1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/kernel.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16
17 static const struct INDEX_NAMES {
18 const __le16 *name;
19 u8 name_len;
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
24 };
25
26 /*
27 * cmp_fnames - Compare two names in index.
28 *
29 * if l1 != 0
30 * Both names are little endian on-disk ATTR_FILE_NAME structs.
31 * else
32 * key1 - cpu_str, key2 - ATTR_FILE_NAME
33 */
cmp_fnames(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 const void *data)
36 {
37 const struct ATTR_FILE_NAME *f2 = key2;
38 const struct ntfs_sb_info *sbi = data;
39 const struct ATTR_FILE_NAME *f1;
40 u16 fsize2;
41 bool both_case;
42
43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 return -1;
45
46 fsize2 = fname_full_size(f2);
47 if (l2 < fsize2)
48 return -1;
49
50 both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
51 if (!l1) {
52 const struct le_str *s2 = (struct le_str *)&f2->name_len;
53
54 /*
55 * If names are equal (case insensitive)
56 * try to compare it case sensitive.
57 */
58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 }
60
61 f1 = key1;
62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 sbi->upcase, both_case);
64 }
65
66 /*
67 * cmp_uint - $SII of $Secure and $Q of Quota
68 */
cmp_uint(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 const void *data)
71 {
72 const u32 *k1 = key1;
73 const u32 *k2 = key2;
74
75 if (l2 < sizeof(u32))
76 return -1;
77
78 if (*k1 < *k2)
79 return -1;
80 if (*k1 > *k2)
81 return 1;
82 return 0;
83 }
84
85 /*
86 * cmp_sdh - $SDH of $Secure
87 */
cmp_sdh(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 const void *data)
90 {
91 const struct SECURITY_KEY *k1 = key1;
92 const struct SECURITY_KEY *k2 = key2;
93 u32 t1, t2;
94
95 if (l2 < sizeof(struct SECURITY_KEY))
96 return -1;
97
98 t1 = le32_to_cpu(k1->hash);
99 t2 = le32_to_cpu(k2->hash);
100
101 /* First value is a hash value itself. */
102 if (t1 < t2)
103 return -1;
104 if (t1 > t2)
105 return 1;
106
107 /* Second value is security Id. */
108 if (data) {
109 t1 = le32_to_cpu(k1->sec_id);
110 t2 = le32_to_cpu(k2->sec_id);
111 if (t1 < t2)
112 return -1;
113 if (t1 > t2)
114 return 1;
115 }
116
117 return 0;
118 }
119
120 /*
121 * cmp_uints - $O of ObjId and "$R" for Reparse.
122 */
cmp_uints(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 const void *data)
125 {
126 const __le32 *k1 = key1;
127 const __le32 *k2 = key2;
128 size_t count;
129
130 if ((size_t)data == 1) {
131 /*
132 * ni_delete_all -> ntfs_remove_reparse ->
133 * delete all with this reference.
134 * k1, k2 - pointers to REPARSE_KEY
135 */
136
137 k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 if (l2 <= sizeof(int))
140 return -1;
141 l2 -= sizeof(int);
142 if (l1 <= sizeof(int))
143 return 1;
144 l1 -= sizeof(int);
145 }
146
147 if (l2 < sizeof(int))
148 return -1;
149
150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 u32 t1 = le32_to_cpu(*k1);
152 u32 t2 = le32_to_cpu(*k2);
153
154 if (t1 > t2)
155 return 1;
156 if (t1 < t2)
157 return -1;
158 }
159
160 if (l1 > l2)
161 return 1;
162 if (l1 < l2)
163 return -1;
164
165 return 0;
166 }
167
get_cmp_func(const struct INDEX_ROOT * root)168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170 switch (root->type) {
171 case ATTR_NAME:
172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 return &cmp_fnames;
174 break;
175 case ATTR_ZERO:
176 switch (root->rule) {
177 case NTFS_COLLATION_TYPE_UINT:
178 return &cmp_uint;
179 case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 return &cmp_sdh;
181 case NTFS_COLLATION_TYPE_UINTS:
182 return &cmp_uints;
183 default:
184 break;
185 }
186 break;
187 default:
188 break;
189 }
190
191 return NULL;
192 }
193
194 struct bmp_buf {
195 struct ATTRIB *b;
196 struct mft_inode *mi;
197 struct buffer_head *bh;
198 ulong *buf;
199 size_t bit;
200 u32 nbits;
201 u64 new_valid;
202 };
203
bmp_buf_get(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit,struct bmp_buf * bbuf)204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 size_t bit, struct bmp_buf *bbuf)
206 {
207 struct ATTRIB *b;
208 size_t data_size, valid_size, vbo, off = bit >> 3;
209 struct ntfs_sb_info *sbi = ni->mi.sbi;
210 CLST vcn = off >> sbi->cluster_bits;
211 struct ATTR_LIST_ENTRY *le = NULL;
212 struct buffer_head *bh;
213 struct super_block *sb;
214 u32 blocksize;
215 const struct INDEX_NAMES *in = &s_index_names[indx->type];
216
217 bbuf->bh = NULL;
218
219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 &vcn, &bbuf->mi);
221 bbuf->b = b;
222 if (!b)
223 return -EINVAL;
224
225 if (!b->non_res) {
226 data_size = le32_to_cpu(b->res.data_size);
227
228 if (off >= data_size)
229 return -EINVAL;
230
231 bbuf->buf = (ulong *)resident_data(b);
232 bbuf->bit = 0;
233 bbuf->nbits = data_size * 8;
234
235 return 0;
236 }
237
238 data_size = le64_to_cpu(b->nres.data_size);
239 if (WARN_ON(off >= data_size)) {
240 /* Looks like filesystem error. */
241 return -EINVAL;
242 }
243
244 valid_size = le64_to_cpu(b->nres.valid_size);
245
246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 if (!bh)
248 return -EIO;
249
250 if (IS_ERR(bh))
251 return PTR_ERR(bh);
252
253 bbuf->bh = bh;
254
255 if (buffer_locked(bh))
256 __wait_on_buffer(bh);
257
258 lock_buffer(bh);
259
260 sb = sbi->sb;
261 blocksize = sb->s_blocksize;
262
263 vbo = off & ~(size_t)sbi->block_mask;
264
265 bbuf->new_valid = vbo + blocksize;
266 if (bbuf->new_valid <= valid_size)
267 bbuf->new_valid = 0;
268 else if (bbuf->new_valid > data_size)
269 bbuf->new_valid = data_size;
270
271 if (vbo >= valid_size) {
272 memset(bh->b_data, 0, blocksize);
273 } else if (vbo + blocksize > valid_size) {
274 u32 voff = valid_size & sbi->block_mask;
275
276 memset(bh->b_data + voff, 0, blocksize - voff);
277 }
278
279 bbuf->buf = (ulong *)bh->b_data;
280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 bbuf->nbits = 8 * blocksize;
282
283 return 0;
284 }
285
bmp_buf_put(struct bmp_buf * bbuf,bool dirty)286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288 struct buffer_head *bh = bbuf->bh;
289 struct ATTRIB *b = bbuf->b;
290
291 if (!bh) {
292 if (b && !b->non_res && dirty)
293 bbuf->mi->dirty = true;
294 return;
295 }
296
297 if (!dirty)
298 goto out;
299
300 if (bbuf->new_valid) {
301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 bbuf->mi->dirty = true;
303 }
304
305 set_buffer_uptodate(bh);
306 mark_buffer_dirty(bh);
307
308 out:
309 unlock_buffer(bh);
310 put_bh(bh);
311 }
312
313 /*
314 * indx_mark_used - Mark the bit @bit as used.
315 */
indx_mark_used(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 size_t bit)
318 {
319 int err;
320 struct bmp_buf bbuf;
321
322 err = bmp_buf_get(indx, ni, bit, &bbuf);
323 if (err)
324 return err;
325
326 __set_bit(bit - bbuf.bit, bbuf.buf);
327
328 bmp_buf_put(&bbuf, true);
329
330 return 0;
331 }
332
333 /*
334 * indx_mark_free - Mark the bit @bit as free.
335 */
indx_mark_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 size_t bit)
338 {
339 int err;
340 struct bmp_buf bbuf;
341
342 err = bmp_buf_get(indx, ni, bit, &bbuf);
343 if (err)
344 return err;
345
346 __clear_bit(bit - bbuf.bit, bbuf.buf);
347
348 bmp_buf_put(&bbuf, true);
349
350 return 0;
351 }
352
353 /*
354 * scan_nres_bitmap
355 *
356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357 * inode is shared locked and no ni_lock.
358 * Use rw_semaphore for read/write access to bitmap_run.
