1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  *  Intel Linux Wireless <ilw@linux.intel.com>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  *****************************************************************************/
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <linux/sched.h>
34 #include <linux/skbuff.h>
35 #include <linux/netdevice.h>
36 #include <net/mac80211.h>
37 #include <linux/etherdevice.h>
38 #include <asm/unaligned.h>
39 
40 #include "common.h"
41 #include "4965.h"
42 
43 /**
44  * il_verify_inst_sparse - verify runtime uCode image in card vs. host,
45  *   using sample data 100 bytes apart.  If these sample points are good,
46  *   it's a pretty good bet that everything between them is good, too.
47  */
48 static int
il4965_verify_inst_sparse(struct il_priv * il,__le32 * image,u32 len)49 il4965_verify_inst_sparse(struct il_priv *il, __le32 * image, u32 len)
50 {
51 	u32 val;
52 	int ret = 0;
53 	u32 errcnt = 0;
54 	u32 i;
55 
56 	D_INFO("ucode inst image size is %u\n", len);
57 
58 	for (i = 0; i < len; i += 100, image += 100 / sizeof(u32)) {
59 		/* read data comes through single port, auto-incr addr */
60 		/* NOTE: Use the debugless read so we don't flood kernel log
61 		 * if IL_DL_IO is set */
62 		il_wr(il, HBUS_TARG_MEM_RADDR, i + IL4965_RTC_INST_LOWER_BOUND);
63 		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
64 		if (val != le32_to_cpu(*image)) {
65 			ret = -EIO;
66 			errcnt++;
67 			if (errcnt >= 3)
68 				break;
69 		}
70 	}
71 
72 	return ret;
73 }
74 
75 /**
76  * il4965_verify_inst_full - verify runtime uCode image in card vs. host,
77  *     looking at all data.
78  */
79 static int
il4965_verify_inst_full(struct il_priv * il,__le32 * image,u32 len)80 il4965_verify_inst_full(struct il_priv *il, __le32 * image, u32 len)
81 {
82 	u32 val;
83 	u32 save_len = len;
84 	int ret = 0;
85 	u32 errcnt;
86 
87 	D_INFO("ucode inst image size is %u\n", len);
88 
89 	il_wr(il, HBUS_TARG_MEM_RADDR, IL4965_RTC_INST_LOWER_BOUND);
90 
91 	errcnt = 0;
92 	for (; len > 0; len -= sizeof(u32), image++) {
93 		/* read data comes through single port, auto-incr addr */
94 		/* NOTE: Use the debugless read so we don't flood kernel log
95 		 * if IL_DL_IO is set */
96 		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
97 		if (val != le32_to_cpu(*image)) {
98 			IL_ERR("uCode INST section is invalid at "
99 			       "offset 0x%x, is 0x%x, s/b 0x%x\n",
100 			       save_len - len, val, le32_to_cpu(*image));
101 			ret = -EIO;
102 			errcnt++;
103 			if (errcnt >= 20)
104 				break;
105 		}
106 	}
107 
108 	if (!errcnt)
109 		D_INFO("ucode image in INSTRUCTION memory is good\n");
110 
111 	return ret;
112 }
113 
114 /**
115  * il4965_verify_ucode - determine which instruction image is in SRAM,
116  *    and verify its contents
117  */
118 int
il4965_verify_ucode(struct il_priv * il)119 il4965_verify_ucode(struct il_priv *il)
120 {
121 	__le32 *image;
122 	u32 len;
123 	int ret;
124 
125 	/* Try bootstrap */
126 	image = (__le32 *) il->ucode_boot.v_addr;
127 	len = il->ucode_boot.len;
128 	ret = il4965_verify_inst_sparse(il, image, len);
129 	if (!ret) {
130 		D_INFO("Bootstrap uCode is good in inst SRAM\n");
131 		return 0;
132 	}
133 
134 	/* Try initialize */
135 	image = (__le32 *) il->ucode_init.v_addr;
136 	len = il->ucode_init.len;
137 	ret = il4965_verify_inst_sparse(il, image, len);
138 	if (!ret) {
139 		D_INFO("Initialize uCode is good in inst SRAM\n");
140 		return 0;
141 	}
142 
143 	/* Try runtime/protocol */
144 	image = (__le32 *) il->ucode_code.v_addr;
145 	len = il->ucode_code.len;
146 	ret = il4965_verify_inst_sparse(il, image, len);
147 	if (!ret) {
148 		D_INFO("Runtime uCode is good in inst SRAM\n");
149 		return 0;
150 	}
151 
152 	IL_ERR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n");
153 
154 	/* Since nothing seems to match, show first several data entries in
155 	 * instruction SRAM, so maybe visual inspection will give a clue.
156 	 * Selection of bootstrap image (vs. other images) is arbitrary. */
157 	image = (__le32 *) il->ucode_boot.v_addr;
158 	len = il->ucode_boot.len;
159 	ret = il4965_verify_inst_full(il, image, len);
160 
161 	return ret;
162 }
163 
164 /******************************************************************************
165  *
166  * EEPROM related functions
167  *
168 ******************************************************************************/
169 
170 /*
171  * The device's EEPROM semaphore prevents conflicts between driver and uCode
172  * when accessing the EEPROM; each access is a series of pulses to/from the
173  * EEPROM chip, not a single event, so even reads could conflict if they
174  * weren't arbitrated by the semaphore.
175  */
176 int
il4965_eeprom_acquire_semaphore(struct il_priv * il)177 il4965_eeprom_acquire_semaphore(struct il_priv *il)
178 {
179 	u16 count;
180 	int ret;
181 
182 	for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
183 		/* Request semaphore */
184 		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
185 			   CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
186 
187 		/* See if we got it */
188 		ret =
189 		    _il_poll_bit(il, CSR_HW_IF_CONFIG_REG,
190 				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
191 				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
192 				 EEPROM_SEM_TIMEOUT);
193 		if (ret >= 0)
194 			return ret;
195 	}
196 
197 	return ret;
198 }
199 
200 void
il4965_eeprom_release_semaphore(struct il_priv * il)201 il4965_eeprom_release_semaphore(struct il_priv *il)
202 {
203 	il_clear_bit(il, CSR_HW_IF_CONFIG_REG,
204 		     CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
205 
206 }
207 
208 int
il4965_eeprom_check_version(struct il_priv * il)209 il4965_eeprom_check_version(struct il_priv *il)
210 {
211 	u16 eeprom_ver;
212 	u16 calib_ver;
213 
214 	eeprom_ver = il_eeprom_query16(il, EEPROM_VERSION);
215 	calib_ver = il_eeprom_query16(il, EEPROM_4965_CALIB_VERSION_OFFSET);
216 
217 	if (eeprom_ver < il->cfg->eeprom_ver ||
218 	    calib_ver < il->cfg->eeprom_calib_ver)
219 		goto err;
220 
221 	IL_INFO("device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver);
222 
223 	return 0;
224 err:
225 	IL_ERR("Unsupported (too old) EEPROM VER=0x%x < 0x%x "
226 	       "CALIB=0x%x < 0x%x\n", eeprom_ver, il->cfg->eeprom_ver,
227 	       calib_ver, il->cfg->eeprom_calib_ver);
228 	return -EINVAL;
229 
230 }
231 
232 void
il4965_eeprom_get_mac(const struct il_priv * il,u8 * mac)233 il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac)
234 {
235 	const u8 *addr = il_eeprom_query_addr(il,
236 					      EEPROM_MAC_ADDRESS);
237 	memcpy(mac, addr, ETH_ALEN);
238 }
239 
240 /* Send led command */
241 static int
il4965_send_led_cmd(struct il_priv * il,struct il_led_cmd * led_cmd)242 il4965_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd)
243 {
244 	struct il_host_cmd cmd = {
245 		.id = C_LEDS,
246 		.len = sizeof(struct il_led_cmd),
247 		.data = led_cmd,
248 		.flags = CMD_ASYNC,
249 		.callback = NULL,
250 	};
251 	u32 reg;
252 
253 	reg = _il_rd(il, CSR_LED_REG);
254 	if (reg != (reg & CSR_LED_BSM_CTRL_MSK))
255 		_il_wr(il, CSR_LED_REG, reg & CSR_LED_BSM_CTRL_MSK);
256 
257 	return il_send_cmd(il, &cmd);
258 }
259 
260 /* Set led register off */
261 void
il4965_led_enable(struct il_priv * il)262 il4965_led_enable(struct il_priv *il)
263 {
264 	_il_wr(il, CSR_LED_REG, CSR_LED_REG_TRUN_ON);
265 }
266 
267 static int il4965_send_tx_power(struct il_priv *il);
268 static int il4965_hw_get_temperature(struct il_priv *il);
269 
270 /* Highest firmware API version supported */
271 #define IL4965_UCODE_API_MAX 2
272 
273 /* Lowest firmware API version supported */
274 #define IL4965_UCODE_API_MIN 2
275 
276 #define IL4965_FW_PRE "iwlwifi-4965-"
277 #define _IL4965_MODULE_FIRMWARE(api) IL4965_FW_PRE #api ".ucode"
278 #define IL4965_MODULE_FIRMWARE(api) _IL4965_MODULE_FIRMWARE(api)
279 
280 /* check contents of special bootstrap uCode SRAM */
281 static int
il4965_verify_bsm(struct il_priv * il)282 il4965_verify_bsm(struct il_priv *il)
283 {
284 	__le32 *image = il->ucode_boot.v_addr;
285 	u32 len = il->ucode_boot.len;
286 	u32 reg;
287 	u32 val;
288 
289 	D_INFO("Begin verify bsm\n");
290 
291 	/* verify BSM SRAM contents */
292 	val = il_rd_prph(il, BSM_WR_DWCOUNT_REG);
293 	for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len;
294 	     reg += sizeof(u32), image++) {
295 		val = il_rd_prph(il, reg);
296 		if (val != le32_to_cpu(*image)) {
297 			IL_ERR("BSM uCode verification failed at "
298 			       "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
299 			       BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND,
300 			       len, val, le32_to_cpu(*image));
301 			return -EIO;
302 		}
303 	}
304 
305 	D_INFO("BSM bootstrap uCode image OK\n");
306 
307 	return 0;
308 }
309 
310 /**
311  * il4965_load_bsm - Load bootstrap instructions
312  *
313  * BSM operation:
314  *
315  * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
316  * in special SRAM that does not power down during RFKILL.  When powering back
317  * up after power-saving sleeps (or during initial uCode load), the BSM loads
318  * the bootstrap program into the on-board processor, and starts it.
