1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
104
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112
113 #define REXMIT_NONE 0 /* no loss recovery to do */
114 #define REXMIT_LOST 1 /* retransmit packets marked lost */
115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 icsk->icsk_clean_acked = cad;
124 static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 struct bpf_sock_ops_kern sock_ops;
151
152 if (likely(!unknown_opt && !parse_all_opt))
153 return;
154
155 /* The skb will be handled in the
156 * bpf_skops_established() or
157 * bpf_skops_write_hdr_opt().
158 */
159 switch (sk->sk_state) {
160 case TCP_SYN_RECV:
161 case TCP_SYN_SENT:
162 case TCP_LISTEN:
163 return;
164 }
165
166 sock_owned_by_me(sk);
167
168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 sock_ops.is_fullsock = 1;
171 sock_ops.sk = sk;
172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173
174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 struct sk_buff *skb)
179 {
180 struct bpf_sock_ops_kern sock_ops;
181
182 sock_owned_by_me(sk);
183
184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 sock_ops.op = bpf_op;
186 sock_ops.is_fullsock = 1;
187 sock_ops.sk = sk;
188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 if (skb)
190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191
192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 struct sk_buff *skb)
201 {
202 }
203 #endif
204
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 unsigned int len)
207 {
208 static bool __once __read_mostly;
209
210 if (!__once) {
211 struct net_device *dev;
212
213 __once = true;
214
215 rcu_read_lock();
216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 if (!dev || len >= dev->mtu)
218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 dev ? dev->name : "Unknown driver");
220 rcu_read_unlock();
221 }
222 }
223
224 /* Adapt the MSS value used to make delayed ack decision to the
225 * real world.
226 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 unsigned int len;
232
233 icsk->icsk_ack.last_seg_size = 0;
234
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
237 */
238 len = skb_shinfo(skb)->gso_size ? : skb->len;
239 if (len >= icsk->icsk_ack.rcv_mss) {
240 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 tcp_sk(sk)->advmss);
242 /* Account for possibly-removed options */
243 if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 MAX_TCP_OPTION_SPACE))
245 tcp_gro_dev_warn(sk, skb, len);
246 } else {
247 /* Otherwise, we make more careful check taking into account,
248 * that SACKs block is variable.
249 *
250 * "len" is invariant segment length, including TCP header.
251 */
252 len += skb->data - skb_transport_header(skb);
253 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 /* If PSH is not set, packet should be
255 * full sized, provided peer TCP is not badly broken.
256 * This observation (if it is correct 8)) allows
257 * to handle super-low mtu links fairly.
258 */
259 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 /* Subtract also invariant (if peer is RFC compliant),
262 * tcp header plus fixed timestamp option length.
263 * Resulting "len" is MSS free of SACK jitter.
264 */
265 len -= tcp_sk(sk)->tcp_header_len;
266 icsk->icsk_ack.last_seg_size = len;
267 if (len == lss) {
268 icsk->icsk_ack.rcv_mss = len;
269 return;
270 }
271 }
272 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 }
276 }
277
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 struct inet_connection_sock *icsk = inet_csk(sk);
281 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282
283 if (quickacks == 0)
284 quickacks = 2;
285 quickacks = min(quickacks, max_quickacks);
286 if (quickacks > icsk->icsk_ack.quick)
287 icsk->icsk_ack.quick = quickacks;
288 }
289
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 struct inet_connection_sock *icsk = inet_csk(sk);
293
294 tcp_incr_quickack(sk, max_quickacks);
295 inet_csk_exit_pingpong_mode(sk);
296 icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299
300 /* Send ACKs quickly, if "quick" count is not exhausted
301 * and the session is not interactive.
302 */
303
tcp_in_quickack_mode(struct sock * sk)304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 const struct inet_connection_sock *icsk = inet_csk(sk);
307 const struct dst_entry *dst = __sk_dst_get(sk);
308
309 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312
tcp_ecn_queue_cwr(struct tcp_sock * tp)313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 if (tp->ecn_flags & TCP_ECN_OK)
316 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 if (tcp_hdr(skb)->cwr) {
322 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323
324 /* If the sender is telling us it has entered CWR, then its
325 * cwnd may be very low (even just 1 packet), so we should ACK
326 * immediately.
327 */
328 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 }
331 }
332
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 struct tcp_sock *tp = tcp_sk(sk);
341
342 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 case INET_ECN_NOT_ECT:
344 /* Funny extension: if ECT is not set on a segment,
345 * and we already seen ECT on a previous segment,
346 * it is probably a retransmit.
347 */
348 if (tp->ecn_flags & TCP_ECN_SEEN)
349 tcp_enter_quickack_mode(sk, 2);
350 break;
351 case INET_ECN_CE:
352 if (tcp_ca_needs_ecn(sk))
353 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354
355 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 /* Better not delay acks, sender can have a very low cwnd */
357 tcp_enter_quickack_mode(sk, 2);
358 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 }
360 tp->ecn_flags |= TCP_ECN_SEEN;
361 break;
362 default:
363 if (tcp_ca_needs_ecn(sk))
364 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 tp->ecn_flags |= TCP_ECN_SEEN;
366 break;
367 }
368 }
369
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 __tcp_ecn_check_ce(sk, skb);
374 }
375
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 return true;
392 return false;
393 }
394
395 /* Buffer size and advertised window tuning.
396 *
397 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398 */
399
tcp_sndbuf_expand(struct sock * sk)400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 const struct tcp_sock *tp = tcp_sk(sk);
403 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 int sndmem, per_mss;
405 u32 nr_segs;
406
407 /* Worst case is non GSO/TSO : each frame consumes one skb
408 * and skb->head is kmalloced using power of two area of memory
409 */
410 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 MAX_TCP_HEADER +
412 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413
414 per_mss = roundup_pow_of_two(per_mss) +
415 SKB_DATA_ALIGN(sizeof(struct sk_buff));
416
417 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
418 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419
420 /* Fast Recovery (RFC 5681 3.2) :
421 * Cubic needs 1.7 factor, rounded to 2 to include
422 * extra cushion (application might react slowly to EPOLLOUT)
423 */
424 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 sndmem *= nr_segs * per_mss;
426
427 if (sk->sk_sndbuf < sndmem)
428 WRITE_ONCE(sk->sk_sndbuf,
429 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
430 }
431
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433 *
434 * All tcp_full_space() is split to two parts: "network" buffer, allocated
435 * forward and advertised in receiver window (tp->rcv_wnd) and
436 * "application buffer", required to isolate scheduling/application
437 * latencies from network.
438 * window_clamp is maximal advertised window. It can be less than
439 * tcp_full_space(), in this case tcp_full_space() - window_clamp
440 * is reserved for "application" buffer. The less window_clamp is
441 * the smoother our behaviour from viewpoint of network, but the lower
442 * throughput and the higher sensitivity of the connection to losses. 8)
443 *
444 * rcv_ssthresh is more strict window_clamp used at "slow start"
445 * phase to predict further behaviour of this connection.
446 * It is used for two goals:
447 * - to enforce header prediction at sender, even when application
448 * requires some significant "application buffer". It is check #1.
449 * - to prevent pruning of receive queue because of misprediction
450 * of receiver window. Check #2.
451 *
452 * The scheme does not work when sender sends good segments opening
453 * window and then starts to feed us spaghetti. But it should work
454 * in common situations. Otherwise, we have to rely on queue collapsing.
455 */
456
457 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 unsigned int skbtruesize)
460 {
461 struct tcp_sock *tp = tcp_sk(sk);
462 /* Optimize this! */
463 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
465
466 while (tp->rcv_ssthresh <= window) {
467 if (truesize <= skb->len)
468 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469
470 truesize >>= 1;
471 window >>= 1;
472 }
473 return 0;
474 }
475
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477 * can play nice with us, as sk_buff and skb->head might be either
478 * freed or shared with up to MAX_SKB_FRAGS segments.
479 * Only give a boost to drivers using page frag(s) to hold the frame(s),
480 * and if no payload was pulled in skb->head before reaching us.
481 */
truesize_adjust(bool adjust,const struct sk_buff * skb)482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 u32 truesize = skb->truesize;
485
486 if (adjust && !skb_headlen(skb)) {
487 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 /* paranoid check, some drivers might be buggy */
489 if (unlikely((int)truesize < (int)skb->len))
490 truesize = skb->truesize;
491 }
492 return truesize;
493 }
494
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 bool adjust)
497 {
498 struct tcp_sock *tp = tcp_sk(sk);
499 int room;
500
501 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502
503 if (room <= 0)
504 return;
505
506 /* Check #1 */
507 if (!tcp_under_memory_pressure(sk)) {
508 unsigned int truesize = truesize_adjust(adjust, skb);
509 int incr;
510
511 /* Check #2. Increase window, if skb with such overhead
512 * will fit to rcvbuf in future.
513 */
514 if (tcp_win_from_space(sk, truesize) <= skb->len)
515 incr = 2 * tp->advmss;
516 else
517 incr = __tcp_grow_window(sk, skb, truesize);
518
519 if (incr) {
520 incr = max_t(int, incr, 2 * skb->len);
521 tp->rcv_ssthresh += min(room, incr);
522 inet_csk(sk)->icsk_ack.quick |= 1;
523 }
524 } else {
525 /* Under pressure:
526 * Adjust rcv_ssthresh according to reserved mem
527 */
528 tcp_adjust_rcv_ssthresh(sk);
529 }
530 }
531
532 /* 3. Try to fixup all. It is made immediately after connection enters
533 * established state.
534 */
tcp_init_buffer_space(struct sock * sk)535 static void tcp_init_buffer_space(struct sock *sk)
536 {
537 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
538 struct tcp_sock *tp = tcp_sk(sk);
539 int maxwin;
540
541 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
542 tcp_sndbuf_expand(sk);
543
544 tcp_mstamp_refresh(tp);
545 tp->rcvq_space.time = tp->tcp_mstamp;
546 tp->rcvq_space.seq = tp->copied_seq;
547
548 maxwin = tcp_full_space(sk);
549
550 if (tp->window_clamp >= maxwin) {
551 tp->window_clamp = maxwin;
552
553 if (tcp_app_win && maxwin > 4 * tp->advmss)
554 tp->window_clamp = max(maxwin -
555 (maxwin >> tcp_app_win),
556 4 * tp->advmss);
557 }
558
559 /* Force reservation of one segment. */
560 if (tcp_app_win &&
561 tp->window_clamp > 2 * tp->advmss &&
562 tp->window_clamp + tp->advmss > maxwin)
563 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
564
565 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
566 tp->snd_cwnd_stamp = tcp_jiffies32;
567 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
568 (u32)TCP_INIT_CWND * tp->advmss);
569 }
570
571 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)572 static void tcp_clamp_window(struct sock *sk)
573 {
574 struct tcp_sock *tp = tcp_sk(sk);
575 struct inet_connection_sock *icsk = inet_csk(sk);
576 struct net *net = sock_net(sk);
577 int rmem2;
578
579 icsk->icsk_ack.quick = 0;
580 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
581
582 if (sk->sk_rcvbuf < rmem2 &&
583 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
584 !tcp_under_memory_pressure(sk) &&
585 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
586 WRITE_ONCE(sk->sk_rcvbuf,
587 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
588 }
589 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
590 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
591 }
592
593 /* Initialize RCV_MSS value.
594 * RCV_MSS is an our guess about MSS used by the peer.
595 * We haven't any direct information about the MSS.
596 * It's better to underestimate the RCV_MSS rather than overestimate.
597 * Overestimations make us ACKing less frequently than needed.
598 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
599 */
tcp_initialize_rcv_mss(struct sock * sk)600 void tcp_initialize_rcv_mss(struct sock *sk)
601 {
602 const struct tcp_sock *tp = tcp_sk(sk);
603 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
604
605 hint = min(hint, tp->rcv_wnd / 2);
606 hint = min(hint, TCP_MSS_DEFAULT);
607 hint = max(hint, TCP_MIN_MSS);
608
609 inet_csk(sk)->icsk_ack.rcv_mss = hint;
610 }
611 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
612
613 /* Receiver "autotuning" code.
614 *
615 * The algorithm for RTT estimation w/o timestamps is based on
616 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
617 * <https://public.lanl.gov/radiant/pubs.html#DRS>
618 *
619 * More detail on this code can be found at
620 * <http://staff.psc.edu/jheffner/>,
621 * though this reference is out of date. A new paper
622 * is pending.
623 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)624 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
625 {
626 u32 new_sample = tp->rcv_rtt_est.rtt_us;
627 long m = sample;
628
629 if (new_sample != 0) {
630 /* If we sample in larger samples in the non-timestamp
631 * case, we could grossly overestimate the RTT especially
632 * with chatty applications or bulk transfer apps which
633 * are stalled on filesystem I/O.
634 *
635 * Also, since we are only going for a minimum in the
636 * non-timestamp case, we do not smooth things out
637 * else with timestamps disabled convergence takes too
638 * long.
639 */
640 if (!win_dep) {
641 m -= (new_sample >> 3);
642 new_sample += m;
643 } else {
644 m <<= 3;
645 if (m < new_sample)
646 new_sample = m;
647 }
648 } else {
649 /* No previous measure. */
650 new_sample = m << 3;
651 }
652
653 tp->rcv_rtt_est.rtt_us = new_sample;
654 }
655
tcp_rcv_rtt_measure(struct tcp_sock * tp)656 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
657 {
658 u32 delta_us;
659
660 if (tp->rcv_rtt_est.time == 0)
661 goto new_measure;
662 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
663 return;
664 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
665 if (!delta_us)
666 delta_us = 1;
667 tcp_rcv_rtt_update(tp, delta_us, 1);
668
669 new_measure:
670 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
671 tp->rcv_rtt_est.time = tp->tcp_mstamp;
672 }
673
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)674 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
675 const struct sk_buff *skb)
676 {
677 struct tcp_sock *tp = tcp_sk(sk);
678
679 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
680 return;
681 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
682
683 if (TCP_SKB_CB(skb)->end_seq -
684 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
685 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
686 u32 delta_us;
687
688 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
689 if (!delta)
690 delta = 1;
691 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
692 tcp_rcv_rtt_update(tp, delta_us, 0);
693 }
694 }
695 }
696
697 /*
698 * This function should be called every time data is copied to user space.
699 * It calculates the appropriate TCP receive buffer space.
700 */
tcp_rcv_space_adjust(struct sock * sk)701 void tcp_rcv_space_adjust(struct sock *sk)
702 {
703 struct tcp_sock *tp = tcp_sk(sk);
704 u32 copied;
705 int time;
706
707 trace_tcp_rcv_space_adjust(sk);
708
709 tcp_mstamp_refresh(tp);
710 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
711 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
712 return;
713
714 /* Number of bytes copied to user in last RTT */
715 copied = tp->copied_seq - tp->rcvq_space.seq;
716 if (copied <= tp->rcvq_space.space)
717 goto new_measure;
718
719 /* A bit of theory :
720 * copied = bytes received in previous RTT, our base window
721 * To cope with packet losses, we need a 2x factor
722 * To cope with slow start, and sender growing its cwin by 100 %
723 * every RTT, we need a 4x factor, because the ACK we are sending
724 * now is for the next RTT, not the current one :
725 * <prev RTT . ><current RTT .. ><next RTT .... >
726 */
727
728 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
729 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
730 int rcvmem, rcvbuf;
731 u64 rcvwin, grow;
732
733 /* minimal window to cope with packet losses, assuming
734 * steady state. Add some cushion because of small variations.
735 */
736 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
737
738 /* Accommodate for sender rate increase (eg. slow start) */
739 grow = rcvwin * (copied - tp->rcvq_space.space);
740 do_div(grow, tp->rcvq_space.space);
741 rcvwin += (grow << 1);
742
743 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
744 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
745 rcvmem += 128;
746
747 do_div(rcvwin, tp->advmss);
748 rcvbuf = min_t(u64, rcvwin * rcvmem,
749 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
750 if (rcvbuf > sk->sk_rcvbuf) {
751 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
752
753 /* Make the window clamp follow along. */
754 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
755 }
756 }
757 tp->rcvq_space.space = copied;
758
759 new_measure:
760 tp->rcvq_space.seq = tp->copied_seq;
761 tp->rcvq_space.time = tp->tcp_mstamp;
762 }
763
764 /* There is something which you must keep in mind when you analyze the
765 * behavior of the tp->ato delayed ack timeout interval. When a
766 * connection starts up, we want to ack as quickly as possible. The
767 * problem is that "good" TCP's do slow start at the beginning of data
768 * transmission. The means that until we send the first few ACK's the
769 * sender will sit on his end and only queue most of his data, because
770 * he can only send snd_cwnd unacked packets at any given time. For
771 * each ACK we send, he increments snd_cwnd and transmits more of his
772 * queue. -DaveM
773 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)774 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
775 {
776 struct tcp_sock *tp = tcp_sk(sk);
777 struct inet_connection_sock *icsk = inet_csk(sk);
778 u32 now;
779
780 inet_csk_schedule_ack(sk);
781
782 tcp_measure_rcv_mss(sk, skb);
783
784 tcp_rcv_rtt_measure(tp);
785
786 now = tcp_jiffies32;
787
788 if (!icsk->icsk_ack.ato) {
789 /* The _first_ data packet received, initialize
790 * delayed ACK engine.
791 */
792 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
793 icsk->icsk_ack.ato = TCP_ATO_MIN;
794 } else {
795 int m = now - icsk->icsk_ack.lrcvtime;
796
797 if (m <= TCP_ATO_MIN / 2) {
798 /* The fastest case is the first. */
799 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
800 } else if (m < icsk->icsk_ack.ato) {
801 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
802 if (icsk->icsk_ack.ato > icsk->icsk_rto)
803 icsk->icsk_ack.ato = icsk->icsk_rto;
804 } else if (m > icsk->icsk_rto) {
805 /* Too long gap. Apparently sender failed to
806 * restart window, so that we send ACKs quickly.
807 */
808 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
809 sk_mem_reclaim(sk);
810 }
811 }
812 icsk->icsk_ack.lrcvtime = now;
813
814 tcp_ecn_check_ce(sk, skb);
815
816 if (skb->len >= 128)
817 tcp_grow_window(sk, skb, true);
818 }
819
820 /* Called to compute a smoothed rtt estimate. The data fed to this
821 * routine either comes from timestamps, or from segments that were
822 * known _not_ to have been retransmitted [see Karn/Partridge
823 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
824 * piece by Van Jacobson.
825 * NOTE: the next three routines used to be one big routine.
826 * To save cycles in the RFC 1323 implementation it was better to break
827 * it up into three procedures. -- erics
828 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)829 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
830 {
831 struct tcp_sock *tp = tcp_sk(sk);
832 long m = mrtt_us; /* RTT */
833 u32 srtt = tp->srtt_us;
834
835 /* The following amusing code comes from Jacobson's
836 * article in SIGCOMM '88. Note that rtt and mdev
837 * are scaled versions of rtt and mean deviation.
838 * This is designed to be as fast as possible
839 * m stands for "measurement".
840 *
841 * On a 1990 paper the rto value is changed to:
842 * RTO = rtt + 4 * mdev
843 *
844 * Funny. This algorithm seems to be very broken.
845 * These formulae increase RTO, when it should be decreased, increase
846 * too slowly, when it should be increased quickly, decrease too quickly
847 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
848 * does not matter how to _calculate_ it. Seems, it was trap
849 * that VJ failed to avoid. 8)
850 */
851 if (srtt != 0) {
852 m -= (srtt >> 3); /* m is now error in rtt est */
853 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
854 if (m < 0) {
855 m = -m; /* m is now abs(error) */
856 m -= (tp->mdev_us >> 2); /* similar update on mdev */
857 /* This is similar to one of Eifel findings.
858 * Eifel blocks mdev updates when rtt decreases.
859 * This solution is a bit different: we use finer gain
860 * for mdev in this case (alpha*beta).
861 * Like Eifel it also prevents growth of rto,
862 * but also it limits too fast rto decreases,
863 * happening in pure Eifel.
864 */
865 if (m > 0)
866 m >>= 3;
867 } else {
868 m -= (tp->mdev_us >> 2); /* similar update on mdev */
869 }
870 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
871 if (tp->mdev_us > tp->mdev_max_us) {
872 tp->mdev_max_us = tp->mdev_us;
873 if (tp->mdev_max_us > tp->rttvar_us)
874 tp->rttvar_us = tp->mdev_max_us;
875 }
876 if (after(tp->snd_una, tp->rtt_seq)) {
877 if (tp->mdev_max_us < tp->rttvar_us)
878 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
879 tp->rtt_seq = tp->snd_nxt;
880 tp->mdev_max_us = tcp_rto_min_us(sk);
881
882 tcp_bpf_rtt(sk);
883 }
884 } else {
885 /* no previous measure. */
886 srtt = m << 3; /* take the measured time to be rtt */
887 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
888 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
889 tp->mdev_max_us = tp->rttvar_us;
890 tp->rtt_seq = tp->snd_nxt;
891
892 tcp_bpf_rtt(sk);
893 }
894 tp->srtt_us = max(1U, srtt);
895 }
896
tcp_update_pacing_rate(struct sock * sk)897 static void tcp_update_pacing_rate(struct sock *sk)
898 {
899 const struct tcp_sock *tp = tcp_sk(sk);
900 u64 rate;
901
902 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
903 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
904
905 /* current rate is (cwnd * mss) / srtt
906 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
907 * In Congestion Avoidance phase, set it to 120 % the current rate.
908 *
909 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
910 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
911 * end of slow start and should slow down.
912 */
913 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
914 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
915 else
916 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
917
918 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
919
920 if (likely(tp->srtt_us))
921 do_div(rate, tp->srtt_us);
922
923 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
924 * without any lock. We want to make sure compiler wont store
925 * intermediate values in this location.
926 */
927 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
928 sk->sk_max_pacing_rate));
929 }
930
931 /* Calculate rto without backoff. This is the second half of Van Jacobson's
932 * routine referred to above.
933 */
tcp_set_rto(struct sock * sk)934 static void tcp_set_rto(struct sock *sk)
935 {
936 const struct tcp_sock *tp = tcp_sk(sk);
937 /* Old crap is replaced with new one. 8)
938 *
939 * More seriously:
940 * 1. If rtt variance happened to be less 50msec, it is hallucination.
941 * It cannot be less due to utterly erratic ACK generation made
942 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
943 * to do with delayed acks, because at cwnd>2 true delack timeout
944 * is invisible. Actually, Linux-2.4 also generates erratic
945 * ACKs in some circumstances.
946 */
947 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
948
949 /* 2. Fixups made earlier cannot be right.
950 * If we do not estimate RTO correctly without them,
951 * all the algo is pure shit and should be replaced
952 * with correct one. It is exactly, which we pretend to do.
953 */
954
955 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
956 * guarantees that rto is higher.
957 */
958 tcp_bound_rto(sk);
959 }
960
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)961 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
962 {
963 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
964
965 if (!cwnd)
966 cwnd = TCP_INIT_CWND;
967 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
968 }
969
970 struct tcp_sacktag_state {
971 /* Timestamps for earliest and latest never-retransmitted segment
972 * that was SACKed. RTO needs the earliest RTT to stay conservative,
973 * but congestion control should still get an accurate delay signal.
974 */
975 u64 first_sackt;
976 u64 last_sackt;
977 u32 reord;
978 u32 sack_delivered;
979 int flag;
980 unsigned int mss_now;
981 struct rate_sample *rate;
982 };
983
984 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
985 * and spurious retransmission information if this DSACK is unlikely caused by
986 * sender's action:
987 * - DSACKed sequence range is larger than maximum receiver's window.
988 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
989 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)990 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
991 u32 end_seq, struct tcp_sacktag_state *state)
992 {
993 u32 seq_len, dup_segs = 1;
994
995 if (!before(start_seq, end_seq))
996 return 0;
997
998 seq_len = end_seq - start_seq;
999 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1000 if (seq_len > tp->max_window)
1001 return 0;
1002 if (seq_len > tp->mss_cache)
1003 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1004 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1005 state->flag |= FLAG_DSACK_TLP;
1006
1007 tp->dsack_dups += dup_segs;
1008 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1009 if (tp->dsack_dups > tp->total_retrans)
1010 return 0;
1011
1012 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1013 /* We increase the RACK ordering window in rounds where we receive
1014 * DSACKs that may have been due to reordering causing RACK to trigger
1015 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1016 * without having seen reordering, or that match TLP probes (TLP
1017 * is timer-driven, not triggered by RACK).
1018 */
1019 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1020 tp->rack.dsack_seen = 1;
1021
1022 state->flag |= FLAG_DSACKING_ACK;
1023 /* A spurious retransmission is delivered */
1024 state->sack_delivered += dup_segs;
1025
1026 return dup_segs;
1027 }
1028
1029 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1030 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1031 * distance is approximated in full-mss packet distance ("reordering").
1032 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1033 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1034 const int ts)
1035 {
1036 struct tcp_sock *tp = tcp_sk(sk);
1037 const u32 mss = tp->mss_cache;
1038 u32 fack, metric;
1039
1040 fack = tcp_highest_sack_seq(tp);
1041 if (!before(low_seq, fack))
1042 return;
1043
1044 metric = fack - low_seq;
1045 if ((metric > tp->reordering * mss) && mss) {
1046 #if FASTRETRANS_DEBUG > 1
1047 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1048 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1049 tp->reordering,
1050 0,
1051 tp->sacked_out,
1052 tp->undo_marker ? tp->undo_retrans : 0);
1053 #endif
1054 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1055 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1056 }
1057
1058 /* This exciting event is worth to be remembered. 8) */
1059 tp->reord_seen++;
1060 NET_INC_STATS(sock_net(sk),
1061 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1062 }
1063
1064 /* This must be called before lost_out or retrans_out are updated
1065 * on a new loss, because we want to know if all skbs previously
1066 * known to be lost have already been retransmitted, indicating
1067 * that this newly lost skb is our next skb to retransmit.
1068 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1069 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1070 {
1071 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1072 (tp->retransmit_skb_hint &&
1073 before(TCP_SKB_CB(skb)->seq,
1074 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1075 tp->retransmit_skb_hint = skb;
1076 }
1077
1078 /* Sum the number of packets on the wire we have marked as lost, and
1079 * notify the congestion control module that the given skb was marked lost.
