1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * PF_INET protocol family socket handler.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Florian La Roche, <flla@stud.uni-sb.de>
12 * Alan Cox, <A.Cox@swansea.ac.uk>
13 *
14 * Changes (see also sock.c)
15 *
16 * piggy,
17 * Karl Knutson : Socket protocol table
18 * A.N.Kuznetsov : Socket death error in accept().
19 * John Richardson : Fix non blocking error in connect()
20 * so sockets that fail to connect
21 * don't return -EINPROGRESS.
22 * Alan Cox : Asynchronous I/O support
23 * Alan Cox : Keep correct socket pointer on sock
24 * structures
25 * when accept() ed
26 * Alan Cox : Semantics of SO_LINGER aren't state
27 * moved to close when you look carefully.
28 * With this fixed and the accept bug fixed
29 * some RPC stuff seems happier.
30 * Niibe Yutaka : 4.4BSD style write async I/O
31 * Alan Cox,
32 * Tony Gale : Fixed reuse semantics.
33 * Alan Cox : bind() shouldn't abort existing but dead
34 * sockets. Stops FTP netin:.. I hope.
35 * Alan Cox : bind() works correctly for RAW sockets.
36 * Note that FreeBSD at least was broken
37 * in this respect so be careful with
38 * compatibility tests...
39 * Alan Cox : routing cache support
40 * Alan Cox : memzero the socket structure for
41 * compactness.
42 * Matt Day : nonblock connect error handler
43 * Alan Cox : Allow large numbers of pending sockets
44 * (eg for big web sites), but only if
45 * specifically application requested.
46 * Alan Cox : New buffering throughout IP. Used
47 * dumbly.
48 * Alan Cox : New buffering now used smartly.
49 * Alan Cox : BSD rather than common sense
50 * interpretation of listen.
51 * Germano Caronni : Assorted small races.
52 * Alan Cox : sendmsg/recvmsg basic support.
53 * Alan Cox : Only sendmsg/recvmsg now supported.
54 * Alan Cox : Locked down bind (see security list).
55 * Alan Cox : Loosened bind a little.
56 * Mike McLagan : ADD/DEL DLCI Ioctls
57 * Willy Konynenberg : Transparent proxying support.
58 * David S. Miller : New socket lookup architecture.
59 * Some other random speedups.
60 * Cyrus Durgin : Cleaned up file for kmod hacks.
61 * Andi Kleen : Fix inet_stream_connect TCP race.
62 */
63
64 #define pr_fmt(fmt) "IPv4: " fmt
65
66 #include <linux/err.h>
67 #include <linux/errno.h>
68 #include <linux/types.h>
69 #include <linux/socket.h>
70 #include <linux/in.h>
71 #include <linux/kernel.h>
72 #include <linux/kmod.h>
73 #include <linux/sched.h>
74 #include <linux/timer.h>
75 #include <linux/string.h>
76 #include <linux/sockios.h>
77 #include <linux/net.h>
78 #include <linux/capability.h>
79 #include <linux/fcntl.h>
80 #include <linux/mm.h>
81 #include <linux/interrupt.h>
82 #include <linux/stat.h>
83 #include <linux/init.h>
84 #include <linux/poll.h>
85 #include <linux/netfilter_ipv4.h>
86 #include <linux/random.h>
87 #include <linux/slab.h>
88
89 #include <linux/uaccess.h>
90
91 #include <linux/inet.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/netdevice.h>
95 #include <net/checksum.h>
96 #include <net/ip.h>
97 #include <net/protocol.h>
98 #include <net/arp.h>
99 #include <net/route.h>
100 #include <net/ip_fib.h>
101 #include <net/inet_connection_sock.h>
102 #include <net/gro.h>
103 #include <net/tcp.h>
104 #include <net/udp.h>
105 #include <net/udplite.h>
106 #include <net/ping.h>
107 #include <linux/skbuff.h>
108 #include <net/sock.h>
109 #include <net/raw.h>
110 #include <net/icmp.h>
111 #include <net/inet_common.h>
112 #include <net/ip_tunnels.h>
113 #include <net/xfrm.h>
114 #include <net/net_namespace.h>
115 #include <net/secure_seq.h>
116 #ifdef CONFIG_IP_MROUTE
117 #include <linux/mroute.h>
118 #endif
119 #include <net/l3mdev.h>
120 #include <net/compat.h>
121
122 #include <trace/events/sock.h>
123
124 /* The inetsw table contains everything that inet_create needs to
125 * build a new socket.
126 */
127 static struct list_head inetsw[SOCK_MAX];
128 static DEFINE_SPINLOCK(inetsw_lock);
129
130 /* New destruction routine */
131
inet_sock_destruct(struct sock * sk)132 void inet_sock_destruct(struct sock *sk)
133 {
134 struct inet_sock *inet = inet_sk(sk);
135
136 __skb_queue_purge(&sk->sk_receive_queue);
137 __skb_queue_purge(&sk->sk_error_queue);
138
139 sk_mem_reclaim_final(sk);
140
141 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) {
142 pr_err("Attempt to release TCP socket in state %d %p\n",
143 sk->sk_state, sk);
144 return;
145 }
146 if (!sock_flag(sk, SOCK_DEAD)) {
147 pr_err("Attempt to release alive inet socket %p\n", sk);
148 return;
149 }
150
151 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc));
152 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc));
153 WARN_ON_ONCE(sk->sk_wmem_queued);
154 WARN_ON_ONCE(sk_forward_alloc_get(sk));
155
156 kfree(rcu_dereference_protected(inet->inet_opt, 1));
157 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1));
158 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1));
159 sk_refcnt_debug_dec(sk);
160 }
161 EXPORT_SYMBOL(inet_sock_destruct);
162
163 /*
164 * The routines beyond this point handle the behaviour of an AF_INET
165 * socket object. Mostly it punts to the subprotocols of IP to do
166 * the work.
167 */
168
169 /*
170 * Automatically bind an unbound socket.
171 */
172
inet_autobind(struct sock * sk)173 static int inet_autobind(struct sock *sk)
174 {
175 struct inet_sock *inet;
176 /* We may need to bind the socket. */
177 lock_sock(sk);
178 inet = inet_sk(sk);
179 if (!inet->inet_num) {
180 if (sk->sk_prot->get_port(sk, 0)) {
181 release_sock(sk);
182 return -EAGAIN;
183 }
184 inet->inet_sport = htons(inet->inet_num);
185 }
186 release_sock(sk);
187 return 0;
188 }
189
190 /*
191 * Move a socket into listening state.
192 */
inet_listen(struct socket * sock,int backlog)193 int inet_listen(struct socket *sock, int backlog)
194 {
195 struct sock *sk = sock->sk;
196 unsigned char old_state;
197 int err, tcp_fastopen;
198
199 lock_sock(sk);
200
201 err = -EINVAL;
202 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
203 goto out;
204
205 old_state = sk->sk_state;
206 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN)))
207 goto out;
208
209 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
210 /* Really, if the socket is already in listen state
211 * we can only allow the backlog to be adjusted.
212 */
213 if (old_state != TCP_LISTEN) {
214 /* Enable TFO w/o requiring TCP_FASTOPEN socket option.
215 * Note that only TCP sockets (SOCK_STREAM) will reach here.
216 * Also fastopen backlog may already been set via the option
217 * because the socket was in TCP_LISTEN state previously but
218 * was shutdown() rather than close().
219 */
220 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
221 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) &&
222 (tcp_fastopen & TFO_SERVER_ENABLE) &&
223 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) {
224 fastopen_queue_tune(sk, backlog);
225 tcp_fastopen_init_key_once(sock_net(sk));
226 }
227
228 err = inet_csk_listen_start(sk);
229 if (err)
230 goto out;
231 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL);
232 }
233 err = 0;
234
235 out:
236 release_sock(sk);
237 return err;
238 }
239 EXPORT_SYMBOL(inet_listen);
240
241 /*
242 * Create an inet socket.