359 */
scan_nres_bitmap(struct ntfs_inode * ni,struct ATTRIB * bitmap,struct ntfs_index * indx,size_t from,bool (* fn)(const ulong * buf,u32 bit,u32 bits,size_t * ret),size_t * ret)360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 struct ntfs_index *indx, size_t from,
362 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 size_t *ret),
364 size_t *ret)
365 {
366 struct ntfs_sb_info *sbi = ni->mi.sbi;
367 struct super_block *sb = sbi->sb;
368 struct runs_tree *run = &indx->bitmap_run;
369 struct rw_semaphore *lock = &indx->run_lock;
370 u32 nbits = sb->s_blocksize * 8;
371 u32 blocksize = sb->s_blocksize;
372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 sector_t eblock = bytes_to_block(sb, data_size);
375 size_t vbo = from >> 3;
376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 sector_t vblock = vbo >> sb->s_blocksize_bits;
378 sector_t blen, block;
379 CLST lcn, clen, vcn, vcn_next;
380 size_t idx;
381 struct buffer_head *bh;
382 bool ok;
383
384 *ret = MINUS_ONE_T;
385
386 if (vblock >= eblock)
387 return 0;
388
389 from &= nbits - 1;
390 vcn = vbo >> sbi->cluster_bits;
391
392 down_read(lock);
393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 up_read(lock);
395
396 next_run:
397 if (!ok) {
398 int err;
399 const struct INDEX_NAMES *name = &s_index_names[indx->type];
400
401 down_write(lock);
402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 name->name_len, run, vcn);
404 up_write(lock);
405 if (err)
406 return err;
407 down_read(lock);
408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 up_read(lock);
410 if (!ok)
411 return -EINVAL;
412 }
413
414 blen = (sector_t)clen * sbi->blocks_per_cluster;
415 block = (sector_t)lcn * sbi->blocks_per_cluster;
416
417 for (; blk < blen; blk++, from = 0) {
418 bh = ntfs_bread(sb, block + blk);
419 if (!bh)
420 return -EIO;
421
422 vbo = (u64)vblock << sb->s_blocksize_bits;
423 if (vbo >= valid_size) {
424 memset(bh->b_data, 0, blocksize);
425 } else if (vbo + blocksize > valid_size) {
426 u32 voff = valid_size & sbi->block_mask;
427
428 memset(bh->b_data + voff, 0, blocksize - voff);
429 }
430
431 if (vbo + blocksize > data_size)
432 nbits = 8 * (data_size - vbo);
433
434 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
435 : false;
436 put_bh(bh);
437
438 if (ok) {
439 *ret += 8 * vbo;
440 return 0;
441 }
442
443 if (++vblock >= eblock) {
444 *ret = MINUS_ONE_T;
445 return 0;
446 }
447 }
448 blk = 0;
449 vcn_next = vcn + clen;
450 down_read(lock);
451 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
452 if (!ok)
453 vcn = vcn_next;
454 up_read(lock);
455 goto next_run;
456 }
457
scan_for_free(const ulong * buf,u32 bit,u32 bits,size_t * ret)458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
459 {
460 size_t pos = find_next_zero_bit(buf, bits, bit);
461
462 if (pos >= bits)
463 return false;
464 *ret = pos;
465 return true;
466 }
467
468 /*
469 * indx_find_free - Look for free bit.
470 *
471 * Return: -1 if no free bits.
472 */
indx_find_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit,struct ATTRIB ** bitmap)473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
474 size_t *bit, struct ATTRIB **bitmap)
475 {
476 struct ATTRIB *b;
477 struct ATTR_LIST_ENTRY *le = NULL;
478 const struct INDEX_NAMES *in = &s_index_names[indx->type];
479 int err;
480
481 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
482 NULL, NULL);
483
484 if (!b)
485 return -ENOENT;
486
487 *bitmap = b;
488 *bit = MINUS_ONE_T;
489
490 if (!b->non_res) {
491 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
492 size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
493
494 if (pos < nbits)
495 *bit = pos;
496 } else {
497 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
498
499 if (err)
500 return err;
501 }
502
503 return 0;
504 }
505
scan_for_used(const ulong * buf,u32 bit,u32 bits,size_t * ret)506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
507 {
508 size_t pos = find_next_bit(buf, bits, bit);
509
510 if (pos >= bits)
511 return false;
512 *ret = pos;
513 return true;
514 }
515
516 /*
517 * indx_used_bit - Look for used bit.
518 *
519 * Return: MINUS_ONE_T if no used bits.
520 */
indx_used_bit(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit)521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
522 {
523 struct ATTRIB *b;
524 struct ATTR_LIST_ENTRY *le = NULL;
525 size_t from = *bit;
526 const struct INDEX_NAMES *in = &s_index_names[indx->type];
527 int err;
528
529 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
530 NULL, NULL);
531
532 if (!b)
533 return -ENOENT;
534
535 *bit = MINUS_ONE_T;
536
537 if (!b->non_res) {
538 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
539 size_t pos = find_next_bit(resident_data(b), nbits, from);
540
541 if (pos < nbits)
542 *bit = pos;
543 } else {
544 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
545 if (err)
546 return err;
547 }
548
549 return 0;
550 }
551
552 /*
553 * hdr_find_split
554 *
555 * Find a point at which the index allocation buffer would like to be split.
556 * NOTE: This function should never return 'END' entry NULL returns on error.
557 */
hdr_find_split(const struct INDEX_HDR * hdr)558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
559 {
560 size_t o;
561 const struct NTFS_DE *e = hdr_first_de(hdr);
562 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
563 u16 esize;
564
565 if (!e || de_is_last(e))
566 return NULL;
567
568 esize = le16_to_cpu(e->size);
569 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
570 const struct NTFS_DE *p = e;
571
572 e = Add2Ptr(hdr, o);
573
574 /* We must not return END entry. */
575 if (de_is_last(e))
576 return p;
577
578 esize = le16_to_cpu(e->size);
579 }
580
581 return e;
582 }
583
584 /*
585 * hdr_insert_head - Insert some entries at the beginning of the buffer.
586 *
587 * It is used to insert entries into a newly-created buffer.
588 */
hdr_insert_head(struct INDEX_HDR * hdr,const void * ins,u32 ins_bytes)589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
590 const void *ins, u32 ins_bytes)
591 {
592 u32 to_move;
593 struct NTFS_DE *e = hdr_first_de(hdr);
594 u32 used = le32_to_cpu(hdr->used);
595
596 if (!e)
597 return NULL;
598
599 /* Now we just make room for the inserted entries and jam it in. */
600 to_move = used - le32_to_cpu(hdr->de_off);
601 memmove(Add2Ptr(e, ins_bytes), e, to_move);
602 memcpy(e, ins, ins_bytes);
603 hdr->used = cpu_to_le32(used + ins_bytes);
604
605 return e;
606 }
607
fnd_clear(struct ntfs_fnd * fnd)608 void fnd_clear(struct ntfs_fnd *fnd)
609 {
610 int i;
611
612 for (i = 0; i < fnd->level; i++) {
613 struct indx_node *n = fnd->nodes[i];
614
615 if (!n)
616 continue;
617
618 put_indx_node(n);
619 fnd->nodes[i] = NULL;
620 }
621 fnd->level = 0;
622 fnd->root_de = NULL;
623 }
624
fnd_push(struct ntfs_fnd * fnd,struct indx_node * n,struct NTFS_DE * e)625 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
626 struct NTFS_DE *e)
627 {
628 int i;
629
630 i = fnd->level;
631 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
632 return -EINVAL;
633 fnd->nodes[i] = n;
634 fnd->de[i] = e;
635 fnd->level += 1;
636 return 0;
637 }
638
fnd_pop(struct ntfs_fnd * fnd)639 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
640 {
641 struct indx_node *n;
642 int i = fnd->level;
643
644 i -= 1;
645 n = fnd->nodes[i];
646 fnd->nodes[i] = NULL;
647 fnd->level = i;
648
649 return n;
650 }
651
fnd_is_empty(struct ntfs_fnd * fnd)652 static bool fnd_is_empty(struct ntfs_fnd *fnd)
653 {
654 if (!fnd->level)
655 return !fnd->root_de;
656
657 return !fnd->de[fnd->level - 1];
658 }
659
660 /*
661 * hdr_find_e - Locate an entry the index buffer.
662 *
663 * If no matching entry is found, it returns the first entry which is greater
664 * than the desired entry If the search key is greater than all the entries the
665 * buffer, it returns the 'end' entry. This function does a binary search of the
666 * current index buffer, for the first entry that is <= to the search value.
667 *
668 * Return: NULL if error.