1080 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1081 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1082 {
1083 tp->lost += tcp_skb_pcount(skb);
1084 }
1085
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1086 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1087 {
1088 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1089 struct tcp_sock *tp = tcp_sk(sk);
1090
1091 if (sacked & TCPCB_SACKED_ACKED)
1092 return;
1093
1094 tcp_verify_retransmit_hint(tp, skb);
1095 if (sacked & TCPCB_LOST) {
1096 if (sacked & TCPCB_SACKED_RETRANS) {
1097 /* Account for retransmits that are lost again */
1098 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1099 tp->retrans_out -= tcp_skb_pcount(skb);
1100 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1101 tcp_skb_pcount(skb));
1102 tcp_notify_skb_loss_event(tp, skb);
1103 }
1104 } else {
1105 tp->lost_out += tcp_skb_pcount(skb);
1106 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1107 tcp_notify_skb_loss_event(tp, skb);
1108 }
1109 }
1110
1111 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1112 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1113 bool ece_ack)
1114 {
1115 tp->delivered += delivered;
1116 if (ece_ack)
1117 tp->delivered_ce += delivered;
1118 }
1119
1120 /* This procedure tags the retransmission queue when SACKs arrive.
1121 *
1122 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1123 * Packets in queue with these bits set are counted in variables
1124 * sacked_out, retrans_out and lost_out, correspondingly.
1125 *
1126 * Valid combinations are:
1127 * Tag InFlight Description
1128 * 0 1 - orig segment is in flight.
1129 * S 0 - nothing flies, orig reached receiver.
1130 * L 0 - nothing flies, orig lost by net.
1131 * R 2 - both orig and retransmit are in flight.
1132 * L|R 1 - orig is lost, retransmit is in flight.
1133 * S|R 1 - orig reached receiver, retrans is still in flight.
1134 * (L|S|R is logically valid, it could occur when L|R is sacked,
1135 * but it is equivalent to plain S and code short-curcuits it to S.
1136 * L|S is logically invalid, it would mean -1 packet in flight 8))
1137 *
1138 * These 6 states form finite state machine, controlled by the following events:
1139 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1140 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1141 * 3. Loss detection event of two flavors:
1142 * A. Scoreboard estimator decided the packet is lost.
1143 * A'. Reno "three dupacks" marks head of queue lost.
1144 * B. SACK arrives sacking SND.NXT at the moment, when the
1145 * segment was retransmitted.
1146 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1147 *
1148 * It is pleasant to note, that state diagram turns out to be commutative,
1149 * so that we are allowed not to be bothered by order of our actions,
1150 * when multiple events arrive simultaneously. (see the function below).
1151 *
1152 * Reordering detection.
1153 * --------------------
1154 * Reordering metric is maximal distance, which a packet can be displaced
1155 * in packet stream. With SACKs we can estimate it:
1156 *
1157 * 1. SACK fills old hole and the corresponding segment was not
1158 * ever retransmitted -> reordering. Alas, we cannot use it
1159 * when segment was retransmitted.
1160 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1161 * for retransmitted and already SACKed segment -> reordering..
1162 * Both of these heuristics are not used in Loss state, when we cannot
1163 * account for retransmits accurately.
1164 *
1165 * SACK block validation.
1166 * ----------------------
1167 *
1168 * SACK block range validation checks that the received SACK block fits to
1169 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1170 * Note that SND.UNA is not included to the range though being valid because
1171 * it means that the receiver is rather inconsistent with itself reporting
1172 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1173 * perfectly valid, however, in light of RFC2018 which explicitly states
1174 * that "SACK block MUST reflect the newest segment. Even if the newest
1175 * segment is going to be discarded ...", not that it looks very clever
1176 * in case of head skb. Due to potentional receiver driven attacks, we
1177 * choose to avoid immediate execution of a walk in write queue due to
1178 * reneging and defer head skb's loss recovery to standard loss recovery
1179 * procedure that will eventually trigger (nothing forbids us doing this).
1180 *
1181 * Implements also blockage to start_seq wrap-around. Problem lies in the
1182 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1183 * there's no guarantee that it will be before snd_nxt (n). The problem
1184 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1185 * wrap (s_w):
1186 *
1187 * <- outs wnd -> <- wrapzone ->
1188 * u e n u_w e_w s n_w
1189 * | | | | | | |
1190 * |<------------+------+----- TCP seqno space --------------+---------->|
1191 * ...-- <2^31 ->| |<--------...
1192 * ...---- >2^31 ------>| |<--------...
1193 *
1194 * Current code wouldn't be vulnerable but it's better still to discard such
1195 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1196 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1197 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1198 * equal to the ideal case (infinite seqno space without wrap caused issues).
1199 *
1200 * With D-SACK the lower bound is extended to cover sequence space below
1201 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1202 * again, D-SACK block must not to go across snd_una (for the same reason as
1203 * for the normal SACK blocks, explained above). But there all simplicity
1204 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1205 * fully below undo_marker they do not affect behavior in anyway and can
1206 * therefore be safely ignored. In rare cases (which are more or less
1207 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1208 * fragmentation and packet reordering past skb's retransmission. To consider
1209 * them correctly, the acceptable range must be extended even more though
1210 * the exact amount is rather hard to quantify. However, tp->max_window can
1211 * be used as an exaggerated estimate.
1212 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1213 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1214 u32 start_seq, u32 end_seq)
1215 {
1216 /* Too far in future, or reversed (interpretation is ambiguous) */
1217 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1218 return false;
1219
1220 /* Nasty start_seq wrap-around check (see comments above) */
1221 if (!before(start_seq, tp->snd_nxt))
1222 return false;
1223
1224 /* In outstanding window? ...This is valid exit for D-SACKs too.
1225 * start_seq == snd_una is non-sensical (see comments above)
1226 */
1227 if (after(start_seq, tp->snd_una))
1228 return true;
1229
1230 if (!is_dsack || !tp->undo_marker)
1231 return false;
1232
1233 /* ...Then it's D-SACK, and must reside below snd_una completely */
1234 if (after(end_seq, tp->snd_una))
1235 return false;
1236
1237 if (!before(start_seq, tp->undo_marker))
1238 return true;
1239
1240 /* Too old */
1241 if (!after(end_seq, tp->undo_marker))
1242 return false;
1243
1244 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1245 * start_seq < undo_marker and end_seq >= undo_marker.
1246 */
1247 return !before(start_seq, end_seq - tp->max_window);
1248 }
1249
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1250 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1251 struct tcp_sack_block_wire *sp, int num_sacks,
1252 u32 prior_snd_una, struct tcp_sacktag_state *state)
1253 {
1254 struct tcp_sock *tp = tcp_sk(sk);
1255 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1256 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1257 u32 dup_segs;
1258
1259 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1260 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1261 } else if (num_sacks > 1) {
1262 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1263 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1264
1265 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1266 return false;
1267 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1268 } else {
1269 return false;
1270 }
1271
1272 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1273 if (!dup_segs) { /* Skip dubious DSACK */
1274 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1275 return false;
1276 }
1277
1278 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1279
1280 /* D-SACK for already forgotten data... Do dumb counting. */
1281 if (tp->undo_marker && tp->undo_retrans > 0 &&
1282 !after(end_seq_0, prior_snd_una) &&
1283 after(end_seq_0, tp->undo_marker))
1284 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1285
1286 return true;
1287 }
1288
1289 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1290 * the incoming SACK may not exactly match but we can find smaller MSS
1291 * aligned portion of it that matches. Therefore we might need to fragment
1292 * which may fail and creates some hassle (caller must handle error case
1293 * returns).
1294 *
1295 * FIXME: this could be merged to shift decision code
1296 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1297 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1298 u32 start_seq, u32 end_seq)
1299 {
1300 int err;
1301 bool in_sack;
1302 unsigned int pkt_len;
1303 unsigned int mss;
1304
1305 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1306 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1307
1308 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1309 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1310 mss = tcp_skb_mss(skb);
1311 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1312
1313 if (!in_sack) {
1314 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1315 if (pkt_len < mss)
1316 pkt_len = mss;
1317 } else {
1318 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1319 if (pkt_len < mss)
1320 return -EINVAL;
1321 }
1322
1323 /* Round if necessary so that SACKs cover only full MSSes
1324 * and/or the remaining small portion (if present)
1325 */
1326 if (pkt_len > mss) {
1327 unsigned int new_len = (pkt_len / mss) * mss;
1328 if (!in_sack && new_len < pkt_len)
1329 new_len += mss;
1330 pkt_len = new_len;
1331 }
1332
1333 if (pkt_len >= skb->len && !in_sack)
1334 return 0;
1335
1336 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1337 pkt_len, mss, GFP_ATOMIC);
1338 if (err < 0)
1339 return err;
1340 }
1341
1342 return in_sack;
1343 }
1344
1345 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1346 static u8 tcp_sacktag_one(struct sock *sk,
1347 struct tcp_sacktag_state *state, u8 sacked,
1348 u32 start_seq, u32 end_seq,
1349 int dup_sack, int pcount,
1350 u64 xmit_time)
1351 {
1352 struct tcp_sock *tp = tcp_sk(sk);
1353
1354 /* Account D-SACK for retransmitted packet. */
1355 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1356 if (tp->undo_marker && tp->undo_retrans > 0 &&
1357 after(end_seq, tp->undo_marker))
1358 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1359 if ((sacked & TCPCB_SACKED_ACKED) &&
1360 before(start_seq, state->reord))
1361 state->reord = start_seq;
1362 }
1363
1364 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1365 if (!after(end_seq, tp->snd_una))
1366 return sacked;
1367
1368 if (!(sacked & TCPCB_SACKED_ACKED)) {
1369 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1370
1371 if (sacked & TCPCB_SACKED_RETRANS) {
1372 /* If the segment is not tagged as lost,
1373 * we do not clear RETRANS, believing
1374 * that retransmission is still in flight.
1375 */
1376 if (sacked & TCPCB_LOST) {
1377 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1378 tp->lost_out -= pcount;
1379 tp->retrans_out -= pcount;
1380 }
1381 } else {
1382 if (!(sacked & TCPCB_RETRANS)) {
1383 /* New sack for not retransmitted frame,
1384 * which was in hole. It is reordering.
1385 */
1386 if (before(start_seq,
1387 tcp_highest_sack_seq(tp)) &&
1388 before(start_seq, state->reord))
1389 state->reord = start_seq;
1390
1391 if (!after(end_seq, tp->high_seq))
1392 state->flag |= FLAG_ORIG_SACK_ACKED;
1393 if (state->first_sackt == 0)
1394 state->first_sackt = xmit_time;
1395 state->last_sackt = xmit_time;
1396 }
1397
1398 if (sacked & TCPCB_LOST) {
1399 sacked &= ~TCPCB_LOST;
1400 tp->lost_out -= pcount;
1401 }
1402 }
1403
1404 sacked |= TCPCB_SACKED_ACKED;
1405 state->flag |= FLAG_DATA_SACKED;
1406 tp->sacked_out += pcount;
1407 /* Out-of-order packets delivered */
1408 state->sack_delivered += pcount;
1409
1410 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1411 if (tp->lost_skb_hint &&
1412 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1413 tp->lost_cnt_hint += pcount;
1414 }
1415
1416 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1417 * frames and clear it. undo_retrans is decreased above, L|R frames
1418 * are accounted above as well.
1419 */
1420 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1421 sacked &= ~TCPCB_SACKED_RETRANS;
1422 tp->retrans_out -= pcount;
1423 }
1424
1425 return sacked;
1426 }
1427
1428 /* Shift newly-SACKed bytes from this skb to the immediately previous
1429 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1430 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1431 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1432 struct sk_buff *skb,
1433 struct tcp_sacktag_state *state,
1434 unsigned int pcount, int shifted, int mss,
1435 bool dup_sack)
1436 {
1437 struct tcp_sock *tp = tcp_sk(sk);
1438 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1439 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1440
1441 BUG_ON(!pcount);
1442
1443 /* Adjust counters and hints for the newly sacked sequence
1444 * range but discard the return value since prev is already
1445 * marked. We must tag the range first because the seq
1446 * advancement below implicitly advances
1447 * tcp_highest_sack_seq() when skb is highest_sack.
1448 */
1449 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1450 start_seq, end_seq, dup_sack, pcount,
1451 tcp_skb_timestamp_us(skb));
1452 tcp_rate_skb_delivered(sk, skb, state->rate);
1453
1454 if (skb == tp->lost_skb_hint)
1455 tp->lost_cnt_hint += pcount;
1456
1457 TCP_SKB_CB(prev)->end_seq += shifted;
1458 TCP_SKB_CB(skb)->seq += shifted;
1459
1460 tcp_skb_pcount_add(prev, pcount);
1461 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1462 tcp_skb_pcount_add(skb, -pcount);
1463
1464 /* When we're adding to gso_segs == 1, gso_size will be zero,
1465 * in theory this shouldn't be necessary but as long as DSACK
1466 * code can come after this skb later on it's better to keep
1467 * setting gso_size to something.
1468 */
1469 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1470 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1471
1472 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1473 if (tcp_skb_pcount(skb) <= 1)
1474 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1475
1476 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1477 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1478
1479 if (skb->len > 0) {
1480 BUG_ON(!tcp_skb_pcount(skb));
1481 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1482 return false;
1483 }
1484
1485 /* Whole SKB was eaten :-) */
1486
1487 if (skb == tp->retransmit_skb_hint)
1488 tp->retransmit_skb_hint = prev;
1489 if (skb == tp->lost_skb_hint) {
1490 tp->lost_skb_hint = prev;
1491 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1492 }
1493
1494 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1495 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1496 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1497 TCP_SKB_CB(prev)->end_seq++;
1498
1499 if (skb == tcp_highest_sack(sk))
1500 tcp_advance_highest_sack(sk, skb);
1501
1502 tcp_skb_collapse_tstamp(prev, skb);
1503 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1504 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1505
1506 tcp_rtx_queue_unlink_and_free(skb, sk);
1507
1508 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1509
1510 return true;
1511 }
1512
1513 /* I wish gso_size would have a bit more sane initialization than
1514 * something-or-zero which complicates things
1515 */
tcp_skb_seglen(const struct sk_buff * skb)1516 static int tcp_skb_seglen(const struct sk_buff *skb)
1517 {
1518 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1519 }
1520
1521 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1522 static int skb_can_shift(const struct sk_buff *skb)
1523 {
1524 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1525 }
1526
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1527 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1528 int pcount, int shiftlen)
1529 {
1530 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1531 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1532 * to make sure not storing more than 65535 * 8 bytes per skb,
1533 * even if current MSS is bigger.
1534 */
1535 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1536 return 0;
1537 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1538 return 0;
1539 return skb_shift(to, from, shiftlen);
1540 }
1541
1542 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1543 * skb.
1544 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1545 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1546 struct tcp_sacktag_state *state,
1547 u32 start_seq, u32 end_seq,
1548 bool dup_sack)
1549 {
1550 struct tcp_sock *tp = tcp_sk(sk);
1551 struct sk_buff *prev;
1552 int mss;
1553 int pcount = 0;
1554 int len;
1555 int in_sack;
1556
1557 /* Normally R but no L won't result in plain S */
1558 if (!dup_sack &&
1559 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1560 goto fallback;
1561 if (!skb_can_shift(skb))
1562 goto fallback;
1563 /* This frame is about to be dropped (was ACKed). */
1564 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1565 goto fallback;
1566
1567 /* Can only happen with delayed DSACK + discard craziness */
1568 prev = skb_rb_prev(skb);
1569 if (!prev)
1570 goto fallback;
1571
1572 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1573 goto fallback;
1574
1575 if (!tcp_skb_can_collapse(prev, skb))
1576 goto fallback;
1577
1578 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1579 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1580
1581 if (in_sack) {
1582 len = skb->len;
1583 pcount = tcp_skb_pcount(skb);
1584 mss = tcp_skb_seglen(skb);
1585
1586 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1587 * drop this restriction as unnecessary
1588 */
1589 if (mss != tcp_skb_seglen(prev))
1590 goto fallback;
1591 } else {
1592 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1593 goto noop;
1594 /* CHECKME: This is non-MSS split case only?, this will
1595 * cause skipped skbs due to advancing loop btw, original
1596 * has that feature too
1597 */
1598 if (tcp_skb_pcount(skb) <= 1)
1599 goto noop;
1600
1601 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1602 if (!in_sack) {
1603 /* TODO: head merge to next could be attempted here
1604 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1605 * though it might not be worth of the additional hassle
1606 *
1607 * ...we can probably just fallback to what was done
1608 * previously. We could try merging non-SACKed ones
1609 * as well but it probably isn't going to buy off
1610 * because later SACKs might again split them, and
1611 * it would make skb timestamp tracking considerably
1612 * harder problem.
1613 */
1614 goto fallback;
1615 }
1616
1617 len = end_seq - TCP_SKB_CB(skb)->seq;
1618 BUG_ON(len < 0);
1619 BUG_ON(len > skb->len);
1620
1621 /* MSS boundaries should be honoured or else pcount will
1622 * severely break even though it makes things bit trickier.
1623 * Optimize common case to avoid most of the divides
1624 */
1625 mss = tcp_skb_mss(skb);
1626
1627 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1628 * drop this restriction as unnecessary
1629 */
1630 if (mss != tcp_skb_seglen(prev))
1631 goto fallback;
1632
1633 if (len == mss) {
1634 pcount = 1;
1635 } else if (len < mss) {
1636 goto noop;
1637 } else {
1638 pcount = len / mss;
1639 len = pcount * mss;
1640 }
1641 }
1642
1643 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1644 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1645 goto fallback;
1646
1647 if (!tcp_skb_shift(prev, skb, pcount, len))
1648 goto fallback;
1649 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1650 goto out;
1651
1652 /* Hole filled allows collapsing with the next as well, this is very
1653 * useful when hole on every nth skb pattern happens
1654 */
1655 skb = skb_rb_next(prev);
1656 if (!skb)
1657 goto out;
1658
1659 if (!skb_can_shift(skb) ||
1660 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1661 (mss != tcp_skb_seglen(skb)))
1662 goto out;
1663
1664 if (!tcp_skb_can_collapse(prev, skb))
1665 goto out;
1666 len = skb->len;
1667 pcount = tcp_skb_pcount(skb);
1668 if (tcp_skb_shift(prev, skb, pcount, len))
1669 tcp_shifted_skb(sk, prev, skb, state, pcount,
1670 len, mss, 0);
1671
1672 out:
1673 return prev;
1674
1675 noop:
1676 return skb;
1677
1678 fallback:
1679 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1680 return NULL;
1681 }
1682
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1683 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1684 struct tcp_sack_block *next_dup,
1685 struct tcp_sacktag_state *state,
1686 u32 start_seq, u32 end_seq,
1687 bool dup_sack_in)
1688 {
1689 struct tcp_sock *tp = tcp_sk(sk);
1690 struct sk_buff *tmp;
1691
1692 skb_rbtree_walk_from(skb) {
1693 int in_sack = 0;
1694 bool dup_sack = dup_sack_in;
1695
1696 /* queue is in-order => we can short-circuit the walk early */
1697 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1698 break;
1699
1700 if (next_dup &&
1701 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1702 in_sack = tcp_match_skb_to_sack(sk, skb,
1703 next_dup->start_seq,
1704 next_dup->end_seq);
1705 if (in_sack > 0)
1706 dup_sack = true;
1707 }
1708
1709 /* skb reference here is a bit tricky to get right, since
1710 * shifting can eat and free both this skb and the next,
1711 * so not even _safe variant of the loop is enough.
1712 */
1713 if (in_sack <= 0) {
1714 tmp = tcp_shift_skb_data(sk, skb, state,
1715 start_seq, end_seq, dup_sack);
1716 if (tmp) {
1717 if (tmp != skb) {
1718 skb = tmp;
1719 continue;
1720 }
1721
1722 in_sack = 0;
1723 } else {
1724 in_sack = tcp_match_skb_to_sack(sk, skb,
1725 start_seq,
1726 end_seq);
1727 }
1728 }
1729
1730 if (unlikely(in_sack < 0))
1731 break;
1732
1733 if (in_sack) {
1734 TCP_SKB_CB(skb)->sacked =
1735 tcp_sacktag_one(sk,
1736 state,
1737 TCP_SKB_CB(skb)->sacked,
1738 TCP_SKB_CB(skb)->seq,
1739 TCP_SKB_CB(skb)->end_seq,
1740 dup_sack,
1741 tcp_skb_pcount(skb),
1742 tcp_skb_timestamp_us(skb));
1743 tcp_rate_skb_delivered(sk, skb, state->rate);
1744 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1745 list_del_init(&skb->tcp_tsorted_anchor);
1746
1747 if (!before(TCP_SKB_CB(skb)->seq,
1748 tcp_highest_sack_seq(tp)))
1749 tcp_advance_highest_sack(sk, skb);
1750 }
1751 }
1752 return skb;
1753 }
1754
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1755 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1756 {
1757 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1758 struct sk_buff *skb;
1759
1760 while (*p) {
1761 parent = *p;
1762 skb = rb_to_skb(parent);
1763 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1764 p = &parent->rb_left;
1765 continue;
1766 }
1767 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1768 p = &parent->rb_right;
1769 continue;
1770 }
1771 return skb;
1772 }
1773 return NULL;
1774 }
1775
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1776 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1777 u32 skip_to_seq)
1778 {
1779 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1780 return skb;
1781
1782 return tcp_sacktag_bsearch(sk, skip_to_seq);
1783 }
1784
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1785 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1786 struct sock *sk,
1787 struct tcp_sack_block *next_dup,
1788 struct tcp_sacktag_state *state,
1789 u32 skip_to_seq)
1790 {
1791 if (!next_dup)
1792 return skb;
1793
1794 if (before(next_dup->start_seq, skip_to_seq)) {
1795 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1796 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1797 next_dup->start_seq, next_dup->end_seq,
1798 1);
1799 }
1800
1801 return skb;
1802 }
1803
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1804 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1805 {
1806 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1807 }
1808
1809 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1810 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1811 u32 prior_snd_una, struct tcp_sacktag_state *state)
1812 {
1813 struct tcp_sock *tp = tcp_sk(sk);
1814 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1815 TCP_SKB_CB(ack_skb)->sacked);
1816 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1817 struct tcp_sack_block sp[TCP_NUM_SACKS];
1818 struct tcp_sack_block *cache;
1819 struct sk_buff *skb;
1820 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1821 int used_sacks;
1822 bool found_dup_sack = false;
1823 int i, j;
1824 int first_sack_index;
1825
1826 state->flag = 0;
1827 state->reord = tp->snd_nxt;
1828
1829 if (!tp->sacked_out)
1830 tcp_highest_sack_reset(sk);
1831
1832 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1833 num_sacks, prior_snd_una, state);
1834
1835 /* Eliminate too old ACKs, but take into
1836 * account more or less fresh ones, they can
1837 * contain valid SACK info.
1838 */
1839 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1840 return 0;
1841
1842 if (!tp->packets_out)
1843 goto out;
1844
1845 used_sacks = 0;
1846 first_sack_index = 0;
1847 for (i = 0; i < num_sacks; i++) {
1848 bool dup_sack = !i && found_dup_sack;
1849
1850 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1851 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1852
1853 if (!tcp_is_sackblock_valid(tp, dup_sack,
1854 sp[used_sacks].start_seq,
1855 sp[used_sacks].end_seq)) {
1856 int mib_idx;
1857
1858 if (dup_sack) {
1859 if (!tp->undo_marker)
1860 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1861 else
1862 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1863 } else {
1864 /* Don't count olds caused by ACK reordering */
1865 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1866 !after(sp[used_sacks].end_seq, tp->snd_una))
1867 continue;
1868 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1869 }
1870
1871 NET_INC_STATS(sock_net(sk), mib_idx);
1872 if (i == 0)
1873 first_sack_index = -1;
1874 continue;
1875 }
1876
1877 /* Ignore very old stuff early */
1878 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1879 if (i == 0)
1880 first_sack_index = -1;
1881 continue;
1882 }
1883
1884 used_sacks++;
1885 }
1886
1887 /* order SACK blocks to allow in order walk of the retrans queue */
1888 for (i = used_sacks - 1; i > 0; i--) {
1889 for (j = 0; j < i; j++) {
1890 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1891 swap(sp[j], sp[j + 1]);
1892
1893 /* Track where the first SACK block goes to */
1894 if (j == first_sack_index)
1895 first_sack_index = j + 1;
1896 }
1897 }
1898 }
1899
1900 state->mss_now = tcp_current_mss(sk);
1901 skb = NULL;
1902 i = 0;
1903
1904 if (!tp->sacked_out) {
1905 /* It's already past, so skip checking against it */
1906 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1907 } else {
1908 cache = tp->recv_sack_cache;
1909 /* Skip empty blocks in at head of the cache */
1910 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1911 !cache->end_seq)
1912 cache++;
1913 }
1914
1915 while (i < used_sacks) {
1916 u32 start_seq = sp[i].start_seq;
1917 u32 end_seq = sp[i].end_seq;
1918 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1919 struct tcp_sack_block *next_dup = NULL;
1920
1921 if (found_dup_sack && ((i + 1) == first_sack_index))
1922 next_dup = &sp[i + 1];
1923
1924 /* Skip too early cached blocks */
1925 while (tcp_sack_cache_ok(tp, cache) &&
1926 !before(start_seq, cache->end_seq))
1927 cache++;
1928
1929 /* Can skip some work by looking recv_sack_cache? */
1930 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1931 after(end_seq, cache->start_seq)) {
1932
1933 /* Head todo? */
1934 if (before(start_seq, cache->start_seq)) {
1935 skb = tcp_sacktag_skip(skb, sk, start_seq);
1936 skb = tcp_sacktag_walk(skb, sk, next_dup,
1937 state,
1938 start_seq,
1939 cache->start_seq,
1940 dup_sack);
1941 }
1942
1943 /* Rest of the block already fully processed? */
1944 if (!after(end_seq, cache->end_seq))
1945 goto advance_sp;
1946
1947 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1948 state,
1949 cache->end_seq);
1950
1951 /* ...tail remains todo... */
1952 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1953 /* ...but better entrypoint exists! */
1954 skb = tcp_highest_sack(sk);
1955 if (!skb)
1956 break;
1957 cache++;
1958 goto walk;
1959 }
1960
1961 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1962 /* Check overlap against next cached too (past this one already) */
1963 cache++;
1964 continue;
1965 }
1966
1967 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1968 skb = tcp_highest_sack(sk);
1969 if (!skb)
1970 break;
1971 }
1972 skb = tcp_sacktag_skip(skb, sk, start_seq);
1973
1974 walk:
1975 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1976 start_seq, end_seq, dup_sack);
1977
1978 advance_sp:
1979 i++;
1980 }
1981
1982 /* Clear the head of the cache sack blocks so we can skip it next time */
1983 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1984 tp->recv_sack_cache[i].start_seq = 0;
1985 tp->recv_sack_cache[i].end_seq = 0;
1986 }
1987 for (j = 0; j < used_sacks; j++)
1988 tp->recv_sack_cache[i++] = sp[j];
1989
1990 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1991 tcp_check_sack_reordering(sk, state->reord, 0);
1992
1993 tcp_verify_left_out(tp);
1994 out:
1995
1996 #if FASTRETRANS_DEBUG > 0
1997 WARN_ON((int)tp->sacked_out < 0);
1998 WARN_ON((int)tp->lost_out < 0);
1999 WARN_ON((int)tp->retrans_out < 0);
2000 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2001 #endif
2002 return state->flag;
2003 }
2004
2005 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2006 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2007 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2008 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2009 {
2010 u32 holes;
2011
2012 holes = max(tp->lost_out, 1U);
2013 holes = min(holes, tp->packets_out);
2014
2015 if ((tp->sacked_out + holes) > tp->packets_out) {
2016 tp->sacked_out = tp->packets_out - holes;
2017 return true;
2018 }
2019 return false;
2020 }
2021
2022 /* If we receive more dupacks than we expected counting segments
2023 * in assumption of absent reordering, interpret this as reordering.