243 */
244
inet_create(struct net * net,struct socket * sock,int protocol,int kern)245 static int inet_create(struct net *net, struct socket *sock, int protocol,
246 int kern)
247 {
248 struct sock *sk;
249 struct inet_protosw *answer;
250 struct inet_sock *inet;
251 struct proto *answer_prot;
252 unsigned char answer_flags;
253 int try_loading_module = 0;
254 int err;
255
256 if (protocol < 0 || protocol >= IPPROTO_MAX)
257 return -EINVAL;
258
259 sock->state = SS_UNCONNECTED;
260
261 /* Look for the requested type/protocol pair. */
262 lookup_protocol:
263 err = -ESOCKTNOSUPPORT;
264 rcu_read_lock();
265 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) {
266
267 err = 0;
268 /* Check the non-wild match. */
269 if (protocol == answer->protocol) {
270 if (protocol != IPPROTO_IP)
271 break;
272 } else {
273 /* Check for the two wild cases. */
274 if (IPPROTO_IP == protocol) {
275 protocol = answer->protocol;
276 break;
277 }
278 if (IPPROTO_IP == answer->protocol)
279 break;
280 }
281 err = -EPROTONOSUPPORT;
282 }
283
284 if (unlikely(err)) {
285 if (try_loading_module < 2) {
286 rcu_read_unlock();
287 /*
288 * Be more specific, e.g. net-pf-2-proto-132-type-1
289 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM)
290 */
291 if (++try_loading_module == 1)
292 request_module("net-pf-%d-proto-%d-type-%d",
293 PF_INET, protocol, sock->type);
294 /*
295 * Fall back to generic, e.g. net-pf-2-proto-132
296 * (net-pf-PF_INET-proto-IPPROTO_SCTP)
297 */
298 else
299 request_module("net-pf-%d-proto-%d",
300 PF_INET, protocol);
301 goto lookup_protocol;
302 } else
303 goto out_rcu_unlock;
304 }
305
306 err = -EPERM;
307 if (sock->type == SOCK_RAW && !kern &&
308 !ns_capable(net->user_ns, CAP_NET_RAW))
309 goto out_rcu_unlock;
310
311 sock->ops = answer->ops;
312 answer_prot = answer->prot;
313 answer_flags = answer->flags;
314 rcu_read_unlock();
315
316 WARN_ON(!answer_prot->slab);
317
318 err = -ENOMEM;
319 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern);
320 if (!sk)
321 goto out;
322
323 err = 0;
324 if (INET_PROTOSW_REUSE & answer_flags)
325 sk->sk_reuse = SK_CAN_REUSE;
326
327 inet = inet_sk(sk);
328 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0;
329
330 inet->nodefrag = 0;
331
332 if (SOCK_RAW == sock->type) {
333 inet->inet_num = protocol;
334 if (IPPROTO_RAW == protocol)
335 inet->hdrincl = 1;
336 }
337
338 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc))
339 inet->pmtudisc = IP_PMTUDISC_DONT;
340 else
341 inet->pmtudisc = IP_PMTUDISC_WANT;
342
343 inet->inet_id = 0;
344
345 sock_init_data(sock, sk);
346
347 sk->sk_destruct = inet_sock_destruct;
348 sk->sk_protocol = protocol;
349 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
350
351 inet->uc_ttl = -1;
352 inet->mc_loop = 1;
353 inet->mc_ttl = 1;
354 inet->mc_all = 1;
355 inet->mc_index = 0;
356 inet->mc_list = NULL;
357 inet->rcv_tos = 0;
358
359 sk_refcnt_debug_inc(sk);
360
361 if (inet->inet_num) {
362 /* It assumes that any protocol which allows
363 * the user to assign a number at socket
364 * creation time automatically
365 * shares.
366 */
367 inet->inet_sport = htons(inet->inet_num);
368 /* Add to protocol hash chains. */
369 err = sk->sk_prot->hash(sk);
370 if (err) {
371 sk_common_release(sk);
372 goto out;
373 }
374 }
375
376 if (sk->sk_prot->init) {
377 err = sk->sk_prot->init(sk);
378 if (err) {
379 sk_common_release(sk);
380 goto out;
381 }
382 }
383
384 if (!kern) {
385 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk);
386 if (err) {
387 sk_common_release(sk);
388 goto out;
389 }
390 }
391 out:
392 return err;
393 out_rcu_unlock:
394 rcu_read_unlock();
395 goto out;
396 }
397
398
399 /*
400 * The peer socket should always be NULL (or else). When we call this
401 * function we are destroying the object and from then on nobody
402 * should refer to it.
403 */
inet_release(struct socket * sock)404 int inet_release(struct socket *sock)
405 {
406 struct sock *sk = sock->sk;
407
408 if (sk) {
409 long timeout;
410
411 if (!sk->sk_kern_sock)
412 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk);
413
414 /* Applications forget to leave groups before exiting */
415 ip_mc_drop_socket(sk);
416
417 /* If linger is set, we don't return until the close
418 * is complete. Otherwise we return immediately. The
419 * actually closing is done the same either way.
420 *
421 * If the close is due to the process exiting, we never
422 * linger..
423 */
424 timeout = 0;
425 if (sock_flag(sk, SOCK_LINGER) &&
426 !(current->flags & PF_EXITING))
427 timeout = sk->sk_lingertime;
428 sk->sk_prot->close(sk, timeout);
429 sock->sk = NULL;
430 }
431 return 0;
432 }
433 EXPORT_SYMBOL(inet_release);
434
inet_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)435 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
436 {
437 struct sock *sk = sock->sk;
438 u32 flags = BIND_WITH_LOCK;
439 int err;
440
441 /* If the socket has its own bind function then use it. (RAW) */
442 if (sk->sk_prot->bind) {
443 return sk->sk_prot->bind(sk, uaddr, addr_len);
444 }
445 if (addr_len < sizeof(struct sockaddr_in))
446 return -EINVAL;
447
448 /* BPF prog is run before any checks are done so that if the prog
449 * changes context in a wrong way it will be caught.
450 */
451 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr,
452 CGROUP_INET4_BIND, &flags);
453 if (err)
454 return err;
455
456 return __inet_bind(sk, uaddr, addr_len, flags);
457 }
458 EXPORT_SYMBOL(inet_bind);
459
__inet_bind(struct sock * sk,struct sockaddr * uaddr,int addr_len,u32 flags)460 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len,
461 u32 flags)
462 {
463 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr;
464 struct inet_sock *inet = inet_sk(sk);
465 struct net *net = sock_net(sk);
466 unsigned short snum;
467 int chk_addr_ret;
468 u32 tb_id = RT_TABLE_LOCAL;
469 int err;
470
471 if (addr->sin_family != AF_INET) {
472 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET)
473 * only if s_addr is INADDR_ANY.
474 */
475 err = -EAFNOSUPPORT;
476 if (addr->sin_family != AF_UNSPEC ||
477 addr->sin_addr.s_addr != htonl(INADDR_ANY))
478 goto out;
479 }
480
481 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id;
482 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id);
483
484 /* Not specified by any standard per-se, however it breaks too
485 * many applications when removed. It is unfortunate since
486 * allowing applications to make a non-local bind solves
487 * several problems with systems using dynamic addressing.
488 * (ie. your servers still start up even if your ISDN link
489 * is temporarily down)
490 */
491 err = -EADDRNOTAVAIL;
492 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr,
493 chk_addr_ret))
494 goto out;
495
496 snum = ntohs(addr->sin_port);
497 err = -EACCES;
498 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) &&
499 snum && inet_port_requires_bind_service(net, snum) &&
500 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
501 goto out;
502
503 /* We keep a pair of addresses. rcv_saddr is the one
504 * used by hash lookups, and saddr is used for transmit.
505 *
506 * In the BSD API these are the same except where it
507 * would be illegal to use them (multicast/broadcast) in
508 * which case the sending device address is used.
509 */
510 if (flags & BIND_WITH_LOCK)
511 lock_sock(sk);
512
513 /* Check these errors (active socket, double bind). */
514 err = -EINVAL;
515 if (sk->sk_state != TCP_CLOSE || inet->inet_num)
516 goto out_release_sock;
517
518 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr;
519 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST)
520 inet->inet_saddr = 0; /* Use device */
521
522 /* Make sure we are allowed to bind here. */
523 if (snum || !(inet->bind_address_no_port ||
524 (flags & BIND_FORCE_ADDRESS_NO_PORT))) {
525 err = sk->sk_prot->get_port(sk, snum);
526 if (err) {
527 inet->inet_saddr = inet->inet_rcv_saddr = 0;
528 goto out_release_sock;
529 }
530 if (!(flags & BIND_FROM_BPF)) {
531 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk);
532 if (err) {
533 inet->inet_saddr = inet->inet_rcv_saddr = 0;
534 if (sk->sk_prot->put_port)
535 sk->sk_prot->put_port(sk);
536 goto out_release_sock;
537 }
538 }
539 }
540
541 if (inet->inet_rcv_saddr)
542 sk->sk_userlocks |= SOCK_BINDADDR_LOCK;
543 if (snum)
544 sk->sk_userlocks |= SOCK_BINDPORT_LOCK;
545 inet->inet_sport = htons(inet->inet_num);
546 inet->inet_daddr = 0;
547 inet->inet_dport = 0;
548 sk_dst_reset(sk);
549 err = 0;
550 out_release_sock:
551 if (flags & BIND_WITH_LOCK)
552 release_sock(sk);
553 out:
554 return err;
555 }
556
inet_dgram_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)557 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr,
558 int addr_len, int flags)
559 {
560 struct sock *sk = sock->sk;
561 const struct proto *prot;
562 int err;
563
564 if (addr_len < sizeof(uaddr->sa_family))
565 return -EINVAL;
566
567 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
568 prot = READ_ONCE(sk->sk_prot);
569
570 if (uaddr->sa_family == AF_UNSPEC)
571 return prot->disconnect(sk, flags);
572
573 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
574 err = prot->pre_connect(sk, uaddr, addr_len);
575 if (err)
576 return err;
577 }
578
579 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk))
580 return -EAGAIN;
581 return prot->connect(sk, uaddr, addr_len);
582 }
583 EXPORT_SYMBOL(inet_dgram_connect);
584
inet_wait_for_connect(struct sock * sk,long timeo,int writebias)585 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias)
586 {
587 DEFINE_WAIT_FUNC(wait, woken_wake_function);
588
589 add_wait_queue(sk_sleep(sk), &wait);
590 sk->sk_write_pending += writebias;
591
592 /* Basic assumption: if someone sets sk->sk_err, he _must_
593 * change state of the socket from TCP_SYN_*.
