1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * PF_INET protocol family socket handler.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Florian La Roche, <flla@stud.uni-sb.de>
12 * Alan Cox, <A.Cox@swansea.ac.uk>
13 *
14 * Changes (see also sock.c)
15 *
16 * piggy,
17 * Karl Knutson : Socket protocol table
18 * A.N.Kuznetsov : Socket death error in accept().
19 * John Richardson : Fix non blocking error in connect()
20 * so sockets that fail to connect
21 * don't return -EINPROGRESS.
22 * Alan Cox : Asynchronous I/O support
23 * Alan Cox : Keep correct socket pointer on sock
24 * structures
25 * when accept() ed
26 * Alan Cox : Semantics of SO_LINGER aren't state
27 * moved to close when you look carefully.
28 * With this fixed and the accept bug fixed
29 * some RPC stuff seems happier.
30 * Niibe Yutaka : 4.4BSD style write async I/O
31 * Alan Cox,
32 * Tony Gale : Fixed reuse semantics.
33 * Alan Cox : bind() shouldn't abort existing but dead
34 * sockets. Stops FTP netin:.. I hope.
35 * Alan Cox : bind() works correctly for RAW sockets.
36 * Note that FreeBSD at least was broken
37 * in this respect so be careful with
38 * compatibility tests...
39 * Alan Cox : routing cache support
40 * Alan Cox : memzero the socket structure for
41 * compactness.
42 * Matt Day : nonblock connect error handler
43 * Alan Cox : Allow large numbers of pending sockets
44 * (eg for big web sites), but only if
45 * specifically application requested.
46 * Alan Cox : New buffering throughout IP. Used
47 * dumbly.
48 * Alan Cox : New buffering now used smartly.
49 * Alan Cox : BSD rather than common sense
50 * interpretation of listen.
51 * Germano Caronni : Assorted small races.
52 * Alan Cox : sendmsg/recvmsg basic support.
53 * Alan Cox : Only sendmsg/recvmsg now supported.
54 * Alan Cox : Locked down bind (see security list).
55 * Alan Cox : Loosened bind a little.
56 * Mike McLagan : ADD/DEL DLCI Ioctls
57 * Willy Konynenberg : Transparent proxying support.
58 * David S. Miller : New socket lookup architecture.
59 * Some other random speedups.
60 * Cyrus Durgin : Cleaned up file for kmod hacks.
61 * Andi Kleen : Fix inet_stream_connect TCP race.
62 */
63
64 #define pr_fmt(fmt) "IPv4: " fmt
65
66 #include <linux/err.h>
67 #include <linux/errno.h>
68 #include <linux/types.h>
69 #include <linux/socket.h>
70 #include <linux/in.h>
71 #include <linux/kernel.h>
72 #include <linux/kmod.h>
73 #include <linux/sched.h>
74 #include <linux/timer.h>
75 #include <linux/string.h>
76 #include <linux/sockios.h>
77 #include <linux/net.h>
78 #include <linux/capability.h>
79 #include <linux/fcntl.h>
80 #include <linux/mm.h>
81 #include <linux/interrupt.h>
82 #include <linux/stat.h>
83 #include <linux/init.h>
84 #include <linux/poll.h>
85 #include <linux/netfilter_ipv4.h>
86 #include <linux/random.h>
87 #include <linux/slab.h>
88
89 #include <linux/uaccess.h>
90
91 #include <linux/inet.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/netdevice.h>
95 #include <net/checksum.h>
96 #include <net/ip.h>
97 #include <net/protocol.h>
98 #include <net/arp.h>
99 #include <net/route.h>
100 #include <net/ip_fib.h>
101 #include <net/inet_connection_sock.h>
102 #include <net/gro.h>
103 #include <net/tcp.h>
104 #include <net/udp.h>
105 #include <net/udplite.h>
106 #include <net/ping.h>
107 #include <linux/skbuff.h>
108 #include <net/sock.h>
109 #include <net/raw.h>
110 #include <net/icmp.h>
111 #include <net/inet_common.h>
112 #include <net/ip_tunnels.h>
113 #include <net/xfrm.h>
114 #include <net/net_namespace.h>
115 #include <net/secure_seq.h>
116 #ifdef CONFIG_IP_MROUTE
117 #include <linux/mroute.h>
118 #endif
119 #include <net/l3mdev.h>
120 #include <net/compat.h>
121
122 #include <trace/events/sock.h>
123
124 /* The inetsw table contains everything that inet_create needs to
125 * build a new socket.
126 */
127 static struct list_head inetsw[SOCK_MAX];
128 static DEFINE_SPINLOCK(inetsw_lock);
129
130 /* New destruction routine */
131
inet_sock_destruct(struct sock * sk)132 void inet_sock_destruct(struct sock *sk)
133 {
134 struct inet_sock *inet = inet_sk(sk);
135
136 __skb_queue_purge(&sk->sk_receive_queue);
137 __skb_queue_purge(&sk->sk_error_queue);
138
139 sk_mem_reclaim_final(sk);
140
141 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) {
142 pr_err("Attempt to release TCP socket in state %d %p\n",
143 sk->sk_state, sk);
144 return;
145 }
146 if (!sock_flag(sk, SOCK_DEAD)) {
147 pr_err("Attempt to release alive inet socket %p\n", sk);
148 return;
149 }
150
151 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
152 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
153 WARN_ON(sk->sk_wmem_queued);
154 WARN_ON(sk_forward_alloc_get(sk));
155
156 kfree(rcu_dereference_protected(inet->inet_opt, 1));
157 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1));
158 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1));
159 sk_refcnt_debug_dec(sk);
160 }
161 EXPORT_SYMBOL(inet_sock_destruct);
162
163 /*
164 * The routines beyond this point handle the behaviour of an AF_INET
165 * socket object. Mostly it punts to the subprotocols of IP to do
166 * the work.
167 */
168
169 /*
170 * Automatically bind an unbound socket.
171 */
172
inet_autobind(struct sock * sk)173 static int inet_autobind(struct sock *sk)
174 {
175 struct inet_sock *inet;
176 /* We may need to bind the socket. */
177 lock_sock(sk);
178 inet = inet_sk(sk);
179 if (!inet->inet_num) {
180 if (sk->sk_prot->get_port(sk, 0)) {
181 release_sock(sk);
182 return -EAGAIN;
183 }
184 inet->inet_sport = htons(inet->inet_num);
185 }
186 release_sock(sk);
187 return 0;
188 }
189
190 /*
191 * Move a socket into listening state.
192 */
inet_listen(struct socket * sock,int backlog)193 int inet_listen(struct socket *sock, int backlog)
194 {
195 struct sock *sk = sock->sk;
196 unsigned char old_state;
197 int err, tcp_fastopen;
198
199 lock_sock(sk);
200
201 err = -EINVAL;
202 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
203 goto out;
204
205 old_state = sk->sk_state;
206 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN)))
207 goto out;
208
209 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
210 /* Really, if the socket is already in listen state
211 * we can only allow the backlog to be adjusted.
212 */
213 if (old_state != TCP_LISTEN) {
214 /* Enable TFO w/o requiring TCP_FASTOPEN socket option.
215 * Note that only TCP sockets (SOCK_STREAM) will reach here.
216 * Also fastopen backlog may already been set via the option
217 * because the socket was in TCP_LISTEN state previously but
218 * was shutdown() rather than close().
219 */
220 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
221 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) &&
222 (tcp_fastopen & TFO_SERVER_ENABLE) &&
223 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) {
224 fastopen_queue_tune(sk, backlog);
225 tcp_fastopen_init_key_once(sock_net(sk));
226 }
227
228 err = inet_csk_listen_start(sk);
229 if (err)
230 goto out;
231 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL);
232 }
233 err = 0;
234
235 out:
236 release_sock(sk);
237 return err;
238 }
239 EXPORT_SYMBOL(inet_listen);
240
241 /*
242 * Create an inet socket.
