1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15
16 #include <net/ipv6.h>
17
18 #include "igc.h"
19 #include "igc_hw.h"
20 #include "igc_tsn.h"
21 #include "igc_xdp.h"
22
23 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
24
25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
26
27 #define IGC_XDP_PASS 0
28 #define IGC_XDP_CONSUMED BIT(0)
29 #define IGC_XDP_TX BIT(1)
30 #define IGC_XDP_REDIRECT BIT(2)
31
32 static int debug = -1;
33
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 "Copyright(c) 2018 Intel Corporation.";
44
45 static const struct igc_info *igc_info_tbl[] = {
46 [board_base] = &igc_base_info,
47 };
48
49 static const struct pci_device_id igc_pci_tbl[] = {
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 /* required last entry */
67 {0, }
68 };
69
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72 enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77 };
78
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 struct net_device *dev = adapter->netdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 netdev_err(dev, "Error on hardware initialization\n");
109
110 /* Re-establish EEE setting */
111 igc_set_eee_i225(hw, true, true, true);
112
113 if (!netif_running(adapter->netdev))
114 igc_power_down_phy_copper_base(&adapter->hw);
115
116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 wr32(IGC_VET, ETH_P_8021Q);
118
119 /* Re-enable PTP, where applicable. */
120 igc_ptp_reset(adapter);
121
122 /* Re-enable TSN offloading, where applicable. */
123 igc_tsn_reset(adapter);
124
125 igc_get_phy_info(hw);
126 }
127
128 /**
129 * igc_power_up_link - Power up the phy link
130 * @adapter: address of board private structure
131 */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 igc_reset_phy(&adapter->hw);
135
136 igc_power_up_phy_copper(&adapter->hw);
137
138 igc_setup_link(&adapter->hw);
139 }
140
141 /**
142 * igc_release_hw_control - release control of the h/w to f/w
143 * @adapter: address of board private structure
144 *
145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146 * For ASF and Pass Through versions of f/w this means that the
147 * driver is no longer loaded.
148 */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 struct igc_hw *hw = &adapter->hw;
152 u32 ctrl_ext;
153
154 if (!pci_device_is_present(adapter->pdev))
155 return;
156
157 /* Let firmware take over control of h/w */
158 ctrl_ext = rd32(IGC_CTRL_EXT);
159 wr32(IGC_CTRL_EXT,
160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162
163 /**
164 * igc_get_hw_control - get control of the h/w from f/w
165 * @adapter: address of board private structure
166 *
167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168 * For ASF and Pass Through versions of f/w this means that
169 * the driver is loaded.
170 */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 struct igc_hw *hw = &adapter->hw;
174 u32 ctrl_ext;
175
176 /* Let firmware know the driver has taken over */
177 ctrl_ext = rd32(IGC_CTRL_EXT);
178 wr32(IGC_CTRL_EXT,
179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187 dma_unmap_len_set(buf, len, 0);
188 }
189
190 /**
191 * igc_clean_tx_ring - Free Tx Buffers
192 * @tx_ring: ring to be cleaned
193 */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 u16 i = tx_ring->next_to_clean;
197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 u32 xsk_frames = 0;
199
200 while (i != tx_ring->next_to_use) {
201 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203 switch (tx_buffer->type) {
204 case IGC_TX_BUFFER_TYPE_XSK:
205 xsk_frames++;
206 break;
207 case IGC_TX_BUFFER_TYPE_XDP:
208 xdp_return_frame(tx_buffer->xdpf);
209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 break;
211 case IGC_TX_BUFFER_TYPE_SKB:
212 dev_kfree_skb_any(tx_buffer->skb);
213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 break;
215 default:
216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 break;
218 }
219
220 /* check for eop_desc to determine the end of the packet */
221 eop_desc = tx_buffer->next_to_watch;
222 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224 /* unmap remaining buffers */
225 while (tx_desc != eop_desc) {
226 tx_buffer++;
227 tx_desc++;
228 i++;
229 if (unlikely(i == tx_ring->count)) {
230 i = 0;
231 tx_buffer = tx_ring->tx_buffer_info;
232 tx_desc = IGC_TX_DESC(tx_ring, 0);
233 }
234
235 /* unmap any remaining paged data */
236 if (dma_unmap_len(tx_buffer, len))
237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 }
239
240 tx_buffer->next_to_watch = NULL;
241
242 /* move us one more past the eop_desc for start of next pkt */
243 tx_buffer++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 }
249 }
250
251 if (tx_ring->xsk_pool && xsk_frames)
252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254 /* reset BQL for queue */
255 netdev_tx_reset_queue(txring_txq(tx_ring));
256
257 /* Zero out the buffer ring */
258 memset(tx_ring->tx_buffer_info, 0,
259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261 /* Zero out the descriptor ring */
262 memset(tx_ring->desc, 0, tx_ring->size);
263
264 /* reset next_to_use and next_to_clean */
265 tx_ring->next_to_use = 0;
266 tx_ring->next_to_clean = 0;
267 }
268
269 /**
270 * igc_free_tx_resources - Free Tx Resources per Queue
271 * @tx_ring: Tx descriptor ring for a specific queue
272 *
273 * Free all transmit software resources
274 */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 igc_disable_tx_ring(tx_ring);
278
279 vfree(tx_ring->tx_buffer_info);
280 tx_ring->tx_buffer_info = NULL;
281
282 /* if not set, then don't free */
283 if (!tx_ring->desc)
284 return;
285
286 dma_free_coherent(tx_ring->dev, tx_ring->size,
287 tx_ring->desc, tx_ring->dma);
288
289 tx_ring->desc = NULL;
290 }
291
292 /**
293 * igc_free_all_tx_resources - Free Tx Resources for All Queues
294 * @adapter: board private structure
295 *
296 * Free all transmit software resources
297 */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 int i;
301
302 for (i = 0; i < adapter->num_tx_queues; i++)
303 igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305
306 /**
307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308 * @adapter: board private structure
309 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 int i;
313
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 if (adapter->tx_ring[i])
316 igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 u8 idx = ring->reg_idx;
323 u32 txdctl;
324
325 txdctl = rd32(IGC_TXDCTL(idx));
326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 txdctl |= IGC_TXDCTL_SWFLUSH;
328 wr32(IGC_TXDCTL(idx), txdctl);
329 }
330
331 /**
332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333 * @adapter: board private structure
334 */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 int i;
338
339 for (i = 0; i < adapter->num_tx_queues; i++) {
340 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342 igc_disable_tx_ring_hw(tx_ring);
343 }
344 }
345
346 /**
347 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348 * @tx_ring: tx descriptor ring (for a specific queue) to setup
349 *
350 * Return 0 on success, negative on failure
351 */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 struct net_device *ndev = tx_ring->netdev;
355 struct device *dev = tx_ring->dev;
356 int size = 0;
357
358 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 tx_ring->tx_buffer_info = vzalloc(size);
360 if (!tx_ring->tx_buffer_info)
361 goto err;
362
363 /* round up to nearest 4K */
364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 &tx_ring->dma, GFP_KERNEL);
369
370 if (!tx_ring->desc)
371 goto err;
372
373 tx_ring->next_to_use = 0;
374 tx_ring->next_to_clean = 0;
375
376 return 0;
377
378 err:
379 vfree(tx_ring->tx_buffer_info);
380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 return -ENOMEM;
382 }
383
384 /**
385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386 * @adapter: board private structure
387 *
388 * Return 0 on success, negative on failure
389 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 struct net_device *dev = adapter->netdev;
393 int i, err = 0;
394
395 for (i = 0; i < adapter->num_tx_queues; i++) {
396 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 if (err) {
398 netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 for (i--; i >= 0; i--)
400 igc_free_tx_resources(adapter->tx_ring[i]);
401 break;
402 }
403 }
404
405 return err;
406 }
407
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 u16 i = rx_ring->next_to_clean;
411
412 dev_kfree_skb(rx_ring->skb);
413 rx_ring->skb = NULL;
414
415 /* Free all the Rx ring sk_buffs */
416 while (i != rx_ring->next_to_alloc) {
417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419 /* Invalidate cache lines that may have been written to by
420 * device so that we avoid corrupting memory.
421 */
422 dma_sync_single_range_for_cpu(rx_ring->dev,
423 buffer_info->dma,
424 buffer_info->page_offset,
425 igc_rx_bufsz(rx_ring),
426 DMA_FROM_DEVICE);
427
428 /* free resources associated with mapping */
429 dma_unmap_page_attrs(rx_ring->dev,
430 buffer_info->dma,
431 igc_rx_pg_size(rx_ring),
432 DMA_FROM_DEVICE,
433 IGC_RX_DMA_ATTR);
434 __page_frag_cache_drain(buffer_info->page,
435 buffer_info->pagecnt_bias);
436
437 i++;
438 if (i == rx_ring->count)
439 i = 0;
440 }
441 }
442
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 struct igc_rx_buffer *bi;
446 u16 i;
447
448 for (i = 0; i < ring->count; i++) {
449 bi = &ring->rx_buffer_info[i];
450 if (!bi->xdp)
451 continue;
452
453 xsk_buff_free(bi->xdp);
454 bi->xdp = NULL;
455 }
456 }
457
458 /**
459 * igc_clean_rx_ring - Free Rx Buffers per Queue
460 * @ring: ring to free buffers from
461 */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 if (ring->xsk_pool)
465 igc_clean_rx_ring_xsk_pool(ring);
466 else
467 igc_clean_rx_ring_page_shared(ring);
468
469 clear_ring_uses_large_buffer(ring);
470
471 ring->next_to_alloc = 0;
472 ring->next_to_clean = 0;
473 ring->next_to_use = 0;
474 }
475
476 /**
477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478 * @adapter: board private structure
479 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 int i;
483
484 for (i = 0; i < adapter->num_rx_queues; i++)
485 if (adapter->rx_ring[i])
486 igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488
489 /**
490 * igc_free_rx_resources - Free Rx Resources
491 * @rx_ring: ring to clean the resources from
492 *
493 * Free all receive software resources
494 */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 igc_clean_rx_ring(rx_ring);
498
499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501 vfree(rx_ring->rx_buffer_info);
502 rx_ring->rx_buffer_info = NULL;
503
504 /* if not set, then don't free */
505 if (!rx_ring->desc)
506 return;
507
508 dma_free_coherent(rx_ring->dev, rx_ring->size,
509 rx_ring->desc, rx_ring->dma);
510
511 rx_ring->desc = NULL;
512 }
513
514 /**
515 * igc_free_all_rx_resources - Free Rx Resources for All Queues
516 * @adapter: board private structure
517 *
518 * Free all receive software resources
519 */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 int i;
523
524 for (i = 0; i < adapter->num_rx_queues; i++)
525 igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527
528 /**
529 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530 * @rx_ring: rx descriptor ring (for a specific queue) to setup
531 *
532 * Returns 0 on success, negative on failure
533 */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 struct net_device *ndev = rx_ring->netdev;
537 struct device *dev = rx_ring->dev;
538 u8 index = rx_ring->queue_index;
539 int size, desc_len, res;
540
541 /* XDP RX-queue info */
542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 rx_ring->q_vector->napi.napi_id);
546 if (res < 0) {
547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 index);
549 return res;
550 }
551
552 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 rx_ring->rx_buffer_info = vzalloc(size);
554 if (!rx_ring->rx_buffer_info)
555 goto err;
556
557 desc_len = sizeof(union igc_adv_rx_desc);
558
559 /* Round up to nearest 4K */
560 rx_ring->size = rx_ring->count * desc_len;
561 rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 &rx_ring->dma, GFP_KERNEL);
565
566 if (!rx_ring->desc)
567 goto err;
568
569 rx_ring->next_to_alloc = 0;
570 rx_ring->next_to_clean = 0;
571 rx_ring->next_to_use = 0;
572
573 return 0;
574
575 err:
576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 vfree(rx_ring->rx_buffer_info);
578 rx_ring->rx_buffer_info = NULL;
579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 return -ENOMEM;
581 }
582
583 /**
584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585 * (Descriptors) for all queues
586 * @adapter: board private structure
587 *
588 * Return 0 on success, negative on failure
589 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 struct net_device *dev = adapter->netdev;
593 int i, err = 0;
594
595 for (i = 0; i < adapter->num_rx_queues; i++) {
596 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 if (err) {
598 netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 for (i--; i >= 0; i--)
600 igc_free_rx_resources(adapter->rx_ring[i]);
601 break;
602 }
603 }
604
605 return err;
606 }
607
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 struct igc_ring *ring)
610 {
611 if (!igc_xdp_is_enabled(adapter) ||
612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 return NULL;
614
615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617
618 /**
619 * igc_configure_rx_ring - Configure a receive ring after Reset
620 * @adapter: board private structure
621 * @ring: receive ring to be configured
622 *
623 * Configure the Rx unit of the MAC after a reset.
624 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 struct igc_ring *ring)
627 {
628 struct igc_hw *hw = &adapter->hw;
629 union igc_adv_rx_desc *rx_desc;
630 int reg_idx = ring->reg_idx;
631 u32 srrctl = 0, rxdctl = 0;
632 u64 rdba = ring->dma;
633 u32 buf_size;
634
635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 if (ring->xsk_pool) {
638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 MEM_TYPE_XSK_BUFF_POOL,
640 NULL));
641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 } else {
643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 MEM_TYPE_PAGE_SHARED,
645 NULL));
646 }
647
648 if (igc_xdp_is_enabled(adapter))
649 set_ring_uses_large_buffer(ring);
650
651 /* disable the queue */
652 wr32(IGC_RXDCTL(reg_idx), 0);
653
654 /* Set DMA base address registers */
655 wr32(IGC_RDBAL(reg_idx),
656 rdba & 0x00000000ffffffffULL);
657 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 wr32(IGC_RDLEN(reg_idx),
659 ring->count * sizeof(union igc_adv_rx_desc));
660
661 /* initialize head and tail */
662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 wr32(IGC_RDH(reg_idx), 0);
664 writel(0, ring->tail);
665
666 /* reset next-to- use/clean to place SW in sync with hardware */
667 ring->next_to_clean = 0;
668 ring->next_to_use = 0;
669
670 if (ring->xsk_pool)
671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 else if (ring_uses_large_buffer(ring))
673 buf_size = IGC_RXBUFFER_3072;
674 else
675 buf_size = IGC_RXBUFFER_2048;
676
677 srrctl = rd32(IGC_SRRCTL(reg_idx));
678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 IGC_SRRCTL_DESCTYPE_MASK);
680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684 wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686 rxdctl |= IGC_RX_PTHRESH;
687 rxdctl |= IGC_RX_HTHRESH << 8;
688 rxdctl |= IGC_RX_WTHRESH << 16;
689
690 /* initialize rx_buffer_info */
691 memset(ring->rx_buffer_info, 0,
692 sizeof(struct igc_rx_buffer) * ring->count);
693
694 /* initialize Rx descriptor 0 */
695 rx_desc = IGC_RX_DESC(ring, 0);
696 rx_desc->wb.upper.length = 0;
697
698 /* enable receive descriptor fetching */
699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701 wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703
704 /**
705 * igc_configure_rx - Configure receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 int i;
713
714 /* Setup the HW Rx Head and Tail Descriptor Pointers and
715 * the Base and Length of the Rx Descriptor Ring
716 */
717 for (i = 0; i < adapter->num_rx_queues; i++)
718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720
721 /**
722 * igc_configure_tx_ring - Configure transmit ring after Reset
723 * @adapter: board private structure
724 * @ring: tx ring to configure
725 *
726 * Configure a transmit ring after a reset.
727 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 struct igc_ring *ring)
730 {
731 struct igc_hw *hw = &adapter->hw;
732 int reg_idx = ring->reg_idx;
733 u64 tdba = ring->dma;
734 u32 txdctl = 0;
735
736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738 /* disable the queue */
739 wr32(IGC_TXDCTL(reg_idx), 0);
740 wrfl();
741
742 wr32(IGC_TDLEN(reg_idx),
743 ring->count * sizeof(union igc_adv_tx_desc));
744 wr32(IGC_TDBAL(reg_idx),
745 tdba & 0x00000000ffffffffULL);
746 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 wr32(IGC_TDH(reg_idx), 0);
750 writel(0, ring->tail);
751
752 txdctl |= IGC_TX_PTHRESH;
753 txdctl |= IGC_TX_HTHRESH << 8;
754 txdctl |= IGC_TX_WTHRESH << 16;
755
756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759
760 /**
761 * igc_configure_tx - Configure transmit Unit after Reset
762 * @adapter: board private structure
763 *
764 * Configure the Tx unit of the MAC after a reset.
765 */
igc_configure_tx(struct igc_adapter * adapter)766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 int i;
769
770 for (i = 0; i < adapter->num_tx_queues; i++)
771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773
774 /**
775 * igc_setup_mrqc - configure the multiple receive queue control registers
776 * @adapter: Board private structure
777 */
igc_setup_mrqc(struct igc_adapter * adapter)778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 struct igc_hw *hw = &adapter->hw;
781 u32 j, num_rx_queues;
782 u32 mrqc, rxcsum;
783 u32 rss_key[10];
784
785 netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 for (j = 0; j < 10; j++)
787 wr32(IGC_RSSRK(j), rss_key[j]);
788
789 num_rx_queues = adapter->rss_queues;
790
791 if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 for (j = 0; j < IGC_RETA_SIZE; j++)
793 adapter->rss_indir_tbl[j] =
794 (j * num_rx_queues) / IGC_RETA_SIZE;
795 adapter->rss_indir_tbl_init = num_rx_queues;
796 }
797 igc_write_rss_indir_tbl(adapter);
798
799 /* Disable raw packet checksumming so that RSS hash is placed in
800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
801 * offloads as they are enabled by default
802 */
803 rxcsum = rd32(IGC_RXCSUM);
804 rxcsum |= IGC_RXCSUM_PCSD;
805
806 /* Enable Receive Checksum Offload for SCTP */
807 rxcsum |= IGC_RXCSUM_CRCOFL;
808
809 /* Don't need to set TUOFL or IPOFL, they default to 1 */
810 wr32(IGC_RXCSUM, rxcsum);
811
812 /* Generate RSS hash based on packet types, TCP/UDP
813 * port numbers and/or IPv4/v6 src and dst addresses
814 */
815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 IGC_MRQC_RSS_FIELD_IPV6 |
818 IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828 wr32(IGC_MRQC, mrqc);
829 }
830
831 /**
832 * igc_setup_rctl - configure the receive control registers
833 * @adapter: Board private structure
834 */
igc_setup_rctl(struct igc_adapter * adapter)835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 struct igc_hw *hw = &adapter->hw;
838 u32 rctl;
839
840 rctl = rd32(IGC_RCTL);
841
842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848 /* enable stripping of CRC. Newer features require
849 * that the HW strips the CRC.
850 */
851 rctl |= IGC_RCTL_SECRC;
852
853 /* disable store bad packets and clear size bits. */
854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856 /* enable LPE to allow for reception of jumbo frames */
857 rctl |= IGC_RCTL_LPE;
858
859 /* disable queue 0 to prevent tail write w/o re-config */
860 wr32(IGC_RXDCTL(0), 0);
861
862 /* This is useful for sniffing bad packets. */
863 if (adapter->netdev->features & NETIF_F_RXALL) {
864 /* UPE and MPE will be handled by normal PROMISC logic
865 * in set_rx_mode
866 */
867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 }
874
875 wr32(IGC_RCTL, rctl);
876 }
877
878 /**
879 * igc_setup_tctl - configure the transmit control registers
880 * @adapter: Board private structure
881 */
igc_setup_tctl(struct igc_adapter * adapter)882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 struct igc_hw *hw = &adapter->hw;
885 u32 tctl;
886
887 /* disable queue 0 which icould be enabled by default */
888 wr32(IGC_TXDCTL(0), 0);
889
890 /* Program the Transmit Control Register */
891 tctl = rd32(IGC_TCTL);
892 tctl &= ~IGC_TCTL_CT;
893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896 /* Enable transmits */
897 tctl |= IGC_TCTL_EN;
898
899 wr32(IGC_TCTL, tctl);
900 }
901
902 /**
903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904 * @adapter: Pointer to adapter where the filter should be set
905 * @index: Filter index
906 * @type: MAC address filter type (source or destination)
907 * @addr: MAC address
908 * @queue: If non-negative, queue assignment feature is enabled and frames
909 * matching the filter are enqueued onto 'queue'. Otherwise, queue
910 * assignment is disabled.
911 */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 enum igc_mac_filter_type type,
914 const u8 *addr, int queue)
915 {
916 struct net_device *dev = adapter->netdev;
917 struct igc_hw *hw = &adapter->hw;
918 u32 ral, rah;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 ral = le32_to_cpup((__le32 *)(addr));
924 rah = le16_to_cpup((__le16 *)(addr + 4));
925
926 if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 rah &= ~IGC_RAH_ASEL_MASK;
928 rah |= IGC_RAH_ASEL_SRC_ADDR;
929 }
930
931 if (queue >= 0) {
932 rah &= ~IGC_RAH_QSEL_MASK;
933 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 rah |= IGC_RAH_QSEL_ENABLE;
935 }
936
937 rah |= IGC_RAH_AV;
938
939 wr32(IGC_RAL(index), ral);
940 wr32(IGC_RAH(index), rah);
941
942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944
945 /**
946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947 * @adapter: Pointer to adapter where the filter should be cleared
948 * @index: Filter index
949 */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 struct net_device *dev = adapter->netdev;
953 struct igc_hw *hw = &adapter->hw;
954
955 if (WARN_ON(index >= hw->mac.rar_entry_count))
956 return;
957
958 wr32(IGC_RAL(index), 0);
959 wr32(IGC_RAH(index), 0);
960
961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963
964 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 struct net_device *dev = adapter->netdev;
968 u8 *addr = adapter->hw.mac.addr;
969
970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974
975 /**
976 * igc_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 */
igc_set_mac(struct net_device * netdev,void * p)982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 struct igc_adapter *adapter = netdev_priv(netdev);
985 struct igc_hw *hw = &adapter->hw;
986 struct sockaddr *addr = p;
987
988 if (!is_valid_ether_addr(addr->sa_data))
989 return -EADDRNOTAVAIL;
990
991 eth_hw_addr_set(netdev, addr->sa_data);
992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994 /* set the correct pool for the new PF MAC address in entry 0 */
995 igc_set_default_mac_filter(adapter);
996
997 return 0;
998 }
999
1000 /**
1001 * igc_write_mc_addr_list - write multicast addresses to MTA
1002 * @netdev: network interface device structure
1003 *
1004 * Writes multicast address list to the MTA hash table.
1005 * Returns: -ENOMEM on failure
1006 * 0 on no addresses written
1007 * X on writing X addresses to MTA
1008 **/
igc_write_mc_addr_list(struct net_device * netdev)1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 struct igc_adapter *adapter = netdev_priv(netdev);
1012 struct igc_hw *hw = &adapter->hw;
1013 struct netdev_hw_addr *ha;
1014 u8 *mta_list;
1015 int i;
1016
1017 if (netdev_mc_empty(netdev)) {
1018 /* nothing to program, so clear mc list */
1019 igc_update_mc_addr_list(hw, NULL, 0);
1020 return 0;
1021 }
1022
1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 if (!mta_list)
1025 return -ENOMEM;
1026
1027 /* The shared function expects a packed array of only addresses. */
1028 i = 0;
1029 netdev_for_each_mc_addr(ha, netdev)
1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032 igc_update_mc_addr_list(hw, mta_list, i);
1033 kfree(mta_list);
1034
1035 return netdev_mc_count(netdev);
1036 }
1037
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 bool *first_flag, bool *insert_empty)
1040 {
1041 struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 ktime_t cycle_time = adapter->cycle_time;
1043 ktime_t base_time = adapter->base_time;
1044 ktime_t now = ktime_get_clocktai();
1045 ktime_t baset_est, end_of_cycle;
1046 s32 launchtime;
1047 s64 n;
1048
1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051 baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054 if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 if (baset_est != ring->last_ff_cycle) {
1056 *first_flag = true;
1057 ring->last_ff_cycle = baset_est;
1058
1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 *insert_empty = true;
1061 }
1062 }
1063
1064 /* Introducing a window at end of cycle on which packets
1065 * potentially not honor launchtime. Window of 5us chosen
1066 * considering software update the tail pointer and packets
1067 * are dma'ed to packet buffer.
1068 */
1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 txtime);
1072
1073 ring->last_tx_cycle = end_of_cycle;
1074
1075 launchtime = ktime_sub_ns(txtime, baset_est);
1076 if (launchtime > 0)
1077 div_s64_rem(launchtime, cycle_time, &launchtime);
1078 else
1079 launchtime = 0;
1080
1081 return cpu_to_le32(launchtime);
1082 }
1083
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 struct igc_tx_buffer *buffer,
1086 struct sk_buff *skb)
1087 {
1088 unsigned int size;
1089 dma_addr_t dma;
1090
1091 size = skb_headlen(skb);
1092
1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 if (dma_mapping_error(ring->dev, dma)) {
1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 return -ENOMEM;
1097 }
1098
1099 buffer->skb = skb;
1100 buffer->protocol = 0;
1101 buffer->bytecount = skb->len;
1102 buffer->gso_segs = 1;
1103 buffer->time_stamp = jiffies;
1104 dma_unmap_len_set(buffer, len, skb->len);
1105 dma_unmap_addr_set(buffer, dma, dma);
1106
1107 return 0;
1108 }
1109
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111 struct sk_buff *skb,
1112 struct igc_tx_buffer *first)
1113 {
1114 union igc_adv_tx_desc *desc;
1115 u32 cmd_type, olinfo_status;
1116 int err;
1117
1118 if (!igc_desc_unused(ring))
1119 return -EBUSY;
1120
1121 err = igc_init_empty_frame(ring, first, skb);
1122 if (err)
1123 return err;
1124
1125 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1126 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1127 first->bytecount;
1128 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1129
1130 desc = IGC_TX_DESC(ring, ring->next_to_use);
1131 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1132 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1133 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1134
1135 netdev_tx_sent_queue(txring_txq(ring), skb->len);
1136
1137 first->next_to_watch = desc;
1138
1139 ring->next_to_use++;
1140 if (ring->next_to_use == ring->count)
1141 ring->next_to_use = 0;
1142
1143 return 0;
1144 }
1145
1146 #define IGC_EMPTY_FRAME_SIZE 60
1147
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1149 __le32 launch_time, bool first_flag,
1150 u32 vlan_macip_lens, u32 type_tucmd,
1151 u32 mss_l4len_idx)
1152 {
1153 struct igc_adv_tx_context_desc *context_desc;
1154 u16 i = tx_ring->next_to_use;
1155
1156 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1157
1158 i++;
1159 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1160
1161 /* set bits to identify this as an advanced context descriptor */
1162 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1163
1164 /* For i225, context index must be unique per ring. */
1165 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1166 mss_l4len_idx |= tx_ring->reg_idx << 4;
1167
1168 if (first_flag)
1169 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1170
1171 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1172 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1173 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1174 context_desc->launch_time = launch_time;
1175 }
1176
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1178 __le32 launch_time, bool first_flag)
1179 {
1180 struct sk_buff *skb = first->skb;
1181 u32 vlan_macip_lens = 0;
1182 u32 type_tucmd = 0;
1183
1184 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1185 csum_failed:
1186 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1187 !tx_ring->launchtime_enable)
1188 return;
1189 goto no_csum;
1190 }
1191
1192 switch (skb->csum_offset) {
1193 case offsetof(struct tcphdr, check):
1194 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1195 fallthrough;
1196 case offsetof(struct udphdr, check):
1197 break;
1198 case offsetof(struct sctphdr, checksum):
1199 /* validate that this is actually an SCTP request */
1200 if (skb_csum_is_sctp(skb)) {
1201 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1202 break;
1203 }
1204 fallthrough;
1205 default:
1206 skb_checksum_help(skb);
1207 goto csum_failed;
1208 }
1209
1210 /* update TX checksum flag */
1211 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1212 vlan_macip_lens = skb_checksum_start_offset(skb) -
1213 skb_network_offset(skb);
1214 no_csum:
1215 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1216 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1217
1218 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1219 vlan_macip_lens, type_tucmd, 0);
1220 }
1221
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1223 {
1224 struct net_device *netdev = tx_ring->netdev;
1225
1226 netif_stop_subqueue(netdev, tx_ring->queue_index);
1227
1228 /* memory barriier comment */
1229 smp_mb();
1230
1231 /* We need to check again in a case another CPU has just
1232 * made room available.