319  *
320  * The bootstrap program loads (via DMA) instructions and data for a new
321  * program from host DRAM locations indicated by the host driver in the
322  * BSM_DRAM_* registers.  Once the new program is loaded, it starts
323  * automatically.
324  *
325  * When initializing the NIC, the host driver points the BSM to the
326  * "initialize" uCode image.  This uCode sets up some internal data, then
327  * notifies host via "initialize alive" that it is complete.
328  *
329  * The host then replaces the BSM_DRAM_* pointer values to point to the
330  * normal runtime uCode instructions and a backup uCode data cache buffer
331  * (filled initially with starting data values for the on-board processor),
332  * then triggers the "initialize" uCode to load and launch the runtime uCode,
333  * which begins normal operation.
334  *
335  * When doing a power-save shutdown, runtime uCode saves data SRAM into
336  * the backup data cache in DRAM before SRAM is powered down.
337  *
338  * When powering back up, the BSM loads the bootstrap program.  This reloads
339  * the runtime uCode instructions and the backup data cache into SRAM,
340  * and re-launches the runtime uCode from where it left off.
341  */
342 static int
il4965_load_bsm(struct il_priv * il)343 il4965_load_bsm(struct il_priv *il)
344 {
345 	__le32 *image = il->ucode_boot.v_addr;
346 	u32 len = il->ucode_boot.len;
347 	dma_addr_t pinst;
348 	dma_addr_t pdata;
349 	u32 inst_len;
350 	u32 data_len;
351 	int i;
352 	u32 done;
353 	u32 reg_offset;
354 	int ret;
355 
356 	D_INFO("Begin load bsm\n");
357 
358 	il->ucode_type = UCODE_RT;
359 
360 	/* make sure bootstrap program is no larger than BSM's SRAM size */
361 	if (len > IL49_MAX_BSM_SIZE)
362 		return -EINVAL;
363 
364 	/* Tell bootstrap uCode where to find the "Initialize" uCode
365 	 *   in host DRAM ... host DRAM physical address bits 35:4 for 4965.
366 	 * NOTE:  il_init_alive_start() will replace these values,
367 	 *        after the "initialize" uCode has run, to point to
368 	 *        runtime/protocol instructions and backup data cache.
369 	 */
370 	pinst = il->ucode_init.p_addr >> 4;
371 	pdata = il->ucode_init_data.p_addr >> 4;
372 	inst_len = il->ucode_init.len;
373 	data_len = il->ucode_init_data.len;
374 
375 	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
376 	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
377 	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len);
378 	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len);
379 
380 	/* Fill BSM memory with bootstrap instructions */
381 	for (reg_offset = BSM_SRAM_LOWER_BOUND;
382 	     reg_offset < BSM_SRAM_LOWER_BOUND + len;
383 	     reg_offset += sizeof(u32), image++)
384 		_il_wr_prph(il, reg_offset, le32_to_cpu(*image));
385 
386 	ret = il4965_verify_bsm(il);
387 	if (ret)
388 		return ret;
389 
390 	/* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
391 	il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0);
392 	il_wr_prph(il, BSM_WR_MEM_DST_REG, IL49_RTC_INST_LOWER_BOUND);
393 	il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32));
394 
395 	/* Load bootstrap code into instruction SRAM now,
396 	 *   to prepare to load "initialize" uCode */
397 	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
398 
399 	/* Wait for load of bootstrap uCode to finish */
400 	for (i = 0; i < 100; i++) {
401 		done = il_rd_prph(il, BSM_WR_CTRL_REG);
402 		if (!(done & BSM_WR_CTRL_REG_BIT_START))
403 			break;
404 		udelay(10);
405 	}
406 	if (i < 100)
407 		D_INFO("BSM write complete, poll %d iterations\n", i);
408 	else {
409 		IL_ERR("BSM write did not complete!\n");
410 		return -EIO;
411 	}
412 
413 	/* Enable future boot loads whenever power management unit triggers it
414 	 *   (e.g. when powering back up after power-save shutdown) */
415 	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
416 
417 	return 0;
418 }
419 
420 /**
421  * il4965_set_ucode_ptrs - Set uCode address location
422  *
423  * Tell initialization uCode where to find runtime uCode.
424  *
425  * BSM registers initially contain pointers to initialization uCode.
426  * We need to replace them to load runtime uCode inst and data,
427  * and to save runtime data when powering down.
428  */
429 static int
il4965_set_ucode_ptrs(struct il_priv * il)430 il4965_set_ucode_ptrs(struct il_priv *il)
431 {
432 	dma_addr_t pinst;
433 	dma_addr_t pdata;
434 	int ret = 0;
435 
436 	/* bits 35:4 for 4965 */
437 	pinst = il->ucode_code.p_addr >> 4;
438 	pdata = il->ucode_data_backup.p_addr >> 4;
439 
440 	/* Tell bootstrap uCode where to find image to load */
441 	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
442 	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
443 	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, il->ucode_data.len);
444 
445 	/* Inst byte count must be last to set up, bit 31 signals uCode
446 	 *   that all new ptr/size info is in place */
447 	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG,
448 		   il->ucode_code.len | BSM_DRAM_INST_LOAD);
449 	D_INFO("Runtime uCode pointers are set.\n");
450 
451 	return ret;
452 }
453 
454 /**
455  * il4965_init_alive_start - Called after N_ALIVE notification received
456  *
457  * Called after N_ALIVE notification received from "initialize" uCode.
458  *
459  * The 4965 "initialize" ALIVE reply contains calibration data for:
460  *   Voltage, temperature, and MIMO tx gain correction, now stored in il
461  *   (3945 does not contain this data).
462  *
463  * Tell "initialize" uCode to go ahead and load the runtime uCode.
464 */
465 static void
il4965_init_alive_start(struct il_priv * il)466 il4965_init_alive_start(struct il_priv *il)
467 {
468 	/* Bootstrap uCode has loaded initialize uCode ... verify inst image.
469 	 * This is a paranoid check, because we would not have gotten the
470 	 * "initialize" alive if code weren't properly loaded.  */
471 	if (il4965_verify_ucode(il)) {
472 		/* Runtime instruction load was bad;
473 		 * take it all the way back down so we can try again */
474 		D_INFO("Bad \"initialize\" uCode load.\n");
475 		goto restart;
476 	}
477 
478 	/* Calculate temperature */
479 	il->temperature = il4965_hw_get_temperature(il);
480 
481 	/* Send pointers to protocol/runtime uCode image ... init code will
482 	 * load and launch runtime uCode, which will send us another "Alive"
483 	 * notification. */
484 	D_INFO("Initialization Alive received.\n");
485 	if (il4965_set_ucode_ptrs(il)) {
486 		/* Runtime instruction load won't happen;
487 		 * take it all the way back down so we can try again */
488 		D_INFO("Couldn't set up uCode pointers.\n");
489 		goto restart;
490 	}
491 	return;
492 
493 restart:
494 	queue_work(il->workqueue, &il->restart);
495 }
496 
497 static bool
iw4965_is_ht40_channel(__le32 rxon_flags)498 iw4965_is_ht40_channel(__le32 rxon_flags)
499 {
500 	int chan_mod =
501 	    le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK) >>
502 	    RXON_FLG_CHANNEL_MODE_POS;
503 	return (chan_mod == CHANNEL_MODE_PURE_40 ||
504 		chan_mod == CHANNEL_MODE_MIXED);
505 }
506 
507 void
il4965_nic_config(struct il_priv * il)508 il4965_nic_config(struct il_priv *il)
509 {
510 	unsigned long flags;
511 	u16 radio_cfg;
512 
513 	spin_lock_irqsave(&il->lock, flags);
514 
515 	radio_cfg = il_eeprom_query16(il, EEPROM_RADIO_CONFIG);
516 
517 	/* write radio config values to register */
518 	if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX)
519 		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
520 			   EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
521 			   EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
522 			   EEPROM_RF_CFG_DASH_MSK(radio_cfg));
523 
524 	/* set CSR_HW_CONFIG_REG for uCode use */
525 	il_set_bit(il, CSR_HW_IF_CONFIG_REG,
526 		   CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
527 		   CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
528 
529 	il->calib_info =
530 	    (struct il_eeprom_calib_info *)
531 	    il_eeprom_query_addr(il, EEPROM_4965_CALIB_TXPOWER_OFFSET);
532 
533 	spin_unlock_irqrestore(&il->lock, flags);
534 }
535 
536 /* Reset differential Rx gains in NIC to prepare for chain noise calibration.