243 */
244
inet_create(struct net * net,struct socket * sock,int protocol,int kern)245 static int inet_create(struct net *net, struct socket *sock, int protocol,
246 int kern)
247 {
248 struct sock *sk;
249 struct inet_protosw *answer;
250 struct inet_sock *inet;
251 struct proto *answer_prot;
252 unsigned char answer_flags;
253 int try_loading_module = 0;
254 int err;
255
256 if (protocol < 0 || protocol >= IPPROTO_MAX)
257 return -EINVAL;
258
259 sock->state = SS_UNCONNECTED;
260
261 /* Look for the requested type/protocol pair. */
262 lookup_protocol:
263 err = -ESOCKTNOSUPPORT;
264 rcu_read_lock();
265 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) {
266
267 err = 0;
268 /* Check the non-wild match. */
269 if (protocol == answer->protocol) {
270 if (protocol != IPPROTO_IP)
271 break;
272 } else {
273 /* Check for the two wild cases. */
274 if (IPPROTO_IP == protocol) {
275 protocol = answer->protocol;
276 break;
277 }
278 if (IPPROTO_IP == answer->protocol)
279 break;
280 }
281 err = -EPROTONOSUPPORT;
282 }
283
284 if (unlikely(err)) {
285 if (try_loading_module < 2) {
286 rcu_read_unlock();
287 /*
288 * Be more specific, e.g. net-pf-2-proto-132-type-1
289 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM)
290 */
291 if (++try_loading_module == 1)
292 request_module("net-pf-%d-proto-%d-type-%d",
293 PF_INET, protocol, sock->type);
294 /*
295 * Fall back to generic, e.g. net-pf-2-proto-132
296 * (net-pf-PF_INET-proto-IPPROTO_SCTP)
297 */
298 else
299 request_module("net-pf-%d-proto-%d",
300 PF_INET, protocol);
301 goto lookup_protocol;
302 } else
303 goto out_rcu_unlock;
304 }
305
306 err = -EPERM;
307 if (sock->type == SOCK_RAW && !kern &&
308 !ns_capable(net->user_ns, CAP_NET_RAW))
309 goto out_rcu_unlock;
310
311 sock->ops = answer->ops;
312 answer_prot = answer->prot;
313 answer_flags = answer->flags;
314 rcu_read_unlock();
315
316 WARN_ON(!answer_prot->slab);
317
318 err = -ENOMEM;
319 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern);
320 if (!sk)
321 goto out;
322
323 err = 0;
324 if (INET_PROTOSW_REUSE & answer_flags)
325 sk->sk_reuse = SK_CAN_REUSE;
326
327 inet = inet_sk(sk);
328 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0;
329
330 inet->nodefrag = 0;
331
332 if (SOCK_RAW == sock->type) {
333 inet->inet_num = protocol;
334 if (IPPROTO_RAW == protocol)
335 inet->hdrincl = 1;
336 }
337
338 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc))
339 inet->pmtudisc = IP_PMTUDISC_DONT;
340 else
341 inet->pmtudisc = IP_PMTUDISC_WANT;
342
343 inet->inet_id = 0;
344
345 sock_init_data(sock, sk);
346
347 sk->sk_destruct = inet_sock_destruct;
348 sk->sk_protocol = protocol;
349 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
350
351 inet->uc_ttl = -1;
352 inet->mc_loop = 1;
353 inet->mc_ttl = 1;
354 inet->mc_all = 1;
355 inet->mc_index = 0;
356 inet->mc_list = NULL;
357 inet->rcv_tos = 0;
358
359 sk_refcnt_debug_inc(sk);
360
361 if (inet->inet_num) {
362 /* It assumes that any protocol which allows
363 * the user to assign a number at socket
364 * creation time automatically
365 * shares.
366 */
367 inet->inet_sport = htons(inet->inet_num);
368 /* Add to protocol hash chains. */
369 err = sk->sk_prot->hash(sk);
370 if (err) {
371 sk_common_release(sk);
372 goto out;
373 }
374 }
375
376 if (sk->sk_prot->init) {
377 err = sk->sk_prot->init(sk);
378 if (err) {
379 sk_common_release(sk);
380 goto out;
381 }
382 }
383
384 if (!kern) {
385 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk);
386 if (err) {
387 sk_common_release(sk);
388 goto out;
389 }
390 }
391 out:
392 return err;
393 out_rcu_unlock:
394 rcu_read_unlock();
395 goto out;
396 }
397
398
399 /*
400 * The peer socket should always be NULL (or else). When we call this
401 * function we are destroying the object and from then on nobody
402 * should refer to it.
403 */
inet_release(struct socket * sock)404 int inet_release(struct socket *sock)
405 {
406 struct sock *sk = sock->sk;
407
408 if (sk) {
409 long timeout;
410
411 if (!sk->sk_kern_sock)
412 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk);
413
414 /* Applications forget to leave groups before exiting */
415 ip_mc_drop_socket(sk);
416
417 /* If linger is set, we don't return until the close
418 * is complete. Otherwise we return immediately. The
419 * actually closing is done the same either way.
420 *
421 * If the close is due to the process exiting, we never
422 * linger..
423 */
424 timeout = 0;
425 if (sock_flag(sk, SOCK_LINGER) &&
426 !(current->flags & PF_EXITING))
427 timeout = sk->sk_lingertime;
428 sk->sk_prot->close(sk, timeout);
429 sock->sk = NULL;
430 }
431 return 0;
432 }
433 EXPORT_SYMBOL(inet_release);
434
inet_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)435 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
436 {
437 struct sock *sk = sock->sk;
438 u32 flags = BIND_WITH_LOCK;
439 int err;
440
441 /* If the socket has its own bind function then use it. (RAW) */
442 if (sk->sk_prot->bind) {
443 return sk->sk_prot->bind(sk, uaddr, addr_len);
444 }
445 if (addr_len < sizeof(struct sockaddr_in))
446 return -EINVAL;
447
448 /* BPF prog is run before any checks are done so that if the prog
449 * changes context in a wrong way it will be caught.
450 */
451 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr,
452 CGROUP_INET4_BIND, &flags);
453 if (err)
454 return err;
455
456 return __inet_bind(sk, uaddr, addr_len, flags);
457 }
458 EXPORT_SYMBOL(inet_bind);
459
__inet_bind(struct sock * sk,struct sockaddr * uaddr,int addr_len,u32 flags)460 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len,
461 u32 flags)
462 {
463 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr;
464 struct inet_sock *inet = inet_sk(sk);
465 struct net *net = sock_net(sk);
466 unsigned short snum;
467 int chk_addr_ret;
468 u32 tb_id = RT_TABLE_LOCAL;
469 int err;
470
471 if (addr->sin_family != AF_INET) {
472 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET)
473 * only if s_addr is INADDR_ANY.
474 */
475 err = -EAFNOSUPPORT;
476 if (addr->sin_family != AF_UNSPEC ||
477 addr->sin_addr.s_addr != htonl(INADDR_ANY))
478 goto out;
479 }
480
481 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id;
482 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id);
483
484 /* Not specified by any standard per-se, however it breaks too
485 * many applications when removed. It is unfortunate since
486 * allowing applications to make a non-local bind solves
487 * several problems with systems using dynamic addressing.
488 * (ie. your servers still start up even if your ISDN link
489 * is temporarily down)
490 */
491 err = -EADDRNOTAVAIL;
492 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr,
493 chk_addr_ret))
494 goto out;
495
496 snum = ntohs(addr->sin_port);
497 err = -EACCES;
498 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) &&
499 snum && inet_port_requires_bind_service(net, snum) &&
500 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
501 goto out;
502
503 /* We keep a pair of addresses. rcv_saddr is the one
504 * used by hash lookups, and saddr is used for transmit.
505 *
506 * In the BSD API these are the same except where it
507 * would be illegal to use them (multicast/broadcast) in
508 * which case the sending device address is used.
509 */
510 if (flags & BIND_WITH_LOCK)
511 lock_sock(sk);
512
513 /* Check these errors (active socket, double bind). */
514 err = -EINVAL;
515 if (sk->sk_state != TCP_CLOSE || inet->inet_num)
516 goto out_release_sock;
517
518 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr;
519 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST)
520 inet->inet_saddr = 0; /* Use device */
521
522 /* Make sure we are allowed to bind here. */
523 if (snum || !(inet->bind_address_no_port ||
524 (flags & BIND_FORCE_ADDRESS_NO_PORT))) {
525 if (sk->sk_prot->get_port(sk, snum)) {
526 inet->inet_saddr = inet->inet_rcv_saddr = 0;
527 err = -EADDRINUSE;
528 goto out_release_sock;
529 }
530 if (!(flags & BIND_FROM_BPF)) {
531 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk);
532 if (err) {
533 inet->inet_saddr = inet->inet_rcv_saddr = 0;
534 if (sk->sk_prot->put_port)
535 sk->sk_prot->put_port(sk);
536 goto out_release_sock;
537 }
538 }
539 }
540
541 if (inet->inet_rcv_saddr)
542 sk->sk_userlocks |= SOCK_BINDADDR_LOCK;
543 if (snum)
544 sk->sk_userlocks |= SOCK_BINDPORT_LOCK;
545 inet->inet_sport = htons(inet->inet_num);
546 inet->inet_daddr = 0;
547 inet->inet_dport = 0;
548 sk_dst_reset(sk);
549 err = 0;
550 out_release_sock:
551 if (flags & BIND_WITH_LOCK)
552 release_sock(sk);
553 out:
554 return err;
555 }
556
inet_dgram_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)557 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr,
558 int addr_len, int flags)
559 {
560 struct sock *sk = sock->sk;
561 int err;
562
563 if (addr_len < sizeof(uaddr->sa_family))
564 return -EINVAL;
565 if (uaddr->sa_family == AF_UNSPEC)
566 return sk->sk_prot->disconnect(sk, flags);
567
568 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
569 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
570 if (err)
571 return err;
572 }
573
574 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk))
575 return -EAGAIN;
576 return sk->sk_prot->connect(sk, uaddr, addr_len);
577 }
578 EXPORT_SYMBOL(inet_dgram_connect);
579
inet_wait_for_connect(struct sock * sk,long timeo,int writebias)580 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias)
581 {
582 DEFINE_WAIT_FUNC(wait, woken_wake_function);
583
584 add_wait_queue(sk_sleep(sk), &wait);
585 sk->sk_write_pending += writebias;
586
587 /* Basic assumption: if someone sets sk->sk_err, he _must_
588 * change state of the socket from TCP_SYN_*.