1233 */
1234 if (igc_desc_unused(tx_ring) < size)
1235 return -EBUSY;
1236
1237 /* A reprieve! */
1238 netif_wake_subqueue(netdev, tx_ring->queue_index);
1239
1240 u64_stats_update_begin(&tx_ring->tx_syncp2);
1241 tx_ring->tx_stats.restart_queue2++;
1242 u64_stats_update_end(&tx_ring->tx_syncp2);
1243
1244 return 0;
1245 }
1246
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1248 {
1249 if (igc_desc_unused(tx_ring) >= size)
1250 return 0;
1251 return __igc_maybe_stop_tx(tx_ring, size);
1252 }
1253
1254 #define IGC_SET_FLAG(_input, _flag, _result) \
1255 (((_flag) <= (_result)) ? \
1256 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1257 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1258
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1260 {
1261 /* set type for advanced descriptor with frame checksum insertion */
1262 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1263 IGC_ADVTXD_DCMD_DEXT |
1264 IGC_ADVTXD_DCMD_IFCS;
1265
1266 /* set HW vlan bit if vlan is present */
1267 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1268 IGC_ADVTXD_DCMD_VLE);
1269
1270 /* set segmentation bits for TSO */
1271 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1272 (IGC_ADVTXD_DCMD_TSE));
1273
1274 /* set timestamp bit if present, will select the register set
1275 * based on the _TSTAMP(_X) bit.
1276 */
1277 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1278 (IGC_ADVTXD_MAC_TSTAMP));
1279
1280 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1281 (IGC_ADVTXD_TSTAMP_REG_1));
1282
1283 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1284 (IGC_ADVTXD_TSTAMP_REG_2));
1285
1286 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1287 (IGC_ADVTXD_TSTAMP_REG_3));
1288
1289 /* insert frame checksum */
1290 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1291
1292 return cmd_type;
1293 }
1294
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1295 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1296 union igc_adv_tx_desc *tx_desc,
1297 u32 tx_flags, unsigned int paylen)
1298 {
1299 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1300
1301 /* insert L4 checksum */
1302 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1303 ((IGC_TXD_POPTS_TXSM << 8) /
1304 IGC_TX_FLAGS_CSUM);
1305
1306 /* insert IPv4 checksum */
1307 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1308 (((IGC_TXD_POPTS_IXSM << 8)) /
1309 IGC_TX_FLAGS_IPV4);
1310
1311 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1312 }
1313
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1314 static int igc_tx_map(struct igc_ring *tx_ring,
1315 struct igc_tx_buffer *first,
1316 const u8 hdr_len)
1317 {
1318 struct sk_buff *skb = first->skb;
1319 struct igc_tx_buffer *tx_buffer;
1320 union igc_adv_tx_desc *tx_desc;
1321 u32 tx_flags = first->tx_flags;
1322 skb_frag_t *frag;
1323 u16 i = tx_ring->next_to_use;
1324 unsigned int data_len, size;
1325 dma_addr_t dma;
1326 u32 cmd_type;
1327
1328 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1329 tx_desc = IGC_TX_DESC(tx_ring, i);
1330
1331 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1332
1333 size = skb_headlen(skb);
1334 data_len = skb->data_len;
1335
1336 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1337
1338 tx_buffer = first;
1339
1340 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1341 if (dma_mapping_error(tx_ring->dev, dma))
1342 goto dma_error;
1343
1344 /* record length, and DMA address */
1345 dma_unmap_len_set(tx_buffer, len, size);
1346 dma_unmap_addr_set(tx_buffer, dma, dma);
1347
1348 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1349
1350 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1351 tx_desc->read.cmd_type_len =
1352 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1353
1354 i++;
1355 tx_desc++;
1356 if (i == tx_ring->count) {
1357 tx_desc = IGC_TX_DESC(tx_ring, 0);
1358 i = 0;
1359 }
1360 tx_desc->read.olinfo_status = 0;
1361
1362 dma += IGC_MAX_DATA_PER_TXD;
1363 size -= IGC_MAX_DATA_PER_TXD;
1364
1365 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1366 }
1367
1368 if (likely(!data_len))
1369 break;
1370
1371 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1372
1373 i++;
1374 tx_desc++;
1375 if (i == tx_ring->count) {
1376 tx_desc = IGC_TX_DESC(tx_ring, 0);
1377 i = 0;
1378 }
1379 tx_desc->read.olinfo_status = 0;
1380
1381 size = skb_frag_size(frag);
1382 data_len -= size;
1383
1384 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1385 size, DMA_TO_DEVICE);
1386
1387 tx_buffer = &tx_ring->tx_buffer_info[i];
1388 }
1389
1390 /* write last descriptor with RS and EOP bits */
1391 cmd_type |= size | IGC_TXD_DCMD;
1392 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1393
1394 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1395
1396 /* set the timestamp */
1397 first->time_stamp = jiffies;
1398
1399 skb_tx_timestamp(skb);
1400
1401 /* Force memory writes to complete before letting h/w know there
1402 * are new descriptors to fetch. (Only applicable for weak-ordered
1403 * memory model archs, such as IA-64).
1404 *
1405 * We also need this memory barrier to make certain all of the
1406 * status bits have been updated before next_to_watch is written.
1407 */
1408 wmb();
1409
1410 /* set next_to_watch value indicating a packet is present */
1411 first->next_to_watch = tx_desc;
1412
1413 i++;
1414 if (i == tx_ring->count)
1415 i = 0;
1416
1417 tx_ring->next_to_use = i;
1418
1419 /* Make sure there is space in the ring for the next send. */
1420 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1421
1422 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1423 writel(i, tx_ring->tail);
1424 }
1425
1426 return 0;
1427 dma_error:
1428 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1429 tx_buffer = &tx_ring->tx_buffer_info[i];
1430
1431 /* clear dma mappings for failed tx_buffer_info map */
1432 while (tx_buffer != first) {
1433 if (dma_unmap_len(tx_buffer, len))
1434 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1435
1436 if (i-- == 0)
1437 i += tx_ring->count;
1438 tx_buffer = &tx_ring->tx_buffer_info[i];
1439 }
1440
1441 if (dma_unmap_len(tx_buffer, len))
1442 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1443
1444 dev_kfree_skb_any(tx_buffer->skb);
1445 tx_buffer->skb = NULL;
1446
1447 tx_ring->next_to_use = i;
1448
1449 return -1;
1450 }
1451
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1452 static int igc_tso(struct igc_ring *tx_ring,
1453 struct igc_tx_buffer *first,
1454 __le32 launch_time, bool first_flag,
1455 u8 *hdr_len)
1456 {
1457 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1458 struct sk_buff *skb = first->skb;
1459 union {
1460 struct iphdr *v4;
1461 struct ipv6hdr *v6;
1462 unsigned char *hdr;
1463 } ip;
1464 union {
1465 struct tcphdr *tcp;
1466 struct udphdr *udp;
1467 unsigned char *hdr;
1468 } l4;
1469 u32 paylen, l4_offset;
1470 int err;
1471
1472 if (skb->ip_summed != CHECKSUM_PARTIAL)
1473 return 0;
1474
1475 if (!skb_is_gso(skb))
1476 return 0;
1477
1478 err = skb_cow_head(skb, 0);
1479 if (err < 0)
1480 return err;
1481
1482 ip.hdr = skb_network_header(skb);
1483 l4.hdr = skb_checksum_start(skb);
1484
1485 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1486 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1487
1488 /* initialize outer IP header fields */
1489 if (ip.v4->version == 4) {
1490 unsigned char *csum_start = skb_checksum_start(skb);
1491 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1492
1493 /* IP header will have to cancel out any data that
1494 * is not a part of the outer IP header
1495 */
1496 ip.v4->check = csum_fold(csum_partial(trans_start,
1497 csum_start - trans_start,
1498 0));
1499 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1500
1501 ip.v4->tot_len = 0;
1502 first->tx_flags |= IGC_TX_FLAGS_TSO |
1503 IGC_TX_FLAGS_CSUM |
1504 IGC_TX_FLAGS_IPV4;
1505 } else {
1506 ip.v6->payload_len = 0;
1507 first->tx_flags |= IGC_TX_FLAGS_TSO |
1508 IGC_TX_FLAGS_CSUM;
1509 }
1510
1511 /* determine offset of inner transport header */
1512 l4_offset = l4.hdr - skb->data;
1513
1514 /* remove payload length from inner checksum */
1515 paylen = skb->len - l4_offset;
1516 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1517 /* compute length of segmentation header */
1518 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1519 csum_replace_by_diff(&l4.tcp->check,
1520 (__force __wsum)htonl(paylen));
1521 } else {
1522 /* compute length of segmentation header */
1523 *hdr_len = sizeof(*l4.udp) + l4_offset;
1524 csum_replace_by_diff(&l4.udp->check,
1525 (__force __wsum)htonl(paylen));
1526 }
1527
1528 /* update gso size and bytecount with header size */
1529 first->gso_segs = skb_shinfo(skb)->gso_segs;
1530 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1531
1532 /* MSS L4LEN IDX */
1533 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1534 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1535
1536 /* VLAN MACLEN IPLEN */
1537 vlan_macip_lens = l4.hdr - ip.hdr;
1538 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1539 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1540
1541 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1542 vlan_macip_lens, type_tucmd, mss_l4len_idx);
1543
1544 return 1;
1545 }
1546
igc_request_tx_tstamp(struct igc_adapter * adapter,struct sk_buff * skb,u32 * flags)1547 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1548 {
1549 int i;
1550
1551 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1552 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1553
1554 if (tstamp->skb)
1555 continue;
1556
1557 tstamp->skb = skb_get(skb);
1558 tstamp->start = jiffies;
1559 *flags = tstamp->flags;
1560
1561 return true;
1562 }
1563
1564 return false;
1565 }
1566
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1567 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1568 struct igc_ring *tx_ring)
1569 {
1570 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1571 bool first_flag = false, insert_empty = false;
1572 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1573 __be16 protocol = vlan_get_protocol(skb);
1574 struct igc_tx_buffer *first;
1575 __le32 launch_time = 0;
1576 u32 tx_flags = 0;
1577 unsigned short f;
1578 ktime_t txtime;
1579 u8 hdr_len = 0;
1580 int tso = 0;
1581
1582 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1583 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1584 * + 2 desc gap to keep tail from touching head,
1585 * + 1 desc for context descriptor,
1586 * otherwise try next time
1587 */
1588 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1589 count += TXD_USE_COUNT(skb_frag_size(
1590 &skb_shinfo(skb)->frags[f]));
1591
1592 if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1593 /* this is a hard error */
1594 return NETDEV_TX_BUSY;
1595 }
1596
1597 if (!tx_ring->launchtime_enable)
1598 goto done;
1599
1600 txtime = skb->tstamp;
1601 skb->tstamp = ktime_set(0, 0);
1602 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1603
1604 if (insert_empty) {
1605 struct igc_tx_buffer *empty_info;
1606 struct sk_buff *empty;
1607 void *data;
1608
1609 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1610 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1611 if (!empty)
1612 goto done;
1613
1614 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1615 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1616
1617 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1618
1619 if (igc_init_tx_empty_descriptor(tx_ring,
1620 empty,
1621 empty_info) < 0)
1622 dev_kfree_skb_any(empty);
1623 }
1624
1625 done:
1626 /* record the location of the first descriptor for this packet */
1627 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1628 first->type = IGC_TX_BUFFER_TYPE_SKB;
1629 first->skb = skb;
1630 first->bytecount = skb->len;
1631 first->gso_segs = 1;
1632
1633 if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1634 goto out_drop;
1635
1636 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1637 adapter->stats.txdrop++;
1638 goto out_drop;
1639 }
1640
1641 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1642 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1643 /* FIXME: add support for retrieving timestamps from
1644 * the other timer registers before skipping the
1645 * timestamping request.
1646 */
1647 unsigned long flags;
1648 u32 tstamp_flags;
1649
1650 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1651 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1652 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1653 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1654 } else {
1655 adapter->tx_hwtstamp_skipped++;
1656 }
1657
1658 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1659 }
1660
1661 if (skb_vlan_tag_present(skb)) {
1662 tx_flags |= IGC_TX_FLAGS_VLAN;
1663 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1664 }
1665
1666 /* record initial flags and protocol */
1667 first->tx_flags = tx_flags;
1668 first->protocol = protocol;
1669
1670 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1671 if (tso < 0)
1672 goto out_drop;
1673 else if (!tso)
1674 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1675
1676 igc_tx_map(tx_ring, first, hdr_len);
1677
1678 return NETDEV_TX_OK;
1679
1680 out_drop:
1681 dev_kfree_skb_any(first->skb);
1682 first->skb = NULL;
1683
1684 return NETDEV_TX_OK;
1685 }
1686
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1687 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1688 struct sk_buff *skb)
1689 {
1690 unsigned int r_idx = skb->queue_mapping;
1691
1692 if (r_idx >= adapter->num_tx_queues)
1693 r_idx = r_idx % adapter->num_tx_queues;
1694
1695 return adapter->tx_ring[r_idx];
1696 }
1697
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1698 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1699 struct net_device *netdev)
1700 {
1701 struct igc_adapter *adapter = netdev_priv(netdev);
1702
1703 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1704 * in order to meet this minimum size requirement.
1705 */
1706 if (skb->len < 17) {
1707 if (skb_padto(skb, 17))
1708 return NETDEV_TX_OK;
1709 skb->len = 17;
1710 }
1711
1712 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1713 }
1714
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1715 static void igc_rx_checksum(struct igc_ring *ring,
1716 union igc_adv_rx_desc *rx_desc,
1717 struct sk_buff *skb)
1718 {
1719 skb_checksum_none_assert(skb);
1720
1721 /* Ignore Checksum bit is set */
1722 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1723 return;
1724
1725 /* Rx checksum disabled via ethtool */
1726 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1727 return;
1728
1729 /* TCP/UDP checksum error bit is set */
1730 if (igc_test_staterr(rx_desc,
1731 IGC_RXDEXT_STATERR_L4E |
1732 IGC_RXDEXT_STATERR_IPE)) {
1733 /* work around errata with sctp packets where the TCPE aka
1734 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1735 * packets (aka let the stack check the crc32c)
1736 */
1737 if (!(skb->len == 60 &&
1738 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1739 u64_stats_update_begin(&ring->rx_syncp);
1740 ring->rx_stats.csum_err++;
1741 u64_stats_update_end(&ring->rx_syncp);
1742 }
1743 /* let the stack verify checksum errors */
1744 return;
1745 }
1746 /* It must be a TCP or UDP packet with a valid checksum */
1747 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1748 IGC_RXD_STAT_UDPCS))
1749 skb->ip_summed = CHECKSUM_UNNECESSARY;
1750
1751 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1752 le32_to_cpu(rx_desc->wb.upper.status_error));
1753 }
1754
1755 /* Mapping HW RSS Type to enum pkt_hash_types */
1756 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1757 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2,
1758 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4,
1759 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3,
1760 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4,
1761 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3,
1762 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3,
1763 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1764 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4,
1765 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4,
1766 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1767 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
1768 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */
1769 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */
1770 [13] = PKT_HASH_TYPE_NONE,
1771 [14] = PKT_HASH_TYPE_NONE,
1772 [15] = PKT_HASH_TYPE_NONE,
1773 };
1774
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1775 static inline void igc_rx_hash(struct igc_ring *ring,
1776 union igc_adv_rx_desc *rx_desc,
1777 struct sk_buff *skb)
1778 {
1779 if (ring->netdev->features & NETIF_F_RXHASH) {
1780 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1781 u32 rss_type = igc_rss_type(rx_desc);
1782
1783 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1784 }
1785 }
1786
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1787 static void igc_rx_vlan(struct igc_ring *rx_ring,
1788 union igc_adv_rx_desc *rx_desc,
1789 struct sk_buff *skb)
1790 {
1791 struct net_device *dev = rx_ring->netdev;
1792 u16 vid;
1793
1794 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1795 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1796 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1797 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1798 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1799 else
1800 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1801
1802 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1803 }
1804 }
1805
1806 /**
1807 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1808 * @rx_ring: rx descriptor ring packet is being transacted on
1809 * @rx_desc: pointer to the EOP Rx descriptor
1810 * @skb: pointer to current skb being populated
1811 *
1812 * This function checks the ring, descriptor, and packet information in order
1813 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1814 * skb.
1815 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1816 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1817 union igc_adv_rx_desc *rx_desc,
1818 struct sk_buff *skb)
1819 {
1820 igc_rx_hash(rx_ring, rx_desc, skb);
1821
1822 igc_rx_checksum(rx_ring, rx_desc, skb);
1823
1824 igc_rx_vlan(rx_ring, rx_desc, skb);
1825
1826 skb_record_rx_queue(skb, rx_ring->queue_index);
1827
1828 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1829 }
1830
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1831 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1832 {
1833 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1834 struct igc_adapter *adapter = netdev_priv(netdev);
1835 struct igc_hw *hw = &adapter->hw;
1836 u32 ctrl;
1837
1838 ctrl = rd32(IGC_CTRL);
1839
1840 if (enable) {
1841 /* enable VLAN tag insert/strip */
1842 ctrl |= IGC_CTRL_VME;
1843 } else {
1844 /* disable VLAN tag insert/strip */
1845 ctrl &= ~IGC_CTRL_VME;
1846 }
1847 wr32(IGC_CTRL, ctrl);
1848 }
1849
igc_restore_vlan(struct igc_adapter * adapter)1850 static void igc_restore_vlan(struct igc_adapter *adapter)
1851 {
1852 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1853 }
1854
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1855 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1856 const unsigned int size,
1857 int *rx_buffer_pgcnt)
1858 {
1859 struct igc_rx_buffer *rx_buffer;
1860
1861 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1862 *rx_buffer_pgcnt =
1863 #if (PAGE_SIZE < 8192)
1864 page_count(rx_buffer->page);
1865 #else
1866 0;
1867 #endif
1868 prefetchw(rx_buffer->page);
1869
1870 /* we are reusing so sync this buffer for CPU use */
1871 dma_sync_single_range_for_cpu(rx_ring->dev,
1872 rx_buffer->dma,
1873 rx_buffer->page_offset,
1874 size,
1875 DMA_FROM_DEVICE);
1876
1877 rx_buffer->pagecnt_bias--;
1878
1879 return rx_buffer;
1880 }
1881
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1882 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1883 unsigned int truesize)
1884 {
1885 #if (PAGE_SIZE < 8192)
1886 buffer->page_offset ^= truesize;
1887 #else
1888 buffer->page_offset += truesize;
1889 #endif
1890 }
1891
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1892 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1893 unsigned int size)
1894 {
1895 unsigned int truesize;
1896
1897 #if (PAGE_SIZE < 8192)
1898 truesize = igc_rx_pg_size(ring) / 2;
1899 #else
1900 truesize = ring_uses_build_skb(ring) ?
1901 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1902 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1903 SKB_DATA_ALIGN(size);
1904 #endif
1905 return truesize;
1906 }
1907
1908 /**
1909 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1910 * @rx_ring: rx descriptor ring to transact packets on
1911 * @rx_buffer: buffer containing page to add
1912 * @skb: sk_buff to place the data into
1913 * @size: size of buffer to be added
1914 *
1915 * This function will add the data contained in rx_buffer->page to the skb.
1916 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1917 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1918 struct igc_rx_buffer *rx_buffer,
1919 struct sk_buff *skb,
1920 unsigned int size)
1921 {
1922 unsigned int truesize;
1923
1924 #if (PAGE_SIZE < 8192)
1925 truesize = igc_rx_pg_size(rx_ring) / 2;
1926 #else
1927 truesize = ring_uses_build_skb(rx_ring) ?
1928 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1929 SKB_DATA_ALIGN(size);
1930 #endif
1931 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1932 rx_buffer->page_offset, size, truesize);
1933
1934 igc_rx_buffer_flip(rx_buffer, truesize);
1935 }
1936
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1937 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1938 struct igc_rx_buffer *rx_buffer,
1939 struct xdp_buff *xdp)
1940 {
1941 unsigned int size = xdp->data_end - xdp->data;
1942 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1943 unsigned int metasize = xdp->data - xdp->data_meta;
1944 struct sk_buff *skb;
1945
1946 /* prefetch first cache line of first page */
1947 net_prefetch(xdp->data_meta);
1948
1949 /* build an skb around the page buffer */
1950 skb = napi_build_skb(xdp->data_hard_start, truesize);
1951 if (unlikely(!skb))
1952 return NULL;
1953
1954 /* update pointers within the skb to store the data */
1955 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1956 __skb_put(skb, size);
1957 if (metasize)
1958 skb_metadata_set(skb, metasize);
1959
1960 igc_rx_buffer_flip(rx_buffer, truesize);
1961 return skb;
1962 }
1963
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)1964 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1965 struct igc_rx_buffer *rx_buffer,
1966 struct xdp_buff *xdp,
1967 ktime_t timestamp)
1968 {
1969 unsigned int metasize = xdp->data - xdp->data_meta;
1970 unsigned int size = xdp->data_end - xdp->data;
1971 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1972 void *va = xdp->data;
1973 unsigned int headlen;
1974 struct sk_buff *skb;
1975
1976 /* prefetch first cache line of first page */
1977 net_prefetch(xdp->data_meta);
1978
1979 /* allocate a skb to store the frags */
1980 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1981 IGC_RX_HDR_LEN + metasize);
1982 if (unlikely(!skb))
1983 return NULL;
1984
1985 if (timestamp)
1986 skb_hwtstamps(skb)->hwtstamp = timestamp;
1987
1988 /* Determine available headroom for copy */
1989 headlen = size;
1990 if (headlen > IGC_RX_HDR_LEN)
1991 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1992
1993 /* align pull length to size of long to optimize memcpy performance */
1994 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1995 ALIGN(headlen + metasize, sizeof(long)));
1996
1997 if (metasize) {
1998 skb_metadata_set(skb, metasize);
1999 __skb_pull(skb, metasize);
2000 }
2001
2002 /* update all of the pointers */
2003 size -= headlen;
2004 if (size) {
2005 skb_add_rx_frag(skb, 0, rx_buffer->page,
2006 (va + headlen) - page_address(rx_buffer->page),
2007 size, truesize);
2008 igc_rx_buffer_flip(rx_buffer, truesize);
2009 } else {
2010 rx_buffer->pagecnt_bias++;
2011 }
2012
2013 return skb;
2014 }
2015
2016 /**
2017 * igc_reuse_rx_page - page flip buffer and store it back on the ring
2018 * @rx_ring: rx descriptor ring to store buffers on
2019 * @old_buff: donor buffer to have page reused
2020 *
2021 * Synchronizes page for reuse by the adapter
2022 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)2023 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2024 struct igc_rx_buffer *old_buff)
2025 {
2026 u16 nta = rx_ring->next_to_alloc;
2027 struct igc_rx_buffer *new_buff;
2028
2029 new_buff = &rx_ring->rx_buffer_info[nta];
2030
2031 /* update, and store next to alloc */
2032 nta++;
2033 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2034
2035 /* Transfer page from old buffer to new buffer.
2036 * Move each member individually to avoid possible store
2037 * forwarding stalls.
2038 */
2039 new_buff->dma = old_buff->dma;
2040 new_buff->page = old_buff->page;
2041 new_buff->page_offset = old_buff->page_offset;
2042 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
2043 }
2044
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2045 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2046 int rx_buffer_pgcnt)
2047 {
2048 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2049 struct page *page = rx_buffer->page;
2050
2051 /* avoid re-using remote and pfmemalloc pages */
2052 if (!dev_page_is_reusable(page))
2053 return false;
2054
2055 #if (PAGE_SIZE < 8192)
2056 /* if we are only owner of page we can reuse it */
2057 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2058 return false;
2059 #else
2060 #define IGC_LAST_OFFSET \
2061 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2062
2063 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2064 return false;
2065 #endif
2066
2067 /* If we have drained the page fragment pool we need to update
2068 * the pagecnt_bias and page count so that we fully restock the
2069 * number of references the driver holds.
2070 */
2071 if (unlikely(pagecnt_bias == 1)) {
2072 page_ref_add(page, USHRT_MAX - 1);
2073 rx_buffer->pagecnt_bias = USHRT_MAX;
2074 }
2075
2076 return true;
2077 }
2078
2079 /**
2080 * igc_is_non_eop - process handling of non-EOP buffers
2081 * @rx_ring: Rx ring being processed
2082 * @rx_desc: Rx descriptor for current buffer
2083 *
2084 * This function updates next to clean. If the buffer is an EOP buffer
2085 * this function exits returning false, otherwise it will place the
2086 * sk_buff in the next buffer to be chained and return true indicating
2087 * that this is in fact a non-EOP buffer.
2088 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2089 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2090 union igc_adv_rx_desc *rx_desc)
2091 {
2092 u32 ntc = rx_ring->next_to_clean + 1;
2093
2094 /* fetch, update, and store next to clean */
2095 ntc = (ntc < rx_ring->count) ? ntc : 0;
2096 rx_ring->next_to_clean = ntc;
2097
2098 prefetch(IGC_RX_DESC(rx_ring, ntc));
2099
2100 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2101 return false;
2102
2103 return true;
2104 }
2105
2106 /**
2107 * igc_cleanup_headers - Correct corrupted or empty headers
2108 * @rx_ring: rx descriptor ring packet is being transacted on
2109 * @rx_desc: pointer to the EOP Rx descriptor
2110 * @skb: pointer to current skb being fixed
2111 *
2112 * Address the case where we are pulling data in on pages only
2113 * and as such no data is present in the skb header.
2114 *
2115 * In addition if skb is not at least 60 bytes we need to pad it so that
2116 * it is large enough to qualify as a valid Ethernet frame.
2117 *
2118 * Returns true if an error was encountered and skb was freed.
