1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40 {
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81 {
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89 }
90
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
118 }
119
inet_get_local_port_range(struct net * net,int * low,int * high)120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122 unsigned int seq;
123
124 do {
125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127 *low = net->ipv4.ip_local_ports.range[0];
128 *high = net->ipv4.ip_local_ports.range[1];
129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132
inet_use_bhash2_on_bind(const struct sock * sk)133 static bool inet_use_bhash2_on_bind(const struct sock *sk)
134 {
135 #if IS_ENABLED(CONFIG_IPV6)
136 if (sk->sk_family == AF_INET6) {
137 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
138
139 return addr_type != IPV6_ADDR_ANY &&
140 addr_type != IPV6_ADDR_MAPPED;
141 }
142 #endif
143 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
144 }
145
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)146 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
147 kuid_t sk_uid, bool relax,
148 bool reuseport_cb_ok, bool reuseport_ok)
149 {
150 int bound_dev_if2;
151
152 if (sk == sk2)
153 return false;
154
155 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
156
157 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
158 sk->sk_bound_dev_if == bound_dev_if2) {
159 if (sk->sk_reuse && sk2->sk_reuse &&
160 sk2->sk_state != TCP_LISTEN) {
161 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
162 sk2->sk_reuseport && reuseport_cb_ok &&
163 (sk2->sk_state == TCP_TIME_WAIT ||
164 uid_eq(sk_uid, sock_i_uid(sk2)))))
165 return true;
166 } else if (!reuseport_ok || !sk->sk_reuseport ||
167 !sk2->sk_reuseport || !reuseport_cb_ok ||
168 (sk2->sk_state != TCP_TIME_WAIT &&
169 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
170 return true;
171 }
172 }
173 return false;
174 }
175
__inet_bhash2_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)176 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
177 kuid_t sk_uid, bool relax,
178 bool reuseport_cb_ok, bool reuseport_ok)
179 {
180 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
181 return false;
182
183 return inet_bind_conflict(sk, sk2, sk_uid, relax,
184 reuseport_cb_ok, reuseport_ok);
185 }
186
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)187 static bool inet_bhash2_conflict(const struct sock *sk,
188 const struct inet_bind2_bucket *tb2,
189 kuid_t sk_uid,
190 bool relax, bool reuseport_cb_ok,
191 bool reuseport_ok)
192 {
193 struct inet_timewait_sock *tw2;
194 struct sock *sk2;
195
196 sk_for_each_bound_bhash2(sk2, &tb2->owners) {
197 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
198 reuseport_cb_ok, reuseport_ok))
199 return true;
200 }
201
202 twsk_for_each_bound_bhash2(tw2, &tb2->deathrow) {
203 sk2 = (struct sock *)tw2;
204
205 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
206 reuseport_cb_ok, reuseport_ok))
207 return true;
208 }
209
210 return false;
211 }
212
213 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)214 static int inet_csk_bind_conflict(const struct sock *sk,
215 const struct inet_bind_bucket *tb,
216 const struct inet_bind2_bucket *tb2, /* may be null */
217 bool relax, bool reuseport_ok)
218 {
219 bool reuseport_cb_ok;
220 struct sock_reuseport *reuseport_cb;
221 kuid_t uid = sock_i_uid((struct sock *)sk);
222
223 rcu_read_lock();
224 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
225 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
226 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
227 rcu_read_unlock();
228
229 /*
230 * Unlike other sk lookup places we do not check
231 * for sk_net here, since _all_ the socks listed
232 * in tb->owners and tb2->owners list belong
233 * to the same net - the one this bucket belongs to.
234 */
235
236 if (!inet_use_bhash2_on_bind(sk)) {
237 struct sock *sk2;
238
239 sk_for_each_bound(sk2, &tb->owners)
240 if (inet_bind_conflict(sk, sk2, uid, relax,
241 reuseport_cb_ok, reuseport_ok) &&
242 inet_rcv_saddr_equal(sk, sk2, true))
243 return true;
244
245 return false;
246 }
247
248 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
249 * ipv4) should have been checked already. We need to do these two
250 * checks separately because their spinlocks have to be acquired/released
251 * independently of each other, to prevent possible deadlocks
252 */
253 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
254 reuseport_ok);
255 }
256
257 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
258 * INADDR_ANY (if ipv4) socket.
259 *
260 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
261 * against concurrent binds on the port for addr any
262 */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)263 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
264 bool relax, bool reuseport_ok)
265 {
266 kuid_t uid = sock_i_uid((struct sock *)sk);
267 const struct net *net = sock_net(sk);
268 struct sock_reuseport *reuseport_cb;
269 struct inet_bind_hashbucket *head2;
270 struct inet_bind2_bucket *tb2;
271 bool reuseport_cb_ok;
272
273 rcu_read_lock();
274 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
275 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
276 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
277 rcu_read_unlock();
278
279 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
280
281 spin_lock(&head2->lock);
282
283 inet_bind_bucket_for_each(tb2, &head2->chain)
284 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
285 break;
286
287 if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
288 reuseport_ok)) {
289 spin_unlock(&head2->lock);
290 return true;
291 }
292
293 spin_unlock(&head2->lock);
294 return false;
295 }
296
297 /*
298 * Find an open port number for the socket. Returns with the
299 * inet_bind_hashbucket locks held if successful.