589 * Connect() does not allow to get error notifications
590 * without closing the socket.
591 */
592 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
593 release_sock(sk);
594 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo);
595 lock_sock(sk);
596 if (signal_pending(current) || !timeo)
597 break;
598 }
599 remove_wait_queue(sk_sleep(sk), &wait);
600 sk->sk_write_pending -= writebias;
601 return timeo;
602 }
603
604 /*
605 * Connect to a remote host. There is regrettably still a little
606 * TCP 'magic' in here.
607 */
__inet_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags,int is_sendmsg)608 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
609 int addr_len, int flags, int is_sendmsg)
610 {
611 struct sock *sk = sock->sk;
612 int err;
613 long timeo;
614
615 /*
616 * uaddr can be NULL and addr_len can be 0 if:
617 * sk is a TCP fastopen active socket and
618 * TCP_FASTOPEN_CONNECT sockopt is set and
619 * we already have a valid cookie for this socket.
620 * In this case, user can call write() after connect().
621 * write() will invoke tcp_sendmsg_fastopen() which calls
622 * __inet_stream_connect().
623 */
624 if (uaddr) {
625 if (addr_len < sizeof(uaddr->sa_family))
626 return -EINVAL;
627
628 if (uaddr->sa_family == AF_UNSPEC) {
629 err = sk->sk_prot->disconnect(sk, flags);
630 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
631 goto out;
632 }
633 }
634
635 switch (sock->state) {
636 default:
637 err = -EINVAL;
638 goto out;
639 case SS_CONNECTED:
640 err = -EISCONN;
641 goto out;
642 case SS_CONNECTING:
643 if (inet_sk(sk)->defer_connect)
644 err = is_sendmsg ? -EINPROGRESS : -EISCONN;
645 else
646 err = -EALREADY;
647 /* Fall out of switch with err, set for this state */
648 break;
649 case SS_UNCONNECTED:
650 err = -EISCONN;
651 if (sk->sk_state != TCP_CLOSE)
652 goto out;
653
654 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
655 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
656 if (err)
657 goto out;
658 }
659
660 err = sk->sk_prot->connect(sk, uaddr, addr_len);
661 if (err < 0)
662 goto out;
663
664 sock->state = SS_CONNECTING;
665
666 if (!err && inet_sk(sk)->defer_connect)
667 goto out;
668
669 /* Just entered SS_CONNECTING state; the only
670 * difference is that return value in non-blocking
671 * case is EINPROGRESS, rather than EALREADY.
672 */
673 err = -EINPROGRESS;
674 break;
675 }
676
677 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
678
679 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
680 int writebias = (sk->sk_protocol == IPPROTO_TCP) &&
681 tcp_sk(sk)->fastopen_req &&
682 tcp_sk(sk)->fastopen_req->data ? 1 : 0;
683
684 /* Error code is set above */
685 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias))
686 goto out;
687
688 err = sock_intr_errno(timeo);
689 if (signal_pending(current))
690 goto out;
691 }
692
693 /* Connection was closed by RST, timeout, ICMP error
694 * or another process disconnected us.
695 */
696 if (sk->sk_state == TCP_CLOSE)
697 goto sock_error;
698
699 /* sk->sk_err may be not zero now, if RECVERR was ordered by user
700 * and error was received after socket entered established state.
701 * Hence, it is handled normally after connect() return successfully.
702 */
703
704 sock->state = SS_CONNECTED;
705 err = 0;
706 out:
707 return err;
708
709 sock_error:
710 err = sock_error(sk) ? : -ECONNABORTED;
711 sock->state = SS_UNCONNECTED;
712 if (sk->sk_prot->disconnect(sk, flags))
713 sock->state = SS_DISCONNECTING;
714 goto out;
715 }
716 EXPORT_SYMBOL(__inet_stream_connect);
717
inet_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)718 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
719 int addr_len, int flags)
720 {
721 int err;
722
723 lock_sock(sock->sk);
724 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0);
725 release_sock(sock->sk);
726 return err;
727 }
728 EXPORT_SYMBOL(inet_stream_connect);
729
730 /*
731 * Accept a pending connection. The TCP layer now gives BSD semantics.
732 */
733
inet_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)734 int inet_accept(struct socket *sock, struct socket *newsock, int flags,
735 bool kern)
736 {
737 struct sock *sk1 = sock->sk;
738 int err = -EINVAL;
739 struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern);
740
741 if (!sk2)
742 goto do_err;
743
744 lock_sock(sk2);
745
746 sock_rps_record_flow(sk2);
747 WARN_ON(!((1 << sk2->sk_state) &
748 (TCPF_ESTABLISHED | TCPF_SYN_RECV |
749 TCPF_CLOSE_WAIT | TCPF_CLOSE)));
750
751 sock_graft(sk2, newsock);
752
753 newsock->state = SS_CONNECTED;
754 err = 0;
755 release_sock(sk2);
756 do_err:
757 return err;
758 }
759 EXPORT_SYMBOL(inet_accept);
760
761 /*
762 * This does both peername and sockname.
763 */
inet_getname(struct socket * sock,struct sockaddr * uaddr,int peer)764 int inet_getname(struct socket *sock, struct sockaddr *uaddr,
765 int peer)
766 {
767 struct sock *sk = sock->sk;
768 struct inet_sock *inet = inet_sk(sk);
769 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr);
770
771 sin->sin_family = AF_INET;
772 lock_sock(sk);
773 if (peer) {
774 if (!inet->inet_dport ||
775 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) &&
776 peer == 1)) {
777 release_sock(sk);
778 return -ENOTCONN;
779 }
780 sin->sin_port = inet->inet_dport;
781 sin->sin_addr.s_addr = inet->inet_daddr;
782 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin,
783 CGROUP_INET4_GETPEERNAME);
784 } else {
785 __be32 addr = inet->inet_rcv_saddr;
786 if (!addr)
787 addr = inet->inet_saddr;
788 sin->sin_port = inet->inet_sport;
789 sin->sin_addr.s_addr = addr;
790 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin,
791 CGROUP_INET4_GETSOCKNAME);
792 }
793 release_sock(sk);
794 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
795 return sizeof(*sin);
796 }
797 EXPORT_SYMBOL(inet_getname);
798
inet_send_prepare(struct sock * sk)799 int inet_send_prepare(struct sock *sk)
800 {
801 sock_rps_record_flow(sk);
802
803 /* We may need to bind the socket. */
804 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind &&
805 inet_autobind(sk))
806 return -EAGAIN;
807
808 return 0;
809 }
810 EXPORT_SYMBOL_GPL(inet_send_prepare);
811
inet_sendmsg(struct socket * sock,struct msghdr * msg,size_t size)812 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
813 {
814 struct sock *sk = sock->sk;
815
816 if (unlikely(inet_send_prepare(sk)))
817 return -EAGAIN;
818
819 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg,
820 sk, msg, size);
821 }
822 EXPORT_SYMBOL(inet_sendmsg);
823
inet_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)824 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset,
825 size_t size, int flags)
826 {
827 struct sock *sk = sock->sk;
828
829 if (unlikely(inet_send_prepare(sk)))
830 return -EAGAIN;
831
832 if (sk->sk_prot->sendpage)
833 return sk->sk_prot->sendpage(sk, page, offset, size, flags);
834 return sock_no_sendpage(sock, page, offset, size, flags);
835 }
836 EXPORT_SYMBOL(inet_sendpage);
837
838 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *,
839 size_t, int, int *));
inet_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)840 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
841 int flags)
842 {
843 struct sock *sk = sock->sk;
844 int addr_len = 0;
845 int err;
846
847 if (likely(!(flags & MSG_ERRQUEUE)))
848 sock_rps_record_flow(sk);
849
850 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg,
851 sk, msg, size, flags, &addr_len);
852 if (err >= 0)
853 msg->msg_namelen = addr_len;
854 return err;
855 }
856 EXPORT_SYMBOL(inet_recvmsg);
857
inet_shutdown(struct socket * sock,int how)858 int inet_shutdown(struct socket *sock, int how)
859 {
860 struct sock *sk = sock->sk;
861 int err = 0;
862
863 /* This should really check to make sure
864 * the socket is a TCP socket. (WHY AC...)
