1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <linux/pci.h>
16
17 #include <net/ipv6.h>
18
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23
24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
25
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28 #define IGC_XDP_PASS 0
29 #define IGC_XDP_CONSUMED BIT(0)
30 #define IGC_XDP_TX BIT(1)
31 #define IGC_XDP_REDIRECT BIT(2)
32
33 static int debug = -1;
34
35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
36 MODULE_DESCRIPTION(DRV_SUMMARY);
37 MODULE_LICENSE("GPL v2");
38 module_param(debug, int, 0);
39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40
41 char igc_driver_name[] = "igc";
42 static const char igc_driver_string[] = DRV_SUMMARY;
43 static const char igc_copyright[] =
44 "Copyright(c) 2018 Intel Corporation.";
45
46 static const struct igc_info *igc_info_tbl[] = {
47 [board_base] = &igc_base_info,
48 };
49
50 static const struct pci_device_id igc_pci_tbl[] = {
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
66 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
67 /* required last entry */
68 {0, }
69 };
70
71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
72
73 enum latency_range {
74 lowest_latency = 0,
75 low_latency = 1,
76 bulk_latency = 2,
77 latency_invalid = 255
78 };
79
igc_reset(struct igc_adapter * adapter)80 void igc_reset(struct igc_adapter *adapter)
81 {
82 struct net_device *dev = adapter->netdev;
83 struct igc_hw *hw = &adapter->hw;
84 struct igc_fc_info *fc = &hw->fc;
85 u32 pba, hwm;
86
87 /* Repartition PBA for greater than 9k MTU if required */
88 pba = IGC_PBA_34K;
89
90 /* flow control settings
91 * The high water mark must be low enough to fit one full frame
92 * after transmitting the pause frame. As such we must have enough
93 * space to allow for us to complete our current transmit and then
94 * receive the frame that is in progress from the link partner.
95 * Set it to:
96 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
97 */
98 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
99
100 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
101 fc->low_water = fc->high_water - 16;
102 fc->pause_time = 0xFFFF;
103 fc->send_xon = 1;
104 fc->current_mode = fc->requested_mode;
105
106 hw->mac.ops.reset_hw(hw);
107
108 if (hw->mac.ops.init_hw(hw))
109 netdev_err(dev, "Error on hardware initialization\n");
110
111 /* Re-establish EEE setting */
112 igc_set_eee_i225(hw, true, true, true);
113
114 if (!netif_running(adapter->netdev))
115 igc_power_down_phy_copper_base(&adapter->hw);
116
117 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
118 wr32(IGC_VET, ETH_P_8021Q);
119
120 /* Re-enable PTP, where applicable. */
121 igc_ptp_reset(adapter);
122
123 /* Re-enable TSN offloading, where applicable. */
124 igc_tsn_reset(adapter);
125
126 igc_get_phy_info(hw);
127 }
128
129 /**
130 * igc_power_up_link - Power up the phy link
131 * @adapter: address of board private structure
132 */
igc_power_up_link(struct igc_adapter * adapter)133 static void igc_power_up_link(struct igc_adapter *adapter)
134 {
135 igc_reset_phy(&adapter->hw);
136
137 igc_power_up_phy_copper(&adapter->hw);
138
139 igc_setup_link(&adapter->hw);
140 }
141
142 /**
143 * igc_release_hw_control - release control of the h/w to f/w
144 * @adapter: address of board private structure
145 *
146 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
147 * For ASF and Pass Through versions of f/w this means that the
148 * driver is no longer loaded.
149 */
igc_release_hw_control(struct igc_adapter * adapter)150 static void igc_release_hw_control(struct igc_adapter *adapter)
151 {
152 struct igc_hw *hw = &adapter->hw;
153 u32 ctrl_ext;
154
155 if (!pci_device_is_present(adapter->pdev))
156 return;
157
158 /* Let firmware take over control of h/w */
159 ctrl_ext = rd32(IGC_CTRL_EXT);
160 wr32(IGC_CTRL_EXT,
161 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
162 }
163
164 /**
165 * igc_get_hw_control - get control of the h/w from f/w
166 * @adapter: address of board private structure
167 *
168 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
169 * For ASF and Pass Through versions of f/w this means that
170 * the driver is loaded.
171 */
igc_get_hw_control(struct igc_adapter * adapter)172 static void igc_get_hw_control(struct igc_adapter *adapter)
173 {
174 struct igc_hw *hw = &adapter->hw;
175 u32 ctrl_ext;
176
177 /* Let firmware know the driver has taken over */
178 ctrl_ext = rd32(IGC_CTRL_EXT);
179 wr32(IGC_CTRL_EXT,
180 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
181 }
182
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
184 {
185 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
186 dma_unmap_len(buf, len), DMA_TO_DEVICE);
187
188 dma_unmap_len_set(buf, len, 0);
189 }
190
191 /**
192 * igc_clean_tx_ring - Free Tx Buffers
193 * @tx_ring: ring to be cleaned
194 */
igc_clean_tx_ring(struct igc_ring * tx_ring)195 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
196 {
197 u16 i = tx_ring->next_to_clean;
198 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
199 u32 xsk_frames = 0;
200
201 while (i != tx_ring->next_to_use) {
202 union igc_adv_tx_desc *eop_desc, *tx_desc;
203
204 switch (tx_buffer->type) {
205 case IGC_TX_BUFFER_TYPE_XSK:
206 xsk_frames++;
207 break;
208 case IGC_TX_BUFFER_TYPE_XDP:
209 xdp_return_frame(tx_buffer->xdpf);
210 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
211 break;
212 case IGC_TX_BUFFER_TYPE_SKB:
213 dev_kfree_skb_any(tx_buffer->skb);
214 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
215 break;
216 default:
217 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
218 break;
219 }
220
221 /* check for eop_desc to determine the end of the packet */
222 eop_desc = tx_buffer->next_to_watch;
223 tx_desc = IGC_TX_DESC(tx_ring, i);
224
225 /* unmap remaining buffers */
226 while (tx_desc != eop_desc) {
227 tx_buffer++;
228 tx_desc++;
229 i++;
230 if (unlikely(i == tx_ring->count)) {
231 i = 0;
232 tx_buffer = tx_ring->tx_buffer_info;
233 tx_desc = IGC_TX_DESC(tx_ring, 0);
234 }
235
236 /* unmap any remaining paged data */
237 if (dma_unmap_len(tx_buffer, len))
238 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
239 }
240
241 tx_buffer->next_to_watch = NULL;
242
243 /* move us one more past the eop_desc for start of next pkt */
244 tx_buffer++;
245 i++;
246 if (unlikely(i == tx_ring->count)) {
247 i = 0;
248 tx_buffer = tx_ring->tx_buffer_info;
249 }
250 }
251
252 if (tx_ring->xsk_pool && xsk_frames)
253 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
254
255 /* reset BQL for queue */
256 netdev_tx_reset_queue(txring_txq(tx_ring));
257
258 /* reset next_to_use and next_to_clean */
259 tx_ring->next_to_use = 0;
260 tx_ring->next_to_clean = 0;
261 }
262
263 /**
264 * igc_free_tx_resources - Free Tx Resources per Queue
265 * @tx_ring: Tx descriptor ring for a specific queue
266 *
267 * Free all transmit software resources
268 */
igc_free_tx_resources(struct igc_ring * tx_ring)269 void igc_free_tx_resources(struct igc_ring *tx_ring)
270 {
271 igc_clean_tx_ring(tx_ring);
272
273 vfree(tx_ring->tx_buffer_info);
274 tx_ring->tx_buffer_info = NULL;
275
276 /* if not set, then don't free */
277 if (!tx_ring->desc)
278 return;
279
280 dma_free_coherent(tx_ring->dev, tx_ring->size,
281 tx_ring->desc, tx_ring->dma);
282
283 tx_ring->desc = NULL;
284 }
285
286 /**
287 * igc_free_all_tx_resources - Free Tx Resources for All Queues
288 * @adapter: board private structure
289 *
290 * Free all transmit software resources
291 */
igc_free_all_tx_resources(struct igc_adapter * adapter)292 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
293 {
294 int i;
295
296 for (i = 0; i < adapter->num_tx_queues; i++)
297 igc_free_tx_resources(adapter->tx_ring[i]);
298 }
299
300 /**
301 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
302 * @adapter: board private structure
303 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)304 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
305 {
306 int i;
307
308 for (i = 0; i < adapter->num_tx_queues; i++)
309 if (adapter->tx_ring[i])
310 igc_clean_tx_ring(adapter->tx_ring[i]);
311 }
312
313 /**
314 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
315 * @tx_ring: tx descriptor ring (for a specific queue) to setup
316 *
317 * Return 0 on success, negative on failure
318 */
igc_setup_tx_resources(struct igc_ring * tx_ring)319 int igc_setup_tx_resources(struct igc_ring *tx_ring)
320 {
321 struct net_device *ndev = tx_ring->netdev;
322 struct device *dev = tx_ring->dev;
323 int size = 0;
324
325 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
326 tx_ring->tx_buffer_info = vzalloc(size);
327 if (!tx_ring->tx_buffer_info)
328 goto err;
329
330 /* round up to nearest 4K */
331 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
332 tx_ring->size = ALIGN(tx_ring->size, 4096);
333
334 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
335 &tx_ring->dma, GFP_KERNEL);
336
337 if (!tx_ring->desc)
338 goto err;
339
340 tx_ring->next_to_use = 0;
341 tx_ring->next_to_clean = 0;
342
343 return 0;
344
345 err:
346 vfree(tx_ring->tx_buffer_info);
347 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
348 return -ENOMEM;
349 }
350
351 /**
352 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
353 * @adapter: board private structure
354 *
355 * Return 0 on success, negative on failure
356 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)357 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
358 {
359 struct net_device *dev = adapter->netdev;
360 int i, err = 0;
361
362 for (i = 0; i < adapter->num_tx_queues; i++) {
363 err = igc_setup_tx_resources(adapter->tx_ring[i]);
364 if (err) {
365 netdev_err(dev, "Error on Tx queue %u setup\n", i);
366 for (i--; i >= 0; i--)
367 igc_free_tx_resources(adapter->tx_ring[i]);
368 break;
369 }
370 }
371
372 return err;
373 }
374
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)375 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
376 {
377 u16 i = rx_ring->next_to_clean;
378
379 dev_kfree_skb(rx_ring->skb);
380 rx_ring->skb = NULL;
381
382 /* Free all the Rx ring sk_buffs */
383 while (i != rx_ring->next_to_alloc) {
384 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
385
386 /* Invalidate cache lines that may have been written to by
387 * device so that we avoid corrupting memory.
388 */
389 dma_sync_single_range_for_cpu(rx_ring->dev,
390 buffer_info->dma,
391 buffer_info->page_offset,
392 igc_rx_bufsz(rx_ring),
393 DMA_FROM_DEVICE);
394
395 /* free resources associated with mapping */
396 dma_unmap_page_attrs(rx_ring->dev,
397 buffer_info->dma,
398 igc_rx_pg_size(rx_ring),
399 DMA_FROM_DEVICE,
400 IGC_RX_DMA_ATTR);
401 __page_frag_cache_drain(buffer_info->page,
402 buffer_info->pagecnt_bias);
403
404 i++;
405 if (i == rx_ring->count)
406 i = 0;
407 }
408 }
409
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)410 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
411 {
412 struct igc_rx_buffer *bi;
413 u16 i;
414
415 for (i = 0; i < ring->count; i++) {
416 bi = &ring->rx_buffer_info[i];
417 if (!bi->xdp)
418 continue;
419
420 xsk_buff_free(bi->xdp);
421 bi->xdp = NULL;
422 }
423 }
424
425 /**
426 * igc_clean_rx_ring - Free Rx Buffers per Queue
427 * @ring: ring to free buffers from
428 */
igc_clean_rx_ring(struct igc_ring * ring)429 static void igc_clean_rx_ring(struct igc_ring *ring)
430 {
431 if (ring->xsk_pool)
432 igc_clean_rx_ring_xsk_pool(ring);
433 else
434 igc_clean_rx_ring_page_shared(ring);
435
436 clear_ring_uses_large_buffer(ring);
437
438 ring->next_to_alloc = 0;
439 ring->next_to_clean = 0;
440 ring->next_to_use = 0;
441 }
442
443 /**
444 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
445 * @adapter: board private structure
446 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)447 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
448 {
449 int i;
450
451 for (i = 0; i < adapter->num_rx_queues; i++)
452 if (adapter->rx_ring[i])
453 igc_clean_rx_ring(adapter->rx_ring[i]);
454 }
455
456 /**
457 * igc_free_rx_resources - Free Rx Resources
458 * @rx_ring: ring to clean the resources from
459 *
460 * Free all receive software resources
461 */
igc_free_rx_resources(struct igc_ring * rx_ring)462 void igc_free_rx_resources(struct igc_ring *rx_ring)
463 {
464 igc_clean_rx_ring(rx_ring);
465
466 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
467
468 vfree(rx_ring->rx_buffer_info);
469 rx_ring->rx_buffer_info = NULL;
470
471 /* if not set, then don't free */
472 if (!rx_ring->desc)
473 return;
474
475 dma_free_coherent(rx_ring->dev, rx_ring->size,
476 rx_ring->desc, rx_ring->dma);
477
478 rx_ring->desc = NULL;
479 }
480
481 /**
482 * igc_free_all_rx_resources - Free Rx Resources for All Queues
483 * @adapter: board private structure
484 *
485 * Free all receive software resources
486 */
igc_free_all_rx_resources(struct igc_adapter * adapter)487 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
488 {
489 int i;
490
491 for (i = 0; i < adapter->num_rx_queues; i++)
492 igc_free_rx_resources(adapter->rx_ring[i]);
493 }
494
495 /**
496 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
497 * @rx_ring: rx descriptor ring (for a specific queue) to setup
498 *
499 * Returns 0 on success, negative on failure
500 */
igc_setup_rx_resources(struct igc_ring * rx_ring)501 int igc_setup_rx_resources(struct igc_ring *rx_ring)
502 {
503 struct net_device *ndev = rx_ring->netdev;
504 struct device *dev = rx_ring->dev;
505 u8 index = rx_ring->queue_index;
506 int size, desc_len, res;
507
508 /* XDP RX-queue info */
509 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
510 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
511 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
512 rx_ring->q_vector->napi.napi_id);
513 if (res < 0) {
514 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
515 index);
516 return res;
517 }
518
519 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
520 rx_ring->rx_buffer_info = vzalloc(size);
521 if (!rx_ring->rx_buffer_info)
522 goto err;
523
524 desc_len = sizeof(union igc_adv_rx_desc);
525
526 /* Round up to nearest 4K */
527 rx_ring->size = rx_ring->count * desc_len;
528 rx_ring->size = ALIGN(rx_ring->size, 4096);
529
530 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
531 &rx_ring->dma, GFP_KERNEL);
532
533 if (!rx_ring->desc)
534 goto err;
535
536 rx_ring->next_to_alloc = 0;
537 rx_ring->next_to_clean = 0;
538 rx_ring->next_to_use = 0;
539
540 return 0;
541
542 err:
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 vfree(rx_ring->rx_buffer_info);
545 rx_ring->rx_buffer_info = NULL;
546 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
547 return -ENOMEM;
548 }
549
550 /**
551 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
552 * (Descriptors) for all queues
553 * @adapter: board private structure
554 *
555 * Return 0 on success, negative on failure
556 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)557 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
558 {
559 struct net_device *dev = adapter->netdev;
560 int i, err = 0;
561
562 for (i = 0; i < adapter->num_rx_queues; i++) {
563 err = igc_setup_rx_resources(adapter->rx_ring[i]);
564 if (err) {
565 netdev_err(dev, "Error on Rx queue %u setup\n", i);
566 for (i--; i >= 0; i--)
567 igc_free_rx_resources(adapter->rx_ring[i]);
568 break;
569 }
570 }
571
572 return err;
573 }
574
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)575 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
576 struct igc_ring *ring)
577 {
578 if (!igc_xdp_is_enabled(adapter) ||
579 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
580 return NULL;
581
582 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
583 }
584
585 /**
586 * igc_configure_rx_ring - Configure a receive ring after Reset
587 * @adapter: board private structure
588 * @ring: receive ring to be configured
589 *
590 * Configure the Rx unit of the MAC after a reset.