300 */
301 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)302 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
303 struct inet_bind2_bucket **tb2_ret,
304 struct inet_bind_hashbucket **head2_ret, int *port_ret)
305 {
306 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
307 int i, low, high, attempt_half, port, l3mdev;
308 struct inet_bind_hashbucket *head, *head2;
309 struct net *net = sock_net(sk);
310 struct inet_bind2_bucket *tb2;
311 struct inet_bind_bucket *tb;
312 u32 remaining, offset;
313 bool relax = false;
314
315 l3mdev = inet_sk_bound_l3mdev(sk);
316 ports_exhausted:
317 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
318 other_half_scan:
319 inet_get_local_port_range(net, &low, &high);
320 high++; /* [32768, 60999] -> [32768, 61000[ */
321 if (high - low < 4)
322 attempt_half = 0;
323 if (attempt_half) {
324 int half = low + (((high - low) >> 2) << 1);
325
326 if (attempt_half == 1)
327 high = half;
328 else
329 low = half;
330 }
331 remaining = high - low;
332 if (likely(remaining > 1))
333 remaining &= ~1U;
334
335 offset = prandom_u32_max(remaining);
336 /* __inet_hash_connect() favors ports having @low parity
337 * We do the opposite to not pollute connect() users.
338 */
339 offset |= 1U;
340
341 other_parity_scan:
342 port = low + offset;
343 for (i = 0; i < remaining; i += 2, port += 2) {
344 if (unlikely(port >= high))
345 port -= remaining;
346 if (inet_is_local_reserved_port(net, port))
347 continue;
348 head = &hinfo->bhash[inet_bhashfn(net, port,
349 hinfo->bhash_size)];
350 spin_lock_bh(&head->lock);
351 if (inet_use_bhash2_on_bind(sk)) {
352 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
353 goto next_port;
354 }
355
356 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
357 spin_lock(&head2->lock);
358 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
359 inet_bind_bucket_for_each(tb, &head->chain)
360 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
361 if (!inet_csk_bind_conflict(sk, tb, tb2,
362 relax, false))
363 goto success;
364 spin_unlock(&head2->lock);
365 goto next_port;
366 }
367 tb = NULL;
368 goto success;
369 next_port:
370 spin_unlock_bh(&head->lock);
371 cond_resched();
372 }
373
374 offset--;
375 if (!(offset & 1))
376 goto other_parity_scan;
377
378 if (attempt_half == 1) {
379 /* OK we now try the upper half of the range */
380 attempt_half = 2;
381 goto other_half_scan;
382 }
383
384 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
385 /* We still have a chance to connect to different destinations */
386 relax = true;
387 goto ports_exhausted;
388 }
389 return NULL;
390 success:
391 *port_ret = port;
392 *tb_ret = tb;
393 *tb2_ret = tb2;
394 *head2_ret = head2;
395 return head;
396 }
397
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)398 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
399 struct sock *sk)
400 {
401 kuid_t uid = sock_i_uid(sk);
402
403 if (tb->fastreuseport <= 0)
404 return 0;
405 if (!sk->sk_reuseport)
406 return 0;
407 if (rcu_access_pointer(sk->sk_reuseport_cb))
408 return 0;
409 if (!uid_eq(tb->fastuid, uid))
410 return 0;
411 /* We only need to check the rcv_saddr if this tb was once marked
412 * without fastreuseport and then was reset, as we can only know that
413 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
414 * owners list.
415 */
416 if (tb->fastreuseport == FASTREUSEPORT_ANY)
417 return 1;
418 #if IS_ENABLED(CONFIG_IPV6)
419 if (tb->fast_sk_family == AF_INET6)
420 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
421 inet6_rcv_saddr(sk),
422 tb->fast_rcv_saddr,
423 sk->sk_rcv_saddr,
424 tb->fast_ipv6_only,
425 ipv6_only_sock(sk), true, false);
426 #endif
427 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
428 ipv6_only_sock(sk), true, false);
429 }
430
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)431 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
432 struct sock *sk)
433 {
434 kuid_t uid = sock_i_uid(sk);
435 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
436
437 if (hlist_empty(&tb->owners)) {
438 tb->fastreuse = reuse;
439 if (sk->sk_reuseport) {
440 tb->fastreuseport = FASTREUSEPORT_ANY;
441 tb->fastuid = uid;
442 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
443 tb->fast_ipv6_only = ipv6_only_sock(sk);
444 tb->fast_sk_family = sk->sk_family;
445 #if IS_ENABLED(CONFIG_IPV6)
446 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
447 #endif
448 } else {
449 tb->fastreuseport = 0;
450 }
451 } else {
452 if (!reuse)
453 tb->fastreuse = 0;
454 if (sk->sk_reuseport) {
455 /* We didn't match or we don't have fastreuseport set on
456 * the tb, but we have sk_reuseport set on this socket
457 * and we know that there are no bind conflicts with
458 * this socket in this tb, so reset our tb's reuseport
459 * settings so that any subsequent sockets that match
460 * our current socket will be put on the fast path.