2024 * The only another reason could be bug in receiver TCP.
2025 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2026 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2027 {
2028 struct tcp_sock *tp = tcp_sk(sk);
2029
2030 if (!tcp_limit_reno_sacked(tp))
2031 return;
2032
2033 tp->reordering = min_t(u32, tp->packets_out + addend,
2034 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2035 tp->reord_seen++;
2036 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2037 }
2038
2039 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2040
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2041 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2042 {
2043 if (num_dupack) {
2044 struct tcp_sock *tp = tcp_sk(sk);
2045 u32 prior_sacked = tp->sacked_out;
2046 s32 delivered;
2047
2048 tp->sacked_out += num_dupack;
2049 tcp_check_reno_reordering(sk, 0);
2050 delivered = tp->sacked_out - prior_sacked;
2051 if (delivered > 0)
2052 tcp_count_delivered(tp, delivered, ece_ack);
2053 tcp_verify_left_out(tp);
2054 }
2055 }
2056
2057 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2058
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2059 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2060 {
2061 struct tcp_sock *tp = tcp_sk(sk);
2062
2063 if (acked > 0) {
2064 /* One ACK acked hole. The rest eat duplicate ACKs. */
2065 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2066 ece_ack);
2067 if (acked - 1 >= tp->sacked_out)
2068 tp->sacked_out = 0;
2069 else
2070 tp->sacked_out -= acked - 1;
2071 }
2072 tcp_check_reno_reordering(sk, acked);
2073 tcp_verify_left_out(tp);
2074 }
2075
tcp_reset_reno_sack(struct tcp_sock * tp)2076 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2077 {
2078 tp->sacked_out = 0;
2079 }
2080
tcp_clear_retrans(struct tcp_sock * tp)2081 void tcp_clear_retrans(struct tcp_sock *tp)
2082 {
2083 tp->retrans_out = 0;
2084 tp->lost_out = 0;
2085 tp->undo_marker = 0;
2086 tp->undo_retrans = -1;
2087 tp->sacked_out = 0;
2088 }
2089
tcp_init_undo(struct tcp_sock * tp)2090 static inline void tcp_init_undo(struct tcp_sock *tp)
2091 {
2092 tp->undo_marker = tp->snd_una;
2093 /* Retransmission still in flight may cause DSACKs later. */
2094 tp->undo_retrans = tp->retrans_out ? : -1;
2095 }
2096
tcp_is_rack(const struct sock * sk)2097 static bool tcp_is_rack(const struct sock *sk)
2098 {
2099 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2100 TCP_RACK_LOSS_DETECTION;
2101 }
2102
2103 /* If we detect SACK reneging, forget all SACK information
2104 * and reset tags completely, otherwise preserve SACKs. If receiver
2105 * dropped its ofo queue, we will know this due to reneging detection.
2106 */
tcp_timeout_mark_lost(struct sock * sk)2107 static void tcp_timeout_mark_lost(struct sock *sk)
2108 {
2109 struct tcp_sock *tp = tcp_sk(sk);
2110 struct sk_buff *skb, *head;
2111 bool is_reneg; /* is receiver reneging on SACKs? */
2112
2113 head = tcp_rtx_queue_head(sk);
2114 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2115 if (is_reneg) {
2116 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2117 tp->sacked_out = 0;
2118 /* Mark SACK reneging until we recover from this loss event. */
2119 tp->is_sack_reneg = 1;
2120 } else if (tcp_is_reno(tp)) {
2121 tcp_reset_reno_sack(tp);
2122 }
2123
2124 skb = head;
2125 skb_rbtree_walk_from(skb) {
2126 if (is_reneg)
2127 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2128 else if (tcp_is_rack(sk) && skb != head &&
2129 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2130 continue; /* Don't mark recently sent ones lost yet */
2131 tcp_mark_skb_lost(sk, skb);
2132 }
2133 tcp_verify_left_out(tp);
2134 tcp_clear_all_retrans_hints(tp);
2135 }
2136
2137 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2138 void tcp_enter_loss(struct sock *sk)
2139 {
2140 const struct inet_connection_sock *icsk = inet_csk(sk);
2141 struct tcp_sock *tp = tcp_sk(sk);
2142 struct net *net = sock_net(sk);
2143 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2144 u8 reordering;
2145
2146 tcp_timeout_mark_lost(sk);
2147
2148 /* Reduce ssthresh if it has not yet been made inside this window. */
2149 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2150 !after(tp->high_seq, tp->snd_una) ||
2151 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2152 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2153 tp->prior_cwnd = tcp_snd_cwnd(tp);
2154 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2155 tcp_ca_event(sk, CA_EVENT_LOSS);
2156 tcp_init_undo(tp);
2157 }
2158 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2159 tp->snd_cwnd_cnt = 0;
2160 tp->snd_cwnd_stamp = tcp_jiffies32;
2161
2162 /* Timeout in disordered state after receiving substantial DUPACKs
2163 * suggests that the degree of reordering is over-estimated.
2164 */
2165 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2166 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2167 tp->sacked_out >= reordering)
2168 tp->reordering = min_t(unsigned int, tp->reordering,
2169 reordering);
2170
2171 tcp_set_ca_state(sk, TCP_CA_Loss);
2172 tp->high_seq = tp->snd_nxt;
2173 tcp_ecn_queue_cwr(tp);
2174
2175 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2176 * loss recovery is underway except recurring timeout(s) on
2177 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2178 */
2179 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2180 (new_recovery || icsk->icsk_retransmits) &&
2181 !inet_csk(sk)->icsk_mtup.probe_size;
2182 }
2183
2184 /* If ACK arrived pointing to a remembered SACK, it means that our
2185 * remembered SACKs do not reflect real state of receiver i.e.
2186 * receiver _host_ is heavily congested (or buggy).
2187 *
2188 * To avoid big spurious retransmission bursts due to transient SACK
2189 * scoreboard oddities that look like reneging, we give the receiver a
2190 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2191 * restore sanity to the SACK scoreboard. If the apparent reneging
2192 * persists until this RTO then we'll clear the SACK scoreboard.
2193 */
tcp_check_sack_reneging(struct sock * sk,int flag)2194 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2195 {
2196 if (flag & FLAG_SACK_RENEGING) {
2197 struct tcp_sock *tp = tcp_sk(sk);
2198 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2199 msecs_to_jiffies(10));
2200
2201 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2202 delay, TCP_RTO_MAX);
2203 return true;
2204 }
2205 return false;
2206 }
2207
2208 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2209 * counter when SACK is enabled (without SACK, sacked_out is used for
2210 * that purpose).
2211 *
2212 * With reordering, holes may still be in flight, so RFC3517 recovery
2213 * uses pure sacked_out (total number of SACKed segments) even though
2214 * it violates the RFC that uses duplicate ACKs, often these are equal
2215 * but when e.g. out-of-window ACKs or packet duplication occurs,
2216 * they differ. Since neither occurs due to loss, TCP should really
2217 * ignore them.
2218 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2219 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2220 {
2221 return tp->sacked_out + 1;
2222 }
2223
2224 /* Linux NewReno/SACK/ECN state machine.
2225 * --------------------------------------
2226 *
2227 * "Open" Normal state, no dubious events, fast path.
2228 * "Disorder" In all the respects it is "Open",
2229 * but requires a bit more attention. It is entered when
2230 * we see some SACKs or dupacks. It is split of "Open"
2231 * mainly to move some processing from fast path to slow one.
2232 * "CWR" CWND was reduced due to some Congestion Notification event.
2233 * It can be ECN, ICMP source quench, local device congestion.
2234 * "Recovery" CWND was reduced, we are fast-retransmitting.
2235 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2236 *
2237 * tcp_fastretrans_alert() is entered:
2238 * - each incoming ACK, if state is not "Open"
2239 * - when arrived ACK is unusual, namely:
2240 * * SACK
2241 * * Duplicate ACK.
2242 * * ECN ECE.
2243 *
2244 * Counting packets in flight is pretty simple.
2245 *
2246 * in_flight = packets_out - left_out + retrans_out
2247 *
2248 * packets_out is SND.NXT-SND.UNA counted in packets.
2249 *
2250 * retrans_out is number of retransmitted segments.
2251 *
2252 * left_out is number of segments left network, but not ACKed yet.
2253 *
2254 * left_out = sacked_out + lost_out
2255 *
2256 * sacked_out: Packets, which arrived to receiver out of order
2257 * and hence not ACKed. With SACKs this number is simply
2258 * amount of SACKed data. Even without SACKs
2259 * it is easy to give pretty reliable estimate of this number,
2260 * counting duplicate ACKs.
2261 *
2262 * lost_out: Packets lost by network. TCP has no explicit
2263 * "loss notification" feedback from network (for now).
2264 * It means that this number can be only _guessed_.
2265 * Actually, it is the heuristics to predict lossage that
2266 * distinguishes different algorithms.
2267 *
2268 * F.e. after RTO, when all the queue is considered as lost,
2269 * lost_out = packets_out and in_flight = retrans_out.
2270 *
2271 * Essentially, we have now a few algorithms detecting
2272 * lost packets.
2273 *
2274 * If the receiver supports SACK:
2275 *
2276 * RFC6675/3517: It is the conventional algorithm. A packet is
2277 * considered lost if the number of higher sequence packets
2278 * SACKed is greater than or equal the DUPACK thoreshold
2279 * (reordering). This is implemented in tcp_mark_head_lost and
2280 * tcp_update_scoreboard.
2281 *
2282 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2283 * (2017-) that checks timing instead of counting DUPACKs.
2284 * Essentially a packet is considered lost if it's not S/ACKed
2285 * after RTT + reordering_window, where both metrics are
2286 * dynamically measured and adjusted. This is implemented in
2287 * tcp_rack_mark_lost.
2288 *
2289 * If the receiver does not support SACK:
2290 *
2291 * NewReno (RFC6582): in Recovery we assume that one segment
2292 * is lost (classic Reno). While we are in Recovery and
2293 * a partial ACK arrives, we assume that one more packet
2294 * is lost (NewReno). This heuristics are the same in NewReno
2295 * and SACK.
2296 *
2297 * Really tricky (and requiring careful tuning) part of algorithm
2298 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2299 * The first determines the moment _when_ we should reduce CWND and,
2300 * hence, slow down forward transmission. In fact, it determines the moment
2301 * when we decide that hole is caused by loss, rather than by a reorder.
2302 *
2303 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2304 * holes, caused by lost packets.
2305 *
2306 * And the most logically complicated part of algorithm is undo
2307 * heuristics. We detect false retransmits due to both too early
2308 * fast retransmit (reordering) and underestimated RTO, analyzing
2309 * timestamps and D-SACKs. When we detect that some segments were
2310 * retransmitted by mistake and CWND reduction was wrong, we undo
2311 * window reduction and abort recovery phase. This logic is hidden
2312 * inside several functions named tcp_try_undo_<something>.
2313 */
2314
2315 /* This function decides, when we should leave Disordered state
2316 * and enter Recovery phase, reducing congestion window.
2317 *
2318 * Main question: may we further continue forward transmission
2319 * with the same cwnd?
2320 */
tcp_time_to_recover(struct sock * sk,int flag)2321 static bool tcp_time_to_recover(struct sock *sk, int flag)
2322 {
2323 struct tcp_sock *tp = tcp_sk(sk);
2324
2325 /* Trick#1: The loss is proven. */
2326 if (tp->lost_out)
2327 return true;
2328
2329 /* Not-A-Trick#2 : Classic rule... */
2330 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2331 return true;
2332
2333 return false;
2334 }
2335
2336 /* Detect loss in event "A" above by marking head of queue up as lost.
2337 * For RFC3517 SACK, a segment is considered lost if it
2338 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2339 * the maximum SACKed segments to pass before reaching this limit.
2340 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2341 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2342 {
2343 struct tcp_sock *tp = tcp_sk(sk);
2344 struct sk_buff *skb;
2345 int cnt;
2346 /* Use SACK to deduce losses of new sequences sent during recovery */
2347 const u32 loss_high = tp->snd_nxt;
2348
2349 WARN_ON(packets > tp->packets_out);
2350 skb = tp->lost_skb_hint;
2351 if (skb) {
2352 /* Head already handled? */
2353 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2354 return;
2355 cnt = tp->lost_cnt_hint;
2356 } else {
2357 skb = tcp_rtx_queue_head(sk);
2358 cnt = 0;
2359 }
2360
2361 skb_rbtree_walk_from(skb) {
2362 /* TODO: do this better */
2363 /* this is not the most efficient way to do this... */
2364 tp->lost_skb_hint = skb;
2365 tp->lost_cnt_hint = cnt;
2366
2367 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2368 break;
2369
2370 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2371 cnt += tcp_skb_pcount(skb);
2372
2373 if (cnt > packets)
2374 break;
2375
2376 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2377 tcp_mark_skb_lost(sk, skb);
2378
2379 if (mark_head)
2380 break;
2381 }
2382 tcp_verify_left_out(tp);
2383 }
2384
2385 /* Account newly detected lost packet(s) */
2386
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2387 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2388 {
2389 struct tcp_sock *tp = tcp_sk(sk);
2390
2391 if (tcp_is_sack(tp)) {
2392 int sacked_upto = tp->sacked_out - tp->reordering;
2393 if (sacked_upto >= 0)
2394 tcp_mark_head_lost(sk, sacked_upto, 0);
2395 else if (fast_rexmit)
2396 tcp_mark_head_lost(sk, 1, 1);
2397 }
2398 }
2399
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2400 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2401 {
2402 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2403 before(tp->rx_opt.rcv_tsecr, when);
2404 }
2405
2406 /* skb is spurious retransmitted if the returned timestamp echo
2407 * reply is prior to the skb transmission time
2408 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2409 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2410 const struct sk_buff *skb)
2411 {
2412 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2413 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2414 }
2415
2416 /* Nothing was retransmitted or returned timestamp is less
2417 * than timestamp of the first retransmission.
2418 */
tcp_packet_delayed(const struct tcp_sock * tp)2419 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2420 {
2421 return tp->retrans_stamp &&
2422 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2423 }
2424
2425 /* Undo procedures. */
2426
2427 /* We can clear retrans_stamp when there are no retransmissions in the
2428 * window. It would seem that it is trivially available for us in
2429 * tp->retrans_out, however, that kind of assumptions doesn't consider
2430 * what will happen if errors occur when sending retransmission for the
2431 * second time. ...It could the that such segment has only
2432 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2433 * the head skb is enough except for some reneging corner cases that
2434 * are not worth the effort.
2435 *
2436 * Main reason for all this complexity is the fact that connection dying
2437 * time now depends on the validity of the retrans_stamp, in particular,
2438 * that successive retransmissions of a segment must not advance
2439 * retrans_stamp under any conditions.
2440 */
tcp_any_retrans_done(const struct sock * sk)2441 static bool tcp_any_retrans_done(const struct sock *sk)
2442 {
2443 const struct tcp_sock *tp = tcp_sk(sk);
2444 struct sk_buff *skb;
2445
2446 if (tp->retrans_out)
2447 return true;
2448
2449 skb = tcp_rtx_queue_head(sk);
2450 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2451 return true;
2452
2453 return false;
2454 }
2455
DBGUNDO(struct sock * sk,const char * msg)2456 static void DBGUNDO(struct sock *sk, const char *msg)
2457 {
2458 #if FASTRETRANS_DEBUG > 1
2459 struct tcp_sock *tp = tcp_sk(sk);
2460 struct inet_sock *inet = inet_sk(sk);
2461
2462 if (sk->sk_family == AF_INET) {
2463 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2464 msg,
2465 &inet->inet_daddr, ntohs(inet->inet_dport),
2466 tcp_snd_cwnd(tp), tcp_left_out(tp),
2467 tp->snd_ssthresh, tp->prior_ssthresh,
2468 tp->packets_out);
2469 }
2470 #if IS_ENABLED(CONFIG_IPV6)
2471 else if (sk->sk_family == AF_INET6) {
2472 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2473 msg,
2474 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2475 tcp_snd_cwnd(tp), tcp_left_out(tp),
2476 tp->snd_ssthresh, tp->prior_ssthresh,
2477 tp->packets_out);
2478 }
2479 #endif
2480 #endif
2481 }
2482
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2483 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2484 {
2485 struct tcp_sock *tp = tcp_sk(sk);
2486
2487 if (unmark_loss) {
2488 struct sk_buff *skb;
2489
2490 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2491 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2492 }
2493 tp->lost_out = 0;
2494 tcp_clear_all_retrans_hints(tp);
2495 }
2496
2497 if (tp->prior_ssthresh) {
2498 const struct inet_connection_sock *icsk = inet_csk(sk);
2499
2500 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2501
2502 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2503 tp->snd_ssthresh = tp->prior_ssthresh;
2504 tcp_ecn_withdraw_cwr(tp);
2505 }
2506 }
2507 tp->snd_cwnd_stamp = tcp_jiffies32;
2508 tp->undo_marker = 0;
2509 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2510 }
2511
tcp_may_undo(const struct tcp_sock * tp)2512 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2513 {
2514 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2515 }
2516
tcp_is_non_sack_preventing_reopen(struct sock * sk)2517 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2518 {
2519 struct tcp_sock *tp = tcp_sk(sk);
2520
2521 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2522 /* Hold old state until something *above* high_seq
2523 * is ACKed. For Reno it is MUST to prevent false
2524 * fast retransmits (RFC2582). SACK TCP is safe. */
2525 if (!tcp_any_retrans_done(sk))
2526 tp->retrans_stamp = 0;
2527 return true;
2528 }
2529 return false;
2530 }
2531
2532 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2533 static bool tcp_try_undo_recovery(struct sock *sk)
2534 {
2535 struct tcp_sock *tp = tcp_sk(sk);
2536
2537 if (tcp_may_undo(tp)) {
2538 int mib_idx;
2539
2540 /* Happy end! We did not retransmit anything
2541 * or our original transmission succeeded.
2542 */
2543 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2544 tcp_undo_cwnd_reduction(sk, false);
2545 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2546 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2547 else
2548 mib_idx = LINUX_MIB_TCPFULLUNDO;
2549
2550 NET_INC_STATS(sock_net(sk), mib_idx);
2551 } else if (tp->rack.reo_wnd_persist) {
2552 tp->rack.reo_wnd_persist--;
2553 }
2554 if (tcp_is_non_sack_preventing_reopen(sk))
2555 return true;
2556 tcp_set_ca_state(sk, TCP_CA_Open);
2557 tp->is_sack_reneg = 0;
2558 return false;
2559 }
2560
2561 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2562 static bool tcp_try_undo_dsack(struct sock *sk)
2563 {
2564 struct tcp_sock *tp = tcp_sk(sk);
2565
2566 if (tp->undo_marker && !tp->undo_retrans) {
2567 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2568 tp->rack.reo_wnd_persist + 1);
2569 DBGUNDO(sk, "D-SACK");
2570 tcp_undo_cwnd_reduction(sk, false);
2571 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2572 return true;
2573 }
2574 return false;
2575 }
2576
2577 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2578 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2579 {
2580 struct tcp_sock *tp = tcp_sk(sk);
2581
2582 if (frto_undo || tcp_may_undo(tp)) {
2583 tcp_undo_cwnd_reduction(sk, true);
2584
2585 DBGUNDO(sk, "partial loss");
2586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2587 if (frto_undo)
2588 NET_INC_STATS(sock_net(sk),
2589 LINUX_MIB_TCPSPURIOUSRTOS);
2590 inet_csk(sk)->icsk_retransmits = 0;
2591 if (tcp_is_non_sack_preventing_reopen(sk))
2592 return true;
2593 if (frto_undo || tcp_is_sack(tp)) {
2594 tcp_set_ca_state(sk, TCP_CA_Open);
2595 tp->is_sack_reneg = 0;
2596 }
2597 return true;
2598 }
2599 return false;
2600 }
2601
2602 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2603 * It computes the number of packets to send (sndcnt) based on packets newly
2604 * delivered:
2605 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2606 * cwnd reductions across a full RTT.
2607 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2608 * But when SND_UNA is acked without further losses,
2609 * slow starts cwnd up to ssthresh to speed up the recovery.
2610 */
tcp_init_cwnd_reduction(struct sock * sk)2611 static void tcp_init_cwnd_reduction(struct sock *sk)
2612 {
2613 struct tcp_sock *tp = tcp_sk(sk);
2614
2615 tp->high_seq = tp->snd_nxt;
2616 tp->tlp_high_seq = 0;
2617 tp->snd_cwnd_cnt = 0;
2618 tp->prior_cwnd = tcp_snd_cwnd(tp);
2619 tp->prr_delivered = 0;
2620 tp->prr_out = 0;
2621 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2622 tcp_ecn_queue_cwr(tp);
2623 }
2624
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2625 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2626 {
2627 struct tcp_sock *tp = tcp_sk(sk);
2628 int sndcnt = 0;
2629 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2630
2631 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2632 return;
2633
2634 tp->prr_delivered += newly_acked_sacked;
2635 if (delta < 0) {
2636 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2637 tp->prior_cwnd - 1;
2638 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2639 } else {
2640 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2641 newly_acked_sacked);
2642 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2643 sndcnt++;
2644 sndcnt = min(delta, sndcnt);
2645 }
2646 /* Force a fast retransmit upon entering fast recovery */
2647 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2648 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2649 }
2650
tcp_end_cwnd_reduction(struct sock * sk)2651 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2652 {
2653 struct tcp_sock *tp = tcp_sk(sk);
2654
2655 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2656 return;
2657
2658 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2659 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2660 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2661 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2662 tp->snd_cwnd_stamp = tcp_jiffies32;
2663 }
2664 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2665 }
2666
2667 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2668 void tcp_enter_cwr(struct sock *sk)
2669 {
2670 struct tcp_sock *tp = tcp_sk(sk);
2671
2672 tp->prior_ssthresh = 0;
2673 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2674 tp->undo_marker = 0;
2675 tcp_init_cwnd_reduction(sk);
2676 tcp_set_ca_state(sk, TCP_CA_CWR);
2677 }
2678 }
2679 EXPORT_SYMBOL(tcp_enter_cwr);
2680
tcp_try_keep_open(struct sock * sk)2681 static void tcp_try_keep_open(struct sock *sk)
2682 {
2683 struct tcp_sock *tp = tcp_sk(sk);
2684 int state = TCP_CA_Open;
2685
2686 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2687 state = TCP_CA_Disorder;
2688
2689 if (inet_csk(sk)->icsk_ca_state != state) {
2690 tcp_set_ca_state(sk, state);
2691 tp->high_seq = tp->snd_nxt;
2692 }
2693 }
2694
tcp_try_to_open(struct sock * sk,int flag)2695 static void tcp_try_to_open(struct sock *sk, int flag)
2696 {
2697 struct tcp_sock *tp = tcp_sk(sk);
2698
2699 tcp_verify_left_out(tp);
2700
2701 if (!tcp_any_retrans_done(sk))
2702 tp->retrans_stamp = 0;
2703
2704 if (flag & FLAG_ECE)
2705 tcp_enter_cwr(sk);
2706
2707 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2708 tcp_try_keep_open(sk);
2709 }
2710 }
2711
tcp_mtup_probe_failed(struct sock * sk)2712 static void tcp_mtup_probe_failed(struct sock *sk)
2713 {
2714 struct inet_connection_sock *icsk = inet_csk(sk);
2715
2716 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2717 icsk->icsk_mtup.probe_size = 0;
2718 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2719 }
2720
tcp_mtup_probe_success(struct sock * sk)2721 static void tcp_mtup_probe_success(struct sock *sk)
2722 {
2723 struct tcp_sock *tp = tcp_sk(sk);
2724 struct inet_connection_sock *icsk = inet_csk(sk);
2725 u64 val;
2726
2727 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2728
2729 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2730 do_div(val, icsk->icsk_mtup.probe_size);
2731 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2732 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2733
2734 tp->snd_cwnd_cnt = 0;
2735 tp->snd_cwnd_stamp = tcp_jiffies32;
2736 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2737
2738 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2739 icsk->icsk_mtup.probe_size = 0;
2740 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2741 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2742 }
2743
2744 /* Do a simple retransmit without using the backoff mechanisms in
2745 * tcp_timer. This is used for path mtu discovery.
2746 * The socket is already locked here.