865 */
866 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and
867 1->2 bit 2 snds.
868 2->3 */
869 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */
870 return -EINVAL;
871
872 lock_sock(sk);
873 if (sock->state == SS_CONNECTING) {
874 if ((1 << sk->sk_state) &
875 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
876 sock->state = SS_DISCONNECTING;
877 else
878 sock->state = SS_CONNECTED;
879 }
880
881 switch (sk->sk_state) {
882 case TCP_CLOSE:
883 err = -ENOTCONN;
884 /* Hack to wake up other listeners, who can poll for
885 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */
886 fallthrough;
887 default:
888 sk->sk_shutdown |= how;
889 if (sk->sk_prot->shutdown)
890 sk->sk_prot->shutdown(sk, how);
891 break;
892
893 /* Remaining two branches are temporary solution for missing
894 * close() in multithreaded environment. It is _not_ a good idea,
895 * but we have no choice until close() is repaired at VFS level.
896 */
897 case TCP_LISTEN:
898 if (!(how & RCV_SHUTDOWN))
899 break;
900 fallthrough;
901 case TCP_SYN_SENT:
902 err = sk->sk_prot->disconnect(sk, O_NONBLOCK);
903 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
904 break;
905 }
906
907 /* Wake up anyone sleeping in poll. */
908 sk->sk_state_change(sk);
909 release_sock(sk);
910 return err;
911 }
912 EXPORT_SYMBOL(inet_shutdown);
913
914 /*
915 * ioctl() calls you can issue on an INET socket. Most of these are
916 * device configuration and stuff and very rarely used. Some ioctls
917 * pass on to the socket itself.
918 *
919 * NOTE: I like the idea of a module for the config stuff. ie ifconfig
920 * loads the devconfigure module does its configuring and unloads it.
921 * There's a good 20K of config code hanging around the kernel.
922 */
923
inet_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)924 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
925 {
926 struct sock *sk = sock->sk;
927 int err = 0;
928 struct net *net = sock_net(sk);
929 void __user *p = (void __user *)arg;
930 struct ifreq ifr;
931 struct rtentry rt;
932
933 switch (cmd) {
934 case SIOCADDRT:
935 case SIOCDELRT:
936 if (copy_from_user(&rt, p, sizeof(struct rtentry)))
937 return -EFAULT;
938 err = ip_rt_ioctl(net, cmd, &rt);
939 break;
940 case SIOCRTMSG:
941 err = -EINVAL;
942 break;
943 case SIOCDARP:
944 case SIOCGARP:
945 case SIOCSARP:
946 err = arp_ioctl(net, cmd, (void __user *)arg);
947 break;
948 case SIOCGIFADDR:
949 case SIOCGIFBRDADDR:
950 case SIOCGIFNETMASK:
951 case SIOCGIFDSTADDR:
952 case SIOCGIFPFLAGS:
953 if (get_user_ifreq(&ifr, NULL, p))
954 return -EFAULT;
955 err = devinet_ioctl(net, cmd, &ifr);
956 if (!err && put_user_ifreq(&ifr, p))
957 err = -EFAULT;
958 break;
959
960 case SIOCSIFADDR:
961 case SIOCSIFBRDADDR:
962 case SIOCSIFNETMASK:
963 case SIOCSIFDSTADDR:
964 case SIOCSIFPFLAGS:
965 case SIOCSIFFLAGS:
966 if (get_user_ifreq(&ifr, NULL, p))
967 return -EFAULT;
968 err = devinet_ioctl(net, cmd, &ifr);
969 break;
970 default:
971 if (sk->sk_prot->ioctl)
972 err = sk->sk_prot->ioctl(sk, cmd, arg);
973 else
974 err = -ENOIOCTLCMD;
975 break;
976 }
977 return err;
978 }
979 EXPORT_SYMBOL(inet_ioctl);
980
981 #ifdef CONFIG_COMPAT
inet_compat_routing_ioctl(struct sock * sk,unsigned int cmd,struct compat_rtentry __user * ur)982 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd,
983 struct compat_rtentry __user *ur)
984 {
985 compat_uptr_t rtdev;
986 struct rtentry rt;
987
988 if (copy_from_user(&rt.rt_dst, &ur->rt_dst,
989 3 * sizeof(struct sockaddr)) ||
990 get_user(rt.rt_flags, &ur->rt_flags) ||
991 get_user(rt.rt_metric, &ur->rt_metric) ||
992 get_user(rt.rt_mtu, &ur->rt_mtu) ||
993 get_user(rt.rt_window, &ur->rt_window) ||
994 get_user(rt.rt_irtt, &ur->rt_irtt) ||
995 get_user(rtdev, &ur->rt_dev))
996 return -EFAULT;
997
998 rt.rt_dev = compat_ptr(rtdev);
999 return ip_rt_ioctl(sock_net(sk), cmd, &rt);
1000 }
1001
inet_compat_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1002 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1003 {
1004 void __user *argp = compat_ptr(arg);
1005 struct sock *sk = sock->sk;
1006
1007 switch (cmd) {
1008 case SIOCADDRT:
1009 case SIOCDELRT:
1010 return inet_compat_routing_ioctl(sk, cmd, argp);
1011 default:
1012 if (!sk->sk_prot->compat_ioctl)
1013 return -ENOIOCTLCMD;
1014 return sk->sk_prot->compat_ioctl(sk, cmd, arg);
1015 }
1016 }
1017 #endif /* CONFIG_COMPAT */
1018
1019 const struct proto_ops inet_stream_ops = {
1020 .family = PF_INET,
1021 .owner = THIS_MODULE,
1022 .release = inet_release,
1023 .bind = inet_bind,
1024 .connect = inet_stream_connect,
1025 .socketpair = sock_no_socketpair,
1026 .accept = inet_accept,
1027 .getname = inet_getname,
1028 .poll = tcp_poll,
1029 .ioctl = inet_ioctl,
1030 .gettstamp = sock_gettstamp,
1031 .listen = inet_listen,
1032 .shutdown = inet_shutdown,
1033 .setsockopt = sock_common_setsockopt,
1034 .getsockopt = sock_common_getsockopt,
1035 .sendmsg = inet_sendmsg,
1036 .recvmsg = inet_recvmsg,
1037 #ifdef CONFIG_MMU
1038 .mmap = tcp_mmap,
1039 #endif
1040 .sendpage = inet_sendpage,
1041 .splice_read = tcp_splice_read,
1042 .read_sock = tcp_read_sock,
1043 .sendmsg_locked = tcp_sendmsg_locked,
1044 .sendpage_locked = tcp_sendpage_locked,
1045 .peek_len = tcp_peek_len,
1046 #ifdef CONFIG_COMPAT
1047 .compat_ioctl = inet_compat_ioctl,
1048 #endif
1049 .set_rcvlowat = tcp_set_rcvlowat,
1050 };
1051 EXPORT_SYMBOL(inet_stream_ops);
1052
1053 const struct proto_ops inet_dgram_ops = {
1054 .family = PF_INET,
1055 .owner = THIS_MODULE,
1056 .release = inet_release,
1057 .bind = inet_bind,
1058 .connect = inet_dgram_connect,
1059 .socketpair = sock_no_socketpair,
1060 .accept = sock_no_accept,
1061 .getname = inet_getname,
1062 .poll = udp_poll,
1063 .ioctl = inet_ioctl,
1064 .gettstamp = sock_gettstamp,
1065 .listen = sock_no_listen,
1066 .shutdown = inet_shutdown,
1067 .setsockopt = sock_common_setsockopt,
1068 .getsockopt = sock_common_getsockopt,
1069 .sendmsg = inet_sendmsg,
1070 .read_sock = udp_read_sock,
1071 .recvmsg = inet_recvmsg,
1072 .mmap = sock_no_mmap,
1073 .sendpage = inet_sendpage,
1074 .set_peek_off = sk_set_peek_off,
1075 #ifdef CONFIG_COMPAT
1076 .compat_ioctl = inet_compat_ioctl,
1077 #endif
1078 };
1079 EXPORT_SYMBOL(inet_dgram_ops);
1080
1081 /*
1082 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without
1083 * udp_poll
1084 */
1085 static const struct proto_ops inet_sockraw_ops = {
1086 .family = PF_INET,
1087 .owner = THIS_MODULE,
1088 .release = inet_release,
1089 .bind = inet_bind,
1090 .connect = inet_dgram_connect,
1091 .socketpair = sock_no_socketpair,
1092 .accept = sock_no_accept,
1093 .getname = inet_getname,
1094 .poll = datagram_poll,
1095 .ioctl = inet_ioctl,
1096 .gettstamp = sock_gettstamp,
1097 .listen = sock_no_listen,
1098 .shutdown = inet_shutdown,
1099 .setsockopt = sock_common_setsockopt,
1100 .getsockopt = sock_common_getsockopt,
1101 .sendmsg = inet_sendmsg,
1102 .recvmsg = inet_recvmsg,
1103 .mmap = sock_no_mmap,
1104 .sendpage = inet_sendpage,
1105 #ifdef CONFIG_COMPAT
1106 .compat_ioctl = inet_compat_ioctl,
1107 #endif
1108 };
1109
1110 static const struct net_proto_family inet_family_ops = {
1111 .family = PF_INET,
1112 .create = inet_create,
1113 .owner = THIS_MODULE,
1114 };
1115
1116 /* Upon startup we insert all the elements in inetsw_array[] into
1117 * the linked list inetsw.