2119 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2120 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2121 union igc_adv_rx_desc *rx_desc,
2122 struct sk_buff *skb)
2123 {
2124 /* XDP packets use error pointer so abort at this point */
2125 if (IS_ERR(skb))
2126 return true;
2127
2128 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2129 struct net_device *netdev = rx_ring->netdev;
2130
2131 if (!(netdev->features & NETIF_F_RXALL)) {
2132 dev_kfree_skb_any(skb);
2133 return true;
2134 }
2135 }
2136
2137 /* if eth_skb_pad returns an error the skb was freed */
2138 if (eth_skb_pad(skb))
2139 return true;
2140
2141 return false;
2142 }
2143
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2144 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2145 struct igc_rx_buffer *rx_buffer,
2146 int rx_buffer_pgcnt)
2147 {
2148 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2149 /* hand second half of page back to the ring */
2150 igc_reuse_rx_page(rx_ring, rx_buffer);
2151 } else {
2152 /* We are not reusing the buffer so unmap it and free
2153 * any references we are holding to it
2154 */
2155 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2156 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2157 IGC_RX_DMA_ATTR);
2158 __page_frag_cache_drain(rx_buffer->page,
2159 rx_buffer->pagecnt_bias);
2160 }
2161
2162 /* clear contents of rx_buffer */
2163 rx_buffer->page = NULL;
2164 }
2165
igc_rx_offset(struct igc_ring * rx_ring)2166 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2167 {
2168 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2169
2170 if (ring_uses_build_skb(rx_ring))
2171 return IGC_SKB_PAD;
2172 if (igc_xdp_is_enabled(adapter))
2173 return XDP_PACKET_HEADROOM;
2174
2175 return 0;
2176 }
2177
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2178 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2179 struct igc_rx_buffer *bi)
2180 {
2181 struct page *page = bi->page;
2182 dma_addr_t dma;
2183
2184 /* since we are recycling buffers we should seldom need to alloc */
2185 if (likely(page))
2186 return true;
2187
2188 /* alloc new page for storage */
2189 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2190 if (unlikely(!page)) {
2191 rx_ring->rx_stats.alloc_failed++;
2192 return false;
2193 }
2194
2195 /* map page for use */
2196 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2197 igc_rx_pg_size(rx_ring),
2198 DMA_FROM_DEVICE,
2199 IGC_RX_DMA_ATTR);
2200
2201 /* if mapping failed free memory back to system since
2202 * there isn't much point in holding memory we can't use
2203 */
2204 if (dma_mapping_error(rx_ring->dev, dma)) {
2205 __free_page(page);
2206
2207 rx_ring->rx_stats.alloc_failed++;
2208 return false;
2209 }
2210
2211 bi->dma = dma;
2212 bi->page = page;
2213 bi->page_offset = igc_rx_offset(rx_ring);
2214 page_ref_add(page, USHRT_MAX - 1);
2215 bi->pagecnt_bias = USHRT_MAX;
2216
2217 return true;
2218 }
2219
2220 /**
2221 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2222 * @rx_ring: rx descriptor ring
2223 * @cleaned_count: number of buffers to clean
2224 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2225 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2226 {
2227 union igc_adv_rx_desc *rx_desc;
2228 u16 i = rx_ring->next_to_use;
2229 struct igc_rx_buffer *bi;
2230 u16 bufsz;
2231
2232 /* nothing to do */
2233 if (!cleaned_count)
2234 return;
2235
2236 rx_desc = IGC_RX_DESC(rx_ring, i);
2237 bi = &rx_ring->rx_buffer_info[i];
2238 i -= rx_ring->count;
2239
2240 bufsz = igc_rx_bufsz(rx_ring);
2241
2242 do {
2243 if (!igc_alloc_mapped_page(rx_ring, bi))
2244 break;
2245
2246 /* sync the buffer for use by the device */
2247 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2248 bi->page_offset, bufsz,
2249 DMA_FROM_DEVICE);
2250
2251 /* Refresh the desc even if buffer_addrs didn't change
2252 * because each write-back erases this info.
2253 */
2254 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2255
2256 rx_desc++;
2257 bi++;
2258 i++;
2259 if (unlikely(!i)) {
2260 rx_desc = IGC_RX_DESC(rx_ring, 0);
2261 bi = rx_ring->rx_buffer_info;
2262 i -= rx_ring->count;
2263 }
2264
2265 /* clear the length for the next_to_use descriptor */
2266 rx_desc->wb.upper.length = 0;
2267
2268 cleaned_count--;
2269 } while (cleaned_count);
2270
2271 i += rx_ring->count;
2272
2273 if (rx_ring->next_to_use != i) {
2274 /* record the next descriptor to use */
2275 rx_ring->next_to_use = i;
2276
2277 /* update next to alloc since we have filled the ring */
2278 rx_ring->next_to_alloc = i;
2279
2280 /* Force memory writes to complete before letting h/w
2281 * know there are new descriptors to fetch. (Only
2282 * applicable for weak-ordered memory model archs,
2283 * such as IA-64).
2284 */
2285 wmb();
2286 writel(i, rx_ring->tail);
2287 }
2288 }
2289
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2290 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2291 {
2292 union igc_adv_rx_desc *desc;
2293 u16 i = ring->next_to_use;
2294 struct igc_rx_buffer *bi;
2295 dma_addr_t dma;
2296 bool ok = true;
2297
2298 if (!count)
2299 return ok;
2300
2301 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2302
2303 desc = IGC_RX_DESC(ring, i);
2304 bi = &ring->rx_buffer_info[i];
2305 i -= ring->count;
2306
2307 do {
2308 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2309 if (!bi->xdp) {
2310 ok = false;
2311 break;
2312 }
2313
2314 dma = xsk_buff_xdp_get_dma(bi->xdp);
2315 desc->read.pkt_addr = cpu_to_le64(dma);
2316
2317 desc++;
2318 bi++;
2319 i++;
2320 if (unlikely(!i)) {
2321 desc = IGC_RX_DESC(ring, 0);
2322 bi = ring->rx_buffer_info;
2323 i -= ring->count;
2324 }
2325
2326 /* Clear the length for the next_to_use descriptor. */
2327 desc->wb.upper.length = 0;
2328
2329 count--;
2330 } while (count);
2331
2332 i += ring->count;
2333
2334 if (ring->next_to_use != i) {
2335 ring->next_to_use = i;
2336
2337 /* Force memory writes to complete before letting h/w
2338 * know there are new descriptors to fetch. (Only
2339 * applicable for weak-ordered memory model archs,
2340 * such as IA-64).
2341 */
2342 wmb();
2343 writel(i, ring->tail);
2344 }
2345
2346 return ok;
2347 }
2348
2349 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2350 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2351 struct xdp_frame *xdpf)
2352 {
2353 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2354 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2355 u16 count, index = ring->next_to_use;
2356 struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2357 struct igc_tx_buffer *buffer = head;
2358 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2359 u32 olinfo_status, len = xdpf->len, cmd_type;
2360 void *data = xdpf->data;
2361 u16 i;
2362
2363 count = TXD_USE_COUNT(len);
2364 for (i = 0; i < nr_frags; i++)
2365 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2366
2367 if (igc_maybe_stop_tx(ring, count + 3)) {
2368 /* this is a hard error */
2369 return -EBUSY;
2370 }
2371
2372 i = 0;
2373 head->bytecount = xdp_get_frame_len(xdpf);
2374 head->type = IGC_TX_BUFFER_TYPE_XDP;
2375 head->gso_segs = 1;
2376 head->xdpf = xdpf;
2377
2378 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2379 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2380
2381 for (;;) {
2382 dma_addr_t dma;
2383
2384 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2385 if (dma_mapping_error(ring->dev, dma)) {
2386 netdev_err_once(ring->netdev,
2387 "Failed to map DMA for TX\n");
2388 goto unmap;
2389 }
2390
2391 dma_unmap_len_set(buffer, len, len);
2392 dma_unmap_addr_set(buffer, dma, dma);
2393
2394 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2395 IGC_ADVTXD_DCMD_IFCS | len;
2396
2397 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2398 desc->read.buffer_addr = cpu_to_le64(dma);
2399
2400 buffer->protocol = 0;
2401
2402 if (++index == ring->count)
2403 index = 0;
2404
2405 if (i == nr_frags)
2406 break;
2407
2408 buffer = &ring->tx_buffer_info[index];
2409 desc = IGC_TX_DESC(ring, index);
2410 desc->read.olinfo_status = 0;
2411
2412 data = skb_frag_address(&sinfo->frags[i]);
2413 len = skb_frag_size(&sinfo->frags[i]);
2414 i++;
2415 }
2416 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2417
2418 netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2419 /* set the timestamp */
2420 head->time_stamp = jiffies;
2421 /* set next_to_watch value indicating a packet is present */
2422 head->next_to_watch = desc;
2423 ring->next_to_use = index;
2424
2425 return 0;
2426
2427 unmap:
2428 for (;;) {
2429 buffer = &ring->tx_buffer_info[index];
2430 if (dma_unmap_len(buffer, len))
2431 dma_unmap_page(ring->dev,
2432 dma_unmap_addr(buffer, dma),
2433 dma_unmap_len(buffer, len),
2434 DMA_TO_DEVICE);
2435 dma_unmap_len_set(buffer, len, 0);
2436 if (buffer == head)
2437 break;
2438
2439 if (!index)
2440 index += ring->count;
2441 index--;
2442 }
2443
2444 return -ENOMEM;
2445 }
2446
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2447 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2448 int cpu)
2449 {
2450 int index = cpu;
2451
2452 if (unlikely(index < 0))
2453 index = 0;
2454
2455 while (index >= adapter->num_tx_queues)
2456 index -= adapter->num_tx_queues;
2457
2458 return adapter->tx_ring[index];
2459 }
2460
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2461 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2462 {
2463 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2464 int cpu = smp_processor_id();
2465 struct netdev_queue *nq;
2466 struct igc_ring *ring;
2467 int res;
2468
2469 if (unlikely(!xdpf))
2470 return -EFAULT;
2471
2472 ring = igc_xdp_get_tx_ring(adapter, cpu);
2473 nq = txring_txq(ring);
2474
2475 __netif_tx_lock(nq, cpu);
2476 /* Avoid transmit queue timeout since we share it with the slow path */
2477 txq_trans_cond_update(nq);
2478 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2479 __netif_tx_unlock(nq);
2480 return res;
2481 }
2482
2483 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2484 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2485 struct bpf_prog *prog,
2486 struct xdp_buff *xdp)
2487 {
2488 u32 act = bpf_prog_run_xdp(prog, xdp);
2489
2490 switch (act) {
2491 case XDP_PASS:
2492 return IGC_XDP_PASS;
2493 case XDP_TX:
2494 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2495 goto out_failure;
2496 return IGC_XDP_TX;
2497 case XDP_REDIRECT:
2498 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2499 goto out_failure;
2500 return IGC_XDP_REDIRECT;
2501 break;
2502 default:
2503 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2504 fallthrough;
2505 case XDP_ABORTED:
2506 out_failure:
2507 trace_xdp_exception(adapter->netdev, prog, act);
2508 fallthrough;
2509 case XDP_DROP:
2510 return IGC_XDP_CONSUMED;
2511 }
2512 }
2513
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2514 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2515 struct xdp_buff *xdp)
2516 {
2517 struct bpf_prog *prog;
2518 int res;
2519
2520 prog = READ_ONCE(adapter->xdp_prog);
2521 if (!prog) {
2522 res = IGC_XDP_PASS;
2523 goto out;
2524 }
2525
2526 res = __igc_xdp_run_prog(adapter, prog, xdp);
2527
2528 out:
2529 return ERR_PTR(-res);
2530 }
2531
2532 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2533 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2534 {
2535 /* Once tail pointer is updated, hardware can fetch the descriptors
2536 * any time so we issue a write membar here to ensure all memory
2537 * writes are complete before the tail pointer is updated.
2538 */
2539 wmb();
2540 writel(ring->next_to_use, ring->tail);
2541 }
2542
igc_finalize_xdp(struct igc_adapter * adapter,int status)2543 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2544 {
2545 int cpu = smp_processor_id();
2546 struct netdev_queue *nq;
2547 struct igc_ring *ring;
2548
2549 if (status & IGC_XDP_TX) {
2550 ring = igc_xdp_get_tx_ring(adapter, cpu);
2551 nq = txring_txq(ring);
2552
2553 __netif_tx_lock(nq, cpu);
2554 igc_flush_tx_descriptors(ring);
2555 __netif_tx_unlock(nq);
2556 }
2557
2558 if (status & IGC_XDP_REDIRECT)
2559 xdp_do_flush();
2560 }
2561
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2562 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2563 unsigned int packets, unsigned int bytes)
2564 {
2565 struct igc_ring *ring = q_vector->rx.ring;
2566
2567 u64_stats_update_begin(&ring->rx_syncp);
2568 ring->rx_stats.packets += packets;
2569 ring->rx_stats.bytes += bytes;
2570 u64_stats_update_end(&ring->rx_syncp);
2571
2572 q_vector->rx.total_packets += packets;
2573 q_vector->rx.total_bytes += bytes;
2574 }
2575
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2576 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2577 {
2578 unsigned int total_bytes = 0, total_packets = 0;
2579 struct igc_adapter *adapter = q_vector->adapter;
2580 struct igc_ring *rx_ring = q_vector->rx.ring;
2581 struct sk_buff *skb = rx_ring->skb;
2582 u16 cleaned_count = igc_desc_unused(rx_ring);
2583 int xdp_status = 0, rx_buffer_pgcnt;
2584
2585 while (likely(total_packets < budget)) {
2586 union igc_adv_rx_desc *rx_desc;
2587 struct igc_rx_buffer *rx_buffer;
2588 unsigned int size, truesize;
2589 struct igc_xdp_buff ctx;
2590 ktime_t timestamp = 0;
2591 int pkt_offset = 0;
2592 void *pktbuf;
2593
2594 /* return some buffers to hardware, one at a time is too slow */
2595 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2596 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2597 cleaned_count = 0;
2598 }
2599
2600 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2601 size = le16_to_cpu(rx_desc->wb.upper.length);
2602 if (!size)
2603 break;
2604
2605 /* This memory barrier is needed to keep us from reading
2606 * any other fields out of the rx_desc until we know the
2607 * descriptor has been written back
2608 */
2609 dma_rmb();
2610
2611 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2612 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2613
2614 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2615
2616 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2617 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2618 pktbuf);
2619 ctx.rx_ts = timestamp;
2620 pkt_offset = IGC_TS_HDR_LEN;
2621 size -= IGC_TS_HDR_LEN;
2622 }
2623
2624 if (!skb) {
2625 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2626 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2627 igc_rx_offset(rx_ring) + pkt_offset,
2628 size, true);
2629 xdp_buff_clear_frags_flag(&ctx.xdp);
2630 ctx.rx_desc = rx_desc;
2631
2632 skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2633 }
2634
2635 if (IS_ERR(skb)) {
2636 unsigned int xdp_res = -PTR_ERR(skb);
2637
2638 switch (xdp_res) {
2639 case IGC_XDP_CONSUMED:
2640 rx_buffer->pagecnt_bias++;
2641 break;
2642 case IGC_XDP_TX:
2643 case IGC_XDP_REDIRECT:
2644 igc_rx_buffer_flip(rx_buffer, truesize);
2645 xdp_status |= xdp_res;
2646 break;
2647 }
2648
2649 total_packets++;
2650 total_bytes += size;
2651 } else if (skb)
2652 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2653 else if (ring_uses_build_skb(rx_ring))
2654 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2655 else
2656 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx.xdp,
2657 timestamp);
2658
2659 /* exit if we failed to retrieve a buffer */
2660 if (!skb) {
2661 rx_ring->rx_stats.alloc_failed++;
2662 rx_buffer->pagecnt_bias++;
2663 break;
2664 }
2665
2666 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2667 cleaned_count++;
2668
2669 /* fetch next buffer in frame if non-eop */
2670 if (igc_is_non_eop(rx_ring, rx_desc))
2671 continue;
2672
2673 /* verify the packet layout is correct */
2674 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2675 skb = NULL;
2676 continue;
2677 }
2678
2679 /* probably a little skewed due to removing CRC */
2680 total_bytes += skb->len;
2681
2682 /* populate checksum, VLAN, and protocol */
2683 igc_process_skb_fields(rx_ring, rx_desc, skb);
2684
2685 napi_gro_receive(&q_vector->napi, skb);
2686
2687 /* reset skb pointer */
2688 skb = NULL;
2689
2690 /* update budget accounting */
2691 total_packets++;
2692 }
2693
2694 if (xdp_status)
2695 igc_finalize_xdp(adapter, xdp_status);
2696
2697 /* place incomplete frames back on ring for completion */
2698 rx_ring->skb = skb;
2699
2700 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2701
2702 if (cleaned_count)
2703 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2704
2705 return total_packets;
2706 }
2707
igc_construct_skb_zc(struct igc_ring * ring,struct xdp_buff * xdp)2708 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2709 struct xdp_buff *xdp)
2710 {
2711 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2712 unsigned int metasize = xdp->data - xdp->data_meta;
2713 struct sk_buff *skb;
2714
2715 net_prefetch(xdp->data_meta);
2716
2717 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2718 GFP_ATOMIC | __GFP_NOWARN);
2719 if (unlikely(!skb))
2720 return NULL;
2721
2722 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2723 ALIGN(totalsize, sizeof(long)));
2724
2725 if (metasize) {
2726 skb_metadata_set(skb, metasize);
2727 __skb_pull(skb, metasize);
2728 }
2729
2730 return skb;
2731 }
2732
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct xdp_buff * xdp,ktime_t timestamp)2733 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2734 union igc_adv_rx_desc *desc,
2735 struct xdp_buff *xdp,
2736 ktime_t timestamp)
2737 {
2738 struct igc_ring *ring = q_vector->rx.ring;
2739 struct sk_buff *skb;
2740
2741 skb = igc_construct_skb_zc(ring, xdp);
2742 if (!skb) {
2743 ring->rx_stats.alloc_failed++;
2744 return;
2745 }
2746
2747 if (timestamp)
2748 skb_hwtstamps(skb)->hwtstamp = timestamp;
2749
2750 if (igc_cleanup_headers(ring, desc, skb))
2751 return;
2752
2753 igc_process_skb_fields(ring, desc, skb);
2754 napi_gro_receive(&q_vector->napi, skb);
2755 }
2756
xsk_buff_to_igc_ctx(struct xdp_buff * xdp)2757 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2758 {
2759 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2760 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2761 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2762 */
2763 return (struct igc_xdp_buff *)xdp;
2764 }
2765
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2766 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2767 {
2768 struct igc_adapter *adapter = q_vector->adapter;
2769 struct igc_ring *ring = q_vector->rx.ring;
2770 u16 cleaned_count = igc_desc_unused(ring);
2771 int total_bytes = 0, total_packets = 0;
2772 u16 ntc = ring->next_to_clean;
2773 struct bpf_prog *prog;
2774 bool failure = false;
2775 int xdp_status = 0;
2776
2777 rcu_read_lock();
2778
2779 prog = READ_ONCE(adapter->xdp_prog);
2780
2781 while (likely(total_packets < budget)) {
2782 union igc_adv_rx_desc *desc;
2783 struct igc_rx_buffer *bi;
2784 struct igc_xdp_buff *ctx;
2785 ktime_t timestamp = 0;
2786 unsigned int size;
2787 int res;
2788
2789 desc = IGC_RX_DESC(ring, ntc);
2790 size = le16_to_cpu(desc->wb.upper.length);
2791 if (!size)
2792 break;
2793
2794 /* This memory barrier is needed to keep us from reading
2795 * any other fields out of the rx_desc until we know the
2796 * descriptor has been written back
2797 */
2798 dma_rmb();
2799
2800 bi = &ring->rx_buffer_info[ntc];
2801
2802 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2803 ctx->rx_desc = desc;
2804
2805 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2806 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2807 bi->xdp->data);
2808 ctx->rx_ts = timestamp;
2809
2810 bi->xdp->data += IGC_TS_HDR_LEN;
2811
2812 /* HW timestamp has been copied into local variable. Metadata
2813 * length when XDP program is called should be 0.
2814 */
2815 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2816 size -= IGC_TS_HDR_LEN;
2817 }
2818
2819 bi->xdp->data_end = bi->xdp->data + size;
2820 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2821
2822 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2823 switch (res) {
2824 case IGC_XDP_PASS:
2825 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2826 fallthrough;
2827 case IGC_XDP_CONSUMED:
2828 xsk_buff_free(bi->xdp);
2829 break;
2830 case IGC_XDP_TX:
2831 case IGC_XDP_REDIRECT:
2832 xdp_status |= res;
2833 break;
2834 }
2835
2836 bi->xdp = NULL;
2837 total_bytes += size;
2838 total_packets++;
2839 cleaned_count++;
2840 ntc++;
2841 if (ntc == ring->count)
2842 ntc = 0;
2843 }
2844
2845 ring->next_to_clean = ntc;
2846 rcu_read_unlock();
2847
2848 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2849 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2850
2851 if (xdp_status)
2852 igc_finalize_xdp(adapter, xdp_status);
2853
2854 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2855
2856 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2857 if (failure || ring->next_to_clean == ring->next_to_use)
2858 xsk_set_rx_need_wakeup(ring->xsk_pool);
2859 else
2860 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2861 return total_packets;
2862 }
2863
2864 return failure ? budget : total_packets;
2865 }
2866
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2867 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2868 unsigned int packets, unsigned int bytes)
2869 {
2870 struct igc_ring *ring = q_vector->tx.ring;
2871
2872 u64_stats_update_begin(&ring->tx_syncp);
2873 ring->tx_stats.bytes += bytes;
2874 ring->tx_stats.packets += packets;
2875 u64_stats_update_end(&ring->tx_syncp);
2876
2877 q_vector->tx.total_bytes += bytes;
2878 q_vector->tx.total_packets += packets;
2879 }
2880
igc_xdp_xmit_zc(struct igc_ring * ring)2881 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2882 {
2883 struct xsk_buff_pool *pool = ring->xsk_pool;
2884 struct netdev_queue *nq = txring_txq(ring);
2885 union igc_adv_tx_desc *tx_desc = NULL;
2886 int cpu = smp_processor_id();
2887 struct xdp_desc xdp_desc;
2888 u16 budget, ntu;
2889
2890 if (!netif_carrier_ok(ring->netdev))
2891 return;
2892
2893 __netif_tx_lock(nq, cpu);
2894
2895 /* Avoid transmit queue timeout since we share it with the slow path */
2896 txq_trans_cond_update(nq);
2897
2898 ntu = ring->next_to_use;
2899 budget = igc_desc_unused(ring);
2900
2901 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2902 u32 cmd_type, olinfo_status;
2903 struct igc_tx_buffer *bi;
2904 dma_addr_t dma;
2905
2906 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2907 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2908 xdp_desc.len;
2909 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2910
2911 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2912 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2913
2914 tx_desc = IGC_TX_DESC(ring, ntu);
2915 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2916 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2917 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2918
2919 bi = &ring->tx_buffer_info[ntu];
2920 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2921 bi->protocol = 0;
2922 bi->bytecount = xdp_desc.len;
2923 bi->gso_segs = 1;
2924 bi->time_stamp = jiffies;
2925 bi->next_to_watch = tx_desc;
2926
2927 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2928
2929 ntu++;
2930 if (ntu == ring->count)
2931 ntu = 0;
2932 }
2933
2934 ring->next_to_use = ntu;
2935 if (tx_desc) {
2936 igc_flush_tx_descriptors(ring);
2937 xsk_tx_release(pool);
2938 }
2939
2940 __netif_tx_unlock(nq);
2941 }
2942
2943 /**
2944 * igc_clean_tx_irq - Reclaim resources after transmit completes
2945 * @q_vector: pointer to q_vector containing needed info
2946 * @napi_budget: Used to determine if we are in netpoll
2947 *
2948 * returns true if ring is completely cleaned
2949 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)2950 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2951 {
2952 struct igc_adapter *adapter = q_vector->adapter;
2953 unsigned int total_bytes = 0, total_packets = 0;
2954 unsigned int budget = q_vector->tx.work_limit;
2955 struct igc_ring *tx_ring = q_vector->tx.ring;
2956 unsigned int i = tx_ring->next_to_clean;
2957 struct igc_tx_buffer *tx_buffer;
2958 union igc_adv_tx_desc *tx_desc;
2959 u32 xsk_frames = 0;
2960
2961 if (test_bit(__IGC_DOWN, &adapter->state))
2962 return true;
2963
2964 tx_buffer = &tx_ring->tx_buffer_info[i];
2965 tx_desc = IGC_TX_DESC(tx_ring, i);
2966 i -= tx_ring->count;
2967
2968 do {
2969 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2970
2971 /* if next_to_watch is not set then there is no work pending */
2972 if (!eop_desc)
2973 break;
2974
2975 /* prevent any other reads prior to eop_desc */
2976 smp_rmb();
2977
2978 /* if DD is not set pending work has not been completed */
2979 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2980 break;
2981
2982 /* clear next_to_watch to prevent false hangs */
2983 tx_buffer->next_to_watch = NULL;
2984
2985 /* update the statistics for this packet */
2986 total_bytes += tx_buffer->bytecount;
2987 total_packets += tx_buffer->gso_segs;
2988
2989 switch (tx_buffer->type) {
2990 case IGC_TX_BUFFER_TYPE_XSK:
2991 xsk_frames++;
2992 break;
2993 case IGC_TX_BUFFER_TYPE_XDP:
2994 xdp_return_frame(tx_buffer->xdpf);
2995 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2996 break;
2997 case IGC_TX_BUFFER_TYPE_SKB:
2998 napi_consume_skb(tx_buffer->skb, napi_budget);
2999 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3000 break;
3001 default:
3002 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3003 break;
3004 }
3005
3006 /* clear last DMA location and unmap remaining buffers */
3007 while (tx_desc != eop_desc) {
3008 tx_buffer++;
3009 tx_desc++;
3010 i++;
3011 if (unlikely(!i)) {
3012 i -= tx_ring->count;
3013 tx_buffer = tx_ring->tx_buffer_info;
3014 tx_desc = IGC_TX_DESC(tx_ring, 0);
3015 }
3016
3017 /* unmap any remaining paged data */
3018 if (dma_unmap_len(tx_buffer, len))
3019 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3020 }
3021
3022 /* move us one more past the eop_desc for start of next pkt */
3023 tx_buffer++;
3024 tx_desc++;
3025 i++;
3026 if (unlikely(!i)) {
3027 i -= tx_ring->count;
3028 tx_buffer = tx_ring->tx_buffer_info;
3029 tx_desc = IGC_TX_DESC(tx_ring, 0);
3030 }
3031
3032 /* issue prefetch for next Tx descriptor */
3033 prefetch(tx_desc);
3034
3035 /* update budget accounting */
3036 budget--;
3037 } while (likely(budget));
3038
3039 netdev_tx_completed_queue(txring_txq(tx_ring),
3040 total_packets, total_bytes);
3041
3042 i += tx_ring->count;
3043 tx_ring->next_to_clean = i;
3044
3045 igc_update_tx_stats(q_vector, total_packets, total_bytes);
3046
3047 if (tx_ring->xsk_pool) {
3048 if (xsk_frames)
3049 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3050 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3051 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3052 igc_xdp_xmit_zc(tx_ring);
3053 }
3054
3055 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3056 struct igc_hw *hw = &adapter->hw;
3057
3058 /* Detect a transmit hang in hardware, this serializes the
3059 * check with the clearing of time_stamp and movement of i
3060 */
3061 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3062 if (tx_buffer->next_to_watch &&
3063 time_after(jiffies, tx_buffer->time_stamp +
3064 (adapter->tx_timeout_factor * HZ)) &&
3065 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3066 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3067 !tx_ring->oper_gate_closed) {
3068 /* detected Tx unit hang */
3069 netdev_err(tx_ring->netdev,
3070 "Detected Tx Unit Hang\n"
3071 " Tx Queue <%d>\n"
3072 " TDH <%x>\n"
3073 " TDT <%x>\n"
3074 " next_to_use <%x>\n"
3075 " next_to_clean <%x>\n"
3076 "buffer_info[next_to_clean]\n"
3077 " time_stamp <%lx>\n"
3078 " next_to_watch <%p>\n"
3079 " jiffies <%lx>\n"
3080 " desc.status <%x>\n",
3081 tx_ring->queue_index,
3082 rd32(IGC_TDH(tx_ring->reg_idx)),
3083 readl(tx_ring->tail),
3084 tx_ring->next_to_use,
3085 tx_ring->next_to_clean,
3086 tx_buffer->time_stamp,
3087 tx_buffer->next_to_watch,
3088 jiffies,
3089 tx_buffer->next_to_watch->wb.status);
3090 netif_stop_subqueue(tx_ring->netdev,
3091 tx_ring->queue_index);
3092
3093 /* we are about to reset, no point in enabling stuff */
3094 return true;
3095 }
3096 }
3097
3098 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3099 if (unlikely(total_packets &&
3100 netif_carrier_ok(tx_ring->netdev) &&
3101 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3102 /* Make sure that anybody stopping the queue after this
3103 * sees the new next_to_clean.