537  * Called after every association, but this runs only once!
538  *  ... once chain noise is calibrated the first time, it's good forever.  */
539 static void
il4965_chain_noise_reset(struct il_priv * il)540 il4965_chain_noise_reset(struct il_priv *il)
541 {
542 	struct il_chain_noise_data *data = &(il->chain_noise_data);
543 
544 	if (data->state == IL_CHAIN_NOISE_ALIVE && il_is_any_associated(il)) {
545 		struct il_calib_diff_gain_cmd cmd;
546 
547 		/* clear data for chain noise calibration algorithm */
548 		data->chain_noise_a = 0;
549 		data->chain_noise_b = 0;
550 		data->chain_noise_c = 0;
551 		data->chain_signal_a = 0;
552 		data->chain_signal_b = 0;
553 		data->chain_signal_c = 0;
554 		data->beacon_count = 0;
555 
556 		memset(&cmd, 0, sizeof(cmd));
557 		cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
558 		cmd.diff_gain_a = 0;
559 		cmd.diff_gain_b = 0;
560 		cmd.diff_gain_c = 0;
561 		if (il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd))
562 			IL_ERR("Could not send C_PHY_CALIBRATION\n");
563 		data->state = IL_CHAIN_NOISE_ACCUMULATE;
564 		D_CALIB("Run chain_noise_calibrate\n");
565 	}
566 }
567 
568 static s32
il4965_math_div_round(s32 num,s32 denom,s32 * res)569 il4965_math_div_round(s32 num, s32 denom, s32 * res)
570 {
571 	s32 sign = 1;
572 
573 	if (num < 0) {
574 		sign = -sign;
575 		num = -num;
576 	}
577 	if (denom < 0) {
578 		sign = -sign;
579 		denom = -denom;
580 	}
581 	*res = 1;
582 	*res = ((num * 2 + denom) / (denom * 2)) * sign;
583 
584 	return 1;
585 }
586 
587 /**
588  * il4965_get_voltage_compensation - Power supply voltage comp for txpower
589  *
590  * Determines power supply voltage compensation for txpower calculations.
591  * Returns number of 1/2-dB steps to subtract from gain table idx,
592  * to compensate for difference between power supply voltage during
593  * factory measurements, vs. current power supply voltage.
594  *
595  * Voltage indication is higher for lower voltage.
596  * Lower voltage requires more gain (lower gain table idx).
597  */
598 static s32
il4965_get_voltage_compensation(s32 eeprom_voltage,s32 current_voltage)599 il4965_get_voltage_compensation(s32 eeprom_voltage, s32 current_voltage)
600 {
601 	s32 comp = 0;
602 
603 	if (TX_POWER_IL_ILLEGAL_VOLTAGE == eeprom_voltage ||
604 	    TX_POWER_IL_ILLEGAL_VOLTAGE == current_voltage)
605 		return 0;
606 
607 	il4965_math_div_round(current_voltage - eeprom_voltage,
608 			      TX_POWER_IL_VOLTAGE_CODES_PER_03V, &comp);
609 
610 	if (current_voltage > eeprom_voltage)
611 		comp *= 2;
612 	if ((comp < -2) || (comp > 2))
613 		comp = 0;
614 
615 	return comp;
616 }
617 
618 static s32
il4965_get_tx_atten_grp(u16 channel)619 il4965_get_tx_atten_grp(u16 channel)
620 {
621 	if (channel >= CALIB_IL_TX_ATTEN_GR5_FCH &&
622 	    channel <= CALIB_IL_TX_ATTEN_GR5_LCH)
623 		return CALIB_CH_GROUP_5;
624 
625 	if (channel >= CALIB_IL_TX_ATTEN_GR1_FCH &&
626 	    channel <= CALIB_IL_TX_ATTEN_GR1_LCH)
627 		return CALIB_CH_GROUP_1;
628 
629 	if (channel >= CALIB_IL_TX_ATTEN_GR2_FCH &&
630 	    channel <= CALIB_IL_TX_ATTEN_GR2_LCH)
631 		return CALIB_CH_GROUP_2;
632 
633 	if (channel >= CALIB_IL_TX_ATTEN_GR3_FCH &&
634 	    channel <= CALIB_IL_TX_ATTEN_GR3_LCH)
635 		return CALIB_CH_GROUP_3;
636 
637 	if (channel >= CALIB_IL_TX_ATTEN_GR4_FCH &&
638 	    channel <= CALIB_IL_TX_ATTEN_GR4_LCH)
639 		return CALIB_CH_GROUP_4;
640 
641 	return -EINVAL;
642 }
643 
644 static u32
il4965_get_sub_band(const struct il_priv * il,u32 channel)645 il4965_get_sub_band(const struct il_priv *il, u32 channel)
646 {
647 	s32 b = -1;
648 
649 	for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) {
650 		if (il->calib_info->band_info[b].ch_from == 0)
651 			continue;
652 
653 		if (channel >= il->calib_info->band_info[b].ch_from &&
654 		    channel <= il->calib_info->band_info[b].ch_to)
655 			break;
656 	}
657 
658 	return b;
659 }
660 
661 static s32
il4965_interpolate_value(s32 x,s32 x1,s32 y1,s32 x2,s32 y2)662 il4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2)
663 {
664 	s32 val;
665 
666 	if (x2 == x1)
667 		return y1;
668 	else {
669 		il4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val);
670 		return val + y2;
671 	}
672 }
673 
674 /**
675  * il4965_interpolate_chan - Interpolate factory measurements for one channel
676  *
677  * Interpolates factory measurements from the two sample channels within a
678  * sub-band, to apply to channel of interest.  Interpolation is proportional to
679  * differences in channel frequencies, which is proportional to differences
680  * in channel number.
681  */
682 static int
il4965_interpolate_chan(struct il_priv * il,u32 channel,struct il_eeprom_calib_ch_info * chan_info)683 il4965_interpolate_chan(struct il_priv *il, u32 channel,
684 			struct il_eeprom_calib_ch_info *chan_info)
685 {
686 	s32 s = -1;
687 	u32 c;
688 	u32 m;
689 	const struct il_eeprom_calib_measure *m1;
690 	const struct il_eeprom_calib_measure *m2;
691 	struct il_eeprom_calib_measure *omeas;
692 	u32 ch_i1;
693 	u32 ch_i2;
694 
695 	s = il4965_get_sub_band(il, channel);
696 	if (s >= EEPROM_TX_POWER_BANDS) {
697 		IL_ERR("Tx Power can not find channel %d\n", channel);
698 		return -1;
699 	}
700 
701 	ch_i1 = il->calib_info->band_info[s].ch1.ch_num;
702 	ch_i2 = il->calib_info->band_info[s].ch2.ch_num;
703 	chan_info->ch_num = (u8) channel;
704 
705 	D_TXPOWER("channel %d subband %d factory cal ch %d & %d\n", channel, s,
706 		  ch_i1, ch_i2);
707 
708 	for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) {
709 		for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) {
710 			m1 = &(il->calib_info->band_info[s].ch1.
711 			       measurements[c][m]);
712 			m2 = &(il->calib_info->band_info[s].ch2.
713 			       measurements[c][m]);
714 			omeas = &(chan_info->measurements[c][m]);
715 
716 			omeas->actual_pow =
717 			    (u8) il4965_interpolate_value(channel, ch_i1,
718 							  m1->actual_pow, ch_i2,
719 							  m2->actual_pow);
720 			omeas->gain_idx =
721 			    (u8) il4965_interpolate_value(channel, ch_i1,
722 							  m1->gain_idx, ch_i2,
723 							  m2->gain_idx);
724 			omeas->temperature =
725 			    (u8) il4965_interpolate_value(channel, ch_i1,
726 							  m1->temperature,
727 							  ch_i2,
728 							  m2->temperature);
729 			omeas->pa_det =
730 			    (s8) il4965_interpolate_value(channel, ch_i1,
731 							  m1->pa_det, ch_i2,
732 							  m2->pa_det);
733 
734 			D_TXPOWER("chain %d meas %d AP1=%d AP2=%d AP=%d\n", c,
735 				  m, m1->actual_pow, m2->actual_pow,
736 				  omeas->actual_pow);
737 			D_TXPOWER("chain %d meas %d NI1=%d NI2=%d NI=%d\n", c,
738 				  m, m1->gain_idx, m2->gain_idx,
739 				  omeas->gain_idx);
740 			D_TXPOWER("chain %d meas %d PA1=%d PA2=%d PA=%d\n", c,
741 				  m, m1->pa_det, m2->pa_det, omeas->pa_det);
742 			D_TXPOWER("chain %d meas %d  T1=%d  T2=%d  T=%d\n", c,
743 				  m, m1->temperature, m2->temperature,
744 				  omeas->temperature);
745 		}
746 	}
747 
748 	return 0;
749 }
750 
751 /* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
752  * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */
753 static s32 back_off_table[] = {
754 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 20 MHz */
755 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 20 MHz */
756 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 40 MHz */
757 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 40 MHz */
758 	10			/* CCK */
759 };
760 
761 /* Thermal compensation values for txpower for various frequency ranges ...