594 * Connect() does not allow to get error notifications
595 * without closing the socket.
596 */
597 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
598 release_sock(sk);
599 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo);
600 lock_sock(sk);
601 if (signal_pending(current) || !timeo)
602 break;
603 }
604 remove_wait_queue(sk_sleep(sk), &wait);
605 sk->sk_write_pending -= writebias;
606 return timeo;
607 }
608
609 /*
610 * Connect to a remote host. There is regrettably still a little
611 * TCP 'magic' in here.
612 */
__inet_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags,int is_sendmsg)613 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
614 int addr_len, int flags, int is_sendmsg)
615 {
616 struct sock *sk = sock->sk;
617 int err;
618 long timeo;
619
620 /*
621 * uaddr can be NULL and addr_len can be 0 if:
622 * sk is a TCP fastopen active socket and
623 * TCP_FASTOPEN_CONNECT sockopt is set and
624 * we already have a valid cookie for this socket.
625 * In this case, user can call write() after connect().
626 * write() will invoke tcp_sendmsg_fastopen() which calls
627 * __inet_stream_connect().
628 */
629 if (uaddr) {
630 if (addr_len < sizeof(uaddr->sa_family))
631 return -EINVAL;
632
633 if (uaddr->sa_family == AF_UNSPEC) {
634 err = sk->sk_prot->disconnect(sk, flags);
635 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
636 goto out;
637 }
638 }
639
640 switch (sock->state) {
641 default:
642 err = -EINVAL;
643 goto out;
644 case SS_CONNECTED:
645 err = -EISCONN;
646 goto out;
647 case SS_CONNECTING:
648 if (inet_sk(sk)->defer_connect)
649 err = is_sendmsg ? -EINPROGRESS : -EISCONN;
650 else
651 err = -EALREADY;
652 /* Fall out of switch with err, set for this state */
653 break;
654 case SS_UNCONNECTED:
655 err = -EISCONN;
656 if (sk->sk_state != TCP_CLOSE)
657 goto out;
658
659 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) {
660 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len);
661 if (err)
662 goto out;
663 }
664
665 err = sk->sk_prot->connect(sk, uaddr, addr_len);
666 if (err < 0)
667 goto out;
668
669 sock->state = SS_CONNECTING;
670
671 if (!err && inet_sk(sk)->defer_connect)
672 goto out;
673
674 /* Just entered SS_CONNECTING state; the only
675 * difference is that return value in non-blocking
676 * case is EINPROGRESS, rather than EALREADY.
677 */
678 err = -EINPROGRESS;
679 break;
680 }
681
682 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
683
684 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
685 int writebias = (sk->sk_protocol == IPPROTO_TCP) &&
686 tcp_sk(sk)->fastopen_req &&
687 tcp_sk(sk)->fastopen_req->data ? 1 : 0;
688
689 /* Error code is set above */
690 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias))
691 goto out;
692
693 err = sock_intr_errno(timeo);
694 if (signal_pending(current))
695 goto out;
696 }
697
698 /* Connection was closed by RST, timeout, ICMP error
699 * or another process disconnected us.
700 */
701 if (sk->sk_state == TCP_CLOSE)
702 goto sock_error;
703
704 /* sk->sk_err may be not zero now, if RECVERR was ordered by user
705 * and error was received after socket entered established state.
706 * Hence, it is handled normally after connect() return successfully.
707 */
708
709 sock->state = SS_CONNECTED;
710 err = 0;
711 out:
712 return err;
713
714 sock_error:
715 err = sock_error(sk) ? : -ECONNABORTED;
716 sock->state = SS_UNCONNECTED;
717 if (sk->sk_prot->disconnect(sk, flags))
718 sock->state = SS_DISCONNECTING;
719 goto out;
720 }
721 EXPORT_SYMBOL(__inet_stream_connect);
722
inet_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)723 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
724 int addr_len, int flags)
725 {
726 int err;
727
728 lock_sock(sock->sk);
729 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0);
730 release_sock(sock->sk);
731 return err;
732 }
733 EXPORT_SYMBOL(inet_stream_connect);
734
735 /*
736 * Accept a pending connection. The TCP layer now gives BSD semantics.
737 */
738
inet_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)739 int inet_accept(struct socket *sock, struct socket *newsock, int flags,
740 bool kern)
741 {
742 struct sock *sk1 = sock->sk, *sk2;
743 int err = -EINVAL;
744
745 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
746 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern);
747 if (!sk2)
748 goto do_err;
749
750 lock_sock(sk2);
751
752 sock_rps_record_flow(sk2);
753 WARN_ON(!((1 << sk2->sk_state) &
754 (TCPF_ESTABLISHED | TCPF_SYN_RECV |
755 TCPF_CLOSE_WAIT | TCPF_CLOSE)));
756
757 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags))
758 set_bit(SOCK_SUPPORT_ZC, &newsock->flags);
759 sock_graft(sk2, newsock);
760
761 newsock->state = SS_CONNECTED;
762 err = 0;
763 release_sock(sk2);
764 do_err:
765 return err;
766 }
767 EXPORT_SYMBOL(inet_accept);
768
769 /*
770 * This does both peername and sockname.
771 */
inet_getname(struct socket * sock,struct sockaddr * uaddr,int peer)772 int inet_getname(struct socket *sock, struct sockaddr *uaddr,
773 int peer)
774 {
775 struct sock *sk = sock->sk;
776 struct inet_sock *inet = inet_sk(sk);
777 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr);
778
779 sin->sin_family = AF_INET;
780 lock_sock(sk);
781 if (peer) {
782 if (!inet->inet_dport ||
783 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) &&
784 peer == 1)) {
785 release_sock(sk);
786 return -ENOTCONN;
787 }
788 sin->sin_port = inet->inet_dport;
789 sin->sin_addr.s_addr = inet->inet_daddr;
790 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin,
791 CGROUP_INET4_GETPEERNAME);
792 } else {
793 __be32 addr = inet->inet_rcv_saddr;
794 if (!addr)
795 addr = inet->inet_saddr;
796 sin->sin_port = inet->inet_sport;
797 sin->sin_addr.s_addr = addr;
798 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin,
799 CGROUP_INET4_GETSOCKNAME);
800 }
801 release_sock(sk);
802 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
803 return sizeof(*sin);
804 }
805 EXPORT_SYMBOL(inet_getname);
806
inet_send_prepare(struct sock * sk)807 int inet_send_prepare(struct sock *sk)
808 {
809 sock_rps_record_flow(sk);
810
811 /* We may need to bind the socket. */
812 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind &&
813 inet_autobind(sk))
814 return -EAGAIN;
815
816 return 0;
817 }
818 EXPORT_SYMBOL_GPL(inet_send_prepare);
819
inet_sendmsg(struct socket * sock,struct msghdr * msg,size_t size)820 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
821 {
822 struct sock *sk = sock->sk;
823
824 if (unlikely(inet_send_prepare(sk)))
825 return -EAGAIN;
826
827 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg,
828 sk, msg, size);
829 }
830 EXPORT_SYMBOL(inet_sendmsg);
831
inet_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)832 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset,
833 size_t size, int flags)
834 {
835 struct sock *sk = sock->sk;
836 const struct proto *prot;
837
838 if (unlikely(inet_send_prepare(sk)))
839 return -EAGAIN;
840
841 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
842 prot = READ_ONCE(sk->sk_prot);
843 if (prot->sendpage)
844 return prot->sendpage(sk, page, offset, size, flags);
845 return sock_no_sendpage(sock, page, offset, size, flags);
846 }
847 EXPORT_SYMBOL(inet_sendpage);
848
849 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *,
850 size_t, int, int *));
inet_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)851 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
852 int flags)
853 {
854 struct sock *sk = sock->sk;
855 int addr_len = 0;
856 int err;
857
858 if (likely(!(flags & MSG_ERRQUEUE)))
859 sock_rps_record_flow(sk);
860
861 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg,
862 sk, msg, size, flags, &addr_len);
863 if (err >= 0)
864 msg->msg_namelen = addr_len;
865 return err;
866 }
867 EXPORT_SYMBOL(inet_recvmsg);
868
inet_shutdown(struct socket * sock,int how)869 int inet_shutdown(struct socket *sock, int how)
870 {
871 struct sock *sk = sock->sk;
872 int err = 0;
873
874 /* This should really check to make sure
875 * the socket is a TCP socket. (WHY AC...)