461 *
462 * If we reset we need to set FASTREUSEPORT_STRICT so we
463 * do extra checking for all subsequent sk_reuseport
464 * socks.
465 */
466 if (!sk_reuseport_match(tb, sk)) {
467 tb->fastreuseport = FASTREUSEPORT_STRICT;
468 tb->fastuid = uid;
469 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
470 tb->fast_ipv6_only = ipv6_only_sock(sk);
471 tb->fast_sk_family = sk->sk_family;
472 #if IS_ENABLED(CONFIG_IPV6)
473 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
474 #endif
475 }
476 } else {
477 tb->fastreuseport = 0;
478 }
479 }
480 }
481
482 /* Obtain a reference to a local port for the given sock,
483 * if snum is zero it means select any available local port.
484 * We try to allocate an odd port (and leave even ports for connect())
485 */
inet_csk_get_port(struct sock * sk,unsigned short snum)486 int inet_csk_get_port(struct sock *sk, unsigned short snum)
487 {
488 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
489 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
490 bool found_port = false, check_bind_conflict = true;
491 bool bhash_created = false, bhash2_created = false;
492 int ret = -EADDRINUSE, port = snum, l3mdev;
493 struct inet_bind_hashbucket *head, *head2;
494 struct inet_bind2_bucket *tb2 = NULL;
495 struct inet_bind_bucket *tb = NULL;
496 bool head2_lock_acquired = false;
497 struct net *net = sock_net(sk);
498
499 l3mdev = inet_sk_bound_l3mdev(sk);
500
501 if (!port) {
502 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
503 if (!head)
504 return ret;
505
506 head2_lock_acquired = true;
507
508 if (tb && tb2)
509 goto success;
510 found_port = true;
511 } else {
512 head = &hinfo->bhash[inet_bhashfn(net, port,
513 hinfo->bhash_size)];
514 spin_lock_bh(&head->lock);
515 inet_bind_bucket_for_each(tb, &head->chain)
516 if (inet_bind_bucket_match(tb, net, port, l3mdev))
517 break;
518 }
519
520 if (!tb) {
521 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
522 head, port, l3mdev);
523 if (!tb)
524 goto fail_unlock;
525 bhash_created = true;
526 }
527
528 if (!found_port) {
529 if (!hlist_empty(&tb->owners)) {
530 if (sk->sk_reuse == SK_FORCE_REUSE ||
531 (tb->fastreuse > 0 && reuse) ||
532 sk_reuseport_match(tb, sk))
533 check_bind_conflict = false;
534 }
535
536 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
537 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
538 goto fail_unlock;
539 }
540
541 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
542 spin_lock(&head2->lock);
543 head2_lock_acquired = true;
544 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
545 }
546
547 if (!tb2) {
548 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
549 net, head2, port, l3mdev, sk);
550 if (!tb2)
551 goto fail_unlock;
552 bhash2_created = true;
553 }
554
555 if (!found_port && check_bind_conflict) {
556 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
557 goto fail_unlock;
558 }
559
560 success:
561 inet_csk_update_fastreuse(tb, sk);
562
563 if (!inet_csk(sk)->icsk_bind_hash)
564 inet_bind_hash(sk, tb, tb2, port);
565 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
566 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
567 ret = 0;
568
569 fail_unlock:
570 if (ret) {
571 if (bhash_created)
572 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
573 if (bhash2_created)
574 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
575 tb2);
576 }
577 if (head2_lock_acquired)
578 spin_unlock(&head2->lock);
579 spin_unlock_bh(&head->lock);
580 return ret;
581 }
582 EXPORT_SYMBOL_GPL(inet_csk_get_port);
583
584 /*
585 * Wait for an incoming connection, avoid race conditions. This must be called
586 * with the socket locked.
587 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)588 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
589 {
590 struct inet_connection_sock *icsk = inet_csk(sk);
591 DEFINE_WAIT(wait);
592 int err;
593
594 /*
595 * True wake-one mechanism for incoming connections: only
596 * one process gets woken up, not the 'whole herd'.
597 * Since we do not 'race & poll' for established sockets
598 * anymore, the common case will execute the loop only once.
599 *
600 * Subtle issue: "add_wait_queue_exclusive()" will be added
601 * after any current non-exclusive waiters, and we know that
602 * it will always _stay_ after any new non-exclusive waiters
603 * because all non-exclusive waiters are added at the
604 * beginning of the wait-queue. As such, it's ok to "drop"
605 * our exclusiveness temporarily when we get woken up without
606 * having to remove and re-insert us on the wait queue.
607 */
608 for (;;) {
609 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
610 TASK_INTERRUPTIBLE);
611 release_sock(sk);
612 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
613 timeo = schedule_timeout(timeo);
614 sched_annotate_sleep();
615 lock_sock(sk);
616 err = 0;
617 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
618 break;
619 err = -EINVAL;
620 if (sk->sk_state != TCP_LISTEN)
621 break;
622 err = sock_intr_errno(timeo);
623 if (signal_pending(current))
624 break;
625 err = -EAGAIN;
626 if (!timeo)
627 break;
628 }
629 finish_wait(sk_sleep(sk), &wait);
630 return err;
631 }
632
633 /*
634 * This will accept the next outstanding connection.