591 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)592 static void igc_configure_rx_ring(struct igc_adapter *adapter,
593 struct igc_ring *ring)
594 {
595 struct igc_hw *hw = &adapter->hw;
596 union igc_adv_rx_desc *rx_desc;
597 int reg_idx = ring->reg_idx;
598 u32 srrctl = 0, rxdctl = 0;
599 u64 rdba = ring->dma;
600 u32 buf_size;
601
602 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
603 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
604 if (ring->xsk_pool) {
605 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
606 MEM_TYPE_XSK_BUFF_POOL,
607 NULL));
608 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
609 } else {
610 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
611 MEM_TYPE_PAGE_SHARED,
612 NULL));
613 }
614
615 if (igc_xdp_is_enabled(adapter))
616 set_ring_uses_large_buffer(ring);
617
618 /* disable the queue */
619 wr32(IGC_RXDCTL(reg_idx), 0);
620
621 /* Set DMA base address registers */
622 wr32(IGC_RDBAL(reg_idx),
623 rdba & 0x00000000ffffffffULL);
624 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
625 wr32(IGC_RDLEN(reg_idx),
626 ring->count * sizeof(union igc_adv_rx_desc));
627
628 /* initialize head and tail */
629 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
630 wr32(IGC_RDH(reg_idx), 0);
631 writel(0, ring->tail);
632
633 /* reset next-to- use/clean to place SW in sync with hardware */
634 ring->next_to_clean = 0;
635 ring->next_to_use = 0;
636
637 if (ring->xsk_pool)
638 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
639 else if (ring_uses_large_buffer(ring))
640 buf_size = IGC_RXBUFFER_3072;
641 else
642 buf_size = IGC_RXBUFFER_2048;
643
644 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
645 srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
646 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
647
648 wr32(IGC_SRRCTL(reg_idx), srrctl);
649
650 rxdctl |= IGC_RX_PTHRESH;
651 rxdctl |= IGC_RX_HTHRESH << 8;
652 rxdctl |= IGC_RX_WTHRESH << 16;
653
654 /* initialize rx_buffer_info */
655 memset(ring->rx_buffer_info, 0,
656 sizeof(struct igc_rx_buffer) * ring->count);
657
658 /* initialize Rx descriptor 0 */
659 rx_desc = IGC_RX_DESC(ring, 0);
660 rx_desc->wb.upper.length = 0;
661
662 /* enable receive descriptor fetching */
663 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
664
665 wr32(IGC_RXDCTL(reg_idx), rxdctl);
666 }
667
668 /**
669 * igc_configure_rx - Configure receive Unit after Reset
670 * @adapter: board private structure
671 *
672 * Configure the Rx unit of the MAC after a reset.
673 */
igc_configure_rx(struct igc_adapter * adapter)674 static void igc_configure_rx(struct igc_adapter *adapter)
675 {
676 int i;
677
678 /* Setup the HW Rx Head and Tail Descriptor Pointers and
679 * the Base and Length of the Rx Descriptor Ring
680 */
681 for (i = 0; i < adapter->num_rx_queues; i++)
682 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
683 }
684
685 /**
686 * igc_configure_tx_ring - Configure transmit ring after Reset
687 * @adapter: board private structure
688 * @ring: tx ring to configure
689 *
690 * Configure a transmit ring after a reset.
691 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)692 static void igc_configure_tx_ring(struct igc_adapter *adapter,
693 struct igc_ring *ring)
694 {
695 struct igc_hw *hw = &adapter->hw;
696 int reg_idx = ring->reg_idx;
697 u64 tdba = ring->dma;
698 u32 txdctl = 0;
699
700 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
701
702 /* disable the queue */
703 wr32(IGC_TXDCTL(reg_idx), 0);
704 wrfl();
705 mdelay(10);
706
707 wr32(IGC_TDLEN(reg_idx),
708 ring->count * sizeof(union igc_adv_tx_desc));
709 wr32(IGC_TDBAL(reg_idx),
710 tdba & 0x00000000ffffffffULL);
711 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
712
713 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
714 wr32(IGC_TDH(reg_idx), 0);
715 writel(0, ring->tail);
716
717 txdctl |= IGC_TX_PTHRESH;
718 txdctl |= IGC_TX_HTHRESH << 8;
719 txdctl |= IGC_TX_WTHRESH << 16;
720
721 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
722 wr32(IGC_TXDCTL(reg_idx), txdctl);
723 }
724
725 /**
726 * igc_configure_tx - Configure transmit Unit after Reset
727 * @adapter: board private structure
728 *
729 * Configure the Tx unit of the MAC after a reset.
730 */
igc_configure_tx(struct igc_adapter * adapter)731 static void igc_configure_tx(struct igc_adapter *adapter)
732 {
733 int i;
734
735 for (i = 0; i < adapter->num_tx_queues; i++)
736 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
737 }
738
739 /**
740 * igc_setup_mrqc - configure the multiple receive queue control registers
741 * @adapter: Board private structure
742 */
igc_setup_mrqc(struct igc_adapter * adapter)743 static void igc_setup_mrqc(struct igc_adapter *adapter)
744 {
745 struct igc_hw *hw = &adapter->hw;
746 u32 j, num_rx_queues;
747 u32 mrqc, rxcsum;
748 u32 rss_key[10];
749
750 netdev_rss_key_fill(rss_key, sizeof(rss_key));
751 for (j = 0; j < 10; j++)
752 wr32(IGC_RSSRK(j), rss_key[j]);
753
754 num_rx_queues = adapter->rss_queues;
755
756 if (adapter->rss_indir_tbl_init != num_rx_queues) {
757 for (j = 0; j < IGC_RETA_SIZE; j++)
758 adapter->rss_indir_tbl[j] =
759 (j * num_rx_queues) / IGC_RETA_SIZE;
760 adapter->rss_indir_tbl_init = num_rx_queues;
761 }
762 igc_write_rss_indir_tbl(adapter);
763
764 /* Disable raw packet checksumming so that RSS hash is placed in
765 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
766 * offloads as they are enabled by default
767 */
768 rxcsum = rd32(IGC_RXCSUM);
769 rxcsum |= IGC_RXCSUM_PCSD;
770
771 /* Enable Receive Checksum Offload for SCTP */
772 rxcsum |= IGC_RXCSUM_CRCOFL;
773
774 /* Don't need to set TUOFL or IPOFL, they default to 1 */
775 wr32(IGC_RXCSUM, rxcsum);
776
777 /* Generate RSS hash based on packet types, TCP/UDP
778 * port numbers and/or IPv4/v6 src and dst addresses
779 */
780 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
781 IGC_MRQC_RSS_FIELD_IPV4_TCP |
782 IGC_MRQC_RSS_FIELD_IPV6 |
783 IGC_MRQC_RSS_FIELD_IPV6_TCP |
784 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
785
786 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
787 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
788 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
789 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
790
791 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
792
793 wr32(IGC_MRQC, mrqc);
794 }
795
796 /**
797 * igc_setup_rctl - configure the receive control registers
798 * @adapter: Board private structure
799 */
igc_setup_rctl(struct igc_adapter * adapter)800 static void igc_setup_rctl(struct igc_adapter *adapter)
801 {
802 struct igc_hw *hw = &adapter->hw;
803 u32 rctl;
804
805 rctl = rd32(IGC_RCTL);
806
807 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
808 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
809
810 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
811 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
812
813 /* enable stripping of CRC. Newer features require
814 * that the HW strips the CRC.
815 */
816 rctl |= IGC_RCTL_SECRC;
817
818 /* disable store bad packets and clear size bits. */
819 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
820
821 /* enable LPE to allow for reception of jumbo frames */
822 rctl |= IGC_RCTL_LPE;
823
824 /* disable queue 0 to prevent tail write w/o re-config */
825 wr32(IGC_RXDCTL(0), 0);
826
827 /* This is useful for sniffing bad packets. */
828 if (adapter->netdev->features & NETIF_F_RXALL) {
829 /* UPE and MPE will be handled by normal PROMISC logic
830 * in set_rx_mode
831 */
832 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
833 IGC_RCTL_BAM | /* RX All Bcast Pkts */
834 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
835
836 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
837 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
838 }
839
840 wr32(IGC_RCTL, rctl);
841 }
842
843 /**
844 * igc_setup_tctl - configure the transmit control registers
845 * @adapter: Board private structure
846 */
igc_setup_tctl(struct igc_adapter * adapter)847 static void igc_setup_tctl(struct igc_adapter *adapter)
848 {
849 struct igc_hw *hw = &adapter->hw;
850 u32 tctl;
851
852 /* disable queue 0 which icould be enabled by default */
853 wr32(IGC_TXDCTL(0), 0);
854
855 /* Program the Transmit Control Register */
856 tctl = rd32(IGC_TCTL);
857 tctl &= ~IGC_TCTL_CT;
858 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
859 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
860
861 /* Enable transmits */
862 tctl |= IGC_TCTL_EN;
863
864 wr32(IGC_TCTL, tctl);
865 }
866
867 /**
868 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
869 * @adapter: Pointer to adapter where the filter should be set
870 * @index: Filter index
871 * @type: MAC address filter type (source or destination)
872 * @addr: MAC address
873 * @queue: If non-negative, queue assignment feature is enabled and frames
874 * matching the filter are enqueued onto 'queue'. Otherwise, queue
875 * assignment is disabled.
876 */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)877 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
878 enum igc_mac_filter_type type,
879 const u8 *addr, int queue)
880 {
881 struct net_device *dev = adapter->netdev;
882 struct igc_hw *hw = &adapter->hw;
883 u32 ral, rah;
884
885 if (WARN_ON(index >= hw->mac.rar_entry_count))
886 return;
887
888 ral = le32_to_cpup((__le32 *)(addr));
889 rah = le16_to_cpup((__le16 *)(addr + 4));
890
891 if (type == IGC_MAC_FILTER_TYPE_SRC) {
892 rah &= ~IGC_RAH_ASEL_MASK;
893 rah |= IGC_RAH_ASEL_SRC_ADDR;
894 }
895
896 if (queue >= 0) {
897 rah &= ~IGC_RAH_QSEL_MASK;
898 rah |= (queue << IGC_RAH_QSEL_SHIFT);
899 rah |= IGC_RAH_QSEL_ENABLE;
900 }
901
902 rah |= IGC_RAH_AV;
903
904 wr32(IGC_RAL(index), ral);
905 wr32(IGC_RAH(index), rah);
906
907 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
908 }
909
910 /**
911 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
912 * @adapter: Pointer to adapter where the filter should be cleared
913 * @index: Filter index
914 */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)915 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
916 {
917 struct net_device *dev = adapter->netdev;
918 struct igc_hw *hw = &adapter->hw;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 wr32(IGC_RAL(index), 0);
924 wr32(IGC_RAH(index), 0);
925
926 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
927 }
928
929 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)930 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
931 {
932 struct net_device *dev = adapter->netdev;
933 u8 *addr = adapter->hw.mac.addr;
934
935 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
936
937 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
938 }
939
940 /**
941 * igc_set_mac - Change the Ethernet Address of the NIC
942 * @netdev: network interface device structure
943 * @p: pointer to an address structure
944 *
945 * Returns 0 on success, negative on failure
946 */
igc_set_mac(struct net_device * netdev,void * p)947 static int igc_set_mac(struct net_device *netdev, void *p)
948 {
949 struct igc_adapter *adapter = netdev_priv(netdev);
950 struct igc_hw *hw = &adapter->hw;
951 struct sockaddr *addr = p;
952
953 if (!is_valid_ether_addr(addr->sa_data))
954 return -EADDRNOTAVAIL;
955
956 eth_hw_addr_set(netdev, addr->sa_data);
957 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
958
959 /* set the correct pool for the new PF MAC address in entry 0 */
960 igc_set_default_mac_filter(adapter);
961
962 return 0;
963 }
964
965 /**
966 * igc_write_mc_addr_list - write multicast addresses to MTA
967 * @netdev: network interface device structure
968 *
969 * Writes multicast address list to the MTA hash table.