669 */
hdr_find_e(const struct ntfs_index * indx,const struct INDEX_HDR * hdr,const void * key,size_t key_len,const void * ctx,int * diff)670 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
671 const struct INDEX_HDR *hdr, const void *key,
672 size_t key_len, const void *ctx, int *diff)
673 {
674 struct NTFS_DE *e, *found = NULL;
675 NTFS_CMP_FUNC cmp = indx->cmp;
676 int min_idx = 0, mid_idx, max_idx = 0;
677 int diff2;
678 int table_size = 8;
679 u32 e_size, e_key_len;
680 u32 end = le32_to_cpu(hdr->used);
681 u32 off = le32_to_cpu(hdr->de_off);
682 u16 offs[128];
683
684 fill_table:
685 if (off + sizeof(struct NTFS_DE) > end)
686 return NULL;
687
688 e = Add2Ptr(hdr, off);
689 e_size = le16_to_cpu(e->size);
690
691 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
692 return NULL;
693
694 if (!de_is_last(e)) {
695 offs[max_idx] = off;
696 off += e_size;
697
698 max_idx++;
699 if (max_idx < table_size)
700 goto fill_table;
701
702 max_idx--;
703 }
704
705 binary_search:
706 e_key_len = le16_to_cpu(e->key_size);
707
708 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
709 if (diff2 > 0) {
710 if (found) {
711 min_idx = mid_idx + 1;
712 } else {
713 if (de_is_last(e))
714 return NULL;
715
716 max_idx = 0;
717 table_size = min(table_size * 2,
718 (int)ARRAY_SIZE(offs));
719 goto fill_table;
720 }
721 } else if (diff2 < 0) {
722 if (found)
723 max_idx = mid_idx - 1;
724 else
725 max_idx--;
726
727 found = e;
728 } else {
729 *diff = 0;
730 return e;
731 }
732
733 if (min_idx > max_idx) {
734 *diff = -1;
735 return found;
736 }
737
738 mid_idx = (min_idx + max_idx) >> 1;
739 e = Add2Ptr(hdr, offs[mid_idx]);
740
741 goto binary_search;
742 }
743
744 /*
745 * hdr_insert_de - Insert an index entry into the buffer.
746 *
747 * 'before' should be a pointer previously returned from hdr_find_e.
748 */
hdr_insert_de(const struct ntfs_index * indx,struct INDEX_HDR * hdr,const struct NTFS_DE * de,struct NTFS_DE * before,const void * ctx)749 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
750 struct INDEX_HDR *hdr,
751 const struct NTFS_DE *de,
752 struct NTFS_DE *before, const void *ctx)
753 {
754 int diff;
755 size_t off = PtrOffset(hdr, before);
756 u32 used = le32_to_cpu(hdr->used);
757 u32 total = le32_to_cpu(hdr->total);
758 u16 de_size = le16_to_cpu(de->size);
759
760 /* First, check to see if there's enough room. */
761 if (used + de_size > total)
762 return NULL;
763
764 /* We know there's enough space, so we know we'll succeed. */
765 if (before) {
766 /* Check that before is inside Index. */
767 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
768 off + le16_to_cpu(before->size) > total) {
769 return NULL;
770 }
771 goto ok;
772 }
773 /* No insert point is applied. Get it manually. */
774 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
775 &diff);
776 if (!before)
777 return NULL;
778 off = PtrOffset(hdr, before);
779
780 ok:
781 /* Now we just make room for the entry and jam it in. */
782 memmove(Add2Ptr(before, de_size), before, used - off);
783
784 hdr->used = cpu_to_le32(used + de_size);
785 memcpy(before, de, de_size);
786
787 return before;
788 }
789
790 /*
791 * hdr_delete_de - Remove an entry from the index buffer.
792 */
hdr_delete_de(struct INDEX_HDR * hdr,struct NTFS_DE * re)793 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
794 struct NTFS_DE *re)
795 {
796 u32 used = le32_to_cpu(hdr->used);
797 u16 esize = le16_to_cpu(re->size);
798 u32 off = PtrOffset(hdr, re);
799 int bytes = used - (off + esize);
800
801 if (off >= used || esize < sizeof(struct NTFS_DE) ||
802 bytes < sizeof(struct NTFS_DE))
803 return NULL;
804
805 hdr->used = cpu_to_le32(used - esize);
806 memmove(re, Add2Ptr(re, esize), bytes);
807
808 return re;
809 }
810
indx_clear(struct ntfs_index * indx)811 void indx_clear(struct ntfs_index *indx)
812 {
813 run_close(&indx->alloc_run);
814 run_close(&indx->bitmap_run);
815 }
816
indx_init(struct ntfs_index * indx,struct ntfs_sb_info * sbi,const struct ATTRIB * attr,enum index_mutex_classed type)817 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
818 const struct ATTRIB *attr, enum index_mutex_classed type)
819 {
820 u32 t32;
821 const struct INDEX_ROOT *root = resident_data(attr);
822
823 /* Check root fields. */
824 if (!root->index_block_clst)
825 return -EINVAL;
826
827 indx->type = type;
828 indx->idx2vbn_bits = __ffs(root->index_block_clst);
829
830 t32 = le32_to_cpu(root->index_block_size);
831 indx->index_bits = blksize_bits(t32);
832
833 /* Check index record size. */
834 if (t32 < sbi->cluster_size) {
835 /* Index record is smaller than a cluster, use 512 blocks. */
836 if (t32 != root->index_block_clst * SECTOR_SIZE)
837 return -EINVAL;
838
839 /* Check alignment to a cluster. */
840 if ((sbi->cluster_size >> SECTOR_SHIFT) &
841 (root->index_block_clst - 1)) {
842 return -EINVAL;
843 }
844
845 indx->vbn2vbo_bits = SECTOR_SHIFT;
846 } else {
847 /* Index record must be a multiple of cluster size. */
848 if (t32 != root->index_block_clst << sbi->cluster_bits)
849 return -EINVAL;
850
851 indx->vbn2vbo_bits = sbi->cluster_bits;
852 }
853
854 init_rwsem(&indx->run_lock);
855
856 indx->cmp = get_cmp_func(root);
857 return indx->cmp ? 0 : -EINVAL;
858 }
859
indx_new(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,const __le64 * sub_vbn)860 static struct indx_node *indx_new(struct ntfs_index *indx,
861 struct ntfs_inode *ni, CLST vbn,
862 const __le64 *sub_vbn)
863 {
864 int err;
865 struct NTFS_DE *e;
866 struct indx_node *r;
867 struct INDEX_HDR *hdr;
868 struct INDEX_BUFFER *index;
869 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
870 u32 bytes = 1u << indx->index_bits;
871 u16 fn;
872 u32 eo;
873
874 r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
875 if (!r)
876 return ERR_PTR(-ENOMEM);
877
878 index = kzalloc(bytes, GFP_NOFS);
879 if (!index) {
880 kfree(r);
881 return ERR_PTR(-ENOMEM);
882 }
883
884 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
885
886 if (err) {
887 kfree(index);
888 kfree(r);
889 return ERR_PTR(err);
890 }
891
892 /* Create header. */
893 index->rhdr.sign = NTFS_INDX_SIGNATURE;
894 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
895 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
896 index->rhdr.fix_num = cpu_to_le16(fn);
897 index->vbn = cpu_to_le64(vbn);
898 hdr = &index->ihdr;
899 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
900 hdr->de_off = cpu_to_le32(eo);
901
902 e = Add2Ptr(hdr, eo);
903
904 if (sub_vbn) {
905 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
906 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
907 hdr->used =
908 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
909 de_set_vbn_le(e, *sub_vbn);
910 hdr->flags = 1;
911 } else {
912 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
913 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
914 e->flags = NTFS_IE_LAST;
915 }
916
917 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
918
919 r->index = index;
920 return r;
921 }
922
indx_get_root(struct ntfs_index * indx,struct ntfs_inode * ni,struct ATTRIB ** attr,struct mft_inode ** mi)923 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
924 struct ATTRIB **attr, struct mft_inode **mi)
925 {
926 struct ATTR_LIST_ENTRY *le = NULL;
927 struct ATTRIB *a;
928 const struct INDEX_NAMES *in = &s_index_names[indx->type];
929
930 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
931 mi);
932 if (!a)
933 return NULL;
934
935 if (attr)
936 *attr = a;
937
938 return resident_data_ex(a, sizeof(struct INDEX_ROOT));
939 }
940
indx_write(struct ntfs_index * indx,struct ntfs_inode * ni,struct indx_node * node,int sync)941 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
942 struct indx_node *node, int sync)
943 {
944 struct INDEX_BUFFER *ib = node->index;
945
946 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
947 }
948
949 /*
950 * indx_read
951 *
952 * If ntfs_readdir calls this function
953 * inode is shared locked and no ni_lock.
954 * Use rw_semaphore for read/write access to alloc_run.
955 */
indx_read(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,struct indx_node ** node)956 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
957 struct indx_node **node)
958 {
959 int err;
960 struct INDEX_BUFFER *ib;
961 struct runs_tree *run = &indx->alloc_run;
962 struct rw_semaphore *lock = &indx->run_lock;
963 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
964 u32 bytes = 1u << indx->index_bits;
965 struct indx_node *in = *node;
966 const struct INDEX_NAMES *name;
967
968 if (!in) {
969 in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
970 if (!in)
971 return -ENOMEM;
972 } else {
973 nb_put(&in->nb);
974 }
975
976 ib = in->index;
977 if (!ib) {
978 ib = kmalloc(bytes, GFP_NOFS);
979 if (!ib) {
980 err = -ENOMEM;
981 goto out;
982 }
983 }
984
985 down_read(lock);
986 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
987 up_read(lock);
988 if (!err)
989 goto ok;
990
991 if (err == -E_NTFS_FIXUP)
992 goto ok;
993
994 if (err != -ENOENT)
995 goto out;
996
997 name = &s_index_names[indx->type];
998 down_write(lock);
999 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1000 run, vbo, vbo + bytes);
1001 up_write(lock);
1002 if (err)
1003 goto out;
1004
1005 down_read(lock);
1006 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1007 up_read(lock);
1008 if (err == -E_NTFS_FIXUP)
1009 goto ok;
1010
1011 if (err)
1012 goto out;
1013
1014 ok:
1015 if (err == -E_NTFS_FIXUP) {
1016 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1017 err = 0;
1018 }
1019
1020 /* check for index header length */
1021 if (offsetof(struct INDEX_BUFFER, ihdr) + ib->ihdr.used > bytes) {
1022 err = -EINVAL;
1023 goto out;
1024 }
1025
1026 in->index = ib;
1027 *node = in;
1028
1029 out:
1030 if (ib != in->index)
1031 kfree(ib);
1032
1033 if (*node != in) {
1034 nb_put(&in->nb);
1035 kfree(in);
1036 }
1037
1038 return err;
1039 }
1040
1041 /*
1042 * indx_find - Scan NTFS directory for given entry.