762  *   ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */
763 static struct il4965_txpower_comp_entry {
764 	s32 degrees_per_05db_a;
765 	s32 degrees_per_05db_a_denom;
766 } tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = {
767 	{
768 	9, 2},			/* group 0 5.2, ch  34-43 */
769 	{
770 	4, 1},			/* group 1 5.2, ch  44-70 */
771 	{
772 	4, 1},			/* group 2 5.2, ch  71-124 */
773 	{
774 	4, 1},			/* group 3 5.2, ch 125-200 */
775 	{
776 	3, 1}			/* group 4 2.4, ch   all */
777 };
778 
779 static s32
get_min_power_idx(s32 rate_power_idx,u32 band)780 get_min_power_idx(s32 rate_power_idx, u32 band)
781 {
782 	if (!band) {
783 		if ((rate_power_idx & 7) <= 4)
784 			return MIN_TX_GAIN_IDX_52GHZ_EXT;
785 	}
786 	return MIN_TX_GAIN_IDX;
787 }
788 
789 struct gain_entry {
790 	u8 dsp;
791 	u8 radio;
792 };
793 
794 static const struct gain_entry gain_table[2][108] = {
795 	/* 5.2GHz power gain idx table */
796 	{
797 	 {123, 0x3F},		/* highest txpower */
798 	 {117, 0x3F},
799 	 {110, 0x3F},
800 	 {104, 0x3F},
801 	 {98, 0x3F},
802 	 {110, 0x3E},
803 	 {104, 0x3E},
804 	 {98, 0x3E},
805 	 {110, 0x3D},
806 	 {104, 0x3D},
807 	 {98, 0x3D},
808 	 {110, 0x3C},
809 	 {104, 0x3C},
810 	 {98, 0x3C},
811 	 {110, 0x3B},
812 	 {104, 0x3B},
813 	 {98, 0x3B},
814 	 {110, 0x3A},
815 	 {104, 0x3A},
816 	 {98, 0x3A},
817 	 {110, 0x39},
818 	 {104, 0x39},
819 	 {98, 0x39},
820 	 {110, 0x38},
821 	 {104, 0x38},
822 	 {98, 0x38},
823 	 {110, 0x37},
824 	 {104, 0x37},
825 	 {98, 0x37},
826 	 {110, 0x36},
827 	 {104, 0x36},
828 	 {98, 0x36},
829 	 {110, 0x35},
830 	 {104, 0x35},
831 	 {98, 0x35},
832 	 {110, 0x34},
833 	 {104, 0x34},
834 	 {98, 0x34},
835 	 {110, 0x33},
836 	 {104, 0x33},
837 	 {98, 0x33},
838 	 {110, 0x32},
839 	 {104, 0x32},
840 	 {98, 0x32},
841 	 {110, 0x31},
842 	 {104, 0x31},
843 	 {98, 0x31},
844 	 {110, 0x30},
845 	 {104, 0x30},
846 	 {98, 0x30},
847 	 {110, 0x25},
848 	 {104, 0x25},
849 	 {98, 0x25},
850 	 {110, 0x24},
851 	 {104, 0x24},
852 	 {98, 0x24},
853 	 {110, 0x23},
854 	 {104, 0x23},
855 	 {98, 0x23},
856 	 {110, 0x22},
857 	 {104, 0x18},
858 	 {98, 0x18},
859 	 {110, 0x17},
860 	 {104, 0x17},
861 	 {98, 0x17},
862 	 {110, 0x16},
863 	 {104, 0x16},
864 	 {98, 0x16},
865 	 {110, 0x15},
866 	 {104, 0x15},
867 	 {98, 0x15},
868 	 {110, 0x14},
869 	 {104, 0x14},
870 	 {98, 0x14},
871 	 {110, 0x13},
872 	 {104, 0x13},
873 	 {98, 0x13},
874 	 {110, 0x12},
875 	 {104, 0x08},
876 	 {98, 0x08},
877 	 {110, 0x07},
878 	 {104, 0x07},
879 	 {98, 0x07},
880 	 {110, 0x06},
881 	 {104, 0x06},
882 	 {98, 0x06},
883 	 {110, 0x05},
884 	 {104, 0x05},
885 	 {98, 0x05},
886 	 {110, 0x04},
887 	 {104, 0x04},
888 	 {98, 0x04},
889 	 {110, 0x03},
890 	 {104, 0x03},
891 	 {98, 0x03},
892 	 {110, 0x02},
893 	 {104, 0x02},
894 	 {98, 0x02},
895 	 {110, 0x01},
896 	 {104, 0x01},
897 	 {98, 0x01},
898 	 {110, 0x00},
899 	 {104, 0x00},
900 	 {98, 0x00},
901 	 {93, 0x00},
902 	 {88, 0x00},
903 	 {83, 0x00},
904 	 {78, 0x00},
905 	 },
906 	/* 2.4GHz power gain idx table */
907 	{
908 	 {110, 0x3f},		/* highest txpower */
909 	 {104, 0x3f},
910 	 {98, 0x3f},
911 	 {110, 0x3e},
912 	 {104, 0x3e},
913 	 {98, 0x3e},
914 	 {110, 0x3d},
915 	 {104, 0x3d},
916 	 {98, 0x3d},
917 	 {110, 0x3c},
918 	 {104, 0x3c},
919 	 {98, 0x3c},
920 	 {110, 0x3b},
921 	 {104, 0x3b},
922 	 {98, 0x3b},
923 	 {110, 0x3a},
924 	 {104, 0x3a},
925 	 {98, 0x3a},
926 	 {110, 0x39},
927 	 {104, 0x39},
928 	 {98, 0x39},
929 	 {110, 0x38},
930 	 {104, 0x38},
931 	 {98, 0x38},
932 	 {110, 0x37},
933 	 {104, 0x37},
934 	 {98, 0x37},
935 	 {110, 0x36},
936 	 {104, 0x36},
937 	 {98, 0x36},
938 	 {110, 0x35},
939 	 {104, 0x35},
940 	 {98, 0x35},
941 	 {110, 0x34},
942 	 {104, 0x34},
943 	 {98, 0x34},
944 	 {110, 0x33},
945 	 {104, 0x33},
946 	 {98, 0x33},
947 	 {110, 0x32},
948 	 {104, 0x32},
949 	 {98, 0x32},
950 	 {110, 0x31},
951 	 {104, 0x31},
952 	 {98, 0x31},
953 	 {110, 0x30},
954 	 {104, 0x30},
955 	 {98, 0x30},
956 	 {110, 0x6},
957 	 {104, 0x6},
958 	 {98, 0x6},
959 	 {110, 0x5},
960 	 {104, 0x5},
961 	 {98, 0x5},
962 	 {110, 0x4},
963 	 {104, 0x4},
964 	 {98, 0x4},
965 	 {110, 0x3},
966 	 {104, 0x3},
967 	 {98, 0x3},
968 	 {110, 0x2},
969 	 {104, 0x2},
970 	 {98, 0x2},
971 	 {110, 0x1},
972 	 {104, 0x1},
973 	 {98, 0x1},
974 	 {110, 0x0},
975 	 {104, 0x0},
976 	 {98, 0x0},
977 	 {97, 0},
978 	 {96, 0},
979 	 {95, 0},
980 	 {94, 0},
981 	 {93, 0},
982 	 {92, 0},
983 	 {91, 0},
984 	 {90, 0},
985 	 {89, 0},
986 	 {88, 0},
987 	 {87, 0},
988 	 {86, 0},
989 	 {85, 0},
990 	 {84, 0},
991 	 {83, 0},
992 	 {82, 0},
993 	 {81, 0},
994 	 {80, 0},
995 	 {79, 0},
996 	 {78, 0},
997 	 {77, 0},
998 	 {76, 0},
999 	 {75, 0},
1000 	 {74, 0},
1001 	 {73, 0},
1002 	 {72, 0},
1003 	 {71, 0},
1004 	 {70, 0},
1005 	 {69, 0},
1006 	 {68, 0},
1007 	 {67, 0},
1008 	 {66, 0},
1009 	 {65, 0},
1010 	 {64, 0},
1011 	 {63, 0},
1012 	 {62, 0},
1013 	 {61, 0},
1014 	 {60, 0},
1015 	 {59, 0},
1016 	 }
1017 };
1018 
1019 static int
il4965_fill_txpower_tbl(struct il_priv * il,u8 band,u16 channel,u8 is_ht40,u8 ctrl_chan_high,struct il4965_tx_power_db * tx_power_tbl)1020 il4965_fill_txpower_tbl(struct il_priv *il, u8 band, u16 channel, u8 is_ht40,
1021 			u8 ctrl_chan_high,
1022 			struct il4965_tx_power_db *tx_power_tbl)
1023 {
1024 	u8 saturation_power;
1025 	s32 target_power;
1026 	s32 user_target_power;
1027 	s32 power_limit;
1028 	s32 current_temp;
1029 	s32 reg_limit;
1030 	s32 current_regulatory;
1031 	s32 txatten_grp = CALIB_CH_GROUP_MAX;
1032 	int i;
1033 	int c;
1034 	const struct il_channel_info *ch_info = NULL;
1035 	struct il_eeprom_calib_ch_info ch_eeprom_info;
1036 	const struct il_eeprom_calib_measure *measurement;
1037 	s16 voltage;
1038 	s32 init_voltage;
1039 	s32 voltage_compensation;
1040 	s32 degrees_per_05db_num;
1041 	s32 degrees_per_05db_denom;
1042 	s32 factory_temp;
1043 	s32 temperature_comp[2];
1044 	s32 factory_gain_idx[2];
1045 	s32 factory_actual_pwr[2];
1046 	s32 power_idx;
1047 
1048 	/* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units
1049 	 *   are used for idxing into txpower table) */
1050 	user_target_power = 2 * il->tx_power_user_lmt;
1051 
1052 	/* Get current (RXON) channel, band, width */
1053 	D_TXPOWER("chan %d band %d is_ht40 %d\n", channel, band, is_ht40);
1054 
1055 	ch_info = il_get_channel_info(il, il->band, channel);
1056 
1057 	if (!il_is_channel_valid(ch_info))
1058 		return -EINVAL;
1059 
1060 	/* get txatten group, used to select 1) thermal txpower adjustment
1061 	 *   and 2) mimo txpower balance between Tx chains. */
1062 	txatten_grp = il4965_get_tx_atten_grp(channel);
1063 	if (txatten_grp < 0) {
1064 		IL_ERR("Can't find txatten group for channel %d.\n", channel);
1065 		return txatten_grp;
1066 	}
1067 
1068 	D_TXPOWER("channel %d belongs to txatten group %d\n", channel,
1069 		  txatten_grp);
1070 
1071 	if (is_ht40) {
1072 		if (ctrl_chan_high)
1073 			channel -= 2;
1074 		else
1075 			channel += 2;
1076 	}
1077 
1078 	/* hardware txpower limits ...