970 * Returns: -ENOMEM on failure
971 * 0 on no addresses written
972 * X on writing X addresses to MTA
973 **/
igc_write_mc_addr_list(struct net_device * netdev)974 static int igc_write_mc_addr_list(struct net_device *netdev)
975 {
976 struct igc_adapter *adapter = netdev_priv(netdev);
977 struct igc_hw *hw = &adapter->hw;
978 struct netdev_hw_addr *ha;
979 u8 *mta_list;
980 int i;
981
982 if (netdev_mc_empty(netdev)) {
983 /* nothing to program, so clear mc list */
984 igc_update_mc_addr_list(hw, NULL, 0);
985 return 0;
986 }
987
988 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
989 if (!mta_list)
990 return -ENOMEM;
991
992 /* The shared function expects a packed array of only addresses. */
993 i = 0;
994 netdev_for_each_mc_addr(ha, netdev)
995 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
996
997 igc_update_mc_addr_list(hw, mta_list, i);
998 kfree(mta_list);
999
1000 return netdev_mc_count(netdev);
1001 }
1002
igc_tx_launchtime(struct igc_adapter * adapter,ktime_t txtime)1003 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
1004 {
1005 ktime_t cycle_time = adapter->cycle_time;
1006 ktime_t base_time = adapter->base_time;
1007 u32 launchtime;
1008
1009 /* FIXME: when using ETF together with taprio, we may have a
1010 * case where 'delta' is larger than the cycle_time, this may
1011 * cause problems if we don't read the current value of
1012 * IGC_BASET, as the value writen into the launchtime
1013 * descriptor field may be misinterpreted.
1014 */
1015 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1016
1017 return cpu_to_le32(launchtime);
1018 }
1019
igc_tx_ctxtdesc(struct igc_ring * tx_ring,struct igc_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1020 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1021 struct igc_tx_buffer *first,
1022 u32 vlan_macip_lens, u32 type_tucmd,
1023 u32 mss_l4len_idx)
1024 {
1025 struct igc_adv_tx_context_desc *context_desc;
1026 u16 i = tx_ring->next_to_use;
1027
1028 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1029
1030 i++;
1031 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1032
1033 /* set bits to identify this as an advanced context descriptor */
1034 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1035
1036 /* For i225, context index must be unique per ring. */
1037 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1038 mss_l4len_idx |= tx_ring->reg_idx << 4;
1039
1040 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1041 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1042 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1043
1044 /* We assume there is always a valid Tx time available. Invalid times
1045 * should have been handled by the upper layers.
1046 */
1047 if (tx_ring->launchtime_enable) {
1048 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1049 ktime_t txtime = first->skb->tstamp;
1050
1051 skb_txtime_consumed(first->skb);
1052 context_desc->launch_time = igc_tx_launchtime(adapter,
1053 txtime);
1054 } else {
1055 context_desc->launch_time = 0;
1056 }
1057 }
1058
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first)1059 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1060 {
1061 struct sk_buff *skb = first->skb;
1062 u32 vlan_macip_lens = 0;
1063 u32 type_tucmd = 0;
1064
1065 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1066 csum_failed:
1067 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1068 !tx_ring->launchtime_enable)
1069 return;
1070 goto no_csum;
1071 }
1072
1073 switch (skb->csum_offset) {
1074 case offsetof(struct tcphdr, check):
1075 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1076 fallthrough;
1077 case offsetof(struct udphdr, check):
1078 break;
1079 case offsetof(struct sctphdr, checksum):
1080 /* validate that this is actually an SCTP request */
1081 if (skb_csum_is_sctp(skb)) {
1082 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1083 break;
1084 }
1085 fallthrough;
1086 default:
1087 skb_checksum_help(skb);
1088 goto csum_failed;
1089 }
1090
1091 /* update TX checksum flag */
1092 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1093 vlan_macip_lens = skb_checksum_start_offset(skb) -
1094 skb_network_offset(skb);
1095 no_csum:
1096 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1097 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1098
1099 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1100 }
1101
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1102 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1103 {
1104 struct net_device *netdev = tx_ring->netdev;
1105
1106 netif_stop_subqueue(netdev, tx_ring->queue_index);
1107
1108 /* memory barriier comment */
1109 smp_mb();
1110
1111 /* We need to check again in a case another CPU has just
1112 * made room available.
1113 */
1114 if (igc_desc_unused(tx_ring) < size)
1115 return -EBUSY;
1116
1117 /* A reprieve! */
1118 netif_wake_subqueue(netdev, tx_ring->queue_index);
1119
1120 u64_stats_update_begin(&tx_ring->tx_syncp2);
1121 tx_ring->tx_stats.restart_queue2++;
1122 u64_stats_update_end(&tx_ring->tx_syncp2);
1123
1124 return 0;
1125 }
1126
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1127 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1128 {
1129 if (igc_desc_unused(tx_ring) >= size)
1130 return 0;
1131 return __igc_maybe_stop_tx(tx_ring, size);
1132 }
1133
1134 #define IGC_SET_FLAG(_input, _flag, _result) \
1135 (((_flag) <= (_result)) ? \
1136 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1137 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1138
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1139 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1140 {
1141 /* set type for advanced descriptor with frame checksum insertion */
1142 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1143 IGC_ADVTXD_DCMD_DEXT |
1144 IGC_ADVTXD_DCMD_IFCS;
1145
1146 /* set HW vlan bit if vlan is present */
1147 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1148 IGC_ADVTXD_DCMD_VLE);
1149
1150 /* set segmentation bits for TSO */
1151 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1152 (IGC_ADVTXD_DCMD_TSE));
1153
1154 /* set timestamp bit if present */
1155 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1156 (IGC_ADVTXD_MAC_TSTAMP));
1157
1158 /* insert frame checksum */
1159 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1160
1161 return cmd_type;
1162 }
1163
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1164 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1165 union igc_adv_tx_desc *tx_desc,
1166 u32 tx_flags, unsigned int paylen)
1167 {
1168 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1169
1170 /* insert L4 checksum */
1171 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1172 ((IGC_TXD_POPTS_TXSM << 8) /
1173 IGC_TX_FLAGS_CSUM);
1174
1175 /* insert IPv4 checksum */
1176 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1177 (((IGC_TXD_POPTS_IXSM << 8)) /
1178 IGC_TX_FLAGS_IPV4);
1179
1180 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1181 }
1182
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1183 static int igc_tx_map(struct igc_ring *tx_ring,
1184 struct igc_tx_buffer *first,
1185 const u8 hdr_len)
1186 {
1187 struct sk_buff *skb = first->skb;
1188 struct igc_tx_buffer *tx_buffer;
1189 union igc_adv_tx_desc *tx_desc;
1190 u32 tx_flags = first->tx_flags;
1191 skb_frag_t *frag;
1192 u16 i = tx_ring->next_to_use;
1193 unsigned int data_len, size;
1194 dma_addr_t dma;
1195 u32 cmd_type;
1196
1197 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1198 tx_desc = IGC_TX_DESC(tx_ring, i);
1199
1200 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1201
1202 size = skb_headlen(skb);
1203 data_len = skb->data_len;
1204
1205 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1206
1207 tx_buffer = first;
1208
1209 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1210 if (dma_mapping_error(tx_ring->dev, dma))
1211 goto dma_error;
1212
1213 /* record length, and DMA address */
1214 dma_unmap_len_set(tx_buffer, len, size);
1215 dma_unmap_addr_set(tx_buffer, dma, dma);
1216
1217 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1218
1219 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1220 tx_desc->read.cmd_type_len =
1221 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1222
1223 i++;
1224 tx_desc++;
1225 if (i == tx_ring->count) {
1226 tx_desc = IGC_TX_DESC(tx_ring, 0);
1227 i = 0;
1228 }
1229 tx_desc->read.olinfo_status = 0;
1230
1231 dma += IGC_MAX_DATA_PER_TXD;
1232 size -= IGC_MAX_DATA_PER_TXD;
1233
1234 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1235 }
1236
1237 if (likely(!data_len))
1238 break;
1239
1240 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1241
1242 i++;
1243 tx_desc++;
1244 if (i == tx_ring->count) {
1245 tx_desc = IGC_TX_DESC(tx_ring, 0);
1246 i = 0;
1247 }
1248 tx_desc->read.olinfo_status = 0;
1249
1250 size = skb_frag_size(frag);
1251 data_len -= size;
1252
1253 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1254 size, DMA_TO_DEVICE);
1255
1256 tx_buffer = &tx_ring->tx_buffer_info[i];
1257 }
1258
1259 /* write last descriptor with RS and EOP bits */
1260 cmd_type |= size | IGC_TXD_DCMD;
1261 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1262
1263 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1264
1265 /* set the timestamp */
1266 first->time_stamp = jiffies;
1267
1268 skb_tx_timestamp(skb);
1269
1270 /* Force memory writes to complete before letting h/w know there
1271 * are new descriptors to fetch. (Only applicable for weak-ordered
1272 * memory model archs, such as IA-64).
1273 *
1274 * We also need this memory barrier to make certain all of the
1275 * status bits have been updated before next_to_watch is written.
1276 */
1277 wmb();
1278
1279 /* set next_to_watch value indicating a packet is present */
1280 first->next_to_watch = tx_desc;
1281
1282 i++;
1283 if (i == tx_ring->count)
1284 i = 0;
1285
1286 tx_ring->next_to_use = i;
1287
1288 /* Make sure there is space in the ring for the next send. */
1289 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1290
1291 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1292 writel(i, tx_ring->tail);
1293 }
1294
1295 return 0;
1296 dma_error:
1297 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1298 tx_buffer = &tx_ring->tx_buffer_info[i];
1299
1300 /* clear dma mappings for failed tx_buffer_info map */
1301 while (tx_buffer != first) {
1302 if (dma_unmap_len(tx_buffer, len))
1303 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1304
1305 if (i-- == 0)
1306 i += tx_ring->count;
1307 tx_buffer = &tx_ring->tx_buffer_info[i];
1308 }
1309
1310 if (dma_unmap_len(tx_buffer, len))
1311 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1312
1313 dev_kfree_skb_any(tx_buffer->skb);
1314 tx_buffer->skb = NULL;
1315
1316 tx_ring->next_to_use = i;
1317
1318 return -1;
1319 }
1320
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,u8 * hdr_len)1321 static int igc_tso(struct igc_ring *tx_ring,
1322 struct igc_tx_buffer *first,
1323 u8 *hdr_len)
1324 {
1325 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1326 struct sk_buff *skb = first->skb;
1327 union {
1328 struct iphdr *v4;
1329 struct ipv6hdr *v6;
1330 unsigned char *hdr;
1331 } ip;
1332 union {
1333 struct tcphdr *tcp;
1334 struct udphdr *udp;
1335 unsigned char *hdr;
1336 } l4;
1337 u32 paylen, l4_offset;
1338 int err;
1339
1340 if (skb->ip_summed != CHECKSUM_PARTIAL)
1341 return 0;
1342
1343 if (!skb_is_gso(skb))
1344 return 0;
1345
1346 err = skb_cow_head(skb, 0);
1347 if (err < 0)
1348 return err;
1349
1350 ip.hdr = skb_network_header(skb);
1351 l4.hdr = skb_checksum_start(skb);
1352
1353 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1354 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1355
1356 /* initialize outer IP header fields */
1357 if (ip.v4->version == 4) {
1358 unsigned char *csum_start = skb_checksum_start(skb);
1359 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1360
1361 /* IP header will have to cancel out any data that
1362 * is not a part of the outer IP header
1363 */
1364 ip.v4->check = csum_fold(csum_partial(trans_start,
1365 csum_start - trans_start,
1366 0));
1367 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1368
1369 ip.v4->tot_len = 0;
1370 first->tx_flags |= IGC_TX_FLAGS_TSO |
1371 IGC_TX_FLAGS_CSUM |
1372 IGC_TX_FLAGS_IPV4;
1373 } else {
1374 ip.v6->payload_len = 0;
1375 first->tx_flags |= IGC_TX_FLAGS_TSO |
1376 IGC_TX_FLAGS_CSUM;
1377 }
1378
1379 /* determine offset of inner transport header */
1380 l4_offset = l4.hdr - skb->data;
1381
1382 /* remove payload length from inner checksum */
1383 paylen = skb->len - l4_offset;
1384 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1385 /* compute length of segmentation header */
1386 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1387 csum_replace_by_diff(&l4.tcp->check,
1388 (__force __wsum)htonl(paylen));
1389 } else {
1390 /* compute length of segmentation header */
1391 *hdr_len = sizeof(*l4.udp) + l4_offset;
1392 csum_replace_by_diff(&l4.udp->check,
1393 (__force __wsum)htonl(paylen));
1394 }
1395
1396 /* update gso size and bytecount with header size */
1397 first->gso_segs = skb_shinfo(skb)->gso_segs;
1398 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1399
1400 /* MSS L4LEN IDX */
1401 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1402 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1403
1404 /* VLAN MACLEN IPLEN */
1405 vlan_macip_lens = l4.hdr - ip.hdr;
1406 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1407 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1408
1409 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1410 type_tucmd, mss_l4len_idx);
1411
1412 return 1;
1413 }
1414
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1415 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1416 struct igc_ring *tx_ring)
1417 {
1418 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1419 __be16 protocol = vlan_get_protocol(skb);
1420 struct igc_tx_buffer *first;
1421 u32 tx_flags = 0;
1422 unsigned short f;
1423 u8 hdr_len = 0;
1424 int tso = 0;
1425
1426 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1427 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1428 * + 2 desc gap to keep tail from touching head,
1429 * + 1 desc for context descriptor,
1430 * otherwise try next time
1431 */
1432 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1433 count += TXD_USE_COUNT(skb_frag_size(
1434 &skb_shinfo(skb)->frags[f]));
1435
1436 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1437 /* this is a hard error */
1438 return NETDEV_TX_BUSY;
1439 }
1440
1441 /* record the location of the first descriptor for this packet */
1442 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1443 first->type = IGC_TX_BUFFER_TYPE_SKB;
1444 first->skb = skb;
1445 first->bytecount = skb->len;
1446 first->gso_segs = 1;
1447
1448 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1449 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1450
1451 /* FIXME: add support for retrieving timestamps from
1452 * the other timer registers before skipping the
1453 * timestamping request.