2747 */
tcp_simple_retransmit(struct sock * sk)2748 void tcp_simple_retransmit(struct sock *sk)
2749 {
2750 const struct inet_connection_sock *icsk = inet_csk(sk);
2751 struct tcp_sock *tp = tcp_sk(sk);
2752 struct sk_buff *skb;
2753 int mss;
2754
2755 /* A fastopen SYN request is stored as two separate packets within
2756 * the retransmit queue, this is done by tcp_send_syn_data().
2757 * As a result simply checking the MSS of the frames in the queue
2758 * will not work for the SYN packet.
2759 *
2760 * Us being here is an indication of a path MTU issue so we can
2761 * assume that the fastopen SYN was lost and just mark all the
2762 * frames in the retransmit queue as lost. We will use an MSS of
2763 * -1 to mark all frames as lost, otherwise compute the current MSS.
2764 */
2765 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2766 mss = -1;
2767 else
2768 mss = tcp_current_mss(sk);
2769
2770 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2771 if (tcp_skb_seglen(skb) > mss)
2772 tcp_mark_skb_lost(sk, skb);
2773 }
2774
2775 tcp_clear_retrans_hints_partial(tp);
2776
2777 if (!tp->lost_out)
2778 return;
2779
2780 if (tcp_is_reno(tp))
2781 tcp_limit_reno_sacked(tp);
2782
2783 tcp_verify_left_out(tp);
2784
2785 /* Don't muck with the congestion window here.
2786 * Reason is that we do not increase amount of _data_
2787 * in network, but units changed and effective
2788 * cwnd/ssthresh really reduced now.
2789 */
2790 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2791 tp->high_seq = tp->snd_nxt;
2792 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2793 tp->prior_ssthresh = 0;
2794 tp->undo_marker = 0;
2795 tcp_set_ca_state(sk, TCP_CA_Loss);
2796 }
2797 tcp_xmit_retransmit_queue(sk);
2798 }
2799 EXPORT_SYMBOL(tcp_simple_retransmit);
2800
tcp_enter_recovery(struct sock * sk,bool ece_ack)2801 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2802 {
2803 struct tcp_sock *tp = tcp_sk(sk);
2804 int mib_idx;
2805
2806 if (tcp_is_reno(tp))
2807 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2808 else
2809 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2810
2811 NET_INC_STATS(sock_net(sk), mib_idx);
2812
2813 tp->prior_ssthresh = 0;
2814 tcp_init_undo(tp);
2815
2816 if (!tcp_in_cwnd_reduction(sk)) {
2817 if (!ece_ack)
2818 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2819 tcp_init_cwnd_reduction(sk);
2820 }
2821 tcp_set_ca_state(sk, TCP_CA_Recovery);
2822 }
2823
2824 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2825 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2826 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2827 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2828 int *rexmit)
2829 {
2830 struct tcp_sock *tp = tcp_sk(sk);
2831 bool recovered = !before(tp->snd_una, tp->high_seq);
2832
2833 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2834 tcp_try_undo_loss(sk, false))
2835 return;
2836
2837 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2838 /* Step 3.b. A timeout is spurious if not all data are
2839 * lost, i.e., never-retransmitted data are (s)acked.
2840 */
2841 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2842 tcp_try_undo_loss(sk, true))
2843 return;
2844
2845 if (after(tp->snd_nxt, tp->high_seq)) {
2846 if (flag & FLAG_DATA_SACKED || num_dupack)
2847 tp->frto = 0; /* Step 3.a. loss was real */
2848 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2849 tp->high_seq = tp->snd_nxt;
2850 /* Step 2.b. Try send new data (but deferred until cwnd
2851 * is updated in tcp_ack()). Otherwise fall back to
2852 * the conventional recovery.
2853 */
2854 if (!tcp_write_queue_empty(sk) &&
2855 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2856 *rexmit = REXMIT_NEW;
2857 return;
2858 }
2859 tp->frto = 0;
2860 }
2861 }
2862
2863 if (recovered) {
2864 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2865 tcp_try_undo_recovery(sk);
2866 return;
2867 }
2868 if (tcp_is_reno(tp)) {
2869 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2870 * delivered. Lower inflight to clock out (re)tranmissions.
2871 */
2872 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2873 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2874 else if (flag & FLAG_SND_UNA_ADVANCED)
2875 tcp_reset_reno_sack(tp);
2876 }
2877 *rexmit = REXMIT_LOST;
2878 }
2879
tcp_force_fast_retransmit(struct sock * sk)2880 static bool tcp_force_fast_retransmit(struct sock *sk)
2881 {
2882 struct tcp_sock *tp = tcp_sk(sk);
2883
2884 return after(tcp_highest_sack_seq(tp),
2885 tp->snd_una + tp->reordering * tp->mss_cache);
2886 }
2887
2888 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2889 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2890 bool *do_lost)
2891 {
2892 struct tcp_sock *tp = tcp_sk(sk);
2893
2894 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2895 /* Plain luck! Hole if filled with delayed
2896 * packet, rather than with a retransmit. Check reordering.
2897 */
2898 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2899
2900 /* We are getting evidence that the reordering degree is higher
2901 * than we realized. If there are no retransmits out then we
2902 * can undo. Otherwise we clock out new packets but do not
2903 * mark more packets lost or retransmit more.
2904 */
2905 if (tp->retrans_out)
2906 return true;
2907
2908 if (!tcp_any_retrans_done(sk))
2909 tp->retrans_stamp = 0;
2910
2911 DBGUNDO(sk, "partial recovery");
2912 tcp_undo_cwnd_reduction(sk, true);
2913 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2914 tcp_try_keep_open(sk);
2915 } else {
2916 /* Partial ACK arrived. Force fast retransmit. */
2917 *do_lost = tcp_force_fast_retransmit(sk);
2918 }
2919 return false;
2920 }
2921
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2922 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2923 {
2924 struct tcp_sock *tp = tcp_sk(sk);
2925
2926 if (tcp_rtx_queue_empty(sk))
2927 return;
2928
2929 if (unlikely(tcp_is_reno(tp))) {
2930 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2931 } else if (tcp_is_rack(sk)) {
2932 u32 prior_retrans = tp->retrans_out;
2933
2934 if (tcp_rack_mark_lost(sk))
2935 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2936 if (prior_retrans > tp->retrans_out)
2937 *ack_flag |= FLAG_LOST_RETRANS;
2938 }
2939 }
2940
2941 /* Process an event, which can update packets-in-flight not trivially.
2942 * Main goal of this function is to calculate new estimate for left_out,
2943 * taking into account both packets sitting in receiver's buffer and
2944 * packets lost by network.
2945 *
2946 * Besides that it updates the congestion state when packet loss or ECN
2947 * is detected. But it does not reduce the cwnd, it is done by the
2948 * congestion control later.
2949 *
2950 * It does _not_ decide what to send, it is made in function
2951 * tcp_xmit_retransmit_queue().
2952 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2953 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2954 int num_dupack, int *ack_flag, int *rexmit)
2955 {
2956 struct inet_connection_sock *icsk = inet_csk(sk);
2957 struct tcp_sock *tp = tcp_sk(sk);
2958 int fast_rexmit = 0, flag = *ack_flag;
2959 bool ece_ack = flag & FLAG_ECE;
2960 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2961 tcp_force_fast_retransmit(sk));
2962
2963 if (!tp->packets_out && tp->sacked_out)
2964 tp->sacked_out = 0;
2965
2966 /* Now state machine starts.
2967 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2968 if (ece_ack)
2969 tp->prior_ssthresh = 0;
2970
2971 /* B. In all the states check for reneging SACKs. */
2972 if (tcp_check_sack_reneging(sk, flag))
2973 return;
2974
2975 /* C. Check consistency of the current state. */
2976 tcp_verify_left_out(tp);
2977
2978 /* D. Check state exit conditions. State can be terminated
2979 * when high_seq is ACKed. */
2980 if (icsk->icsk_ca_state == TCP_CA_Open) {
2981 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2982 tp->retrans_stamp = 0;
2983 } else if (!before(tp->snd_una, tp->high_seq)) {
2984 switch (icsk->icsk_ca_state) {
2985 case TCP_CA_CWR:
2986 /* CWR is to be held something *above* high_seq
2987 * is ACKed for CWR bit to reach receiver. */
2988 if (tp->snd_una != tp->high_seq) {
2989 tcp_end_cwnd_reduction(sk);
2990 tcp_set_ca_state(sk, TCP_CA_Open);
2991 }
2992 break;
2993
2994 case TCP_CA_Recovery:
2995 if (tcp_is_reno(tp))
2996 tcp_reset_reno_sack(tp);
2997 if (tcp_try_undo_recovery(sk))
2998 return;
2999 tcp_end_cwnd_reduction(sk);
3000 break;
3001 }
3002 }
3003
3004 /* E. Process state. */
3005 switch (icsk->icsk_ca_state) {
3006 case TCP_CA_Recovery:
3007 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3008 if (tcp_is_reno(tp))
3009 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3010 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3011 return;
3012
3013 if (tcp_try_undo_dsack(sk))
3014 tcp_try_keep_open(sk);
3015
3016 tcp_identify_packet_loss(sk, ack_flag);
3017 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3018 if (!tcp_time_to_recover(sk, flag))
3019 return;
3020 /* Undo reverts the recovery state. If loss is evident,
3021 * starts a new recovery (e.g. reordering then loss);
3022 */
3023 tcp_enter_recovery(sk, ece_ack);
3024 }
3025 break;
3026 case TCP_CA_Loss:
3027 tcp_process_loss(sk, flag, num_dupack, rexmit);
3028 tcp_identify_packet_loss(sk, ack_flag);
3029 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3030 (*ack_flag & FLAG_LOST_RETRANS)))
3031 return;
3032 /* Change state if cwnd is undone or retransmits are lost */
3033 fallthrough;
3034 default:
3035 if (tcp_is_reno(tp)) {
3036 if (flag & FLAG_SND_UNA_ADVANCED)
3037 tcp_reset_reno_sack(tp);
3038 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3039 }
3040
3041 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3042 tcp_try_undo_dsack(sk);
3043
3044 tcp_identify_packet_loss(sk, ack_flag);
3045 if (!tcp_time_to_recover(sk, flag)) {
3046 tcp_try_to_open(sk, flag);
3047 return;
3048 }
3049
3050 /* MTU probe failure: don't reduce cwnd */
3051 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3052 icsk->icsk_mtup.probe_size &&
3053 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3054 tcp_mtup_probe_failed(sk);
3055 /* Restores the reduction we did in tcp_mtup_probe() */
3056 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3057 tcp_simple_retransmit(sk);
3058 return;
3059 }
3060
3061 /* Otherwise enter Recovery state */
3062 tcp_enter_recovery(sk, ece_ack);
3063 fast_rexmit = 1;
3064 }
3065
3066 if (!tcp_is_rack(sk) && do_lost)
3067 tcp_update_scoreboard(sk, fast_rexmit);
3068 *rexmit = REXMIT_LOST;
3069 }
3070
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3071 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3072 {
3073 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3074 struct tcp_sock *tp = tcp_sk(sk);
3075
3076 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3077 /* If the remote keeps returning delayed ACKs, eventually
3078 * the min filter would pick it up and overestimate the
3079 * prop. delay when it expires. Skip suspected delayed ACKs.
3080 */
3081 return;
3082 }
3083 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3084 rtt_us ? : jiffies_to_usecs(1));
3085 }
3086
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3087 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3088 long seq_rtt_us, long sack_rtt_us,
3089 long ca_rtt_us, struct rate_sample *rs)
3090 {
3091 const struct tcp_sock *tp = tcp_sk(sk);
3092
3093 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3094 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3095 * Karn's algorithm forbids taking RTT if some retransmitted data
3096 * is acked (RFC6298).
3097 */
3098 if (seq_rtt_us < 0)
3099 seq_rtt_us = sack_rtt_us;
3100
3101 /* RTTM Rule: A TSecr value received in a segment is used to
3102 * update the averaged RTT measurement only if the segment
3103 * acknowledges some new data, i.e., only if it advances the
3104 * left edge of the send window.
3105 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3106 */
3107 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3108 flag & FLAG_ACKED) {
3109 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3110
3111 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3112 if (!delta)
3113 delta = 1;
3114 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3115 ca_rtt_us = seq_rtt_us;
3116 }
3117 }
3118 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3119 if (seq_rtt_us < 0)
3120 return false;
3121
3122 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3123 * always taken together with ACK, SACK, or TS-opts. Any negative
3124 * values will be skipped with the seq_rtt_us < 0 check above.
3125 */
3126 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3127 tcp_rtt_estimator(sk, seq_rtt_us);
3128 tcp_set_rto(sk);
3129
3130 /* RFC6298: only reset backoff on valid RTT measurement. */
3131 inet_csk(sk)->icsk_backoff = 0;
3132 return true;
3133 }
3134
3135 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3136 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3137 {
3138 struct rate_sample rs;
3139 long rtt_us = -1L;
3140
3141 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3142 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3143
3144 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3145 }
3146
3147
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3148 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3149 {
3150 const struct inet_connection_sock *icsk = inet_csk(sk);
3151
3152 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3153 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3154 }
3155
3156 /* Restart timer after forward progress on connection.
3157 * RFC2988 recommends to restart timer to now+rto.
3158 */
tcp_rearm_rto(struct sock * sk)3159 void tcp_rearm_rto(struct sock *sk)
3160 {
3161 const struct inet_connection_sock *icsk = inet_csk(sk);
3162 struct tcp_sock *tp = tcp_sk(sk);
3163
3164 /* If the retrans timer is currently being used by Fast Open
3165 * for SYN-ACK retrans purpose, stay put.
3166 */
3167 if (rcu_access_pointer(tp->fastopen_rsk))
3168 return;
3169
3170 if (!tp->packets_out) {
3171 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3172 } else {
3173 u32 rto = inet_csk(sk)->icsk_rto;
3174 /* Offset the time elapsed after installing regular RTO */
3175 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3176 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3177 s64 delta_us = tcp_rto_delta_us(sk);
3178 /* delta_us may not be positive if the socket is locked
3179 * when the retrans timer fires and is rescheduled.
3180 */
3181 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3182 }
3183 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3184 TCP_RTO_MAX);
3185 }
3186 }
3187
3188 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3189 static void tcp_set_xmit_timer(struct sock *sk)
3190 {
3191 if (!tcp_schedule_loss_probe(sk, true))
3192 tcp_rearm_rto(sk);
3193 }
3194
3195 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3196 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3197 {
3198 struct tcp_sock *tp = tcp_sk(sk);
3199 u32 packets_acked;
3200
3201 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3202
3203 packets_acked = tcp_skb_pcount(skb);
3204 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3205 return 0;
3206 packets_acked -= tcp_skb_pcount(skb);
3207
3208 if (packets_acked) {
3209 BUG_ON(tcp_skb_pcount(skb) == 0);
3210 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3211 }
3212
3213 return packets_acked;
3214 }
3215
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3216 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3217 const struct sk_buff *ack_skb, u32 prior_snd_una)
3218 {
3219 const struct skb_shared_info *shinfo;
3220
3221 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3222 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3223 return;
3224
3225 shinfo = skb_shinfo(skb);
3226 if (!before(shinfo->tskey, prior_snd_una) &&
3227 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3228 tcp_skb_tsorted_save(skb) {
3229 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3230 } tcp_skb_tsorted_restore(skb);
3231 }
3232 }
3233
3234 /* Remove acknowledged frames from the retransmission queue. If our packet
3235 * is before the ack sequence we can discard it as it's confirmed to have
3236 * arrived at the other end.
3237 */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3238 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3239 u32 prior_fack, u32 prior_snd_una,
3240 struct tcp_sacktag_state *sack, bool ece_ack)
3241 {
3242 const struct inet_connection_sock *icsk = inet_csk(sk);
3243 u64 first_ackt, last_ackt;
3244 struct tcp_sock *tp = tcp_sk(sk);
3245 u32 prior_sacked = tp->sacked_out;
3246 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3247 struct sk_buff *skb, *next;
3248 bool fully_acked = true;
3249 long sack_rtt_us = -1L;
3250 long seq_rtt_us = -1L;
3251 long ca_rtt_us = -1L;
3252 u32 pkts_acked = 0;
3253 bool rtt_update;
3254 int flag = 0;
3255
3256 first_ackt = 0;
3257
3258 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3259 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3260 const u32 start_seq = scb->seq;
3261 u8 sacked = scb->sacked;
3262 u32 acked_pcount;
3263
3264 /* Determine how many packets and what bytes were acked, tso and else */
3265 if (after(scb->end_seq, tp->snd_una)) {
3266 if (tcp_skb_pcount(skb) == 1 ||
3267 !after(tp->snd_una, scb->seq))
3268 break;
3269
3270 acked_pcount = tcp_tso_acked(sk, skb);
3271 if (!acked_pcount)
3272 break;
3273 fully_acked = false;
3274 } else {
3275 acked_pcount = tcp_skb_pcount(skb);
3276 }
3277
3278 if (unlikely(sacked & TCPCB_RETRANS)) {
3279 if (sacked & TCPCB_SACKED_RETRANS)
3280 tp->retrans_out -= acked_pcount;
3281 flag |= FLAG_RETRANS_DATA_ACKED;
3282 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3283 last_ackt = tcp_skb_timestamp_us(skb);
3284 WARN_ON_ONCE(last_ackt == 0);
3285 if (!first_ackt)
3286 first_ackt = last_ackt;
3287
3288 if (before(start_seq, reord))
3289 reord = start_seq;
3290 if (!after(scb->end_seq, tp->high_seq))
3291 flag |= FLAG_ORIG_SACK_ACKED;
3292 }
3293
3294 if (sacked & TCPCB_SACKED_ACKED) {
3295 tp->sacked_out -= acked_pcount;
3296 } else if (tcp_is_sack(tp)) {
3297 tcp_count_delivered(tp, acked_pcount, ece_ack);
3298 if (!tcp_skb_spurious_retrans(tp, skb))
3299 tcp_rack_advance(tp, sacked, scb->end_seq,
3300 tcp_skb_timestamp_us(skb));
3301 }
3302 if (sacked & TCPCB_LOST)
3303 tp->lost_out -= acked_pcount;
3304
3305 tp->packets_out -= acked_pcount;
3306 pkts_acked += acked_pcount;
3307 tcp_rate_skb_delivered(sk, skb, sack->rate);
3308
3309 /* Initial outgoing SYN's get put onto the write_queue
3310 * just like anything else we transmit. It is not
3311 * true data, and if we misinform our callers that
3312 * this ACK acks real data, we will erroneously exit
3313 * connection startup slow start one packet too
3314 * quickly. This is severely frowned upon behavior.
3315 */
3316 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3317 flag |= FLAG_DATA_ACKED;
3318 } else {
3319 flag |= FLAG_SYN_ACKED;
3320 tp->retrans_stamp = 0;
3321 }
3322
3323 if (!fully_acked)
3324 break;
3325
3326 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3327
3328 next = skb_rb_next(skb);
3329 if (unlikely(skb == tp->retransmit_skb_hint))
3330 tp->retransmit_skb_hint = NULL;
3331 if (unlikely(skb == tp->lost_skb_hint))
3332 tp->lost_skb_hint = NULL;
3333 tcp_highest_sack_replace(sk, skb, next);
3334 tcp_rtx_queue_unlink_and_free(skb, sk);
3335 }
3336
3337 if (!skb)
3338 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3339
3340 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3341 tp->snd_up = tp->snd_una;
3342
3343 if (skb) {
3344 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3345 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3346 flag |= FLAG_SACK_RENEGING;
3347 }
3348
3349 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3350 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3351 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3352
3353 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3354 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3355 sack->rate->prior_delivered + 1 == tp->delivered &&
3356 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3357 /* Conservatively mark a delayed ACK. It's typically
3358 * from a lone runt packet over the round trip to
3359 * a receiver w/o out-of-order or CE events.
3360 */
3361 flag |= FLAG_ACK_MAYBE_DELAYED;
3362 }
3363 }
3364 if (sack->first_sackt) {
3365 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3366 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3367 }
3368 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3369 ca_rtt_us, sack->rate);
3370
3371 if (flag & FLAG_ACKED) {
3372 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3373 if (unlikely(icsk->icsk_mtup.probe_size &&
3374 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3375 tcp_mtup_probe_success(sk);
3376 }
3377
3378 if (tcp_is_reno(tp)) {
3379 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3380
3381 /* If any of the cumulatively ACKed segments was
3382 * retransmitted, non-SACK case cannot confirm that
3383 * progress was due to original transmission due to
3384 * lack of TCPCB_SACKED_ACKED bits even if some of
3385 * the packets may have been never retransmitted.
3386 */
3387 if (flag & FLAG_RETRANS_DATA_ACKED)
3388 flag &= ~FLAG_ORIG_SACK_ACKED;
3389 } else {
3390 int delta;
3391
3392 /* Non-retransmitted hole got filled? That's reordering */
3393 if (before(reord, prior_fack))
3394 tcp_check_sack_reordering(sk, reord, 0);
3395
3396 delta = prior_sacked - tp->sacked_out;
3397 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3398 }
3399 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3400 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3401 tcp_skb_timestamp_us(skb))) {
3402 /* Do not re-arm RTO if the sack RTT is measured from data sent
3403 * after when the head was last (re)transmitted. Otherwise the
3404 * timeout may continue to extend in loss recovery.
3405 */
3406 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3407 }
3408
3409 if (icsk->icsk_ca_ops->pkts_acked) {
3410 struct ack_sample sample = { .pkts_acked = pkts_acked,
3411 .rtt_us = sack->rate->rtt_us };
3412
3413 sample.in_flight = tp->mss_cache *
3414 (tp->delivered - sack->rate->prior_delivered);
3415 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3416 }
3417
3418 #if FASTRETRANS_DEBUG > 0
3419 WARN_ON((int)tp->sacked_out < 0);
3420 WARN_ON((int)tp->lost_out < 0);
3421 WARN_ON((int)tp->retrans_out < 0);
3422 if (!tp->packets_out && tcp_is_sack(tp)) {
3423 icsk = inet_csk(sk);
3424 if (tp->lost_out) {
3425 pr_debug("Leak l=%u %d\n",
3426 tp->lost_out, icsk->icsk_ca_state);
3427 tp->lost_out = 0;
3428 }
3429 if (tp->sacked_out) {
3430 pr_debug("Leak s=%u %d\n",
3431 tp->sacked_out, icsk->icsk_ca_state);
3432 tp->sacked_out = 0;
3433 }
3434 if (tp->retrans_out) {
3435 pr_debug("Leak r=%u %d\n",
3436 tp->retrans_out, icsk->icsk_ca_state);
3437 tp->retrans_out = 0;
3438 }
3439 }
3440 #endif
3441 return flag;
3442 }
3443
tcp_ack_probe(struct sock * sk)3444 static void tcp_ack_probe(struct sock *sk)
3445 {
3446 struct inet_connection_sock *icsk = inet_csk(sk);
3447 struct sk_buff *head = tcp_send_head(sk);
3448 const struct tcp_sock *tp = tcp_sk(sk);
3449
3450 /* Was it a usable window open? */
3451 if (!head)
3452 return;
3453 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3454 icsk->icsk_backoff = 0;
3455 icsk->icsk_probes_tstamp = 0;
3456 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3457 /* Socket must be waked up by subsequent tcp_data_snd_check().
3458 * This function is not for random using!
3459 */
3460 } else {
3461 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3462
3463 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3464 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3465 }
3466 }
3467
tcp_ack_is_dubious(const struct sock * sk,const int flag)3468 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3469 {
3470 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3471 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3472 }
3473
3474 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3475 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3476 {
3477 /* If reordering is high then always grow cwnd whenever data is
3478 * delivered regardless of its ordering. Otherwise stay conservative
3479 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3480 * new SACK or ECE mark may first advance cwnd here and later reduce
3481 * cwnd in tcp_fastretrans_alert() based on more states.
3482 */
3483 if (tcp_sk(sk)->reordering >
3484 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3485 return flag & FLAG_FORWARD_PROGRESS;
3486
3487 return flag & FLAG_DATA_ACKED;
3488 }
3489
3490 /* The "ultimate" congestion control function that aims to replace the rigid
3491 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3492 * It's called toward the end of processing an ACK with precise rate
3493 * information. All transmission or retransmission are delayed afterwards.
3494 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3495 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3496 int flag, const struct rate_sample *rs)
3497 {
3498 const struct inet_connection_sock *icsk = inet_csk(sk);
3499
3500 if (icsk->icsk_ca_ops->cong_control) {
3501 icsk->icsk_ca_ops->cong_control(sk, rs);
3502 return;
3503 }
3504
3505 if (tcp_in_cwnd_reduction(sk)) {
3506 /* Reduce cwnd if state mandates */
3507 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3508 } else if (tcp_may_raise_cwnd(sk, flag)) {
3509 /* Advance cwnd if state allows */
3510 tcp_cong_avoid(sk, ack, acked_sacked);
3511 }
3512 tcp_update_pacing_rate(sk);
3513 }
3514
3515 /* Check that window update is acceptable.
3516 * The function assumes that snd_una<=ack<=snd_next.
3517 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3518 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3519 const u32 ack, const u32 ack_seq,
3520 const u32 nwin)
3521 {
3522 return after(ack, tp->snd_una) ||
3523 after(ack_seq, tp->snd_wl1) ||
3524 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3525 }
3526
3527 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3528 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3529 {
3530 u32 delta = ack - tp->snd_una;
3531
3532 sock_owned_by_me((struct sock *)tp);
3533 tp->bytes_acked += delta;
3534 tp->snd_una = ack;
3535 }
3536
3537 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3538 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3539 {
3540 u32 delta = seq - tp->rcv_nxt;
3541
3542 sock_owned_by_me((struct sock *)tp);
3543 tp->bytes_received += delta;
3544 WRITE_ONCE(tp->rcv_nxt, seq);
3545 }
3546
3547 /* Update our send window.
3548 *
3549 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3550 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3551 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3552 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3553 u32 ack_seq)
3554 {
3555 struct tcp_sock *tp = tcp_sk(sk);
3556 int flag = 0;
3557 u32 nwin = ntohs(tcp_hdr(skb)->window);
3558
3559 if (likely(!tcp_hdr(skb)->syn))
3560 nwin <<= tp->rx_opt.snd_wscale;
3561
3562 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3563 flag |= FLAG_WIN_UPDATE;
3564 tcp_update_wl(tp, ack_seq);
3565
3566 if (tp->snd_wnd != nwin) {
3567 tp->snd_wnd = nwin;
3568
3569 /* Note, it is the only place, where
3570 * fast path is recovered for sending TCP.
