pm_idle_to_default(void)
497 {
498 bool ret = !!pm_idle;
499
500 pm_idle = default_idle;
501
502 return ret;
503 }
stop_this_cpu(void * dummy)504 void stop_this_cpu(void *dummy)
505 {
506 local_irq_disable();
507 /*
508 * Remove this CPU:
509 */
510 set_cpu_online(smp_processor_id(), false);
511 disable_local_APIC();
512
513 for (;;) {
514 if (hlt_works(smp_processor_id()))
515 halt();
516 }
517 }
518
do_nothing(void * unused)519 static void do_nothing(void *unused)
520 {
521 }
522
523 /*
524 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
525 * pm_idle and update to new pm_idle value. Required while changing pm_idle
526 * handler on SMP systems.
527 *
528 * Caller must have changed pm_idle to the new value before the call. Old
529 * pm_idle value will not be used by any CPU after the return of this function.
530 */
cpu_idle_wait(void)531 void cpu_idle_wait(void)
532 {
533 smp_mb();
534 /* kick all the CPUs so that they exit out of pm_idle */
535 smp_call_function(do_nothing, NULL, 1);
536 }
537 EXPORT_SYMBOL_GPL(cpu_idle_wait);
538
539 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
mwait_idle(void)540 static void mwait_idle(void)
541 {
542 if (!need_resched()) {
543 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
544 trace_cpu_idle_rcuidle(1, smp_processor_id());
545 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
546 clflush((void *)¤t_thread_info()->flags);
547
548 __monitor((void *)¤t_thread_info()->flags, 0, 0);
549 smp_mb();
550 if (!need_resched())
551 __sti_mwait(0, 0);
552 else
553 local_irq_enable();
554 trace_power_end_rcuidle(smp_processor_id());
555 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
556 } else
557 local_irq_enable();
558 }
559
560 /*
561 * On SMP it's slightly faster (but much more power-consuming!)
562 * to poll the ->work.need_resched flag instead of waiting for the
563 * cross-CPU IPI to arrive. Use this option with caution.
564 */
poll_idle(void)565 static void poll_idle(void)
566 {
567 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
568 trace_cpu_idle_rcuidle(0, smp_processor_id());
569 local_irq_enable();
570 while (!need_resched())
571 cpu_relax();
572 trace_power_end_rcuidle(smp_processor_id());
573 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
574 }
575
576 /*
577 * mwait selection logic:
578 *
579 * It depends on the CPU. For AMD CPUs that support MWAIT this is
580 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
581 * then depend on a clock divisor and current Pstate of the core. If
582 * all cores of a processor are in halt state (C1) the processor can
583 * enter the C1E (C1 enhanced) state. If mwait is used this will never
584 * happen.
585 *
586 * idle=mwait overrides this decision and forces the usage of mwait.
587 */
588
589 #define MWAIT_INFO 0x05
590 #define MWAIT_ECX_EXTENDED_INFO 0x01
591 #define MWAIT_EDX_C1 0xf0
592
mwait_usable(const struct cpuinfo_x86 * c)593 int mwait_usable(const struct cpuinfo_x86 *c)
594 {
595 u32 eax, ebx, ecx, edx;
596
597 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
598 return 1;
599
600 if (c->cpuid_level < MWAIT_INFO)
601 return 0;
602
603 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
604 /* Check, whether EDX has extended info about MWAIT */
605 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
606 return 1;
607
608 /*
609 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
610 * C1 supports MWAIT
611 */
612 return (edx & MWAIT_EDX_C1);
613 }
614
615 bool amd_e400_c1e_detected;
616 EXPORT_SYMBOL(amd_e400_c1e_detected);
617
618 static cpumask_var_t amd_e400_c1e_mask;
619
amd_e400_remove_cpu(int cpu)620 void amd_e400_remove_cpu(int cpu)
621 {
622 if (amd_e400_c1e_mask != NULL)
623 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
624 }
625
626 /*
627 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
628 * pending message MSR. If we detect C1E, then we handle it the same
629 * way as C3 power states (local apic timer and TSC stop)
630 */
amd_e400_idle(void)631 static void amd_e400_idle(void)
632 {
633 if (need_resched())
634 return;
635
636 if (!amd_e400_c1e_detected) {
637 u32 lo, hi;
638
639 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
640
641 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
642 amd_e400_c1e_detected = true;
643 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
644 mark_tsc_unstable("TSC halt in AMD C1E");
645 printk(KERN_INFO "System has AMD C1E enabled\n");
646 }
647 }
648
649 if (amd_e400_c1e_detected) {
650 int cpu = smp_processor_id();
651
652 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
653 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
654 /*
655 * Force broadcast so ACPI can not interfere.