1079 	 * saturation (clipping distortion) txpowers are in half-dBm */
1080 	if (band)
1081 		saturation_power = il->calib_info->saturation_power24;
1082 	else
1083 		saturation_power = il->calib_info->saturation_power52;
1084 
1085 	if (saturation_power < IL_TX_POWER_SATURATION_MIN ||
1086 	    saturation_power > IL_TX_POWER_SATURATION_MAX) {
1087 		if (band)
1088 			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_24;
1089 		else
1090 			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_52;
1091 	}
1092 
1093 	/* regulatory txpower limits ... reg_limit values are in half-dBm,
1094 	 *   max_power_avg values are in dBm, convert * 2 */
1095 	if (is_ht40)
1096 		reg_limit = ch_info->ht40_max_power_avg * 2;
1097 	else
1098 		reg_limit = ch_info->max_power_avg * 2;
1099 
1100 	if ((reg_limit < IL_TX_POWER_REGULATORY_MIN) ||
1101 	    (reg_limit > IL_TX_POWER_REGULATORY_MAX)) {
1102 		if (band)
1103 			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_24;
1104 		else
1105 			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_52;
1106 	}
1107 
1108 	/* Interpolate txpower calibration values for this channel,
1109 	 *   based on factory calibration tests on spaced channels. */
1110 	il4965_interpolate_chan(il, channel, &ch_eeprom_info);
1111 
1112 	/* calculate tx gain adjustment based on power supply voltage */
1113 	voltage = le16_to_cpu(il->calib_info->voltage);
1114 	init_voltage = (s32) le32_to_cpu(il->card_alive_init.voltage);
1115 	voltage_compensation =
1116 	    il4965_get_voltage_compensation(voltage, init_voltage);
1117 
1118 	D_TXPOWER("curr volt %d eeprom volt %d volt comp %d\n", init_voltage,
1119 		  voltage, voltage_compensation);
1120 
1121 	/* get current temperature (Celsius) */
1122 	current_temp = max(il->temperature, IL_TX_POWER_TEMPERATURE_MIN);
1123 	current_temp = min(il->temperature, IL_TX_POWER_TEMPERATURE_MAX);
1124 	current_temp = KELVIN_TO_CELSIUS(current_temp);
1125 
1126 	/* select thermal txpower adjustment params, based on channel group
1127 	 *   (same frequency group used for mimo txatten adjustment) */
1128 	degrees_per_05db_num =
1129 	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a;
1130 	degrees_per_05db_denom =
1131 	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom;
1132 
1133 	/* get per-chain txpower values from factory measurements */
1134 	for (c = 0; c < 2; c++) {
1135 		measurement = &ch_eeprom_info.measurements[c][1];
1136 
1137 		/* txgain adjustment (in half-dB steps) based on difference
1138 		 *   between factory and current temperature */
1139 		factory_temp = measurement->temperature;
1140 		il4965_math_div_round((current_temp -
1141 				       factory_temp) * degrees_per_05db_denom,
1142 				      degrees_per_05db_num,
1143 				      &temperature_comp[c]);
1144 
1145 		factory_gain_idx[c] = measurement->gain_idx;
1146 		factory_actual_pwr[c] = measurement->actual_pow;
1147 
1148 		D_TXPOWER("chain = %d\n", c);
1149 		D_TXPOWER("fctry tmp %d, " "curr tmp %d, comp %d steps\n",
1150 			  factory_temp, current_temp, temperature_comp[c]);
1151 
1152 		D_TXPOWER("fctry idx %d, fctry pwr %d\n", factory_gain_idx[c],
1153 			  factory_actual_pwr[c]);
1154 	}
1155 
1156 	/* for each of 33 bit-rates (including 1 for CCK) */
1157 	for (i = 0; i < POWER_TBL_NUM_ENTRIES; i++) {
1158 		u8 is_mimo_rate;
1159 		union il4965_tx_power_dual_stream tx_power;
1160 
1161 		/* for mimo, reduce each chain's txpower by half
1162 		 * (3dB, 6 steps), so total output power is regulatory
1163 		 * compliant. */
1164 		if (i & 0x8) {
1165 			current_regulatory =
1166 			    reg_limit -
1167 			    IL_TX_POWER_MIMO_REGULATORY_COMPENSATION;
1168 			is_mimo_rate = 1;
1169 		} else {
1170 			current_regulatory = reg_limit;
1171 			is_mimo_rate = 0;
1172 		}
1173 
1174 		/* find txpower limit, either hardware or regulatory */
1175 		power_limit = saturation_power - back_off_table[i];
1176 		if (power_limit > current_regulatory)
1177 			power_limit = current_regulatory;
1178 
1179 		/* reduce user's txpower request if necessary
1180 		 * for this rate on this channel */
1181 		target_power = user_target_power;
1182 		if (target_power > power_limit)
1183 			target_power = power_limit;
1184 
1185 		D_TXPOWER("rate %d sat %d reg %d usr %d tgt %d\n", i,
1186 			  saturation_power - back_off_table[i],
1187 			  current_regulatory, user_target_power, target_power);
1188 
1189 		/* for each of 2 Tx chains (radio transmitters) */
1190 		for (c = 0; c < 2; c++) {
1191 			s32 atten_value;
1192 
1193 			if (is_mimo_rate)
1194 				atten_value =
1195 				    (s32) le32_to_cpu(il->card_alive_init.
1196 						      tx_atten[txatten_grp][c]);
1197 			else
1198 				atten_value = 0;
1199 
1200 			/* calculate idx; higher idx means lower txpower */
1201 			power_idx =
1202 			    (u8) (factory_gain_idx[c] -
1203 				  (target_power - factory_actual_pwr[c]) -
1204 				  temperature_comp[c] - voltage_compensation +
1205 				  atten_value);
1206 
1207 /*			D_TXPOWER("calculated txpower idx %d\n",
1208 						power_idx); */
1209 
1210 			if (power_idx < get_min_power_idx(i, band))
1211 				power_idx = get_min_power_idx(i, band);
1212 
1213 			/* adjust 5 GHz idx to support negative idxes */
1214 			if (!band)
1215 				power_idx += 9;
1216 
1217 			/* CCK, rate 32, reduce txpower for CCK */
1218 			if (i == POWER_TBL_CCK_ENTRY)
1219 				power_idx +=
1220 				    IL_TX_POWER_CCK_COMPENSATION_C_STEP;
1221 
1222 			/* stay within the table! */
1223 			if (power_idx > 107) {
1224 				IL_WARN("txpower idx %d > 107\n", power_idx);
1225 				power_idx = 107;
1226 			}
1227 			if (power_idx < 0) {
1228 				IL_WARN("txpower idx %d < 0\n", power_idx);
1229 				power_idx = 0;
1230 			}
1231 
1232 			/* fill txpower command for this rate/chain */
1233 			tx_power.s.radio_tx_gain[c] =
1234 			    gain_table[band][power_idx].radio;
1235 			tx_power.s.dsp_predis_atten[c] =
1236 			    gain_table[band][power_idx].dsp;
1237 
1238 			D_TXPOWER("chain %d mimo %d idx %d "
1239 				  "gain 0x%02x dsp %d\n", c, atten_value,
1240 				  power_idx, tx_power.s.radio_tx_gain[c],
1241 				  tx_power.s.dsp_predis_atten[c]);
1242 		}		/* for each chain */
1243 
1244 		tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw);
1245 
1246 	}			/* for each rate */
1247 
1248 	return 0;
1249 }
1250 
1251 /**
1252  * il4965_send_tx_power - Configure the TXPOWER level user limit
1253  *
1254  * Uses the active RXON for channel, band, and characteristics (ht40, high)
1255  * The power limit is taken from il->tx_power_user_lmt.