1454 */
1455 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1456 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1457 &adapter->state)) {
1458 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1459 tx_flags |= IGC_TX_FLAGS_TSTAMP;
1460
1461 adapter->ptp_tx_skb = skb_get(skb);
1462 adapter->ptp_tx_start = jiffies;
1463 } else {
1464 adapter->tx_hwtstamp_skipped++;
1465 }
1466 }
1467
1468 if (skb_vlan_tag_present(skb)) {
1469 tx_flags |= IGC_TX_FLAGS_VLAN;
1470 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1471 }
1472
1473 /* record initial flags and protocol */
1474 first->tx_flags = tx_flags;
1475 first->protocol = protocol;
1476
1477 tso = igc_tso(tx_ring, first, &hdr_len);
1478 if (tso < 0)
1479 goto out_drop;
1480 else if (!tso)
1481 igc_tx_csum(tx_ring, first);
1482
1483 igc_tx_map(tx_ring, first, hdr_len);
1484
1485 return NETDEV_TX_OK;
1486
1487 out_drop:
1488 dev_kfree_skb_any(first->skb);
1489 first->skb = NULL;
1490
1491 return NETDEV_TX_OK;
1492 }
1493
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1494 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1495 struct sk_buff *skb)
1496 {
1497 unsigned int r_idx = skb->queue_mapping;
1498
1499 if (r_idx >= adapter->num_tx_queues)
1500 r_idx = r_idx % adapter->num_tx_queues;
1501
1502 return adapter->tx_ring[r_idx];
1503 }
1504
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1505 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1506 struct net_device *netdev)
1507 {
1508 struct igc_adapter *adapter = netdev_priv(netdev);
1509
1510 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1511 * in order to meet this minimum size requirement.
1512 */
1513 if (skb->len < 17) {
1514 if (skb_padto(skb, 17))
1515 return NETDEV_TX_OK;
1516 skb->len = 17;
1517 }
1518
1519 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1520 }
1521
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1522 static void igc_rx_checksum(struct igc_ring *ring,
1523 union igc_adv_rx_desc *rx_desc,
1524 struct sk_buff *skb)
1525 {
1526 skb_checksum_none_assert(skb);
1527
1528 /* Ignore Checksum bit is set */
1529 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1530 return;
1531
1532 /* Rx checksum disabled via ethtool */
1533 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1534 return;
1535
1536 /* TCP/UDP checksum error bit is set */
1537 if (igc_test_staterr(rx_desc,
1538 IGC_RXDEXT_STATERR_L4E |
1539 IGC_RXDEXT_STATERR_IPE)) {
1540 /* work around errata with sctp packets where the TCPE aka
1541 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1542 * packets (aka let the stack check the crc32c)
1543 */
1544 if (!(skb->len == 60 &&
1545 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1546 u64_stats_update_begin(&ring->rx_syncp);
1547 ring->rx_stats.csum_err++;
1548 u64_stats_update_end(&ring->rx_syncp);
1549 }
1550 /* let the stack verify checksum errors */
1551 return;
1552 }
1553 /* It must be a TCP or UDP packet with a valid checksum */
1554 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1555 IGC_RXD_STAT_UDPCS))
1556 skb->ip_summed = CHECKSUM_UNNECESSARY;
1557
1558 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1559 le32_to_cpu(rx_desc->wb.upper.status_error));
1560 }
1561
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1562 static inline void igc_rx_hash(struct igc_ring *ring,
1563 union igc_adv_rx_desc *rx_desc,
1564 struct sk_buff *skb)
1565 {
1566 if (ring->netdev->features & NETIF_F_RXHASH)
1567 skb_set_hash(skb,
1568 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1569 PKT_HASH_TYPE_L3);
1570 }
1571
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1572 static void igc_rx_vlan(struct igc_ring *rx_ring,
1573 union igc_adv_rx_desc *rx_desc,
1574 struct sk_buff *skb)
1575 {
1576 struct net_device *dev = rx_ring->netdev;
1577 u16 vid;
1578
1579 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1580 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1581 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1582 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1583 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1584 else
1585 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1586
1587 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1588 }
1589 }
1590
1591 /**
1592 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1593 * @rx_ring: rx descriptor ring packet is being transacted on
1594 * @rx_desc: pointer to the EOP Rx descriptor
1595 * @skb: pointer to current skb being populated
1596 *
1597 * This function checks the ring, descriptor, and packet information in order
1598 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1599 * skb.
1600 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1601 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1602 union igc_adv_rx_desc *rx_desc,
1603 struct sk_buff *skb)
1604 {
1605 igc_rx_hash(rx_ring, rx_desc, skb);
1606
1607 igc_rx_checksum(rx_ring, rx_desc, skb);
1608
1609 igc_rx_vlan(rx_ring, rx_desc, skb);
1610
1611 skb_record_rx_queue(skb, rx_ring->queue_index);
1612
1613 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1614 }
1615
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1616 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1617 {
1618 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1619 struct igc_adapter *adapter = netdev_priv(netdev);
1620 struct igc_hw *hw = &adapter->hw;
1621 u32 ctrl;
1622
1623 ctrl = rd32(IGC_CTRL);
1624
1625 if (enable) {
1626 /* enable VLAN tag insert/strip */
1627 ctrl |= IGC_CTRL_VME;
1628 } else {
1629 /* disable VLAN tag insert/strip */
1630 ctrl &= ~IGC_CTRL_VME;
1631 }
1632 wr32(IGC_CTRL, ctrl);
1633 }
1634
igc_restore_vlan(struct igc_adapter * adapter)1635 static void igc_restore_vlan(struct igc_adapter *adapter)
1636 {
1637 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1638 }
1639
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1640 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1641 const unsigned int size,
1642 int *rx_buffer_pgcnt)
1643 {
1644 struct igc_rx_buffer *rx_buffer;
1645
1646 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1647 *rx_buffer_pgcnt =
1648 #if (PAGE_SIZE < 8192)
1649 page_count(rx_buffer->page);
1650 #else
1651 0;
1652 #endif
1653 prefetchw(rx_buffer->page);
1654
1655 /* we are reusing so sync this buffer for CPU use */
1656 dma_sync_single_range_for_cpu(rx_ring->dev,
1657 rx_buffer->dma,
1658 rx_buffer->page_offset,
1659 size,
1660 DMA_FROM_DEVICE);
1661
1662 rx_buffer->pagecnt_bias--;
1663
1664 return rx_buffer;
1665 }
1666
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1667 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1668 unsigned int truesize)
1669 {
1670 #if (PAGE_SIZE < 8192)
1671 buffer->page_offset ^= truesize;
1672 #else
1673 buffer->page_offset += truesize;
1674 #endif
1675 }
1676
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1677 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1678 unsigned int size)
1679 {
1680 unsigned int truesize;
1681
1682 #if (PAGE_SIZE < 8192)
1683 truesize = igc_rx_pg_size(ring) / 2;
1684 #else
1685 truesize = ring_uses_build_skb(ring) ?
1686 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1687 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1688 SKB_DATA_ALIGN(size);
1689 #endif
1690 return truesize;
1691 }
1692
1693 /**
1694 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1695 * @rx_ring: rx descriptor ring to transact packets on
1696 * @rx_buffer: buffer containing page to add
1697 * @skb: sk_buff to place the data into
1698 * @size: size of buffer to be added
1699 *
1700 * This function will add the data contained in rx_buffer->page to the skb.
1701 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1702 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1703 struct igc_rx_buffer *rx_buffer,
1704 struct sk_buff *skb,
1705 unsigned int size)
1706 {
1707 unsigned int truesize;
1708
1709 #if (PAGE_SIZE < 8192)
1710 truesize = igc_rx_pg_size(rx_ring) / 2;
1711 #else
1712 truesize = ring_uses_build_skb(rx_ring) ?
1713 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1714 SKB_DATA_ALIGN(size);
1715 #endif
1716 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1717 rx_buffer->page_offset, size, truesize);
1718
1719 igc_rx_buffer_flip(rx_buffer, truesize);
1720 }
1721
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1722 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1723 struct igc_rx_buffer *rx_buffer,
1724 struct xdp_buff *xdp)
1725 {
1726 unsigned int size = xdp->data_end - xdp->data;
1727 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1728 unsigned int metasize = xdp->data - xdp->data_meta;
1729 struct sk_buff *skb;
1730
1731 /* prefetch first cache line of first page */
1732 net_prefetch(xdp->data_meta);
1733
1734 /* build an skb around the page buffer */
1735 skb = napi_build_skb(xdp->data_hard_start, truesize);
1736 if (unlikely(!skb))
1737 return NULL;
1738
1739 /* update pointers within the skb to store the data */
1740 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1741 __skb_put(skb, size);
1742 if (metasize)
1743 skb_metadata_set(skb, metasize);
1744
1745 igc_rx_buffer_flip(rx_buffer, truesize);
1746 return skb;
1747 }
1748
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)1749 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1750 struct igc_rx_buffer *rx_buffer,
1751 struct xdp_buff *xdp,
1752 ktime_t timestamp)
1753 {
1754 unsigned int metasize = xdp->data - xdp->data_meta;
1755 unsigned int size = xdp->data_end - xdp->data;
1756 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1757 void *va = xdp->data;
1758 unsigned int headlen;
1759 struct sk_buff *skb;
1760
1761 /* prefetch first cache line of first page */
1762 net_prefetch(xdp->data_meta);
1763
1764 /* allocate a skb to store the frags */
1765 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1766 IGC_RX_HDR_LEN + metasize);
1767 if (unlikely(!skb))
1768 return NULL;
1769
1770 if (timestamp)
1771 skb_hwtstamps(skb)->hwtstamp = timestamp;
1772
1773 /* Determine available headroom for copy */
1774 headlen = size;
1775 if (headlen > IGC_RX_HDR_LEN)
1776 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1777
1778 /* align pull length to size of long to optimize memcpy performance */
1779 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1780 ALIGN(headlen + metasize, sizeof(long)));
1781
1782 if (metasize) {
1783 skb_metadata_set(skb, metasize);
1784 __skb_pull(skb, metasize);
1785 }
1786
1787 /* update all of the pointers */
1788 size -= headlen;
1789 if (size) {
1790 skb_add_rx_frag(skb, 0, rx_buffer->page,
1791 (va + headlen) - page_address(rx_buffer->page),
1792 size, truesize);
1793 igc_rx_buffer_flip(rx_buffer, truesize);
1794 } else {
1795 rx_buffer->pagecnt_bias++;
1796 }
1797
1798 return skb;
1799 }
1800
1801 /**
1802 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1803 * @rx_ring: rx descriptor ring to store buffers on
1804 * @old_buff: donor buffer to have page reused
1805 *
1806 * Synchronizes page for reuse by the adapter
1807 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)1808 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1809 struct igc_rx_buffer *old_buff)
1810 {
1811 u16 nta = rx_ring->next_to_alloc;
1812 struct igc_rx_buffer *new_buff;
1813
1814 new_buff = &rx_ring->rx_buffer_info[nta];
1815
1816 /* update, and store next to alloc */
1817 nta++;
1818 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1819
1820 /* Transfer page from old buffer to new buffer.
1821 * Move each member individually to avoid possible store
1822 * forwarding stalls.
1823 */
1824 new_buff->dma = old_buff->dma;
1825 new_buff->page = old_buff->page;
1826 new_buff->page_offset = old_buff->page_offset;
1827 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1828 }
1829
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)1830 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1831 int rx_buffer_pgcnt)
1832 {
1833 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1834 struct page *page = rx_buffer->page;
1835
1836 /* avoid re-using remote and pfmemalloc pages */
1837 if (!dev_page_is_reusable(page))
1838 return false;
1839
1840 #if (PAGE_SIZE < 8192)
1841 /* if we are only owner of page we can reuse it */
1842 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1843 return false;
1844 #else
1845 #define IGC_LAST_OFFSET \
1846 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1847
1848 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1849 return false;
1850 #endif
1851
1852 /* If we have drained the page fragment pool we need to update
1853 * the pagecnt_bias and page count so that we fully restock the
1854 * number of references the driver holds.
1855 */
1856 if (unlikely(pagecnt_bias == 1)) {
1857 page_ref_add(page, USHRT_MAX - 1);
1858 rx_buffer->pagecnt_bias = USHRT_MAX;
1859 }
1860
1861 return true;
1862 }
1863
1864 /**
1865 * igc_is_non_eop - process handling of non-EOP buffers
1866 * @rx_ring: Rx ring being processed
1867 * @rx_desc: Rx descriptor for current buffer
1868 *
1869 * This function updates next to clean. If the buffer is an EOP buffer
1870 * this function exits returning false, otherwise it will place the
1871 * sk_buff in the next buffer to be chained and return true indicating
1872 * that this is in fact a non-EOP buffer.
1873 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)1874 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1875 union igc_adv_rx_desc *rx_desc)
1876 {
1877 u32 ntc = rx_ring->next_to_clean + 1;
1878
1879 /* fetch, update, and store next to clean */
1880 ntc = (ntc < rx_ring->count) ? ntc : 0;
1881 rx_ring->next_to_clean = ntc;
1882
1883 prefetch(IGC_RX_DESC(rx_ring, ntc));
1884
1885 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1886 return false;
1887
1888 return true;
1889 }
1890
1891 /**
1892 * igc_cleanup_headers - Correct corrupted or empty headers
1893 * @rx_ring: rx descriptor ring packet is being transacted on
1894 * @rx_desc: pointer to the EOP Rx descriptor
1895 * @skb: pointer to current skb being fixed
1896 *
1897 * Address the case where we are pulling data in on pages only
1898 * and as such no data is present in the skb header.
1899 *
1900 * In addition if skb is not at least 60 bytes we need to pad it so that
1901 * it is large enough to qualify as a valid Ethernet frame.
1902 *
1903 * Returns true if an error was encountered and skb was freed.