635 */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)636 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
637 {
638 struct inet_connection_sock *icsk = inet_csk(sk);
639 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
640 struct request_sock *req;
641 struct sock *newsk;
642 int error;
643
644 lock_sock(sk);
645
646 /* We need to make sure that this socket is listening,
647 * and that it has something pending.
648 */
649 error = -EINVAL;
650 if (sk->sk_state != TCP_LISTEN)
651 goto out_err;
652
653 /* Find already established connection */
654 if (reqsk_queue_empty(queue)) {
655 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
656
657 /* If this is a non blocking socket don't sleep */
658 error = -EAGAIN;
659 if (!timeo)
660 goto out_err;
661
662 error = inet_csk_wait_for_connect(sk, timeo);
663 if (error)
664 goto out_err;
665 }
666 req = reqsk_queue_remove(queue, sk);
667 newsk = req->sk;
668
669 if (sk->sk_protocol == IPPROTO_TCP &&
670 tcp_rsk(req)->tfo_listener) {
671 spin_lock_bh(&queue->fastopenq.lock);
672 if (tcp_rsk(req)->tfo_listener) {
673 /* We are still waiting for the final ACK from 3WHS
674 * so can't free req now. Instead, we set req->sk to
675 * NULL to signify that the child socket is taken
676 * so reqsk_fastopen_remove() will free the req
677 * when 3WHS finishes (or is aborted).
678 */
679 req->sk = NULL;
680 req = NULL;
681 }
682 spin_unlock_bh(&queue->fastopenq.lock);
683 }
684
685 out:
686 release_sock(sk);
687 if (newsk && mem_cgroup_sockets_enabled) {
688 int amt;
689
690 /* atomically get the memory usage, set and charge the
691 * newsk->sk_memcg.
692 */
693 lock_sock(newsk);
694
695 /* The socket has not been accepted yet, no need to look at
696 * newsk->sk_wmem_queued.
697 */
698 amt = sk_mem_pages(newsk->sk_forward_alloc +
699 atomic_read(&newsk->sk_rmem_alloc));
700 mem_cgroup_sk_alloc(newsk);
701 if (newsk->sk_memcg && amt)
702 mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
703 GFP_KERNEL | __GFP_NOFAIL);
704
705 release_sock(newsk);
706 }
707 if (req)
708 reqsk_put(req);
709 return newsk;
710 out_err:
711 newsk = NULL;
712 req = NULL;
713 *err = error;
714 goto out;
715 }
716 EXPORT_SYMBOL(inet_csk_accept);
717
718 /*
719 * Using different timers for retransmit, delayed acks and probes
720 * We may wish use just one timer maintaining a list of expire jiffies
721 * to optimize.
722 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))723 void inet_csk_init_xmit_timers(struct sock *sk,
724 void (*retransmit_handler)(struct timer_list *t),
725 void (*delack_handler)(struct timer_list *t),
726 void (*keepalive_handler)(struct timer_list *t))
727 {
728 struct inet_connection_sock *icsk = inet_csk(sk);
729
730 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
731 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
732 timer_setup(&sk->sk_timer, keepalive_handler, 0);
733 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
734 }
735 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
736
inet_csk_clear_xmit_timers(struct sock * sk)737 void inet_csk_clear_xmit_timers(struct sock *sk)
738 {
739 struct inet_connection_sock *icsk = inet_csk(sk);
740
741 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
742
743 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
744 sk_stop_timer(sk, &icsk->icsk_delack_timer);
745 sk_stop_timer(sk, &sk->sk_timer);
746 }
747 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
748
inet_csk_delete_keepalive_timer(struct sock * sk)749 void inet_csk_delete_keepalive_timer(struct sock *sk)
750 {
751 sk_stop_timer(sk, &sk->sk_timer);
752 }
753 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
754
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)755 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
756 {
757 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
758 }
759 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
760
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)761 struct dst_entry *inet_csk_route_req(const struct sock *sk,
762 struct flowi4 *fl4,
763 const struct request_sock *req)
764 {
765 const struct inet_request_sock *ireq = inet_rsk(req);
766 struct net *net = read_pnet(&ireq->ireq_net);
767 struct ip_options_rcu *opt;
768 struct rtable *rt;
769
770 rcu_read_lock();
771 opt = rcu_dereference(ireq->ireq_opt);
772
773 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
774 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
775 sk->sk_protocol, inet_sk_flowi_flags(sk),
776 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
777 ireq->ir_loc_addr, ireq->ir_rmt_port,
778 htons(ireq->ir_num), sk->sk_uid);
779 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
780 rt = ip_route_output_flow(net, fl4, sk);
781 if (IS_ERR(rt))
782 goto no_route;
783 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
784 goto route_err;
785 rcu_read_unlock();
786 return &rt->dst;
787
788 route_err:
789 ip_rt_put(rt);
790 no_route:
791 rcu_read_unlock();
792 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
793 return NULL;
794 }
795 EXPORT_SYMBOL_GPL(inet_csk_route_req);
796
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)797 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
798 struct sock *newsk,
799 const struct request_sock *req)
800 {
801 const struct inet_request_sock *ireq = inet_rsk(req);
802 struct net *net = read_pnet(&ireq->ireq_net);
803 struct inet_sock *newinet = inet_sk(newsk);
804 struct ip_options_rcu *opt;
805 struct flowi4 *fl4;
806 struct rtable *rt;
807
808 opt = rcu_dereference(ireq->ireq_opt);
809 fl4 = &newinet->cork.fl.u.ip4;
810
811 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
812 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
813 sk->sk_protocol, inet_sk_flowi_flags(sk),
814 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
815 ireq->ir_loc_addr, ireq->ir_rmt_port,
816 htons(ireq->ir_num), sk->sk_uid);
817 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
818 rt = ip_route_output_flow(net, fl4, sk);
819 if (IS_ERR(rt))
820 goto no_route;
821 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
822 goto route_err;
823 return &rt->dst;
824
825 route_err:
826 ip_rt_put(rt);
827 no_route:
828 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
829 return NULL;
830 }
831 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
832
833 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)834 static void syn_ack_recalc(struct request_sock *req,
835 const int max_syn_ack_retries,
836 const u8 rskq_defer_accept,
837 int *expire, int *resend)
838 {
839 if (!rskq_defer_accept) {
840 *expire = req->num_timeout >= max_syn_ack_retries;
841 *resend = 1;
842 return;
843 }
844 *expire = req->num_timeout >= max_syn_ack_retries &&
845 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
846 /* Do not resend while waiting for data after ACK,
847 * start to resend on end of deferring period to give
848 * last chance for data or ACK to create established socket.