3104 */
3105 smp_mb();
3106 if (__netif_subqueue_stopped(tx_ring->netdev,
3107 tx_ring->queue_index) &&
3108 !(test_bit(__IGC_DOWN, &adapter->state))) {
3109 netif_wake_subqueue(tx_ring->netdev,
3110 tx_ring->queue_index);
3111
3112 u64_stats_update_begin(&tx_ring->tx_syncp);
3113 tx_ring->tx_stats.restart_queue++;
3114 u64_stats_update_end(&tx_ring->tx_syncp);
3115 }
3116 }
3117
3118 return !!budget;
3119 }
3120
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3121 static int igc_find_mac_filter(struct igc_adapter *adapter,
3122 enum igc_mac_filter_type type, const u8 *addr)
3123 {
3124 struct igc_hw *hw = &adapter->hw;
3125 int max_entries = hw->mac.rar_entry_count;
3126 u32 ral, rah;
3127 int i;
3128
3129 for (i = 0; i < max_entries; i++) {
3130 ral = rd32(IGC_RAL(i));
3131 rah = rd32(IGC_RAH(i));
3132
3133 if (!(rah & IGC_RAH_AV))
3134 continue;
3135 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3136 continue;
3137 if ((rah & IGC_RAH_RAH_MASK) !=
3138 le16_to_cpup((__le16 *)(addr + 4)))
3139 continue;
3140 if (ral != le32_to_cpup((__le32 *)(addr)))
3141 continue;
3142
3143 return i;
3144 }
3145
3146 return -1;
3147 }
3148
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3149 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3150 {
3151 struct igc_hw *hw = &adapter->hw;
3152 int max_entries = hw->mac.rar_entry_count;
3153 u32 rah;
3154 int i;
3155
3156 for (i = 0; i < max_entries; i++) {
3157 rah = rd32(IGC_RAH(i));
3158
3159 if (!(rah & IGC_RAH_AV))
3160 return i;
3161 }
3162
3163 return -1;
3164 }
3165
3166 /**
3167 * igc_add_mac_filter() - Add MAC address filter
3168 * @adapter: Pointer to adapter where the filter should be added
3169 * @type: MAC address filter type (source or destination)
3170 * @addr: MAC address
3171 * @queue: If non-negative, queue assignment feature is enabled and frames
3172 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3173 * assignment is disabled.
3174 *
3175 * Return: 0 in case of success, negative errno code otherwise.
3176 */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3177 static int igc_add_mac_filter(struct igc_adapter *adapter,
3178 enum igc_mac_filter_type type, const u8 *addr,
3179 int queue)
3180 {
3181 struct net_device *dev = adapter->netdev;
3182 int index;
3183
3184 index = igc_find_mac_filter(adapter, type, addr);
3185 if (index >= 0)
3186 goto update_filter;
3187
3188 index = igc_get_avail_mac_filter_slot(adapter);
3189 if (index < 0)
3190 return -ENOSPC;
3191
3192 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3193 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3194 addr, queue);
3195
3196 update_filter:
3197 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3198 return 0;
3199 }
3200
3201 /**
3202 * igc_del_mac_filter() - Delete MAC address filter
3203 * @adapter: Pointer to adapter where the filter should be deleted from
3204 * @type: MAC address filter type (source or destination)
3205 * @addr: MAC address
3206 */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3207 static void igc_del_mac_filter(struct igc_adapter *adapter,
3208 enum igc_mac_filter_type type, const u8 *addr)
3209 {
3210 struct net_device *dev = adapter->netdev;
3211 int index;
3212
3213 index = igc_find_mac_filter(adapter, type, addr);
3214 if (index < 0)
3215 return;
3216
3217 if (index == 0) {
3218 /* If this is the default filter, we don't actually delete it.
3219 * We just reset to its default value i.e. disable queue
3220 * assignment.
3221 */
3222 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3223
3224 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3225 } else {
3226 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3227 index,
3228 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3229 addr);
3230
3231 igc_clear_mac_filter_hw(adapter, index);
3232 }
3233 }
3234
3235 /**
3236 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3237 * @adapter: Pointer to adapter where the filter should be added
3238 * @prio: VLAN priority value
3239 * @queue: Queue number which matching frames are assigned to
3240 *
3241 * Return: 0 in case of success, negative errno code otherwise.
3242 */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3243 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3244 int queue)
3245 {
3246 struct net_device *dev = adapter->netdev;
3247 struct igc_hw *hw = &adapter->hw;
3248 u32 vlanpqf;
3249
3250 vlanpqf = rd32(IGC_VLANPQF);
3251
3252 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3253 netdev_dbg(dev, "VLAN priority filter already in use\n");
3254 return -EEXIST;
3255 }
3256
3257 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3258 vlanpqf |= IGC_VLANPQF_VALID(prio);
3259
3260 wr32(IGC_VLANPQF, vlanpqf);
3261
3262 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3263 prio, queue);
3264 return 0;
3265 }
3266
3267 /**
3268 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3269 * @adapter: Pointer to adapter where the filter should be deleted from
3270 * @prio: VLAN priority value
3271 */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3272 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3273 {
3274 struct igc_hw *hw = &adapter->hw;
3275 u32 vlanpqf;
3276
3277 vlanpqf = rd32(IGC_VLANPQF);
3278
3279 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3280 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3281
3282 wr32(IGC_VLANPQF, vlanpqf);
3283
3284 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3285 prio);
3286 }
3287
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3288 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3289 {
3290 struct igc_hw *hw = &adapter->hw;
3291 int i;
3292
3293 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3294 u32 etqf = rd32(IGC_ETQF(i));
3295
3296 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3297 return i;
3298 }
3299
3300 return -1;
3301 }
3302
3303 /**
3304 * igc_add_etype_filter() - Add ethertype filter
3305 * @adapter: Pointer to adapter where the filter should be added
3306 * @etype: Ethertype value
3307 * @queue: If non-negative, queue assignment feature is enabled and frames
3308 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3309 * assignment is disabled.
3310 *
3311 * Return: 0 in case of success, negative errno code otherwise.
3312 */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3313 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3314 int queue)
3315 {
3316 struct igc_hw *hw = &adapter->hw;
3317 int index;
3318 u32 etqf;
3319
3320 index = igc_get_avail_etype_filter_slot(adapter);
3321 if (index < 0)
3322 return -ENOSPC;
3323
3324 etqf = rd32(IGC_ETQF(index));
3325
3326 etqf &= ~IGC_ETQF_ETYPE_MASK;
3327 etqf |= etype;
3328
3329 if (queue >= 0) {
3330 etqf &= ~IGC_ETQF_QUEUE_MASK;
3331 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3332 etqf |= IGC_ETQF_QUEUE_ENABLE;
3333 }
3334
3335 etqf |= IGC_ETQF_FILTER_ENABLE;
3336
3337 wr32(IGC_ETQF(index), etqf);
3338
3339 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3340 etype, queue);
3341 return 0;
3342 }
3343
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3344 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3345 {
3346 struct igc_hw *hw = &adapter->hw;
3347 int i;
3348
3349 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3350 u32 etqf = rd32(IGC_ETQF(i));
3351
3352 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3353 return i;
3354 }
3355
3356 return -1;
3357 }
3358
3359 /**
3360 * igc_del_etype_filter() - Delete ethertype filter
3361 * @adapter: Pointer to adapter where the filter should be deleted from
3362 * @etype: Ethertype value
3363 */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3364 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3365 {
3366 struct igc_hw *hw = &adapter->hw;
3367 int index;
3368
3369 index = igc_find_etype_filter(adapter, etype);
3370 if (index < 0)
3371 return;
3372
3373 wr32(IGC_ETQF(index), 0);
3374
3375 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3376 etype);
3377 }
3378
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3379 static int igc_flex_filter_select(struct igc_adapter *adapter,
3380 struct igc_flex_filter *input,
3381 u32 *fhft)
3382 {
3383 struct igc_hw *hw = &adapter->hw;
3384 u8 fhft_index;
3385 u32 fhftsl;
3386
3387 if (input->index >= MAX_FLEX_FILTER) {
3388 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3389 return -EINVAL;
3390 }
3391
3392 /* Indirect table select register */
3393 fhftsl = rd32(IGC_FHFTSL);
3394 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3395 switch (input->index) {
3396 case 0 ... 7:
3397 fhftsl |= 0x00;
3398 break;
3399 case 8 ... 15:
3400 fhftsl |= 0x01;
3401 break;
3402 case 16 ... 23:
3403 fhftsl |= 0x02;
3404 break;
3405 case 24 ... 31:
3406 fhftsl |= 0x03;
3407 break;
3408 }
3409 wr32(IGC_FHFTSL, fhftsl);
3410
3411 /* Normalize index down to host table register */
3412 fhft_index = input->index % 8;
3413
3414 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3415 IGC_FHFT_EXT(fhft_index - 4);
3416
3417 return 0;
3418 }
3419
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3420 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3421 struct igc_flex_filter *input)
3422 {
3423 struct device *dev = &adapter->pdev->dev;
3424 struct igc_hw *hw = &adapter->hw;
3425 u8 *data = input->data;
3426 u8 *mask = input->mask;
3427 u32 queuing;
3428 u32 fhft;
3429 u32 wufc;
3430 int ret;
3431 int i;
3432
3433 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3434 * out early to avoid surprises later.
3435 */
3436 if (input->length % 8 != 0) {
3437 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3438 return -EINVAL;
3439 }
3440
3441 /* Select corresponding flex filter register and get base for host table. */
3442 ret = igc_flex_filter_select(adapter, input, &fhft);
3443 if (ret)
3444 return ret;
3445
3446 /* When adding a filter globally disable flex filter feature. That is
3447 * recommended within the datasheet.
3448 */
3449 wufc = rd32(IGC_WUFC);
3450 wufc &= ~IGC_WUFC_FLEX_HQ;
3451 wr32(IGC_WUFC, wufc);
3452
3453 /* Configure filter */
3454 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3455 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3456 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3457
3458 if (input->immediate_irq)
3459 queuing |= IGC_FHFT_IMM_INT;
3460
3461 if (input->drop)
3462 queuing |= IGC_FHFT_DROP;
3463
3464 wr32(fhft + 0xFC, queuing);
3465
3466 /* Write data (128 byte) and mask (128 bit) */
3467 for (i = 0; i < 16; ++i) {
3468 const size_t data_idx = i * 8;
3469 const size_t row_idx = i * 16;
3470 u32 dw0 =
3471 (data[data_idx + 0] << 0) |
3472 (data[data_idx + 1] << 8) |
3473 (data[data_idx + 2] << 16) |
3474 (data[data_idx + 3] << 24);
3475 u32 dw1 =
3476 (data[data_idx + 4] << 0) |
3477 (data[data_idx + 5] << 8) |
3478 (data[data_idx + 6] << 16) |
3479 (data[data_idx + 7] << 24);
3480 u32 tmp;
3481
3482 /* Write row: dw0, dw1 and mask */
3483 wr32(fhft + row_idx, dw0);
3484 wr32(fhft + row_idx + 4, dw1);
3485
3486 /* mask is only valid for MASK(7, 0) */
3487 tmp = rd32(fhft + row_idx + 8);
3488 tmp &= ~GENMASK(7, 0);
3489 tmp |= mask[i];
3490 wr32(fhft + row_idx + 8, tmp);
3491 }
3492
3493 /* Enable filter. */
3494 wufc |= IGC_WUFC_FLEX_HQ;
3495 if (input->index > 8) {
3496 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3497 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3498
3499 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3500
3501 wr32(IGC_WUFC_EXT, wufc_ext);
3502 } else {
3503 wufc |= (IGC_WUFC_FLX0 << input->index);
3504 }
3505 wr32(IGC_WUFC, wufc);
3506
3507 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3508 input->index);
3509
3510 return 0;
3511 }
3512
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3513 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3514 const void *src, unsigned int offset,
3515 size_t len, const void *mask)
3516 {
3517 int i;
3518
3519 /* data */
3520 memcpy(&flex->data[offset], src, len);
3521
3522 /* mask */
3523 for (i = 0; i < len; ++i) {
3524 const unsigned int idx = i + offset;
3525 const u8 *ptr = mask;
3526
3527 if (mask) {
3528 if (ptr[i] & 0xff)
3529 flex->mask[idx / 8] |= BIT(idx % 8);
3530
3531 continue;
3532 }
3533
3534 flex->mask[idx / 8] |= BIT(idx % 8);
3535 }
3536 }
3537
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3538 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3539 {
3540 struct igc_hw *hw = &adapter->hw;
3541 u32 wufc, wufc_ext;
3542 int i;
3543
3544 wufc = rd32(IGC_WUFC);
3545 wufc_ext = rd32(IGC_WUFC_EXT);
3546
3547 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3548 if (i < 8) {
3549 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3550 return i;
3551 } else {
3552 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3553 return i;
3554 }
3555 }
3556
3557 return -ENOSPC;
3558 }
3559
igc_flex_filter_in_use(struct igc_adapter * adapter)3560 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3561 {
3562 struct igc_hw *hw = &adapter->hw;
3563 u32 wufc, wufc_ext;
3564
3565 wufc = rd32(IGC_WUFC);
3566 wufc_ext = rd32(IGC_WUFC_EXT);
3567
3568 if (wufc & IGC_WUFC_FILTER_MASK)
3569 return true;
3570
3571 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3572 return true;
3573
3574 return false;
3575 }
3576
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3577 static int igc_add_flex_filter(struct igc_adapter *adapter,
3578 struct igc_nfc_rule *rule)
3579 {
3580 struct igc_flex_filter flex = { };
3581 struct igc_nfc_filter *filter = &rule->filter;
3582 unsigned int eth_offset, user_offset;
3583 int ret, index;
3584 bool vlan;
3585
3586 index = igc_find_avail_flex_filter_slot(adapter);
3587 if (index < 0)
3588 return -ENOSPC;
3589
3590 /* Construct the flex filter:
3591 * -> dest_mac [6]
3592 * -> src_mac [6]
3593 * -> tpid [2]
3594 * -> vlan tci [2]
3595 * -> ether type [2]
3596 * -> user data [8]
3597 * -> = 26 bytes => 32 length
3598 */
3599 flex.index = index;
3600 flex.length = 32;
3601 flex.rx_queue = rule->action;
3602
3603 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3604 eth_offset = vlan ? 16 : 12;
3605 user_offset = vlan ? 18 : 14;
3606
3607 /* Add destination MAC */
3608 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3609 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3610 ETH_ALEN, NULL);
3611
3612 /* Add source MAC */
3613 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3614 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3615 ETH_ALEN, NULL);
3616
3617 /* Add VLAN etype */
3618 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3619 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3620 sizeof(filter->vlan_etype),
3621 NULL);
3622
3623 /* Add VLAN TCI */
3624 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3625 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3626 sizeof(filter->vlan_tci), NULL);
3627
3628 /* Add Ether type */
3629 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3630 __be16 etype = cpu_to_be16(filter->etype);
3631
3632 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3633 sizeof(etype), NULL);
3634 }
3635
3636 /* Add user data */
3637 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3638 igc_flex_filter_add_field(&flex, &filter->user_data,
3639 user_offset,
3640 sizeof(filter->user_data),
3641 filter->user_mask);
3642
3643 /* Add it down to the hardware and enable it. */
3644 ret = igc_write_flex_filter_ll(adapter, &flex);
3645 if (ret)
3646 return ret;
3647
3648 filter->flex_index = index;
3649
3650 return 0;
3651 }
3652
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3653 static void igc_del_flex_filter(struct igc_adapter *adapter,
3654 u16 reg_index)
3655 {
3656 struct igc_hw *hw = &adapter->hw;
3657 u32 wufc;
3658
3659 /* Just disable the filter. The filter table itself is kept
3660 * intact. Another flex_filter_add() should override the "old" data
3661 * then.
3662 */
3663 if (reg_index > 8) {
3664 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3665
3666 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3667 wr32(IGC_WUFC_EXT, wufc_ext);
3668 } else {
3669 wufc = rd32(IGC_WUFC);
3670
3671 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3672 wr32(IGC_WUFC, wufc);
3673 }
3674
3675 if (igc_flex_filter_in_use(adapter))
3676 return;
3677
3678 /* No filters are in use, we may disable flex filters */
3679 wufc = rd32(IGC_WUFC);
3680 wufc &= ~IGC_WUFC_FLEX_HQ;
3681 wr32(IGC_WUFC, wufc);
3682 }
3683
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3684 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3685 struct igc_nfc_rule *rule)
3686 {
3687 int err;
3688
3689 if (rule->flex) {
3690 return igc_add_flex_filter(adapter, rule);
3691 }
3692
3693 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3694 err = igc_add_etype_filter(adapter, rule->filter.etype,
3695 rule->action);
3696 if (err)
3697 return err;
3698 }
3699
3700 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3701 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3702 rule->filter.src_addr, rule->action);
3703 if (err)
3704 return err;
3705 }
3706
3707 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3708 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3709 rule->filter.dst_addr, rule->action);
3710 if (err)
3711 return err;
3712 }
3713
3714 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3715 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3716 VLAN_PRIO_SHIFT;
3717
3718 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3719 if (err)
3720 return err;
3721 }
3722
3723 return 0;
3724 }
3725
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3726 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3727 const struct igc_nfc_rule *rule)
3728 {
3729 if (rule->flex) {
3730 igc_del_flex_filter(adapter, rule->filter.flex_index);
3731 return;
3732 }
3733
3734 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3735 igc_del_etype_filter(adapter, rule->filter.etype);
3736
3737 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3738 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3739 VLAN_PRIO_SHIFT;
3740
3741 igc_del_vlan_prio_filter(adapter, prio);
3742 }
3743
3744 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3745 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3746 rule->filter.src_addr);
3747
3748 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3749 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3750 rule->filter.dst_addr);
3751 }
3752
3753 /**
3754 * igc_get_nfc_rule() - Get NFC rule
3755 * @adapter: Pointer to adapter
3756 * @location: Rule location
3757 *
3758 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3759 *
3760 * Return: Pointer to NFC rule at @location. If not found, NULL.
3761 */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3762 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3763 u32 location)
3764 {
3765 struct igc_nfc_rule *rule;
3766
3767 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3768 if (rule->location == location)
3769 return rule;
3770 if (rule->location > location)
3771 break;
3772 }
3773
3774 return NULL;
3775 }
3776
3777 /**
3778 * igc_del_nfc_rule() - Delete NFC rule
3779 * @adapter: Pointer to adapter
3780 * @rule: Pointer to rule to be deleted
3781 *
3782 * Disable NFC rule in hardware and delete it from adapter.
3783 *
3784 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3785 */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3786 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3787 {
3788 igc_disable_nfc_rule(adapter, rule);
3789
3790 list_del(&rule->list);
3791 adapter->nfc_rule_count--;
3792
3793 kfree(rule);
3794 }
3795
igc_flush_nfc_rules(struct igc_adapter * adapter)3796 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3797 {
3798 struct igc_nfc_rule *rule, *tmp;
3799
3800 mutex_lock(&adapter->nfc_rule_lock);
3801
3802 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3803 igc_del_nfc_rule(adapter, rule);
3804
3805 mutex_unlock(&adapter->nfc_rule_lock);
3806 }
3807
3808 /**
3809 * igc_add_nfc_rule() - Add NFC rule
3810 * @adapter: Pointer to adapter
3811 * @rule: Pointer to rule to be added
3812 *
3813 * Enable NFC rule in hardware and add it to adapter.
3814 *
3815 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3816 *
3817 * Return: 0 on success, negative errno on failure.
3818 */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3819 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3820 {
3821 struct igc_nfc_rule *pred, *cur;
3822 int err;
3823
3824 err = igc_enable_nfc_rule(adapter, rule);
3825 if (err)
3826 return err;
3827
3828 pred = NULL;
3829 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3830 if (cur->location >= rule->location)
3831 break;
3832 pred = cur;
3833 }
3834
3835 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3836 adapter->nfc_rule_count++;
3837 return 0;
3838 }
3839
igc_restore_nfc_rules(struct igc_adapter * adapter)3840 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3841 {
3842 struct igc_nfc_rule *rule;
3843
3844 mutex_lock(&adapter->nfc_rule_lock);
3845
3846 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3847 igc_enable_nfc_rule(adapter, rule);
3848
3849 mutex_unlock(&adapter->nfc_rule_lock);
3850 }
3851
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)3852 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3853 {
3854 struct igc_adapter *adapter = netdev_priv(netdev);
3855
3856 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3857 }
3858
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)3859 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3860 {
3861 struct igc_adapter *adapter = netdev_priv(netdev);
3862
3863 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3864 return 0;
3865 }
3866
3867 /**
3868 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3869 * @netdev: network interface device structure
3870 *
3871 * The set_rx_mode entry point is called whenever the unicast or multicast
3872 * address lists or the network interface flags are updated. This routine is
3873 * responsible for configuring the hardware for proper unicast, multicast,
3874 * promiscuous mode, and all-multi behavior.
3875 */
igc_set_rx_mode(struct net_device * netdev)3876 static void igc_set_rx_mode(struct net_device *netdev)
3877 {
3878 struct igc_adapter *adapter = netdev_priv(netdev);
3879 struct igc_hw *hw = &adapter->hw;
3880 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3881 int count;
3882
3883 /* Check for Promiscuous and All Multicast modes */
3884 if (netdev->flags & IFF_PROMISC) {
3885 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3886 } else {
3887 if (netdev->flags & IFF_ALLMULTI) {
3888 rctl |= IGC_RCTL_MPE;
3889 } else {
3890 /* Write addresses to the MTA, if the attempt fails
3891 * then we should just turn on promiscuous mode so
3892 * that we can at least receive multicast traffic
3893 */
3894 count = igc_write_mc_addr_list(netdev);
3895 if (count < 0)
3896 rctl |= IGC_RCTL_MPE;
3897 }
3898 }
3899
3900 /* Write addresses to available RAR registers, if there is not
3901 * sufficient space to store all the addresses then enable
3902 * unicast promiscuous mode
3903 */
3904 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3905 rctl |= IGC_RCTL_UPE;
3906
3907 /* update state of unicast and multicast */
3908 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3909 wr32(IGC_RCTL, rctl);
3910
3911 #if (PAGE_SIZE < 8192)
3912 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3913 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3914 #endif
3915 wr32(IGC_RLPML, rlpml);
3916 }
3917
3918 /**
3919 * igc_configure - configure the hardware for RX and TX
3920 * @adapter: private board structure
3921 */
igc_configure(struct igc_adapter * adapter)3922 static void igc_configure(struct igc_adapter *adapter)
3923 {
3924 struct net_device *netdev = adapter->netdev;
3925 int i = 0;
3926
3927 igc_get_hw_control(adapter);
3928 igc_set_rx_mode(netdev);
3929
3930 igc_restore_vlan(adapter);
3931
3932 igc_setup_tctl(adapter);
3933 igc_setup_mrqc(adapter);
3934 igc_setup_rctl(adapter);
3935
3936 igc_set_default_mac_filter(adapter);
3937 igc_restore_nfc_rules(adapter);
3938
3939 igc_configure_tx(adapter);
3940 igc_configure_rx(adapter);
3941
3942 igc_rx_fifo_flush_base(&adapter->hw);
3943
3944 /* call igc_desc_unused which always leaves
3945 * at least 1 descriptor unused to make sure
3946 * next_to_use != next_to_clean
3947 */
3948 for (i = 0; i < adapter->num_rx_queues; i++) {
3949 struct igc_ring *ring = adapter->rx_ring[i];
3950
3951 if (ring->xsk_pool)
3952 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3953 else
3954 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3955 }
3956 }
3957
3958 /**
3959 * igc_write_ivar - configure ivar for given MSI-X vector
3960 * @hw: pointer to the HW structure
3961 * @msix_vector: vector number we are allocating to a given ring
3962 * @index: row index of IVAR register to write within IVAR table
3963 * @offset: column offset of in IVAR, should be multiple of 8
3964 *
3965 * The IVAR table consists of 2 columns,
3966 * each containing an cause allocation for an Rx and Tx ring, and a
3967 * variable number of rows depending on the number of queues supported.
3968 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)3969 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3970 int index, int offset)
3971 {
3972 u32 ivar = array_rd32(IGC_IVAR0, index);
3973
3974 /* clear any bits that are currently set */
3975 ivar &= ~((u32)0xFF << offset);
3976
3977 /* write vector and valid bit */
3978 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3979
3980 array_wr32(IGC_IVAR0, index, ivar);
3981 }
3982
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)3983 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3984 {
3985 struct igc_adapter *adapter = q_vector->adapter;
3986 struct igc_hw *hw = &adapter->hw;
3987 int rx_queue = IGC_N0_QUEUE;
3988 int tx_queue = IGC_N0_QUEUE;
3989
3990 if (q_vector->rx.ring)
3991 rx_queue = q_vector->rx.ring->reg_idx;
3992 if (q_vector->tx.ring)
3993 tx_queue = q_vector->tx.ring->reg_idx;
3994
3995 switch (hw->mac.type) {
3996 case igc_i225:
3997 if (rx_queue > IGC_N0_QUEUE)
3998 igc_write_ivar(hw, msix_vector,
3999 rx_queue >> 1,
4000 (rx_queue & 0x1) << 4);
4001 if (tx_queue > IGC_N0_QUEUE)
4002 igc_write_ivar(hw, msix_vector,
4003 tx_queue >> 1,
4004 ((tx_queue & 0x1) << 4) + 8);
4005 q_vector->eims_value = BIT(msix_vector);
4006 break;
4007 default:
4008 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4009 break;
4010 }
4011
4012 /* add q_vector eims value to global eims_enable_mask */
4013 adapter->eims_enable_mask |= q_vector->eims_value;
4014
4015 /* configure q_vector to set itr on first interrupt */
4016 q_vector->set_itr = 1;
4017 }
4018
4019 /**
4020 * igc_configure_msix - Configure MSI-X hardware
4021 * @adapter: Pointer to adapter structure
4022 *
4023 * igc_configure_msix sets up the hardware to properly
4024 * generate MSI-X interrupts.
4025 */
igc_configure_msix(struct igc_adapter * adapter)4026 static void igc_configure_msix(struct igc_adapter *adapter)
4027 {
4028 struct igc_hw *hw = &adapter->hw;
4029 int i, vector = 0;
4030 u32 tmp;
4031
4032 adapter->eims_enable_mask = 0;
4033
4034 /* set vector for other causes, i.e. link changes */
4035 switch (hw->mac.type) {
4036 case igc_i225:
4037 /* Turn on MSI-X capability first, or our settings
4038 * won't stick. And it will take days to debug.