1043 */
indx_find(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,const void * key,size_t key_len,const void * ctx,int * diff,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1044 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1045 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1046 const void *ctx, int *diff, struct NTFS_DE **entry,
1047 struct ntfs_fnd *fnd)
1048 {
1049 int err;
1050 struct NTFS_DE *e;
1051 struct indx_node *node;
1052
1053 if (!root)
1054 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1055
1056 if (!root) {
1057 /* Should not happen. */
1058 return -EINVAL;
1059 }
1060
1061 /* Check cache. */
1062 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1063 if (e && !de_is_last(e) &&
1064 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1065 *entry = e;
1066 *diff = 0;
1067 return 0;
1068 }
1069
1070 /* Soft finder reset. */
1071 fnd_clear(fnd);
1072
1073 /* Lookup entry that is <= to the search value. */
1074 e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
1075 if (!e)
1076 return -EINVAL;
1077
1078 fnd->root_de = e;
1079
1080 for (;;) {
1081 node = NULL;
1082 if (*diff >= 0 || !de_has_vcn_ex(e))
1083 break;
1084
1085 /* Read next level. */
1086 err = indx_read(indx, ni, de_get_vbn(e), &node);
1087 if (err)
1088 return err;
1089
1090 /* Lookup entry that is <= to the search value. */
1091 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1092 diff);
1093 if (!e) {
1094 put_indx_node(node);
1095 return -EINVAL;
1096 }
1097
1098 fnd_push(fnd, node, e);
1099 }
1100
1101 *entry = e;
1102 return 0;
1103 }
1104
indx_find_sort(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1105 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1106 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1107 struct ntfs_fnd *fnd)
1108 {
1109 int err;
1110 struct indx_node *n = NULL;
1111 struct NTFS_DE *e;
1112 size_t iter = 0;
1113 int level = fnd->level;
1114
1115 if (!*entry) {
1116 /* Start find. */
1117 e = hdr_first_de(&root->ihdr);
1118 if (!e)
1119 return 0;
1120 fnd_clear(fnd);
1121 fnd->root_de = e;
1122 } else if (!level) {
1123 if (de_is_last(fnd->root_de)) {
1124 *entry = NULL;
1125 return 0;
1126 }
1127
1128 e = hdr_next_de(&root->ihdr, fnd->root_de);
1129 if (!e)
1130 return -EINVAL;
1131 fnd->root_de = e;
1132 } else {
1133 n = fnd->nodes[level - 1];
1134 e = fnd->de[level - 1];
1135
1136 if (de_is_last(e))
1137 goto pop_level;
1138
1139 e = hdr_next_de(&n->index->ihdr, e);
1140 if (!e)
1141 return -EINVAL;
1142
1143 fnd->de[level - 1] = e;
1144 }
1145
1146 /* Just to avoid tree cycle. */
1147 next_iter:
1148 if (iter++ >= 1000)
1149 return -EINVAL;
1150
1151 while (de_has_vcn_ex(e)) {
1152 if (le16_to_cpu(e->size) <
1153 sizeof(struct NTFS_DE) + sizeof(u64)) {
1154 if (n) {
1155 fnd_pop(fnd);
1156 kfree(n);
1157 }
1158 return -EINVAL;
1159 }
1160
1161 /* Read next level. */
1162 err = indx_read(indx, ni, de_get_vbn(e), &n);
1163 if (err)
1164 return err;
1165
1166 /* Try next level. */
1167 e = hdr_first_de(&n->index->ihdr);
1168 if (!e) {
1169 kfree(n);
1170 return -EINVAL;
1171 }
1172
1173 fnd_push(fnd, n, e);
1174 }
1175
1176 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1177 *entry = e;
1178 return 0;
1179 }
1180
1181 pop_level:
1182 for (;;) {
1183 if (!de_is_last(e))
1184 goto next_iter;
1185
1186 /* Pop one level. */
1187 if (n) {
1188 fnd_pop(fnd);
1189 kfree(n);
1190 }
1191
1192 level = fnd->level;
1193
1194 if (level) {
1195 n = fnd->nodes[level - 1];
1196 e = fnd->de[level - 1];
1197 } else if (fnd->root_de) {
1198 n = NULL;
1199 e = fnd->root_de;
1200 fnd->root_de = NULL;
1201 } else {
1202 *entry = NULL;
1203 return 0;
1204 }
1205
1206 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1207 *entry = e;
1208 if (!fnd->root_de)
1209 fnd->root_de = e;
1210 return 0;
1211 }
1212 }
1213 }
1214
indx_find_raw(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,size_t * off,struct ntfs_fnd * fnd)1215 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1216 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1217 size_t *off, struct ntfs_fnd *fnd)
1218 {
1219 int err;
1220 struct indx_node *n = NULL;
1221 struct NTFS_DE *e = NULL;
1222 struct NTFS_DE *e2;
1223 size_t bit;
1224 CLST next_used_vbn;
1225 CLST next_vbn;
1226 u32 record_size = ni->mi.sbi->record_size;
1227
1228 /* Use non sorted algorithm. */
1229 if (!*entry) {
1230 /* This is the first call. */
1231 e = hdr_first_de(&root->ihdr);
1232 if (!e)
1233 return 0;
1234 fnd_clear(fnd);
1235 fnd->root_de = e;
1236
1237 /* The first call with setup of initial element. */
1238 if (*off >= record_size) {
1239 next_vbn = (((*off - record_size) >> indx->index_bits))
1240 << indx->idx2vbn_bits;
1241 /* Jump inside cycle 'for'. */
1242 goto next;
1243 }
1244
1245 /* Start enumeration from root. */
1246 *off = 0;
1247 } else if (!fnd->root_de)
1248 return -EINVAL;
1249
1250 for (;;) {
1251 /* Check if current entry can be used. */
1252 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1253 goto ok;
1254
1255 if (!fnd->level) {
1256 /* Continue to enumerate root. */
1257 if (!de_is_last(fnd->root_de)) {
1258 e = hdr_next_de(&root->ihdr, fnd->root_de);
1259 if (!e)
1260 return -EINVAL;
1261 fnd->root_de = e;
1262 continue;
1263 }
1264
1265 /* Start to enumerate indexes from 0. */
1266 next_vbn = 0;
1267 } else {
1268 /* Continue to enumerate indexes. */
1269 e2 = fnd->de[fnd->level - 1];
1270
1271 n = fnd->nodes[fnd->level - 1];
1272
1273 if (!de_is_last(e2)) {
1274 e = hdr_next_de(&n->index->ihdr, e2);
1275 if (!e)
1276 return -EINVAL;
1277 fnd->de[fnd->level - 1] = e;
1278 continue;
1279 }
1280
1281 /* Continue with next index. */
1282 next_vbn = le64_to_cpu(n->index->vbn) +
1283 root->index_block_clst;
1284 }
1285
1286 next:
1287 /* Release current index. */
1288 if (n) {
1289 fnd_pop(fnd);
1290 put_indx_node(n);
1291 n = NULL;
1292 }
1293
1294 /* Skip all free indexes. */
1295 bit = next_vbn >> indx->idx2vbn_bits;
1296 err = indx_used_bit(indx, ni, &bit);
1297 if (err == -ENOENT || bit == MINUS_ONE_T) {
1298 /* No used indexes. */
1299 *entry = NULL;
1300 return 0;
1301 }
1302
1303 next_used_vbn = bit << indx->idx2vbn_bits;
1304
1305 /* Read buffer into memory. */
1306 err = indx_read(indx, ni, next_used_vbn, &n);
1307 if (err)
1308 return err;
1309
1310 e = hdr_first_de(&n->index->ihdr);
1311 fnd_push(fnd, n, e);
1312 if (!e)
1313 return -EINVAL;
1314 }
1315
1316 ok:
1317 /* Return offset to restore enumerator if necessary. */
1318 if (!n) {
1319 /* 'e' points in root, */
1320 *off = PtrOffset(&root->ihdr, e);
1321 } else {
1322 /* 'e' points in index, */
1323 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1324 record_size + PtrOffset(&n->index->ihdr, e);
1325 }
1326
1327 *entry = e;
1328 return 0;
1329 }
1330
1331 /*
1332 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1333 */
indx_create_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1334 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1335 CLST *vbn)
1336 {
1337 int err;
1338 struct ntfs_sb_info *sbi = ni->mi.sbi;
1339 struct ATTRIB *bitmap;
1340 struct ATTRIB *alloc;
1341 u32 data_size = 1u << indx->index_bits;
1342 u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1343 CLST len = alloc_size >> sbi->cluster_bits;
1344 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1345 CLST alen;
1346 struct runs_tree run;
1347
1348 run_init(&run);
1349
1350 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1351 NULL);
1352 if (err)
1353 goto out;
1354
1355 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1356 &run, 0, len, 0, &alloc, NULL, NULL);
1357 if (err)
1358 goto out1;
1359
1360 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1361
1362 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1363 in->name_len, &bitmap, NULL, NULL);
1364 if (err)
1365 goto out2;
1366
1367 if (in->name == I30_NAME) {
1368 ni->vfs_inode.i_size = data_size;
1369 inode_set_bytes(&ni->vfs_inode, alloc_size);
1370 }
1371
1372 memcpy(&indx->alloc_run, &run, sizeof(run));
1373
1374 *vbn = 0;
1375
1376 return 0;
1377
1378 out2:
1379 mi_remove_attr(NULL, &ni->mi, alloc);
1380
1381 out1:
1382 run_deallocate(sbi, &run, false);
1383
1384 out:
1385 return err;
1386 }
1387
1388 /*
1389 * indx_add_allocate - Add clusters to index.