849 */
850 *resend = !inet_rsk(req)->acked ||
851 req->num_timeout >= rskq_defer_accept - 1;
852 }
853
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)854 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
855 {
856 int err = req->rsk_ops->rtx_syn_ack(parent, req);
857
858 if (!err)
859 req->num_retrans++;
860 return err;
861 }
862 EXPORT_SYMBOL(inet_rtx_syn_ack);
863
inet_reqsk_clone(struct request_sock * req,struct sock * sk)864 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
865 struct sock *sk)
866 {
867 struct sock *req_sk, *nreq_sk;
868 struct request_sock *nreq;
869
870 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
871 if (!nreq) {
872 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
873
874 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
875 sock_put(sk);
876 return NULL;
877 }
878
879 req_sk = req_to_sk(req);
880 nreq_sk = req_to_sk(nreq);
881
882 memcpy(nreq_sk, req_sk,
883 offsetof(struct sock, sk_dontcopy_begin));
884 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
885 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
886
887 sk_node_init(&nreq_sk->sk_node);
888 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
889 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
890 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
891 #endif
892 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
893
894 nreq->rsk_listener = sk;
895
896 /* We need not acquire fastopenq->lock
897 * because the child socket is locked in inet_csk_listen_stop().
898 */
899 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
900 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
901
902 return nreq;
903 }
904
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)905 static void reqsk_queue_migrated(struct request_sock_queue *queue,
906 const struct request_sock *req)
907 {
908 if (req->num_timeout == 0)
909 atomic_inc(&queue->young);
910 atomic_inc(&queue->qlen);
911 }
912
reqsk_migrate_reset(struct request_sock * req)913 static void reqsk_migrate_reset(struct request_sock *req)
914 {
915 req->saved_syn = NULL;
916 #if IS_ENABLED(CONFIG_IPV6)
917 inet_rsk(req)->ipv6_opt = NULL;
918 inet_rsk(req)->pktopts = NULL;
919 #else
920 inet_rsk(req)->ireq_opt = NULL;
921 #endif
922 }
923
924 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)925 static bool reqsk_queue_unlink(struct request_sock *req)
926 {
927 struct sock *sk = req_to_sk(req);
928 bool found = false;
929
930 if (sk_hashed(sk)) {
931 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
932 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
933
934 spin_lock(lock);
935 found = __sk_nulls_del_node_init_rcu(sk);
936 spin_unlock(lock);
937 }
938 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
939 reqsk_put(req);
940 return found;
941 }
942
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)943 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
944 {
945 bool unlinked = reqsk_queue_unlink(req);
946
947 if (unlinked) {
948 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
949 reqsk_put(req);
950 }
951 return unlinked;
952 }
953 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
954
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)955 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
956 {
957 inet_csk_reqsk_queue_drop(sk, req);
958 reqsk_put(req);
959 }
960 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
961
reqsk_timer_handler(struct timer_list * t)962 static void reqsk_timer_handler(struct timer_list *t)
963 {
964 struct request_sock *req = from_timer(req, t, rsk_timer);
965 struct request_sock *nreq = NULL, *oreq = req;
966 struct sock *sk_listener = req->rsk_listener;
967 struct inet_connection_sock *icsk;
968 struct request_sock_queue *queue;
969 struct net *net;
970 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
971
972 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
973 struct sock *nsk;
974
975 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
976 if (!nsk)
977 goto drop;
978
979 nreq = inet_reqsk_clone(req, nsk);
980 if (!nreq)
981 goto drop;
982
983 /* The new timer for the cloned req can decrease the 2
984 * by calling inet_csk_reqsk_queue_drop_and_put(), so
985 * hold another count to prevent use-after-free and
986 * call reqsk_put() just before return.