1904 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1905 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1906 union igc_adv_rx_desc *rx_desc,
1907 struct sk_buff *skb)
1908 {
1909 /* XDP packets use error pointer so abort at this point */
1910 if (IS_ERR(skb))
1911 return true;
1912
1913 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1914 struct net_device *netdev = rx_ring->netdev;
1915
1916 if (!(netdev->features & NETIF_F_RXALL)) {
1917 dev_kfree_skb_any(skb);
1918 return true;
1919 }
1920 }
1921
1922 /* if eth_skb_pad returns an error the skb was freed */
1923 if (eth_skb_pad(skb))
1924 return true;
1925
1926 return false;
1927 }
1928
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)1929 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1930 struct igc_rx_buffer *rx_buffer,
1931 int rx_buffer_pgcnt)
1932 {
1933 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1934 /* hand second half of page back to the ring */
1935 igc_reuse_rx_page(rx_ring, rx_buffer);
1936 } else {
1937 /* We are not reusing the buffer so unmap it and free
1938 * any references we are holding to it
1939 */
1940 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1941 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1942 IGC_RX_DMA_ATTR);
1943 __page_frag_cache_drain(rx_buffer->page,
1944 rx_buffer->pagecnt_bias);
1945 }
1946
1947 /* clear contents of rx_buffer */
1948 rx_buffer->page = NULL;
1949 }
1950
igc_rx_offset(struct igc_ring * rx_ring)1951 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1952 {
1953 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1954
1955 if (ring_uses_build_skb(rx_ring))
1956 return IGC_SKB_PAD;
1957 if (igc_xdp_is_enabled(adapter))
1958 return XDP_PACKET_HEADROOM;
1959
1960 return 0;
1961 }
1962
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)1963 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1964 struct igc_rx_buffer *bi)
1965 {
1966 struct page *page = bi->page;
1967 dma_addr_t dma;
1968
1969 /* since we are recycling buffers we should seldom need to alloc */
1970 if (likely(page))
1971 return true;
1972
1973 /* alloc new page for storage */
1974 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1975 if (unlikely(!page)) {
1976 rx_ring->rx_stats.alloc_failed++;
1977 return false;
1978 }
1979
1980 /* map page for use */
1981 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1982 igc_rx_pg_size(rx_ring),
1983 DMA_FROM_DEVICE,
1984 IGC_RX_DMA_ATTR);
1985
1986 /* if mapping failed free memory back to system since
1987 * there isn't much point in holding memory we can't use
1988 */
1989 if (dma_mapping_error(rx_ring->dev, dma)) {
1990 __free_page(page);
1991
1992 rx_ring->rx_stats.alloc_failed++;
1993 return false;
1994 }
1995
1996 bi->dma = dma;
1997 bi->page = page;
1998 bi->page_offset = igc_rx_offset(rx_ring);
1999 page_ref_add(page, USHRT_MAX - 1);
2000 bi->pagecnt_bias = USHRT_MAX;
2001
2002 return true;
2003 }
2004
2005 /**
2006 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2007 * @rx_ring: rx descriptor ring
2008 * @cleaned_count: number of buffers to clean
2009 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2010 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2011 {
2012 union igc_adv_rx_desc *rx_desc;
2013 u16 i = rx_ring->next_to_use;
2014 struct igc_rx_buffer *bi;
2015 u16 bufsz;
2016
2017 /* nothing to do */
2018 if (!cleaned_count)
2019 return;
2020
2021 rx_desc = IGC_RX_DESC(rx_ring, i);
2022 bi = &rx_ring->rx_buffer_info[i];
2023 i -= rx_ring->count;
2024
2025 bufsz = igc_rx_bufsz(rx_ring);
2026
2027 do {
2028 if (!igc_alloc_mapped_page(rx_ring, bi))
2029 break;
2030
2031 /* sync the buffer for use by the device */
2032 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2033 bi->page_offset, bufsz,
2034 DMA_FROM_DEVICE);
2035
2036 /* Refresh the desc even if buffer_addrs didn't change
2037 * because each write-back erases this info.
2038 */
2039 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2040
2041 rx_desc++;
2042 bi++;
2043 i++;
2044 if (unlikely(!i)) {
2045 rx_desc = IGC_RX_DESC(rx_ring, 0);
2046 bi = rx_ring->rx_buffer_info;
2047 i -= rx_ring->count;
2048 }
2049
2050 /* clear the length for the next_to_use descriptor */
2051 rx_desc->wb.upper.length = 0;
2052
2053 cleaned_count--;
2054 } while (cleaned_count);
2055
2056 i += rx_ring->count;
2057
2058 if (rx_ring->next_to_use != i) {
2059 /* record the next descriptor to use */
2060 rx_ring->next_to_use = i;
2061
2062 /* update next to alloc since we have filled the ring */
2063 rx_ring->next_to_alloc = i;
2064
2065 /* Force memory writes to complete before letting h/w
2066 * know there are new descriptors to fetch. (Only
2067 * applicable for weak-ordered memory model archs,
2068 * such as IA-64).
2069 */
2070 wmb();
2071 writel(i, rx_ring->tail);
2072 }
2073 }
2074
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2075 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2076 {
2077 union igc_adv_rx_desc *desc;
2078 u16 i = ring->next_to_use;
2079 struct igc_rx_buffer *bi;
2080 dma_addr_t dma;
2081 bool ok = true;
2082
2083 if (!count)
2084 return ok;
2085
2086 desc = IGC_RX_DESC(ring, i);
2087 bi = &ring->rx_buffer_info[i];
2088 i -= ring->count;
2089
2090 do {
2091 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2092 if (!bi->xdp) {
2093 ok = false;
2094 break;
2095 }
2096
2097 dma = xsk_buff_xdp_get_dma(bi->xdp);
2098 desc->read.pkt_addr = cpu_to_le64(dma);
2099
2100 desc++;
2101 bi++;
2102 i++;
2103 if (unlikely(!i)) {
2104 desc = IGC_RX_DESC(ring, 0);
2105 bi = ring->rx_buffer_info;
2106 i -= ring->count;
2107 }
2108
2109 /* Clear the length for the next_to_use descriptor. */
2110 desc->wb.upper.length = 0;
2111
2112 count--;
2113 } while (count);
2114
2115 i += ring->count;
2116
2117 if (ring->next_to_use != i) {
2118 ring->next_to_use = i;
2119
2120 /* Force memory writes to complete before letting h/w
2121 * know there are new descriptors to fetch. (Only
2122 * applicable for weak-ordered memory model archs,
2123 * such as IA-64).
2124 */
2125 wmb();
2126 writel(i, ring->tail);
2127 }
2128
2129 return ok;
2130 }
2131
igc_xdp_init_tx_buffer(struct igc_tx_buffer * buffer,struct xdp_frame * xdpf,struct igc_ring * ring)2132 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2133 struct xdp_frame *xdpf,
2134 struct igc_ring *ring)
2135 {
2136 dma_addr_t dma;
2137
2138 dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2139 if (dma_mapping_error(ring->dev, dma)) {
2140 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2141 return -ENOMEM;
2142 }
2143
2144 buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2145 buffer->xdpf = xdpf;
2146 buffer->protocol = 0;
2147 buffer->bytecount = xdpf->len;
2148 buffer->gso_segs = 1;
2149 buffer->time_stamp = jiffies;
2150 dma_unmap_len_set(buffer, len, xdpf->len);
2151 dma_unmap_addr_set(buffer, dma, dma);
2152 return 0;
2153 }
2154
2155 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2156 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2157 struct xdp_frame *xdpf)
2158 {
2159 struct igc_tx_buffer *buffer;
2160 union igc_adv_tx_desc *desc;
2161 u32 cmd_type, olinfo_status;
2162 int err;
2163
2164 if (!igc_desc_unused(ring))
2165 return -EBUSY;
2166
2167 buffer = &ring->tx_buffer_info[ring->next_to_use];
2168 err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2169 if (err)
2170 return err;
2171
2172 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2173 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2174 buffer->bytecount;
2175 olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2176
2177 desc = IGC_TX_DESC(ring, ring->next_to_use);
2178 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2179 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2180 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2181
2182 netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2183
2184 buffer->next_to_watch = desc;
2185
2186 ring->next_to_use++;
2187 if (ring->next_to_use == ring->count)
2188 ring->next_to_use = 0;
2189
2190 return 0;
2191 }
2192
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2193 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2194 int cpu)
2195 {
2196 int index = cpu;
2197
2198 if (unlikely(index < 0))
2199 index = 0;
2200
2201 while (index >= adapter->num_tx_queues)
2202 index -= adapter->num_tx_queues;
2203
2204 return adapter->tx_ring[index];
2205 }
2206
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2207 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2208 {
2209 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2210 int cpu = smp_processor_id();
2211 struct netdev_queue *nq;
2212 struct igc_ring *ring;
2213 int res;
2214
2215 if (unlikely(!xdpf))
2216 return -EFAULT;
2217
2218 ring = igc_xdp_get_tx_ring(adapter, cpu);
2219 nq = txring_txq(ring);
2220
2221 __netif_tx_lock(nq, cpu);
2222 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2223 __netif_tx_unlock(nq);
2224 return res;
2225 }
2226
2227 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2228 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2229 struct bpf_prog *prog,
2230 struct xdp_buff *xdp)
2231 {
2232 u32 act = bpf_prog_run_xdp(prog, xdp);
2233
2234 switch (act) {
2235 case XDP_PASS:
2236 return IGC_XDP_PASS;
2237 case XDP_TX:
2238 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2239 goto out_failure;
2240 return IGC_XDP_TX;
2241 case XDP_REDIRECT:
2242 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2243 goto out_failure;
2244 return IGC_XDP_REDIRECT;
2245 break;
2246 default:
2247 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2248 fallthrough;
2249 case XDP_ABORTED:
2250 out_failure:
2251 trace_xdp_exception(adapter->netdev, prog, act);
2252 fallthrough;
2253 case XDP_DROP:
2254 return IGC_XDP_CONSUMED;
2255 }
2256 }
2257
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2258 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2259 struct xdp_buff *xdp)
2260 {
2261 struct bpf_prog *prog;
2262 int res;
2263
2264 prog = READ_ONCE(adapter->xdp_prog);
2265 if (!prog) {
2266 res = IGC_XDP_PASS;
2267 goto out;
2268 }
2269
2270 res = __igc_xdp_run_prog(adapter, prog, xdp);
2271
2272 out:
2273 return ERR_PTR(-res);
2274 }
2275
2276 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2277 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2278 {
2279 /* Once tail pointer is updated, hardware can fetch the descriptors
2280 * any time so we issue a write membar here to ensure all memory
2281 * writes are complete before the tail pointer is updated.