1390 */
indx_add_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1391 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1392 CLST *vbn)
1393 {
1394 int err;
1395 size_t bit;
1396 u64 data_size;
1397 u64 bmp_size, bmp_size_v;
1398 struct ATTRIB *bmp, *alloc;
1399 struct mft_inode *mi;
1400 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1401
1402 err = indx_find_free(indx, ni, &bit, &bmp);
1403 if (err)
1404 goto out1;
1405
1406 if (bit != MINUS_ONE_T) {
1407 bmp = NULL;
1408 } else {
1409 if (bmp->non_res) {
1410 bmp_size = le64_to_cpu(bmp->nres.data_size);
1411 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1412 } else {
1413 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1414 }
1415
1416 bit = bmp_size << 3;
1417 }
1418
1419 data_size = (u64)(bit + 1) << indx->index_bits;
1420
1421 if (bmp) {
1422 /* Increase bitmap. */
1423 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1424 &indx->bitmap_run, bitmap_size(bit + 1),
1425 NULL, true, NULL);
1426 if (err)
1427 goto out1;
1428 }
1429
1430 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1431 NULL, &mi);
1432 if (!alloc) {
1433 err = -EINVAL;
1434 if (bmp)
1435 goto out2;
1436 goto out1;
1437 }
1438
1439 /* Increase allocation. */
1440 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1441 &indx->alloc_run, data_size, &data_size, true,
1442 NULL);
1443 if (err) {
1444 if (bmp)
1445 goto out2;
1446 goto out1;
1447 }
1448
1449 *vbn = bit << indx->idx2vbn_bits;
1450
1451 return 0;
1452
1453 out2:
1454 /* Ops. No space? */
1455 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1456 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1457
1458 out1:
1459 return err;
1460 }
1461
1462 /*
1463 * indx_insert_into_root - Attempt to insert an entry into the index root.
1464 *
1465 * @undo - True if we undoing previous remove.
1466 * If necessary, it will twiddle the index b-tree.
1467 */
indx_insert_into_root(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,struct NTFS_DE * root_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1468 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1469 const struct NTFS_DE *new_de,
1470 struct NTFS_DE *root_de, const void *ctx,
1471 struct ntfs_fnd *fnd, bool undo)
1472 {
1473 int err = 0;
1474 struct NTFS_DE *e, *e0, *re;
1475 struct mft_inode *mi;
1476 struct ATTRIB *attr;
1477 struct INDEX_HDR *hdr;
1478 struct indx_node *n;
1479 CLST new_vbn;
1480 __le64 *sub_vbn, t_vbn;
1481 u16 new_de_size;
1482 u32 hdr_used, hdr_total, asize, to_move;
1483 u32 root_size, new_root_size;
1484 struct ntfs_sb_info *sbi;
1485 int ds_root;
1486 struct INDEX_ROOT *root, *a_root;
1487
1488 /* Get the record this root placed in. */
1489 root = indx_get_root(indx, ni, &attr, &mi);
1490 if (!root)
1491 return -EINVAL;
1492
1493 /*
1494 * Try easy case:
1495 * hdr_insert_de will succeed if there's
1496 * room the root for the new entry.
1497 */
1498 hdr = &root->ihdr;
1499 sbi = ni->mi.sbi;
1500 new_de_size = le16_to_cpu(new_de->size);
1501 hdr_used = le32_to_cpu(hdr->used);
1502 hdr_total = le32_to_cpu(hdr->total);
1503 asize = le32_to_cpu(attr->size);
1504 root_size = le32_to_cpu(attr->res.data_size);
1505
1506 ds_root = new_de_size + hdr_used - hdr_total;
1507
1508 /* If 'undo' is set then reduce requirements. */
1509 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1510 mi_resize_attr(mi, attr, ds_root)) {
1511 hdr->total = cpu_to_le32(hdr_total + ds_root);
1512 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1513 WARN_ON(!e);
1514 fnd_clear(fnd);
1515 fnd->root_de = e;
1516
1517 return 0;
1518 }
1519
1520 /* Make a copy of root attribute to restore if error. */
1521 a_root = kmemdup(attr, asize, GFP_NOFS);
1522 if (!a_root)
1523 return -ENOMEM;
1524
1525 /*
1526 * Copy all the non-end entries from
1527 * the index root to the new buffer.
1528 */
1529 to_move = 0;
1530 e0 = hdr_first_de(hdr);
1531
1532 /* Calculate the size to copy. */
1533 for (e = e0;; e = hdr_next_de(hdr, e)) {
1534 if (!e) {
1535 err = -EINVAL;
1536 goto out_free_root;
1537 }
1538
1539 if (de_is_last(e))
1540 break;
1541 to_move += le16_to_cpu(e->size);
1542 }
1543
1544 if (!to_move) {
1545 re = NULL;
1546 } else {
1547 re = kmemdup(e0, to_move, GFP_NOFS);
1548 if (!re) {
1549 err = -ENOMEM;
1550 goto out_free_root;
1551 }
1552 }
1553
1554 sub_vbn = NULL;
1555 if (de_has_vcn(e)) {
1556 t_vbn = de_get_vbn_le(e);
1557 sub_vbn = &t_vbn;
1558 }
1559
1560 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1561 sizeof(u64);
1562 ds_root = new_root_size - root_size;
1563
1564 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1565 /* Make root external. */
1566 err = -EOPNOTSUPP;
1567 goto out_free_re;
1568 }
1569
1570 if (ds_root)
1571 mi_resize_attr(mi, attr, ds_root);
1572
1573 /* Fill first entry (vcn will be set later). */
1574 e = (struct NTFS_DE *)(root + 1);
1575 memset(e, 0, sizeof(struct NTFS_DE));
1576 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1577 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1578
1579 hdr->flags = 1;
1580 hdr->used = hdr->total =
1581 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1582
1583 fnd->root_de = hdr_first_de(hdr);
1584 mi->dirty = true;
1585
1586 /* Create alloc and bitmap attributes (if not). */
1587 err = run_is_empty(&indx->alloc_run)
1588 ? indx_create_allocate(indx, ni, &new_vbn)
1589 : indx_add_allocate(indx, ni, &new_vbn);
1590
1591 /* Layout of record may be changed, so rescan root. */
1592 root = indx_get_root(indx, ni, &attr, &mi);
1593 if (!root) {
1594 /* Bug? */
1595 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1596 err = -EINVAL;
1597 goto out_free_re;
1598 }
1599
1600 if (err) {
1601 /* Restore root. */
1602 if (mi_resize_attr(mi, attr, -ds_root))
1603 memcpy(attr, a_root, asize);
1604 else {
1605 /* Bug? */
1606 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1607 }
1608 goto out_free_re;
1609 }
1610
1611 e = (struct NTFS_DE *)(root + 1);
1612 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1613 mi->dirty = true;
1614
1615 /* Now we can create/format the new buffer and copy the entries into. */
1616 n = indx_new(indx, ni, new_vbn, sub_vbn);
1617 if (IS_ERR(n)) {
1618 err = PTR_ERR(n);
1619 goto out_free_re;
1620 }
1621
1622 hdr = &n->index->ihdr;
1623 hdr_used = le32_to_cpu(hdr->used);
1624 hdr_total = le32_to_cpu(hdr->total);
1625
1626 /* Copy root entries into new buffer. */
1627 hdr_insert_head(hdr, re, to_move);
1628
1629 /* Update bitmap attribute. */
1630 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1631
1632 /* Check if we can insert new entry new index buffer. */
1633 if (hdr_used + new_de_size > hdr_total) {
1634 /*
1635 * This occurs if MFT record is the same or bigger than index
1636 * buffer. Move all root new index and have no space to add
1637 * new entry classic case when MFT record is 1K and index
1638 * buffer 4K the problem should not occurs.