1118 */
1119 static struct inet_protosw inetsw_array[] =
1120 {
1121 {
1122 .type = SOCK_STREAM,
1123 .protocol = IPPROTO_TCP,
1124 .prot = &tcp_prot,
1125 .ops = &inet_stream_ops,
1126 .flags = INET_PROTOSW_PERMANENT |
1127 INET_PROTOSW_ICSK,
1128 },
1129
1130 {
1131 .type = SOCK_DGRAM,
1132 .protocol = IPPROTO_UDP,
1133 .prot = &udp_prot,
1134 .ops = &inet_dgram_ops,
1135 .flags = INET_PROTOSW_PERMANENT,
1136 },
1137
1138 {
1139 .type = SOCK_DGRAM,
1140 .protocol = IPPROTO_ICMP,
1141 .prot = &ping_prot,
1142 .ops = &inet_sockraw_ops,
1143 .flags = INET_PROTOSW_REUSE,
1144 },
1145
1146 {
1147 .type = SOCK_RAW,
1148 .protocol = IPPROTO_IP, /* wild card */
1149 .prot = &raw_prot,
1150 .ops = &inet_sockraw_ops,
1151 .flags = INET_PROTOSW_REUSE,
1152 }
1153 };
1154
1155 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array)
1156
inet_register_protosw(struct inet_protosw * p)1157 void inet_register_protosw(struct inet_protosw *p)
1158 {
1159 struct list_head *lh;
1160 struct inet_protosw *answer;
1161 int protocol = p->protocol;
1162 struct list_head *last_perm;
1163
1164 spin_lock_bh(&inetsw_lock);
1165
1166 if (p->type >= SOCK_MAX)
1167 goto out_illegal;
1168
1169 /* If we are trying to override a permanent protocol, bail. */
1170 last_perm = &inetsw[p->type];
1171 list_for_each(lh, &inetsw[p->type]) {
1172 answer = list_entry(lh, struct inet_protosw, list);
1173 /* Check only the non-wild match. */
1174 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0)
1175 break;
1176 if (protocol == answer->protocol)
1177 goto out_permanent;
1178 last_perm = lh;
1179 }
1180
1181 /* Add the new entry after the last permanent entry if any, so that
1182 * the new entry does not override a permanent entry when matched with
1183 * a wild-card protocol. But it is allowed to override any existing
1184 * non-permanent entry. This means that when we remove this entry, the
1185 * system automatically returns to the old behavior.
1186 */
1187 list_add_rcu(&p->list, last_perm);
1188 out:
1189 spin_unlock_bh(&inetsw_lock);
1190
1191 return;
1192
1193 out_permanent:
1194 pr_err("Attempt to override permanent protocol %d\n", protocol);
1195 goto out;
1196
1197 out_illegal:
1198 pr_err("Ignoring attempt to register invalid socket type %d\n",
1199 p->type);
1200 goto out;
1201 }
1202 EXPORT_SYMBOL(inet_register_protosw);
1203
inet_unregister_protosw(struct inet_protosw * p)1204 void inet_unregister_protosw(struct inet_protosw *p)
1205 {
1206 if (INET_PROTOSW_PERMANENT & p->flags) {
1207 pr_err("Attempt to unregister permanent protocol %d\n",
1208 p->protocol);
1209 } else {
1210 spin_lock_bh(&inetsw_lock);
1211 list_del_rcu(&p->list);
1212 spin_unlock_bh(&inetsw_lock);
1213
1214 synchronize_net();
1215 }
1216 }
1217 EXPORT_SYMBOL(inet_unregister_protosw);
1218
inet_sk_reselect_saddr(struct sock * sk)1219 static int inet_sk_reselect_saddr(struct sock *sk)
1220 {
1221 struct inet_sock *inet = inet_sk(sk);
1222 __be32 old_saddr = inet->inet_saddr;
1223 __be32 daddr = inet->inet_daddr;
1224 struct flowi4 *fl4;
1225 struct rtable *rt;
1226 __be32 new_saddr;
1227 struct ip_options_rcu *inet_opt;
1228
1229 inet_opt = rcu_dereference_protected(inet->inet_opt,
1230 lockdep_sock_is_held(sk));
1231 if (inet_opt && inet_opt->opt.srr)
1232 daddr = inet_opt->opt.faddr;
1233
1234 /* Query new route. */
1235 fl4 = &inet->cork.fl.u.ip4;
1236 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if,
1237 sk->sk_protocol, inet->inet_sport,
1238 inet->inet_dport, sk);
1239 if (IS_ERR(rt))
1240 return PTR_ERR(rt);
1241
1242 sk_setup_caps(sk, &rt->dst);
1243
1244 new_saddr = fl4->saddr;
1245
1246 if (new_saddr == old_saddr)
1247 return 0;
1248
1249 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) {
1250 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n",
1251 __func__, &old_saddr, &new_saddr);
1252 }
1253
1254 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr;
1255
1256 /*
1257 * XXX The only one ugly spot where we need to
1258 * XXX really change the sockets identity after
1259 * XXX it has entered the hashes. -DaveM
1260 *
1261 * Besides that, it does not check for connection
1262 * uniqueness. Wait for troubles.
1263 */
1264 return __sk_prot_rehash(sk);
1265 }
1266
inet_sk_rebuild_header(struct sock * sk)1267 int inet_sk_rebuild_header(struct sock *sk)
1268 {
1269 struct inet_sock *inet = inet_sk(sk);
1270 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0);
1271 __be32 daddr;
1272 struct ip_options_rcu *inet_opt;
1273 struct flowi4 *fl4;
1274 int err;
1275
1276 /* Route is OK, nothing to do. */
1277 if (rt)
1278 return 0;
1279
1280 /* Reroute. */
1281 rcu_read_lock();
1282 inet_opt = rcu_dereference(inet->inet_opt);
1283 daddr = inet->inet_daddr;
1284 if (inet_opt && inet_opt->opt.srr)
1285 daddr = inet_opt->opt.faddr;
1286 rcu_read_unlock();
1287 fl4 = &inet->cork.fl.u.ip4;
1288 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr,
1289 inet->inet_dport, inet->inet_sport,
1290 sk->sk_protocol, RT_CONN_FLAGS(sk),
1291 sk->sk_bound_dev_if);
1292 if (!IS_ERR(rt)) {
1293 err = 0;
1294 sk_setup_caps(sk, &rt->dst);
1295 } else {
1296 err = PTR_ERR(rt);
1297
1298 /* Routing failed... */
1299 sk->sk_route_caps = 0;
1300 /*
1301 * Other protocols have to map its equivalent state to TCP_SYN_SENT.