3571 */
3572 tp->pred_flags = 0;
3573 tcp_fast_path_check(sk);
3574
3575 if (!tcp_write_queue_empty(sk))
3576 tcp_slow_start_after_idle_check(sk);
3577
3578 if (nwin > tp->max_window) {
3579 tp->max_window = nwin;
3580 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3581 }
3582 }
3583 }
3584
3585 tcp_snd_una_update(tp, ack);
3586
3587 return flag;
3588 }
3589
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3590 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3591 u32 *last_oow_ack_time)
3592 {
3593 if (*last_oow_ack_time) {
3594 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3595
3596 if (0 <= elapsed &&
3597 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3598 NET_INC_STATS(net, mib_idx);
3599 return true; /* rate-limited: don't send yet! */
3600 }
3601 }
3602
3603 *last_oow_ack_time = tcp_jiffies32;
3604
3605 return false; /* not rate-limited: go ahead, send dupack now! */
3606 }
3607
3608 /* Return true if we're currently rate-limiting out-of-window ACKs and
3609 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3610 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3611 * attacks that send repeated SYNs or ACKs for the same connection. To
3612 * do this, we do not send a duplicate SYNACK or ACK if the remote
3613 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3614 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3615 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3616 int mib_idx, u32 *last_oow_ack_time)
3617 {
3618 /* Data packets without SYNs are not likely part of an ACK loop. */
3619 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3620 !tcp_hdr(skb)->syn)
3621 return false;
3622
3623 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3624 }
3625
3626 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3627 static void tcp_send_challenge_ack(struct sock *sk)
3628 {
3629 /* unprotected vars, we dont care of overwrites */
3630 static u32 challenge_timestamp;
3631 static unsigned int challenge_count;
3632 struct tcp_sock *tp = tcp_sk(sk);
3633 struct net *net = sock_net(sk);
3634 u32 count, now;
3635
3636 /* First check our per-socket dupack rate limit. */
3637 if (__tcp_oow_rate_limited(net,
3638 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3639 &tp->last_oow_ack_time))
3640 return;
3641
3642 /* Then check host-wide RFC 5961 rate limit. */
3643 now = jiffies / HZ;
3644 if (now != READ_ONCE(challenge_timestamp)) {
3645 u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3646 u32 half = (ack_limit + 1) >> 1;
3647
3648 WRITE_ONCE(challenge_timestamp, now);
3649 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3650 }
3651 count = READ_ONCE(challenge_count);
3652 if (count > 0) {
3653 WRITE_ONCE(challenge_count, count - 1);
3654 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3655 tcp_send_ack(sk);
3656 }
3657 }
3658
tcp_store_ts_recent(struct tcp_sock * tp)3659 static void tcp_store_ts_recent(struct tcp_sock *tp)
3660 {
3661 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3662 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3663 }
3664
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3665 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3666 {
3667 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3668 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3669 * extra check below makes sure this can only happen
3670 * for pure ACK frames. -DaveM
3671 *
3672 * Not only, also it occurs for expired timestamps.
3673 */
3674
3675 if (tcp_paws_check(&tp->rx_opt, 0))
3676 tcp_store_ts_recent(tp);
3677 }
3678 }
3679
3680 /* This routine deals with acks during a TLP episode and ends an episode by
3681 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3682 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3683 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3684 {
3685 struct tcp_sock *tp = tcp_sk(sk);
3686
3687 if (before(ack, tp->tlp_high_seq))
3688 return;
3689
3690 if (!tp->tlp_retrans) {
3691 /* TLP of new data has been acknowledged */
3692 tp->tlp_high_seq = 0;
3693 } else if (flag & FLAG_DSACK_TLP) {
3694 /* This DSACK means original and TLP probe arrived; no loss */
3695 tp->tlp_high_seq = 0;
3696 } else if (after(ack, tp->tlp_high_seq)) {
3697 /* ACK advances: there was a loss, so reduce cwnd. Reset
3698 * tlp_high_seq in tcp_init_cwnd_reduction()
3699 */
3700 tcp_init_cwnd_reduction(sk);
3701 tcp_set_ca_state(sk, TCP_CA_CWR);
3702 tcp_end_cwnd_reduction(sk);
3703 tcp_try_keep_open(sk);
3704 NET_INC_STATS(sock_net(sk),
3705 LINUX_MIB_TCPLOSSPROBERECOVERY);
3706 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3707 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3708 /* Pure dupack: original and TLP probe arrived; no loss */
3709 tp->tlp_high_seq = 0;
3710 }
3711 }
3712
tcp_in_ack_event(struct sock * sk,u32 flags)3713 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3714 {
3715 const struct inet_connection_sock *icsk = inet_csk(sk);
3716
3717 if (icsk->icsk_ca_ops->in_ack_event)
3718 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3719 }
3720
3721 /* Congestion control has updated the cwnd already. So if we're in
3722 * loss recovery then now we do any new sends (for FRTO) or
3723 * retransmits (for CA_Loss or CA_recovery) that make sense.
3724 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3725 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3726 {
3727 struct tcp_sock *tp = tcp_sk(sk);
3728
3729 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3730 return;
3731
3732 if (unlikely(rexmit == REXMIT_NEW)) {
3733 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3734 TCP_NAGLE_OFF);
3735 if (after(tp->snd_nxt, tp->high_seq))
3736 return;
3737 tp->frto = 0;
3738 }
3739 tcp_xmit_retransmit_queue(sk);
3740 }
3741
3742 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3743 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3744 {
3745 const struct net *net = sock_net(sk);
3746 struct tcp_sock *tp = tcp_sk(sk);
3747 u32 delivered;
3748
3749 delivered = tp->delivered - prior_delivered;
3750 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3751 if (flag & FLAG_ECE)
3752 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3753
3754 return delivered;
3755 }
3756
3757 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3758 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3759 {
3760 struct inet_connection_sock *icsk = inet_csk(sk);
3761 struct tcp_sock *tp = tcp_sk(sk);
3762 struct tcp_sacktag_state sack_state;
3763 struct rate_sample rs = { .prior_delivered = 0 };
3764 u32 prior_snd_una = tp->snd_una;
3765 bool is_sack_reneg = tp->is_sack_reneg;
3766 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3767 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3768 int num_dupack = 0;
3769 int prior_packets = tp->packets_out;
3770 u32 delivered = tp->delivered;
3771 u32 lost = tp->lost;
3772 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3773 u32 prior_fack;
3774
3775 sack_state.first_sackt = 0;
3776 sack_state.rate = &rs;
3777 sack_state.sack_delivered = 0;
3778
3779 /* We very likely will need to access rtx queue. */
3780 prefetch(sk->tcp_rtx_queue.rb_node);
3781
3782 /* If the ack is older than previous acks
3783 * then we can probably ignore it.
3784 */
3785 if (before(ack, prior_snd_una)) {
3786 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3787 if (before(ack, prior_snd_una - tp->max_window)) {
3788 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3789 tcp_send_challenge_ack(sk);
3790 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3791 }
3792 goto old_ack;
3793 }
3794
3795 /* If the ack includes data we haven't sent yet, discard
3796 * this segment (RFC793 Section 3.9).
3797 */
3798 if (after(ack, tp->snd_nxt))
3799 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3800
3801 if (after(ack, prior_snd_una)) {
3802 flag |= FLAG_SND_UNA_ADVANCED;
3803 icsk->icsk_retransmits = 0;
3804
3805 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3806 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3807 if (icsk->icsk_clean_acked)
3808 icsk->icsk_clean_acked(sk, ack);
3809 #endif
3810 }
3811
3812 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3813 rs.prior_in_flight = tcp_packets_in_flight(tp);
3814
3815 /* ts_recent update must be made after we are sure that the packet
3816 * is in window.
3817 */
3818 if (flag & FLAG_UPDATE_TS_RECENT)
3819 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3820
3821 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3822 FLAG_SND_UNA_ADVANCED) {
3823 /* Window is constant, pure forward advance.
3824 * No more checks are required.
3825 * Note, we use the fact that SND.UNA>=SND.WL2.
3826 */
3827 tcp_update_wl(tp, ack_seq);
3828 tcp_snd_una_update(tp, ack);
3829 flag |= FLAG_WIN_UPDATE;
3830
3831 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3832
3833 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3834 } else {
3835 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3836
3837 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3838 flag |= FLAG_DATA;
3839 else
3840 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3841
3842 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3843
3844 if (TCP_SKB_CB(skb)->sacked)
3845 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3846 &sack_state);
3847
3848 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3849 flag |= FLAG_ECE;
3850 ack_ev_flags |= CA_ACK_ECE;
3851 }
3852
3853 if (sack_state.sack_delivered)
3854 tcp_count_delivered(tp, sack_state.sack_delivered,
3855 flag & FLAG_ECE);
3856
3857 if (flag & FLAG_WIN_UPDATE)
3858 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3859
3860 tcp_in_ack_event(sk, ack_ev_flags);
3861 }
3862
3863 /* This is a deviation from RFC3168 since it states that:
3864 * "When the TCP data sender is ready to set the CWR bit after reducing
3865 * the congestion window, it SHOULD set the CWR bit only on the first
3866 * new data packet that it transmits."
3867 * We accept CWR on pure ACKs to be more robust
3868 * with widely-deployed TCP implementations that do this.
3869 */
3870 tcp_ecn_accept_cwr(sk, skb);
3871
3872 /* We passed data and got it acked, remove any soft error
3873 * log. Something worked...
3874 */
3875 sk->sk_err_soft = 0;
3876 icsk->icsk_probes_out = 0;
3877 tp->rcv_tstamp = tcp_jiffies32;
3878 if (!prior_packets)
3879 goto no_queue;
3880
3881 /* See if we can take anything off of the retransmit queue. */
3882 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3883 &sack_state, flag & FLAG_ECE);
3884
3885 tcp_rack_update_reo_wnd(sk, &rs);
3886
3887 if (tp->tlp_high_seq)
3888 tcp_process_tlp_ack(sk, ack, flag);
3889
3890 if (tcp_ack_is_dubious(sk, flag)) {
3891 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3892 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3893 num_dupack = 1;
3894 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3895 if (!(flag & FLAG_DATA))
3896 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3897 }
3898 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3899 &rexmit);
3900 }
3901
3902 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3903 if (flag & FLAG_SET_XMIT_TIMER)
3904 tcp_set_xmit_timer(sk);
3905
3906 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3907 sk_dst_confirm(sk);
3908
3909 delivered = tcp_newly_delivered(sk, delivered, flag);
3910 lost = tp->lost - lost; /* freshly marked lost */
3911 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3912 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3913 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3914 tcp_xmit_recovery(sk, rexmit);
3915 return 1;
3916
3917 no_queue:
3918 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3919 if (flag & FLAG_DSACKING_ACK) {
3920 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3921 &rexmit);
3922 tcp_newly_delivered(sk, delivered, flag);
3923 }
3924 /* If this ack opens up a zero window, clear backoff. It was
3925 * being used to time the probes, and is probably far higher than
3926 * it needs to be for normal retransmission.
3927 */
3928 tcp_ack_probe(sk);
3929
3930 if (tp->tlp_high_seq)
3931 tcp_process_tlp_ack(sk, ack, flag);
3932 return 1;
3933
3934 old_ack:
3935 /* If data was SACKed, tag it and see if we should send more data.
3936 * If data was DSACKed, see if we can undo a cwnd reduction.
3937 */
3938 if (TCP_SKB_CB(skb)->sacked) {
3939 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3940 &sack_state);
3941 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3942 &rexmit);
3943 tcp_newly_delivered(sk, delivered, flag);
3944 tcp_xmit_recovery(sk, rexmit);
3945 }
3946
3947 return 0;
3948 }
3949
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3950 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3951 bool syn, struct tcp_fastopen_cookie *foc,
3952 bool exp_opt)
3953 {
3954 /* Valid only in SYN or SYN-ACK with an even length. */
3955 if (!foc || !syn || len < 0 || (len & 1))
3956 return;
3957
3958 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3959 len <= TCP_FASTOPEN_COOKIE_MAX)
3960 memcpy(foc->val, cookie, len);
3961 else if (len != 0)
3962 len = -1;
3963 foc->len = len;
3964 foc->exp = exp_opt;
3965 }
3966
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3967 static bool smc_parse_options(const struct tcphdr *th,
3968 struct tcp_options_received *opt_rx,
3969 const unsigned char *ptr,
3970 int opsize)
3971 {
3972 #if IS_ENABLED(CONFIG_SMC)
3973 if (static_branch_unlikely(&tcp_have_smc)) {
3974 if (th->syn && !(opsize & 1) &&
3975 opsize >= TCPOLEN_EXP_SMC_BASE &&
3976 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3977 opt_rx->smc_ok = 1;
3978 return true;
3979 }
3980 }
3981 #endif
3982 return false;
3983 }
3984
3985 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3986 * value on success.
3987 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3988 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3989 {
3990 const unsigned char *ptr = (const unsigned char *)(th + 1);
3991 int length = (th->doff * 4) - sizeof(struct tcphdr);
3992 u16 mss = 0;
3993
3994 while (length > 0) {
3995 int opcode = *ptr++;
3996 int opsize;
3997
3998 switch (opcode) {
3999 case TCPOPT_EOL:
4000 return mss;
4001 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4002 length--;
4003 continue;
4004 default:
4005 if (length < 2)
4006 return mss;
4007 opsize = *ptr++;
4008 if (opsize < 2) /* "silly options" */
4009 return mss;
4010 if (opsize > length)
4011 return mss; /* fail on partial options */
4012 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4013 u16 in_mss = get_unaligned_be16(ptr);
4014
4015 if (in_mss) {
4016 if (user_mss && user_mss < in_mss)
4017 in_mss = user_mss;
4018 mss = in_mss;
4019 }
4020 }
4021 ptr += opsize - 2;
4022 length -= opsize;
4023 }
4024 }
4025 return mss;
4026 }
4027
4028 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4029 * But, this can also be called on packets in the established flow when
4030 * the fast version below fails.
4031 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4032 void tcp_parse_options(const struct net *net,
4033 const struct sk_buff *skb,
4034 struct tcp_options_received *opt_rx, int estab,
4035 struct tcp_fastopen_cookie *foc)
4036 {
4037 const unsigned char *ptr;
4038 const struct tcphdr *th = tcp_hdr(skb);
4039 int length = (th->doff * 4) - sizeof(struct tcphdr);
4040
4041 ptr = (const unsigned char *)(th + 1);
4042 opt_rx->saw_tstamp = 0;
4043 opt_rx->saw_unknown = 0;
4044
4045 while (length > 0) {
4046 int opcode = *ptr++;
4047 int opsize;
4048
4049 switch (opcode) {
4050 case TCPOPT_EOL:
4051 return;
4052 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4053 length--;
4054 continue;
4055 default:
4056 if (length < 2)
4057 return;
4058 opsize = *ptr++;
4059 if (opsize < 2) /* "silly options" */
4060 return;
4061 if (opsize > length)
4062 return; /* don't parse partial options */
4063 switch (opcode) {
4064 case TCPOPT_MSS:
4065 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4066 u16 in_mss = get_unaligned_be16(ptr);
4067 if (in_mss) {
4068 if (opt_rx->user_mss &&
4069 opt_rx->user_mss < in_mss)
4070 in_mss = opt_rx->user_mss;
4071 opt_rx->mss_clamp = in_mss;
4072 }
4073 }
4074 break;
4075 case TCPOPT_WINDOW:
4076 if (opsize == TCPOLEN_WINDOW && th->syn &&
4077 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4078 __u8 snd_wscale = *(__u8 *)ptr;
4079 opt_rx->wscale_ok = 1;
4080 if (snd_wscale > TCP_MAX_WSCALE) {
4081 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4082 __func__,
4083 snd_wscale,
4084 TCP_MAX_WSCALE);
4085 snd_wscale = TCP_MAX_WSCALE;
4086 }
4087 opt_rx->snd_wscale = snd_wscale;
4088 }
4089 break;
4090 case TCPOPT_TIMESTAMP:
4091 if ((opsize == TCPOLEN_TIMESTAMP) &&
4092 ((estab && opt_rx->tstamp_ok) ||
4093 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4094 opt_rx->saw_tstamp = 1;
4095 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4096 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4097 }
4098 break;
4099 case TCPOPT_SACK_PERM:
4100 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4101 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4102 opt_rx->sack_ok = TCP_SACK_SEEN;
4103 tcp_sack_reset(opt_rx);
4104 }
4105 break;
4106
4107 case TCPOPT_SACK:
4108 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4109 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4110 opt_rx->sack_ok) {
4111 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4112 }
4113 break;
4114 #ifdef CONFIG_TCP_MD5SIG
4115 case TCPOPT_MD5SIG:
4116 /*
4117 * The MD5 Hash has already been
4118 * checked (see tcp_v{4,6}_do_rcv()).
4119 */
4120 break;
4121 #endif
4122 case TCPOPT_FASTOPEN:
4123 tcp_parse_fastopen_option(
4124 opsize - TCPOLEN_FASTOPEN_BASE,
4125 ptr, th->syn, foc, false);
4126 break;
4127
4128 case TCPOPT_EXP:
4129 /* Fast Open option shares code 254 using a
4130 * 16 bits magic number.
4131 */
4132 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4133 get_unaligned_be16(ptr) ==
4134 TCPOPT_FASTOPEN_MAGIC) {
4135 tcp_parse_fastopen_option(opsize -
4136 TCPOLEN_EXP_FASTOPEN_BASE,
4137 ptr + 2, th->syn, foc, true);
4138 break;
4139 }
4140
4141 if (smc_parse_options(th, opt_rx, ptr, opsize))
4142 break;
4143
4144 opt_rx->saw_unknown = 1;
4145 break;
4146
4147 default:
4148 opt_rx->saw_unknown = 1;
4149 }
4150 ptr += opsize-2;
4151 length -= opsize;
4152 }
4153 }
4154 }
4155 EXPORT_SYMBOL(tcp_parse_options);
4156
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4157 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4158 {
4159 const __be32 *ptr = (const __be32 *)(th + 1);
4160
4161 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4162 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4163 tp->rx_opt.saw_tstamp = 1;
4164 ++ptr;
4165 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4166 ++ptr;
4167 if (*ptr)
4168 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4169 else
4170 tp->rx_opt.rcv_tsecr = 0;
4171 return true;
4172 }
4173 return false;
4174 }
4175
4176 /* Fast parse options. This hopes to only see timestamps.
4177 * If it is wrong it falls back on tcp_parse_options().
4178 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4179 static bool tcp_fast_parse_options(const struct net *net,
4180 const struct sk_buff *skb,
4181 const struct tcphdr *th, struct tcp_sock *tp)
4182 {
4183 /* In the spirit of fast parsing, compare doff directly to constant
4184 * values. Because equality is used, short doff can be ignored here.
4185 */
4186 if (th->doff == (sizeof(*th) / 4)) {
4187 tp->rx_opt.saw_tstamp = 0;
4188 return false;
4189 } else if (tp->rx_opt.tstamp_ok &&
4190 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4191 if (tcp_parse_aligned_timestamp(tp, th))
4192 return true;
4193 }
4194
4195 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4196 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4197 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4198
4199 return true;
4200 }
4201
4202 #ifdef CONFIG_TCP_MD5SIG
4203 /*
4204 * Parse MD5 Signature option
4205 */
tcp_parse_md5sig_option(const struct tcphdr * th)4206 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4207 {
4208 int length = (th->doff << 2) - sizeof(*th);
4209 const u8 *ptr = (const u8 *)(th + 1);
4210
4211 /* If not enough data remaining, we can short cut */
4212 while (length >= TCPOLEN_MD5SIG) {
4213 int opcode = *ptr++;
4214 int opsize;
4215
4216 switch (opcode) {
4217 case TCPOPT_EOL:
4218 return NULL;
4219 case TCPOPT_NOP:
4220 length--;
4221 continue;
4222 default:
4223 opsize = *ptr++;
4224 if (opsize < 2 || opsize > length)
4225 return NULL;
4226 if (opcode == TCPOPT_MD5SIG)
4227 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4228 }
4229 ptr += opsize - 2;
4230 length -= opsize;
4231 }
4232 return NULL;
4233 }
4234 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4235 #endif
4236
4237 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4238 *
4239 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4240 * it can pass through stack. So, the following predicate verifies that
4241 * this segment is not used for anything but congestion avoidance or
4242 * fast retransmit. Moreover, we even are able to eliminate most of such
4243 * second order effects, if we apply some small "replay" window (~RTO)
4244 * to timestamp space.
4245 *
4246 * All these measures still do not guarantee that we reject wrapped ACKs
4247 * on networks with high bandwidth, when sequence space is recycled fastly,
4248 * but it guarantees that such events will be very rare and do not affect
4249 * connection seriously. This doesn't look nice, but alas, PAWS is really
4250 * buggy extension.
4251 *
4252 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4253 * states that events when retransmit arrives after original data are rare.
4254 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4255 * the biggest problem on large power networks even with minor reordering.
4256 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4257 * up to bandwidth of 18Gigabit/sec. 8) ]
4258 */
4259
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4260 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4261 {
4262 const struct tcp_sock *tp = tcp_sk(sk);
4263 const struct tcphdr *th = tcp_hdr(skb);
4264 u32 seq = TCP_SKB_CB(skb)->seq;
4265 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4266
4267 return (/* 1. Pure ACK with correct sequence number. */
4268 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4269
4270 /* 2. ... and duplicate ACK. */
4271 ack == tp->snd_una &&
4272
4273 /* 3. ... and does not update window. */
4274 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4275
4276 /* 4. ... and sits in replay window. */
4277 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4278 }
4279
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4280 static inline bool tcp_paws_discard(const struct sock *sk,
4281 const struct sk_buff *skb)
4282 {
4283 const struct tcp_sock *tp = tcp_sk(sk);
4284
4285 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4286 !tcp_disordered_ack(sk, skb);
4287 }
4288
4289 /* Check segment sequence number for validity.
4290 *
4291 * Segment controls are considered valid, if the segment
4292 * fits to the window after truncation to the window. Acceptability
4293 * of data (and SYN, FIN, of course) is checked separately.
4294 * See tcp_data_queue(), for example.
4295 *
4296 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4297 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4298 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4299 * (borrowed from freebsd)
4300 */
4301
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4302 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4303 {
4304 return !before(end_seq, tp->rcv_wup) &&
4305 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4306 }
4307
4308 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4309 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4310 {
4311 trace_tcp_receive_reset(sk);
4312
4313 /* mptcp can't tell us to ignore reset pkts,
4314 * so just ignore the return value of mptcp_incoming_options().
4315 */
4316 if (sk_is_mptcp(sk))
4317 mptcp_incoming_options(sk, skb);
4318
4319 /* We want the right error as BSD sees it (and indeed as we do). */
4320 switch (sk->sk_state) {
4321 case TCP_SYN_SENT:
4322 sk->sk_err = ECONNREFUSED;
4323 break;
4324 case TCP_CLOSE_WAIT:
4325 sk->sk_err = EPIPE;
4326 break;
4327 case TCP_CLOSE:
4328 return;
4329 default:
4330 sk->sk_err = ECONNRESET;
4331 }
4332 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4333 smp_wmb();
4334
4335 tcp_write_queue_purge(sk);
4336 tcp_done(sk);
4337
4338 if (!sock_flag(sk, SOCK_DEAD))
4339 sk_error_report(sk);
4340 }
4341
4342 /*
4343 * Process the FIN bit. This now behaves as it is supposed to work
4344 * and the FIN takes effect when it is validly part of sequence
4345 * space. Not before when we get holes.
4346 *
4347 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4348 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4349 * TIME-WAIT)
4350 *
4351 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4352 * close and we go into CLOSING (and later onto TIME-WAIT)
4353 *
4354 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4355 */
tcp_fin(struct sock * sk)4356 void tcp_fin(struct sock *sk)
4357 {
4358 struct tcp_sock *tp = tcp_sk(sk);
4359
4360 inet_csk_schedule_ack(sk);
4361
4362 sk->sk_shutdown |= RCV_SHUTDOWN;
4363 sock_set_flag(sk, SOCK_DONE);
4364
4365 switch (sk->sk_state) {
4366 case TCP_SYN_RECV:
4367 case TCP_ESTABLISHED:
4368 /* Move to CLOSE_WAIT */
4369 tcp_set_state(sk, TCP_CLOSE_WAIT);
4370 inet_csk_enter_pingpong_mode(sk);
4371 break;
4372
4373 case TCP_CLOSE_WAIT:
4374 case TCP_CLOSING:
4375 /* Received a retransmission of the FIN, do
4376 * nothing.
4377 */
4378 break;
4379 case TCP_LAST_ACK:
4380 /* RFC793: Remain in the LAST-ACK state. */
4381 break;
4382
4383 case TCP_FIN_WAIT1:
4384 /* This case occurs when a simultaneous close
4385 * happens, we must ack the received FIN and
4386 * enter the CLOSING state.
4387 */
4388 tcp_send_ack(sk);
4389 tcp_set_state(sk, TCP_CLOSING);
4390 break;
4391 case TCP_FIN_WAIT2:
4392 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4393 tcp_send_ack(sk);
4394 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4395 break;
4396 default:
4397 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4398 * cases we should never reach this piece of code.
4399 */
4400 pr_err("%s: Impossible, sk->sk_state=%d\n",
4401 __func__, sk->sk_state);
4402 break;
4403 }
4404
4405 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4406 * Probably, we should reset in this case. For now drop them.