876 */
877 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and
878 1->2 bit 2 snds.
879 2->3 */
880 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */
881 return -EINVAL;
882
883 lock_sock(sk);
884 if (sock->state == SS_CONNECTING) {
885 if ((1 << sk->sk_state) &
886 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
887 sock->state = SS_DISCONNECTING;
888 else
889 sock->state = SS_CONNECTED;
890 }
891
892 switch (sk->sk_state) {
893 case TCP_CLOSE:
894 err = -ENOTCONN;
895 /* Hack to wake up other listeners, who can poll for
896 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */
897 fallthrough;
898 default:
899 sk->sk_shutdown |= how;
900 if (sk->sk_prot->shutdown)
901 sk->sk_prot->shutdown(sk, how);
902 break;
903
904 /* Remaining two branches are temporary solution for missing
905 * close() in multithreaded environment. It is _not_ a good idea,
906 * but we have no choice until close() is repaired at VFS level.
907 */
908 case TCP_LISTEN:
909 if (!(how & RCV_SHUTDOWN))
910 break;
911 fallthrough;
912 case TCP_SYN_SENT:
913 err = sk->sk_prot->disconnect(sk, O_NONBLOCK);
914 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
915 break;
916 }
917
918 /* Wake up anyone sleeping in poll. */
919 sk->sk_state_change(sk);
920 release_sock(sk);
921 return err;
922 }
923 EXPORT_SYMBOL(inet_shutdown);
924
925 /*
926 * ioctl() calls you can issue on an INET socket. Most of these are
927 * device configuration and stuff and very rarely used. Some ioctls
928 * pass on to the socket itself.
929 *
930 * NOTE: I like the idea of a module for the config stuff. ie ifconfig
931 * loads the devconfigure module does its configuring and unloads it.
932 * There's a good 20K of config code hanging around the kernel.
933 */
934
inet_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)935 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
936 {
937 struct sock *sk = sock->sk;
938 int err = 0;
939 struct net *net = sock_net(sk);
940 void __user *p = (void __user *)arg;
941 struct ifreq ifr;
942 struct rtentry rt;
943
944 switch (cmd) {
945 case SIOCADDRT:
946 case SIOCDELRT:
947 if (copy_from_user(&rt, p, sizeof(struct rtentry)))
948 return -EFAULT;
949 err = ip_rt_ioctl(net, cmd, &rt);
950 break;
951 case SIOCRTMSG:
952 err = -EINVAL;
953 break;
954 case SIOCDARP:
955 case SIOCGARP:
956 case SIOCSARP:
957 err = arp_ioctl(net, cmd, (void __user *)arg);
958 break;
959 case SIOCGIFADDR:
960 case SIOCGIFBRDADDR:
961 case SIOCGIFNETMASK:
962 case SIOCGIFDSTADDR:
963 case SIOCGIFPFLAGS:
964 if (get_user_ifreq(&ifr, NULL, p))
965 return -EFAULT;
966 err = devinet_ioctl(net, cmd, &ifr);
967 if (!err && put_user_ifreq(&ifr, p))
968 err = -EFAULT;
969 break;
970
971 case SIOCSIFADDR:
972 case SIOCSIFBRDADDR:
973 case SIOCSIFNETMASK:
974 case SIOCSIFDSTADDR:
975 case SIOCSIFPFLAGS:
976 case SIOCSIFFLAGS:
977 if (get_user_ifreq(&ifr, NULL, p))
978 return -EFAULT;
979 err = devinet_ioctl(net, cmd, &ifr);
980 break;
981 default:
982 if (sk->sk_prot->ioctl)
983 err = sk->sk_prot->ioctl(sk, cmd, arg);
984 else
985 err = -ENOIOCTLCMD;
986 break;
987 }
988 return err;
989 }
990 EXPORT_SYMBOL(inet_ioctl);
991
992 #ifdef CONFIG_COMPAT
inet_compat_routing_ioctl(struct sock * sk,unsigned int cmd,struct compat_rtentry __user * ur)993 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd,
994 struct compat_rtentry __user *ur)
995 {
996 compat_uptr_t rtdev;
997 struct rtentry rt;
998
999 if (copy_from_user(&rt.rt_dst, &ur->rt_dst,
1000 3 * sizeof(struct sockaddr)) ||
1001 get_user(rt.rt_flags, &ur->rt_flags) ||
1002 get_user(rt.rt_metric, &ur->rt_metric) ||
1003 get_user(rt.rt_mtu, &ur->rt_mtu) ||
1004 get_user(rt.rt_window, &ur->rt_window) ||
1005 get_user(rt.rt_irtt, &ur->rt_irtt) ||
1006 get_user(rtdev, &ur->rt_dev))
1007 return -EFAULT;
1008
1009 rt.rt_dev = compat_ptr(rtdev);
1010 return ip_rt_ioctl(sock_net(sk), cmd, &rt);
1011 }
1012
inet_compat_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1013 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1014 {
1015 void __user *argp = compat_ptr(arg);
1016 struct sock *sk = sock->sk;
1017
1018 switch (cmd) {
1019 case SIOCADDRT:
1020 case SIOCDELRT:
1021 return inet_compat_routing_ioctl(sk, cmd, argp);
1022 default:
1023 if (!sk->sk_prot->compat_ioctl)
1024 return -ENOIOCTLCMD;
1025 return sk->sk_prot->compat_ioctl(sk, cmd, arg);
1026 }
1027 }
1028 #endif /* CONFIG_COMPAT */
1029
1030 const struct proto_ops inet_stream_ops = {
1031 .family = PF_INET,
1032 .owner = THIS_MODULE,
1033 .release = inet_release,
1034 .bind = inet_bind,
1035 .connect = inet_stream_connect,
1036 .socketpair = sock_no_socketpair,
1037 .accept = inet_accept,
1038 .getname = inet_getname,
1039 .poll = tcp_poll,
1040 .ioctl = inet_ioctl,
1041 .gettstamp = sock_gettstamp,
1042 .listen = inet_listen,
1043 .shutdown = inet_shutdown,
1044 .setsockopt = sock_common_setsockopt,
1045 .getsockopt = sock_common_getsockopt,
1046 .sendmsg = inet_sendmsg,
1047 .recvmsg = inet_recvmsg,
1048 #ifdef CONFIG_MMU
1049 .mmap = tcp_mmap,
1050 #endif
1051 .sendpage = inet_sendpage,
1052 .splice_read = tcp_splice_read,
1053 .read_sock = tcp_read_sock,
1054 .read_skb = tcp_read_skb,
1055 .sendmsg_locked = tcp_sendmsg_locked,
1056 .sendpage_locked = tcp_sendpage_locked,
1057 .peek_len = tcp_peek_len,
1058 #ifdef CONFIG_COMPAT
1059 .compat_ioctl = inet_compat_ioctl,
1060 #endif
1061 .set_rcvlowat = tcp_set_rcvlowat,
1062 };
1063 EXPORT_SYMBOL(inet_stream_ops);
1064
1065 const struct proto_ops inet_dgram_ops = {
1066 .family = PF_INET,
1067 .owner = THIS_MODULE,
1068 .release = inet_release,
1069 .bind = inet_bind,
1070 .connect = inet_dgram_connect,
1071 .socketpair = sock_no_socketpair,
1072 .accept = sock_no_accept,
1073 .getname = inet_getname,
1074 .poll = udp_poll,
1075 .ioctl = inet_ioctl,
1076 .gettstamp = sock_gettstamp,
1077 .listen = sock_no_listen,
1078 .shutdown = inet_shutdown,
1079 .setsockopt = sock_common_setsockopt,
1080 .getsockopt = sock_common_getsockopt,
1081 .sendmsg = inet_sendmsg,
1082 .read_skb = udp_read_skb,
1083 .recvmsg = inet_recvmsg,
1084 .mmap = sock_no_mmap,
1085 .sendpage = inet_sendpage,
1086 .set_peek_off = sk_set_peek_off,
1087 #ifdef CONFIG_COMPAT
1088 .compat_ioctl = inet_compat_ioctl,
1089 #endif
1090 };
1091 EXPORT_SYMBOL(inet_dgram_ops);
1092
1093 /*
1094 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without
1095 * udp_poll
1096 */
1097 static const struct proto_ops inet_sockraw_ops = {
1098 .family = PF_INET,
1099 .owner = THIS_MODULE,
1100 .release = inet_release,
1101 .bind = inet_bind,
1102 .connect = inet_dgram_connect,
1103 .socketpair = sock_no_socketpair,
1104 .accept = sock_no_accept,
1105 .getname = inet_getname,
1106 .poll = datagram_poll,
1107 .ioctl = inet_ioctl,
1108 .gettstamp = sock_gettstamp,
1109 .listen = sock_no_listen,
1110 .shutdown = inet_shutdown,
1111 .setsockopt = sock_common_setsockopt,
1112 .getsockopt = sock_common_getsockopt,
1113 .sendmsg = inet_sendmsg,
1114 .recvmsg = inet_recvmsg,
1115 .mmap = sock_no_mmap,
1116 .sendpage = inet_sendpage,
1117 #ifdef CONFIG_COMPAT
1118 .compat_ioctl = inet_compat_ioctl,
1119 #endif
1120 };
1121
1122 static const struct net_proto_family inet_family_ops = {
1123 .family = PF_INET,
1124 .create = inet_create,
1125 .owner = THIS_MODULE,
1126 };
1127
1128 /* Upon startup we insert all the elements in inetsw_array[] into
1129 * the linked list inetsw.