1639 */
1640 kfree(re);
1641 indx_write(indx, ni, n, 0);
1642
1643 put_indx_node(n);
1644 fnd_clear(fnd);
1645 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1646 goto out_free_root;
1647 }
1648
1649 /*
1650 * Now root is a parent for new index buffer.
1651 * Insert NewEntry a new buffer.
1652 */
1653 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1654 if (!e) {
1655 err = -EINVAL;
1656 goto out_put_n;
1657 }
1658 fnd_push(fnd, n, e);
1659
1660 /* Just write updates index into disk. */
1661 indx_write(indx, ni, n, 0);
1662
1663 n = NULL;
1664
1665 out_put_n:
1666 put_indx_node(n);
1667 out_free_re:
1668 kfree(re);
1669 out_free_root:
1670 kfree(a_root);
1671 return err;
1672 }
1673
1674 /*
1675 * indx_insert_into_buffer
1676 *
1677 * Attempt to insert an entry into an Index Allocation Buffer.
1678 * If necessary, it will split the buffer.
1679 */
1680 static int
indx_insert_into_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,struct INDEX_ROOT * root,const struct NTFS_DE * new_de,const void * ctx,int level,struct ntfs_fnd * fnd)1681 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1682 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1683 const void *ctx, int level, struct ntfs_fnd *fnd)
1684 {
1685 int err;
1686 const struct NTFS_DE *sp;
1687 struct NTFS_DE *e, *de_t, *up_e;
1688 struct indx_node *n2;
1689 struct indx_node *n1 = fnd->nodes[level];
1690 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1691 struct INDEX_HDR *hdr2;
1692 u32 to_copy, used;
1693 CLST new_vbn;
1694 __le64 t_vbn, *sub_vbn;
1695 u16 sp_size;
1696
1697 /* Try the most easy case. */
1698 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1699 e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1700 fnd->de[level] = e;
1701 if (e) {
1702 /* Just write updated index into disk. */
1703 indx_write(indx, ni, n1, 0);
1704 return 0;
1705 }
1706
1707 /*
1708 * No space to insert into buffer. Split it.
1709 * To split we:
1710 * - Save split point ('cause index buffers will be changed)
1711 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1712 * - Remove all entries (sp including) from TargetBuffer
1713 * - Insert NewEntry into left or right buffer (depending on sp <=>
1714 * NewEntry)
1715 * - Insert sp into parent buffer (or root)
1716 * - Make sp a parent for new buffer
1717 */
1718 sp = hdr_find_split(hdr1);
1719 if (!sp)
1720 return -EINVAL;
1721
1722 sp_size = le16_to_cpu(sp->size);
1723 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1724 if (!up_e)
1725 return -ENOMEM;
1726 memcpy(up_e, sp, sp_size);
1727
1728 if (!hdr1->flags) {
1729 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1730 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1731 sub_vbn = NULL;
1732 } else {
1733 t_vbn = de_get_vbn_le(up_e);
1734 sub_vbn = &t_vbn;
1735 }
1736
1737 /* Allocate on disk a new index allocation buffer. */
1738 err = indx_add_allocate(indx, ni, &new_vbn);
1739 if (err)
1740 goto out;
1741
1742 /* Allocate and format memory a new index buffer. */
1743 n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1744 if (IS_ERR(n2)) {
1745 err = PTR_ERR(n2);
1746 goto out;
1747 }
1748
1749 hdr2 = &n2->index->ihdr;
1750
1751 /* Make sp a parent for new buffer. */
1752 de_set_vbn(up_e, new_vbn);
1753
1754 /* Copy all the entries <= sp into the new buffer. */
1755 de_t = hdr_first_de(hdr1);
1756 to_copy = PtrOffset(de_t, sp);
1757 hdr_insert_head(hdr2, de_t, to_copy);
1758
1759 /* Remove all entries (sp including) from hdr1. */
1760 used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1761 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1762 hdr1->used = cpu_to_le32(used);
1763
1764 /*
1765 * Insert new entry into left or right buffer
1766 * (depending on sp <=> new_de).
1767 */
1768 hdr_insert_de(indx,
1769 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1770 up_e + 1, le16_to_cpu(up_e->key_size),
1771 ctx) < 0
1772 ? hdr2
1773 : hdr1,
1774 new_de, NULL, ctx);
1775
1776 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1777
1778 indx_write(indx, ni, n1, 0);
1779 indx_write(indx, ni, n2, 0);
1780
1781 put_indx_node(n2);
1782
1783 /*
1784 * We've finished splitting everybody, so we are ready to
1785 * insert the promoted entry into the parent.
1786 */
1787 if (!level) {
1788 /* Insert in root. */
1789 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1790 if (err)
1791 goto out;
1792 } else {
1793 /*
1794 * The target buffer's parent is another index buffer.
1795 * TODO: Remove recursion.
1796 */
1797 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1798 level - 1, fnd);
1799 if (err)
1800 goto out;
1801 }
1802
1803 out:
1804 kfree(up_e);
1805
1806 return err;
1807 }
1808
1809 /*
1810 * indx_insert_entry - Insert new entry into index.
1811 *
1812 * @undo - True if we undoing previous remove.
1813 */
indx_insert_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1814 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1815 const struct NTFS_DE *new_de, const void *ctx,
1816 struct ntfs_fnd *fnd, bool undo)
1817 {
1818 int err;
1819 int diff;
1820 struct NTFS_DE *e;
1821 struct ntfs_fnd *fnd_a = NULL;
1822 struct INDEX_ROOT *root;
1823
1824 if (!fnd) {
1825 fnd_a = fnd_get();
1826 if (!fnd_a) {
1827 err = -ENOMEM;
1828 goto out1;
1829 }
1830 fnd = fnd_a;
1831 }
1832
1833 root = indx_get_root(indx, ni, NULL, NULL);
1834 if (!root) {
1835 err = -EINVAL;
1836 goto out;
1837 }
1838
1839 if (fnd_is_empty(fnd)) {
1840 /*
1841 * Find the spot the tree where we want to
1842 * insert the new entry.
1843 */
1844 err = indx_find(indx, ni, root, new_de + 1,
1845 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1846 fnd);
1847 if (err)
1848 goto out;
1849
1850 if (!diff) {
1851 err = -EEXIST;
1852 goto out;
1853 }
1854 }
1855
1856 if (!fnd->level) {
1857 /*
1858 * The root is also a leaf, so we'll insert the
1859 * new entry into it.
1860 */
1861 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1862 fnd, undo);
1863 if (err)
1864 goto out;
1865 } else {
1866 /*
1867 * Found a leaf buffer, so we'll insert the new entry into it.
1868 */
1869 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1870 fnd->level - 1, fnd);
1871 if (err)
1872 goto out;
1873 }
1874
1875 out:
1876 fnd_put(fnd_a);
1877 out1:
1878 return err;
1879 }
1880
1881 /*
1882 * indx_find_buffer - Locate a buffer from the tree.
1883 */
indx_find_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,__le64 vbn,struct indx_node * n)1884 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1885 struct ntfs_inode *ni,
1886 const struct INDEX_ROOT *root,
1887 __le64 vbn, struct indx_node *n)
1888 {
1889 int err;
1890 const struct NTFS_DE *e;
1891 struct indx_node *r;
1892 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1893
1894 /* Step 1: Scan one level. */
1895 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1896 if (!e)
1897 return ERR_PTR(-EINVAL);
1898
1899 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
1900 return n;
1901
1902 if (de_is_last(e))
1903 break;
1904 }
1905
1906 /* Step2: Do recursion. */
1907 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
1908 for (;;) {
1909 if (de_has_vcn_ex(e)) {
1910 err = indx_read(indx, ni, de_get_vbn(e), &n);
1911 if (err)
1912 return ERR_PTR(err);
1913
1914 r = indx_find_buffer(indx, ni, root, vbn, n);
1915 if (r)
1916 return r;
1917 }
1918
1919 if (de_is_last(e))
1920 break;
1921
1922 e = Add2Ptr(e, le16_to_cpu(e->size));
1923 }
1924
1925 return NULL;
1926 }
1927
1928 /*
1929 * indx_shrink - Deallocate unused tail indexes.