1302 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme
1303 */
1304 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) ||
1305 sk->sk_state != TCP_SYN_SENT ||
1306 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) ||
1307 (err = inet_sk_reselect_saddr(sk)) != 0)
1308 sk->sk_err_soft = -err;
1309 }
1310
1311 return err;
1312 }
1313 EXPORT_SYMBOL(inet_sk_rebuild_header);
1314
inet_sk_set_state(struct sock * sk,int state)1315 void inet_sk_set_state(struct sock *sk, int state)
1316 {
1317 trace_inet_sock_set_state(sk, sk->sk_state, state);
1318 sk->sk_state = state;
1319 }
1320 EXPORT_SYMBOL(inet_sk_set_state);
1321
inet_sk_state_store(struct sock * sk,int newstate)1322 void inet_sk_state_store(struct sock *sk, int newstate)
1323 {
1324 trace_inet_sock_set_state(sk, sk->sk_state, newstate);
1325 smp_store_release(&sk->sk_state, newstate);
1326 }
1327
inet_gso_segment(struct sk_buff * skb,netdev_features_t features)1328 struct sk_buff *inet_gso_segment(struct sk_buff *skb,
1329 netdev_features_t features)
1330 {
1331 bool udpfrag = false, fixedid = false, gso_partial, encap;
1332 struct sk_buff *segs = ERR_PTR(-EINVAL);
1333 const struct net_offload *ops;
1334 unsigned int offset = 0;
1335 struct iphdr *iph;
1336 int proto, tot_len;
1337 int nhoff;
1338 int ihl;
1339 int id;
1340
1341 skb_reset_network_header(skb);
1342 nhoff = skb_network_header(skb) - skb_mac_header(skb);
1343 if (unlikely(!pskb_may_pull(skb, sizeof(*iph))))
1344 goto out;
1345
1346 iph = ip_hdr(skb);
1347 ihl = iph->ihl * 4;
1348 if (ihl < sizeof(*iph))
1349 goto out;
1350
1351 id = ntohs(iph->id);
1352 proto = iph->protocol;
1353
1354 /* Warning: after this point, iph might be no longer valid */
1355 if (unlikely(!pskb_may_pull(skb, ihl)))
1356 goto out;
1357 __skb_pull(skb, ihl);
1358
1359 encap = SKB_GSO_CB(skb)->encap_level > 0;
1360 if (encap)
1361 features &= skb->dev->hw_enc_features;
1362 SKB_GSO_CB(skb)->encap_level += ihl;
1363
1364 skb_reset_transport_header(skb);
1365
1366 segs = ERR_PTR(-EPROTONOSUPPORT);
1367
1368 if (!skb->encapsulation || encap) {
1369 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP);
1370 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID);
1371
1372 /* fixed ID is invalid if DF bit is not set */
1373 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF)))
1374 goto out;
1375 }
1376
1377 ops = rcu_dereference(inet_offloads[proto]);
1378 if (likely(ops && ops->callbacks.gso_segment)) {
1379 segs = ops->callbacks.gso_segment(skb, features);
1380 if (!segs)
1381 skb->network_header = skb_mac_header(skb) + nhoff - skb->head;
1382 }
1383
1384 if (IS_ERR_OR_NULL(segs))
1385 goto out;
1386
1387 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL);
1388
1389 skb = segs;
1390 do {
1391 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff);
1392 if (udpfrag) {
1393 iph->frag_off = htons(offset >> 3);
1394 if (skb->next)
1395 iph->frag_off |= htons(IP_MF);
1396 offset += skb->len - nhoff - ihl;
1397 tot_len = skb->len - nhoff;
1398 } else if (skb_is_gso(skb)) {
1399 if (!fixedid) {
1400 iph->id = htons(id);
1401 id += skb_shinfo(skb)->gso_segs;
1402 }
1403
1404 if (gso_partial)
1405 tot_len = skb_shinfo(skb)->gso_size +
1406 SKB_GSO_CB(skb)->data_offset +
1407 skb->head - (unsigned char *)iph;
1408 else
1409 tot_len = skb->len - nhoff;
1410 } else {
1411 if (!fixedid)
1412 iph->id = htons(id++);
1413 tot_len = skb->len - nhoff;
1414 }
1415 iph->tot_len = htons(tot_len);
1416 ip_send_check(iph);
1417 if (encap)
1418 skb_reset_inner_headers(skb);
1419 skb->network_header = (u8 *)iph - skb->head;
1420 skb_reset_mac_len(skb);
1421 } while ((skb = skb->next));
1422
1423 out:
1424 return segs;
1425 }
1426
ipip_gso_segment(struct sk_buff * skb,netdev_features_t features)1427 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb,
1428 netdev_features_t features)
1429 {
1430 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4))
1431 return ERR_PTR(-EINVAL);
1432
1433 return inet_gso_segment(skb, features);
1434 }
1435
inet_gro_receive(struct list_head * head,struct sk_buff * skb)1436 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb)
1437 {
1438 const struct net_offload *ops;
1439 struct sk_buff *pp = NULL;
1440 const struct iphdr *iph;
1441 struct sk_buff *p;
1442 unsigned int hlen;
1443 unsigned int off;
1444 unsigned int id;
1445 int flush = 1;
1446 int proto;
1447
1448 off = skb_gro_offset(skb);
1449 hlen = off + sizeof(*iph);
1450 iph = skb_gro_header_fast(skb, off);
1451 if (skb_gro_header_hard(skb, hlen)) {
1452 iph = skb_gro_header_slow(skb, hlen, off);
1453 if (unlikely(!iph))
1454 goto out;
1455 }
1456
1457 proto = iph->protocol;
1458
1459 ops = rcu_dereference(inet_offloads[proto]);
1460 if (!ops || !ops->callbacks.gro_receive)
1461 goto out;
1462
1463 if (*(u8 *)iph != 0x45)
1464 goto out;
1465
1466 if (ip_is_fragment(iph))
1467 goto out;
1468
1469 if (unlikely(ip_fast_csum((u8 *)iph, 5)))
1470 goto out;
1471
1472 id = ntohl(*(__be32 *)&iph->id);
1473 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF));
1474 id >>= 16;
1475
1476 list_for_each_entry(p, head, list) {
1477 struct iphdr *iph2;
1478 u16 flush_id;
1479
1480 if (!NAPI_GRO_CB(p)->same_flow)
1481 continue;
1482
1483 iph2 = (struct iphdr *)(p->data + off);
1484 /* The above works because, with the exception of the top
1485 * (inner most) layer, we only aggregate pkts with the same
1486 * hdr length so all the hdrs we'll need to verify will start
1487 * at the same offset.
1488 */
1489 if ((iph->protocol ^ iph2->protocol) |
1490 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) |
1491 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) {
1492 NAPI_GRO_CB(p)->same_flow = 0;
1493 continue;
1494 }
1495
1496 /* All fields must match except length and checksum. */
1497 NAPI_GRO_CB(p)->flush |=
1498 (iph->ttl ^ iph2->ttl) |
1499 (iph->tos ^ iph2->tos) |
1500 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF));
1501
1502 NAPI_GRO_CB(p)->flush |= flush;
1503
1504 /* We need to store of the IP ID check to be included later
1505 * when we can verify that this packet does in fact belong
1506 * to a given flow.
1507 */
1508 flush_id = (u16)(id - ntohs(iph2->id));
1509
1510 /* This bit of code makes it much easier for us to identify
1511 * the cases where we are doing atomic vs non-atomic IP ID
1512 * checks. Specifically an atomic check can return IP ID
1513 * values 0 - 0xFFFF, while a non-atomic check can only
1514 * return 0 or 0xFFFF.
1515 */
1516 if (!NAPI_GRO_CB(p)->is_atomic ||
1517 !(iph->frag_off & htons(IP_DF))) {
1518 flush_id ^= NAPI_GRO_CB(p)->count;
1519 flush_id = flush_id ? 0xFFFF : 0;
1520 }
1521
1522 /* If the previous IP ID value was based on an atomic
1523 * datagram we can overwrite the value and ignore it.
1524 */
1525 if (NAPI_GRO_CB(skb)->is_atomic)
1526 NAPI_GRO_CB(p)->flush_id = flush_id;
1527 else
1528 NAPI_GRO_CB(p)->flush_id |= flush_id;
1529 }
1530
1531 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF));
1532 NAPI_GRO_CB(skb)->flush |= flush;
1533 skb_set_network_header(skb, off);
1534 /* The above will be needed by the transport layer if there is one
1535 * immediately following this IP hdr.
1536 */
1537
1538 /* Note : No need to call skb_gro_postpull_rcsum() here,
1539 * as we already checked checksum over ipv4 header was 0
1540 */
1541 skb_gro_pull(skb, sizeof(*iph));
1542 skb_set_transport_header(skb, skb_gro_offset(skb));
1543
1544 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive,
1545 ops->callbacks.gro_receive, head, skb);
1546
1547 out:
1548 skb_gro_flush_final(skb, pp, flush);
1549
1550 return pp;
1551 }
1552
ipip_gro_receive(struct list_head * head,struct sk_buff * skb)1553 static struct sk_buff *ipip_gro_receive(struct list_head *head,
1554 struct sk_buff *skb)
1555 {
1556 if (NAPI_GRO_CB(skb)->encap_mark) {
1557 NAPI_GRO_CB(skb)->flush = 1;
1558 return NULL;
1559 }
1560
1561 NAPI_GRO_CB(skb)->encap_mark = 1;
1562
1563 return inet_gro_receive(head, skb);
1564 }
1565
1566 #define SECONDS_PER_DAY 86400
1567
1568 /* inet_current_timestamp - Return IP network timestamp
1569 *
1570 * Return milliseconds since midnight in network byte order.