1130 */
1131 static struct inet_protosw inetsw_array[] =
1132 {
1133 {
1134 .type = SOCK_STREAM,
1135 .protocol = IPPROTO_TCP,
1136 .prot = &tcp_prot,
1137 .ops = &inet_stream_ops,
1138 .flags = INET_PROTOSW_PERMANENT |
1139 INET_PROTOSW_ICSK,
1140 },
1141
1142 {
1143 .type = SOCK_DGRAM,
1144 .protocol = IPPROTO_UDP,
1145 .prot = &udp_prot,
1146 .ops = &inet_dgram_ops,
1147 .flags = INET_PROTOSW_PERMANENT,
1148 },
1149
1150 {
1151 .type = SOCK_DGRAM,
1152 .protocol = IPPROTO_ICMP,
1153 .prot = &ping_prot,
1154 .ops = &inet_sockraw_ops,
1155 .flags = INET_PROTOSW_REUSE,
1156 },
1157
1158 {
1159 .type = SOCK_RAW,
1160 .protocol = IPPROTO_IP, /* wild card */
1161 .prot = &raw_prot,
1162 .ops = &inet_sockraw_ops,
1163 .flags = INET_PROTOSW_REUSE,
1164 }
1165 };
1166
1167 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array)
1168
inet_register_protosw(struct inet_protosw * p)1169 void inet_register_protosw(struct inet_protosw *p)
1170 {
1171 struct list_head *lh;
1172 struct inet_protosw *answer;
1173 int protocol = p->protocol;
1174 struct list_head *last_perm;
1175
1176 spin_lock_bh(&inetsw_lock);
1177
1178 if (p->type >= SOCK_MAX)
1179 goto out_illegal;
1180
1181 /* If we are trying to override a permanent protocol, bail. */
1182 last_perm = &inetsw[p->type];
1183 list_for_each(lh, &inetsw[p->type]) {
1184 answer = list_entry(lh, struct inet_protosw, list);
1185 /* Check only the non-wild match. */
1186 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0)
1187 break;
1188 if (protocol == answer->protocol)
1189 goto out_permanent;
1190 last_perm = lh;
1191 }
1192
1193 /* Add the new entry after the last permanent entry if any, so that
1194 * the new entry does not override a permanent entry when matched with
1195 * a wild-card protocol. But it is allowed to override any existing
1196 * non-permanent entry. This means that when we remove this entry, the
1197 * system automatically returns to the old behavior.
1198 */
1199 list_add_rcu(&p->list, last_perm);
1200 out:
1201 spin_unlock_bh(&inetsw_lock);
1202
1203 return;
1204
1205 out_permanent:
1206 pr_err("Attempt to override permanent protocol %d\n", protocol);
1207 goto out;
1208
1209 out_illegal:
1210 pr_err("Ignoring attempt to register invalid socket type %d\n",
1211 p->type);
1212 goto out;
1213 }
1214 EXPORT_SYMBOL(inet_register_protosw);
1215
inet_unregister_protosw(struct inet_protosw * p)1216 void inet_unregister_protosw(struct inet_protosw *p)
1217 {
1218 if (INET_PROTOSW_PERMANENT & p->flags) {
1219 pr_err("Attempt to unregister permanent protocol %d\n",
1220 p->protocol);
1221 } else {
1222 spin_lock_bh(&inetsw_lock);
1223 list_del_rcu(&p->list);
1224 spin_unlock_bh(&inetsw_lock);
1225
1226 synchronize_net();
1227 }
1228 }
1229 EXPORT_SYMBOL(inet_unregister_protosw);
1230
inet_sk_reselect_saddr(struct sock * sk)1231 static int inet_sk_reselect_saddr(struct sock *sk)
1232 {
1233 struct inet_sock *inet = inet_sk(sk);
1234 __be32 old_saddr = inet->inet_saddr;
1235 __be32 daddr = inet->inet_daddr;
1236 struct flowi4 *fl4;
1237 struct rtable *rt;
1238 __be32 new_saddr;
1239 struct ip_options_rcu *inet_opt;
1240 int err;
1241
1242 inet_opt = rcu_dereference_protected(inet->inet_opt,
1243 lockdep_sock_is_held(sk));
1244 if (inet_opt && inet_opt->opt.srr)
1245 daddr = inet_opt->opt.faddr;
1246
1247 /* Query new route. */
1248 fl4 = &inet->cork.fl.u.ip4;
1249 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if,
1250 sk->sk_protocol, inet->inet_sport,
1251 inet->inet_dport, sk);
1252 if (IS_ERR(rt))
1253 return PTR_ERR(rt);
1254
1255 new_saddr = fl4->saddr;
1256
1257 if (new_saddr == old_saddr) {
1258 sk_setup_caps(sk, &rt->dst);
1259 return 0;
1260 }
1261
1262 err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET);
1263 if (err) {
1264 ip_rt_put(rt);
1265 return err;
1266 }
1267
1268 sk_setup_caps(sk, &rt->dst);
1269
1270 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) {
1271 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n",
1272 __func__, &old_saddr, &new_saddr);
1273 }
1274
1275 /*
1276 * XXX The only one ugly spot where we need to
1277 * XXX really change the sockets identity after
1278 * XXX it has entered the hashes. -DaveM
1279 *
1280 * Besides that, it does not check for connection
1281 * uniqueness. Wait for troubles.
1282 */
1283 return __sk_prot_rehash(sk);
1284 }
1285
inet_sk_rebuild_header(struct sock * sk)1286 int inet_sk_rebuild_header(struct sock *sk)
1287 {
1288 struct inet_sock *inet = inet_sk(sk);
1289 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0);
1290 __be32 daddr;
1291 struct ip_options_rcu *inet_opt;
1292 struct flowi4 *fl4;
1293 int err;
1294
1295 /* Route is OK, nothing to do. */
1296 if (rt)
1297 return 0;
1298
1299 /* Reroute. */
1300 rcu_read_lock();
1301 inet_opt = rcu_dereference(inet->inet_opt);
1302 daddr = inet->inet_daddr;
1303 if (inet_opt && inet_opt->opt.srr)
1304 daddr = inet_opt->opt.faddr;
1305 rcu_read_unlock();
1306 fl4 = &inet->cork.fl.u.ip4;
1307 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr,
1308 inet->inet_dport, inet->inet_sport,
1309 sk->sk_protocol, RT_CONN_FLAGS(sk),
1310 sk->sk_bound_dev_if);
1311 if (!IS_ERR(rt)) {
1312 err = 0;
1313 sk_setup_caps(sk, &rt->dst);
1314 } else {
1315 err = PTR_ERR(rt);
1316
1317 /* Routing failed... */
1318 sk->sk_route_caps = 0;
1319 /*
1320 * Other protocols have to map its equivalent state to TCP_SYN_SENT.