1256  */
1257 static int
il4965_send_tx_power(struct il_priv * il)1258 il4965_send_tx_power(struct il_priv *il)
1259 {
1260 	struct il4965_txpowertable_cmd cmd = { 0 };
1261 	int ret;
1262 	u8 band = 0;
1263 	bool is_ht40 = false;
1264 	u8 ctrl_chan_high = 0;
1265 
1266 	if (WARN_ONCE
1267 	    (test_bit(S_SCAN_HW, &il->status),
1268 	     "TX Power requested while scanning!\n"))
1269 		return -EAGAIN;
1270 
1271 	band = il->band == IEEE80211_BAND_2GHZ;
1272 
1273 	is_ht40 = iw4965_is_ht40_channel(il->active.flags);
1274 
1275 	if (is_ht40 && (il->active.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1276 		ctrl_chan_high = 1;
1277 
1278 	cmd.band = band;
1279 	cmd.channel = il->active.channel;
1280 
1281 	ret =
1282 	    il4965_fill_txpower_tbl(il, band, le16_to_cpu(il->active.channel),
1283 				    is_ht40, ctrl_chan_high, &cmd.tx_power);
1284 	if (ret)
1285 		goto out;
1286 
1287 	ret = il_send_cmd_pdu(il, C_TX_PWR_TBL, sizeof(cmd), &cmd);
1288 
1289 out:
1290 	return ret;
1291 }
1292 
1293 static int
il4965_send_rxon_assoc(struct il_priv * il)1294 il4965_send_rxon_assoc(struct il_priv *il)
1295 {
1296 	int ret = 0;
1297 	struct il4965_rxon_assoc_cmd rxon_assoc;
1298 	const struct il_rxon_cmd *rxon1 = &il->staging;
1299 	const struct il_rxon_cmd *rxon2 = &il->active;
1300 
1301 	if (rxon1->flags == rxon2->flags &&
1302 	    rxon1->filter_flags == rxon2->filter_flags &&
1303 	    rxon1->cck_basic_rates == rxon2->cck_basic_rates &&
1304 	    rxon1->ofdm_ht_single_stream_basic_rates ==
1305 	    rxon2->ofdm_ht_single_stream_basic_rates &&
1306 	    rxon1->ofdm_ht_dual_stream_basic_rates ==
1307 	    rxon2->ofdm_ht_dual_stream_basic_rates &&
1308 	    rxon1->rx_chain == rxon2->rx_chain &&
1309 	    rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) {
1310 		D_INFO("Using current RXON_ASSOC.  Not resending.\n");
1311 		return 0;
1312 	}
1313 
1314 	rxon_assoc.flags = il->staging.flags;
1315 	rxon_assoc.filter_flags = il->staging.filter_flags;
1316 	rxon_assoc.ofdm_basic_rates = il->staging.ofdm_basic_rates;
1317 	rxon_assoc.cck_basic_rates = il->staging.cck_basic_rates;
1318 	rxon_assoc.reserved = 0;
1319 	rxon_assoc.ofdm_ht_single_stream_basic_rates =
1320 	    il->staging.ofdm_ht_single_stream_basic_rates;
1321 	rxon_assoc.ofdm_ht_dual_stream_basic_rates =
1322 	    il->staging.ofdm_ht_dual_stream_basic_rates;
1323 	rxon_assoc.rx_chain_select_flags = il->staging.rx_chain;
1324 
1325 	ret =
1326 	    il_send_cmd_pdu_async(il, C_RXON_ASSOC, sizeof(rxon_assoc),
1327 				  &rxon_assoc, NULL);
1328 
1329 	return ret;
1330 }
1331 
1332 static int
il4965_commit_rxon(struct il_priv * il)1333 il4965_commit_rxon(struct il_priv *il)
1334 {
1335 	/* cast away the const for active_rxon in this function */
1336 	struct il_rxon_cmd *active_rxon = (void *)&il->active;
1337 	int ret;
1338 	bool new_assoc = !!(il->staging.filter_flags & RXON_FILTER_ASSOC_MSK);
1339 
1340 	if (!il_is_alive(il))
1341 		return -EBUSY;
1342 
1343 	/* always get timestamp with Rx frame */
1344 	il->staging.flags |= RXON_FLG_TSF2HOST_MSK;
1345 
1346 	ret = il_check_rxon_cmd(il);
1347 	if (ret) {
1348 		IL_ERR("Invalid RXON configuration.  Not committing.\n");
1349 		return -EINVAL;
1350 	}
1351 
1352 	/*
1353 	 * receive commit_rxon request
1354 	 * abort any previous channel switch if still in process
1355 	 */
1356 	if (test_bit(S_CHANNEL_SWITCH_PENDING, &il->status) &&
1357 	    il->switch_channel != il->staging.channel) {
1358 		D_11H("abort channel switch on %d\n",
1359 		      le16_to_cpu(il->switch_channel));
1360 		il_chswitch_done(il, false);
1361 	}
1362 
1363 	/* If we don't need to send a full RXON, we can use
1364 	 * il_rxon_assoc_cmd which is used to reconfigure filter
1365 	 * and other flags for the current radio configuration. */
1366 	if (!il_full_rxon_required(il)) {
1367 		ret = il_send_rxon_assoc(il);
1368 		if (ret) {
1369 			IL_ERR("Error setting RXON_ASSOC (%d)\n", ret);
1370 			return ret;
1371 		}
1372 
1373 		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1374 		il_print_rx_config_cmd(il);
1375 		/*
1376 		 * We do not commit tx power settings while channel changing,
1377 		 * do it now if tx power changed.
1378 		 */
1379 		il_set_tx_power(il, il->tx_power_next, false);
1380 		return 0;
1381 	}
1382 
1383 	/* If we are currently associated and the new config requires
1384 	 * an RXON_ASSOC and the new config wants the associated mask enabled,
1385 	 * we must clear the associated from the active configuration
1386 	 * before we apply the new config */
1387 	if (il_is_associated(il) && new_assoc) {
1388 		D_INFO("Toggling associated bit on current RXON\n");
1389 		active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1390 
1391 		ret =
1392 		    il_send_cmd_pdu(il, C_RXON,
1393 				    sizeof(struct il_rxon_cmd), active_rxon);
1394 
1395 		/* If the mask clearing failed then we set
1396 		 * active_rxon back to what it was previously */
1397 		if (ret) {
1398 			active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK;
1399 			IL_ERR("Error clearing ASSOC_MSK (%d)\n", ret);
1400 			return ret;
1401 		}
1402 		il_clear_ucode_stations(il);
1403 		il_restore_stations(il);
1404 		ret = il4965_restore_default_wep_keys(il);
1405 		if (ret) {
1406 			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1407 			return ret;
1408 		}
1409 	}
1410 
1411 	D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n"
1412 	       "* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"),
1413 	       le16_to_cpu(il->staging.channel), il->staging.bssid_addr);
1414 
1415 	il_set_rxon_hwcrypto(il, !il->cfg->mod_params->sw_crypto);
1416 
1417 	/* Apply the new configuration
1418 	 * RXON unassoc clears the station table in uCode so restoration of
1419 	 * stations is needed after it (the RXON command) completes
1420 	 */
1421 	if (!new_assoc) {
1422 		ret =
1423 		    il_send_cmd_pdu(il, C_RXON,
1424 				    sizeof(struct il_rxon_cmd), &il->staging);
1425 		if (ret) {
1426 			IL_ERR("Error setting new RXON (%d)\n", ret);
1427 			return ret;
1428 		}
1429 		D_INFO("Return from !new_assoc RXON.\n");
1430 		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1431 		il_clear_ucode_stations(il);
1432 		il_restore_stations(il);
1433 		ret = il4965_restore_default_wep_keys(il);
1434 		if (ret) {
1435 			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1436 			return ret;
1437 		}
1438 	}
1439 	if (new_assoc) {
1440 		il->start_calib = 0;
1441 		/* Apply the new configuration
1442 		 * RXON assoc doesn't clear the station table in uCode,
1443 		 */
1444 		ret =
1445 		    il_send_cmd_pdu(il, C_RXON,
1446 				    sizeof(struct il_rxon_cmd), &il->staging);
1447 		if (ret) {
1448 			IL_ERR("Error setting new RXON (%d)\n", ret);
1449 			return ret;
1450 		}
1451 		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1452 	}
1453 	il_print_rx_config_cmd(il);
1454 
1455 	il4965_init_sensitivity(il);
1456 
1457 	/* If we issue a new RXON command which required a tune then we must
1458 	 * send a new TXPOWER command or we won't be able to Tx any frames */
1459 	ret = il_set_tx_power(il, il->tx_power_next, true);
1460 	if (ret) {
1461 		IL_ERR("Error sending TX power (%d)\n", ret);
1462 		return ret;
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 static int
il4965_hw_channel_switch(struct il_priv * il,struct ieee80211_channel_switch * ch_switch)1469 il4965_hw_channel_switch(struct il_priv *il,
1470 			 struct ieee80211_channel_switch *ch_switch)
1471 {
1472 	int rc;
1473 	u8 band = 0;
1474 	bool is_ht40 = false;
1475 	u8 ctrl_chan_high = 0;
1476 	struct il4965_channel_switch_cmd cmd;
1477 	const struct il_channel_info *ch_info;
1478 	u32 switch_time_in_usec, ucode_switch_time;
1479 	u16 ch;
1480 	u32 tsf_low;
1481 	u8 switch_count;
1482 	u16 beacon_interval = le16_to_cpu(il->timing.beacon_interval);
1483 	struct ieee80211_vif *vif = il->vif;
1484 	band = (il->band == IEEE80211_BAND_2GHZ);
1485 
1486 	if (WARN_ON_ONCE(vif == NULL))
1487 		return -EIO;
1488 
1489 	is_ht40 = iw4965_is_ht40_channel(il->staging.flags);