4407 */
4408 skb_rbtree_purge(&tp->out_of_order_queue);
4409 if (tcp_is_sack(tp))
4410 tcp_sack_reset(&tp->rx_opt);
4411 sk_mem_reclaim(sk);
4412
4413 if (!sock_flag(sk, SOCK_DEAD)) {
4414 sk->sk_state_change(sk);
4415
4416 /* Do not send POLL_HUP for half duplex close. */
4417 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4418 sk->sk_state == TCP_CLOSE)
4419 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4420 else
4421 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4422 }
4423 }
4424
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4425 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4426 u32 end_seq)
4427 {
4428 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4429 if (before(seq, sp->start_seq))
4430 sp->start_seq = seq;
4431 if (after(end_seq, sp->end_seq))
4432 sp->end_seq = end_seq;
4433 return true;
4434 }
4435 return false;
4436 }
4437
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4438 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4439 {
4440 struct tcp_sock *tp = tcp_sk(sk);
4441
4442 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4443 int mib_idx;
4444
4445 if (before(seq, tp->rcv_nxt))
4446 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4447 else
4448 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4449
4450 NET_INC_STATS(sock_net(sk), mib_idx);
4451
4452 tp->rx_opt.dsack = 1;
4453 tp->duplicate_sack[0].start_seq = seq;
4454 tp->duplicate_sack[0].end_seq = end_seq;
4455 }
4456 }
4457
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4458 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4459 {
4460 struct tcp_sock *tp = tcp_sk(sk);
4461
4462 if (!tp->rx_opt.dsack)
4463 tcp_dsack_set(sk, seq, end_seq);
4464 else
4465 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4466 }
4467
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4468 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4469 {
4470 /* When the ACK path fails or drops most ACKs, the sender would
4471 * timeout and spuriously retransmit the same segment repeatedly.
4472 * The receiver remembers and reflects via DSACKs. Leverage the
4473 * DSACK state and change the txhash to re-route speculatively.
4474 */
4475 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4476 sk_rethink_txhash(sk))
4477 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4478 }
4479
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4480 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4481 {
4482 struct tcp_sock *tp = tcp_sk(sk);
4483
4484 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4485 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4486 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4487 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4488
4489 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4490 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4491
4492 tcp_rcv_spurious_retrans(sk, skb);
4493 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4494 end_seq = tp->rcv_nxt;
4495 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4496 }
4497 }
4498
4499 tcp_send_ack(sk);
4500 }
4501
4502 /* These routines update the SACK block as out-of-order packets arrive or
4503 * in-order packets close up the sequence space.
4504 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4505 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4506 {
4507 int this_sack;
4508 struct tcp_sack_block *sp = &tp->selective_acks[0];
4509 struct tcp_sack_block *swalk = sp + 1;
4510
4511 /* See if the recent change to the first SACK eats into
4512 * or hits the sequence space of other SACK blocks, if so coalesce.
4513 */
4514 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4515 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4516 int i;
4517
4518 /* Zap SWALK, by moving every further SACK up by one slot.
4519 * Decrease num_sacks.
4520 */
4521 tp->rx_opt.num_sacks--;
4522 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4523 sp[i] = sp[i + 1];
4524 continue;
4525 }
4526 this_sack++;
4527 swalk++;
4528 }
4529 }
4530
tcp_sack_compress_send_ack(struct sock * sk)4531 static void tcp_sack_compress_send_ack(struct sock *sk)
4532 {
4533 struct tcp_sock *tp = tcp_sk(sk);
4534
4535 if (!tp->compressed_ack)
4536 return;
4537
4538 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4539 __sock_put(sk);
4540
4541 /* Since we have to send one ack finally,
4542 * substract one from tp->compressed_ack to keep
4543 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4544 */
4545 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4546 tp->compressed_ack - 1);
4547
4548 tp->compressed_ack = 0;
4549 tcp_send_ack(sk);
4550 }
4551
4552 /* Reasonable amount of sack blocks included in TCP SACK option
4553 * The max is 4, but this becomes 3 if TCP timestamps are there.
4554 * Given that SACK packets might be lost, be conservative and use 2.
4555 */
4556 #define TCP_SACK_BLOCKS_EXPECTED 2
4557
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4558 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4559 {
4560 struct tcp_sock *tp = tcp_sk(sk);
4561 struct tcp_sack_block *sp = &tp->selective_acks[0];
4562 int cur_sacks = tp->rx_opt.num_sacks;
4563 int this_sack;
4564
4565 if (!cur_sacks)
4566 goto new_sack;
4567
4568 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4569 if (tcp_sack_extend(sp, seq, end_seq)) {
4570 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4571 tcp_sack_compress_send_ack(sk);
4572 /* Rotate this_sack to the first one. */
4573 for (; this_sack > 0; this_sack--, sp--)
4574 swap(*sp, *(sp - 1));
4575 if (cur_sacks > 1)
4576 tcp_sack_maybe_coalesce(tp);
4577 return;
4578 }
4579 }
4580
4581 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4582 tcp_sack_compress_send_ack(sk);
4583
4584 /* Could not find an adjacent existing SACK, build a new one,
4585 * put it at the front, and shift everyone else down. We
4586 * always know there is at least one SACK present already here.
4587 *
4588 * If the sack array is full, forget about the last one.
4589 */
4590 if (this_sack >= TCP_NUM_SACKS) {
4591 this_sack--;
4592 tp->rx_opt.num_sacks--;
4593 sp--;
4594 }
4595 for (; this_sack > 0; this_sack--, sp--)
4596 *sp = *(sp - 1);
4597
4598 new_sack:
4599 /* Build the new head SACK, and we're done. */
4600 sp->start_seq = seq;
4601 sp->end_seq = end_seq;
4602 tp->rx_opt.num_sacks++;
4603 }
4604
4605 /* RCV.NXT advances, some SACKs should be eaten. */
4606
tcp_sack_remove(struct tcp_sock * tp)4607 static void tcp_sack_remove(struct tcp_sock *tp)
4608 {
4609 struct tcp_sack_block *sp = &tp->selective_acks[0];
4610 int num_sacks = tp->rx_opt.num_sacks;
4611 int this_sack;
4612
4613 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4614 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4615 tp->rx_opt.num_sacks = 0;
4616 return;
4617 }
4618
4619 for (this_sack = 0; this_sack < num_sacks;) {
4620 /* Check if the start of the sack is covered by RCV.NXT. */
4621 if (!before(tp->rcv_nxt, sp->start_seq)) {
4622 int i;
4623
4624 /* RCV.NXT must cover all the block! */
4625 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4626
4627 /* Zap this SACK, by moving forward any other SACKS. */
4628 for (i = this_sack+1; i < num_sacks; i++)
4629 tp->selective_acks[i-1] = tp->selective_acks[i];
4630 num_sacks--;
4631 continue;
4632 }
4633 this_sack++;
4634 sp++;
4635 }
4636 tp->rx_opt.num_sacks = num_sacks;
4637 }
4638
4639 /**
4640 * tcp_try_coalesce - try to merge skb to prior one
4641 * @sk: socket
4642 * @to: prior buffer
4643 * @from: buffer to add in queue
4644 * @fragstolen: pointer to boolean
4645 *
4646 * Before queueing skb @from after @to, try to merge them
4647 * to reduce overall memory use and queue lengths, if cost is small.
4648 * Packets in ofo or receive queues can stay a long time.
4649 * Better try to coalesce them right now to avoid future collapses.
4650 * Returns true if caller should free @from instead of queueing it
4651 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4652 static bool tcp_try_coalesce(struct sock *sk,
4653 struct sk_buff *to,
4654 struct sk_buff *from,
4655 bool *fragstolen)
4656 {
4657 int delta;
4658
4659 *fragstolen = false;
4660
4661 /* Its possible this segment overlaps with prior segment in queue */
4662 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4663 return false;
4664
4665 if (!mptcp_skb_can_collapse(to, from))
4666 return false;
4667
4668 #ifdef CONFIG_TLS_DEVICE
4669 if (from->decrypted != to->decrypted)
4670 return false;
4671 #endif
4672
4673 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4674 return false;
4675
4676 atomic_add(delta, &sk->sk_rmem_alloc);
4677 sk_mem_charge(sk, delta);
4678 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4679 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4680 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4681 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4682
4683 if (TCP_SKB_CB(from)->has_rxtstamp) {
4684 TCP_SKB_CB(to)->has_rxtstamp = true;
4685 to->tstamp = from->tstamp;
4686 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4687 }
4688
4689 return true;
4690 }
4691
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4692 static bool tcp_ooo_try_coalesce(struct sock *sk,
4693 struct sk_buff *to,
4694 struct sk_buff *from,
4695 bool *fragstolen)
4696 {
4697 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4698
4699 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4700 if (res) {
4701 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4702 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4703
4704 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4705 }
4706 return res;
4707 }
4708
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4709 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4710 enum skb_drop_reason reason)
4711 {
4712 sk_drops_add(sk, skb);
4713 kfree_skb_reason(skb, reason);
4714 }
4715
4716 /* This one checks to see if we can put data from the
4717 * out_of_order queue into the receive_queue.
4718 */
tcp_ofo_queue(struct sock * sk)4719 static void tcp_ofo_queue(struct sock *sk)
4720 {
4721 struct tcp_sock *tp = tcp_sk(sk);
4722 __u32 dsack_high = tp->rcv_nxt;
4723 bool fin, fragstolen, eaten;
4724 struct sk_buff *skb, *tail;
4725 struct rb_node *p;
4726
4727 p = rb_first(&tp->out_of_order_queue);
4728 while (p) {
4729 skb = rb_to_skb(p);
4730 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4731 break;
4732
4733 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4734 __u32 dsack = dsack_high;
4735 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4736 dsack_high = TCP_SKB_CB(skb)->end_seq;
4737 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4738 }
4739 p = rb_next(p);
4740 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4741
4742 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4743 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4744 continue;
4745 }
4746
4747 tail = skb_peek_tail(&sk->sk_receive_queue);
4748 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4749 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4750 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4751 if (!eaten)
4752 __skb_queue_tail(&sk->sk_receive_queue, skb);
4753 else
4754 kfree_skb_partial(skb, fragstolen);
4755
4756 if (unlikely(fin)) {
4757 tcp_fin(sk);
4758 /* tcp_fin() purges tp->out_of_order_queue,
4759 * so we must end this loop right now.
4760 */
4761 break;
4762 }
4763 }
4764 }
4765
4766 static bool tcp_prune_ofo_queue(struct sock *sk);
4767 static int tcp_prune_queue(struct sock *sk);
4768
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4769 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4770 unsigned int size)
4771 {
4772 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4773 !sk_rmem_schedule(sk, skb, size)) {
4774
4775 if (tcp_prune_queue(sk) < 0)
4776 return -1;
4777
4778 while (!sk_rmem_schedule(sk, skb, size)) {
4779 if (!tcp_prune_ofo_queue(sk))
4780 return -1;
4781 }
4782 }
4783 return 0;
4784 }
4785
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4786 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4787 {
4788 struct tcp_sock *tp = tcp_sk(sk);
4789 struct rb_node **p, *parent;
4790 struct sk_buff *skb1;
4791 u32 seq, end_seq;
4792 bool fragstolen;
4793
4794 tcp_ecn_check_ce(sk, skb);
4795
4796 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4797 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4798 sk->sk_data_ready(sk);
4799 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4800 return;
4801 }
4802
4803 /* Disable header prediction. */
4804 tp->pred_flags = 0;
4805 inet_csk_schedule_ack(sk);
4806
4807 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4808 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4809 seq = TCP_SKB_CB(skb)->seq;
4810 end_seq = TCP_SKB_CB(skb)->end_seq;
4811
4812 p = &tp->out_of_order_queue.rb_node;
4813 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4814 /* Initial out of order segment, build 1 SACK. */
4815 if (tcp_is_sack(tp)) {
4816 tp->rx_opt.num_sacks = 1;
4817 tp->selective_acks[0].start_seq = seq;
4818 tp->selective_acks[0].end_seq = end_seq;
4819 }
4820 rb_link_node(&skb->rbnode, NULL, p);
4821 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4822 tp->ooo_last_skb = skb;
4823 goto end;
4824 }
4825
4826 /* In the typical case, we are adding an skb to the end of the list.
4827 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4828 */
4829 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4830 skb, &fragstolen)) {
4831 coalesce_done:
4832 /* For non sack flows, do not grow window to force DUPACK
4833 * and trigger fast retransmit.
4834 */
4835 if (tcp_is_sack(tp))
4836 tcp_grow_window(sk, skb, true);
4837 kfree_skb_partial(skb, fragstolen);
4838 skb = NULL;
4839 goto add_sack;
4840 }
4841 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4842 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4843 parent = &tp->ooo_last_skb->rbnode;
4844 p = &parent->rb_right;
4845 goto insert;
4846 }
4847
4848 /* Find place to insert this segment. Handle overlaps on the way. */
4849 parent = NULL;
4850 while (*p) {
4851 parent = *p;
4852 skb1 = rb_to_skb(parent);
4853 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4854 p = &parent->rb_left;
4855 continue;
4856 }
4857 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4858 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4859 /* All the bits are present. Drop. */
4860 NET_INC_STATS(sock_net(sk),
4861 LINUX_MIB_TCPOFOMERGE);
4862 tcp_drop_reason(sk, skb,
4863 SKB_DROP_REASON_TCP_OFOMERGE);
4864 skb = NULL;
4865 tcp_dsack_set(sk, seq, end_seq);
4866 goto add_sack;
4867 }
4868 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4869 /* Partial overlap. */
4870 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4871 } else {
4872 /* skb's seq == skb1's seq and skb covers skb1.
4873 * Replace skb1 with skb.
4874 */
4875 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4876 &tp->out_of_order_queue);
4877 tcp_dsack_extend(sk,
4878 TCP_SKB_CB(skb1)->seq,
4879 TCP_SKB_CB(skb1)->end_seq);
4880 NET_INC_STATS(sock_net(sk),
4881 LINUX_MIB_TCPOFOMERGE);
4882 tcp_drop_reason(sk, skb1,
4883 SKB_DROP_REASON_TCP_OFOMERGE);
4884 goto merge_right;
4885 }
4886 } else if (tcp_ooo_try_coalesce(sk, skb1,
4887 skb, &fragstolen)) {
4888 goto coalesce_done;
4889 }
4890 p = &parent->rb_right;
4891 }
4892 insert:
4893 /* Insert segment into RB tree. */
4894 rb_link_node(&skb->rbnode, parent, p);
4895 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4896
4897 merge_right:
4898 /* Remove other segments covered by skb. */
4899 while ((skb1 = skb_rb_next(skb)) != NULL) {
4900 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4901 break;
4902 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4903 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4904 end_seq);
4905 break;
4906 }
4907 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4908 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4909 TCP_SKB_CB(skb1)->end_seq);
4910 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4911 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4912 }
4913 /* If there is no skb after us, we are the last_skb ! */
4914 if (!skb1)
4915 tp->ooo_last_skb = skb;
4916
4917 add_sack:
4918 if (tcp_is_sack(tp))
4919 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4920 end:
4921 if (skb) {
4922 /* For non sack flows, do not grow window to force DUPACK
4923 * and trigger fast retransmit.
4924 */
4925 if (tcp_is_sack(tp))
4926 tcp_grow_window(sk, skb, false);
4927 skb_condense(skb);
4928 skb_set_owner_r(skb, sk);
4929 }
4930 }
4931
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4932 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4933 bool *fragstolen)
4934 {
4935 int eaten;
4936 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4937
4938 eaten = (tail &&
4939 tcp_try_coalesce(sk, tail,
4940 skb, fragstolen)) ? 1 : 0;
4941 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4942 if (!eaten) {
4943 __skb_queue_tail(&sk->sk_receive_queue, skb);
4944 skb_set_owner_r(skb, sk);
4945 }
4946 return eaten;
4947 }
4948
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4949 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4950 {
4951 struct sk_buff *skb;
4952 int err = -ENOMEM;
4953 int data_len = 0;
4954 bool fragstolen;
4955
4956 if (size == 0)
4957 return 0;
4958
4959 if (size > PAGE_SIZE) {
4960 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4961
4962 data_len = npages << PAGE_SHIFT;
4963 size = data_len + (size & ~PAGE_MASK);
4964 }
4965 skb = alloc_skb_with_frags(size - data_len, data_len,
4966 PAGE_ALLOC_COSTLY_ORDER,
4967 &err, sk->sk_allocation);
4968 if (!skb)
4969 goto err;
4970
4971 skb_put(skb, size - data_len);
4972 skb->data_len = data_len;
4973 skb->len = size;
4974
4975 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4976 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4977 goto err_free;
4978 }
4979
4980 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4981 if (err)
4982 goto err_free;
4983
4984 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4985 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4986 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4987
4988 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4989 WARN_ON_ONCE(fragstolen); /* should not happen */
4990 __kfree_skb(skb);
4991 }
4992 return size;
4993
4994 err_free:
4995 kfree_skb(skb);
4996 err:
4997 return err;
4998
4999 }
5000
tcp_data_ready(struct sock * sk)5001 void tcp_data_ready(struct sock *sk)
5002 {
5003 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5004 sk->sk_data_ready(sk);
5005 }
5006
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5007 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5008 {
5009 struct tcp_sock *tp = tcp_sk(sk);
5010 enum skb_drop_reason reason;
5011 bool fragstolen;
5012 int eaten;
5013
5014 /* If a subflow has been reset, the packet should not continue
5015 * to be processed, drop the packet.
5016 */
5017 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5018 __kfree_skb(skb);
5019 return;
5020 }
5021
5022 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5023 __kfree_skb(skb);
5024 return;
5025 }
5026 skb_dst_drop(skb);
5027 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5028
5029 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5030 tp->rx_opt.dsack = 0;
5031
5032 /* Queue data for delivery to the user.
5033 * Packets in sequence go to the receive queue.
5034 * Out of sequence packets to the out_of_order_queue.
5035 */
5036 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5037 if (tcp_receive_window(tp) == 0) {
5038 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5039 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5040 goto out_of_window;
5041 }
5042
5043 /* Ok. In sequence. In window. */
5044 queue_and_out:
5045 if (skb_queue_len(&sk->sk_receive_queue) == 0)
5046 sk_forced_mem_schedule(sk, skb->truesize);
5047 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5048 reason = SKB_DROP_REASON_PROTO_MEM;
5049 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5050 sk->sk_data_ready(sk);
5051 goto drop;
5052 }
5053
5054 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5055 if (skb->len)
5056 tcp_event_data_recv(sk, skb);
5057 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5058 tcp_fin(sk);
5059
5060 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5061 tcp_ofo_queue(sk);
5062
5063 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5064 * gap in queue is filled.
5065 */
5066 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5067 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5068 }
5069
5070 if (tp->rx_opt.num_sacks)
5071 tcp_sack_remove(tp);
5072
5073 tcp_fast_path_check(sk);
5074
5075 if (eaten > 0)
5076 kfree_skb_partial(skb, fragstolen);
5077 if (!sock_flag(sk, SOCK_DEAD))
5078 tcp_data_ready(sk);
5079 return;
5080 }
5081
5082 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5083 tcp_rcv_spurious_retrans(sk, skb);
5084 /* A retransmit, 2nd most common case. Force an immediate ack. */
5085 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5086 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5087 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5088
5089 out_of_window:
5090 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5091 inet_csk_schedule_ack(sk);
5092 drop:
5093 tcp_drop_reason(sk, skb, reason);
5094 return;
5095 }
5096
5097 /* Out of window. F.e. zero window probe. */
5098 if (!before(TCP_SKB_CB(skb)->seq,
5099 tp->rcv_nxt + tcp_receive_window(tp))) {
5100 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5101 goto out_of_window;
5102 }
5103
5104 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5105 /* Partial packet, seq < rcv_next < end_seq */
5106 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5107
5108 /* If window is closed, drop tail of packet. But after
5109 * remembering D-SACK for its head made in previous line.
5110 */
5111 if (!tcp_receive_window(tp)) {
5112 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5113 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5114 goto out_of_window;
5115 }
5116 goto queue_and_out;
5117 }
5118
5119 tcp_data_queue_ofo(sk, skb);
5120 }
5121
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5122 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5123 {
5124 if (list)
5125 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5126
5127 return skb_rb_next(skb);
5128 }
5129
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5130 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5131 struct sk_buff_head *list,
5132 struct rb_root *root)
5133 {
5134 struct sk_buff *next = tcp_skb_next(skb, list);
5135
5136 if (list)
5137 __skb_unlink(skb, list);
5138 else
5139 rb_erase(&skb->rbnode, root);
5140
5141 __kfree_skb(skb);
5142 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5143
5144 return next;
5145 }
5146
5147 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5148 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5149 {
5150 struct rb_node **p = &root->rb_node;
5151 struct rb_node *parent = NULL;
5152 struct sk_buff *skb1;
5153
5154 while (*p) {
5155 parent = *p;
5156 skb1 = rb_to_skb(parent);
5157 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5158 p = &parent->rb_left;
5159 else
5160 p = &parent->rb_right;
5161 }
5162 rb_link_node(&skb->rbnode, parent, p);
5163 rb_insert_color(&skb->rbnode, root);
5164 }
5165
5166 /* Collapse contiguous sequence of skbs head..tail with
5167 * sequence numbers start..end.
5168 *
5169 * If tail is NULL, this means until the end of the queue.
5170 *
5171 * Segments with FIN/SYN are not collapsed (only because this
5172 * simplifies code)
5173 */
5174 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5175 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5176 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5177 {
5178 struct sk_buff *skb = head, *n;
5179 struct sk_buff_head tmp;
5180 bool end_of_skbs;
5181
5182 /* First, check that queue is collapsible and find
5183 * the point where collapsing can be useful.
5184 */
5185 restart:
5186 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5187 n = tcp_skb_next(skb, list);
5188
5189 /* No new bits? It is possible on ofo queue. */
5190 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5191 skb = tcp_collapse_one(sk, skb, list, root);
5192 if (!skb)
5193 break;
5194 goto restart;
5195 }
5196
5197 /* The first skb to collapse is:
5198 * - not SYN/FIN and
5199 * - bloated or contains data before "start" or
5200 * overlaps to the next one and mptcp allow collapsing.
5201 */
5202 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5203 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5204 before(TCP_SKB_CB(skb)->seq, start))) {
5205 end_of_skbs = false;
5206 break;
5207 }
5208
5209 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5210 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5211 end_of_skbs = false;
5212 break;
5213 }
5214
5215 /* Decided to skip this, advance start seq. */
5216 start = TCP_SKB_CB(skb)->end_seq;
5217 }
5218 if (end_of_skbs ||
5219 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5220 return;
5221
5222 __skb_queue_head_init(&tmp);
5223
5224 while (before(start, end)) {
5225 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5226 struct sk_buff *nskb;
5227
5228 nskb = alloc_skb(copy, GFP_ATOMIC);
5229 if (!nskb)
5230 break;
5231
5232 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5233 #ifdef CONFIG_TLS_DEVICE
5234 nskb->decrypted = skb->decrypted;
5235 #endif
5236 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5237 if (list)
5238 __skb_queue_before(list, skb, nskb);
5239 else
5240 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5241 skb_set_owner_r(nskb, sk);
5242 mptcp_skb_ext_move(nskb, skb);
5243
5244 /* Copy data, releasing collapsed skbs. */
5245 while (copy > 0) {
5246 int offset = start - TCP_SKB_CB(skb)->seq;
5247 int size = TCP_SKB_CB(skb)->end_seq - start;
5248
5249 BUG_ON(offset < 0);
5250 if (size > 0) {
5251 size = min(copy, size);
5252 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5253 BUG();
5254 TCP_SKB_CB(nskb)->end_seq += size;
5255 copy -= size;
5256 start += size;
5257 }
5258 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5259 skb = tcp_collapse_one(sk, skb, list, root);
5260 if (!skb ||
5261 skb == tail ||
5262 !mptcp_skb_can_collapse(nskb, skb) ||
5263 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5264 goto end;
5265 #ifdef CONFIG_TLS_DEVICE
5266 if (skb->decrypted != nskb->decrypted)
5267 goto end;
5268 #endif
5269 }
5270 }
5271 }
5272 end:
5273 skb_queue_walk_safe(&tmp, skb, n)
5274 tcp_rbtree_insert(root, skb);
5275 }
5276
5277 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5278 * and tcp_collapse() them until all the queue is collapsed.
5279 */
tcp_collapse_ofo_queue(struct sock * sk)5280 static void tcp_collapse_ofo_queue(struct sock *sk)
5281 {
5282 struct tcp_sock *tp = tcp_sk(sk);
5283 u32 range_truesize, sum_tiny = 0;
5284 struct sk_buff *skb, *head;
5285 u32 start, end;
5286
5287 skb = skb_rb_first(&tp->out_of_order_queue);
5288 new_range:
5289 if (!skb) {
5290 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5291 return;
5292 }
5293 start = TCP_SKB_CB(skb)->seq;
5294 end = TCP_SKB_CB(skb)->end_seq;
5295 range_truesize = skb->truesize;
5296
5297 for (head = skb;;) {
5298 skb = skb_rb_next(skb);
5299
5300 /* Range is terminated when we see a gap or when
5301 * we are at the queue end.
5302 */
5303 if (!skb ||
5304 after(TCP_SKB_CB(skb)->seq, end) ||
5305 before(TCP_SKB_CB(skb)->end_seq, start)) {
5306 /* Do not attempt collapsing tiny skbs */
5307 if (range_truesize != head->truesize ||
5308 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5309 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5310 head, skb, start, end);
5311 } else {
5312 sum_tiny += range_truesize;
5313 if (sum_tiny > sk->sk_rcvbuf >> 3)
5314 return;
5315 }
5316 goto new_range;
5317 }
5318
5319 range_truesize += skb->truesize;
5320 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5321 start = TCP_SKB_CB(skb)->seq;
5322 if (after(TCP_SKB_CB(skb)->end_seq, end))
5323 end = TCP_SKB_CB(skb)->end_seq;
5324 }
5325 }
5326
5327 /*
5328 * Clean the out-of-order queue to make room.
5329 * We drop high sequences packets to :
5330 * 1) Let a chance for holes to be filled.
5331 * 2) not add too big latencies if thousands of packets sit there.
5332 * (But if application shrinks SO_RCVBUF, we could still end up
5333 * freeing whole queue here)
5334 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5335 *
5336 * Return true if queue has shrunk.