1321 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme
1322 */
1323 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) ||
1324 sk->sk_state != TCP_SYN_SENT ||
1325 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) ||
1326 (err = inet_sk_reselect_saddr(sk)) != 0)
1327 sk->sk_err_soft = -err;
1328 }
1329
1330 return err;
1331 }
1332 EXPORT_SYMBOL(inet_sk_rebuild_header);
1333
inet_sk_set_state(struct sock * sk,int state)1334 void inet_sk_set_state(struct sock *sk, int state)
1335 {
1336 trace_inet_sock_set_state(sk, sk->sk_state, state);
1337 sk->sk_state = state;
1338 }
1339 EXPORT_SYMBOL(inet_sk_set_state);
1340
inet_sk_state_store(struct sock * sk,int newstate)1341 void inet_sk_state_store(struct sock *sk, int newstate)
1342 {
1343 trace_inet_sock_set_state(sk, sk->sk_state, newstate);
1344 smp_store_release(&sk->sk_state, newstate);
1345 }
1346
inet_gso_segment(struct sk_buff * skb,netdev_features_t features)1347 struct sk_buff *inet_gso_segment(struct sk_buff *skb,
1348 netdev_features_t features)
1349 {
1350 bool udpfrag = false, fixedid = false, gso_partial, encap;
1351 struct sk_buff *segs = ERR_PTR(-EINVAL);
1352 const struct net_offload *ops;
1353 unsigned int offset = 0;
1354 struct iphdr *iph;
1355 int proto, tot_len;
1356 int nhoff;
1357 int ihl;
1358 int id;
1359
1360 skb_reset_network_header(skb);
1361 nhoff = skb_network_header(skb) - skb_mac_header(skb);
1362 if (unlikely(!pskb_may_pull(skb, sizeof(*iph))))
1363 goto out;
1364
1365 iph = ip_hdr(skb);
1366 ihl = iph->ihl * 4;
1367 if (ihl < sizeof(*iph))
1368 goto out;
1369
1370 id = ntohs(iph->id);
1371 proto = iph->protocol;
1372
1373 /* Warning: after this point, iph might be no longer valid */
1374 if (unlikely(!pskb_may_pull(skb, ihl)))
1375 goto out;
1376 __skb_pull(skb, ihl);
1377
1378 encap = SKB_GSO_CB(skb)->encap_level > 0;
1379 if (encap)
1380 features &= skb->dev->hw_enc_features;
1381 SKB_GSO_CB(skb)->encap_level += ihl;
1382
1383 skb_reset_transport_header(skb);
1384
1385 segs = ERR_PTR(-EPROTONOSUPPORT);
1386
1387 if (!skb->encapsulation || encap) {
1388 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP);
1389 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID);
1390
1391 /* fixed ID is invalid if DF bit is not set */
1392 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF)))
1393 goto out;
1394 }
1395
1396 ops = rcu_dereference(inet_offloads[proto]);
1397 if (likely(ops && ops->callbacks.gso_segment)) {
1398 segs = ops->callbacks.gso_segment(skb, features);
1399 if (!segs)
1400 skb->network_header = skb_mac_header(skb) + nhoff - skb->head;
1401 }
1402
1403 if (IS_ERR_OR_NULL(segs))
1404 goto out;
1405
1406 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL);
1407
1408 skb = segs;
1409 do {
1410 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff);
1411 if (udpfrag) {
1412 iph->frag_off = htons(offset >> 3);
1413 if (skb->next)
1414 iph->frag_off |= htons(IP_MF);
1415 offset += skb->len - nhoff - ihl;
1416 tot_len = skb->len - nhoff;
1417 } else if (skb_is_gso(skb)) {
1418 if (!fixedid) {
1419 iph->id = htons(id);
1420 id += skb_shinfo(skb)->gso_segs;
1421 }
1422
1423 if (gso_partial)
1424 tot_len = skb_shinfo(skb)->gso_size +
1425 SKB_GSO_CB(skb)->data_offset +
1426 skb->head - (unsigned char *)iph;
1427 else
1428 tot_len = skb->len - nhoff;
1429 } else {
1430 if (!fixedid)
1431 iph->id = htons(id++);
1432 tot_len = skb->len - nhoff;
1433 }
1434 iph->tot_len = htons(tot_len);
1435 ip_send_check(iph);
1436 if (encap)
1437 skb_reset_inner_headers(skb);
1438 skb->network_header = (u8 *)iph - skb->head;
1439 skb_reset_mac_len(skb);
1440 } while ((skb = skb->next));
1441
1442 out:
1443 return segs;
1444 }
1445
ipip_gso_segment(struct sk_buff * skb,netdev_features_t features)1446 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb,
1447 netdev_features_t features)
1448 {
1449 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4))
1450 return ERR_PTR(-EINVAL);
1451
1452 return inet_gso_segment(skb, features);
1453 }
1454
inet_gro_receive(struct list_head * head,struct sk_buff * skb)1455 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb)
1456 {
1457 const struct net_offload *ops;
1458 struct sk_buff *pp = NULL;
1459 const struct iphdr *iph;
1460 struct sk_buff *p;
1461 unsigned int hlen;
1462 unsigned int off;
1463 unsigned int id;
1464 int flush = 1;
1465 int proto;
1466
1467 off = skb_gro_offset(skb);
1468 hlen = off + sizeof(*iph);
1469 iph = skb_gro_header(skb, hlen, off);
1470 if (unlikely(!iph))
1471 goto out;
1472
1473 proto = iph->protocol;
1474
1475 ops = rcu_dereference(inet_offloads[proto]);
1476 if (!ops || !ops->callbacks.gro_receive)
1477 goto out;
1478
1479 if (*(u8 *)iph != 0x45)
1480 goto out;
1481
1482 if (ip_is_fragment(iph))
1483 goto out;
1484
1485 if (unlikely(ip_fast_csum((u8 *)iph, 5)))
1486 goto out;
1487
1488 id = ntohl(*(__be32 *)&iph->id);
1489 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF));
1490 id >>= 16;
1491
1492 list_for_each_entry(p, head, list) {
1493 struct iphdr *iph2;
1494 u16 flush_id;
1495
1496 if (!NAPI_GRO_CB(p)->same_flow)
1497 continue;
1498
1499 iph2 = (struct iphdr *)(p->data + off);
1500 /* The above works because, with the exception of the top
1501 * (inner most) layer, we only aggregate pkts with the same
1502 * hdr length so all the hdrs we'll need to verify will start
1503 * at the same offset.
1504 */
1505 if ((iph->protocol ^ iph2->protocol) |
1506 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) |
1507 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) {
1508 NAPI_GRO_CB(p)->same_flow = 0;
1509 continue;
1510 }
1511
1512 /* All fields must match except length and checksum. */
1513 NAPI_GRO_CB(p)->flush |=
1514 (iph->ttl ^ iph2->ttl) |
1515 (iph->tos ^ iph2->tos) |
1516 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF));
1517
1518 NAPI_GRO_CB(p)->flush |= flush;
1519
1520 /* We need to store of the IP ID check to be included later
1521 * when we can verify that this packet does in fact belong
1522 * to a given flow.
1523 */
1524 flush_id = (u16)(id - ntohs(iph2->id));
1525
1526 /* This bit of code makes it much easier for us to identify
1527 * the cases where we are doing atomic vs non-atomic IP ID
1528 * checks. Specifically an atomic check can return IP ID
1529 * values 0 - 0xFFFF, while a non-atomic check can only
1530 * return 0 or 0xFFFF.
1531 */
1532 if (!NAPI_GRO_CB(p)->is_atomic ||
1533 !(iph->frag_off & htons(IP_DF))) {
1534 flush_id ^= NAPI_GRO_CB(p)->count;
1535 flush_id = flush_id ? 0xFFFF : 0;
1536 }
1537
1538 /* If the previous IP ID value was based on an atomic
1539 * datagram we can overwrite the value and ignore it.
1540 */
1541 if (NAPI_GRO_CB(skb)->is_atomic)
1542 NAPI_GRO_CB(p)->flush_id = flush_id;
1543 else
1544 NAPI_GRO_CB(p)->flush_id |= flush_id;
1545 }
1546
1547 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF));
1548 NAPI_GRO_CB(skb)->flush |= flush;
1549 skb_set_network_header(skb, off);
1550 /* The above will be needed by the transport layer if there is one
1551 * immediately following this IP hdr.
1552 */
1553
1554 /* Note : No need to call skb_gro_postpull_rcsum() here,
1555 * as we already checked checksum over ipv4 header was 0
1556 */
1557 skb_gro_pull(skb, sizeof(*iph));
1558 skb_set_transport_header(skb, skb_gro_offset(skb));
1559
1560 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive,
1561 ops->callbacks.gro_receive, head, skb);
1562
1563 out:
1564 skb_gro_flush_final(skb, pp, flush);
1565
1566 return pp;
1567 }
1568
ipip_gro_receive(struct list_head * head,struct sk_buff * skb)1569 static struct sk_buff *ipip_gro_receive(struct list_head *head,
1570 struct sk_buff *skb)
1571 {
1572 if (NAPI_GRO_CB(skb)->encap_mark) {
1573 NAPI_GRO_CB(skb)->flush = 1;
1574 return NULL;
1575 }
1576
1577 NAPI_GRO_CB(skb)->encap_mark = 1;
1578
1579 return inet_gro_receive(head, skb);
1580 }
1581
1582 #define SECONDS_PER_DAY 86400
1583
1584 /* inet_current_timestamp - Return IP network timestamp
1585 *
1586 * Return milliseconds since midnight in network byte order.