4039 */
4040 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4041 IGC_GPIE_PBA | IGC_GPIE_EIAME |
4042 IGC_GPIE_NSICR);
4043
4044 /* enable msix_other interrupt */
4045 adapter->eims_other = BIT(vector);
4046 tmp = (vector++ | IGC_IVAR_VALID) << 8;
4047
4048 wr32(IGC_IVAR_MISC, tmp);
4049 break;
4050 default:
4051 /* do nothing, since nothing else supports MSI-X */
4052 break;
4053 } /* switch (hw->mac.type) */
4054
4055 adapter->eims_enable_mask |= adapter->eims_other;
4056
4057 for (i = 0; i < adapter->num_q_vectors; i++)
4058 igc_assign_vector(adapter->q_vector[i], vector++);
4059
4060 wrfl();
4061 }
4062
4063 /**
4064 * igc_irq_enable - Enable default interrupt generation settings
4065 * @adapter: board private structure
4066 */
igc_irq_enable(struct igc_adapter * adapter)4067 static void igc_irq_enable(struct igc_adapter *adapter)
4068 {
4069 struct igc_hw *hw = &adapter->hw;
4070
4071 if (adapter->msix_entries) {
4072 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4073 u32 regval = rd32(IGC_EIAC);
4074
4075 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4076 regval = rd32(IGC_EIAM);
4077 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4078 wr32(IGC_EIMS, adapter->eims_enable_mask);
4079 wr32(IGC_IMS, ims);
4080 } else {
4081 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4082 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4083 }
4084 }
4085
4086 /**
4087 * igc_irq_disable - Mask off interrupt generation on the NIC
4088 * @adapter: board private structure
4089 */
igc_irq_disable(struct igc_adapter * adapter)4090 static void igc_irq_disable(struct igc_adapter *adapter)
4091 {
4092 struct igc_hw *hw = &adapter->hw;
4093
4094 if (adapter->msix_entries) {
4095 u32 regval = rd32(IGC_EIAM);
4096
4097 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4098 wr32(IGC_EIMC, adapter->eims_enable_mask);
4099 regval = rd32(IGC_EIAC);
4100 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4101 }
4102
4103 wr32(IGC_IAM, 0);
4104 wr32(IGC_IMC, ~0);
4105 wrfl();
4106
4107 if (adapter->msix_entries) {
4108 int vector = 0, i;
4109
4110 synchronize_irq(adapter->msix_entries[vector++].vector);
4111
4112 for (i = 0; i < adapter->num_q_vectors; i++)
4113 synchronize_irq(adapter->msix_entries[vector++].vector);
4114 } else {
4115 synchronize_irq(adapter->pdev->irq);
4116 }
4117 }
4118
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4119 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4120 const u32 max_rss_queues)
4121 {
4122 /* Determine if we need to pair queues. */
4123 /* If rss_queues > half of max_rss_queues, pair the queues in
4124 * order to conserve interrupts due to limited supply.
4125 */
4126 if (adapter->rss_queues > (max_rss_queues / 2))
4127 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4128 else
4129 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4130 }
4131
igc_get_max_rss_queues(struct igc_adapter * adapter)4132 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4133 {
4134 return IGC_MAX_RX_QUEUES;
4135 }
4136
igc_init_queue_configuration(struct igc_adapter * adapter)4137 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4138 {
4139 u32 max_rss_queues;
4140
4141 max_rss_queues = igc_get_max_rss_queues(adapter);
4142 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4143
4144 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4145 }
4146
4147 /**
4148 * igc_reset_q_vector - Reset config for interrupt vector
4149 * @adapter: board private structure to initialize
4150 * @v_idx: Index of vector to be reset
4151 *
4152 * If NAPI is enabled it will delete any references to the
4153 * NAPI struct. This is preparation for igc_free_q_vector.
4154 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4155 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4156 {
4157 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4158
4159 /* if we're coming from igc_set_interrupt_capability, the vectors are
4160 * not yet allocated
4161 */
4162 if (!q_vector)
4163 return;
4164
4165 if (q_vector->tx.ring)
4166 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4167
4168 if (q_vector->rx.ring)
4169 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4170
4171 netif_napi_del(&q_vector->napi);
4172 }
4173
4174 /**
4175 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4176 * @adapter: board private structure to initialize
4177 * @v_idx: Index of vector to be freed
4178 *
4179 * This function frees the memory allocated to the q_vector.
4180 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4181 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4182 {
4183 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4184
4185 adapter->q_vector[v_idx] = NULL;
4186
4187 /* igc_get_stats64() might access the rings on this vector,
4188 * we must wait a grace period before freeing it.
4189 */
4190 if (q_vector)
4191 kfree_rcu(q_vector, rcu);
4192 }
4193
4194 /**
4195 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4196 * @adapter: board private structure to initialize
4197 *
4198 * This function frees the memory allocated to the q_vectors. In addition if
4199 * NAPI is enabled it will delete any references to the NAPI struct prior
4200 * to freeing the q_vector.
4201 */
igc_free_q_vectors(struct igc_adapter * adapter)4202 static void igc_free_q_vectors(struct igc_adapter *adapter)
4203 {
4204 int v_idx = adapter->num_q_vectors;
4205
4206 adapter->num_tx_queues = 0;
4207 adapter->num_rx_queues = 0;
4208 adapter->num_q_vectors = 0;
4209
4210 while (v_idx--) {
4211 igc_reset_q_vector(adapter, v_idx);
4212 igc_free_q_vector(adapter, v_idx);
4213 }
4214 }
4215
4216 /**
4217 * igc_update_itr - update the dynamic ITR value based on statistics
4218 * @q_vector: pointer to q_vector
4219 * @ring_container: ring info to update the itr for
4220 *
4221 * Stores a new ITR value based on packets and byte
4222 * counts during the last interrupt. The advantage of per interrupt
4223 * computation is faster updates and more accurate ITR for the current
4224 * traffic pattern. Constants in this function were computed
4225 * based on theoretical maximum wire speed and thresholds were set based
4226 * on testing data as well as attempting to minimize response time
4227 * while increasing bulk throughput.
4228 * NOTE: These calculations are only valid when operating in a single-
4229 * queue environment.
4230 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4231 static void igc_update_itr(struct igc_q_vector *q_vector,
4232 struct igc_ring_container *ring_container)
4233 {
4234 unsigned int packets = ring_container->total_packets;
4235 unsigned int bytes = ring_container->total_bytes;
4236 u8 itrval = ring_container->itr;
4237
4238 /* no packets, exit with status unchanged */
4239 if (packets == 0)
4240 return;
4241
4242 switch (itrval) {
4243 case lowest_latency:
4244 /* handle TSO and jumbo frames */
4245 if (bytes / packets > 8000)
4246 itrval = bulk_latency;
4247 else if ((packets < 5) && (bytes > 512))
4248 itrval = low_latency;
4249 break;
4250 case low_latency: /* 50 usec aka 20000 ints/s */
4251 if (bytes > 10000) {
4252 /* this if handles the TSO accounting */
4253 if (bytes / packets > 8000)
4254 itrval = bulk_latency;
4255 else if ((packets < 10) || ((bytes / packets) > 1200))
4256 itrval = bulk_latency;
4257 else if ((packets > 35))
4258 itrval = lowest_latency;
4259 } else if (bytes / packets > 2000) {
4260 itrval = bulk_latency;
4261 } else if (packets <= 2 && bytes < 512) {
4262 itrval = lowest_latency;
4263 }
4264 break;
4265 case bulk_latency: /* 250 usec aka 4000 ints/s */
4266 if (bytes > 25000) {
4267 if (packets > 35)
4268 itrval = low_latency;
4269 } else if (bytes < 1500) {
4270 itrval = low_latency;
4271 }
4272 break;
4273 }
4274
4275 /* clear work counters since we have the values we need */
4276 ring_container->total_bytes = 0;
4277 ring_container->total_packets = 0;
4278
4279 /* write updated itr to ring container */
4280 ring_container->itr = itrval;
4281 }
4282
igc_set_itr(struct igc_q_vector * q_vector)4283 static void igc_set_itr(struct igc_q_vector *q_vector)
4284 {
4285 struct igc_adapter *adapter = q_vector->adapter;
4286 u32 new_itr = q_vector->itr_val;
4287 u8 current_itr = 0;
4288
4289 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4290 switch (adapter->link_speed) {
4291 case SPEED_10:
4292 case SPEED_100:
4293 current_itr = 0;
4294 new_itr = IGC_4K_ITR;
4295 goto set_itr_now;
4296 default:
4297 break;
4298 }
4299
4300 igc_update_itr(q_vector, &q_vector->tx);
4301 igc_update_itr(q_vector, &q_vector->rx);
4302
4303 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4304
4305 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4306 if (current_itr == lowest_latency &&
4307 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4308 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4309 current_itr = low_latency;
4310
4311 switch (current_itr) {
4312 /* counts and packets in update_itr are dependent on these numbers */
4313 case lowest_latency:
4314 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4315 break;
4316 case low_latency:
4317 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4318 break;
4319 case bulk_latency:
4320 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4321 break;
4322 default:
4323 break;
4324 }
4325
4326 set_itr_now:
4327 if (new_itr != q_vector->itr_val) {
4328 /* this attempts to bias the interrupt rate towards Bulk
4329 * by adding intermediate steps when interrupt rate is
4330 * increasing
4331 */
4332 new_itr = new_itr > q_vector->itr_val ?
4333 max((new_itr * q_vector->itr_val) /
4334 (new_itr + (q_vector->itr_val >> 2)),
4335 new_itr) : new_itr;
4336 /* Don't write the value here; it resets the adapter's
4337 * internal timer, and causes us to delay far longer than
4338 * we should between interrupts. Instead, we write the ITR
4339 * value at the beginning of the next interrupt so the timing
4340 * ends up being correct.
4341 */
4342 q_vector->itr_val = new_itr;
4343 q_vector->set_itr = 1;
4344 }
4345 }
4346
igc_reset_interrupt_capability(struct igc_adapter * adapter)4347 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4348 {
4349 int v_idx = adapter->num_q_vectors;
4350
4351 if (adapter->msix_entries) {
4352 pci_disable_msix(adapter->pdev);
4353 kfree(adapter->msix_entries);
4354 adapter->msix_entries = NULL;
4355 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4356 pci_disable_msi(adapter->pdev);
4357 }
4358
4359 while (v_idx--)
4360 igc_reset_q_vector(adapter, v_idx);
4361 }
4362
4363 /**
4364 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4365 * @adapter: Pointer to adapter structure
4366 * @msix: boolean value for MSI-X capability
4367 *
4368 * Attempt to configure interrupts using the best available
4369 * capabilities of the hardware and kernel.
4370 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4371 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4372 bool msix)
4373 {
4374 int numvecs, i;
4375 int err;
4376
4377 if (!msix)
4378 goto msi_only;
4379 adapter->flags |= IGC_FLAG_HAS_MSIX;
4380
4381 /* Number of supported queues. */
4382 adapter->num_rx_queues = adapter->rss_queues;
4383
4384 adapter->num_tx_queues = adapter->rss_queues;
4385
4386 /* start with one vector for every Rx queue */
4387 numvecs = adapter->num_rx_queues;
4388
4389 /* if Tx handler is separate add 1 for every Tx queue */
4390 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4391 numvecs += adapter->num_tx_queues;
4392
4393 /* store the number of vectors reserved for queues */
4394 adapter->num_q_vectors = numvecs;
4395
4396 /* add 1 vector for link status interrupts */
4397 numvecs++;
4398
4399 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4400 GFP_KERNEL);
4401
4402 if (!adapter->msix_entries)
4403 return;
4404
4405 /* populate entry values */
4406 for (i = 0; i < numvecs; i++)
4407 adapter->msix_entries[i].entry = i;
4408
4409 err = pci_enable_msix_range(adapter->pdev,
4410 adapter->msix_entries,
4411 numvecs,
4412 numvecs);
4413 if (err > 0)
4414 return;
4415
4416 kfree(adapter->msix_entries);
4417 adapter->msix_entries = NULL;
4418
4419 igc_reset_interrupt_capability(adapter);
4420
4421 msi_only:
4422 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4423
4424 adapter->rss_queues = 1;
4425 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4426 adapter->num_rx_queues = 1;
4427 adapter->num_tx_queues = 1;
4428 adapter->num_q_vectors = 1;
4429 if (!pci_enable_msi(adapter->pdev))
4430 adapter->flags |= IGC_FLAG_HAS_MSI;
4431 }
4432
4433 /**
4434 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4435 * @q_vector: pointer to q_vector
4436 *
4437 * Stores a new ITR value based on strictly on packet size. This
4438 * algorithm is less sophisticated than that used in igc_update_itr,
4439 * due to the difficulty of synchronizing statistics across multiple
4440 * receive rings. The divisors and thresholds used by this function
4441 * were determined based on theoretical maximum wire speed and testing
4442 * data, in order to minimize response time while increasing bulk
4443 * throughput.
4444 * NOTE: This function is called only when operating in a multiqueue
4445 * receive environment.
4446 */
igc_update_ring_itr(struct igc_q_vector * q_vector)4447 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4448 {
4449 struct igc_adapter *adapter = q_vector->adapter;
4450 int new_val = q_vector->itr_val;
4451 int avg_wire_size = 0;
4452 unsigned int packets;
4453
4454 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4455 * ints/sec - ITR timer value of 120 ticks.
4456 */
4457 switch (adapter->link_speed) {
4458 case SPEED_10:
4459 case SPEED_100:
4460 new_val = IGC_4K_ITR;
4461 goto set_itr_val;
4462 default:
4463 break;
4464 }
4465
4466 packets = q_vector->rx.total_packets;
4467 if (packets)
4468 avg_wire_size = q_vector->rx.total_bytes / packets;
4469
4470 packets = q_vector->tx.total_packets;
4471 if (packets)
4472 avg_wire_size = max_t(u32, avg_wire_size,
4473 q_vector->tx.total_bytes / packets);
4474
4475 /* if avg_wire_size isn't set no work was done */
4476 if (!avg_wire_size)
4477 goto clear_counts;
4478
4479 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4480 avg_wire_size += 24;
4481
4482 /* Don't starve jumbo frames */
4483 avg_wire_size = min(avg_wire_size, 3000);
4484
4485 /* Give a little boost to mid-size frames */
4486 if (avg_wire_size > 300 && avg_wire_size < 1200)
4487 new_val = avg_wire_size / 3;
4488 else
4489 new_val = avg_wire_size / 2;
4490
4491 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4492 if (new_val < IGC_20K_ITR &&
4493 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4494 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4495 new_val = IGC_20K_ITR;
4496
4497 set_itr_val:
4498 if (new_val != q_vector->itr_val) {
4499 q_vector->itr_val = new_val;
4500 q_vector->set_itr = 1;
4501 }
4502 clear_counts:
4503 q_vector->rx.total_bytes = 0;
4504 q_vector->rx.total_packets = 0;
4505 q_vector->tx.total_bytes = 0;
4506 q_vector->tx.total_packets = 0;
4507 }
4508
igc_ring_irq_enable(struct igc_q_vector * q_vector)4509 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4510 {
4511 struct igc_adapter *adapter = q_vector->adapter;
4512 struct igc_hw *hw = &adapter->hw;
4513
4514 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4515 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4516 if (adapter->num_q_vectors == 1)
4517 igc_set_itr(q_vector);
4518 else
4519 igc_update_ring_itr(q_vector);
4520 }
4521
4522 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4523 if (adapter->msix_entries)
4524 wr32(IGC_EIMS, q_vector->eims_value);
4525 else
4526 igc_irq_enable(adapter);
4527 }
4528 }
4529
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4530 static void igc_add_ring(struct igc_ring *ring,
4531 struct igc_ring_container *head)
4532 {
4533 head->ring = ring;
4534 head->count++;
4535 }
4536
4537 /**
4538 * igc_cache_ring_register - Descriptor ring to register mapping
4539 * @adapter: board private structure to initialize
4540 *
4541 * Once we know the feature-set enabled for the device, we'll cache
4542 * the register offset the descriptor ring is assigned to.
4543 */
igc_cache_ring_register(struct igc_adapter * adapter)4544 static void igc_cache_ring_register(struct igc_adapter *adapter)
4545 {
4546 int i = 0, j = 0;
4547
4548 switch (adapter->hw.mac.type) {
4549 case igc_i225:
4550 default:
4551 for (; i < adapter->num_rx_queues; i++)
4552 adapter->rx_ring[i]->reg_idx = i;
4553 for (; j < adapter->num_tx_queues; j++)
4554 adapter->tx_ring[j]->reg_idx = j;
4555 break;
4556 }
4557 }
4558
4559 /**
4560 * igc_poll - NAPI Rx polling callback
4561 * @napi: napi polling structure
4562 * @budget: count of how many packets we should handle
4563 */
igc_poll(struct napi_struct * napi,int budget)4564 static int igc_poll(struct napi_struct *napi, int budget)
4565 {
4566 struct igc_q_vector *q_vector = container_of(napi,
4567 struct igc_q_vector,
4568 napi);
4569 struct igc_ring *rx_ring = q_vector->rx.ring;
4570 bool clean_complete = true;
4571 int work_done = 0;
4572
4573 if (q_vector->tx.ring)
4574 clean_complete = igc_clean_tx_irq(q_vector, budget);
4575
4576 if (rx_ring) {
4577 int cleaned = rx_ring->xsk_pool ?
4578 igc_clean_rx_irq_zc(q_vector, budget) :
4579 igc_clean_rx_irq(q_vector, budget);
4580
4581 work_done += cleaned;
4582 if (cleaned >= budget)
4583 clean_complete = false;
4584 }
4585
4586 /* If all work not completed, return budget and keep polling */
4587 if (!clean_complete)
4588 return budget;
4589
4590 /* Exit the polling mode, but don't re-enable interrupts if stack might
4591 * poll us due to busy-polling
4592 */
4593 if (likely(napi_complete_done(napi, work_done)))
4594 igc_ring_irq_enable(q_vector);
4595
4596 return min(work_done, budget - 1);
4597 }
4598
4599 /**
4600 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4601 * @adapter: board private structure to initialize
4602 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4603 * @v_idx: index of vector in adapter struct
4604 * @txr_count: total number of Tx rings to allocate
4605 * @txr_idx: index of first Tx ring to allocate
4606 * @rxr_count: total number of Rx rings to allocate
4607 * @rxr_idx: index of first Rx ring to allocate
4608 *
4609 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4610 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4611 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4612 unsigned int v_count, unsigned int v_idx,
4613 unsigned int txr_count, unsigned int txr_idx,
4614 unsigned int rxr_count, unsigned int rxr_idx)
4615 {
4616 struct igc_q_vector *q_vector;
4617 struct igc_ring *ring;
4618 int ring_count;
4619
4620 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4621 if (txr_count > 1 || rxr_count > 1)
4622 return -ENOMEM;
4623
4624 ring_count = txr_count + rxr_count;
4625
4626 /* allocate q_vector and rings */
4627 q_vector = adapter->q_vector[v_idx];
4628 if (!q_vector)
4629 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4630 GFP_KERNEL);
4631 else
4632 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4633 if (!q_vector)
4634 return -ENOMEM;
4635
4636 /* initialize NAPI */
4637 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4638
4639 /* tie q_vector and adapter together */
4640 adapter->q_vector[v_idx] = q_vector;
4641 q_vector->adapter = adapter;
4642
4643 /* initialize work limits */
4644 q_vector->tx.work_limit = adapter->tx_work_limit;
4645
4646 /* initialize ITR configuration */
4647 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4648 q_vector->itr_val = IGC_START_ITR;
4649
4650 /* initialize pointer to rings */
4651 ring = q_vector->ring;
4652
4653 /* initialize ITR */
4654 if (rxr_count) {
4655 /* rx or rx/tx vector */
4656 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4657 q_vector->itr_val = adapter->rx_itr_setting;
4658 } else {
4659 /* tx only vector */
4660 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4661 q_vector->itr_val = adapter->tx_itr_setting;
4662 }
4663
4664 if (txr_count) {
4665 /* assign generic ring traits */
4666 ring->dev = &adapter->pdev->dev;
4667 ring->netdev = adapter->netdev;
4668
4669 /* configure backlink on ring */
4670 ring->q_vector = q_vector;
4671
4672 /* update q_vector Tx values */
4673 igc_add_ring(ring, &q_vector->tx);
4674
4675 /* apply Tx specific ring traits */
4676 ring->count = adapter->tx_ring_count;
4677 ring->queue_index = txr_idx;
4678
4679 /* assign ring to adapter */
4680 adapter->tx_ring[txr_idx] = ring;
4681
4682 /* push pointer to next ring */
4683 ring++;
4684 }
4685
4686 if (rxr_count) {
4687 /* assign generic ring traits */
4688 ring->dev = &adapter->pdev->dev;
4689 ring->netdev = adapter->netdev;
4690
4691 /* configure backlink on ring */
4692 ring->q_vector = q_vector;
4693
4694 /* update q_vector Rx values */
4695 igc_add_ring(ring, &q_vector->rx);
4696
4697 /* apply Rx specific ring traits */
4698 ring->count = adapter->rx_ring_count;
4699 ring->queue_index = rxr_idx;
4700
4701 /* assign ring to adapter */
4702 adapter->rx_ring[rxr_idx] = ring;
4703 }
4704
4705 return 0;
4706 }
4707
4708 /**
4709 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4710 * @adapter: board private structure to initialize
4711 *
4712 * We allocate one q_vector per queue interrupt. If allocation fails we
4713 * return -ENOMEM.
4714 */
igc_alloc_q_vectors(struct igc_adapter * adapter)4715 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4716 {
4717 int rxr_remaining = adapter->num_rx_queues;
4718 int txr_remaining = adapter->num_tx_queues;
4719 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4720 int q_vectors = adapter->num_q_vectors;
4721 int err;
4722
4723 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4724 for (; rxr_remaining; v_idx++) {
4725 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4726 0, 0, 1, rxr_idx);
4727
4728 if (err)
4729 goto err_out;
4730
4731 /* update counts and index */
4732 rxr_remaining--;
4733 rxr_idx++;
4734 }
4735 }
4736
4737 for (; v_idx < q_vectors; v_idx++) {
4738 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4739 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4740
4741 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4742 tqpv, txr_idx, rqpv, rxr_idx);
4743
4744 if (err)
4745 goto err_out;
4746
4747 /* update counts and index */
4748 rxr_remaining -= rqpv;
4749 txr_remaining -= tqpv;
4750 rxr_idx++;
4751 txr_idx++;
4752 }
4753
4754 return 0;
4755
4756 err_out:
4757 adapter->num_tx_queues = 0;
4758 adapter->num_rx_queues = 0;
4759 adapter->num_q_vectors = 0;
4760
4761 while (v_idx--)
4762 igc_free_q_vector(adapter, v_idx);
4763
4764 return -ENOMEM;
4765 }
4766
4767 /**
4768 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4769 * @adapter: Pointer to adapter structure
4770 * @msix: boolean for MSI-X capability
4771 *
4772 * This function initializes the interrupts and allocates all of the queues.
4773 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4774 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4775 {
4776 struct net_device *dev = adapter->netdev;
4777 int err = 0;
4778
4779 igc_set_interrupt_capability(adapter, msix);
4780
4781 err = igc_alloc_q_vectors(adapter);
4782 if (err) {
4783 netdev_err(dev, "Unable to allocate memory for vectors\n");
4784 goto err_alloc_q_vectors;
4785 }
4786
4787 igc_cache_ring_register(adapter);
4788
4789 return 0;
4790
4791 err_alloc_q_vectors:
4792 igc_reset_interrupt_capability(adapter);
4793 return err;
4794 }
4795
4796 /**
4797 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4798 * @adapter: board private structure to initialize
4799 *
4800 * igc_sw_init initializes the Adapter private data structure.
4801 * Fields are initialized based on PCI device information and
4802 * OS network device settings (MTU size).
4803 */
igc_sw_init(struct igc_adapter * adapter)4804 static int igc_sw_init(struct igc_adapter *adapter)
4805 {
4806 struct net_device *netdev = adapter->netdev;
4807 struct pci_dev *pdev = adapter->pdev;
4808 struct igc_hw *hw = &adapter->hw;
4809
4810 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4811
4812 /* set default ring sizes */
4813 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4814 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4815
4816 /* set default ITR values */
4817 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4818 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4819
4820 /* set default work limits */
4821 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4822
4823 /* adjust max frame to be at least the size of a standard frame */
4824 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4825 VLAN_HLEN;
4826 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4827
4828 mutex_init(&adapter->nfc_rule_lock);
4829 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4830 adapter->nfc_rule_count = 0;
4831
4832 spin_lock_init(&adapter->stats64_lock);
4833 spin_lock_init(&adapter->qbv_tx_lock);
4834 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4835 adapter->flags |= IGC_FLAG_HAS_MSIX;
4836
4837 igc_init_queue_configuration(adapter);
4838
4839 /* This call may decrease the number of queues */
4840 if (igc_init_interrupt_scheme(adapter, true)) {
4841 netdev_err(netdev, "Unable to allocate memory for queues\n");
4842 return -ENOMEM;
4843 }
4844
4845 /* Explicitly disable IRQ since the NIC can be in any state. */
4846 igc_irq_disable(adapter);
4847
4848 set_bit(__IGC_DOWN, &adapter->state);
4849
4850 return 0;
4851 }
4852
4853 /**
4854 * igc_up - Open the interface and prepare it to handle traffic
4855 * @adapter: board private structure
4856 */
igc_up(struct igc_adapter * adapter)4857 void igc_up(struct igc_adapter *adapter)
4858 {
4859 struct igc_hw *hw = &adapter->hw;
4860 int i = 0;
4861
4862 /* hardware has been reset, we need to reload some things */
4863 igc_configure(adapter);
4864
4865 clear_bit(__IGC_DOWN, &adapter->state);
4866
4867 for (i = 0; i < adapter->num_q_vectors; i++)
4868 napi_enable(&adapter->q_vector[i]->napi);
4869
4870 if (adapter->msix_entries)
4871 igc_configure_msix(adapter);
4872 else
4873 igc_assign_vector(adapter->q_vector[0], 0);
4874
4875 /* Clear any pending interrupts. */
4876 rd32(IGC_ICR);
4877 igc_irq_enable(adapter);
4878
4879 netif_tx_start_all_queues(adapter->netdev);
4880
4881 /* start the watchdog. */
4882 hw->mac.get_link_status = true;
4883 schedule_work(&adapter->watchdog_task);
4884 }
4885
4886 /**
4887 * igc_update_stats - Update the board statistics counters
4888 * @adapter: board private structure
4889 */
igc_update_stats(struct igc_adapter * adapter)4890 void igc_update_stats(struct igc_adapter *adapter)
4891 {
4892 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4893 struct pci_dev *pdev = adapter->pdev;
4894 struct igc_hw *hw = &adapter->hw;
4895 u64 _bytes, _packets;
4896 u64 bytes, packets;
4897 unsigned int start;
4898 u32 mpc;
4899 int i;
4900
4901 /* Prevent stats update while adapter is being reset, or if the pci
4902 * connection is down.