987 */
988 refcount_set(&nreq->rsk_refcnt, 2 + 1);
989 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
990 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
991
992 req = nreq;
993 sk_listener = nsk;
994 }
995
996 icsk = inet_csk(sk_listener);
997 net = sock_net(sk_listener);
998 max_syn_ack_retries = icsk->icsk_syn_retries ? :
999 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1000 /* Normally all the openreqs are young and become mature
1001 * (i.e. converted to established socket) for first timeout.
1002 * If synack was not acknowledged for 1 second, it means
1003 * one of the following things: synack was lost, ack was lost,
1004 * rtt is high or nobody planned to ack (i.e. synflood).
1005 * When server is a bit loaded, queue is populated with old
1006 * open requests, reducing effective size of queue.
1007 * When server is well loaded, queue size reduces to zero
1008 * after several minutes of work. It is not synflood,
1009 * it is normal operation. The solution is pruning
1010 * too old entries overriding normal timeout, when
1011 * situation becomes dangerous.
1012 *
1013 * Essentially, we reserve half of room for young
1014 * embrions; and abort old ones without pity, if old
1015 * ones are about to clog our table.
1016 */
1017 queue = &icsk->icsk_accept_queue;
1018 qlen = reqsk_queue_len(queue);
1019 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1020 int young = reqsk_queue_len_young(queue) << 1;
1021
1022 while (max_syn_ack_retries > 2) {
1023 if (qlen < young)
1024 break;
1025 max_syn_ack_retries--;
1026 young <<= 1;
1027 }
1028 }
1029 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1030 &expire, &resend);
1031 req->rsk_ops->syn_ack_timeout(req);
1032 if (!expire &&
1033 (!resend ||
1034 !inet_rtx_syn_ack(sk_listener, req) ||
1035 inet_rsk(req)->acked)) {
1036 if (req->num_timeout++ == 0)
1037 atomic_dec(&queue->young);
1038 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1039
1040 if (!nreq)
1041 return;
1042
1043 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1044 /* delete timer */
1045 inet_csk_reqsk_queue_drop(sk_listener, nreq);
1046 goto no_ownership;
1047 }
1048
1049 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1050 reqsk_migrate_reset(oreq);
1051 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1052 reqsk_put(oreq);
1053
1054 reqsk_put(nreq);
1055 return;
1056 }
1057
1058 /* Even if we can clone the req, we may need not retransmit any more
1059 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1060 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1061 */
1062 if (nreq) {
1063 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1064 no_ownership:
1065 reqsk_migrate_reset(nreq);
1066 reqsk_queue_removed(queue, nreq);
1067 __reqsk_free(nreq);
1068 }
1069
1070 drop:
1071 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1072 }
1073
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1074 static void reqsk_queue_hash_req(struct request_sock *req,
1075 unsigned long timeout)
1076 {
1077 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1078 mod_timer(&req->rsk_timer, jiffies + timeout);
1079
1080 inet_ehash_insert(req_to_sk(req), NULL, NULL);
1081 /* before letting lookups find us, make sure all req fields
1082 * are committed to memory and refcnt initialized.
1083 */
1084 smp_wmb();
1085 refcount_set(&req->rsk_refcnt, 2 + 1);
1086 }
1087
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1088 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1089 unsigned long timeout)
1090 {
1091 reqsk_queue_hash_req(req, timeout);
1092 inet_csk_reqsk_queue_added(sk);
1093 }
1094 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1095
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1096 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1097 const gfp_t priority)
1098 {
1099 struct inet_connection_sock *icsk = inet_csk(newsk);
1100
1101 if (!icsk->icsk_ulp_ops)
1102 return;
1103
1104 if (icsk->icsk_ulp_ops->clone)
1105 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1106 }
1107
1108 /**
1109 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1110 * @sk: the socket to clone
1111 * @req: request_sock
1112 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1113 *
1114 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1115 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1116 struct sock *inet_csk_clone_lock(const struct sock *sk,
1117 const struct request_sock *req,
1118 const gfp_t priority)
1119 {
1120 struct sock *newsk = sk_clone_lock(sk, priority);
1121
1122 if (newsk) {
1123 struct inet_connection_sock *newicsk = inet_csk(newsk);
1124
1125 inet_sk_set_state(newsk, TCP_SYN_RECV);
1126 newicsk->icsk_bind_hash = NULL;
1127 newicsk->icsk_bind2_hash = NULL;
1128
1129 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1130 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1131 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1132
1133 /* listeners have SOCK_RCU_FREE, not the children */
1134 sock_reset_flag(newsk, SOCK_RCU_FREE);
1135
1136 inet_sk(newsk)->mc_list = NULL;
1137
1138 newsk->sk_mark = inet_rsk(req)->ir_mark;
1139 atomic64_set(&newsk->sk_cookie,
1140 atomic64_read(&inet_rsk(req)->ir_cookie));
1141
1142 newicsk->icsk_retransmits = 0;
1143 newicsk->icsk_backoff = 0;
1144 newicsk->icsk_probes_out = 0;
1145 newicsk->icsk_probes_tstamp = 0;
1146
1147 /* Deinitialize accept_queue to trap illegal accesses. */
1148 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1149
1150 inet_clone_ulp(req, newsk, priority);
1151
1152 security_inet_csk_clone(newsk, req);
1153 }
1154 return newsk;
1155 }
1156 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1157
1158 /*
1159 * At this point, there should be no process reference to this
1160 * socket, and thus no user references at all. Therefore we
1161 * can assume the socket waitqueue is inactive and nobody will
1162 * try to jump onto it.