1587 */
inet_current_timestamp(void)1588 __be32 inet_current_timestamp(void)
1589 {
1590 u32 secs;
1591 u32 msecs;
1592 struct timespec64 ts;
1593
1594 ktime_get_real_ts64(&ts);
1595
1596 /* Get secs since midnight. */
1597 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs);
1598 /* Convert to msecs. */
1599 msecs = secs * MSEC_PER_SEC;
1600 /* Convert nsec to msec. */
1601 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC;
1602
1603 /* Convert to network byte order. */
1604 return htonl(msecs);
1605 }
1606 EXPORT_SYMBOL(inet_current_timestamp);
1607
inet_recv_error(struct sock * sk,struct msghdr * msg,int len,int * addr_len)1608 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len)
1609 {
1610 if (sk->sk_family == AF_INET)
1611 return ip_recv_error(sk, msg, len, addr_len);
1612 #if IS_ENABLED(CONFIG_IPV6)
1613 if (sk->sk_family == AF_INET6)
1614 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len);
1615 #endif
1616 return -EINVAL;
1617 }
1618
inet_gro_complete(struct sk_buff * skb,int nhoff)1619 int inet_gro_complete(struct sk_buff *skb, int nhoff)
1620 {
1621 __be16 newlen = htons(skb->len - nhoff);
1622 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff);
1623 const struct net_offload *ops;
1624 int proto = iph->protocol;
1625 int err = -ENOSYS;
1626
1627 if (skb->encapsulation) {
1628 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP));
1629 skb_set_inner_network_header(skb, nhoff);
1630 }
1631
1632 csum_replace2(&iph->check, iph->tot_len, newlen);
1633 iph->tot_len = newlen;
1634
1635 ops = rcu_dereference(inet_offloads[proto]);
1636 if (WARN_ON(!ops || !ops->callbacks.gro_complete))
1637 goto out;
1638
1639 /* Only need to add sizeof(*iph) to get to the next hdr below
1640 * because any hdr with option will have been flushed in
1641 * inet_gro_receive().
1642 */
1643 err = INDIRECT_CALL_2(ops->callbacks.gro_complete,
1644 tcp4_gro_complete, udp4_gro_complete,
1645 skb, nhoff + sizeof(*iph));
1646
1647 out:
1648 return err;
1649 }
1650
ipip_gro_complete(struct sk_buff * skb,int nhoff)1651 static int ipip_gro_complete(struct sk_buff *skb, int nhoff)
1652 {
1653 skb->encapsulation = 1;
1654 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4;
1655 return inet_gro_complete(skb, nhoff);
1656 }
1657
inet_ctl_sock_create(struct sock ** sk,unsigned short family,unsigned short type,unsigned char protocol,struct net * net)1658 int inet_ctl_sock_create(struct sock **sk, unsigned short family,
1659 unsigned short type, unsigned char protocol,
1660 struct net *net)
1661 {
1662 struct socket *sock;
1663 int rc = sock_create_kern(net, family, type, protocol, &sock);
1664
1665 if (rc == 0) {
1666 *sk = sock->sk;
1667 (*sk)->sk_allocation = GFP_ATOMIC;
1668 /*
1669 * Unhash it so that IP input processing does not even see it,
1670 * we do not wish this socket to see incoming packets.
1671 */
1672 (*sk)->sk_prot->unhash(*sk);
1673 }
1674 return rc;
1675 }
1676 EXPORT_SYMBOL_GPL(inet_ctl_sock_create);
1677
snmp_fold_field(void __percpu * mib,int offt)1678 unsigned long snmp_fold_field(void __percpu *mib, int offt)
1679 {
1680 unsigned long res = 0;
1681 int i;
1682
1683 for_each_possible_cpu(i)
1684 res += snmp_get_cpu_field(mib, i, offt);
1685 return res;
1686 }
1687 EXPORT_SYMBOL_GPL(snmp_fold_field);
1688
1689 #if BITS_PER_LONG==32
1690
snmp_get_cpu_field64(void __percpu * mib,int cpu,int offt,size_t syncp_offset)1691 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt,
1692 size_t syncp_offset)
1693 {
1694 void *bhptr;
1695 struct u64_stats_sync *syncp;
1696 u64 v;
1697 unsigned int start;
1698
1699 bhptr = per_cpu_ptr(mib, cpu);
1700 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset);
1701 do {
1702 start = u64_stats_fetch_begin_irq(syncp);
1703 v = *(((u64 *)bhptr) + offt);
1704 } while (u64_stats_fetch_retry_irq(syncp, start));
1705
1706 return v;
1707 }
1708 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64);
1709
snmp_fold_field64(void __percpu * mib,int offt,size_t syncp_offset)1710 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset)
1711 {
1712 u64 res = 0;
1713 int cpu;
1714
1715 for_each_possible_cpu(cpu) {
1716 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset);
1717 }
1718 return res;
1719 }
1720 EXPORT_SYMBOL_GPL(snmp_fold_field64);
1721 #endif
1722
1723 #ifdef CONFIG_IP_MULTICAST
1724 static const struct net_protocol igmp_protocol = {
1725 .handler = igmp_rcv,
1726 };
1727 #endif
1728
1729 static const struct net_protocol tcp_protocol = {
1730 .handler = tcp_v4_rcv,
1731 .err_handler = tcp_v4_err,
1732 .no_policy = 1,
1733 .icmp_strict_tag_validation = 1,
1734 };
1735
1736 static const struct net_protocol udp_protocol = {
1737 .handler = udp_rcv,
1738 .err_handler = udp_err,
1739 .no_policy = 1,
1740 };
1741
1742 static const struct net_protocol icmp_protocol = {
1743 .handler = icmp_rcv,
1744 .err_handler = icmp_err,
1745 .no_policy = 1,
1746 };
1747
ipv4_mib_init_net(struct net * net)1748 static __net_init int ipv4_mib_init_net(struct net *net)
1749 {
1750 int i;
1751
1752 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib);
1753 if (!net->mib.tcp_statistics)
1754 goto err_tcp_mib;
1755 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib);
1756 if (!net->mib.ip_statistics)
1757 goto err_ip_mib;
1758
1759 for_each_possible_cpu(i) {
1760 struct ipstats_mib *af_inet_stats;
1761 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i);
1762 u64_stats_init(&af_inet_stats->syncp);
1763 }
1764
1765 net->mib.net_statistics = alloc_percpu(struct linux_mib);
1766 if (!net->mib.net_statistics)
1767 goto err_net_mib;
1768 net->mib.udp_statistics = alloc_percpu(struct udp_mib);
1769 if (!net->mib.udp_statistics)
1770 goto err_udp_mib;
1771 net->mib.udplite_statistics = alloc_percpu(struct udp_mib);
1772 if (!net->mib.udplite_statistics)
1773 goto err_udplite_mib;
1774 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib);
1775 if (!net->mib.icmp_statistics)
1776 goto err_icmp_mib;
1777 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib),
1778 GFP_KERNEL);
1779 if (!net->mib.icmpmsg_statistics)
1780 goto err_icmpmsg_mib;
1781
1782 tcp_mib_init(net);
1783 return 0;
1784
1785 err_icmpmsg_mib:
1786 free_percpu(net->mib.icmp_statistics);
1787 err_icmp_mib:
1788 free_percpu(net->mib.udplite_statistics);
1789 err_udplite_mib:
1790 free_percpu(net->mib.udp_statistics);
1791 err_udp_mib:
1792 free_percpu(net->mib.net_statistics);
1793 err_net_mib:
1794 free_percpu(net->mib.ip_statistics);
1795 err_ip_mib:
1796 free_percpu(net->mib.tcp_statistics);
1797 err_tcp_mib:
1798 return -ENOMEM;
1799 }
1800
ipv4_mib_exit_net(struct net * net)1801 static __net_exit void ipv4_mib_exit_net(struct net *net)
1802 {
1803 kfree(net->mib.icmpmsg_statistics);
1804 free_percpu(net->mib.icmp_statistics);
1805 free_percpu(net->mib.udplite_statistics);
1806 free_percpu(net->mib.udp_statistics);
1807 free_percpu(net->mib.net_statistics);
1808 free_percpu(net->mib.ip_statistics);
1809 free_percpu(net->mib.tcp_statistics);
1810 #ifdef CONFIG_MPTCP
1811 /* allocated on demand, see mptcp_init_sock() */
1812 free_percpu(net->mib.mptcp_statistics);
1813 #endif
1814 }
1815
1816 static __net_initdata struct pernet_operations ipv4_mib_ops = {
1817 .init = ipv4_mib_init_net,
1818 .exit = ipv4_mib_exit_net,
1819 };
1820
init_ipv4_mibs(void)1821 static int __init init_ipv4_mibs(void)
1822 {
1823 return register_pernet_subsys(&ipv4_mib_ops);
1824 }
1825
inet_init_net(struct net * net)1826 static __net_init int inet_init_net(struct net *net)
1827 {
1828 /*
1829 * Set defaults for local port range
1830 */
1831 seqlock_init(&net->ipv4.ip_local_ports.lock);
1832 net->ipv4.ip_local_ports.range[0] = 32768;
1833 net->ipv4.ip_local_ports.range[1] = 60999;
1834
1835 seqlock_init(&net->ipv4.ping_group_range.lock);
1836 /*
1837 * Sane defaults - nobody may create ping sockets.