4903 */
4904 if (adapter->link_speed == 0)
4905 return;
4906 if (pci_channel_offline(pdev))
4907 return;
4908
4909 packets = 0;
4910 bytes = 0;
4911
4912 rcu_read_lock();
4913 for (i = 0; i < adapter->num_rx_queues; i++) {
4914 struct igc_ring *ring = adapter->rx_ring[i];
4915 u32 rqdpc = rd32(IGC_RQDPC(i));
4916
4917 if (hw->mac.type >= igc_i225)
4918 wr32(IGC_RQDPC(i), 0);
4919
4920 if (rqdpc) {
4921 ring->rx_stats.drops += rqdpc;
4922 net_stats->rx_fifo_errors += rqdpc;
4923 }
4924
4925 do {
4926 start = u64_stats_fetch_begin(&ring->rx_syncp);
4927 _bytes = ring->rx_stats.bytes;
4928 _packets = ring->rx_stats.packets;
4929 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
4930 bytes += _bytes;
4931 packets += _packets;
4932 }
4933
4934 net_stats->rx_bytes = bytes;
4935 net_stats->rx_packets = packets;
4936
4937 packets = 0;
4938 bytes = 0;
4939 for (i = 0; i < adapter->num_tx_queues; i++) {
4940 struct igc_ring *ring = adapter->tx_ring[i];
4941
4942 do {
4943 start = u64_stats_fetch_begin(&ring->tx_syncp);
4944 _bytes = ring->tx_stats.bytes;
4945 _packets = ring->tx_stats.packets;
4946 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
4947 bytes += _bytes;
4948 packets += _packets;
4949 }
4950 net_stats->tx_bytes = bytes;
4951 net_stats->tx_packets = packets;
4952 rcu_read_unlock();
4953
4954 /* read stats registers */
4955 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4956 adapter->stats.gprc += rd32(IGC_GPRC);
4957 adapter->stats.gorc += rd32(IGC_GORCL);
4958 rd32(IGC_GORCH); /* clear GORCL */
4959 adapter->stats.bprc += rd32(IGC_BPRC);
4960 adapter->stats.mprc += rd32(IGC_MPRC);
4961 adapter->stats.roc += rd32(IGC_ROC);
4962
4963 adapter->stats.prc64 += rd32(IGC_PRC64);
4964 adapter->stats.prc127 += rd32(IGC_PRC127);
4965 adapter->stats.prc255 += rd32(IGC_PRC255);
4966 adapter->stats.prc511 += rd32(IGC_PRC511);
4967 adapter->stats.prc1023 += rd32(IGC_PRC1023);
4968 adapter->stats.prc1522 += rd32(IGC_PRC1522);
4969 adapter->stats.tlpic += rd32(IGC_TLPIC);
4970 adapter->stats.rlpic += rd32(IGC_RLPIC);
4971 adapter->stats.hgptc += rd32(IGC_HGPTC);
4972
4973 mpc = rd32(IGC_MPC);
4974 adapter->stats.mpc += mpc;
4975 net_stats->rx_fifo_errors += mpc;
4976 adapter->stats.scc += rd32(IGC_SCC);
4977 adapter->stats.ecol += rd32(IGC_ECOL);
4978 adapter->stats.mcc += rd32(IGC_MCC);
4979 adapter->stats.latecol += rd32(IGC_LATECOL);
4980 adapter->stats.dc += rd32(IGC_DC);
4981 adapter->stats.rlec += rd32(IGC_RLEC);
4982 adapter->stats.xonrxc += rd32(IGC_XONRXC);
4983 adapter->stats.xontxc += rd32(IGC_XONTXC);
4984 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4985 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4986 adapter->stats.fcruc += rd32(IGC_FCRUC);
4987 adapter->stats.gptc += rd32(IGC_GPTC);
4988 adapter->stats.gotc += rd32(IGC_GOTCL);
4989 rd32(IGC_GOTCH); /* clear GOTCL */
4990 adapter->stats.rnbc += rd32(IGC_RNBC);
4991 adapter->stats.ruc += rd32(IGC_RUC);
4992 adapter->stats.rfc += rd32(IGC_RFC);
4993 adapter->stats.rjc += rd32(IGC_RJC);
4994 adapter->stats.tor += rd32(IGC_TORH);
4995 adapter->stats.tot += rd32(IGC_TOTH);
4996 adapter->stats.tpr += rd32(IGC_TPR);
4997
4998 adapter->stats.ptc64 += rd32(IGC_PTC64);
4999 adapter->stats.ptc127 += rd32(IGC_PTC127);
5000 adapter->stats.ptc255 += rd32(IGC_PTC255);
5001 adapter->stats.ptc511 += rd32(IGC_PTC511);
5002 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5003 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5004
5005 adapter->stats.mptc += rd32(IGC_MPTC);
5006 adapter->stats.bptc += rd32(IGC_BPTC);
5007
5008 adapter->stats.tpt += rd32(IGC_TPT);
5009 adapter->stats.colc += rd32(IGC_COLC);
5010 adapter->stats.colc += rd32(IGC_RERC);
5011
5012 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5013
5014 adapter->stats.tsctc += rd32(IGC_TSCTC);
5015
5016 adapter->stats.iac += rd32(IGC_IAC);
5017
5018 /* Fill out the OS statistics structure */
5019 net_stats->multicast = adapter->stats.mprc;
5020 net_stats->collisions = adapter->stats.colc;
5021
5022 /* Rx Errors */
5023
5024 /* RLEC on some newer hardware can be incorrect so build
5025 * our own version based on RUC and ROC
5026 */
5027 net_stats->rx_errors = adapter->stats.rxerrc +
5028 adapter->stats.crcerrs + adapter->stats.algnerrc +
5029 adapter->stats.ruc + adapter->stats.roc +
5030 adapter->stats.cexterr;
5031 net_stats->rx_length_errors = adapter->stats.ruc +
5032 adapter->stats.roc;
5033 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5034 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5035 net_stats->rx_missed_errors = adapter->stats.mpc;
5036
5037 /* Tx Errors */
5038 net_stats->tx_errors = adapter->stats.ecol +
5039 adapter->stats.latecol;
5040 net_stats->tx_aborted_errors = adapter->stats.ecol;
5041 net_stats->tx_window_errors = adapter->stats.latecol;
5042 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5043
5044 /* Tx Dropped */
5045 net_stats->tx_dropped = adapter->stats.txdrop;
5046
5047 /* Management Stats */
5048 adapter->stats.mgptc += rd32(IGC_MGTPTC);
5049 adapter->stats.mgprc += rd32(IGC_MGTPRC);
5050 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5051 }
5052
5053 /**
5054 * igc_down - Close the interface
5055 * @adapter: board private structure
5056 */
igc_down(struct igc_adapter * adapter)5057 void igc_down(struct igc_adapter *adapter)
5058 {
5059 struct net_device *netdev = adapter->netdev;
5060 struct igc_hw *hw = &adapter->hw;
5061 u32 tctl, rctl;
5062 int i = 0;
5063
5064 set_bit(__IGC_DOWN, &adapter->state);
5065
5066 igc_ptp_suspend(adapter);
5067
5068 if (pci_device_is_present(adapter->pdev)) {
5069 /* disable receives in the hardware */
5070 rctl = rd32(IGC_RCTL);
5071 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5072 /* flush and sleep below */
5073 }
5074 /* set trans_start so we don't get spurious watchdogs during reset */
5075 netif_trans_update(netdev);
5076
5077 netif_carrier_off(netdev);
5078 netif_tx_stop_all_queues(netdev);
5079
5080 if (pci_device_is_present(adapter->pdev)) {
5081 /* disable transmits in the hardware */
5082 tctl = rd32(IGC_TCTL);
5083 tctl &= ~IGC_TCTL_EN;
5084 wr32(IGC_TCTL, tctl);
5085 /* flush both disables and wait for them to finish */
5086 wrfl();
5087 usleep_range(10000, 20000);
5088
5089 igc_irq_disable(adapter);
5090 }
5091
5092 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5093
5094 for (i = 0; i < adapter->num_q_vectors; i++) {
5095 if (adapter->q_vector[i]) {
5096 napi_synchronize(&adapter->q_vector[i]->napi);
5097 napi_disable(&adapter->q_vector[i]->napi);
5098 }
5099 }
5100
5101 del_timer_sync(&adapter->watchdog_timer);
5102 del_timer_sync(&adapter->phy_info_timer);
5103
5104 /* record the stats before reset*/
5105 spin_lock(&adapter->stats64_lock);
5106 igc_update_stats(adapter);
5107 spin_unlock(&adapter->stats64_lock);
5108
5109 adapter->link_speed = 0;
5110 adapter->link_duplex = 0;
5111
5112 if (!pci_channel_offline(adapter->pdev))
5113 igc_reset(adapter);
5114
5115 /* clear VLAN promisc flag so VFTA will be updated if necessary */
5116 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5117
5118 igc_disable_all_tx_rings_hw(adapter);
5119 igc_clean_all_tx_rings(adapter);
5120 igc_clean_all_rx_rings(adapter);
5121 }
5122
igc_reinit_locked(struct igc_adapter * adapter)5123 void igc_reinit_locked(struct igc_adapter *adapter)
5124 {
5125 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5126 usleep_range(1000, 2000);
5127 igc_down(adapter);
5128 igc_up(adapter);
5129 clear_bit(__IGC_RESETTING, &adapter->state);
5130 }
5131
igc_reset_task(struct work_struct * work)5132 static void igc_reset_task(struct work_struct *work)
5133 {
5134 struct igc_adapter *adapter;
5135
5136 adapter = container_of(work, struct igc_adapter, reset_task);
5137
5138 rtnl_lock();
5139 /* If we're already down or resetting, just bail */
5140 if (test_bit(__IGC_DOWN, &adapter->state) ||
5141 test_bit(__IGC_RESETTING, &adapter->state)) {
5142 rtnl_unlock();
5143 return;
5144 }
5145
5146 igc_rings_dump(adapter);
5147 igc_regs_dump(adapter);
5148 netdev_err(adapter->netdev, "Reset adapter\n");
5149 igc_reinit_locked(adapter);
5150 rtnl_unlock();
5151 }
5152
5153 /**
5154 * igc_change_mtu - Change the Maximum Transfer Unit
5155 * @netdev: network interface device structure
5156 * @new_mtu: new value for maximum frame size
5157 *
5158 * Returns 0 on success, negative on failure
5159 */
igc_change_mtu(struct net_device * netdev,int new_mtu)5160 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5161 {
5162 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5163 struct igc_adapter *adapter = netdev_priv(netdev);
5164
5165 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5166 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5167 return -EINVAL;
5168 }
5169
5170 /* adjust max frame to be at least the size of a standard frame */
5171 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5172 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5173
5174 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5175 usleep_range(1000, 2000);
5176
5177 /* igc_down has a dependency on max_frame_size */
5178 adapter->max_frame_size = max_frame;
5179
5180 if (netif_running(netdev))
5181 igc_down(adapter);
5182
5183 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5184 netdev->mtu = new_mtu;
5185
5186 if (netif_running(netdev))
5187 igc_up(adapter);
5188 else
5189 igc_reset(adapter);
5190
5191 clear_bit(__IGC_RESETTING, &adapter->state);
5192
5193 return 0;
5194 }
5195
5196 /**
5197 * igc_tx_timeout - Respond to a Tx Hang
5198 * @netdev: network interface device structure
5199 * @txqueue: queue number that timed out
5200 **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5201 static void igc_tx_timeout(struct net_device *netdev,
5202 unsigned int __always_unused txqueue)
5203 {
5204 struct igc_adapter *adapter = netdev_priv(netdev);
5205 struct igc_hw *hw = &adapter->hw;
5206
5207 /* Do the reset outside of interrupt context */
5208 adapter->tx_timeout_count++;
5209 schedule_work(&adapter->reset_task);
5210 wr32(IGC_EICS,
5211 (adapter->eims_enable_mask & ~adapter->eims_other));
5212 }
5213
5214 /**
5215 * igc_get_stats64 - Get System Network Statistics
5216 * @netdev: network interface device structure
5217 * @stats: rtnl_link_stats64 pointer
5218 *
5219 * Returns the address of the device statistics structure.
5220 * The statistics are updated here and also from the timer callback.
5221 */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5222 static void igc_get_stats64(struct net_device *netdev,
5223 struct rtnl_link_stats64 *stats)
5224 {
5225 struct igc_adapter *adapter = netdev_priv(netdev);
5226
5227 spin_lock(&adapter->stats64_lock);
5228 if (!test_bit(__IGC_RESETTING, &adapter->state))
5229 igc_update_stats(adapter);
5230 memcpy(stats, &adapter->stats64, sizeof(*stats));
5231 spin_unlock(&adapter->stats64_lock);
5232 }
5233
igc_fix_features(struct net_device * netdev,netdev_features_t features)5234 static netdev_features_t igc_fix_features(struct net_device *netdev,
5235 netdev_features_t features)
5236 {
5237 /* Since there is no support for separate Rx/Tx vlan accel
5238 * enable/disable make sure Tx flag is always in same state as Rx.
5239 */
5240 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5241 features |= NETIF_F_HW_VLAN_CTAG_TX;
5242 else
5243 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5244
5245 return features;
5246 }
5247
igc_set_features(struct net_device * netdev,netdev_features_t features)5248 static int igc_set_features(struct net_device *netdev,
5249 netdev_features_t features)
5250 {
5251 netdev_features_t changed = netdev->features ^ features;
5252 struct igc_adapter *adapter = netdev_priv(netdev);
5253
5254 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5255 igc_vlan_mode(netdev, features);
5256
5257 /* Add VLAN support */
5258 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5259 return 0;
5260
5261 if (!(features & NETIF_F_NTUPLE))
5262 igc_flush_nfc_rules(adapter);
5263
5264 netdev->features = features;
5265
5266 if (netif_running(netdev))
5267 igc_reinit_locked(adapter);
5268 else
5269 igc_reset(adapter);
5270
5271 return 1;
5272 }
5273
5274 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5275 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5276 netdev_features_t features)
5277 {
5278 unsigned int network_hdr_len, mac_hdr_len;
5279
5280 /* Make certain the headers can be described by a context descriptor */
5281 mac_hdr_len = skb_network_header(skb) - skb->data;
5282 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5283 return features & ~(NETIF_F_HW_CSUM |
5284 NETIF_F_SCTP_CRC |
5285 NETIF_F_HW_VLAN_CTAG_TX |
5286 NETIF_F_TSO |
5287 NETIF_F_TSO6);
5288
5289 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5290 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
5291 return features & ~(NETIF_F_HW_CSUM |
5292 NETIF_F_SCTP_CRC |
5293 NETIF_F_TSO |
5294 NETIF_F_TSO6);
5295
5296 /* We can only support IPv4 TSO in tunnels if we can mangle the
5297 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5298 */
5299 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5300 features &= ~NETIF_F_TSO;
5301
5302 return features;
5303 }
5304
igc_tsync_interrupt(struct igc_adapter * adapter)5305 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5306 {
5307 u32 ack, tsauxc, sec, nsec, tsicr;
5308 struct igc_hw *hw = &adapter->hw;
5309 struct ptp_clock_event event;
5310 struct timespec64 ts;
5311
5312 tsicr = rd32(IGC_TSICR);
5313 ack = 0;
5314
5315 if (tsicr & IGC_TSICR_SYS_WRAP) {
5316 event.type = PTP_CLOCK_PPS;
5317 if (adapter->ptp_caps.pps)
5318 ptp_clock_event(adapter->ptp_clock, &event);
5319 ack |= IGC_TSICR_SYS_WRAP;
5320 }
5321
5322 if (tsicr & IGC_TSICR_TXTS) {
5323 /* retrieve hardware timestamp */
5324 igc_ptp_tx_tstamp_event(adapter);
5325 ack |= IGC_TSICR_TXTS;
5326 }
5327
5328 if (tsicr & IGC_TSICR_TT0) {
5329 spin_lock(&adapter->tmreg_lock);
5330 ts = timespec64_add(adapter->perout[0].start,
5331 adapter->perout[0].period);
5332 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5333 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5334 tsauxc = rd32(IGC_TSAUXC);
5335 tsauxc |= IGC_TSAUXC_EN_TT0;
5336 wr32(IGC_TSAUXC, tsauxc);
5337 adapter->perout[0].start = ts;
5338 spin_unlock(&adapter->tmreg_lock);
5339 ack |= IGC_TSICR_TT0;
5340 }
5341
5342 if (tsicr & IGC_TSICR_TT1) {
5343 spin_lock(&adapter->tmreg_lock);
5344 ts = timespec64_add(adapter->perout[1].start,
5345 adapter->perout[1].period);
5346 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5347 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5348 tsauxc = rd32(IGC_TSAUXC);
5349 tsauxc |= IGC_TSAUXC_EN_TT1;
5350 wr32(IGC_TSAUXC, tsauxc);
5351 adapter->perout[1].start = ts;
5352 spin_unlock(&adapter->tmreg_lock);
5353 ack |= IGC_TSICR_TT1;
5354 }
5355
5356 if (tsicr & IGC_TSICR_AUTT0) {
5357 nsec = rd32(IGC_AUXSTMPL0);
5358 sec = rd32(IGC_AUXSTMPH0);
5359 event.type = PTP_CLOCK_EXTTS;
5360 event.index = 0;
5361 event.timestamp = sec * NSEC_PER_SEC + nsec;
5362 ptp_clock_event(adapter->ptp_clock, &event);
5363 ack |= IGC_TSICR_AUTT0;
5364 }
5365
5366 if (tsicr & IGC_TSICR_AUTT1) {
5367 nsec = rd32(IGC_AUXSTMPL1);
5368 sec = rd32(IGC_AUXSTMPH1);
5369 event.type = PTP_CLOCK_EXTTS;
5370 event.index = 1;
5371 event.timestamp = sec * NSEC_PER_SEC + nsec;
5372 ptp_clock_event(adapter->ptp_clock, &event);
5373 ack |= IGC_TSICR_AUTT1;
5374 }
5375
5376 /* acknowledge the interrupts */
5377 wr32(IGC_TSICR, ack);
5378 }
5379
5380 /**
5381 * igc_msix_other - msix other interrupt handler
5382 * @irq: interrupt number
5383 * @data: pointer to a q_vector
5384 */
igc_msix_other(int irq,void * data)5385 static irqreturn_t igc_msix_other(int irq, void *data)
5386 {
5387 struct igc_adapter *adapter = data;
5388 struct igc_hw *hw = &adapter->hw;
5389 u32 icr = rd32(IGC_ICR);
5390
5391 /* reading ICR causes bit 31 of EICR to be cleared */
5392 if (icr & IGC_ICR_DRSTA)
5393 schedule_work(&adapter->reset_task);
5394
5395 if (icr & IGC_ICR_DOUTSYNC) {
5396 /* HW is reporting DMA is out of sync */
5397 adapter->stats.doosync++;
5398 }
5399
5400 if (icr & IGC_ICR_LSC) {
5401 hw->mac.get_link_status = true;
5402 /* guard against interrupt when we're going down */
5403 if (!test_bit(__IGC_DOWN, &adapter->state))
5404 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5405 }
5406
5407 if (icr & IGC_ICR_TS)
5408 igc_tsync_interrupt(adapter);
5409
5410 wr32(IGC_EIMS, adapter->eims_other);
5411
5412 return IRQ_HANDLED;
5413 }
5414
igc_write_itr(struct igc_q_vector * q_vector)5415 static void igc_write_itr(struct igc_q_vector *q_vector)
5416 {
5417 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5418
5419 if (!q_vector->set_itr)
5420 return;
5421
5422 if (!itr_val)
5423 itr_val = IGC_ITR_VAL_MASK;
5424
5425 itr_val |= IGC_EITR_CNT_IGNR;
5426
5427 writel(itr_val, q_vector->itr_register);
5428 q_vector->set_itr = 0;
5429 }
5430
igc_msix_ring(int irq,void * data)5431 static irqreturn_t igc_msix_ring(int irq, void *data)
5432 {
5433 struct igc_q_vector *q_vector = data;
5434
5435 /* Write the ITR value calculated from the previous interrupt. */
5436 igc_write_itr(q_vector);
5437
5438 napi_schedule(&q_vector->napi);
5439
5440 return IRQ_HANDLED;
5441 }
5442
5443 /**
5444 * igc_request_msix - Initialize MSI-X interrupts
5445 * @adapter: Pointer to adapter structure
5446 *
5447 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5448 * kernel.
5449 */
igc_request_msix(struct igc_adapter * adapter)5450 static int igc_request_msix(struct igc_adapter *adapter)
5451 {
5452 unsigned int num_q_vectors = adapter->num_q_vectors;
5453 int i = 0, err = 0, vector = 0, free_vector = 0;
5454 struct net_device *netdev = adapter->netdev;
5455
5456 err = request_irq(adapter->msix_entries[vector].vector,
5457 &igc_msix_other, 0, netdev->name, adapter);
5458 if (err)
5459 goto err_out;
5460
5461 if (num_q_vectors > MAX_Q_VECTORS) {
5462 num_q_vectors = MAX_Q_VECTORS;
5463 dev_warn(&adapter->pdev->dev,
5464 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5465 adapter->num_q_vectors, MAX_Q_VECTORS);
5466 }
5467 for (i = 0; i < num_q_vectors; i++) {
5468 struct igc_q_vector *q_vector = adapter->q_vector[i];
5469
5470 vector++;
5471
5472 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5473
5474 if (q_vector->rx.ring && q_vector->tx.ring)
5475 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5476 q_vector->rx.ring->queue_index);
5477 else if (q_vector->tx.ring)
5478 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5479 q_vector->tx.ring->queue_index);
5480 else if (q_vector->rx.ring)
5481 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5482 q_vector->rx.ring->queue_index);
5483 else
5484 sprintf(q_vector->name, "%s-unused", netdev->name);
5485
5486 err = request_irq(adapter->msix_entries[vector].vector,
5487 igc_msix_ring, 0, q_vector->name,
5488 q_vector);
5489 if (err)
5490 goto err_free;
5491 }
5492
5493 igc_configure_msix(adapter);
5494 return 0;
5495
5496 err_free:
5497 /* free already assigned IRQs */
5498 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5499
5500 vector--;
5501 for (i = 0; i < vector; i++) {
5502 free_irq(adapter->msix_entries[free_vector++].vector,
5503 adapter->q_vector[i]);
5504 }
5505 err_out:
5506 return err;
5507 }
5508
5509 /**
5510 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5511 * @adapter: Pointer to adapter structure
5512 *
5513 * This function resets the device so that it has 0 rx queues, tx queues, and
5514 * MSI-X interrupts allocated.
5515 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5516 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5517 {
5518 igc_free_q_vectors(adapter);
5519 igc_reset_interrupt_capability(adapter);
5520 }
5521
5522 /* Need to wait a few seconds after link up to get diagnostic information from
5523 * the phy
5524 */
igc_update_phy_info(struct timer_list * t)5525 static void igc_update_phy_info(struct timer_list *t)
5526 {
5527 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5528
5529 igc_get_phy_info(&adapter->hw);
5530 }
5531
5532 /**
5533 * igc_has_link - check shared code for link and determine up/down
5534 * @adapter: pointer to driver private info
5535 */
igc_has_link(struct igc_adapter * adapter)5536 bool igc_has_link(struct igc_adapter *adapter)
5537 {
5538 struct igc_hw *hw = &adapter->hw;
5539 bool link_active = false;
5540
5541 /* get_link_status is set on LSC (link status) interrupt or
5542 * rx sequence error interrupt. get_link_status will stay
5543 * false until the igc_check_for_link establishes link
5544 * for copper adapters ONLY
5545 */
5546 if (!hw->mac.get_link_status)
5547 return true;
5548 hw->mac.ops.check_for_link(hw);
5549 link_active = !hw->mac.get_link_status;
5550
5551 if (hw->mac.type == igc_i225) {
5552 if (!netif_carrier_ok(adapter->netdev)) {
5553 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5554 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5555 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5556 adapter->link_check_timeout = jiffies;
5557 }
5558 }
5559
5560 return link_active;
5561 }
5562
5563 /**
5564 * igc_watchdog - Timer Call-back
5565 * @t: timer for the watchdog
5566 */
igc_watchdog(struct timer_list * t)5567 static void igc_watchdog(struct timer_list *t)
5568 {
5569 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5570 /* Do the rest outside of interrupt context */
5571 schedule_work(&adapter->watchdog_task);
5572 }
5573
igc_watchdog_task(struct work_struct * work)5574 static void igc_watchdog_task(struct work_struct *work)
5575 {
5576 struct igc_adapter *adapter = container_of(work,
5577 struct igc_adapter,
5578 watchdog_task);
5579 struct net_device *netdev = adapter->netdev;
5580 struct igc_hw *hw = &adapter->hw;
5581 struct igc_phy_info *phy = &hw->phy;
5582 u16 phy_data, retry_count = 20;
5583 u32 link;
5584 int i;
5585
5586 link = igc_has_link(adapter);
5587
5588 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5589 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5590 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5591 else
5592 link = false;
5593 }
5594
5595 if (link) {
5596 /* Cancel scheduled suspend requests. */
5597 pm_runtime_resume(netdev->dev.parent);
5598
5599 if (!netif_carrier_ok(netdev)) {
5600 u32 ctrl;
5601
5602 hw->mac.ops.get_speed_and_duplex(hw,
5603 &adapter->link_speed,
5604 &adapter->link_duplex);
5605
5606 ctrl = rd32(IGC_CTRL);
5607 /* Link status message must follow this format */
5608 netdev_info(netdev,
5609 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5610 adapter->link_speed,
5611 adapter->link_duplex == FULL_DUPLEX ?
5612 "Full" : "Half",
5613 (ctrl & IGC_CTRL_TFCE) &&
5614 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5615 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5616 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5617
5618 /* disable EEE if enabled */
5619 if ((adapter->flags & IGC_FLAG_EEE) &&
5620 adapter->link_duplex == HALF_DUPLEX) {
5621 netdev_info(netdev,
5622 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5623 adapter->hw.dev_spec._base.eee_enable = false;
5624 adapter->flags &= ~IGC_FLAG_EEE;
5625 }
5626
5627 /* check if SmartSpeed worked */
5628 igc_check_downshift(hw);
5629 if (phy->speed_downgraded)
5630 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5631
5632 /* adjust timeout factor according to speed/duplex */
5633 adapter->tx_timeout_factor = 1;
5634 switch (adapter->link_speed) {
5635 case SPEED_10:
5636 adapter->tx_timeout_factor = 14;
5637 break;
5638 case SPEED_100:
5639 case SPEED_1000:
5640 case SPEED_2500:
5641 adapter->tx_timeout_factor = 1;
5642 break;
5643 }
5644
5645 /* Once the launch time has been set on the wire, there
5646 * is a delay before the link speed can be determined
5647 * based on link-up activity. Write into the register
5648 * as soon as we know the correct link speed.
5649 */
5650 igc_tsn_adjust_txtime_offset(adapter);
5651
5652 if (adapter->link_speed != SPEED_1000)
5653 goto no_wait;
5654
5655 /* wait for Remote receiver status OK */
5656 retry_read_status:
5657 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5658 &phy_data)) {
5659 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5660 retry_count) {
5661 msleep(100);
5662 retry_count--;
5663 goto retry_read_status;
5664 } else if (!retry_count) {
5665 netdev_err(netdev, "exceed max 2 second\n");
5666 }
5667 } else {
5668 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5669 }
5670 no_wait:
5671 netif_carrier_on(netdev);
5672
5673 /* link state has changed, schedule phy info update */
5674 if (!test_bit(__IGC_DOWN, &adapter->state))
5675 mod_timer(&adapter->phy_info_timer,
5676 round_jiffies(jiffies + 2 * HZ));
5677 }
5678 } else {
5679 if (netif_carrier_ok(netdev)) {
5680 adapter->link_speed = 0;
5681 adapter->link_duplex = 0;
5682
5683 /* Links status message must follow this format */
5684 netdev_info(netdev, "NIC Link is Down\n");
5685 netif_carrier_off(netdev);
5686
5687 /* link state has changed, schedule phy info update */
5688 if (!test_bit(__IGC_DOWN, &adapter->state))
5689 mod_timer(&adapter->phy_info_timer,
5690 round_jiffies(jiffies + 2 * HZ));
5691
5692 pm_schedule_suspend(netdev->dev.parent,
5693 MSEC_PER_SEC * 5);
5694 }
5695 }
5696
5697 spin_lock(&adapter->stats64_lock);
5698 igc_update_stats(adapter);
5699 spin_unlock(&adapter->stats64_lock);
5700
5701 for (i = 0; i < adapter->num_tx_queues; i++) {
5702 struct igc_ring *tx_ring = adapter->tx_ring[i];
5703
5704 if (!netif_carrier_ok(netdev)) {
5705 /* We've lost link, so the controller stops DMA,
5706 * but we've got queued Tx work that's never going
5707 * to get done, so reset controller to flush Tx.