5337 */
tcp_prune_ofo_queue(struct sock * sk)5338 static bool tcp_prune_ofo_queue(struct sock *sk)
5339 {
5340 struct tcp_sock *tp = tcp_sk(sk);
5341 struct rb_node *node, *prev;
5342 int goal;
5343
5344 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5345 return false;
5346
5347 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5348 goal = sk->sk_rcvbuf >> 3;
5349 node = &tp->ooo_last_skb->rbnode;
5350 do {
5351 prev = rb_prev(node);
5352 rb_erase(node, &tp->out_of_order_queue);
5353 goal -= rb_to_skb(node)->truesize;
5354 tcp_drop_reason(sk, rb_to_skb(node),
5355 SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5356 if (!prev || goal <= 0) {
5357 sk_mem_reclaim(sk);
5358 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5359 !tcp_under_memory_pressure(sk))
5360 break;
5361 goal = sk->sk_rcvbuf >> 3;
5362 }
5363 node = prev;
5364 } while (node);
5365 tp->ooo_last_skb = rb_to_skb(prev);
5366
5367 /* Reset SACK state. A conforming SACK implementation will
5368 * do the same at a timeout based retransmit. When a connection
5369 * is in a sad state like this, we care only about integrity
5370 * of the connection not performance.
5371 */
5372 if (tp->rx_opt.sack_ok)
5373 tcp_sack_reset(&tp->rx_opt);
5374 return true;
5375 }
5376
5377 /* Reduce allocated memory if we can, trying to get
5378 * the socket within its memory limits again.
5379 *
5380 * Return less than zero if we should start dropping frames
5381 * until the socket owning process reads some of the data
5382 * to stabilize the situation.
5383 */
tcp_prune_queue(struct sock * sk)5384 static int tcp_prune_queue(struct sock *sk)
5385 {
5386 struct tcp_sock *tp = tcp_sk(sk);
5387
5388 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5389
5390 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5391 tcp_clamp_window(sk);
5392 else if (tcp_under_memory_pressure(sk))
5393 tcp_adjust_rcv_ssthresh(sk);
5394
5395 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5396 return 0;
5397
5398 tcp_collapse_ofo_queue(sk);
5399 if (!skb_queue_empty(&sk->sk_receive_queue))
5400 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5401 skb_peek(&sk->sk_receive_queue),
5402 NULL,
5403 tp->copied_seq, tp->rcv_nxt);
5404 sk_mem_reclaim(sk);
5405
5406 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5407 return 0;
5408
5409 /* Collapsing did not help, destructive actions follow.
5410 * This must not ever occur. */
5411
5412 tcp_prune_ofo_queue(sk);
5413
5414 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5415 return 0;
5416
5417 /* If we are really being abused, tell the caller to silently
5418 * drop receive data on the floor. It will get retransmitted
5419 * and hopefully then we'll have sufficient space.
5420 */
5421 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5422
5423 /* Massive buffer overcommit. */
5424 tp->pred_flags = 0;
5425 return -1;
5426 }
5427
tcp_should_expand_sndbuf(struct sock * sk)5428 static bool tcp_should_expand_sndbuf(struct sock *sk)
5429 {
5430 const struct tcp_sock *tp = tcp_sk(sk);
5431
5432 /* If the user specified a specific send buffer setting, do
5433 * not modify it.
5434 */
5435 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5436 return false;
5437
5438 /* If we are under global TCP memory pressure, do not expand. */
5439 if (tcp_under_memory_pressure(sk)) {
5440 int unused_mem = sk_unused_reserved_mem(sk);
5441
5442 /* Adjust sndbuf according to reserved mem. But make sure
5443 * it never goes below SOCK_MIN_SNDBUF.
5444 * See sk_stream_moderate_sndbuf() for more details.
5445 */
5446 if (unused_mem > SOCK_MIN_SNDBUF)
5447 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5448
5449 return false;
5450 }
5451
5452 /* If we are under soft global TCP memory pressure, do not expand. */
5453 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5454 return false;
5455
5456 /* If we filled the congestion window, do not expand. */
5457 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5458 return false;
5459
5460 return true;
5461 }
5462
tcp_new_space(struct sock * sk)5463 static void tcp_new_space(struct sock *sk)
5464 {
5465 struct tcp_sock *tp = tcp_sk(sk);
5466
5467 if (tcp_should_expand_sndbuf(sk)) {
5468 tcp_sndbuf_expand(sk);
5469 tp->snd_cwnd_stamp = tcp_jiffies32;
5470 }
5471
5472 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5473 }
5474
5475 /* Caller made space either from:
5476 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5477 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5478 *
5479 * We might be able to generate EPOLLOUT to the application if:
5480 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5481 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5482 * small enough that tcp_stream_memory_free() decides it
5483 * is time to generate EPOLLOUT.
5484 */
tcp_check_space(struct sock * sk)5485 void tcp_check_space(struct sock *sk)
5486 {
5487 /* pairs with tcp_poll() */
5488 smp_mb();
5489 if (sk->sk_socket &&
5490 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5491 tcp_new_space(sk);
5492 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5493 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5494 }
5495 }
5496
tcp_data_snd_check(struct sock * sk)5497 static inline void tcp_data_snd_check(struct sock *sk)
5498 {
5499 tcp_push_pending_frames(sk);
5500 tcp_check_space(sk);
5501 }
5502
5503 /*
5504 * Check if sending an ack is needed.
5505 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5506 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5507 {
5508 struct tcp_sock *tp = tcp_sk(sk);
5509 unsigned long rtt, delay;
5510
5511 /* More than one full frame received... */
5512 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5513 /* ... and right edge of window advances far enough.
5514 * (tcp_recvmsg() will send ACK otherwise).
5515 * If application uses SO_RCVLOWAT, we want send ack now if
5516 * we have not received enough bytes to satisfy the condition.
5517 */
5518 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5519 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5520 /* We ACK each frame or... */
5521 tcp_in_quickack_mode(sk) ||
5522 /* Protocol state mandates a one-time immediate ACK */
5523 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5524 send_now:
5525 tcp_send_ack(sk);
5526 return;
5527 }
5528
5529 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5530 tcp_send_delayed_ack(sk);
5531 return;
5532 }
5533
5534 if (!tcp_is_sack(tp) ||
5535 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5536 goto send_now;
5537
5538 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5539 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5540 tp->dup_ack_counter = 0;
5541 }
5542 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5543 tp->dup_ack_counter++;
5544 goto send_now;
5545 }
5546 tp->compressed_ack++;
5547 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5548 return;
5549
5550 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5551
5552 rtt = tp->rcv_rtt_est.rtt_us;
5553 if (tp->srtt_us && tp->srtt_us < rtt)
5554 rtt = tp->srtt_us;
5555
5556 delay = min_t(unsigned long,
5557 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5558 rtt * (NSEC_PER_USEC >> 3)/20);
5559 sock_hold(sk);
5560 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5561 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5562 HRTIMER_MODE_REL_PINNED_SOFT);
5563 }
5564
tcp_ack_snd_check(struct sock * sk)5565 static inline void tcp_ack_snd_check(struct sock *sk)
5566 {
5567 if (!inet_csk_ack_scheduled(sk)) {
5568 /* We sent a data segment already. */
5569 return;
5570 }
5571 __tcp_ack_snd_check(sk, 1);
5572 }
5573
5574 /*
5575 * This routine is only called when we have urgent data
5576 * signaled. Its the 'slow' part of tcp_urg. It could be
5577 * moved inline now as tcp_urg is only called from one
5578 * place. We handle URGent data wrong. We have to - as
5579 * BSD still doesn't use the correction from RFC961.
5580 * For 1003.1g we should support a new option TCP_STDURG to permit
5581 * either form (or just set the sysctl tcp_stdurg).
5582 */
5583
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5584 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5585 {
5586 struct tcp_sock *tp = tcp_sk(sk);
5587 u32 ptr = ntohs(th->urg_ptr);
5588
5589 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5590 ptr--;
5591 ptr += ntohl(th->seq);
5592
5593 /* Ignore urgent data that we've already seen and read. */
5594 if (after(tp->copied_seq, ptr))
5595 return;
5596
5597 /* Do not replay urg ptr.
5598 *
5599 * NOTE: interesting situation not covered by specs.
5600 * Misbehaving sender may send urg ptr, pointing to segment,
5601 * which we already have in ofo queue. We are not able to fetch
5602 * such data and will stay in TCP_URG_NOTYET until will be eaten
5603 * by recvmsg(). Seems, we are not obliged to handle such wicked
5604 * situations. But it is worth to think about possibility of some
5605 * DoSes using some hypothetical application level deadlock.
5606 */
5607 if (before(ptr, tp->rcv_nxt))
5608 return;
5609
5610 /* Do we already have a newer (or duplicate) urgent pointer? */
5611 if (tp->urg_data && !after(ptr, tp->urg_seq))
5612 return;
5613
5614 /* Tell the world about our new urgent pointer. */
5615 sk_send_sigurg(sk);
5616
5617 /* We may be adding urgent data when the last byte read was
5618 * urgent. To do this requires some care. We cannot just ignore
5619 * tp->copied_seq since we would read the last urgent byte again
5620 * as data, nor can we alter copied_seq until this data arrives
5621 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5622 *
5623 * NOTE. Double Dutch. Rendering to plain English: author of comment
5624 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5625 * and expect that both A and B disappear from stream. This is _wrong_.
5626 * Though this happens in BSD with high probability, this is occasional.
5627 * Any application relying on this is buggy. Note also, that fix "works"
5628 * only in this artificial test. Insert some normal data between A and B and we will
5629 * decline of BSD again. Verdict: it is better to remove to trap
5630 * buggy users.
5631 */
5632 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5633 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5634 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5635 tp->copied_seq++;
5636 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5637 __skb_unlink(skb, &sk->sk_receive_queue);
5638 __kfree_skb(skb);
5639 }
5640 }
5641
5642 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5643 WRITE_ONCE(tp->urg_seq, ptr);
5644
5645 /* Disable header prediction. */
5646 tp->pred_flags = 0;
5647 }
5648
5649 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5650 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5651 {
5652 struct tcp_sock *tp = tcp_sk(sk);
5653
5654 /* Check if we get a new urgent pointer - normally not. */
5655 if (unlikely(th->urg))
5656 tcp_check_urg(sk, th);
5657
5658 /* Do we wait for any urgent data? - normally not... */
5659 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5660 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5661 th->syn;
5662
5663 /* Is the urgent pointer pointing into this packet? */
5664 if (ptr < skb->len) {
5665 u8 tmp;
5666 if (skb_copy_bits(skb, ptr, &tmp, 1))
5667 BUG();
5668 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5669 if (!sock_flag(sk, SOCK_DEAD))
5670 sk->sk_data_ready(sk);
5671 }
5672 }
5673 }
5674
5675 /* Accept RST for rcv_nxt - 1 after a FIN.
5676 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5677 * FIN is sent followed by a RST packet. The RST is sent with the same
5678 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5679 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5680 * ACKs on the closed socket. In addition middleboxes can drop either the
5681 * challenge ACK or a subsequent RST.
5682 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5683 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5684 {
5685 struct tcp_sock *tp = tcp_sk(sk);
5686
5687 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5688 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5689 TCPF_CLOSING));
5690 }
5691
5692 /* Does PAWS and seqno based validation of an incoming segment, flags will
5693 * play significant role here.
5694 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5695 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5696 const struct tcphdr *th, int syn_inerr)
5697 {
5698 struct tcp_sock *tp = tcp_sk(sk);
5699 SKB_DR(reason);
5700
5701 /* RFC1323: H1. Apply PAWS check first. */
5702 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5703 tp->rx_opt.saw_tstamp &&
5704 tcp_paws_discard(sk, skb)) {
5705 if (!th->rst) {
5706 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5707 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5708 LINUX_MIB_TCPACKSKIPPEDPAWS,
5709 &tp->last_oow_ack_time))
5710 tcp_send_dupack(sk, skb);
5711 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5712 goto discard;
5713 }
5714 /* Reset is accepted even if it did not pass PAWS. */
5715 }
5716
5717 /* Step 1: check sequence number */
5718 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5719 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5720 * (RST) segments are validated by checking their SEQ-fields."
5721 * And page 69: "If an incoming segment is not acceptable,
5722 * an acknowledgment should be sent in reply (unless the RST
5723 * bit is set, if so drop the segment and return)".
5724 */
5725 if (!th->rst) {
5726 if (th->syn)
5727 goto syn_challenge;
5728 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5729 LINUX_MIB_TCPACKSKIPPEDSEQ,
5730 &tp->last_oow_ack_time))
5731 tcp_send_dupack(sk, skb);
5732 } else if (tcp_reset_check(sk, skb)) {
5733 goto reset;
5734 }
5735 SKB_DR_SET(reason, TCP_INVALID_SEQUENCE);
5736 goto discard;
5737 }
5738
5739 /* Step 2: check RST bit */
5740 if (th->rst) {
5741 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5742 * FIN and SACK too if available):
5743 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5744 * the right-most SACK block,
5745 * then
5746 * RESET the connection
5747 * else
5748 * Send a challenge ACK
5749 */
5750 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5751 tcp_reset_check(sk, skb))
5752 goto reset;
5753
5754 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5755 struct tcp_sack_block *sp = &tp->selective_acks[0];
5756 int max_sack = sp[0].end_seq;
5757 int this_sack;
5758
5759 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5760 ++this_sack) {
5761 max_sack = after(sp[this_sack].end_seq,
5762 max_sack) ?
5763 sp[this_sack].end_seq : max_sack;
5764 }
5765
5766 if (TCP_SKB_CB(skb)->seq == max_sack)
5767 goto reset;
5768 }
5769
5770 /* Disable TFO if RST is out-of-order
5771 * and no data has been received
5772 * for current active TFO socket
5773 */
5774 if (tp->syn_fastopen && !tp->data_segs_in &&
5775 sk->sk_state == TCP_ESTABLISHED)
5776 tcp_fastopen_active_disable(sk);
5777 tcp_send_challenge_ack(sk);
5778 SKB_DR_SET(reason, TCP_RESET);
5779 goto discard;
5780 }
5781
5782 /* step 3: check security and precedence [ignored] */
5783
5784 /* step 4: Check for a SYN
5785 * RFC 5961 4.2 : Send a challenge ack
5786 */
5787 if (th->syn) {
5788 syn_challenge:
5789 if (syn_inerr)
5790 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5791 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5792 tcp_send_challenge_ack(sk);
5793 SKB_DR_SET(reason, TCP_INVALID_SYN);
5794 goto discard;
5795 }
5796
5797 bpf_skops_parse_hdr(sk, skb);
5798
5799 return true;
5800
5801 discard:
5802 tcp_drop_reason(sk, skb, reason);
5803 return false;
5804
5805 reset:
5806 tcp_reset(sk, skb);
5807 __kfree_skb(skb);
5808 return false;
5809 }
5810
5811 /*
5812 * TCP receive function for the ESTABLISHED state.
5813 *
5814 * It is split into a fast path and a slow path. The fast path is
5815 * disabled when:
5816 * - A zero window was announced from us - zero window probing
5817 * is only handled properly in the slow path.
5818 * - Out of order segments arrived.
5819 * - Urgent data is expected.
5820 * - There is no buffer space left
5821 * - Unexpected TCP flags/window values/header lengths are received
5822 * (detected by checking the TCP header against pred_flags)
5823 * - Data is sent in both directions. Fast path only supports pure senders
5824 * or pure receivers (this means either the sequence number or the ack
5825 * value must stay constant)
5826 * - Unexpected TCP option.
5827 *
5828 * When these conditions are not satisfied it drops into a standard
5829 * receive procedure patterned after RFC793 to handle all cases.
5830 * The first three cases are guaranteed by proper pred_flags setting,
5831 * the rest is checked inline. Fast processing is turned on in
5832 * tcp_data_queue when everything is OK.
5833 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5834 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5835 {
5836 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5837 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5838 struct tcp_sock *tp = tcp_sk(sk);
5839 unsigned int len = skb->len;
5840
5841 /* TCP congestion window tracking */
5842 trace_tcp_probe(sk, skb);
5843
5844 tcp_mstamp_refresh(tp);
5845 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5846 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5847 /*
5848 * Header prediction.
5849 * The code loosely follows the one in the famous
5850 * "30 instruction TCP receive" Van Jacobson mail.
5851 *
5852 * Van's trick is to deposit buffers into socket queue
5853 * on a device interrupt, to call tcp_recv function
5854 * on the receive process context and checksum and copy
5855 * the buffer to user space. smart...
5856 *
5857 * Our current scheme is not silly either but we take the
5858 * extra cost of the net_bh soft interrupt processing...
5859 * We do checksum and copy also but from device to kernel.
5860 */
5861
5862 tp->rx_opt.saw_tstamp = 0;
5863
5864 /* pred_flags is 0xS?10 << 16 + snd_wnd
5865 * if header_prediction is to be made
5866 * 'S' will always be tp->tcp_header_len >> 2
5867 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5868 * turn it off (when there are holes in the receive
5869 * space for instance)
5870 * PSH flag is ignored.
5871 */
5872
5873 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5874 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5875 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5876 int tcp_header_len = tp->tcp_header_len;
5877
5878 /* Timestamp header prediction: tcp_header_len
5879 * is automatically equal to th->doff*4 due to pred_flags
5880 * match.
5881 */
5882
5883 /* Check timestamp */
5884 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5885 /* No? Slow path! */
5886 if (!tcp_parse_aligned_timestamp(tp, th))
5887 goto slow_path;
5888
5889 /* If PAWS failed, check it more carefully in slow path */
5890 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5891 goto slow_path;
5892
5893 /* DO NOT update ts_recent here, if checksum fails
5894 * and timestamp was corrupted part, it will result
5895 * in a hung connection since we will drop all
5896 * future packets due to the PAWS test.
5897 */
5898 }
5899
5900 if (len <= tcp_header_len) {
5901 /* Bulk data transfer: sender */
5902 if (len == tcp_header_len) {
5903 /* Predicted packet is in window by definition.
5904 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5905 * Hence, check seq<=rcv_wup reduces to:
5906 */
5907 if (tcp_header_len ==
5908 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5909 tp->rcv_nxt == tp->rcv_wup)
5910 tcp_store_ts_recent(tp);
5911
5912 /* We know that such packets are checksummed
5913 * on entry.
5914 */
5915 tcp_ack(sk, skb, 0);
5916 __kfree_skb(skb);
5917 tcp_data_snd_check(sk);
5918 /* When receiving pure ack in fast path, update
5919 * last ts ecr directly instead of calling
5920 * tcp_rcv_rtt_measure_ts()
5921 */
5922 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5923 return;
5924 } else { /* Header too small */
5925 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5926 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5927 goto discard;
5928 }
5929 } else {
5930 int eaten = 0;
5931 bool fragstolen = false;
5932
5933 if (tcp_checksum_complete(skb))
5934 goto csum_error;
5935
5936 if ((int)skb->truesize > sk->sk_forward_alloc)
5937 goto step5;
5938
5939 /* Predicted packet is in window by definition.
5940 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5941 * Hence, check seq<=rcv_wup reduces to:
5942 */
5943 if (tcp_header_len ==
5944 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5945 tp->rcv_nxt == tp->rcv_wup)
5946 tcp_store_ts_recent(tp);
5947
5948 tcp_rcv_rtt_measure_ts(sk, skb);
5949
5950 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5951
5952 /* Bulk data transfer: receiver */
5953 skb_dst_drop(skb);
5954 __skb_pull(skb, tcp_header_len);
5955 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5956
5957 tcp_event_data_recv(sk, skb);
5958
5959 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5960 /* Well, only one small jumplet in fast path... */
5961 tcp_ack(sk, skb, FLAG_DATA);
5962 tcp_data_snd_check(sk);
5963 if (!inet_csk_ack_scheduled(sk))
5964 goto no_ack;
5965 } else {
5966 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5967 }
5968
5969 __tcp_ack_snd_check(sk, 0);
5970 no_ack:
5971 if (eaten)
5972 kfree_skb_partial(skb, fragstolen);
5973 tcp_data_ready(sk);
5974 return;
5975 }
5976 }
5977
5978 slow_path:
5979 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5980 goto csum_error;
5981
5982 if (!th->ack && !th->rst && !th->syn) {
5983 reason = SKB_DROP_REASON_TCP_FLAGS;
5984 goto discard;
5985 }
5986
5987 /*
5988 * Standard slow path.
5989 */
5990
5991 if (!tcp_validate_incoming(sk, skb, th, 1))
5992 return;
5993
5994 step5:
5995 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
5996 if ((int)reason < 0) {
5997 reason = -reason;
5998 goto discard;
5999 }
6000 tcp_rcv_rtt_measure_ts(sk, skb);
6001
6002 /* Process urgent data. */
6003 tcp_urg(sk, skb, th);
6004
6005 /* step 7: process the segment text */
6006 tcp_data_queue(sk, skb);
6007
6008 tcp_data_snd_check(sk);
6009 tcp_ack_snd_check(sk);
6010 return;
6011
6012 csum_error:
6013 reason = SKB_DROP_REASON_TCP_CSUM;
6014 trace_tcp_bad_csum(skb);
6015 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6016 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6017
6018 discard:
6019 tcp_drop_reason(sk, skb, reason);
6020 }
6021 EXPORT_SYMBOL(tcp_rcv_established);
6022
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6023 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6024 {
6025 struct inet_connection_sock *icsk = inet_csk(sk);
6026 struct tcp_sock *tp = tcp_sk(sk);
6027
6028 tcp_mtup_init(sk);
6029 icsk->icsk_af_ops->rebuild_header(sk);
6030 tcp_init_metrics(sk);
6031
6032 /* Initialize the congestion window to start the transfer.
6033 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6034 * retransmitted. In light of RFC6298 more aggressive 1sec
6035 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6036 * retransmission has occurred.
6037 */
6038 if (tp->total_retrans > 1 && tp->undo_marker)
6039 tcp_snd_cwnd_set(tp, 1);
6040 else
6041 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6042 tp->snd_cwnd_stamp = tcp_jiffies32;
6043
6044 bpf_skops_established(sk, bpf_op, skb);
6045 /* Initialize congestion control unless BPF initialized it already: */
6046 if (!icsk->icsk_ca_initialized)
6047 tcp_init_congestion_control(sk);
6048 tcp_init_buffer_space(sk);
6049 }
6050
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6051 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6052 {
6053 struct tcp_sock *tp = tcp_sk(sk);
6054 struct inet_connection_sock *icsk = inet_csk(sk);
6055
6056 tcp_set_state(sk, TCP_ESTABLISHED);
6057 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6058
6059 if (skb) {
6060 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6061 security_inet_conn_established(sk, skb);
6062 sk_mark_napi_id(sk, skb);
6063 }
6064
6065 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6066
6067 /* Prevent spurious tcp_cwnd_restart() on first data
6068 * packet.
6069 */
6070 tp->lsndtime = tcp_jiffies32;
6071
6072 if (sock_flag(sk, SOCK_KEEPOPEN))
6073 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6074
6075 if (!tp->rx_opt.snd_wscale)
6076 __tcp_fast_path_on(tp, tp->snd_wnd);
6077 else
6078 tp->pred_flags = 0;
6079 }
6080
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6081 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6082 struct tcp_fastopen_cookie *cookie)
6083 {
6084 struct tcp_sock *tp = tcp_sk(sk);
6085 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6086 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6087 bool syn_drop = false;
6088
6089 if (mss == tp->rx_opt.user_mss) {
6090 struct tcp_options_received opt;
6091
6092 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6093 tcp_clear_options(&opt);
6094 opt.user_mss = opt.mss_clamp = 0;
6095 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6096 mss = opt.mss_clamp;
6097 }
6098
6099 if (!tp->syn_fastopen) {
6100 /* Ignore an unsolicited cookie */
6101 cookie->len = -1;
6102 } else if (tp->total_retrans) {
6103 /* SYN timed out and the SYN-ACK neither has a cookie nor
6104 * acknowledges data. Presumably the remote received only
6105 * the retransmitted (regular) SYNs: either the original
6106 * SYN-data or the corresponding SYN-ACK was dropped.
6107 */
6108 syn_drop = (cookie->len < 0 && data);
6109 } else if (cookie->len < 0 && !tp->syn_data) {
6110 /* We requested a cookie but didn't get it. If we did not use
6111 * the (old) exp opt format then try so next time (try_exp=1).
6112 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6113 */
6114 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6115 }
6116
6117 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6118
6119 if (data) { /* Retransmit unacked data in SYN */
6120 if (tp->total_retrans)
6121 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6122 else
6123 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6124 skb_rbtree_walk_from(data)
6125 tcp_mark_skb_lost(sk, data);
6126 tcp_xmit_retransmit_queue(sk);
6127 NET_INC_STATS(sock_net(sk),
6128 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6129 return true;
6130 }
6131 tp->syn_data_acked = tp->syn_data;
6132 if (tp->syn_data_acked) {
6133 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6134 /* SYN-data is counted as two separate packets in tcp_ack() */
6135 if (tp->delivered > 1)
6136 --tp->delivered;
6137 }
6138
6139 tcp_fastopen_add_skb(sk, synack);
6140
6141 return false;
6142 }
6143
smc_check_reset_syn(struct tcp_sock * tp)6144 static void smc_check_reset_syn(struct tcp_sock *tp)
6145 {
6146 #if IS_ENABLED(CONFIG_SMC)
6147 if (static_branch_unlikely(&tcp_have_smc)) {
6148 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6149 tp->syn_smc = 0;
6150 }
6151 #endif
6152 }
6153
tcp_try_undo_spurious_syn(struct sock * sk)6154 static void tcp_try_undo_spurious_syn(struct sock *sk)
6155 {
6156 struct tcp_sock *tp = tcp_sk(sk);
6157 u32 syn_stamp;
6158
6159 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6160 * spurious if the ACK's timestamp option echo value matches the
6161 * original SYN timestamp.