1838 * Boot scripts should set this to distro-specific group.
1839 */
1840 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1);
1841 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0);
1842
1843 /* Default values for sysctl-controlled parameters.
1844 * We set them here, in case sysctl is not compiled.
1845 */
1846 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL;
1847 net->ipv4.sysctl_ip_fwd_update_priority = 1;
1848 net->ipv4.sysctl_ip_dynaddr = 0;
1849 net->ipv4.sysctl_ip_early_demux = 1;
1850 net->ipv4.sysctl_udp_early_demux = 1;
1851 net->ipv4.sysctl_tcp_early_demux = 1;
1852 net->ipv4.sysctl_nexthop_compat_mode = 1;
1853 #ifdef CONFIG_SYSCTL
1854 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK;
1855 #endif
1856
1857 /* Some igmp sysctl, whose values are always used */
1858 net->ipv4.sysctl_igmp_max_memberships = 20;
1859 net->ipv4.sysctl_igmp_max_msf = 10;
1860 /* IGMP reports for link-local multicast groups are enabled by default */
1861 net->ipv4.sysctl_igmp_llm_reports = 1;
1862 net->ipv4.sysctl_igmp_qrv = 2;
1863
1864 net->ipv4.sysctl_fib_notify_on_flag_change = 0;
1865
1866 return 0;
1867 }
1868
1869 static __net_initdata struct pernet_operations af_inet_ops = {
1870 .init = inet_init_net,
1871 };
1872
init_inet_pernet_ops(void)1873 static int __init init_inet_pernet_ops(void)
1874 {
1875 return register_pernet_subsys(&af_inet_ops);
1876 }
1877
1878 static int ipv4_proc_init(void);
1879
1880 /*
1881 * IP protocol layer initialiser
1882 */
1883
1884 static struct packet_offload ip_packet_offload __read_mostly = {
1885 .type = cpu_to_be16(ETH_P_IP),
1886 .callbacks = {
1887 .gso_segment = inet_gso_segment,
1888 .gro_receive = inet_gro_receive,
1889 .gro_complete = inet_gro_complete,
1890 },
1891 };
1892
1893 static const struct net_offload ipip_offload = {
1894 .callbacks = {
1895 .gso_segment = ipip_gso_segment,
1896 .gro_receive = ipip_gro_receive,
1897 .gro_complete = ipip_gro_complete,
1898 },
1899 };
1900
ipip_offload_init(void)1901 static int __init ipip_offload_init(void)
1902 {
1903 return inet_add_offload(&ipip_offload, IPPROTO_IPIP);
1904 }
1905
ipv4_offload_init(void)1906 static int __init ipv4_offload_init(void)
1907 {
1908 /*
1909 * Add offloads
1910 */
1911 if (udpv4_offload_init() < 0)
1912 pr_crit("%s: Cannot add UDP protocol offload\n", __func__);
1913 if (tcpv4_offload_init() < 0)
1914 pr_crit("%s: Cannot add TCP protocol offload\n", __func__);
1915 if (ipip_offload_init() < 0)
1916 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__);
1917
1918 dev_add_offload(&ip_packet_offload);
1919 return 0;
1920 }
1921
1922 fs_initcall(ipv4_offload_init);
1923
1924 static struct packet_type ip_packet_type __read_mostly = {
1925 .type = cpu_to_be16(ETH_P_IP),
1926 .func = ip_rcv,
1927 .list_func = ip_list_rcv,
1928 };
1929
inet_init(void)1930 static int __init inet_init(void)
1931 {
1932 struct inet_protosw *q;
1933 struct list_head *r;
1934 int rc;
1935
1936 sock_skb_cb_check_size(sizeof(struct inet_skb_parm));
1937
1938 raw_hashinfo_init(&raw_v4_hashinfo);
1939
1940 rc = proto_register(&tcp_prot, 1);
1941 if (rc)
1942 goto out;
1943
1944 rc = proto_register(&udp_prot, 1);
1945 if (rc)
1946 goto out_unregister_tcp_proto;
1947
1948 rc = proto_register(&raw_prot, 1);
1949 if (rc)
1950 goto out_unregister_udp_proto;
1951
1952 rc = proto_register(&ping_prot, 1);
1953 if (rc)
1954 goto out_unregister_raw_proto;
1955
1956 /*
1957 * Tell SOCKET that we are alive...
1958 */
1959
1960 (void)sock_register(&inet_family_ops);
1961
1962 #ifdef CONFIG_SYSCTL
1963 ip_static_sysctl_init();
1964 #endif
1965
1966 /*
1967 * Add all the base protocols.
1968 */
1969
1970 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
1971 pr_crit("%s: Cannot add ICMP protocol\n", __func__);
1972 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
1973 pr_crit("%s: Cannot add UDP protocol\n", __func__);
1974 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
1975 pr_crit("%s: Cannot add TCP protocol\n", __func__);
1976 #ifdef CONFIG_IP_MULTICAST
1977 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0)
1978 pr_crit("%s: Cannot add IGMP protocol\n", __func__);
1979 #endif
1980
1981 /* Register the socket-side information for inet_create. */
1982 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r)
1983 INIT_LIST_HEAD(r);
1984
1985 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q)
1986 inet_register_protosw(q);
1987
1988 /*
1989 * Set the ARP module up
1990 */
1991
1992 arp_init();
1993
1994 /*
1995 * Set the IP module up
1996 */
1997
1998 ip_init();
1999
2000 /* Initialise per-cpu ipv4 mibs */
2001 if (init_ipv4_mibs())
2002 panic("%s: Cannot init ipv4 mibs\n", __func__);
2003
2004 /* Setup TCP slab cache for open requests. */
2005 tcp_init();
2006
2007 /* Setup UDP memory threshold */
2008 udp_init();
2009
2010 /* Add UDP-Lite (RFC 3828) */
2011 udplite4_register();
2012
2013 raw_init();
2014
2015 ping_init();
2016
2017 /*
2018 * Set the ICMP layer up
2019 */
2020
2021 if (icmp_init() < 0)
2022 panic("Failed to create the ICMP control socket.\n");
2023
2024 /*
2025 * Initialise the multicast router
2026 */
2027 #if defined(CONFIG_IP_MROUTE)
2028 if (ip_mr_init())
2029 pr_crit("%s: Cannot init ipv4 mroute\n", __func__);
2030 #endif
2031
2032 if (init_inet_pernet_ops())
2033 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__);
2034
2035 ipv4_proc_init();
2036
2037 ipfrag_init();
2038
2039 dev_add_pack(&ip_packet_type);
2040
2041 ip_tunnel_core_init();
2042
2043 rc = 0;
2044 out:
2045 return rc;
2046 out_unregister_raw_proto:
2047 proto_unregister(&raw_prot);
2048 out_unregister_udp_proto:
2049 proto_unregister(&udp_prot);
2050 out_unregister_tcp_proto:
2051 proto_unregister(&tcp_prot);
2052 goto out;
2053 }
2054
2055 fs_initcall(inet_init);
2056
2057 /* ------------------------------------------------------------------------ */
2058
2059 #ifdef CONFIG_PROC_FS
ipv4_proc_init(void)2060 static int __init ipv4_proc_init(void)
2061 {
2062 int rc = 0;
2063
2064 if (raw_proc_init())
2065 goto out_raw;
2066 if (tcp4_proc_init())
2067 goto out_tcp;
2068 if (udp4_proc_init())
2069 goto out_udp;
2070 if (ping_proc_init())
2071 goto out_ping;
2072 if (ip_misc_proc_init())
2073 goto out_misc;
2074 out:
2075 return rc;
2076 out_misc:
2077 ping_proc_exit();
2078 out_ping:
2079 udp4_proc_exit();
2080 out_udp:
2081 tcp4_proc_exit();
2082 out_tcp:
2083 raw_proc_exit();
2084 out_raw:
2085 rc = -ENOMEM;
2086 goto out;
2087 }
2088
2089 #else /* CONFIG_PROC_FS */
ipv4_proc_init(void)2090 static int __init ipv4_proc_init(void)
2091 {
2092 return 0;
2093 }
2094 #endif /* CONFIG_PROC_FS */
2095