656 */
657 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
658 &cpu);
659 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
660 cpu);
661 }
662 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
663
664 default_idle();
665
666 /*
667 * The switch back from broadcast mode needs to be
668 * called with interrupts disabled.
669 */
670 local_irq_disable();
671 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
672 local_irq_enable();
673 } else
674 default_idle();
675 }
676
select_idle_routine(const struct cpuinfo_x86 * c)677 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
678 {
679 #ifdef CONFIG_SMP
680 if (pm_idle == poll_idle && smp_num_siblings > 1) {
681 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
682 " performance may degrade.\n");
683 }
684 #endif
685 if (pm_idle)
686 return;
687
688 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
689 /*
690 * One CPU supports mwait => All CPUs supports mwait
691 */
692 printk(KERN_INFO "using mwait in idle threads.\n");
693 pm_idle = mwait_idle;
694 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
695 /* E400: APIC timer interrupt does not wake up CPU from C1e */
696 printk(KERN_INFO "using AMD E400 aware idle routine\n");
697 pm_idle = amd_e400_idle;
698 } else
699 pm_idle = default_idle;
700 }
701
init_amd_e400_c1e_mask(void)702 void __init init_amd_e400_c1e_mask(void)
703 {
704 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
705 if (pm_idle == amd_e400_idle)
706 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
707 }
708
idle_setup(char * str)709 static int __init idle_setup(char *str)
710 {
711 if (!str)
712 return -EINVAL;
713
714 if (!strcmp(str, "poll")) {
715 printk("using polling idle threads.\n");
716 pm_idle = poll_idle;
717 boot_option_idle_override = IDLE_POLL;
718 } else if (!strcmp(str, "mwait")) {
719 boot_option_idle_override = IDLE_FORCE_MWAIT;
720 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
721 } else if (!strcmp(str, "halt")) {
722 /*
723 * When the boot option of idle=halt is added, halt is
724 * forced to be used for CPU idle. In such case CPU C2/C3
725 * won't be used again.
726 * To continue to load the CPU idle driver, don't touch
727 * the boot_option_idle_override.
728 */
729 pm_idle = default_idle;
730 boot_option_idle_override = IDLE_HALT;
731 } else if (!strcmp(str, "nomwait")) {
732 /*
733 * If the boot option of "idle=nomwait" is added,
734 * it means that mwait will be disabled for CPU C2/C3
735 * states. In such case it won't touch the variable
736 * of boot_option_idle_override.
737 */
738 boot_option_idle_override = IDLE_NOMWAIT;
739 } else
740 return -1;
741
742 return 0;
743 }
744 early_param("idle", idle_setup);
745
arch_align_stack(unsigned long sp)746 unsigned long arch_align_stack(unsigned long sp)
747 {
748 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
749 sp -= get_random_int() % 8192;
750 return sp & ~0xf;
751 }
752
arch_randomize_brk(struct mm_struct * mm)753 unsigned long arch_randomize_brk(struct mm_struct *mm)
754 {
755 unsigned long range_end = mm->brk + 0x02000000;
756 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
757 }
758
759