1571 */
inet_current_timestamp(void)1572 __be32 inet_current_timestamp(void)
1573 {
1574 u32 secs;
1575 u32 msecs;
1576 struct timespec64 ts;
1577
1578 ktime_get_real_ts64(&ts);
1579
1580 /* Get secs since midnight. */
1581 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs);
1582 /* Convert to msecs. */
1583 msecs = secs * MSEC_PER_SEC;
1584 /* Convert nsec to msec. */
1585 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC;
1586
1587 /* Convert to network byte order. */
1588 return htonl(msecs);
1589 }
1590 EXPORT_SYMBOL(inet_current_timestamp);
1591
inet_recv_error(struct sock * sk,struct msghdr * msg,int len,int * addr_len)1592 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len)
1593 {
1594 if (sk->sk_family == AF_INET)
1595 return ip_recv_error(sk, msg, len, addr_len);
1596 #if IS_ENABLED(CONFIG_IPV6)
1597 if (sk->sk_family == AF_INET6)
1598 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len);
1599 #endif
1600 return -EINVAL;
1601 }
1602
inet_gro_complete(struct sk_buff * skb,int nhoff)1603 int inet_gro_complete(struct sk_buff *skb, int nhoff)
1604 {
1605 __be16 newlen = htons(skb->len - nhoff);
1606 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff);
1607 const struct net_offload *ops;
1608 int proto = iph->protocol;
1609 int err = -ENOSYS;
1610
1611 if (skb->encapsulation) {
1612 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP));
1613 skb_set_inner_network_header(skb, nhoff);
1614 }
1615
1616 csum_replace2(&iph->check, iph->tot_len, newlen);
1617 iph->tot_len = newlen;
1618
1619 ops = rcu_dereference(inet_offloads[proto]);
1620 if (WARN_ON(!ops || !ops->callbacks.gro_complete))
1621 goto out;
1622
1623 /* Only need to add sizeof(*iph) to get to the next hdr below
1624 * because any hdr with option will have been flushed in
1625 * inet_gro_receive().
1626 */
1627 err = INDIRECT_CALL_2(ops->callbacks.gro_complete,
1628 tcp4_gro_complete, udp4_gro_complete,
1629 skb, nhoff + sizeof(*iph));
1630
1631 out:
1632 return err;
1633 }
1634
ipip_gro_complete(struct sk_buff * skb,int nhoff)1635 static int ipip_gro_complete(struct sk_buff *skb, int nhoff)
1636 {
1637 skb->encapsulation = 1;
1638 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4;
1639 return inet_gro_complete(skb, nhoff);
1640 }
1641
inet_ctl_sock_create(struct sock ** sk,unsigned short family,unsigned short type,unsigned char protocol,struct net * net)1642 int inet_ctl_sock_create(struct sock **sk, unsigned short family,
1643 unsigned short type, unsigned char protocol,
1644 struct net *net)
1645 {
1646 struct socket *sock;
1647 int rc = sock_create_kern(net, family, type, protocol, &sock);
1648
1649 if (rc == 0) {
1650 *sk = sock->sk;
1651 (*sk)->sk_allocation = GFP_ATOMIC;
1652 /*
1653 * Unhash it so that IP input processing does not even see it,
1654 * we do not wish this socket to see incoming packets.
1655 */
1656 (*sk)->sk_prot->unhash(*sk);
1657 }
1658 return rc;
1659 }
1660 EXPORT_SYMBOL_GPL(inet_ctl_sock_create);
1661
snmp_fold_field(void __percpu * mib,int offt)1662 unsigned long snmp_fold_field(void __percpu *mib, int offt)
1663 {
1664 unsigned long res = 0;
1665 int i;
1666
1667 for_each_possible_cpu(i)
1668 res += snmp_get_cpu_field(mib, i, offt);
1669 return res;
1670 }
1671 EXPORT_SYMBOL_GPL(snmp_fold_field);
1672
1673 #if BITS_PER_LONG==32
1674
snmp_get_cpu_field64(void __percpu * mib,int cpu,int offt,size_t syncp_offset)1675 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt,
1676 size_t syncp_offset)
1677 {
1678 void *bhptr;
1679 struct u64_stats_sync *syncp;
1680 u64 v;
1681 unsigned int start;
1682
1683 bhptr = per_cpu_ptr(mib, cpu);
1684 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset);
1685 do {
1686 start = u64_stats_fetch_begin_irq(syncp);
1687 v = *(((u64 *)bhptr) + offt);
1688 } while (u64_stats_fetch_retry_irq(syncp, start));
1689
1690 return v;
1691 }
1692 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64);
1693
snmp_fold_field64(void __percpu * mib,int offt,size_t syncp_offset)1694 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset)
1695 {
1696 u64 res = 0;
1697 int cpu;
1698
1699 for_each_possible_cpu(cpu) {
1700 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset);
1701 }
1702 return res;
1703 }
1704 EXPORT_SYMBOL_GPL(snmp_fold_field64);
1705 #endif
1706
1707 #ifdef CONFIG_IP_MULTICAST
1708 static const struct net_protocol igmp_protocol = {
1709 .handler = igmp_rcv,
1710 };
1711 #endif
1712
1713 static const struct net_protocol tcp_protocol = {
1714 .handler = tcp_v4_rcv,
1715 .err_handler = tcp_v4_err,
1716 .no_policy = 1,
1717 .icmp_strict_tag_validation = 1,
1718 };
1719
1720 static const struct net_protocol udp_protocol = {
1721 .handler = udp_rcv,
1722 .err_handler = udp_err,
1723 .no_policy = 1,
1724 };
1725
1726 static const struct net_protocol icmp_protocol = {
1727 .handler = icmp_rcv,
1728 .err_handler = icmp_err,
1729 .no_policy = 1,
1730 };
1731
ipv4_mib_init_net(struct net * net)1732 static __net_init int ipv4_mib_init_net(struct net *net)
1733 {
1734 int i;
1735
1736 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib);
1737 if (!net->mib.tcp_statistics)
1738 goto err_tcp_mib;
1739 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib);
1740 if (!net->mib.ip_statistics)
1741 goto err_ip_mib;
1742
1743 for_each_possible_cpu(i) {
1744 struct ipstats_mib *af_inet_stats;
1745 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i);
1746 u64_stats_init(&af_inet_stats->syncp);
1747 }
1748
1749 net->mib.net_statistics = alloc_percpu(struct linux_mib);
1750 if (!net->mib.net_statistics)
1751 goto err_net_mib;
1752 net->mib.udp_statistics = alloc_percpu(struct udp_mib);
1753 if (!net->mib.udp_statistics)
1754 goto err_udp_mib;
1755 net->mib.udplite_statistics = alloc_percpu(struct udp_mib);
1756 if (!net->mib.udplite_statistics)
1757 goto err_udplite_mib;
1758 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib);
1759 if (!net->mib.icmp_statistics)
1760 goto err_icmp_mib;
1761 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib),
1762 GFP_KERNEL);
1763 if (!net->mib.icmpmsg_statistics)
1764 goto err_icmpmsg_mib;
1765
1766 tcp_mib_init(net);
1767 return 0;
1768
1769 err_icmpmsg_mib:
1770 free_percpu(net->mib.icmp_statistics);
1771 err_icmp_mib:
1772 free_percpu(net->mib.udplite_statistics);
1773 err_udplite_mib:
1774 free_percpu(net->mib.udp_statistics);
1775 err_udp_mib:
1776 free_percpu(net->mib.net_statistics);
1777 err_net_mib:
1778 free_percpu(net->mib.ip_statistics);
1779 err_ip_mib:
1780 free_percpu(net->mib.tcp_statistics);
1781 err_tcp_mib:
1782 return -ENOMEM;
1783 }
1784
ipv4_mib_exit_net(struct net * net)1785 static __net_exit void ipv4_mib_exit_net(struct net *net)
1786 {
1787 kfree(net->mib.icmpmsg_statistics);
1788 free_percpu(net->mib.icmp_statistics);
1789 free_percpu(net->mib.udplite_statistics);
1790 free_percpu(net->mib.udp_statistics);
1791 free_percpu(net->mib.net_statistics);
1792 free_percpu(net->mib.ip_statistics);
1793 free_percpu(net->mib.tcp_statistics);
1794 #ifdef CONFIG_MPTCP
1795 /* allocated on demand, see mptcp_init_sock() */
1796 free_percpu(net->mib.mptcp_statistics);
1797 #endif
1798 }
1799
1800 static __net_initdata struct pernet_operations ipv4_mib_ops = {
1801 .init = ipv4_mib_init_net,
1802 .exit = ipv4_mib_exit_net,
1803 };
1804
init_ipv4_mibs(void)1805 static int __init init_ipv4_mibs(void)
1806 {
1807 return register_pernet_subsys(&ipv4_mib_ops);
1808 }
1809
inet_init_net(struct net * net)1810 static __net_init int inet_init_net(struct net *net)
1811 {
1812 /*
1813 * Set defaults for local port range
1814 */
1815 seqlock_init(&net->ipv4.ip_local_ports.lock);
1816 net->ipv4.ip_local_ports.range[0] = 32768;
1817 net->ipv4.ip_local_ports.range[1] = 60999;
1818
1819 seqlock_init(&net->ipv4.ping_group_range.lock);
1820 /*
1821 * Sane defaults - nobody may create ping sockets.