1930 */
indx_shrink(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)1931 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
1932 size_t bit)
1933 {
1934 int err = 0;
1935 u64 bpb, new_data;
1936 size_t nbits;
1937 struct ATTRIB *b;
1938 struct ATTR_LIST_ENTRY *le = NULL;
1939 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1940
1941 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
1942 NULL, NULL);
1943
1944 if (!b)
1945 return -ENOENT;
1946
1947 if (!b->non_res) {
1948 unsigned long pos;
1949 const unsigned long *bm = resident_data(b);
1950
1951 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
1952
1953 if (bit >= nbits)
1954 return 0;
1955
1956 pos = find_next_bit(bm, nbits, bit);
1957 if (pos < nbits)
1958 return 0;
1959 } else {
1960 size_t used = MINUS_ONE_T;
1961
1962 nbits = le64_to_cpu(b->nres.data_size) * 8;
1963
1964 if (bit >= nbits)
1965 return 0;
1966
1967 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
1968 if (err)
1969 return err;
1970
1971 if (used != MINUS_ONE_T)
1972 return 0;
1973 }
1974
1975 new_data = (u64)bit << indx->index_bits;
1976
1977 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1978 &indx->alloc_run, new_data, &new_data, false, NULL);
1979 if (err)
1980 return err;
1981
1982 bpb = bitmap_size(bit);
1983 if (bpb * 8 == nbits)
1984 return 0;
1985
1986 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1987 &indx->bitmap_run, bpb, &bpb, false, NULL);
1988
1989 return err;
1990 }
1991
indx_free_children(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * e,bool trim)1992 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
1993 const struct NTFS_DE *e, bool trim)
1994 {
1995 int err;
1996 struct indx_node *n = NULL;
1997 struct INDEX_HDR *hdr;
1998 CLST vbn = de_get_vbn(e);
1999 size_t i;
2000
2001 err = indx_read(indx, ni, vbn, &n);
2002 if (err)
2003 return err;
2004
2005 hdr = &n->index->ihdr;
2006 /* First, recurse into the children, if any. */
2007 if (hdr_has_subnode(hdr)) {
2008 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2009 indx_free_children(indx, ni, e, false);
2010 if (de_is_last(e))
2011 break;
2012 }
2013 }
2014
2015 put_indx_node(n);
2016
2017 i = vbn >> indx->idx2vbn_bits;
2018 /*
2019 * We've gotten rid of the children; add this buffer to the free list.
2020 */
2021 indx_mark_free(indx, ni, i);
2022
2023 if (!trim)
2024 return 0;
2025
2026 /*
2027 * If there are no used indexes after current free index
2028 * then we can truncate allocation and bitmap.
2029 * Use bitmap to estimate the case.
2030 */
2031 indx_shrink(indx, ni, i + 1);
2032 return 0;
2033 }
2034
2035 /*
2036 * indx_get_entry_to_replace
2037 *
2038 * Find a replacement entry for a deleted entry.
2039 * Always returns a node entry:
2040 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2041 */
indx_get_entry_to_replace(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * de_next,struct NTFS_DE ** de_to_replace,struct ntfs_fnd * fnd)2042 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2043 struct ntfs_inode *ni,
2044 const struct NTFS_DE *de_next,
2045 struct NTFS_DE **de_to_replace,
2046 struct ntfs_fnd *fnd)
2047 {
2048 int err;
2049 int level = -1;
2050 CLST vbn;
2051 struct NTFS_DE *e, *te, *re;
2052 struct indx_node *n;
2053 struct INDEX_BUFFER *ib;
2054
2055 *de_to_replace = NULL;
2056
2057 /* Find first leaf entry down from de_next. */
2058 vbn = de_get_vbn(de_next);
2059 for (;;) {
2060 n = NULL;
2061 err = indx_read(indx, ni, vbn, &n);
2062 if (err)
2063 goto out;
2064
2065 e = hdr_first_de(&n->index->ihdr);
2066 fnd_push(fnd, n, e);
2067
2068 if (!de_is_last(e)) {
2069 /*
2070 * This buffer is non-empty, so its first entry
2071 * could be used as the replacement entry.
2072 */
2073 level = fnd->level - 1;
2074 }
2075
2076 if (!de_has_vcn(e))
2077 break;
2078
2079 /* This buffer is a node. Continue to go down. */
2080 vbn = de_get_vbn(e);
2081 }
2082
2083 if (level == -1)
2084 goto out;
2085
2086 n = fnd->nodes[level];
2087 te = hdr_first_de(&n->index->ihdr);
2088 /* Copy the candidate entry into the replacement entry buffer. */
2089 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2090 if (!re) {
2091 err = -ENOMEM;
2092 goto out;
2093 }
2094
2095 *de_to_replace = re;
2096 memcpy(re, te, le16_to_cpu(te->size));
2097
2098 if (!de_has_vcn(re)) {
2099 /*
2100 * The replacement entry we found doesn't have a sub_vcn.
2101 * increase its size to hold one.
2102 */
2103 le16_add_cpu(&re->size, sizeof(u64));
2104 re->flags |= NTFS_IE_HAS_SUBNODES;
2105 } else {
2106 /*
2107 * The replacement entry we found was a node entry, which
2108 * means that all its child buffers are empty. Return them
2109 * to the free pool.
2110 */
2111 indx_free_children(indx, ni, te, true);
2112 }
2113
2114 /*
2115 * Expunge the replacement entry from its former location,
2116 * and then write that buffer.
2117 */
2118 ib = n->index;
2119 e = hdr_delete_de(&ib->ihdr, te);
2120
2121 fnd->de[level] = e;
2122 indx_write(indx, ni, n, 0);
2123
2124 /* Check to see if this action created an empty leaf. */
2125 if (ib_is_leaf(ib) && ib_is_empty(ib))
2126 return 0;
2127
2128 out:
2129 fnd_clear(fnd);
2130 return err;
2131 }
2132
2133 /*
2134 * indx_delete_entry - Delete an entry from the index.
2135 */
indx_delete_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const void * key,u32 key_len,const void * ctx)2136 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2137 const void *key, u32 key_len, const void *ctx)
2138 {
2139 int err, diff;
2140 struct INDEX_ROOT *root;
2141 struct INDEX_HDR *hdr;
2142 struct ntfs_fnd *fnd, *fnd2;
2143 struct INDEX_BUFFER *ib;
2144 struct NTFS_DE *e, *re, *next, *prev, *me;
2145 struct indx_node *n, *n2d = NULL;
2146 __le64 sub_vbn;
2147 int level, level2;
2148 struct ATTRIB *attr;
2149 struct mft_inode *mi;
2150 u32 e_size, root_size, new_root_size;
2151 size_t trim_bit;
2152 const struct INDEX_NAMES *in;
2153
2154 fnd = fnd_get();
2155 if (!fnd) {
2156 err = -ENOMEM;
2157 goto out2;
2158 }
2159
2160 fnd2 = fnd_get();
2161 if (!fnd2) {
2162 err = -ENOMEM;
2163 goto out1;
2164 }
2165
2166 root = indx_get_root(indx, ni, &attr, &mi);
2167 if (!root) {
2168 err = -EINVAL;
2169 goto out;
2170 }
2171
2172 /* Locate the entry to remove. */
2173 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2174 if (err)
2175 goto out;
2176
2177 if (!e || diff) {
2178 err = -ENOENT;
2179 goto out;
2180 }
2181
2182 level = fnd->level;
2183
2184 if (level) {
2185 n = fnd->nodes[level - 1];
2186 e = fnd->de[level - 1];
2187 ib = n->index;
2188 hdr = &ib->ihdr;
2189 } else {
2190 hdr = &root->ihdr;
2191 e = fnd->root_de;
2192 n = NULL;
2193 }
2194
2195 e_size = le16_to_cpu(e->size);
2196
2197 if (!de_has_vcn_ex(e)) {
2198 /* The entry to delete is a leaf, so we can just rip it out. */
2199 hdr_delete_de(hdr, e);
2200
2201 if (!level) {
2202 hdr->total = hdr->used;
2203
2204 /* Shrink resident root attribute. */
2205 mi_resize_attr(mi, attr, 0 - e_size);
2206 goto out;
2207 }
2208
2209 indx_write(indx, ni, n, 0);
2210
2211 /*
2212 * Check to see if removing that entry made
2213 * the leaf empty.
2214 */
2215 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2216 fnd_pop(fnd);
2217 fnd_push(fnd2, n, e);
2218 }
2219 } else {
2220 /*
2221 * The entry we wish to delete is a node buffer, so we
2222 * have to find a replacement for it.
2223 */
2224 next = de_get_next(e);
2225
2226 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2227 if (err)
2228 goto out;
2229
2230 if (re) {
2231 de_set_vbn_le(re, de_get_vbn_le(e));
2232 hdr_delete_de(hdr, e);
2233
2234 err = level ? indx_insert_into_buffer(indx, ni, root,
2235 re, ctx,
2236 fnd->level - 1,
2237 fnd)
2238 : indx_insert_into_root(indx, ni, re, e,
2239 ctx, fnd, 0);
2240 kfree(re);
2241
2242 if (err)
2243 goto out;
2244 } else {
2245 /*
2246 * There is no replacement for the current entry.
2247 * This means that the subtree rooted at its node
2248 * is empty, and can be deleted, which turn means
2249 * that the node can just inherit the deleted
2250 * entry sub_vcn.