2282 */
2283 wmb();
2284 writel(ring->next_to_use, ring->tail);
2285 }
2286
igc_finalize_xdp(struct igc_adapter * adapter,int status)2287 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2288 {
2289 int cpu = smp_processor_id();
2290 struct netdev_queue *nq;
2291 struct igc_ring *ring;
2292
2293 if (status & IGC_XDP_TX) {
2294 ring = igc_xdp_get_tx_ring(adapter, cpu);
2295 nq = txring_txq(ring);
2296
2297 __netif_tx_lock(nq, cpu);
2298 igc_flush_tx_descriptors(ring);
2299 __netif_tx_unlock(nq);
2300 }
2301
2302 if (status & IGC_XDP_REDIRECT)
2303 xdp_do_flush();
2304 }
2305
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2306 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2307 unsigned int packets, unsigned int bytes)
2308 {
2309 struct igc_ring *ring = q_vector->rx.ring;
2310
2311 u64_stats_update_begin(&ring->rx_syncp);
2312 ring->rx_stats.packets += packets;
2313 ring->rx_stats.bytes += bytes;
2314 u64_stats_update_end(&ring->rx_syncp);
2315
2316 q_vector->rx.total_packets += packets;
2317 q_vector->rx.total_bytes += bytes;
2318 }
2319
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2320 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2321 {
2322 unsigned int total_bytes = 0, total_packets = 0;
2323 struct igc_adapter *adapter = q_vector->adapter;
2324 struct igc_ring *rx_ring = q_vector->rx.ring;
2325 struct sk_buff *skb = rx_ring->skb;
2326 u16 cleaned_count = igc_desc_unused(rx_ring);
2327 int xdp_status = 0, rx_buffer_pgcnt;
2328
2329 while (likely(total_packets < budget)) {
2330 union igc_adv_rx_desc *rx_desc;
2331 struct igc_rx_buffer *rx_buffer;
2332 unsigned int size, truesize;
2333 ktime_t timestamp = 0;
2334 struct xdp_buff xdp;
2335 int pkt_offset = 0;
2336 void *pktbuf;
2337
2338 /* return some buffers to hardware, one at a time is too slow */
2339 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2340 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2341 cleaned_count = 0;
2342 }
2343
2344 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2345 size = le16_to_cpu(rx_desc->wb.upper.length);
2346 if (!size)
2347 break;
2348
2349 /* This memory barrier is needed to keep us from reading
2350 * any other fields out of the rx_desc until we know the
2351 * descriptor has been written back
2352 */
2353 dma_rmb();
2354
2355 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2356 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2357
2358 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2359
2360 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2361 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2362 pktbuf);
2363 pkt_offset = IGC_TS_HDR_LEN;
2364 size -= IGC_TS_HDR_LEN;
2365 }
2366
2367 if (!skb) {
2368 xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2369 xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2370 igc_rx_offset(rx_ring) + pkt_offset,
2371 size, true);
2372
2373 skb = igc_xdp_run_prog(adapter, &xdp);
2374 }
2375
2376 if (IS_ERR(skb)) {
2377 unsigned int xdp_res = -PTR_ERR(skb);
2378
2379 switch (xdp_res) {
2380 case IGC_XDP_CONSUMED:
2381 rx_buffer->pagecnt_bias++;
2382 break;
2383 case IGC_XDP_TX:
2384 case IGC_XDP_REDIRECT:
2385 igc_rx_buffer_flip(rx_buffer, truesize);
2386 xdp_status |= xdp_res;
2387 break;
2388 }
2389
2390 total_packets++;
2391 total_bytes += size;
2392 } else if (skb)
2393 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2394 else if (ring_uses_build_skb(rx_ring))
2395 skb = igc_build_skb(rx_ring, rx_buffer, &xdp);
2396 else
2397 skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2398 timestamp);
2399
2400 /* exit if we failed to retrieve a buffer */
2401 if (!skb) {
2402 rx_ring->rx_stats.alloc_failed++;
2403 rx_buffer->pagecnt_bias++;
2404 break;
2405 }
2406
2407 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2408 cleaned_count++;
2409
2410 /* fetch next buffer in frame if non-eop */
2411 if (igc_is_non_eop(rx_ring, rx_desc))
2412 continue;
2413
2414 /* verify the packet layout is correct */
2415 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2416 skb = NULL;
2417 continue;
2418 }
2419
2420 /* probably a little skewed due to removing CRC */
2421 total_bytes += skb->len;
2422
2423 /* populate checksum, VLAN, and protocol */
2424 igc_process_skb_fields(rx_ring, rx_desc, skb);
2425
2426 napi_gro_receive(&q_vector->napi, skb);
2427
2428 /* reset skb pointer */
2429 skb = NULL;
2430
2431 /* update budget accounting */
2432 total_packets++;
2433 }
2434
2435 if (xdp_status)
2436 igc_finalize_xdp(adapter, xdp_status);
2437
2438 /* place incomplete frames back on ring for completion */
2439 rx_ring->skb = skb;
2440
2441 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2442
2443 if (cleaned_count)
2444 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2445
2446 return total_packets;
2447 }
2448
igc_construct_skb_zc(struct igc_ring * ring,struct xdp_buff * xdp)2449 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2450 struct xdp_buff *xdp)
2451 {
2452 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2453 unsigned int metasize = xdp->data - xdp->data_meta;
2454 struct sk_buff *skb;
2455
2456 net_prefetch(xdp->data_meta);
2457
2458 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2459 GFP_ATOMIC | __GFP_NOWARN);
2460 if (unlikely(!skb))
2461 return NULL;
2462
2463 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2464 ALIGN(totalsize, sizeof(long)));
2465
2466 if (metasize) {
2467 skb_metadata_set(skb, metasize);
2468 __skb_pull(skb, metasize);
2469 }
2470
2471 return skb;
2472 }
2473
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct xdp_buff * xdp,ktime_t timestamp)2474 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2475 union igc_adv_rx_desc *desc,
2476 struct xdp_buff *xdp,
2477 ktime_t timestamp)
2478 {
2479 struct igc_ring *ring = q_vector->rx.ring;
2480 struct sk_buff *skb;
2481
2482 skb = igc_construct_skb_zc(ring, xdp);
2483 if (!skb) {
2484 ring->rx_stats.alloc_failed++;
2485 return;
2486 }
2487
2488 if (timestamp)
2489 skb_hwtstamps(skb)->hwtstamp = timestamp;
2490
2491 if (igc_cleanup_headers(ring, desc, skb))
2492 return;
2493
2494 igc_process_skb_fields(ring, desc, skb);
2495 napi_gro_receive(&q_vector->napi, skb);
2496 }
2497
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2498 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2499 {
2500 struct igc_adapter *adapter = q_vector->adapter;
2501 struct igc_ring *ring = q_vector->rx.ring;
2502 u16 cleaned_count = igc_desc_unused(ring);
2503 int total_bytes = 0, total_packets = 0;
2504 u16 ntc = ring->next_to_clean;
2505 struct bpf_prog *prog;
2506 bool failure = false;
2507 int xdp_status = 0;
2508
2509 rcu_read_lock();
2510
2511 prog = READ_ONCE(adapter->xdp_prog);
2512
2513 while (likely(total_packets < budget)) {
2514 union igc_adv_rx_desc *desc;
2515 struct igc_rx_buffer *bi;
2516 ktime_t timestamp = 0;
2517 unsigned int size;
2518 int res;
2519
2520 desc = IGC_RX_DESC(ring, ntc);
2521 size = le16_to_cpu(desc->wb.upper.length);
2522 if (!size)
2523 break;
2524
2525 /* This memory barrier is needed to keep us from reading
2526 * any other fields out of the rx_desc until we know the
2527 * descriptor has been written back
2528 */
2529 dma_rmb();
2530
2531 bi = &ring->rx_buffer_info[ntc];
2532
2533 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2534 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2535 bi->xdp->data);
2536
2537 bi->xdp->data += IGC_TS_HDR_LEN;
2538
2539 /* HW timestamp has been copied into local variable. Metadata
2540 * length when XDP program is called should be 0.
2541 */
2542 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2543 size -= IGC_TS_HDR_LEN;
2544 }
2545
2546 bi->xdp->data_end = bi->xdp->data + size;
2547 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2548
2549 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2550 switch (res) {
2551 case IGC_XDP_PASS:
2552 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2553 fallthrough;
2554 case IGC_XDP_CONSUMED:
2555 xsk_buff_free(bi->xdp);
2556 break;
2557 case IGC_XDP_TX:
2558 case IGC_XDP_REDIRECT:
2559 xdp_status |= res;
2560 break;
2561 }
2562
2563 bi->xdp = NULL;
2564 total_bytes += size;
2565 total_packets++;
2566 cleaned_count++;
2567 ntc++;
2568 if (ntc == ring->count)
2569 ntc = 0;
2570 }
2571
2572 ring->next_to_clean = ntc;
2573 rcu_read_unlock();
2574
2575 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2576 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2577
2578 if (xdp_status)
2579 igc_finalize_xdp(adapter, xdp_status);
2580
2581 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2582
2583 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2584 if (failure || ring->next_to_clean == ring->next_to_use)
2585 xsk_set_rx_need_wakeup(ring->xsk_pool);
2586 else
2587 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2588 return total_packets;
2589 }
2590
2591 return failure ? budget : total_packets;
2592 }
2593
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2594 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2595 unsigned int packets, unsigned int bytes)
2596 {
2597 struct igc_ring *ring = q_vector->tx.ring;
2598
2599 u64_stats_update_begin(&ring->tx_syncp);
2600 ring->tx_stats.bytes += bytes;
2601 ring->tx_stats.packets += packets;
2602 u64_stats_update_end(&ring->tx_syncp);
2603
2604 q_vector->tx.total_bytes += bytes;
2605 q_vector->tx.total_packets += packets;
2606 }
2607
igc_xdp_xmit_zc(struct igc_ring * ring)2608 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2609 {
2610 struct xsk_buff_pool *pool = ring->xsk_pool;
2611 struct netdev_queue *nq = txring_txq(ring);
2612 union igc_adv_tx_desc *tx_desc = NULL;
2613 int cpu = smp_processor_id();
2614 u16 ntu = ring->next_to_use;
2615 struct xdp_desc xdp_desc;
2616 u16 budget;
2617
2618 if (!netif_carrier_ok(ring->netdev))
2619 return;
2620
2621 __netif_tx_lock(nq, cpu);
2622
2623 budget = igc_desc_unused(ring);
2624
2625 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2626 u32 cmd_type, olinfo_status;
2627 struct igc_tx_buffer *bi;
2628 dma_addr_t dma;
2629
2630 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2631 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2632 xdp_desc.len;
2633 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2634
2635 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2636 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2637
2638 tx_desc = IGC_TX_DESC(ring, ntu);
2639 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2640 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2641 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2642
2643 bi = &ring->tx_buffer_info[ntu];
2644 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2645 bi->protocol = 0;
2646 bi->bytecount = xdp_desc.len;
2647 bi->gso_segs = 1;
2648 bi->time_stamp = jiffies;
2649 bi->next_to_watch = tx_desc;
2650
2651 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2652
2653 ntu++;
2654 if (ntu == ring->count)
2655 ntu = 0;
2656 }
2657
2658 ring->next_to_use = ntu;
2659 if (tx_desc) {
2660 igc_flush_tx_descriptors(ring);
2661 xsk_tx_release(pool);
2662 }
2663
2664 __netif_tx_unlock(nq);
2665 }
2666
2667 /**
2668 * igc_clean_tx_irq - Reclaim resources after transmit completes
2669 * @q_vector: pointer to q_vector containing needed info
2670 * @napi_budget: Used to determine if we are in netpoll
2671 *
2672 * returns true if ring is completely cleaned
2673 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)2674 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2675 {
2676 struct igc_adapter *adapter = q_vector->adapter;
2677 unsigned int total_bytes = 0, total_packets = 0;
2678 unsigned int budget = q_vector->tx.work_limit;
2679 struct igc_ring *tx_ring = q_vector->tx.ring;
2680 unsigned int i = tx_ring->next_to_clean;
2681 struct igc_tx_buffer *tx_buffer;
2682 union igc_adv_tx_desc *tx_desc;
2683 u32 xsk_frames = 0;
2684
2685 if (test_bit(__IGC_DOWN, &adapter->state))
2686 return true;
2687
2688 tx_buffer = &tx_ring->tx_buffer_info[i];
2689 tx_desc = IGC_TX_DESC(tx_ring, i);
2690 i -= tx_ring->count;
2691
2692 do {
2693 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2694
2695 /* if next_to_watch is not set then there is no work pending */
2696 if (!eop_desc)
2697 break;
2698
2699 /* prevent any other reads prior to eop_desc */
2700 smp_rmb();
2701
2702 /* if DD is not set pending work has not been completed */
2703 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2704 break;
2705
2706 /* clear next_to_watch to prevent false hangs */
2707 tx_buffer->next_to_watch = NULL;
2708
2709 /* update the statistics for this packet */
2710 total_bytes += tx_buffer->bytecount;
2711 total_packets += tx_buffer->gso_segs;
2712
2713 switch (tx_buffer->type) {
2714 case IGC_TX_BUFFER_TYPE_XSK:
2715 xsk_frames++;
2716 break;
2717 case IGC_TX_BUFFER_TYPE_XDP:
2718 xdp_return_frame(tx_buffer->xdpf);
2719 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2720 break;
2721 case IGC_TX_BUFFER_TYPE_SKB:
2722 napi_consume_skb(tx_buffer->skb, napi_budget);
2723 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2724 break;
2725 default:
2726 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2727 break;
2728 }
2729
2730 /* clear last DMA location and unmap remaining buffers */
2731 while (tx_desc != eop_desc) {
2732 tx_buffer++;
2733 tx_desc++;
2734 i++;
2735 if (unlikely(!i)) {
2736 i -= tx_ring->count;
2737 tx_buffer = tx_ring->tx_buffer_info;
2738 tx_desc = IGC_TX_DESC(tx_ring, 0);
2739 }
2740
2741 /* unmap any remaining paged data */
2742 if (dma_unmap_len(tx_buffer, len))
2743 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2744 }
2745
2746 /* move us one more past the eop_desc for start of next pkt */
2747 tx_buffer++;
2748 tx_desc++;
2749 i++;
2750 if (unlikely(!i)) {
2751 i -= tx_ring->count;
2752 tx_buffer = tx_ring->tx_buffer_info;
2753 tx_desc = IGC_TX_DESC(tx_ring, 0);
2754 }
2755
2756 /* issue prefetch for next Tx descriptor */
2757 prefetch(tx_desc);
2758
2759 /* update budget accounting */
2760 budget--;
2761 } while (likely(budget));
2762
2763 netdev_tx_completed_queue(txring_txq(tx_ring),
2764 total_packets, total_bytes);
2765
2766 i += tx_ring->count;
2767 tx_ring->next_to_clean = i;
2768
2769 igc_update_tx_stats(q_vector, total_packets, total_bytes);
2770
2771 if (tx_ring->xsk_pool) {
2772 if (xsk_frames)
2773 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2774 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2775 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2776 igc_xdp_xmit_zc(tx_ring);
2777 }
2778
2779 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2780 struct igc_hw *hw = &adapter->hw;
2781
2782 /* Detect a transmit hang in hardware, this serializes the
2783 * check with the clearing of time_stamp and movement of i
2784 */
2785 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2786 if (tx_buffer->next_to_watch &&
2787 time_after(jiffies, tx_buffer->time_stamp +
2788 (adapter->tx_timeout_factor * HZ)) &&
2789 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2790 /* detected Tx unit hang */
2791 netdev_err(tx_ring->netdev,
2792 "Detected Tx Unit Hang\n"
2793 " Tx Queue <%d>\n"
2794 " TDH <%x>\n"
2795 " TDT <%x>\n"
2796 " next_to_use <%x>\n"
2797 " next_to_clean <%x>\n"
2798 "buffer_info[next_to_clean]\n"
2799 " time_stamp <%lx>\n"
2800 " next_to_watch <%p>\n"
2801 " jiffies <%lx>\n"
2802 " desc.status <%x>\n",
2803 tx_ring->queue_index,
2804 rd32(IGC_TDH(tx_ring->reg_idx)),
2805 readl(tx_ring->tail),
2806 tx_ring->next_to_use,
2807 tx_ring->next_to_clean,
2808 tx_buffer->time_stamp,
2809 tx_buffer->next_to_watch,
2810 jiffies,
2811 tx_buffer->next_to_watch->wb.status);
2812 netif_stop_subqueue(tx_ring->netdev,
2813 tx_ring->queue_index);
2814
2815 /* we are about to reset, no point in enabling stuff */
2816 return true;
2817 }
2818 }
2819
2820 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2821 if (unlikely(total_packets &&
2822 netif_carrier_ok(tx_ring->netdev) &&
2823 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2824 /* Make sure that anybody stopping the queue after this
2825 * sees the new next_to_clean.