1822 * Boot scripts should set this to distro-specific group.
1823 */
1824 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1);
1825 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0);
1826
1827 /* Default values for sysctl-controlled parameters.
1828 * We set them here, in case sysctl is not compiled.
1829 */
1830 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL;
1831 net->ipv4.sysctl_ip_fwd_update_priority = 1;
1832 net->ipv4.sysctl_ip_dynaddr = 0;
1833 net->ipv4.sysctl_ip_early_demux = 1;
1834 net->ipv4.sysctl_udp_early_demux = 1;
1835 net->ipv4.sysctl_tcp_early_demux = 1;
1836 net->ipv4.sysctl_nexthop_compat_mode = 1;
1837 #ifdef CONFIG_SYSCTL
1838 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK;
1839 #endif
1840
1841 /* Some igmp sysctl, whose values are always used */
1842 net->ipv4.sysctl_igmp_max_memberships = 20;
1843 net->ipv4.sysctl_igmp_max_msf = 10;
1844 /* IGMP reports for link-local multicast groups are enabled by default */
1845 net->ipv4.sysctl_igmp_llm_reports = 1;
1846 net->ipv4.sysctl_igmp_qrv = 2;
1847
1848 net->ipv4.sysctl_fib_notify_on_flag_change = 0;
1849
1850 return 0;
1851 }
1852
1853 static __net_initdata struct pernet_operations af_inet_ops = {
1854 .init = inet_init_net,
1855 };
1856
init_inet_pernet_ops(void)1857 static int __init init_inet_pernet_ops(void)
1858 {
1859 return register_pernet_subsys(&af_inet_ops);
1860 }
1861
1862 static int ipv4_proc_init(void);
1863
1864 /*
1865 * IP protocol layer initialiser
1866 */
1867
1868 static struct packet_offload ip_packet_offload __read_mostly = {
1869 .type = cpu_to_be16(ETH_P_IP),
1870 .callbacks = {
1871 .gso_segment = inet_gso_segment,
1872 .gro_receive = inet_gro_receive,
1873 .gro_complete = inet_gro_complete,
1874 },
1875 };
1876
1877 static const struct net_offload ipip_offload = {
1878 .callbacks = {
1879 .gso_segment = ipip_gso_segment,
1880 .gro_receive = ipip_gro_receive,
1881 .gro_complete = ipip_gro_complete,
1882 },
1883 };
1884
ipip_offload_init(void)1885 static int __init ipip_offload_init(void)
1886 {
1887 return inet_add_offload(&ipip_offload, IPPROTO_IPIP);
1888 }
1889
ipv4_offload_init(void)1890 static int __init ipv4_offload_init(void)
1891 {
1892 /*
1893 * Add offloads
1894 */
1895 if (udpv4_offload_init() < 0)
1896 pr_crit("%s: Cannot add UDP protocol offload\n", __func__);
1897 if (tcpv4_offload_init() < 0)
1898 pr_crit("%s: Cannot add TCP protocol offload\n", __func__);
1899 if (ipip_offload_init() < 0)
1900 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__);
1901
1902 dev_add_offload(&ip_packet_offload);
1903 return 0;
1904 }
1905
1906 fs_initcall(ipv4_offload_init);
1907
1908 static struct packet_type ip_packet_type __read_mostly = {
1909 .type = cpu_to_be16(ETH_P_IP),
1910 .func = ip_rcv,
1911 .list_func = ip_list_rcv,
1912 };
1913
inet_init(void)1914 static int __init inet_init(void)
1915 {
1916 struct inet_protosw *q;
1917 struct list_head *r;
1918 int rc;
1919
1920 sock_skb_cb_check_size(sizeof(struct inet_skb_parm));
1921
1922 raw_hashinfo_init(&raw_v4_hashinfo);
1923
1924 rc = proto_register(&tcp_prot, 1);
1925 if (rc)
1926 goto out;
1927
1928 rc = proto_register(&udp_prot, 1);
1929 if (rc)
1930 goto out_unregister_tcp_proto;
1931
1932 rc = proto_register(&raw_prot, 1);
1933 if (rc)
1934 goto out_unregister_udp_proto;
1935
1936 rc = proto_register(&ping_prot, 1);
1937 if (rc)
1938 goto out_unregister_raw_proto;
1939
1940 /*
1941 * Tell SOCKET that we are alive...
1942 */
1943
1944 (void)sock_register(&inet_family_ops);
1945
1946 #ifdef CONFIG_SYSCTL
1947 ip_static_sysctl_init();
1948 #endif
1949
1950 /*
1951 * Add all the base protocols.
1952 */
1953
1954 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
1955 pr_crit("%s: Cannot add ICMP protocol\n", __func__);
1956 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
1957 pr_crit("%s: Cannot add UDP protocol\n", __func__);
1958 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
1959 pr_crit("%s: Cannot add TCP protocol\n", __func__);
1960 #ifdef CONFIG_IP_MULTICAST
1961 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0)
1962 pr_crit("%s: Cannot add IGMP protocol\n", __func__);
1963 #endif
1964
1965 /* Register the socket-side information for inet_create. */
1966 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r)
1967 INIT_LIST_HEAD(r);
1968
1969 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q)
1970 inet_register_protosw(q);
1971
1972 /*
1973 * Set the ARP module up
1974 */
1975
1976 arp_init();
1977
1978 /*
1979 * Set the IP module up
1980 */
1981
1982 ip_init();
1983
1984 /* Initialise per-cpu ipv4 mibs */
1985 if (init_ipv4_mibs())
1986 panic("%s: Cannot init ipv4 mibs\n", __func__);
1987
1988 /* Setup TCP slab cache for open requests. */
1989 tcp_init();
1990
1991 /* Setup UDP memory threshold */
1992 udp_init();
1993
1994 /* Add UDP-Lite (RFC 3828) */
1995 udplite4_register();
1996
1997 raw_init();
1998
1999 ping_init();
2000
2001 /*
2002 * Set the ICMP layer up
2003 */
2004
2005 if (icmp_init() < 0)
2006 panic("Failed to create the ICMP control socket.\n");
2007
2008 /*
2009 * Initialise the multicast router
2010 */
2011 #if defined(CONFIG_IP_MROUTE)
2012 if (ip_mr_init())
2013 pr_crit("%s: Cannot init ipv4 mroute\n", __func__);
2014 #endif
2015
2016 if (init_inet_pernet_ops())
2017 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__);
2018
2019 ipv4_proc_init();
2020
2021 ipfrag_init();
2022
2023 dev_add_pack(&ip_packet_type);
2024
2025 ip_tunnel_core_init();
2026
2027 rc = 0;
2028 out:
2029 return rc;
2030 out_unregister_raw_proto:
2031 proto_unregister(&raw_prot);
2032 out_unregister_udp_proto:
2033 proto_unregister(&udp_prot);
2034 out_unregister_tcp_proto:
2035 proto_unregister(&tcp_prot);
2036 goto out;
2037 }
2038
2039 fs_initcall(inet_init);
2040
2041 /* ------------------------------------------------------------------------ */
2042
2043 #ifdef CONFIG_PROC_FS
ipv4_proc_init(void)2044 static int __init ipv4_proc_init(void)
2045 {
2046 int rc = 0;
2047
2048 if (raw_proc_init())
2049 goto out_raw;
2050 if (tcp4_proc_init())
2051 goto out_tcp;
2052 if (udp4_proc_init())
2053 goto out_udp;
2054 if (ping_proc_init())
2055 goto out_ping;
2056 if (ip_misc_proc_init())
2057 goto out_misc;
2058 out:
2059 return rc;
2060 out_misc:
2061 ping_proc_exit();
2062 out_ping:
2063 udp4_proc_exit();
2064 out_udp:
2065 tcp4_proc_exit();
2066 out_tcp:
2067 raw_proc_exit();
2068 out_raw:
2069 rc = -ENOMEM;
2070 goto out;
2071 }
2072
2073 #else /* CONFIG_PROC_FS */
ipv4_proc_init(void)2074 static int __init ipv4_proc_init(void)
2075 {
2076 return 0;
2077 }
2078 #endif /* CONFIG_PROC_FS */
2079