5708 * (Do the reset outside of interrupt context).
5709 */
5710 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5711 adapter->tx_timeout_count++;
5712 schedule_work(&adapter->reset_task);
5713 /* return immediately since reset is imminent */
5714 return;
5715 }
5716 }
5717
5718 /* Force detection of hung controller every watchdog period */
5719 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5720 }
5721
5722 /* Cause software interrupt to ensure Rx ring is cleaned */
5723 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5724 u32 eics = 0;
5725
5726 for (i = 0; i < adapter->num_q_vectors; i++)
5727 eics |= adapter->q_vector[i]->eims_value;
5728 wr32(IGC_EICS, eics);
5729 } else {
5730 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5731 }
5732
5733 igc_ptp_tx_hang(adapter);
5734
5735 /* Reset the timer */
5736 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5737 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5738 mod_timer(&adapter->watchdog_timer,
5739 round_jiffies(jiffies + HZ));
5740 else
5741 mod_timer(&adapter->watchdog_timer,
5742 round_jiffies(jiffies + 2 * HZ));
5743 }
5744 }
5745
5746 /**
5747 * igc_intr_msi - Interrupt Handler
5748 * @irq: interrupt number
5749 * @data: pointer to a network interface device structure
5750 */
igc_intr_msi(int irq,void * data)5751 static irqreturn_t igc_intr_msi(int irq, void *data)
5752 {
5753 struct igc_adapter *adapter = data;
5754 struct igc_q_vector *q_vector = adapter->q_vector[0];
5755 struct igc_hw *hw = &adapter->hw;
5756 /* read ICR disables interrupts using IAM */
5757 u32 icr = rd32(IGC_ICR);
5758
5759 igc_write_itr(q_vector);
5760
5761 if (icr & IGC_ICR_DRSTA)
5762 schedule_work(&adapter->reset_task);
5763
5764 if (icr & IGC_ICR_DOUTSYNC) {
5765 /* HW is reporting DMA is out of sync */
5766 adapter->stats.doosync++;
5767 }
5768
5769 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5770 hw->mac.get_link_status = true;
5771 if (!test_bit(__IGC_DOWN, &adapter->state))
5772 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5773 }
5774
5775 if (icr & IGC_ICR_TS)
5776 igc_tsync_interrupt(adapter);
5777
5778 napi_schedule(&q_vector->napi);
5779
5780 return IRQ_HANDLED;
5781 }
5782
5783 /**
5784 * igc_intr - Legacy Interrupt Handler
5785 * @irq: interrupt number
5786 * @data: pointer to a network interface device structure
5787 */
igc_intr(int irq,void * data)5788 static irqreturn_t igc_intr(int irq, void *data)
5789 {
5790 struct igc_adapter *adapter = data;
5791 struct igc_q_vector *q_vector = adapter->q_vector[0];
5792 struct igc_hw *hw = &adapter->hw;
5793 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5794 * need for the IMC write
5795 */
5796 u32 icr = rd32(IGC_ICR);
5797
5798 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5799 * not set, then the adapter didn't send an interrupt
5800 */
5801 if (!(icr & IGC_ICR_INT_ASSERTED))
5802 return IRQ_NONE;
5803
5804 igc_write_itr(q_vector);
5805
5806 if (icr & IGC_ICR_DRSTA)
5807 schedule_work(&adapter->reset_task);
5808
5809 if (icr & IGC_ICR_DOUTSYNC) {
5810 /* HW is reporting DMA is out of sync */
5811 adapter->stats.doosync++;
5812 }
5813
5814 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5815 hw->mac.get_link_status = true;
5816 /* guard against interrupt when we're going down */
5817 if (!test_bit(__IGC_DOWN, &adapter->state))
5818 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5819 }
5820
5821 if (icr & IGC_ICR_TS)
5822 igc_tsync_interrupt(adapter);
5823
5824 napi_schedule(&q_vector->napi);
5825
5826 return IRQ_HANDLED;
5827 }
5828
igc_free_irq(struct igc_adapter * adapter)5829 static void igc_free_irq(struct igc_adapter *adapter)
5830 {
5831 if (adapter->msix_entries) {
5832 int vector = 0, i;
5833
5834 free_irq(adapter->msix_entries[vector++].vector, adapter);
5835
5836 for (i = 0; i < adapter->num_q_vectors; i++)
5837 free_irq(adapter->msix_entries[vector++].vector,
5838 adapter->q_vector[i]);
5839 } else {
5840 free_irq(adapter->pdev->irq, adapter);
5841 }
5842 }
5843
5844 /**
5845 * igc_request_irq - initialize interrupts
5846 * @adapter: Pointer to adapter structure
5847 *
5848 * Attempts to configure interrupts using the best available
5849 * capabilities of the hardware and kernel.
5850 */
igc_request_irq(struct igc_adapter * adapter)5851 static int igc_request_irq(struct igc_adapter *adapter)
5852 {
5853 struct net_device *netdev = adapter->netdev;
5854 struct pci_dev *pdev = adapter->pdev;
5855 int err = 0;
5856
5857 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5858 err = igc_request_msix(adapter);
5859 if (!err)
5860 goto request_done;
5861 /* fall back to MSI */
5862 igc_free_all_tx_resources(adapter);
5863 igc_free_all_rx_resources(adapter);
5864
5865 igc_clear_interrupt_scheme(adapter);
5866 err = igc_init_interrupt_scheme(adapter, false);
5867 if (err)
5868 goto request_done;
5869 igc_setup_all_tx_resources(adapter);
5870 igc_setup_all_rx_resources(adapter);
5871 igc_configure(adapter);
5872 }
5873
5874 igc_assign_vector(adapter->q_vector[0], 0);
5875
5876 if (adapter->flags & IGC_FLAG_HAS_MSI) {
5877 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5878 netdev->name, adapter);
5879 if (!err)
5880 goto request_done;
5881
5882 /* fall back to legacy interrupts */
5883 igc_reset_interrupt_capability(adapter);
5884 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5885 }
5886
5887 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5888 netdev->name, adapter);
5889
5890 if (err)
5891 netdev_err(netdev, "Error %d getting interrupt\n", err);
5892
5893 request_done:
5894 return err;
5895 }
5896
5897 /**
5898 * __igc_open - Called when a network interface is made active
5899 * @netdev: network interface device structure
5900 * @resuming: boolean indicating if the device is resuming
5901 *
5902 * Returns 0 on success, negative value on failure
5903 *
5904 * The open entry point is called when a network interface is made
5905 * active by the system (IFF_UP). At this point all resources needed
5906 * for transmit and receive operations are allocated, the interrupt
5907 * handler is registered with the OS, the watchdog timer is started,
5908 * and the stack is notified that the interface is ready.
5909 */
__igc_open(struct net_device * netdev,bool resuming)5910 static int __igc_open(struct net_device *netdev, bool resuming)
5911 {
5912 struct igc_adapter *adapter = netdev_priv(netdev);
5913 struct pci_dev *pdev = adapter->pdev;
5914 struct igc_hw *hw = &adapter->hw;
5915 int err = 0;
5916 int i = 0;
5917
5918 /* disallow open during test */
5919
5920 if (test_bit(__IGC_TESTING, &adapter->state)) {
5921 WARN_ON(resuming);
5922 return -EBUSY;
5923 }
5924
5925 if (!resuming)
5926 pm_runtime_get_sync(&pdev->dev);
5927
5928 netif_carrier_off(netdev);
5929
5930 /* allocate transmit descriptors */
5931 err = igc_setup_all_tx_resources(adapter);
5932 if (err)
5933 goto err_setup_tx;
5934
5935 /* allocate receive descriptors */
5936 err = igc_setup_all_rx_resources(adapter);
5937 if (err)
5938 goto err_setup_rx;
5939
5940 igc_power_up_link(adapter);
5941
5942 igc_configure(adapter);
5943
5944 err = igc_request_irq(adapter);
5945 if (err)
5946 goto err_req_irq;
5947
5948 /* Notify the stack of the actual queue counts. */
5949 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5950 if (err)
5951 goto err_set_queues;
5952
5953 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5954 if (err)
5955 goto err_set_queues;
5956
5957 clear_bit(__IGC_DOWN, &adapter->state);
5958
5959 for (i = 0; i < adapter->num_q_vectors; i++)
5960 napi_enable(&adapter->q_vector[i]->napi);
5961
5962 /* Clear any pending interrupts. */
5963 rd32(IGC_ICR);
5964 igc_irq_enable(adapter);
5965
5966 if (!resuming)
5967 pm_runtime_put(&pdev->dev);
5968
5969 netif_tx_start_all_queues(netdev);
5970
5971 /* start the watchdog. */
5972 hw->mac.get_link_status = true;
5973 schedule_work(&adapter->watchdog_task);
5974
5975 return IGC_SUCCESS;
5976
5977 err_set_queues:
5978 igc_free_irq(adapter);
5979 err_req_irq:
5980 igc_release_hw_control(adapter);
5981 igc_power_down_phy_copper_base(&adapter->hw);
5982 igc_free_all_rx_resources(adapter);
5983 err_setup_rx:
5984 igc_free_all_tx_resources(adapter);
5985 err_setup_tx:
5986 igc_reset(adapter);
5987 if (!resuming)
5988 pm_runtime_put(&pdev->dev);
5989
5990 return err;
5991 }
5992
igc_open(struct net_device * netdev)5993 int igc_open(struct net_device *netdev)
5994 {
5995 return __igc_open(netdev, false);
5996 }
5997
5998 /**
5999 * __igc_close - Disables a network interface
6000 * @netdev: network interface device structure
6001 * @suspending: boolean indicating the device is suspending
6002 *
6003 * Returns 0, this is not allowed to fail
6004 *
6005 * The close entry point is called when an interface is de-activated
6006 * by the OS. The hardware is still under the driver's control, but
6007 * needs to be disabled. A global MAC reset is issued to stop the
6008 * hardware, and all transmit and receive resources are freed.
6009 */
__igc_close(struct net_device * netdev,bool suspending)6010 static int __igc_close(struct net_device *netdev, bool suspending)
6011 {
6012 struct igc_adapter *adapter = netdev_priv(netdev);
6013 struct pci_dev *pdev = adapter->pdev;
6014
6015 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6016
6017 if (!suspending)
6018 pm_runtime_get_sync(&pdev->dev);
6019
6020 igc_down(adapter);
6021
6022 igc_release_hw_control(adapter);
6023
6024 igc_free_irq(adapter);
6025
6026 igc_free_all_tx_resources(adapter);
6027 igc_free_all_rx_resources(adapter);
6028
6029 if (!suspending)
6030 pm_runtime_put_sync(&pdev->dev);
6031
6032 return 0;
6033 }
6034
igc_close(struct net_device * netdev)6035 int igc_close(struct net_device *netdev)
6036 {
6037 if (netif_device_present(netdev) || netdev->dismantle)
6038 return __igc_close(netdev, false);
6039 return 0;
6040 }
6041
6042 /**
6043 * igc_ioctl - Access the hwtstamp interface
6044 * @netdev: network interface device structure
6045 * @ifr: interface request data
6046 * @cmd: ioctl command
6047 **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6048 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6049 {
6050 switch (cmd) {
6051 case SIOCGHWTSTAMP:
6052 return igc_ptp_get_ts_config(netdev, ifr);
6053 case SIOCSHWTSTAMP:
6054 return igc_ptp_set_ts_config(netdev, ifr);
6055 default:
6056 return -EOPNOTSUPP;
6057 }
6058 }
6059
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6060 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6061 bool enable)
6062 {
6063 struct igc_ring *ring;
6064
6065 if (queue < 0 || queue >= adapter->num_tx_queues)
6066 return -EINVAL;
6067
6068 ring = adapter->tx_ring[queue];
6069 ring->launchtime_enable = enable;
6070
6071 return 0;
6072 }
6073
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6074 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6075 {
6076 struct timespec64 b;
6077
6078 b = ktime_to_timespec64(base_time);
6079
6080 return timespec64_compare(now, &b) > 0;
6081 }
6082
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6083 static bool validate_schedule(struct igc_adapter *adapter,
6084 const struct tc_taprio_qopt_offload *qopt)
6085 {
6086 int queue_uses[IGC_MAX_TX_QUEUES] = { };
6087 struct igc_hw *hw = &adapter->hw;
6088 struct timespec64 now;
6089 size_t n;
6090
6091 if (qopt->cycle_time_extension)
6092 return false;
6093
6094 igc_ptp_read(adapter, &now);
6095
6096 /* If we program the controller's BASET registers with a time
6097 * in the future, it will hold all the packets until that
6098 * time, causing a lot of TX Hangs, so to avoid that, we
6099 * reject schedules that would start in the future.
6100 * Note: Limitation above is no longer in i226.
6101 */
6102 if (!is_base_time_past(qopt->base_time, &now) &&
6103 igc_is_device_id_i225(hw))
6104 return false;
6105
6106 for (n = 0; n < qopt->num_entries; n++) {
6107 const struct tc_taprio_sched_entry *e, *prev;
6108 int i;
6109
6110 prev = n ? &qopt->entries[n - 1] : NULL;
6111 e = &qopt->entries[n];
6112
6113 /* i225 only supports "global" frame preemption
6114 * settings.
6115 */
6116 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6117 return false;
6118
6119 for (i = 0; i < adapter->num_tx_queues; i++)
6120 if (e->gate_mask & BIT(i)) {
6121 queue_uses[i]++;
6122
6123 /* There are limitations: A single queue cannot
6124 * be opened and closed multiple times per cycle
6125 * unless the gate stays open. Check for it.
6126 */
6127 if (queue_uses[i] > 1 &&
6128 !(prev->gate_mask & BIT(i)))
6129 return false;
6130 }
6131 }
6132
6133 return true;
6134 }
6135
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6136 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6137 struct tc_etf_qopt_offload *qopt)
6138 {
6139 struct igc_hw *hw = &adapter->hw;
6140 int err;
6141
6142 if (hw->mac.type != igc_i225)
6143 return -EOPNOTSUPP;
6144
6145 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6146 if (err)
6147 return err;
6148
6149 return igc_tsn_offload_apply(adapter);
6150 }
6151
igc_qbv_clear_schedule(struct igc_adapter * adapter)6152 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6153 {
6154 unsigned long flags;
6155 int i;
6156
6157 adapter->base_time = 0;
6158 adapter->cycle_time = NSEC_PER_SEC;
6159 adapter->taprio_offload_enable = false;
6160 adapter->qbv_config_change_errors = 0;
6161 adapter->qbv_count = 0;
6162
6163 for (i = 0; i < adapter->num_tx_queues; i++) {
6164 struct igc_ring *ring = adapter->tx_ring[i];
6165
6166 ring->start_time = 0;
6167 ring->end_time = NSEC_PER_SEC;
6168 ring->max_sdu = 0;
6169 }
6170
6171 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6172
6173 adapter->qbv_transition = false;
6174
6175 for (i = 0; i < adapter->num_tx_queues; i++) {
6176 struct igc_ring *ring = adapter->tx_ring[i];
6177
6178 ring->oper_gate_closed = false;
6179 ring->admin_gate_closed = false;
6180 }
6181
6182 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6183
6184 return 0;
6185 }
6186
igc_tsn_clear_schedule(struct igc_adapter * adapter)6187 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6188 {
6189 igc_qbv_clear_schedule(adapter);
6190
6191 return 0;
6192 }
6193
igc_taprio_stats(struct net_device * dev,struct tc_taprio_qopt_stats * stats)6194 static void igc_taprio_stats(struct net_device *dev,
6195 struct tc_taprio_qopt_stats *stats)
6196 {
6197 /* When Strict_End is enabled, the tx_overruns counter
6198 * will always be zero.
6199 */
6200 stats->tx_overruns = 0;
6201 }
6202
igc_taprio_queue_stats(struct net_device * dev,struct tc_taprio_qopt_queue_stats * queue_stats)6203 static void igc_taprio_queue_stats(struct net_device *dev,
6204 struct tc_taprio_qopt_queue_stats *queue_stats)
6205 {
6206 struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6207
6208 /* When Strict_End is enabled, the tx_overruns counter
6209 * will always be zero.
6210 */
6211 stats->tx_overruns = 0;
6212 }
6213
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6214 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6215 struct tc_taprio_qopt_offload *qopt)
6216 {
6217 bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6218 struct igc_hw *hw = &adapter->hw;
6219 u32 start_time = 0, end_time = 0;
6220 struct timespec64 now;
6221 unsigned long flags;
6222 size_t n;
6223 int i;
6224
6225 switch (qopt->cmd) {
6226 case TAPRIO_CMD_REPLACE:
6227 break;
6228 case TAPRIO_CMD_DESTROY:
6229 return igc_tsn_clear_schedule(adapter);
6230 case TAPRIO_CMD_STATS:
6231 igc_taprio_stats(adapter->netdev, &qopt->stats);
6232 return 0;
6233 case TAPRIO_CMD_QUEUE_STATS:
6234 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6235 return 0;
6236 default:
6237 return -EOPNOTSUPP;
6238 }
6239
6240 if (qopt->base_time < 0)
6241 return -ERANGE;
6242
6243 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6244 return -EALREADY;
6245
6246 if (!validate_schedule(adapter, qopt))
6247 return -EINVAL;
6248
6249 adapter->cycle_time = qopt->cycle_time;
6250 adapter->base_time = qopt->base_time;
6251 adapter->taprio_offload_enable = true;
6252
6253 igc_ptp_read(adapter, &now);
6254
6255 for (n = 0; n < qopt->num_entries; n++) {
6256 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6257
6258 end_time += e->interval;
6259
6260 /* If any of the conditions below are true, we need to manually
6261 * control the end time of the cycle.
6262 * 1. Qbv users can specify a cycle time that is not equal
6263 * to the total GCL intervals. Hence, recalculation is
6264 * necessary here to exclude the time interval that
6265 * exceeds the cycle time.
6266 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6267 * once the end of the list is reached, it will switch
6268 * to the END_OF_CYCLE state and leave the gates in the
6269 * same state until the next cycle is started.
6270 */
6271 if (end_time > adapter->cycle_time ||
6272 n + 1 == qopt->num_entries)
6273 end_time = adapter->cycle_time;
6274
6275 for (i = 0; i < adapter->num_tx_queues; i++) {
6276 struct igc_ring *ring = adapter->tx_ring[i];
6277
6278 if (!(e->gate_mask & BIT(i)))
6279 continue;
6280
6281 /* Check whether a queue stays open for more than one
6282 * entry. If so, keep the start and advance the end
6283 * time.
6284 */
6285 if (!queue_configured[i])
6286 ring->start_time = start_time;
6287 ring->end_time = end_time;
6288
6289 if (ring->start_time >= adapter->cycle_time)
6290 queue_configured[i] = false;
6291 else
6292 queue_configured[i] = true;
6293 }
6294
6295 start_time += e->interval;
6296 }
6297
6298 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6299
6300 /* Check whether a queue gets configured.
6301 * If not, set the start and end time to be end time.
6302 */
6303 for (i = 0; i < adapter->num_tx_queues; i++) {
6304 struct igc_ring *ring = adapter->tx_ring[i];
6305
6306 if (!is_base_time_past(qopt->base_time, &now)) {
6307 ring->admin_gate_closed = false;
6308 } else {
6309 ring->oper_gate_closed = false;
6310 ring->admin_gate_closed = false;
6311 }
6312
6313 if (!queue_configured[i]) {
6314 if (!is_base_time_past(qopt->base_time, &now))
6315 ring->admin_gate_closed = true;
6316 else
6317 ring->oper_gate_closed = true;
6318
6319 ring->start_time = end_time;
6320 ring->end_time = end_time;
6321 }
6322 }
6323
6324 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6325
6326 for (i = 0; i < adapter->num_tx_queues; i++) {
6327 struct igc_ring *ring = adapter->tx_ring[i];
6328 struct net_device *dev = adapter->netdev;
6329
6330 if (qopt->max_sdu[i])
6331 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6332 else
6333 ring->max_sdu = 0;
6334 }
6335
6336 return 0;
6337 }
6338
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6339 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6340 struct tc_taprio_qopt_offload *qopt)
6341 {
6342 struct igc_hw *hw = &adapter->hw;
6343 int err;
6344
6345 if (hw->mac.type != igc_i225)
6346 return -EOPNOTSUPP;
6347
6348 err = igc_save_qbv_schedule(adapter, qopt);
6349 if (err)
6350 return err;
6351
6352 return igc_tsn_offload_apply(adapter);
6353 }
6354
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6355 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6356 bool enable, int idleslope, int sendslope,
6357 int hicredit, int locredit)
6358 {
6359 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6360 struct net_device *netdev = adapter->netdev;
6361 struct igc_ring *ring;
6362 int i;
6363
6364 /* i225 has two sets of credit-based shaper logic.
6365 * Supporting it only on the top two priority queues
6366 */
6367 if (queue < 0 || queue > 1)
6368 return -EINVAL;
6369
6370 ring = adapter->tx_ring[queue];
6371
6372 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6373 if (adapter->tx_ring[i])
6374 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6375
6376 /* CBS should be enabled on the highest priority queue first in order
6377 * for the CBS algorithm to operate as intended.
6378 */
6379 if (enable) {
6380 if (queue == 1 && !cbs_status[0]) {
6381 netdev_err(netdev,
6382 "Enabling CBS on queue1 before queue0\n");
6383 return -EINVAL;
6384 }
6385 } else {
6386 if (queue == 0 && cbs_status[1]) {
6387 netdev_err(netdev,
6388 "Disabling CBS on queue0 before queue1\n");
6389 return -EINVAL;
6390 }
6391 }
6392
6393 ring->cbs_enable = enable;
6394 ring->idleslope = idleslope;
6395 ring->sendslope = sendslope;
6396 ring->hicredit = hicredit;
6397 ring->locredit = locredit;
6398
6399 return 0;
6400 }
6401
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6402 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6403 struct tc_cbs_qopt_offload *qopt)
6404 {
6405 struct igc_hw *hw = &adapter->hw;
6406 int err;
6407
6408 if (hw->mac.type != igc_i225)
6409 return -EOPNOTSUPP;
6410
6411 if (qopt->queue < 0 || qopt->queue > 1)
6412 return -EINVAL;
6413
6414 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6415 qopt->idleslope, qopt->sendslope,
6416 qopt->hicredit, qopt->locredit);
6417 if (err)
6418 return err;
6419
6420 return igc_tsn_offload_apply(adapter);
6421 }
6422
igc_tc_query_caps(struct igc_adapter * adapter,struct tc_query_caps_base * base)6423 static int igc_tc_query_caps(struct igc_adapter *adapter,
6424 struct tc_query_caps_base *base)
6425 {
6426 struct igc_hw *hw = &adapter->hw;
6427
6428 switch (base->type) {
6429 case TC_SETUP_QDISC_TAPRIO: {
6430 struct tc_taprio_caps *caps = base->caps;
6431
6432 caps->broken_mqprio = true;
6433
6434 if (hw->mac.type == igc_i225) {
6435 caps->supports_queue_max_sdu = true;
6436 caps->gate_mask_per_txq = true;
6437 }
6438
6439 return 0;
6440 }
6441 default:
6442 return -EOPNOTSUPP;
6443 }
6444 }
6445
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6446 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6447 void *type_data)
6448 {
6449 struct igc_adapter *adapter = netdev_priv(dev);
6450
6451 adapter->tc_setup_type = type;
6452
6453 switch (type) {
6454 case TC_QUERY_CAPS:
6455 return igc_tc_query_caps(adapter, type_data);
6456 case TC_SETUP_QDISC_TAPRIO:
6457 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6458
6459 case TC_SETUP_QDISC_ETF:
6460 return igc_tsn_enable_launchtime(adapter, type_data);
6461
6462 case TC_SETUP_QDISC_CBS:
6463 return igc_tsn_enable_cbs(adapter, type_data);
6464
6465 default:
6466 return -EOPNOTSUPP;
6467 }
6468 }
6469
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6470 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6471 {
6472 struct igc_adapter *adapter = netdev_priv(dev);
6473
6474 switch (bpf->command) {
6475 case XDP_SETUP_PROG:
6476 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6477 case XDP_SETUP_XSK_POOL:
6478 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6479 bpf->xsk.queue_id);
6480 default:
6481 return -EOPNOTSUPP;
6482 }
6483 }
6484
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6485 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6486 struct xdp_frame **frames, u32 flags)
6487 {
6488 struct igc_adapter *adapter = netdev_priv(dev);
6489 int cpu = smp_processor_id();
6490 struct netdev_queue *nq;
6491 struct igc_ring *ring;
6492 int i, drops;
6493
6494 if (unlikely(!netif_carrier_ok(dev)))
6495 return -ENETDOWN;
6496
6497 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6498 return -EINVAL;
6499
6500 ring = igc_xdp_get_tx_ring(adapter, cpu);
6501 nq = txring_txq(ring);
6502
6503 __netif_tx_lock(nq, cpu);
6504
6505 /* Avoid transmit queue timeout since we share it with the slow path */
6506 txq_trans_cond_update(nq);
6507
6508 drops = 0;
6509 for (i = 0; i < num_frames; i++) {
6510 int err;
6511 struct xdp_frame *xdpf = frames[i];
6512
6513 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6514 if (err) {
6515 xdp_return_frame_rx_napi(xdpf);
6516 drops++;
6517 }
6518 }
6519
6520 if (flags & XDP_XMIT_FLUSH)
6521 igc_flush_tx_descriptors(ring);
6522
6523 __netif_tx_unlock(nq);
6524
6525 return num_frames - drops;
6526 }
6527
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6528 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6529 struct igc_q_vector *q_vector)
6530 {
6531 struct igc_hw *hw = &adapter->hw;
6532 u32 eics = 0;
6533
6534 eics |= q_vector->eims_value;
6535 wr32(IGC_EICS, eics);
6536 }
6537
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6538 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6539 {
6540 struct igc_adapter *adapter = netdev_priv(dev);
6541 struct igc_q_vector *q_vector;
6542 struct igc_ring *ring;
6543
6544 if (test_bit(__IGC_DOWN, &adapter->state))
6545 return -ENETDOWN;
6546
6547 if (!igc_xdp_is_enabled(adapter))
6548 return -ENXIO;
6549
6550 if (queue_id >= adapter->num_rx_queues)
6551 return -EINVAL;
6552
6553 ring = adapter->rx_ring[queue_id];
6554
6555 if (!ring->xsk_pool)
6556 return -ENXIO;
6557
6558 q_vector = adapter->q_vector[queue_id];
6559 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6560 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6561
6562 return 0;
6563 }
6564
6565 static const struct net_device_ops igc_netdev_ops = {
6566 .ndo_open = igc_open,
6567 .ndo_stop = igc_close,
6568 .ndo_start_xmit = igc_xmit_frame,
6569 .ndo_set_rx_mode = igc_set_rx_mode,
6570 .ndo_set_mac_address = igc_set_mac,
6571 .ndo_change_mtu = igc_change_mtu,
6572 .ndo_tx_timeout = igc_tx_timeout,
6573 .ndo_get_stats64 = igc_get_stats64,
6574 .ndo_fix_features = igc_fix_features,
6575 .ndo_set_features = igc_set_features,
6576 .ndo_features_check = igc_features_check,
6577 .ndo_eth_ioctl = igc_ioctl,
6578 .ndo_setup_tc = igc_setup_tc,
6579 .ndo_bpf = igc_bpf,
6580 .ndo_xdp_xmit = igc_xdp_xmit,
6581 .ndo_xsk_wakeup = igc_xsk_wakeup,
6582 };
6583
6584 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6585 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6586 {
6587 struct igc_adapter *adapter = hw->back;
6588
6589 pci_read_config_word(adapter->pdev, reg, value);
6590 }
6591
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6592 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6593 {
6594 struct igc_adapter *adapter = hw->back;
6595
6596 pci_write_config_word(adapter->pdev, reg, *value);
6597 }
6598
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6599 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6600 {
6601 struct igc_adapter *adapter = hw->back;
6602
6603 if (!pci_is_pcie(adapter->pdev))
6604 return -IGC_ERR_CONFIG;
6605
6606 pcie_capability_read_word(adapter->pdev, reg, value);
6607
6608 return IGC_SUCCESS;
6609 }
6610
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6611 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6612 {
6613 struct igc_adapter *adapter = hw->back;
6614
6615 if (!pci_is_pcie(adapter->pdev))
6616 return -IGC_ERR_CONFIG;
6617
6618 pcie_capability_write_word(adapter->pdev, reg, *value);
6619
6620 return IGC_SUCCESS;
6621 }
6622
igc_rd32(struct igc_hw * hw,u32 reg)6623 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6624 {
6625 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6626 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6627 u32 value = 0;
6628
6629 if (IGC_REMOVED(hw_addr))
6630 return ~value;
6631
6632 value = readl(&hw_addr[reg]);
6633
6634 /* reads should not return all F's */
6635 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6636 struct net_device *netdev = igc->netdev;
6637
6638 hw->hw_addr = NULL;
6639 netif_device_detach(netdev);
6640 netdev_err(netdev, "PCIe link lost, device now detached\n");
6641 WARN(pci_device_is_present(igc->pdev),
6642 "igc: Failed to read reg 0x%x!\n", reg);
6643 }
6644
6645 return value;
6646 }
6647
6648 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6649 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6650 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2,
6651 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP,
6652 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4,
6653 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP,
6654 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX,
6655 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6,
6656 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6657 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP,
6658 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP,
6659 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6660 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
6661 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */
6662 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */
6663 [13] = XDP_RSS_TYPE_NONE,
6664 [14] = XDP_RSS_TYPE_NONE,
6665 [15] = XDP_RSS_TYPE_NONE,
6666 };
6667
igc_xdp_rx_hash(const struct xdp_md * _ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)6668 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6669 enum xdp_rss_hash_type *rss_type)
6670 {
6671 const struct igc_xdp_buff *ctx = (void *)_ctx;
6672
6673 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6674 return -ENODATA;
6675
6676 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6677 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6678
6679 return 0;
6680 }
6681
igc_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)6682 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6683 {
6684 const struct igc_xdp_buff *ctx = (void *)_ctx;
6685
6686 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6687 *timestamp = ctx->rx_ts;
6688
6689 return 0;
6690 }
6691
6692 return -ENODATA;
6693 }
6694
6695 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6696 .xmo_rx_hash = igc_xdp_rx_hash,
6697 .xmo_rx_timestamp = igc_xdp_rx_timestamp,
6698 };
6699
igc_qbv_scheduling_timer(struct hrtimer * timer)6700 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6701 {
6702 struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6703 hrtimer);
6704 unsigned long flags;
6705 unsigned int i;
6706
6707 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6708
6709 adapter->qbv_transition = true;
6710 for (i = 0; i < adapter->num_tx_queues; i++) {
6711 struct igc_ring *tx_ring = adapter->tx_ring[i];
6712
6713 if (tx_ring->admin_gate_closed) {
6714 tx_ring->admin_gate_closed = false;
6715 tx_ring->oper_gate_closed = true;
6716 } else {
6717 tx_ring->oper_gate_closed = false;
6718 }
6719 }
6720 adapter->qbv_transition = false;
6721
6722 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6723
6724 return HRTIMER_NORESTART;
6725 }
6726
6727 /**
6728 * igc_probe - Device Initialization Routine
6729 * @pdev: PCI device information struct
6730 * @ent: entry in igc_pci_tbl
6731 *
6732 * Returns 0 on success, negative on failure
6733 *
6734 * igc_probe initializes an adapter identified by a pci_dev structure.