1490 
1491 	if (is_ht40 && (il->staging.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1492 		ctrl_chan_high = 1;
1493 
1494 	cmd.band = band;
1495 	cmd.expect_beacon = 0;
1496 	ch = ch_switch->channel->hw_value;
1497 	cmd.channel = cpu_to_le16(ch);
1498 	cmd.rxon_flags = il->staging.flags;
1499 	cmd.rxon_filter_flags = il->staging.filter_flags;
1500 	switch_count = ch_switch->count;
1501 	tsf_low = ch_switch->timestamp & 0x0ffffffff;
1502 	/*
1503 	 * calculate the ucode channel switch time
1504 	 * adding TSF as one of the factor for when to switch
1505 	 */
1506 	if (il->ucode_beacon_time > tsf_low && beacon_interval) {
1507 		if (switch_count >
1508 		    ((il->ucode_beacon_time - tsf_low) / beacon_interval)) {
1509 			switch_count -=
1510 			    (il->ucode_beacon_time - tsf_low) / beacon_interval;
1511 		} else
1512 			switch_count = 0;
1513 	}
1514 	if (switch_count <= 1)
1515 		cmd.switch_time = cpu_to_le32(il->ucode_beacon_time);
1516 	else {
1517 		switch_time_in_usec =
1518 		    vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
1519 		ucode_switch_time =
1520 		    il_usecs_to_beacons(il, switch_time_in_usec,
1521 					beacon_interval);
1522 		cmd.switch_time =
1523 		    il_add_beacon_time(il, il->ucode_beacon_time,
1524 				       ucode_switch_time, beacon_interval);
1525 	}
1526 	D_11H("uCode time for the switch is 0x%x\n", cmd.switch_time);
1527 	ch_info = il_get_channel_info(il, il->band, ch);
1528 	if (ch_info)
1529 		cmd.expect_beacon = il_is_channel_radar(ch_info);
1530 	else {
1531 		IL_ERR("invalid channel switch from %u to %u\n",
1532 		       il->active.channel, ch);
1533 		return -EFAULT;
1534 	}
1535 
1536 	rc = il4965_fill_txpower_tbl(il, band, ch, is_ht40, ctrl_chan_high,
1537 				     &cmd.tx_power);
1538 	if (rc) {
1539 		D_11H("error:%d  fill txpower_tbl\n", rc);
1540 		return rc;
1541 	}
1542 
1543 	return il_send_cmd_pdu(il, C_CHANNEL_SWITCH, sizeof(cmd), &cmd);
1544 }
1545 
1546 /**
1547  * il4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
1548  */
1549 static void
il4965_txq_update_byte_cnt_tbl(struct il_priv * il,struct il_tx_queue * txq,u16 byte_cnt)1550 il4965_txq_update_byte_cnt_tbl(struct il_priv *il, struct il_tx_queue *txq,
1551 			       u16 byte_cnt)
1552 {
1553 	struct il4965_scd_bc_tbl *scd_bc_tbl = il->scd_bc_tbls.addr;
1554 	int txq_id = txq->q.id;
1555 	int write_ptr = txq->q.write_ptr;
1556 	int len = byte_cnt + IL_TX_CRC_SIZE + IL_TX_DELIMITER_SIZE;
1557 	__le16 bc_ent;
1558 
1559 	WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
1560 
1561 	bc_ent = cpu_to_le16(len & 0xFFF);
1562 	/* Set up byte count within first 256 entries */
1563 	scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
1564 
1565 	/* If within first 64 entries, duplicate at end */
1566 	if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
1567 		scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] =
1568 		    bc_ent;
1569 }
1570 
1571 /**
1572  * il4965_hw_get_temperature - return the calibrated temperature (in Kelvin)
1573  * @stats: Provides the temperature reading from the uCode
1574  *
1575  * A return of <0 indicates bogus data in the stats
1576  */
1577 static int
il4965_hw_get_temperature(struct il_priv * il)1578 il4965_hw_get_temperature(struct il_priv *il)
1579 {
1580 	s32 temperature;
1581 	s32 vt;
1582 	s32 R1, R2, R3;
1583 	u32 R4;
1584 
1585 	if (test_bit(S_TEMPERATURE, &il->status) &&
1586 	    (il->_4965.stats.flag & STATS_REPLY_FLG_HT40_MODE_MSK)) {
1587 		D_TEMP("Running HT40 temperature calibration\n");
1588 		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[1]);
1589 		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[1]);
1590 		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[1]);
1591 		R4 = le32_to_cpu(il->card_alive_init.therm_r4[1]);
1592 	} else {
1593 		D_TEMP("Running temperature calibration\n");
1594 		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[0]);
1595 		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[0]);
1596 		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[0]);
1597 		R4 = le32_to_cpu(il->card_alive_init.therm_r4[0]);
1598 	}
1599 
1600 	/*
1601 	 * Temperature is only 23 bits, so sign extend out to 32.
1602 	 *
1603 	 * NOTE If we haven't received a stats notification yet
1604 	 * with an updated temperature, use R4 provided to us in the
1605 	 * "initialize" ALIVE response.
1606 	 */
1607 	if (!test_bit(S_TEMPERATURE, &il->status))
1608 		vt = sign_extend32(R4, 23);
1609 	else
1610 		vt = sign_extend32(le32_to_cpu
1611 				   (il->_4965.stats.general.common.temperature),
1612 				   23);
1613 
1614 	D_TEMP("Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt);
1615 
1616 	if (R3 == R1) {
1617 		IL_ERR("Calibration conflict R1 == R3\n");
1618 		return -1;
1619 	}
1620 
1621 	/* Calculate temperature in degrees Kelvin, adjust by 97%.
1622 	 * Add offset to center the adjustment around 0 degrees Centigrade. */
1623 	temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2);
1624 	temperature /= (R3 - R1);
1625 	temperature =
1626 	    (temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
1627 
1628 	D_TEMP("Calibrated temperature: %dK, %dC\n", temperature,
1629 	       KELVIN_TO_CELSIUS(temperature));
1630 
1631 	return temperature;
1632 }
1633 
1634 /* Adjust Txpower only if temperature variance is greater than threshold. */
1635 #define IL_TEMPERATURE_THRESHOLD   3
1636 
1637 /**
1638  * il4965_is_temp_calib_needed - determines if new calibration is needed
1639  *
1640  * If the temperature changed has changed sufficiently, then a recalibration
1641  * is needed.
1642  *
1643  * Assumes caller will replace il->last_temperature once calibration
1644  * executed.
1645  */
1646 static int
il4965_is_temp_calib_needed(struct il_priv * il)1647 il4965_is_temp_calib_needed(struct il_priv *il)
1648 {
1649 	int temp_diff;
1650 
1651 	if (!test_bit(S_STATS, &il->status)) {
1652 		D_TEMP("Temperature not updated -- no stats.\n");
1653 		return 0;
1654 	}
1655 
1656 	temp_diff = il->temperature - il->last_temperature;
1657 
1658 	/* get absolute value */
1659 	if (temp_diff < 0) {
1660 		D_POWER("Getting cooler, delta %d\n", temp_diff);
1661 		temp_diff = -temp_diff;
1662 	} else if (temp_diff == 0)
1663 		D_POWER("Temperature unchanged\n");
1664 	else
1665 		D_POWER("Getting warmer, delta %d\n", temp_diff);
1666 
1667 	if (temp_diff < IL_TEMPERATURE_THRESHOLD) {
1668 		D_POWER(" => thermal txpower calib not needed\n");
1669 		return 0;
1670 	}
1671 
1672 	D_POWER(" => thermal txpower calib needed\n");
1673 
1674 	return 1;
1675 }
1676 
1677 void
il4965_temperature_calib(struct il_priv * il)1678 il4965_temperature_calib(struct il_priv *il)
1679 {
1680 	s32 temp;
1681 
1682 	temp = il4965_hw_get_temperature(il);
1683 	if (IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(temp))
1684 		return;
1685 
1686 	if (il->temperature != temp) {
1687 		if (il->temperature)
1688 			D_TEMP("Temperature changed " "from %dC to %dC\n",
1689 			       KELVIN_TO_CELSIUS(il->temperature),
1690 			       KELVIN_TO_CELSIUS(temp));
1691 		else
1692 			D_TEMP("Temperature " "initialized to %dC\n",
1693 			       KELVIN_TO_CELSIUS(temp));
1694 	}
1695 
1696 	il->temperature = temp;
1697 	set_bit(S_TEMPERATURE, &il->status);
1698 
1699 	if (!il->disable_tx_power_cal &&
1700 	    unlikely(!test_bit(S_SCANNING, &il->status)) &&
1701 	    il4965_is_temp_calib_needed(il))
1702 		queue_work(il->workqueue, &il->txpower_work);
1703 }
1704 
1705 static u16
il4965_get_hcmd_size(u8 cmd_id,u16 len)1706 il4965_get_hcmd_size(u8 cmd_id, u16 len)
1707 {
1708 	switch (cmd_id) {
1709 	case C_RXON:
1710 		return (u16) sizeof(struct il4965_rxon_cmd);
1711 	default:
1712 		return len;
1713 	}
1714 }
1715 
1716 static u16
il4965_build_addsta_hcmd(const struct il_addsta_cmd * cmd,u8 * data)1717 il4965_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data)
1718 {
1719 	struct il4965_addsta_cmd *addsta = (struct il4965_addsta_cmd *)data;
1720 	addsta->mode = cmd->mode;
1721 	memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