1163 */
inet_csk_destroy_sock(struct sock * sk)1164 void inet_csk_destroy_sock(struct sock *sk)
1165 {
1166 WARN_ON(sk->sk_state != TCP_CLOSE);
1167 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1168
1169 /* It cannot be in hash table! */
1170 WARN_ON(!sk_unhashed(sk));
1171
1172 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1173 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1174
1175 sk->sk_prot->destroy(sk);
1176
1177 sk_stream_kill_queues(sk);
1178
1179 xfrm_sk_free_policy(sk);
1180
1181 sk_refcnt_debug_release(sk);
1182
1183 this_cpu_dec(*sk->sk_prot->orphan_count);
1184
1185 sock_put(sk);
1186 }
1187 EXPORT_SYMBOL(inet_csk_destroy_sock);
1188
1189 /* This function allows to force a closure of a socket after the call to
1190 * tcp/dccp_create_openreq_child().
1191 */
inet_csk_prepare_forced_close(struct sock * sk)1192 void inet_csk_prepare_forced_close(struct sock *sk)
1193 __releases(&sk->sk_lock.slock)
1194 {
1195 /* sk_clone_lock locked the socket and set refcnt to 2 */
1196 bh_unlock_sock(sk);
1197 sock_put(sk);
1198 inet_csk_prepare_for_destroy_sock(sk);
1199 inet_sk(sk)->inet_num = 0;
1200 }
1201 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1202
inet_ulp_can_listen(const struct sock * sk)1203 static int inet_ulp_can_listen(const struct sock *sk)
1204 {
1205 const struct inet_connection_sock *icsk = inet_csk(sk);
1206
1207 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1208 return -EINVAL;
1209
1210 return 0;
1211 }
1212
inet_csk_listen_start(struct sock * sk)1213 int inet_csk_listen_start(struct sock *sk)
1214 {
1215 struct inet_connection_sock *icsk = inet_csk(sk);
1216 struct inet_sock *inet = inet_sk(sk);
1217 int err;
1218
1219 err = inet_ulp_can_listen(sk);
1220 if (unlikely(err))
1221 return err;
1222
1223 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1224
1225 sk->sk_ack_backlog = 0;
1226 inet_csk_delack_init(sk);
1227
1228 if (sk->sk_txrehash == SOCK_TXREHASH_DEFAULT)
1229 sk->sk_txrehash = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1230
1231 /* There is race window here: we announce ourselves listening,
1232 * but this transition is still not validated by get_port().
1233 * It is OK, because this socket enters to hash table only
1234 * after validation is complete.
1235 */
1236 inet_sk_state_store(sk, TCP_LISTEN);
1237 err = sk->sk_prot->get_port(sk, inet->inet_num);
1238 if (!err) {
1239 inet->inet_sport = htons(inet->inet_num);
1240
1241 sk_dst_reset(sk);
1242 err = sk->sk_prot->hash(sk);
1243
1244 if (likely(!err))
1245 return 0;
1246 }
1247
1248 inet_sk_set_state(sk, TCP_CLOSE);
1249 return err;
1250 }
1251 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1252
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1253 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1254 struct sock *child)
1255 {
1256 sk->sk_prot->disconnect(child, O_NONBLOCK);
1257
1258 sock_orphan(child);
1259
1260 this_cpu_inc(*sk->sk_prot->orphan_count);
1261
1262 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1263 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1264 BUG_ON(sk != req->rsk_listener);
1265
1266 /* Paranoid, to prevent race condition if
1267 * an inbound pkt destined for child is
1268 * blocked by sock lock in tcp_v4_rcv().
1269 * Also to satisfy an assertion in
1270 * tcp_v4_destroy_sock().
1271 */
1272 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1273 }
1274 inet_csk_destroy_sock(child);
1275 }
1276
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1277 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1278 struct request_sock *req,
1279 struct sock *child)
1280 {
1281 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1282
1283 spin_lock(&queue->rskq_lock);
1284 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1285 inet_child_forget(sk, req, child);
1286 child = NULL;
1287 } else {
1288 req->sk = child;
1289 req->dl_next = NULL;
1290 if (queue->rskq_accept_head == NULL)
1291 WRITE_ONCE(queue->rskq_accept_head, req);
1292 else
1293 queue->rskq_accept_tail->dl_next = req;
1294 queue->rskq_accept_tail = req;
1295 sk_acceptq_added(sk);
1296 }
1297 spin_unlock(&queue->rskq_lock);
1298 return child;
1299 }
1300 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1301
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1302 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1303 struct request_sock *req, bool own_req)
1304 {
1305 if (own_req) {
1306 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1307 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1308
1309 if (sk != req->rsk_listener) {
1310 /* another listening sk has been selected,
1311 * migrate the req to it.