2826 */
2827 smp_mb();
2828 if (__netif_subqueue_stopped(tx_ring->netdev,
2829 tx_ring->queue_index) &&
2830 !(test_bit(__IGC_DOWN, &adapter->state))) {
2831 netif_wake_subqueue(tx_ring->netdev,
2832 tx_ring->queue_index);
2833
2834 u64_stats_update_begin(&tx_ring->tx_syncp);
2835 tx_ring->tx_stats.restart_queue++;
2836 u64_stats_update_end(&tx_ring->tx_syncp);
2837 }
2838 }
2839
2840 return !!budget;
2841 }
2842
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)2843 static int igc_find_mac_filter(struct igc_adapter *adapter,
2844 enum igc_mac_filter_type type, const u8 *addr)
2845 {
2846 struct igc_hw *hw = &adapter->hw;
2847 int max_entries = hw->mac.rar_entry_count;
2848 u32 ral, rah;
2849 int i;
2850
2851 for (i = 0; i < max_entries; i++) {
2852 ral = rd32(IGC_RAL(i));
2853 rah = rd32(IGC_RAH(i));
2854
2855 if (!(rah & IGC_RAH_AV))
2856 continue;
2857 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2858 continue;
2859 if ((rah & IGC_RAH_RAH_MASK) !=
2860 le16_to_cpup((__le16 *)(addr + 4)))
2861 continue;
2862 if (ral != le32_to_cpup((__le32 *)(addr)))
2863 continue;
2864
2865 return i;
2866 }
2867
2868 return -1;
2869 }
2870
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)2871 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2872 {
2873 struct igc_hw *hw = &adapter->hw;
2874 int max_entries = hw->mac.rar_entry_count;
2875 u32 rah;
2876 int i;
2877
2878 for (i = 0; i < max_entries; i++) {
2879 rah = rd32(IGC_RAH(i));
2880
2881 if (!(rah & IGC_RAH_AV))
2882 return i;
2883 }
2884
2885 return -1;
2886 }
2887
2888 /**
2889 * igc_add_mac_filter() - Add MAC address filter
2890 * @adapter: Pointer to adapter where the filter should be added
2891 * @type: MAC address filter type (source or destination)
2892 * @addr: MAC address
2893 * @queue: If non-negative, queue assignment feature is enabled and frames
2894 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2895 * assignment is disabled.
2896 *
2897 * Return: 0 in case of success, negative errno code otherwise.
2898 */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)2899 static int igc_add_mac_filter(struct igc_adapter *adapter,
2900 enum igc_mac_filter_type type, const u8 *addr,
2901 int queue)
2902 {
2903 struct net_device *dev = adapter->netdev;
2904 int index;
2905
2906 index = igc_find_mac_filter(adapter, type, addr);
2907 if (index >= 0)
2908 goto update_filter;
2909
2910 index = igc_get_avail_mac_filter_slot(adapter);
2911 if (index < 0)
2912 return -ENOSPC;
2913
2914 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2915 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2916 addr, queue);
2917
2918 update_filter:
2919 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2920 return 0;
2921 }
2922
2923 /**
2924 * igc_del_mac_filter() - Delete MAC address filter
2925 * @adapter: Pointer to adapter where the filter should be deleted from
2926 * @type: MAC address filter type (source or destination)
2927 * @addr: MAC address
2928 */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)2929 static void igc_del_mac_filter(struct igc_adapter *adapter,
2930 enum igc_mac_filter_type type, const u8 *addr)
2931 {
2932 struct net_device *dev = adapter->netdev;
2933 int index;
2934
2935 index = igc_find_mac_filter(adapter, type, addr);
2936 if (index < 0)
2937 return;
2938
2939 if (index == 0) {
2940 /* If this is the default filter, we don't actually delete it.
2941 * We just reset to its default value i.e. disable queue
2942 * assignment.
2943 */
2944 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2945
2946 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2947 } else {
2948 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2949 index,
2950 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2951 addr);
2952
2953 igc_clear_mac_filter_hw(adapter, index);
2954 }
2955 }
2956
2957 /**
2958 * igc_add_vlan_prio_filter() - Add VLAN priority filter
2959 * @adapter: Pointer to adapter where the filter should be added
2960 * @prio: VLAN priority value
2961 * @queue: Queue number which matching frames are assigned to
2962 *
2963 * Return: 0 in case of success, negative errno code otherwise.
2964 */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)2965 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2966 int queue)
2967 {
2968 struct net_device *dev = adapter->netdev;
2969 struct igc_hw *hw = &adapter->hw;
2970 u32 vlanpqf;
2971
2972 vlanpqf = rd32(IGC_VLANPQF);
2973
2974 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2975 netdev_dbg(dev, "VLAN priority filter already in use\n");
2976 return -EEXIST;
2977 }
2978
2979 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2980 vlanpqf |= IGC_VLANPQF_VALID(prio);
2981
2982 wr32(IGC_VLANPQF, vlanpqf);
2983
2984 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2985 prio, queue);
2986 return 0;
2987 }
2988
2989 /**
2990 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2991 * @adapter: Pointer to adapter where the filter should be deleted from
2992 * @prio: VLAN priority value
2993 */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)2994 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2995 {
2996 struct igc_hw *hw = &adapter->hw;
2997 u32 vlanpqf;
2998
2999 vlanpqf = rd32(IGC_VLANPQF);
3000
3001 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3002 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3003
3004 wr32(IGC_VLANPQF, vlanpqf);
3005
3006 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3007 prio);
3008 }
3009
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3010 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3011 {
3012 struct igc_hw *hw = &adapter->hw;
3013 int i;
3014
3015 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3016 u32 etqf = rd32(IGC_ETQF(i));
3017
3018 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3019 return i;
3020 }
3021
3022 return -1;
3023 }
3024
3025 /**
3026 * igc_add_etype_filter() - Add ethertype filter
3027 * @adapter: Pointer to adapter where the filter should be added
3028 * @etype: Ethertype value
3029 * @queue: If non-negative, queue assignment feature is enabled and frames
3030 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3031 * assignment is disabled.
3032 *
3033 * Return: 0 in case of success, negative errno code otherwise.
3034 */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3035 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3036 int queue)
3037 {
3038 struct igc_hw *hw = &adapter->hw;
3039 int index;
3040 u32 etqf;
3041
3042 index = igc_get_avail_etype_filter_slot(adapter);
3043 if (index < 0)
3044 return -ENOSPC;
3045
3046 etqf = rd32(IGC_ETQF(index));
3047
3048 etqf &= ~IGC_ETQF_ETYPE_MASK;
3049 etqf |= etype;
3050
3051 if (queue >= 0) {
3052 etqf &= ~IGC_ETQF_QUEUE_MASK;
3053 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3054 etqf |= IGC_ETQF_QUEUE_ENABLE;
3055 }
3056
3057 etqf |= IGC_ETQF_FILTER_ENABLE;
3058
3059 wr32(IGC_ETQF(index), etqf);
3060
3061 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3062 etype, queue);
3063 return 0;
3064 }
3065
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3066 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3067 {
3068 struct igc_hw *hw = &adapter->hw;
3069 int i;
3070
3071 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3072 u32 etqf = rd32(IGC_ETQF(i));
3073
3074 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3075 return i;
3076 }
3077
3078 return -1;
3079 }
3080
3081 /**
3082 * igc_del_etype_filter() - Delete ethertype filter
3083 * @adapter: Pointer to adapter where the filter should be deleted from
3084 * @etype: Ethertype value
3085 */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3086 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3087 {
3088 struct igc_hw *hw = &adapter->hw;
3089 int index;
3090
3091 index = igc_find_etype_filter(adapter, etype);
3092 if (index < 0)
3093 return;
3094
3095 wr32(IGC_ETQF(index), 0);
3096
3097 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3098 etype);
3099 }
3100
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3101 static int igc_flex_filter_select(struct igc_adapter *adapter,
3102 struct igc_flex_filter *input,
3103 u32 *fhft)
3104 {
3105 struct igc_hw *hw = &adapter->hw;
3106 u8 fhft_index;
3107 u32 fhftsl;
3108
3109 if (input->index >= MAX_FLEX_FILTER) {
3110 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3111 return -EINVAL;
3112 }
3113
3114 /* Indirect table select register */
3115 fhftsl = rd32(IGC_FHFTSL);
3116 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3117 switch (input->index) {
3118 case 0 ... 7:
3119 fhftsl |= 0x00;
3120 break;
3121 case 8 ... 15:
3122 fhftsl |= 0x01;
3123 break;
3124 case 16 ... 23:
3125 fhftsl |= 0x02;
3126 break;
3127 case 24 ... 31:
3128 fhftsl |= 0x03;
3129 break;
3130 }
3131 wr32(IGC_FHFTSL, fhftsl);
3132
3133 /* Normalize index down to host table register */
3134 fhft_index = input->index % 8;
3135
3136 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3137 IGC_FHFT_EXT(fhft_index - 4);
3138
3139 return 0;
3140 }
3141
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3142 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3143 struct igc_flex_filter *input)
3144 {
3145 struct device *dev = &adapter->pdev->dev;
3146 struct igc_hw *hw = &adapter->hw;
3147 u8 *data = input->data;
3148 u8 *mask = input->mask;
3149 u32 queuing;
3150 u32 fhft;
3151 u32 wufc;
3152 int ret;
3153 int i;
3154
3155 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3156 * out early to avoid surprises later.
3157 */
3158 if (input->length % 8 != 0) {
3159 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3160 return -EINVAL;
3161 }
3162
3163 /* Select corresponding flex filter register and get base for host table. */
3164 ret = igc_flex_filter_select(adapter, input, &fhft);
3165 if (ret)
3166 return ret;
3167
3168 /* When adding a filter globally disable flex filter feature. That is
3169 * recommended within the datasheet.
3170 */
3171 wufc = rd32(IGC_WUFC);
3172 wufc &= ~IGC_WUFC_FLEX_HQ;
3173 wr32(IGC_WUFC, wufc);
3174
3175 /* Configure filter */
3176 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3177 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3178 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3179
3180 if (input->immediate_irq)
3181 queuing |= IGC_FHFT_IMM_INT;
3182
3183 if (input->drop)
3184 queuing |= IGC_FHFT_DROP;
3185
3186 wr32(fhft + 0xFC, queuing);
3187
3188 /* Write data (128 byte) and mask (128 bit) */
3189 for (i = 0; i < 16; ++i) {
3190 const size_t data_idx = i * 8;
3191 const size_t row_idx = i * 16;
3192 u32 dw0 =
3193 (data[data_idx + 0] << 0) |
3194 (data[data_idx + 1] << 8) |
3195 (data[data_idx + 2] << 16) |
3196 (data[data_idx + 3] << 24);
3197 u32 dw1 =
3198 (data[data_idx + 4] << 0) |
3199 (data[data_idx + 5] << 8) |
3200 (data[data_idx + 6] << 16) |
3201 (data[data_idx + 7] << 24);
3202 u32 tmp;
3203
3204 /* Write row: dw0, dw1 and mask */
3205 wr32(fhft + row_idx, dw0);
3206 wr32(fhft + row_idx + 4, dw1);
3207
3208 /* mask is only valid for MASK(7, 0) */
3209 tmp = rd32(fhft + row_idx + 8);
3210 tmp &= ~GENMASK(7, 0);
3211 tmp |= mask[i];
3212 wr32(fhft + row_idx + 8, tmp);
3213 }
3214
3215 /* Enable filter. */
3216 wufc |= IGC_WUFC_FLEX_HQ;
3217 if (input->index > 8) {
3218 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3219 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3220
3221 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3222
3223 wr32(IGC_WUFC_EXT, wufc_ext);
3224 } else {
3225 wufc |= (IGC_WUFC_FLX0 << input->index);
3226 }
3227 wr32(IGC_WUFC, wufc);
3228
3229 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3230 input->index);
3231
3232 return 0;
3233 }
3234
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3235 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3236 const void *src, unsigned int offset,
3237 size_t len, const void *mask)
3238 {
3239 int i;
3240
3241 /* data */
3242 memcpy(&flex->data[offset], src, len);
3243
3244 /* mask */
3245 for (i = 0; i < len; ++i) {
3246 const unsigned int idx = i + offset;
3247 const u8 *ptr = mask;
3248
3249 if (mask) {
3250 if (ptr[i] & 0xff)
3251 flex->mask[idx / 8] |= BIT(idx % 8);
3252
3253 continue;
3254 }
3255
3256 flex->mask[idx / 8] |= BIT(idx % 8);
3257 }
3258 }
3259
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3260 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3261 {
3262 struct igc_hw *hw = &adapter->hw;
3263 u32 wufc, wufc_ext;
3264 int i;
3265
3266 wufc = rd32(IGC_WUFC);
3267 wufc_ext = rd32(IGC_WUFC_EXT);
3268
3269 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3270 if (i < 8) {
3271 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3272 return i;
3273 } else {
3274 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3275 return i;
3276 }
3277 }
3278
3279 return -ENOSPC;
3280 }
3281
igc_flex_filter_in_use(struct igc_adapter * adapter)3282 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3283 {
3284 struct igc_hw *hw = &adapter->hw;
3285 u32 wufc, wufc_ext;
3286
3287 wufc = rd32(IGC_WUFC);
3288 wufc_ext = rd32(IGC_WUFC_EXT);
3289
3290 if (wufc & IGC_WUFC_FILTER_MASK)
3291 return true;
3292
3293 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3294 return true;
3295
3296 return false;
3297 }
3298
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3299 static int igc_add_flex_filter(struct igc_adapter *adapter,
3300 struct igc_nfc_rule *rule)
3301 {
3302 struct igc_flex_filter flex = { };
3303 struct igc_nfc_filter *filter = &rule->filter;
3304 unsigned int eth_offset, user_offset;
3305 int ret, index;
3306 bool vlan;
3307
3308 index = igc_find_avail_flex_filter_slot(adapter);
3309 if (index < 0)
3310 return -ENOSPC;
3311
3312 /* Construct the flex filter:
3313 * -> dest_mac [6]
3314 * -> src_mac [6]
3315 * -> tpid [2]
3316 * -> vlan tci [2]
3317 * -> ether type [2]
3318 * -> user data [8]
3319 * -> = 26 bytes => 32 length
3320 */
3321 flex.index = index;
3322 flex.length = 32;
3323 flex.rx_queue = rule->action;
3324
3325 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3326 eth_offset = vlan ? 16 : 12;
3327 user_offset = vlan ? 18 : 14;
3328
3329 /* Add destination MAC */
3330 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3331 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3332 ETH_ALEN, NULL);
3333
3334 /* Add source MAC */
3335 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3336 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3337 ETH_ALEN, NULL);
3338
3339 /* Add VLAN etype */
3340 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3341 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3342 sizeof(filter->vlan_etype),
3343 NULL);
3344
3345 /* Add VLAN TCI */
3346 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3347 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3348 sizeof(filter->vlan_tci), NULL);
3349
3350 /* Add Ether type */
3351 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3352 __be16 etype = cpu_to_be16(filter->etype);
3353
3354 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3355 sizeof(etype), NULL);
3356 }
3357
3358 /* Add user data */
3359 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3360 igc_flex_filter_add_field(&flex, &filter->user_data,
3361 user_offset,
3362 sizeof(filter->user_data),
3363 filter->user_mask);
3364
3365 /* Add it down to the hardware and enable it. */
3366 ret = igc_write_flex_filter_ll(adapter, &flex);
3367 if (ret)
3368 return ret;
3369
3370 filter->flex_index = index;
3371
3372 return 0;
3373 }
3374
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3375 static void igc_del_flex_filter(struct igc_adapter *adapter,
3376 u16 reg_index)
3377 {
3378 struct igc_hw *hw = &adapter->hw;
3379 u32 wufc;
3380
3381 /* Just disable the filter. The filter table itself is kept
3382 * intact. Another flex_filter_add() should override the "old" data
3383 * then.