2251 */
2252 indx_free_children(indx, ni, next, true);
2253
2254 de_set_vbn_le(next, de_get_vbn_le(e));
2255 hdr_delete_de(hdr, e);
2256 if (level) {
2257 indx_write(indx, ni, n, 0);
2258 } else {
2259 hdr->total = hdr->used;
2260
2261 /* Shrink resident root attribute. */
2262 mi_resize_attr(mi, attr, 0 - e_size);
2263 }
2264 }
2265 }
2266
2267 /* Delete a branch of tree. */
2268 if (!fnd2 || !fnd2->level)
2269 goto out;
2270
2271 /* Reinit root 'cause it can be changed. */
2272 root = indx_get_root(indx, ni, &attr, &mi);
2273 if (!root) {
2274 err = -EINVAL;
2275 goto out;
2276 }
2277
2278 n2d = NULL;
2279 sub_vbn = fnd2->nodes[0]->index->vbn;
2280 level2 = 0;
2281 level = fnd->level;
2282
2283 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2284
2285 /* Scan current level. */
2286 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2287 if (!e) {
2288 err = -EINVAL;
2289 goto out;
2290 }
2291
2292 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2293 break;
2294
2295 if (de_is_last(e)) {
2296 e = NULL;
2297 break;
2298 }
2299 }
2300
2301 if (!e) {
2302 /* Do slow search from root. */
2303 struct indx_node *in;
2304
2305 fnd_clear(fnd);
2306
2307 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2308 if (IS_ERR(in)) {
2309 err = PTR_ERR(in);
2310 goto out;
2311 }
2312
2313 if (in)
2314 fnd_push(fnd, in, NULL);
2315 }
2316
2317 /* Merge fnd2 -> fnd. */
2318 for (level = 0; level < fnd2->level; level++) {
2319 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2320 fnd2->nodes[level] = NULL;
2321 }
2322 fnd2->level = 0;
2323
2324 hdr = NULL;
2325 for (level = fnd->level; level; level--) {
2326 struct indx_node *in = fnd->nodes[level - 1];
2327
2328 ib = in->index;
2329 if (ib_is_empty(ib)) {
2330 sub_vbn = ib->vbn;
2331 } else {
2332 hdr = &ib->ihdr;
2333 n2d = in;
2334 level2 = level;
2335 break;
2336 }
2337 }
2338
2339 if (!hdr)
2340 hdr = &root->ihdr;
2341
2342 e = hdr_first_de(hdr);
2343 if (!e) {
2344 err = -EINVAL;
2345 goto out;
2346 }
2347
2348 if (hdr != &root->ihdr || !de_is_last(e)) {
2349 prev = NULL;
2350 while (!de_is_last(e)) {
2351 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2352 break;
2353 prev = e;
2354 e = hdr_next_de(hdr, e);
2355 if (!e) {
2356 err = -EINVAL;
2357 goto out;
2358 }
2359 }
2360
2361 if (sub_vbn != de_get_vbn_le(e)) {
2362 /*
2363 * Didn't find the parent entry, although this buffer
2364 * is the parent trail. Something is corrupt.
2365 */
2366 err = -EINVAL;
2367 goto out;
2368 }
2369
2370 if (de_is_last(e)) {
2371 /*
2372 * Since we can't remove the end entry, we'll remove
2373 * its predecessor instead. This means we have to
2374 * transfer the predecessor's sub_vcn to the end entry.
2375 * Note: This index block is not empty, so the
2376 * predecessor must exist.
2377 */
2378 if (!prev) {
2379 err = -EINVAL;
2380 goto out;
2381 }
2382
2383 if (de_has_vcn(prev)) {
2384 de_set_vbn_le(e, de_get_vbn_le(prev));
2385 } else if (de_has_vcn(e)) {
2386 le16_sub_cpu(&e->size, sizeof(u64));
2387 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2388 le32_sub_cpu(&hdr->used, sizeof(u64));
2389 }
2390 e = prev;
2391 }
2392
2393 /*
2394 * Copy the current entry into a temporary buffer (stripping
2395 * off its down-pointer, if any) and delete it from the current
2396 * buffer or root, as appropriate.
2397 */
2398 e_size = le16_to_cpu(e->size);
2399 me = kmemdup(e, e_size, GFP_NOFS);
2400 if (!me) {
2401 err = -ENOMEM;
2402 goto out;
2403 }
2404
2405 if (de_has_vcn(me)) {
2406 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2407 le16_sub_cpu(&me->size, sizeof(u64));
2408 }
2409
2410 hdr_delete_de(hdr, e);
2411
2412 if (hdr == &root->ihdr) {
2413 level = 0;
2414 hdr->total = hdr->used;
2415
2416 /* Shrink resident root attribute. */
2417 mi_resize_attr(mi, attr, 0 - e_size);
2418 } else {
2419 indx_write(indx, ni, n2d, 0);
2420 level = level2;
2421 }
2422
2423 /* Mark unused buffers as free. */
2424 trim_bit = -1;
2425 for (; level < fnd->level; level++) {
2426 ib = fnd->nodes[level]->index;
2427 if (ib_is_empty(ib)) {
2428 size_t k = le64_to_cpu(ib->vbn) >>
2429 indx->idx2vbn_bits;
2430
2431 indx_mark_free(indx, ni, k);
2432 if (k < trim_bit)
2433 trim_bit = k;
2434 }
2435 }
2436
2437 fnd_clear(fnd);
2438 /*fnd->root_de = NULL;*/
2439
2440 /*
2441 * Re-insert the entry into the tree.
2442 * Find the spot the tree where we want to insert the new entry.
2443 */
2444 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2445 kfree(me);
2446 if (err)
2447 goto out;
2448
2449 if (trim_bit != -1)
2450 indx_shrink(indx, ni, trim_bit);
2451 } else {
2452 /*
2453 * This tree needs to be collapsed down to an empty root.
2454 * Recreate the index root as an empty leaf and free all
2455 * the bits the index allocation bitmap.
2456 */
2457 fnd_clear(fnd);
2458 fnd_clear(fnd2);
2459
2460 in = &s_index_names[indx->type];
2461
2462 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2463 &indx->alloc_run, 0, NULL, false, NULL);
2464 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2465 false, NULL);
2466 run_close(&indx->alloc_run);
2467
2468 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2469 &indx->bitmap_run, 0, NULL, false, NULL);
2470 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2471 false, NULL);
2472 run_close(&indx->bitmap_run);
2473
2474 root = indx_get_root(indx, ni, &attr, &mi);
2475 if (!root) {
2476 err = -EINVAL;
2477 goto out;
2478 }
2479
2480 root_size = le32_to_cpu(attr->res.data_size);
2481 new_root_size =
2482 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2483
2484 if (new_root_size != root_size &&
2485 !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2486 err = -EINVAL;
2487 goto out;
2488 }
2489
2490 /* Fill first entry. */
2491 e = (struct NTFS_DE *)(root + 1);
2492 e->ref.low = 0;
2493 e->ref.high = 0;
2494 e->ref.seq = 0;
2495 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2496 e->flags = NTFS_IE_LAST; // 0x02
2497 e->key_size = 0;
2498 e->res = 0;
2499
2500 hdr = &root->ihdr;
2501 hdr->flags = 0;
2502 hdr->used = hdr->total = cpu_to_le32(
2503 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2504 mi->dirty = true;
2505 }
2506
2507 out:
2508 fnd_put(fnd2);
2509 out1:
2510 fnd_put(fnd);
2511 out2:
2512 return err;
2513 }
2514
2515 /*
2516 * Update duplicated information in directory entry
2517 * 'dup' - info from MFT record
2518 */
indx_update_dup(struct ntfs_inode * ni,struct ntfs_sb_info * sbi,const struct ATTR_FILE_NAME * fname,const struct NTFS_DUP_INFO * dup,int sync)2519 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2520 const struct ATTR_FILE_NAME *fname,
2521 const struct NTFS_DUP_INFO *dup, int sync)
2522 {
2523 int err, diff;
2524 struct NTFS_DE *e = NULL;
2525 struct ATTR_FILE_NAME *e_fname;
2526 struct ntfs_fnd *fnd;
2527 struct INDEX_ROOT *root;
2528 struct mft_inode *mi;
2529 struct ntfs_index *indx = &ni->dir;
2530
2531 fnd = fnd_get();
2532 if (!fnd)
2533 return -ENOMEM;
2534
2535 root = indx_get_root(indx, ni, NULL, &mi);
2536 if (!root) {
2537 err = -EINVAL;
2538 goto out;
2539 }
2540
2541 /* Find entry in directory. */
2542 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2543 &diff, &e, fnd);
2544 if (err)
2545 goto out;
2546
2547 if (!e) {
2548 err = -EINVAL;
2549 goto out;
2550 }
2551
2552 if (diff) {
2553 err = -EINVAL;
2554 goto out;
2555 }
2556
2557 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2558
2559 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2560 /*
2561 * Nothing to update in index! Try to avoid this call.
2562 */
2563 goto out;
2564 }
2565
2566 memcpy(&e_fname->dup, dup, sizeof(*dup));
2567
2568 if (fnd->level) {
2569 /* Directory entry in index. */
2570 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2571 } else {
2572 /* Directory entry in directory MFT record. */
2573 mi->dirty = true;
2574 if (sync)
2575 err = mi_write(mi, 1);
2576 else
2577 mark_inode_dirty(&ni->vfs_inode);
2578 }
2579
2580 out:
2581 fnd_put(fnd);
2582 return err;
2583 }
2584