6735 * The OS initialization, configuring the adapter private structure,
6736 * and a hardware reset occur.
6737 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)6738 static int igc_probe(struct pci_dev *pdev,
6739 const struct pci_device_id *ent)
6740 {
6741 struct igc_adapter *adapter;
6742 struct net_device *netdev;
6743 struct igc_hw *hw;
6744 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6745 int err;
6746
6747 err = pci_enable_device_mem(pdev);
6748 if (err)
6749 return err;
6750
6751 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6752 if (err) {
6753 dev_err(&pdev->dev,
6754 "No usable DMA configuration, aborting\n");
6755 goto err_dma;
6756 }
6757
6758 err = pci_request_mem_regions(pdev, igc_driver_name);
6759 if (err)
6760 goto err_pci_reg;
6761
6762 err = pci_enable_ptm(pdev, NULL);
6763 if (err < 0)
6764 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6765
6766 pci_set_master(pdev);
6767
6768 err = -ENOMEM;
6769 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6770 IGC_MAX_TX_QUEUES);
6771
6772 if (!netdev)
6773 goto err_alloc_etherdev;
6774
6775 SET_NETDEV_DEV(netdev, &pdev->dev);
6776
6777 pci_set_drvdata(pdev, netdev);
6778 adapter = netdev_priv(netdev);
6779 adapter->netdev = netdev;
6780 adapter->pdev = pdev;
6781 hw = &adapter->hw;
6782 hw->back = adapter;
6783 adapter->port_num = hw->bus.func;
6784 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6785
6786 err = pci_save_state(pdev);
6787 if (err)
6788 goto err_ioremap;
6789
6790 err = -EIO;
6791 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6792 pci_resource_len(pdev, 0));
6793 if (!adapter->io_addr)
6794 goto err_ioremap;
6795
6796 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6797 hw->hw_addr = adapter->io_addr;
6798
6799 netdev->netdev_ops = &igc_netdev_ops;
6800 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6801 igc_ethtool_set_ops(netdev);
6802 netdev->watchdog_timeo = 5 * HZ;
6803
6804 netdev->mem_start = pci_resource_start(pdev, 0);
6805 netdev->mem_end = pci_resource_end(pdev, 0);
6806
6807 /* PCI config space info */
6808 hw->vendor_id = pdev->vendor;
6809 hw->device_id = pdev->device;
6810 hw->revision_id = pdev->revision;
6811 hw->subsystem_vendor_id = pdev->subsystem_vendor;
6812 hw->subsystem_device_id = pdev->subsystem_device;
6813
6814 /* Copy the default MAC and PHY function pointers */
6815 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6816 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6817
6818 /* Initialize skew-specific constants */
6819 err = ei->get_invariants(hw);
6820 if (err)
6821 goto err_sw_init;
6822
6823 /* Add supported features to the features list*/
6824 netdev->features |= NETIF_F_SG;
6825 netdev->features |= NETIF_F_TSO;
6826 netdev->features |= NETIF_F_TSO6;
6827 netdev->features |= NETIF_F_TSO_ECN;
6828 netdev->features |= NETIF_F_RXHASH;
6829 netdev->features |= NETIF_F_RXCSUM;
6830 netdev->features |= NETIF_F_HW_CSUM;
6831 netdev->features |= NETIF_F_SCTP_CRC;
6832 netdev->features |= NETIF_F_HW_TC;
6833
6834 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6835 NETIF_F_GSO_GRE_CSUM | \
6836 NETIF_F_GSO_IPXIP4 | \
6837 NETIF_F_GSO_IPXIP6 | \
6838 NETIF_F_GSO_UDP_TUNNEL | \
6839 NETIF_F_GSO_UDP_TUNNEL_CSUM)
6840
6841 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6842 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6843
6844 /* setup the private structure */
6845 err = igc_sw_init(adapter);
6846 if (err)
6847 goto err_sw_init;
6848
6849 /* copy netdev features into list of user selectable features */
6850 netdev->hw_features |= NETIF_F_NTUPLE;
6851 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6852 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6853 netdev->hw_features |= netdev->features;
6854
6855 netdev->features |= NETIF_F_HIGHDMA;
6856
6857 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6858 netdev->mpls_features |= NETIF_F_HW_CSUM;
6859 netdev->hw_enc_features |= netdev->vlan_features;
6860
6861 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6862 NETDEV_XDP_ACT_XSK_ZEROCOPY;
6863
6864 /* MTU range: 68 - 9216 */
6865 netdev->min_mtu = ETH_MIN_MTU;
6866 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6867
6868 /* before reading the NVM, reset the controller to put the device in a
6869 * known good starting state
6870 */
6871 hw->mac.ops.reset_hw(hw);
6872
6873 if (igc_get_flash_presence_i225(hw)) {
6874 if (hw->nvm.ops.validate(hw) < 0) {
6875 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6876 err = -EIO;
6877 goto err_eeprom;
6878 }
6879 }
6880
6881 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6882 /* copy the MAC address out of the NVM */
6883 if (hw->mac.ops.read_mac_addr(hw))
6884 dev_err(&pdev->dev, "NVM Read Error\n");
6885 }
6886
6887 eth_hw_addr_set(netdev, hw->mac.addr);
6888
6889 if (!is_valid_ether_addr(netdev->dev_addr)) {
6890 dev_err(&pdev->dev, "Invalid MAC Address\n");
6891 err = -EIO;
6892 goto err_eeprom;
6893 }
6894
6895 /* configure RXPBSIZE and TXPBSIZE */
6896 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6897 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6898
6899 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6900 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6901
6902 INIT_WORK(&adapter->reset_task, igc_reset_task);
6903 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6904
6905 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6906 adapter->hrtimer.function = &igc_qbv_scheduling_timer;
6907
6908 /* Initialize link properties that are user-changeable */
6909 adapter->fc_autoneg = true;
6910 hw->mac.autoneg = true;
6911 hw->phy.autoneg_advertised = 0xaf;
6912
6913 hw->fc.requested_mode = igc_fc_default;
6914 hw->fc.current_mode = igc_fc_default;
6915
6916 /* By default, support wake on port A */
6917 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6918
6919 /* initialize the wol settings based on the eeprom settings */
6920 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6921 adapter->wol |= IGC_WUFC_MAG;
6922
6923 device_set_wakeup_enable(&adapter->pdev->dev,
6924 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6925
6926 igc_ptp_init(adapter);
6927
6928 igc_tsn_clear_schedule(adapter);
6929
6930 /* reset the hardware with the new settings */
6931 igc_reset(adapter);
6932
6933 /* let the f/w know that the h/w is now under the control of the
6934 * driver.
6935 */
6936 igc_get_hw_control(adapter);
6937
6938 strncpy(netdev->name, "eth%d", IFNAMSIZ);
6939 err = register_netdev(netdev);
6940 if (err)
6941 goto err_register;
6942
6943 /* carrier off reporting is important to ethtool even BEFORE open */
6944 netif_carrier_off(netdev);
6945
6946 /* Check if Media Autosense is enabled */
6947 adapter->ei = *ei;
6948
6949 /* print pcie link status and MAC address */
6950 pcie_print_link_status(pdev);
6951 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6952
6953 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6954 /* Disable EEE for internal PHY devices */
6955 hw->dev_spec._base.eee_enable = false;
6956 adapter->flags &= ~IGC_FLAG_EEE;
6957 igc_set_eee_i225(hw, false, false, false);
6958
6959 pm_runtime_put_noidle(&pdev->dev);
6960
6961 return 0;
6962
6963 err_register:
6964 igc_release_hw_control(adapter);
6965 err_eeprom:
6966 if (!igc_check_reset_block(hw))
6967 igc_reset_phy(hw);
6968 err_sw_init:
6969 igc_clear_interrupt_scheme(adapter);
6970 iounmap(adapter->io_addr);
6971 err_ioremap:
6972 free_netdev(netdev);
6973 err_alloc_etherdev:
6974 pci_release_mem_regions(pdev);
6975 err_pci_reg:
6976 err_dma:
6977 pci_disable_device(pdev);
6978 return err;
6979 }
6980
6981 /**
6982 * igc_remove - Device Removal Routine
6983 * @pdev: PCI device information struct
6984 *
6985 * igc_remove is called by the PCI subsystem to alert the driver
6986 * that it should release a PCI device. This could be caused by a
6987 * Hot-Plug event, or because the driver is going to be removed from
6988 * memory.
6989 */
igc_remove(struct pci_dev * pdev)6990 static void igc_remove(struct pci_dev *pdev)
6991 {
6992 struct net_device *netdev = pci_get_drvdata(pdev);
6993 struct igc_adapter *adapter = netdev_priv(netdev);
6994
6995 pm_runtime_get_noresume(&pdev->dev);
6996
6997 igc_flush_nfc_rules(adapter);
6998
6999 igc_ptp_stop(adapter);
7000
7001 pci_disable_ptm(pdev);
7002 pci_clear_master(pdev);
7003
7004 set_bit(__IGC_DOWN, &adapter->state);
7005
7006 del_timer_sync(&adapter->watchdog_timer);
7007 del_timer_sync(&adapter->phy_info_timer);
7008
7009 cancel_work_sync(&adapter->reset_task);
7010 cancel_work_sync(&adapter->watchdog_task);
7011 hrtimer_cancel(&adapter->hrtimer);
7012
7013 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7014 * would have already happened in close and is redundant.
7015 */
7016 igc_release_hw_control(adapter);
7017 unregister_netdev(netdev);
7018
7019 igc_clear_interrupt_scheme(adapter);
7020 pci_iounmap(pdev, adapter->io_addr);
7021 pci_release_mem_regions(pdev);
7022
7023 free_netdev(netdev);
7024
7025 pci_disable_device(pdev);
7026 }
7027
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)7028 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7029 bool runtime)
7030 {
7031 struct net_device *netdev = pci_get_drvdata(pdev);
7032 struct igc_adapter *adapter = netdev_priv(netdev);
7033 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7034 struct igc_hw *hw = &adapter->hw;
7035 u32 ctrl, rctl, status;
7036 bool wake;
7037
7038 rtnl_lock();
7039 netif_device_detach(netdev);
7040
7041 if (netif_running(netdev))
7042 __igc_close(netdev, true);
7043
7044 igc_ptp_suspend(adapter);
7045
7046 igc_clear_interrupt_scheme(adapter);
7047 rtnl_unlock();
7048
7049 status = rd32(IGC_STATUS);
7050 if (status & IGC_STATUS_LU)
7051 wufc &= ~IGC_WUFC_LNKC;
7052
7053 if (wufc) {
7054 igc_setup_rctl(adapter);
7055 igc_set_rx_mode(netdev);
7056
7057 /* turn on all-multi mode if wake on multicast is enabled */
7058 if (wufc & IGC_WUFC_MC) {
7059 rctl = rd32(IGC_RCTL);
7060 rctl |= IGC_RCTL_MPE;
7061 wr32(IGC_RCTL, rctl);
7062 }
7063
7064 ctrl = rd32(IGC_CTRL);
7065 ctrl |= IGC_CTRL_ADVD3WUC;
7066 wr32(IGC_CTRL, ctrl);
7067
7068 /* Allow time for pending master requests to run */
7069 igc_disable_pcie_master(hw);
7070
7071 wr32(IGC_WUC, IGC_WUC_PME_EN);
7072 wr32(IGC_WUFC, wufc);
7073 } else {
7074 wr32(IGC_WUC, 0);
7075 wr32(IGC_WUFC, 0);
7076 }
7077
7078 wake = wufc || adapter->en_mng_pt;
7079 if (!wake)
7080 igc_power_down_phy_copper_base(&adapter->hw);
7081 else
7082 igc_power_up_link(adapter);
7083
7084 if (enable_wake)
7085 *enable_wake = wake;
7086
7087 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7088 * would have already happened in close and is redundant.
7089 */
7090 igc_release_hw_control(adapter);
7091
7092 pci_disable_device(pdev);
7093
7094 return 0;
7095 }
7096
7097 #ifdef CONFIG_PM
igc_runtime_suspend(struct device * dev)7098 static int __maybe_unused igc_runtime_suspend(struct device *dev)
7099 {
7100 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7101 }
7102
igc_deliver_wake_packet(struct net_device * netdev)7103 static void igc_deliver_wake_packet(struct net_device *netdev)
7104 {
7105 struct igc_adapter *adapter = netdev_priv(netdev);
7106 struct igc_hw *hw = &adapter->hw;
7107 struct sk_buff *skb;
7108 u32 wupl;
7109
7110 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7111
7112 /* WUPM stores only the first 128 bytes of the wake packet.
7113 * Read the packet only if we have the whole thing.
7114 */
7115 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7116 return;
7117
7118 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7119 if (!skb)
7120 return;
7121
7122 skb_put(skb, wupl);
7123
7124 /* Ensure reads are 32-bit aligned */
7125 wupl = roundup(wupl, 4);
7126
7127 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7128
7129 skb->protocol = eth_type_trans(skb, netdev);
7130 netif_rx(skb);
7131 }
7132
igc_resume(struct device * dev)7133 static int __maybe_unused igc_resume(struct device *dev)
7134 {
7135 struct pci_dev *pdev = to_pci_dev(dev);
7136 struct net_device *netdev = pci_get_drvdata(pdev);
7137 struct igc_adapter *adapter = netdev_priv(netdev);
7138 struct igc_hw *hw = &adapter->hw;
7139 u32 err, val;
7140
7141 pci_set_power_state(pdev, PCI_D0);
7142 pci_restore_state(pdev);
7143 pci_save_state(pdev);
7144
7145 if (!pci_device_is_present(pdev))
7146 return -ENODEV;
7147 err = pci_enable_device_mem(pdev);
7148 if (err) {
7149 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7150 return err;
7151 }
7152 pci_set_master(pdev);
7153
7154 pci_enable_wake(pdev, PCI_D3hot, 0);
7155 pci_enable_wake(pdev, PCI_D3cold, 0);
7156
7157 if (igc_init_interrupt_scheme(adapter, true)) {
7158 netdev_err(netdev, "Unable to allocate memory for queues\n");
7159 return -ENOMEM;
7160 }
7161
7162 igc_reset(adapter);
7163
7164 /* let the f/w know that the h/w is now under the control of the
7165 * driver.
7166 */
7167 igc_get_hw_control(adapter);
7168
7169 val = rd32(IGC_WUS);
7170 if (val & WAKE_PKT_WUS)
7171 igc_deliver_wake_packet(netdev);
7172
7173 wr32(IGC_WUS, ~0);
7174
7175 rtnl_lock();
7176 if (!err && netif_running(netdev))
7177 err = __igc_open(netdev, true);
7178
7179 if (!err)
7180 netif_device_attach(netdev);
7181 rtnl_unlock();
7182
7183 return err;
7184 }
7185
igc_runtime_resume(struct device * dev)7186 static int __maybe_unused igc_runtime_resume(struct device *dev)
7187 {
7188 return igc_resume(dev);
7189 }
7190
igc_suspend(struct device * dev)7191 static int __maybe_unused igc_suspend(struct device *dev)
7192 {
7193 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7194 }
7195
igc_runtime_idle(struct device * dev)7196 static int __maybe_unused igc_runtime_idle(struct device *dev)
7197 {
7198 struct net_device *netdev = dev_get_drvdata(dev);
7199 struct igc_adapter *adapter = netdev_priv(netdev);
7200
7201 if (!igc_has_link(adapter))
7202 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7203
7204 return -EBUSY;
7205 }
7206 #endif /* CONFIG_PM */
7207
igc_shutdown(struct pci_dev * pdev)7208 static void igc_shutdown(struct pci_dev *pdev)
7209 {
7210 bool wake;
7211
7212 __igc_shutdown(pdev, &wake, 0);
7213
7214 if (system_state == SYSTEM_POWER_OFF) {
7215 pci_wake_from_d3(pdev, wake);
7216 pci_set_power_state(pdev, PCI_D3hot);
7217 }
7218 }
7219
7220 /**
7221 * igc_io_error_detected - called when PCI error is detected
7222 * @pdev: Pointer to PCI device
7223 * @state: The current PCI connection state
7224 *
7225 * This function is called after a PCI bus error affecting
7226 * this device has been detected.
7227 **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7228 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7229 pci_channel_state_t state)
7230 {
7231 struct net_device *netdev = pci_get_drvdata(pdev);
7232 struct igc_adapter *adapter = netdev_priv(netdev);
7233
7234 netif_device_detach(netdev);
7235
7236 if (state == pci_channel_io_perm_failure)
7237 return PCI_ERS_RESULT_DISCONNECT;
7238
7239 if (netif_running(netdev))
7240 igc_down(adapter);
7241 pci_disable_device(pdev);
7242
7243 /* Request a slot reset. */
7244 return PCI_ERS_RESULT_NEED_RESET;
7245 }
7246
7247 /**
7248 * igc_io_slot_reset - called after the PCI bus has been reset.
7249 * @pdev: Pointer to PCI device
7250 *
7251 * Restart the card from scratch, as if from a cold-boot. Implementation
7252 * resembles the first-half of the igc_resume routine.
7253 **/
igc_io_slot_reset(struct pci_dev * pdev)7254 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7255 {
7256 struct net_device *netdev = pci_get_drvdata(pdev);
7257 struct igc_adapter *adapter = netdev_priv(netdev);
7258 struct igc_hw *hw = &adapter->hw;
7259 pci_ers_result_t result;
7260
7261 if (pci_enable_device_mem(pdev)) {
7262 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7263 result = PCI_ERS_RESULT_DISCONNECT;
7264 } else {
7265 pci_set_master(pdev);
7266 pci_restore_state(pdev);
7267 pci_save_state(pdev);
7268
7269 pci_enable_wake(pdev, PCI_D3hot, 0);
7270 pci_enable_wake(pdev, PCI_D3cold, 0);
7271
7272 /* In case of PCI error, adapter loses its HW address
7273 * so we should re-assign it here.
7274 */
7275 hw->hw_addr = adapter->io_addr;
7276
7277 igc_reset(adapter);
7278 wr32(IGC_WUS, ~0);
7279 result = PCI_ERS_RESULT_RECOVERED;
7280 }
7281
7282 return result;
7283 }
7284
7285 /**
7286 * igc_io_resume - called when traffic can start to flow again.
7287 * @pdev: Pointer to PCI device
7288 *
7289 * This callback is called when the error recovery driver tells us that
7290 * its OK to resume normal operation. Implementation resembles the
7291 * second-half of the igc_resume routine.
7292 */
igc_io_resume(struct pci_dev * pdev)7293 static void igc_io_resume(struct pci_dev *pdev)
7294 {
7295 struct net_device *netdev = pci_get_drvdata(pdev);
7296 struct igc_adapter *adapter = netdev_priv(netdev);
7297
7298 rtnl_lock();
7299 if (netif_running(netdev)) {
7300 if (igc_open(netdev)) {
7301 netdev_err(netdev, "igc_open failed after reset\n");
7302 return;
7303 }
7304 }
7305
7306 netif_device_attach(netdev);
7307
7308 /* let the f/w know that the h/w is now under the control of the
7309 * driver.
7310 */
7311 igc_get_hw_control(adapter);
7312 rtnl_unlock();
7313 }
7314
7315 static const struct pci_error_handlers igc_err_handler = {
7316 .error_detected = igc_io_error_detected,
7317 .slot_reset = igc_io_slot_reset,
7318 .resume = igc_io_resume,
7319 };
7320
7321 #ifdef CONFIG_PM
7322 static const struct dev_pm_ops igc_pm_ops = {
7323 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7324 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7325 igc_runtime_idle)
7326 };
7327 #endif
7328
7329 static struct pci_driver igc_driver = {
7330 .name = igc_driver_name,
7331 .id_table = igc_pci_tbl,
7332 .probe = igc_probe,
7333 .remove = igc_remove,
7334 #ifdef CONFIG_PM
7335 .driver.pm = &igc_pm_ops,
7336 #endif
7337 .shutdown = igc_shutdown,
7338 .err_handler = &igc_err_handler,
7339 };
7340
7341 /**
7342 * igc_reinit_queues - return error
7343 * @adapter: pointer to adapter structure
7344 */
igc_reinit_queues(struct igc_adapter * adapter)7345 int igc_reinit_queues(struct igc_adapter *adapter)
7346 {
7347 struct net_device *netdev = adapter->netdev;
7348 int err = 0;
7349
7350 if (netif_running(netdev))
7351 igc_close(netdev);
7352
7353 igc_reset_interrupt_capability(adapter);
7354
7355 if (igc_init_interrupt_scheme(adapter, true)) {
7356 netdev_err(netdev, "Unable to allocate memory for queues\n");
7357 return -ENOMEM;
7358 }
7359
7360 if (netif_running(netdev))
7361 err = igc_open(netdev);
7362
7363 return err;
7364 }
7365
7366 /**
7367 * igc_get_hw_dev - return device
7368 * @hw: pointer to hardware structure
7369 *
7370 * used by hardware layer to print debugging information
7371 */
igc_get_hw_dev(struct igc_hw * hw)7372 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7373 {
7374 struct igc_adapter *adapter = hw->back;
7375
7376 return adapter->netdev;
7377 }
7378
igc_disable_rx_ring_hw(struct igc_ring * ring)7379 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7380 {
7381 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7382 u8 idx = ring->reg_idx;
7383 u32 rxdctl;
7384
7385 rxdctl = rd32(IGC_RXDCTL(idx));
7386 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7387 rxdctl |= IGC_RXDCTL_SWFLUSH;
7388 wr32(IGC_RXDCTL(idx), rxdctl);
7389 }
7390
igc_disable_rx_ring(struct igc_ring * ring)7391 void igc_disable_rx_ring(struct igc_ring *ring)
7392 {
7393 igc_disable_rx_ring_hw(ring);
7394 igc_clean_rx_ring(ring);
7395 }
7396
igc_enable_rx_ring(struct igc_ring * ring)7397 void igc_enable_rx_ring(struct igc_ring *ring)
7398 {
7399 struct igc_adapter *adapter = ring->q_vector->adapter;
7400
7401 igc_configure_rx_ring(adapter, ring);
7402
7403 if (ring->xsk_pool)
7404 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7405 else
7406 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7407 }
7408
igc_disable_tx_ring(struct igc_ring * ring)7409 void igc_disable_tx_ring(struct igc_ring *ring)
7410 {
7411 igc_disable_tx_ring_hw(ring);
7412 igc_clean_tx_ring(ring);
7413 }
7414
igc_enable_tx_ring(struct igc_ring * ring)7415 void igc_enable_tx_ring(struct igc_ring *ring)
7416 {
7417 struct igc_adapter *adapter = ring->q_vector->adapter;
7418
7419 igc_configure_tx_ring(adapter, ring);
7420 }
7421
7422 /**
7423 * igc_init_module - Driver Registration Routine
7424 *
7425 * igc_init_module is the first routine called when the driver is
7426 * loaded. All it does is register with the PCI subsystem.
7427 */
igc_init_module(void)7428 static int __init igc_init_module(void)
7429 {
7430 int ret;
7431
7432 pr_info("%s\n", igc_driver_string);
7433 pr_info("%s\n", igc_copyright);
7434
7435 ret = pci_register_driver(&igc_driver);
7436 return ret;
7437 }
7438
7439 module_init(igc_init_module);
7440
7441 /**
7442 * igc_exit_module - Driver Exit Cleanup Routine
7443 *
7444 * igc_exit_module is called just before the driver is removed
7445 * from memory.
7446 */
igc_exit_module(void)7447 static void __exit igc_exit_module(void)
7448 {
7449 pci_unregister_driver(&igc_driver);
7450 }
7451
7452 module_exit(igc_exit_module);
7453 /* igc_main.c */
7454