6162 */
6163 syn_stamp = tp->retrans_stamp;
6164 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6165 syn_stamp == tp->rx_opt.rcv_tsecr)
6166 tp->undo_marker = 0;
6167 }
6168
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6169 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6170 const struct tcphdr *th)
6171 {
6172 struct inet_connection_sock *icsk = inet_csk(sk);
6173 struct tcp_sock *tp = tcp_sk(sk);
6174 struct tcp_fastopen_cookie foc = { .len = -1 };
6175 int saved_clamp = tp->rx_opt.mss_clamp;
6176 bool fastopen_fail;
6177 SKB_DR(reason);
6178
6179 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6180 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6181 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6182
6183 if (th->ack) {
6184 /* rfc793:
6185 * "If the state is SYN-SENT then
6186 * first check the ACK bit
6187 * If the ACK bit is set
6188 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6189 * a reset (unless the RST bit is set, if so drop
6190 * the segment and return)"
6191 */
6192 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6193 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6194 /* Previous FIN/ACK or RST/ACK might be ignored. */
6195 if (icsk->icsk_retransmits == 0)
6196 inet_csk_reset_xmit_timer(sk,
6197 ICSK_TIME_RETRANS,
6198 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6199 goto reset_and_undo;
6200 }
6201
6202 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6203 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6204 tcp_time_stamp(tp))) {
6205 NET_INC_STATS(sock_net(sk),
6206 LINUX_MIB_PAWSACTIVEREJECTED);
6207 goto reset_and_undo;
6208 }
6209
6210 /* Now ACK is acceptable.
6211 *
6212 * "If the RST bit is set
6213 * If the ACK was acceptable then signal the user "error:
6214 * connection reset", drop the segment, enter CLOSED state,
6215 * delete TCB, and return."
6216 */
6217
6218 if (th->rst) {
6219 tcp_reset(sk, skb);
6220 consume:
6221 __kfree_skb(skb);
6222 return 0;
6223 }
6224
6225 /* rfc793:
6226 * "fifth, if neither of the SYN or RST bits is set then
6227 * drop the segment and return."
6228 *
6229 * See note below!
6230 * --ANK(990513)
6231 */
6232 if (!th->syn) {
6233 SKB_DR_SET(reason, TCP_FLAGS);
6234 goto discard_and_undo;
6235 }
6236 /* rfc793:
6237 * "If the SYN bit is on ...
6238 * are acceptable then ...
6239 * (our SYN has been ACKed), change the connection
6240 * state to ESTABLISHED..."
6241 */
6242
6243 tcp_ecn_rcv_synack(tp, th);
6244
6245 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6246 tcp_try_undo_spurious_syn(sk);
6247 tcp_ack(sk, skb, FLAG_SLOWPATH);
6248
6249 /* Ok.. it's good. Set up sequence numbers and
6250 * move to established.
6251 */
6252 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6253 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6254
6255 /* RFC1323: The window in SYN & SYN/ACK segments is
6256 * never scaled.
6257 */
6258 tp->snd_wnd = ntohs(th->window);
6259
6260 if (!tp->rx_opt.wscale_ok) {
6261 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6262 tp->window_clamp = min(tp->window_clamp, 65535U);
6263 }
6264
6265 if (tp->rx_opt.saw_tstamp) {
6266 tp->rx_opt.tstamp_ok = 1;
6267 tp->tcp_header_len =
6268 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6269 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6270 tcp_store_ts_recent(tp);
6271 } else {
6272 tp->tcp_header_len = sizeof(struct tcphdr);
6273 }
6274
6275 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6276 tcp_initialize_rcv_mss(sk);
6277
6278 /* Remember, tcp_poll() does not lock socket!
6279 * Change state from SYN-SENT only after copied_seq
6280 * is initialized. */
6281 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6282
6283 smc_check_reset_syn(tp);
6284
6285 smp_mb();
6286
6287 tcp_finish_connect(sk, skb);
6288
6289 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6290 tcp_rcv_fastopen_synack(sk, skb, &foc);
6291
6292 if (!sock_flag(sk, SOCK_DEAD)) {
6293 sk->sk_state_change(sk);
6294 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6295 }
6296 if (fastopen_fail)
6297 return -1;
6298 if (sk->sk_write_pending ||
6299 icsk->icsk_accept_queue.rskq_defer_accept ||
6300 inet_csk_in_pingpong_mode(sk)) {
6301 /* Save one ACK. Data will be ready after
6302 * several ticks, if write_pending is set.
6303 *
6304 * It may be deleted, but with this feature tcpdumps
6305 * look so _wonderfully_ clever, that I was not able
6306 * to stand against the temptation 8) --ANK
6307 */
6308 inet_csk_schedule_ack(sk);
6309 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6310 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6311 TCP_DELACK_MAX, TCP_RTO_MAX);
6312 goto consume;
6313 }
6314 tcp_send_ack(sk);
6315 return -1;
6316 }
6317
6318 /* No ACK in the segment */
6319
6320 if (th->rst) {
6321 /* rfc793:
6322 * "If the RST bit is set
6323 *
6324 * Otherwise (no ACK) drop the segment and return."
6325 */
6326 SKB_DR_SET(reason, TCP_RESET);
6327 goto discard_and_undo;
6328 }
6329
6330 /* PAWS check. */
6331 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6332 tcp_paws_reject(&tp->rx_opt, 0)) {
6333 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6334 goto discard_and_undo;
6335 }
6336 if (th->syn) {
6337 /* We see SYN without ACK. It is attempt of
6338 * simultaneous connect with crossed SYNs.
6339 * Particularly, it can be connect to self.
6340 */
6341 tcp_set_state(sk, TCP_SYN_RECV);
6342
6343 if (tp->rx_opt.saw_tstamp) {
6344 tp->rx_opt.tstamp_ok = 1;
6345 tcp_store_ts_recent(tp);
6346 tp->tcp_header_len =
6347 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6348 } else {
6349 tp->tcp_header_len = sizeof(struct tcphdr);
6350 }
6351
6352 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6353 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6354 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6355
6356 /* RFC1323: The window in SYN & SYN/ACK segments is
6357 * never scaled.
6358 */
6359 tp->snd_wnd = ntohs(th->window);
6360 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6361 tp->max_window = tp->snd_wnd;
6362
6363 tcp_ecn_rcv_syn(tp, th);
6364
6365 tcp_mtup_init(sk);
6366 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6367 tcp_initialize_rcv_mss(sk);
6368
6369 tcp_send_synack(sk);
6370 #if 0
6371 /* Note, we could accept data and URG from this segment.
6372 * There are no obstacles to make this (except that we must
6373 * either change tcp_recvmsg() to prevent it from returning data
6374 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6375 *
6376 * However, if we ignore data in ACKless segments sometimes,
6377 * we have no reasons to accept it sometimes.
6378 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6379 * is not flawless. So, discard packet for sanity.
6380 * Uncomment this return to process the data.
6381 */
6382 return -1;
6383 #else
6384 goto consume;
6385 #endif
6386 }
6387 /* "fifth, if neither of the SYN or RST bits is set then
6388 * drop the segment and return."
6389 */
6390
6391 discard_and_undo:
6392 tcp_clear_options(&tp->rx_opt);
6393 tp->rx_opt.mss_clamp = saved_clamp;
6394 tcp_drop_reason(sk, skb, reason);
6395 return 0;
6396
6397 reset_and_undo:
6398 tcp_clear_options(&tp->rx_opt);
6399 tp->rx_opt.mss_clamp = saved_clamp;
6400 return 1;
6401 }
6402
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6403 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6404 {
6405 struct request_sock *req;
6406
6407 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6408 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6409 */
6410 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6411 tcp_try_undo_loss(sk, false);
6412
6413 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6414 tcp_sk(sk)->retrans_stamp = 0;
6415 inet_csk(sk)->icsk_retransmits = 0;
6416
6417 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6418 * we no longer need req so release it.
6419 */
6420 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6421 lockdep_sock_is_held(sk));
6422 reqsk_fastopen_remove(sk, req, false);
6423
6424 /* Re-arm the timer because data may have been sent out.
6425 * This is similar to the regular data transmission case
6426 * when new data has just been ack'ed.
6427 *
6428 * (TFO) - we could try to be more aggressive and
6429 * retransmitting any data sooner based on when they
6430 * are sent out.
6431 */
6432 tcp_rearm_rto(sk);
6433 }
6434
6435 /*
6436 * This function implements the receiving procedure of RFC 793 for
6437 * all states except ESTABLISHED and TIME_WAIT.
6438 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6439 * address independent.
6440 */
6441
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6442 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6443 {
6444 struct tcp_sock *tp = tcp_sk(sk);
6445 struct inet_connection_sock *icsk = inet_csk(sk);
6446 const struct tcphdr *th = tcp_hdr(skb);
6447 struct request_sock *req;
6448 int queued = 0;
6449 bool acceptable;
6450 SKB_DR(reason);
6451
6452 switch (sk->sk_state) {
6453 case TCP_CLOSE:
6454 SKB_DR_SET(reason, TCP_CLOSE);
6455 goto discard;
6456
6457 case TCP_LISTEN:
6458 if (th->ack)
6459 return 1;
6460
6461 if (th->rst) {
6462 SKB_DR_SET(reason, TCP_RESET);
6463 goto discard;
6464 }
6465 if (th->syn) {
6466 if (th->fin) {
6467 SKB_DR_SET(reason, TCP_FLAGS);
6468 goto discard;
6469 }
6470 /* It is possible that we process SYN packets from backlog,
6471 * so we need to make sure to disable BH and RCU right there.
6472 */
6473 rcu_read_lock();
6474 local_bh_disable();
6475 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6476 local_bh_enable();
6477 rcu_read_unlock();
6478
6479 if (!acceptable)
6480 return 1;
6481 consume_skb(skb);
6482 return 0;
6483 }
6484 SKB_DR_SET(reason, TCP_FLAGS);
6485 goto discard;
6486
6487 case TCP_SYN_SENT:
6488 tp->rx_opt.saw_tstamp = 0;
6489 tcp_mstamp_refresh(tp);
6490 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6491 if (queued >= 0)
6492 return queued;
6493
6494 /* Do step6 onward by hand. */
6495 tcp_urg(sk, skb, th);
6496 __kfree_skb(skb);
6497 tcp_data_snd_check(sk);
6498 return 0;
6499 }
6500
6501 tcp_mstamp_refresh(tp);
6502 tp->rx_opt.saw_tstamp = 0;
6503 req = rcu_dereference_protected(tp->fastopen_rsk,
6504 lockdep_sock_is_held(sk));
6505 if (req) {
6506 bool req_stolen;
6507
6508 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6509 sk->sk_state != TCP_FIN_WAIT1);
6510
6511 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6512 SKB_DR_SET(reason, TCP_FASTOPEN);
6513 goto discard;
6514 }
6515 }
6516
6517 if (!th->ack && !th->rst && !th->syn) {
6518 SKB_DR_SET(reason, TCP_FLAGS);
6519 goto discard;
6520 }
6521 if (!tcp_validate_incoming(sk, skb, th, 0))
6522 return 0;
6523
6524 /* step 5: check the ACK field */
6525 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6526 FLAG_UPDATE_TS_RECENT |
6527 FLAG_NO_CHALLENGE_ACK) > 0;
6528
6529 if (!acceptable) {
6530 if (sk->sk_state == TCP_SYN_RECV)
6531 return 1; /* send one RST */
6532 tcp_send_challenge_ack(sk);
6533 SKB_DR_SET(reason, TCP_OLD_ACK);
6534 goto discard;
6535 }
6536 switch (sk->sk_state) {
6537 case TCP_SYN_RECV:
6538 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6539 if (!tp->srtt_us)
6540 tcp_synack_rtt_meas(sk, req);
6541
6542 if (req) {
6543 tcp_rcv_synrecv_state_fastopen(sk);
6544 } else {
6545 tcp_try_undo_spurious_syn(sk);
6546 tp->retrans_stamp = 0;
6547 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6548 skb);
6549 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6550 }
6551 smp_mb();
6552 tcp_set_state(sk, TCP_ESTABLISHED);
6553 sk->sk_state_change(sk);
6554
6555 /* Note, that this wakeup is only for marginal crossed SYN case.
6556 * Passively open sockets are not waked up, because
6557 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6558 */
6559 if (sk->sk_socket)
6560 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6561
6562 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6563 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6564 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6565
6566 if (tp->rx_opt.tstamp_ok)
6567 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6568
6569 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6570 tcp_update_pacing_rate(sk);
6571
6572 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6573 tp->lsndtime = tcp_jiffies32;
6574
6575 tcp_initialize_rcv_mss(sk);
6576 tcp_fast_path_on(tp);
6577 break;
6578
6579 case TCP_FIN_WAIT1: {
6580 int tmo;
6581
6582 if (req)
6583 tcp_rcv_synrecv_state_fastopen(sk);
6584
6585 if (tp->snd_una != tp->write_seq)
6586 break;
6587
6588 tcp_set_state(sk, TCP_FIN_WAIT2);
6589 sk->sk_shutdown |= SEND_SHUTDOWN;
6590
6591 sk_dst_confirm(sk);
6592
6593 if (!sock_flag(sk, SOCK_DEAD)) {
6594 /* Wake up lingering close() */
6595 sk->sk_state_change(sk);
6596 break;
6597 }
6598
6599 if (tp->linger2 < 0) {
6600 tcp_done(sk);
6601 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6602 return 1;
6603 }
6604 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6605 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6606 /* Receive out of order FIN after close() */
6607 if (tp->syn_fastopen && th->fin)
6608 tcp_fastopen_active_disable(sk);
6609 tcp_done(sk);
6610 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6611 return 1;
6612 }
6613
6614 tmo = tcp_fin_time(sk);
6615 if (tmo > TCP_TIMEWAIT_LEN) {
6616 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6617 } else if (th->fin || sock_owned_by_user(sk)) {
6618 /* Bad case. We could lose such FIN otherwise.
6619 * It is not a big problem, but it looks confusing
6620 * and not so rare event. We still can lose it now,
6621 * if it spins in bh_lock_sock(), but it is really
6622 * marginal case.
6623 */
6624 inet_csk_reset_keepalive_timer(sk, tmo);
6625 } else {
6626 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6627 goto consume;
6628 }
6629 break;
6630 }
6631
6632 case TCP_CLOSING:
6633 if (tp->snd_una == tp->write_seq) {
6634 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6635 goto consume;
6636 }
6637 break;
6638
6639 case TCP_LAST_ACK:
6640 if (tp->snd_una == tp->write_seq) {
6641 tcp_update_metrics(sk);
6642 tcp_done(sk);
6643 goto consume;
6644 }
6645 break;
6646 }
6647
6648 /* step 6: check the URG bit */
6649 tcp_urg(sk, skb, th);
6650
6651 /* step 7: process the segment text */
6652 switch (sk->sk_state) {
6653 case TCP_CLOSE_WAIT:
6654 case TCP_CLOSING:
6655 case TCP_LAST_ACK:
6656 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6657 /* If a subflow has been reset, the packet should not
6658 * continue to be processed, drop the packet.
6659 */
6660 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6661 goto discard;
6662 break;
6663 }
6664 fallthrough;
6665 case TCP_FIN_WAIT1:
6666 case TCP_FIN_WAIT2:
6667 /* RFC 793 says to queue data in these states,
6668 * RFC 1122 says we MUST send a reset.
6669 * BSD 4.4 also does reset.
6670 */
6671 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6672 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6673 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6674 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6675 tcp_reset(sk, skb);
6676 return 1;
6677 }
6678 }
6679 fallthrough;
6680 case TCP_ESTABLISHED:
6681 tcp_data_queue(sk, skb);
6682 queued = 1;
6683 break;
6684 }
6685
6686 /* tcp_data could move socket to TIME-WAIT */
6687 if (sk->sk_state != TCP_CLOSE) {
6688 tcp_data_snd_check(sk);
6689 tcp_ack_snd_check(sk);
6690 }
6691
6692 if (!queued) {
6693 discard:
6694 tcp_drop_reason(sk, skb, reason);
6695 }
6696 return 0;
6697
6698 consume:
6699 __kfree_skb(skb);
6700 return 0;
6701 }
6702 EXPORT_SYMBOL(tcp_rcv_state_process);
6703
pr_drop_req(struct request_sock * req,__u16 port,int family)6704 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6705 {
6706 struct inet_request_sock *ireq = inet_rsk(req);
6707
6708 if (family == AF_INET)
6709 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6710 &ireq->ir_rmt_addr, port);
6711 #if IS_ENABLED(CONFIG_IPV6)
6712 else if (family == AF_INET6)
6713 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6714 &ireq->ir_v6_rmt_addr, port);
6715 #endif
6716 }
6717
6718 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6719 *
6720 * If we receive a SYN packet with these bits set, it means a
6721 * network is playing bad games with TOS bits. In order to
6722 * avoid possible false congestion notifications, we disable
6723 * TCP ECN negotiation.
6724 *
6725 * Exception: tcp_ca wants ECN. This is required for DCTCP
6726 * congestion control: Linux DCTCP asserts ECT on all packets,
6727 * including SYN, which is most optimal solution; however,
6728 * others, such as FreeBSD do not.
6729 *
6730 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6731 * set, indicating the use of a future TCP extension (such as AccECN). See
6732 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6733 * extensions.
6734 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6735 static void tcp_ecn_create_request(struct request_sock *req,
6736 const struct sk_buff *skb,
6737 const struct sock *listen_sk,
6738 const struct dst_entry *dst)
6739 {
6740 const struct tcphdr *th = tcp_hdr(skb);
6741 const struct net *net = sock_net(listen_sk);
6742 bool th_ecn = th->ece && th->cwr;
6743 bool ect, ecn_ok;
6744 u32 ecn_ok_dst;
6745
6746 if (!th_ecn)
6747 return;
6748
6749 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6750 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6751 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6752
6753 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6754 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6755 tcp_bpf_ca_needs_ecn((struct sock *)req))
6756 inet_rsk(req)->ecn_ok = 1;
6757 }
6758
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6759 static void tcp_openreq_init(struct request_sock *req,
6760 const struct tcp_options_received *rx_opt,
6761 struct sk_buff *skb, const struct sock *sk)
6762 {
6763 struct inet_request_sock *ireq = inet_rsk(req);
6764
6765 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6766 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6767 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6768 tcp_rsk(req)->snt_synack = 0;
6769 tcp_rsk(req)->last_oow_ack_time = 0;
6770 req->mss = rx_opt->mss_clamp;
6771 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6772 ireq->tstamp_ok = rx_opt->tstamp_ok;
6773 ireq->sack_ok = rx_opt->sack_ok;
6774 ireq->snd_wscale = rx_opt->snd_wscale;
6775 ireq->wscale_ok = rx_opt->wscale_ok;
6776 ireq->acked = 0;
6777 ireq->ecn_ok = 0;
6778 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6779 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6780 ireq->ir_mark = inet_request_mark(sk, skb);
6781 #if IS_ENABLED(CONFIG_SMC)
6782 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6783 tcp_sk(sk)->smc_hs_congested(sk));
6784 #endif
6785 }
6786
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6787 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6788 struct sock *sk_listener,
6789 bool attach_listener)
6790 {
6791 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6792 attach_listener);
6793
6794 if (req) {
6795 struct inet_request_sock *ireq = inet_rsk(req);
6796
6797 ireq->ireq_opt = NULL;
6798 #if IS_ENABLED(CONFIG_IPV6)
6799 ireq->pktopts = NULL;
6800 #endif
6801 atomic64_set(&ireq->ir_cookie, 0);
6802 ireq->ireq_state = TCP_NEW_SYN_RECV;
6803 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6804 ireq->ireq_family = sk_listener->sk_family;
6805 req->timeout = TCP_TIMEOUT_INIT;
6806 }
6807
6808 return req;
6809 }
6810 EXPORT_SYMBOL(inet_reqsk_alloc);
6811
6812 /*
6813 * Return true if a syncookie should be sent
6814 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6815 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6816 {
6817 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6818 const char *msg = "Dropping request";
6819 struct net *net = sock_net(sk);
6820 bool want_cookie = false;
6821 u8 syncookies;
6822
6823 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6824
6825 #ifdef CONFIG_SYN_COOKIES
6826 if (syncookies) {
6827 msg = "Sending cookies";
6828 want_cookie = true;
6829 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6830 } else
6831 #endif
6832 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6833
6834 if (!queue->synflood_warned && syncookies != 2 &&
6835 xchg(&queue->synflood_warned, 1) == 0)
6836 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6837 proto, sk->sk_num, msg);
6838
6839 return want_cookie;
6840 }
6841
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6842 static void tcp_reqsk_record_syn(const struct sock *sk,
6843 struct request_sock *req,
6844 const struct sk_buff *skb)
6845 {
6846 if (tcp_sk(sk)->save_syn) {
6847 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6848 struct saved_syn *saved_syn;
6849 u32 mac_hdrlen;
6850 void *base;
6851
6852 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6853 base = skb_mac_header(skb);
6854 mac_hdrlen = skb_mac_header_len(skb);
6855 len += mac_hdrlen;
6856 } else {
6857 base = skb_network_header(skb);
6858 mac_hdrlen = 0;
6859 }
6860
6861 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6862 GFP_ATOMIC);
6863 if (saved_syn) {
6864 saved_syn->mac_hdrlen = mac_hdrlen;
6865 saved_syn->network_hdrlen = skb_network_header_len(skb);
6866 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6867 memcpy(saved_syn->data, base, len);
6868 req->saved_syn = saved_syn;
6869 }
6870 }
6871 }
6872
6873 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6874 * used for SYN cookie generation.
6875 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6876 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6877 const struct tcp_request_sock_ops *af_ops,
6878 struct sock *sk, struct tcphdr *th)
6879 {
6880 struct tcp_sock *tp = tcp_sk(sk);
6881 u16 mss;
6882
6883 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6884 !inet_csk_reqsk_queue_is_full(sk))
6885 return 0;
6886
6887 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6888 return 0;
6889
6890 if (sk_acceptq_is_full(sk)) {
6891 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6892 return 0;
6893 }
6894
6895 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6896 if (!mss)
6897 mss = af_ops->mss_clamp;
6898
6899 return mss;
6900 }
6901 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6902
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6903 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6904 const struct tcp_request_sock_ops *af_ops,
6905 struct sock *sk, struct sk_buff *skb)
6906 {
6907 struct tcp_fastopen_cookie foc = { .len = -1 };
6908 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6909 struct tcp_options_received tmp_opt;
6910 struct tcp_sock *tp = tcp_sk(sk);
6911 struct net *net = sock_net(sk);
6912 struct sock *fastopen_sk = NULL;
6913 struct request_sock *req;
6914 bool want_cookie = false;
6915 struct dst_entry *dst;
6916 struct flowi fl;
6917 u8 syncookies;
6918
6919 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6920
6921 /* TW buckets are converted to open requests without
6922 * limitations, they conserve resources and peer is
6923 * evidently real one.
6924 */
6925 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6926 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6927 if (!want_cookie)
6928 goto drop;
6929 }
6930
6931 if (sk_acceptq_is_full(sk)) {
6932 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6933 goto drop;
6934 }
6935
6936 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6937 if (!req)
6938 goto drop;
6939
6940 req->syncookie = want_cookie;
6941 tcp_rsk(req)->af_specific = af_ops;
6942 tcp_rsk(req)->ts_off = 0;
6943 #if IS_ENABLED(CONFIG_MPTCP)
6944 tcp_rsk(req)->is_mptcp = 0;
6945 #endif
6946
6947 tcp_clear_options(&tmp_opt);
6948 tmp_opt.mss_clamp = af_ops->mss_clamp;
6949 tmp_opt.user_mss = tp->rx_opt.user_mss;
6950 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6951 want_cookie ? NULL : &foc);
6952
6953 if (want_cookie && !tmp_opt.saw_tstamp)
6954 tcp_clear_options(&tmp_opt);
6955
6956 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6957 tmp_opt.smc_ok = 0;
6958
6959 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6960 tcp_openreq_init(req, &tmp_opt, skb, sk);
6961 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6962
6963 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6964 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6965
6966 dst = af_ops->route_req(sk, skb, &fl, req);
6967 if (!dst)
6968 goto drop_and_free;
6969
6970 if (tmp_opt.tstamp_ok)
6971 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6972
6973 if (!want_cookie && !isn) {
6974 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6975
6976 /* Kill the following clause, if you dislike this way. */
6977 if (!syncookies &&
6978 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6979 (max_syn_backlog >> 2)) &&
6980 !tcp_peer_is_proven(req, dst)) {
6981 /* Without syncookies last quarter of
6982 * backlog is filled with destinations,
6983 * proven to be alive.
6984 * It means that we continue to communicate
6985 * to destinations, already remembered
6986 * to the moment of synflood.
6987 */
6988 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6989 rsk_ops->family);
6990 goto drop_and_release;
6991 }
6992
6993 isn = af_ops->init_seq(skb);
6994 }
6995
6996 tcp_ecn_create_request(req, skb, sk, dst);
6997
6998 if (want_cookie) {
6999 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7000 if (!tmp_opt.tstamp_ok)
7001 inet_rsk(req)->ecn_ok = 0;
7002 }
7003
7004 tcp_rsk(req)->snt_isn = isn;
7005 tcp_rsk(req)->txhash = net_tx_rndhash();
7006 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7007 tcp_openreq_init_rwin(req, sk, dst);
7008 sk_rx_queue_set(req_to_sk(req), skb);
7009 if (!want_cookie) {
7010 tcp_reqsk_record_syn(sk, req, skb);
7011 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7012 }
7013 if (fastopen_sk) {
7014 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7015 &foc, TCP_SYNACK_FASTOPEN, skb);
7016 /* Add the child socket directly into the accept queue */
7017 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7018 reqsk_fastopen_remove(fastopen_sk, req, false);
7019 bh_unlock_sock(fastopen_sk);
7020 sock_put(fastopen_sk);
7021 goto drop_and_free;
7022 }
7023 sk->sk_data_ready(sk);
7024 bh_unlock_sock(fastopen_sk);
7025 sock_put(fastopen_sk);
7026 } else {
7027 tcp_rsk(req)->tfo_listener = false;
7028 if (!want_cookie) {
7029 req->timeout = tcp_timeout_init((struct sock *)req);
7030 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7031 }
7032 af_ops->send_synack(sk, dst, &fl, req, &foc,
7033 !want_cookie ? TCP_SYNACK_NORMAL :
7034 TCP_SYNACK_COOKIE,
7035 skb);
7036 if (want_cookie) {
7037 reqsk_free(req);
7038 return 0;
7039 }
7040 }
7041 reqsk_put(req);
7042 return 0;
7043
7044 drop_and_release:
7045 dst_release(dst);
7046 drop_and_free:
7047 __reqsk_free(req);
7048 drop:
7049 tcp_listendrop(sk);
7050 return 0;
7051 }
7052 EXPORT_SYMBOL(tcp_conn_request);
7053