1722 	memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo));
1723 	addsta->station_flags = cmd->station_flags;
1724 	addsta->station_flags_msk = cmd->station_flags_msk;
1725 	addsta->tid_disable_tx = cmd->tid_disable_tx;
1726 	addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
1727 	addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
1728 	addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
1729 	addsta->sleep_tx_count = cmd->sleep_tx_count;
1730 	addsta->reserved1 = cpu_to_le16(0);
1731 	addsta->reserved2 = cpu_to_le16(0);
1732 
1733 	return (u16) sizeof(struct il4965_addsta_cmd);
1734 }
1735 
1736 static void
il4965_post_scan(struct il_priv * il)1737 il4965_post_scan(struct il_priv *il)
1738 {
1739 	/*
1740 	 * Since setting the RXON may have been deferred while
1741 	 * performing the scan, fire one off if needed
1742 	 */
1743 	if (memcmp(&il->staging, &il->active, sizeof(il->staging)))
1744 		il_commit_rxon(il);
1745 }
1746 
1747 static void
il4965_post_associate(struct il_priv * il)1748 il4965_post_associate(struct il_priv *il)
1749 {
1750 	struct ieee80211_vif *vif = il->vif;
1751 	struct ieee80211_conf *conf = NULL;
1752 	int ret = 0;
1753 
1754 	if (!vif || !il->is_open)
1755 		return;
1756 
1757 	if (test_bit(S_EXIT_PENDING, &il->status))
1758 		return;
1759 
1760 	il_scan_cancel_timeout(il, 200);
1761 
1762 	conf = &il->hw->conf;
1763 
1764 	il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1765 	il_commit_rxon(il);
1766 
1767 	ret = il_send_rxon_timing(il);
1768 	if (ret)
1769 		IL_WARN("RXON timing - " "Attempting to continue.\n");
1770 
1771 	il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1772 
1773 	il_set_rxon_ht(il, &il->current_ht_config);
1774 
1775 	if (il->ops->set_rxon_chain)
1776 		il->ops->set_rxon_chain(il);
1777 
1778 	il->staging.assoc_id = cpu_to_le16(vif->bss_conf.aid);
1779 
1780 	D_ASSOC("assoc id %d beacon interval %d\n", vif->bss_conf.aid,
1781 		vif->bss_conf.beacon_int);
1782 
1783 	if (vif->bss_conf.use_short_preamble)
1784 		il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1785 	else
1786 		il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1787 
1788 	if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1789 		if (vif->bss_conf.use_short_slot)
1790 			il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1791 		else
1792 			il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1793 	}
1794 
1795 	il_commit_rxon(il);
1796 
1797 	D_ASSOC("Associated as %d to: %pM\n", vif->bss_conf.aid,
1798 		il->active.bssid_addr);
1799 
1800 	switch (vif->type) {
1801 	case NL80211_IFTYPE_STATION:
1802 		break;
1803 	case NL80211_IFTYPE_ADHOC:
1804 		il4965_send_beacon_cmd(il);
1805 		break;
1806 	default:
1807 		IL_ERR("%s Should not be called in %d mode\n", __func__,
1808 		       vif->type);
1809 		break;
1810 	}
1811 
1812 	/* the chain noise calibration will enabled PM upon completion
1813 	 * If chain noise has already been run, then we need to enable
1814 	 * power management here */
1815 	if (il->chain_noise_data.state == IL_CHAIN_NOISE_DONE)
1816 		il_power_update_mode(il, false);
1817 
1818 	/* Enable Rx differential gain and sensitivity calibrations */
1819 	il4965_chain_noise_reset(il);
1820 	il->start_calib = 1;
1821 }
1822 
1823 static void
il4965_config_ap(struct il_priv * il)1824 il4965_config_ap(struct il_priv *il)
1825 {
1826 	struct ieee80211_vif *vif = il->vif;
1827 	int ret = 0;
1828 
1829 	lockdep_assert_held(&il->mutex);
1830 
1831 	if (test_bit(S_EXIT_PENDING, &il->status))
1832 		return;
1833 
1834 	/* The following should be done only at AP bring up */
1835 	if (!il_is_associated(il)) {
1836 
1837 		/* RXON - unassoc (to set timing command) */
1838 		il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1839 		il_commit_rxon(il);
1840 
1841 		/* RXON Timing */
1842 		ret = il_send_rxon_timing(il);
1843 		if (ret)
1844 			IL_WARN("RXON timing failed - "
1845 				"Attempting to continue.\n");
1846 
1847 		/* AP has all antennas */
1848 		il->chain_noise_data.active_chains = il->hw_params.valid_rx_ant;
1849 		il_set_rxon_ht(il, &il->current_ht_config);
1850 		if (il->ops->set_rxon_chain)
1851 			il->ops->set_rxon_chain(il);
1852 
1853 		il->staging.assoc_id = 0;
1854 
1855 		if (vif->bss_conf.use_short_preamble)
1856 			il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1857 		else
1858 			il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1859 
1860 		if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1861 			if (vif->bss_conf.use_short_slot)
1862 				il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1863 			else
1864 				il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1865 		}
1866 		/* need to send beacon cmd before committing assoc RXON! */
1867 		il4965_send_beacon_cmd(il);
1868 		/* restore RXON assoc */
1869 		il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1870 		il_commit_rxon(il);
1871 	}
1872 	il4965_send_beacon_cmd(il);
1873 }
1874 
1875 const struct il_ops il4965_ops = {
1876 	.txq_update_byte_cnt_tbl = il4965_txq_update_byte_cnt_tbl,
1877 	.txq_attach_buf_to_tfd = il4965_hw_txq_attach_buf_to_tfd,
1878 	.txq_free_tfd = il4965_hw_txq_free_tfd,
1879 	.txq_init = il4965_hw_tx_queue_init,
1880 	.is_valid_rtc_data_addr = il4965_hw_valid_rtc_data_addr,
1881 	.init_alive_start = il4965_init_alive_start,
1882 	.load_ucode = il4965_load_bsm,
1883 	.dump_nic_error_log = il4965_dump_nic_error_log,
1884 	.dump_fh = il4965_dump_fh,
1885 	.set_channel_switch = il4965_hw_channel_switch,
1886 	.apm_init = il_apm_init,
1887 	.send_tx_power = il4965_send_tx_power,
1888 	.update_chain_flags = il4965_update_chain_flags,
1889 	.eeprom_acquire_semaphore = il4965_eeprom_acquire_semaphore,
1890 	.eeprom_release_semaphore = il4965_eeprom_release_semaphore,
1891 
1892 	.rxon_assoc = il4965_send_rxon_assoc,
1893 	.commit_rxon = il4965_commit_rxon,
1894 	.set_rxon_chain = il4965_set_rxon_chain,
1895 
1896 	.get_hcmd_size = il4965_get_hcmd_size,
1897 	.build_addsta_hcmd = il4965_build_addsta_hcmd,
1898 	.request_scan = il4965_request_scan,
1899 	.post_scan = il4965_post_scan,
1900 
1901 	.post_associate = il4965_post_associate,
1902 	.config_ap = il4965_config_ap,
1903 	.manage_ibss_station = il4965_manage_ibss_station,
1904 	.update_bcast_stations = il4965_update_bcast_stations,
1905 
1906 	.send_led_cmd = il4965_send_led_cmd,
1907 };
1908 
1909 struct il_cfg il4965_cfg = {
1910 	.name = "Intel(R) Wireless WiFi Link 4965AGN",
1911 	.fw_name_pre = IL4965_FW_PRE,
1912 	.ucode_api_max = IL4965_UCODE_API_MAX,
1913 	.ucode_api_min = IL4965_UCODE_API_MIN,
1914 	.sku = IL_SKU_A | IL_SKU_G | IL_SKU_N,
1915 	.valid_tx_ant = ANT_AB,
1916 	.valid_rx_ant = ANT_ABC,
1917 	.eeprom_ver = EEPROM_4965_EEPROM_VERSION,
1918 	.eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION,
1919 	.mod_params = &il4965_mod_params,
1920 	.led_mode = IL_LED_BLINK,
1921 	/*
1922 	 * Force use of chains B and C for scan RX on 5 GHz band
1923 	 * because the device has off-channel reception on chain A.
1924 	 */
1925 	.scan_rx_antennas[IEEE80211_BAND_5GHZ] = ANT_BC,
1926 
1927 	.eeprom_size = IL4965_EEPROM_IMG_SIZE,
1928 	.num_of_queues = IL49_NUM_QUEUES,
1929 	.num_of_ampdu_queues = IL49_NUM_AMPDU_QUEUES,
1930 	.pll_cfg_val = 0,
1931 	.set_l0s = true,
1932 	.use_bsm = true,
1933 	.led_compensation = 61,
1934 	.chain_noise_num_beacons = IL4965_CAL_NUM_BEACONS,
1935 	.wd_timeout = IL_DEF_WD_TIMEOUT,
1936 	.temperature_kelvin = true,
1937 	.ucode_tracing = true,
1938 	.sensitivity_calib_by_driver = true,
1939 	.chain_noise_calib_by_driver = true,
1940 
1941 	.regulatory_bands = {
1942 		EEPROM_REGULATORY_BAND_1_CHANNELS,
1943 		EEPROM_REGULATORY_BAND_2_CHANNELS,
1944 		EEPROM_REGULATORY_BAND_3_CHANNELS,
1945 		EEPROM_REGULATORY_BAND_4_CHANNELS,
1946 		EEPROM_REGULATORY_BAND_5_CHANNELS,
1947 		EEPROM_4965_REGULATORY_BAND_24_HT40_CHANNELS,
1948 		EEPROM_4965_REGULATORY_BAND_52_HT40_CHANNELS
1949 	},
1950 
1951 };
1952 
1953 /* Module firmware */
1954 MODULE_FIRMWARE(IL4965_MODULE_FIRMWARE(IL4965_UCODE_API_MAX));
1955