1312 */
1313 struct request_sock *nreq;
1314
1315 /* hold a refcnt for the nreq->rsk_listener
1316 * which is assigned in inet_reqsk_clone()
1317 */
1318 sock_hold(sk);
1319 nreq = inet_reqsk_clone(req, sk);
1320 if (!nreq) {
1321 inet_child_forget(sk, req, child);
1322 goto child_put;
1323 }
1324
1325 refcount_set(&nreq->rsk_refcnt, 1);
1326 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1327 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1328 reqsk_migrate_reset(req);
1329 reqsk_put(req);
1330 return child;
1331 }
1332
1333 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1334 reqsk_migrate_reset(nreq);
1335 __reqsk_free(nreq);
1336 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1337 return child;
1338 }
1339 }
1340 /* Too bad, another child took ownership of the request, undo. */
1341 child_put:
1342 bh_unlock_sock(child);
1343 sock_put(child);
1344 return NULL;
1345 }
1346 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1347
1348 /*
1349 * This routine closes sockets which have been at least partially
1350 * opened, but not yet accepted.
1351 */
inet_csk_listen_stop(struct sock * sk)1352 void inet_csk_listen_stop(struct sock *sk)
1353 {
1354 struct inet_connection_sock *icsk = inet_csk(sk);
1355 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1356 struct request_sock *next, *req;
1357
1358 /* Following specs, it would be better either to send FIN
1359 * (and enter FIN-WAIT-1, it is normal close)
1360 * or to send active reset (abort).
1361 * Certainly, it is pretty dangerous while synflood, but it is
1362 * bad justification for our negligence 8)
1363 * To be honest, we are not able to make either
1364 * of the variants now. --ANK
1365 */
1366 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1367 struct sock *child = req->sk, *nsk;
1368 struct request_sock *nreq;
1369
1370 local_bh_disable();
1371 bh_lock_sock(child);
1372 WARN_ON(sock_owned_by_user(child));
1373 sock_hold(child);
1374
1375 nsk = reuseport_migrate_sock(sk, child, NULL);
1376 if (nsk) {
1377 nreq = inet_reqsk_clone(req, nsk);
1378 if (nreq) {
1379 refcount_set(&nreq->rsk_refcnt, 1);
1380
1381 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1382 __NET_INC_STATS(sock_net(nsk),
1383 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1384 reqsk_migrate_reset(req);
1385 } else {
1386 __NET_INC_STATS(sock_net(nsk),
1387 LINUX_MIB_TCPMIGRATEREQFAILURE);
1388 reqsk_migrate_reset(nreq);
1389 __reqsk_free(nreq);
1390 }
1391
1392 /* inet_csk_reqsk_queue_add() has already
1393 * called inet_child_forget() on failure case.
1394 */
1395 goto skip_child_forget;
1396 }
1397 }
1398
1399 inet_child_forget(sk, req, child);
1400 skip_child_forget:
1401 reqsk_put(req);
1402 bh_unlock_sock(child);
1403 local_bh_enable();
1404 sock_put(child);
1405
1406 cond_resched();
1407 }
1408 if (queue->fastopenq.rskq_rst_head) {
1409 /* Free all the reqs queued in rskq_rst_head. */
1410 spin_lock_bh(&queue->fastopenq.lock);
1411 req = queue->fastopenq.rskq_rst_head;
1412 queue->fastopenq.rskq_rst_head = NULL;
1413 spin_unlock_bh(&queue->fastopenq.lock);
1414 while (req != NULL) {
1415 next = req->dl_next;
1416 reqsk_put(req);
1417 req = next;
1418 }
1419 }
1420 WARN_ON_ONCE(sk->sk_ack_backlog);
1421 }
1422 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1423
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1424 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1425 {
1426 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1427 const struct inet_sock *inet = inet_sk(sk);
1428
1429 sin->sin_family = AF_INET;
1430 sin->sin_addr.s_addr = inet->inet_daddr;
1431 sin->sin_port = inet->inet_dport;
1432 }
1433 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1434
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1435 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1436 {
1437 const struct inet_sock *inet = inet_sk(sk);
1438 const struct ip_options_rcu *inet_opt;
1439 __be32 daddr = inet->inet_daddr;
1440 struct flowi4 *fl4;
1441 struct rtable *rt;
1442
1443 rcu_read_lock();
1444 inet_opt = rcu_dereference(inet->inet_opt);
1445 if (inet_opt && inet_opt->opt.srr)
1446 daddr = inet_opt->opt.faddr;
1447 fl4 = &fl->u.ip4;
1448 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1449 inet->inet_saddr, inet->inet_dport,
1450 inet->inet_sport, sk->sk_protocol,
1451 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1452 if (IS_ERR(rt))
1453 rt = NULL;
1454 if (rt)
1455 sk_setup_caps(sk, &rt->dst);
1456 rcu_read_unlock();
1457
1458 return &rt->dst;
1459 }
1460
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1461 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1462 {
1463 struct dst_entry *dst = __sk_dst_check(sk, 0);
1464 struct inet_sock *inet = inet_sk(sk);
1465
1466 if (!dst) {
1467 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1468 if (!dst)
1469 goto out;
1470 }
1471 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1472
1473 dst = __sk_dst_check(sk, 0);
1474 if (!dst)
1475 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1476 out:
1477 return dst;
1478 }
1479 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1480