3384 */
3385 if (reg_index > 8) {
3386 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3387
3388 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3389 wr32(IGC_WUFC_EXT, wufc_ext);
3390 } else {
3391 wufc = rd32(IGC_WUFC);
3392
3393 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3394 wr32(IGC_WUFC, wufc);
3395 }
3396
3397 if (igc_flex_filter_in_use(adapter))
3398 return;
3399
3400 /* No filters are in use, we may disable flex filters */
3401 wufc = rd32(IGC_WUFC);
3402 wufc &= ~IGC_WUFC_FLEX_HQ;
3403 wr32(IGC_WUFC, wufc);
3404 }
3405
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3406 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3407 struct igc_nfc_rule *rule)
3408 {
3409 int err;
3410
3411 if (rule->flex) {
3412 return igc_add_flex_filter(adapter, rule);
3413 }
3414
3415 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3416 err = igc_add_etype_filter(adapter, rule->filter.etype,
3417 rule->action);
3418 if (err)
3419 return err;
3420 }
3421
3422 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3423 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3424 rule->filter.src_addr, rule->action);
3425 if (err)
3426 return err;
3427 }
3428
3429 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3430 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3431 rule->filter.dst_addr, rule->action);
3432 if (err)
3433 return err;
3434 }
3435
3436 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3437 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3438 VLAN_PRIO_SHIFT;
3439
3440 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3441 if (err)
3442 return err;
3443 }
3444
3445 return 0;
3446 }
3447
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3448 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3449 const struct igc_nfc_rule *rule)
3450 {
3451 if (rule->flex) {
3452 igc_del_flex_filter(adapter, rule->filter.flex_index);
3453 return;
3454 }
3455
3456 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3457 igc_del_etype_filter(adapter, rule->filter.etype);
3458
3459 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3460 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3461 VLAN_PRIO_SHIFT;
3462
3463 igc_del_vlan_prio_filter(adapter, prio);
3464 }
3465
3466 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3467 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3468 rule->filter.src_addr);
3469
3470 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3471 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3472 rule->filter.dst_addr);
3473 }
3474
3475 /**
3476 * igc_get_nfc_rule() - Get NFC rule
3477 * @adapter: Pointer to adapter
3478 * @location: Rule location
3479 *
3480 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3481 *
3482 * Return: Pointer to NFC rule at @location. If not found, NULL.
3483 */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3484 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3485 u32 location)
3486 {
3487 struct igc_nfc_rule *rule;
3488
3489 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3490 if (rule->location == location)
3491 return rule;
3492 if (rule->location > location)
3493 break;
3494 }
3495
3496 return NULL;
3497 }
3498
3499 /**
3500 * igc_del_nfc_rule() - Delete NFC rule
3501 * @adapter: Pointer to adapter
3502 * @rule: Pointer to rule to be deleted
3503 *
3504 * Disable NFC rule in hardware and delete it from adapter.
3505 *
3506 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3507 */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3508 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3509 {
3510 igc_disable_nfc_rule(adapter, rule);
3511
3512 list_del(&rule->list);
3513 adapter->nfc_rule_count--;
3514
3515 kfree(rule);
3516 }
3517
igc_flush_nfc_rules(struct igc_adapter * adapter)3518 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3519 {
3520 struct igc_nfc_rule *rule, *tmp;
3521
3522 mutex_lock(&adapter->nfc_rule_lock);
3523
3524 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3525 igc_del_nfc_rule(adapter, rule);
3526
3527 mutex_unlock(&adapter->nfc_rule_lock);
3528 }
3529
3530 /**
3531 * igc_add_nfc_rule() - Add NFC rule
3532 * @adapter: Pointer to adapter
3533 * @rule: Pointer to rule to be added
3534 *
3535 * Enable NFC rule in hardware and add it to adapter.
3536 *
3537 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3538 *
3539 * Return: 0 on success, negative errno on failure.
3540 */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3541 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3542 {
3543 struct igc_nfc_rule *pred, *cur;
3544 int err;
3545
3546 err = igc_enable_nfc_rule(adapter, rule);
3547 if (err)
3548 return err;
3549
3550 pred = NULL;
3551 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3552 if (cur->location >= rule->location)
3553 break;
3554 pred = cur;
3555 }
3556
3557 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3558 adapter->nfc_rule_count++;
3559 return 0;
3560 }
3561
igc_restore_nfc_rules(struct igc_adapter * adapter)3562 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3563 {
3564 struct igc_nfc_rule *rule;
3565
3566 mutex_lock(&adapter->nfc_rule_lock);
3567
3568 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3569 igc_enable_nfc_rule(adapter, rule);
3570
3571 mutex_unlock(&adapter->nfc_rule_lock);
3572 }
3573
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)3574 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3575 {
3576 struct igc_adapter *adapter = netdev_priv(netdev);
3577
3578 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3579 }
3580
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)3581 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3582 {
3583 struct igc_adapter *adapter = netdev_priv(netdev);
3584
3585 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3586 return 0;
3587 }
3588
3589 /**
3590 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3591 * @netdev: network interface device structure
3592 *
3593 * The set_rx_mode entry point is called whenever the unicast or multicast
3594 * address lists or the network interface flags are updated. This routine is
3595 * responsible for configuring the hardware for proper unicast, multicast,
3596 * promiscuous mode, and all-multi behavior.
3597 */
igc_set_rx_mode(struct net_device * netdev)3598 static void igc_set_rx_mode(struct net_device *netdev)
3599 {
3600 struct igc_adapter *adapter = netdev_priv(netdev);
3601 struct igc_hw *hw = &adapter->hw;
3602 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3603 int count;
3604
3605 /* Check for Promiscuous and All Multicast modes */
3606 if (netdev->flags & IFF_PROMISC) {
3607 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3608 } else {
3609 if (netdev->flags & IFF_ALLMULTI) {
3610 rctl |= IGC_RCTL_MPE;
3611 } else {
3612 /* Write addresses to the MTA, if the attempt fails
3613 * then we should just turn on promiscuous mode so
3614 * that we can at least receive multicast traffic
3615 */
3616 count = igc_write_mc_addr_list(netdev);
3617 if (count < 0)
3618 rctl |= IGC_RCTL_MPE;
3619 }
3620 }
3621
3622 /* Write addresses to available RAR registers, if there is not
3623 * sufficient space to store all the addresses then enable
3624 * unicast promiscuous mode
3625 */
3626 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3627 rctl |= IGC_RCTL_UPE;
3628
3629 /* update state of unicast and multicast */
3630 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3631 wr32(IGC_RCTL, rctl);
3632
3633 #if (PAGE_SIZE < 8192)
3634 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3635 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3636 #endif
3637 wr32(IGC_RLPML, rlpml);
3638 }
3639
3640 /**
3641 * igc_configure - configure the hardware for RX and TX
3642 * @adapter: private board structure
3643 */
igc_configure(struct igc_adapter * adapter)3644 static void igc_configure(struct igc_adapter *adapter)
3645 {
3646 struct net_device *netdev = adapter->netdev;
3647 int i = 0;
3648
3649 igc_get_hw_control(adapter);
3650 igc_set_rx_mode(netdev);
3651
3652 igc_restore_vlan(adapter);
3653
3654 igc_setup_tctl(adapter);
3655 igc_setup_mrqc(adapter);
3656 igc_setup_rctl(adapter);
3657
3658 igc_set_default_mac_filter(adapter);
3659 igc_restore_nfc_rules(adapter);
3660
3661 igc_configure_tx(adapter);
3662 igc_configure_rx(adapter);
3663
3664 igc_rx_fifo_flush_base(&adapter->hw);
3665
3666 /* call igc_desc_unused which always leaves
3667 * at least 1 descriptor unused to make sure
3668 * next_to_use != next_to_clean
3669 */
3670 for (i = 0; i < adapter->num_rx_queues; i++) {
3671 struct igc_ring *ring = adapter->rx_ring[i];
3672
3673 if (ring->xsk_pool)
3674 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3675 else
3676 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3677 }
3678 }
3679
3680 /**
3681 * igc_write_ivar - configure ivar for given MSI-X vector
3682 * @hw: pointer to the HW structure
3683 * @msix_vector: vector number we are allocating to a given ring
3684 * @index: row index of IVAR register to write within IVAR table
3685 * @offset: column offset of in IVAR, should be multiple of 8
3686 *
3687 * The IVAR table consists of 2 columns,
3688 * each containing an cause allocation for an Rx and Tx ring, and a
3689 * variable number of rows depending on the number of queues supported.
3690 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)3691 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3692 int index, int offset)
3693 {
3694 u32 ivar = array_rd32(IGC_IVAR0, index);
3695
3696 /* clear any bits that are currently set */
3697 ivar &= ~((u32)0xFF << offset);
3698
3699 /* write vector and valid bit */
3700 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3701
3702 array_wr32(IGC_IVAR0, index, ivar);
3703 }
3704
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)3705 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3706 {
3707 struct igc_adapter *adapter = q_vector->adapter;
3708 struct igc_hw *hw = &adapter->hw;
3709 int rx_queue = IGC_N0_QUEUE;
3710 int tx_queue = IGC_N0_QUEUE;
3711
3712 if (q_vector->rx.ring)
3713 rx_queue = q_vector->rx.ring->reg_idx;
3714 if (q_vector->tx.ring)
3715 tx_queue = q_vector->tx.ring->reg_idx;
3716
3717 switch (hw->mac.type) {
3718 case igc_i225:
3719 if (rx_queue > IGC_N0_QUEUE)
3720 igc_write_ivar(hw, msix_vector,
3721 rx_queue >> 1,
3722 (rx_queue & 0x1) << 4);
3723 if (tx_queue > IGC_N0_QUEUE)
3724 igc_write_ivar(hw, msix_vector,
3725 tx_queue >> 1,
3726 ((tx_queue & 0x1) << 4) + 8);
3727 q_vector->eims_value = BIT(msix_vector);
3728 break;
3729 default:
3730 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3731 break;
3732 }
3733
3734 /* add q_vector eims value to global eims_enable_mask */
3735 adapter->eims_enable_mask |= q_vector->eims_value;
3736
3737 /* configure q_vector to set itr on first interrupt */
3738 q_vector->set_itr = 1;
3739 }
3740
3741 /**
3742 * igc_configure_msix - Configure MSI-X hardware
3743 * @adapter: Pointer to adapter structure
3744 *
3745 * igc_configure_msix sets up the hardware to properly
3746 * generate MSI-X interrupts.
3747 */
igc_configure_msix(struct igc_adapter * adapter)3748 static void igc_configure_msix(struct igc_adapter *adapter)
3749 {
3750 struct igc_hw *hw = &adapter->hw;
3751 int i, vector = 0;
3752 u32 tmp;
3753
3754 adapter->eims_enable_mask = 0;
3755
3756 /* set vector for other causes, i.e. link changes */
3757 switch (hw->mac.type) {
3758 case igc_i225:
3759 /* Turn on MSI-X capability first, or our settings
3760 * won't stick. And it will take days to debug.
3761 */
3762 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3763 IGC_GPIE_PBA | IGC_GPIE_EIAME |
3764 IGC_GPIE_NSICR);
3765
3766 /* enable msix_other interrupt */
3767 adapter->eims_other = BIT(vector);
3768 tmp = (vector++ | IGC_IVAR_VALID) << 8;
3769
3770 wr32(IGC_IVAR_MISC, tmp);
3771 break;
3772 default:
3773 /* do nothing, since nothing else supports MSI-X */
3774 break;
3775 } /* switch (hw->mac.type) */
3776
3777 adapter->eims_enable_mask |= adapter->eims_other;
3778
3779 for (i = 0; i < adapter->num_q_vectors; i++)
3780 igc_assign_vector(adapter->q_vector[i], vector++);
3781
3782 wrfl();
3783 }
3784
3785 /**
3786 * igc_irq_enable - Enable default interrupt generation settings
3787 * @adapter: board private structure
3788 */
igc_irq_enable(struct igc_adapter * adapter)3789 static void igc_irq_enable(struct igc_adapter *adapter)
3790 {
3791 struct igc_hw *hw = &adapter->hw;
3792
3793 if (adapter->msix_entries) {
3794 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3795 u32 regval = rd32(IGC_EIAC);
3796
3797 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3798 regval = rd32(IGC_EIAM);
3799 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3800 wr32(IGC_EIMS, adapter->eims_enable_mask);
3801 wr32(IGC_IMS, ims);
3802 } else {
3803 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3804 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3805 }
3806 }
3807
3808 /**
3809 * igc_irq_disable - Mask off interrupt generation on the NIC
3810 * @adapter: board private structure
3811 */
igc_irq_disable(struct igc_adapter * adapter)3812 static void igc_irq_disable(struct igc_adapter *adapter)
3813 {
3814 struct igc_hw *hw = &adapter->hw;
3815
3816 if (adapter->msix_entries) {
3817 u32 regval = rd32(IGC_EIAM);
3818
3819 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3820 wr32(IGC_EIMC, adapter->eims_enable_mask);
3821 regval = rd32(IGC_EIAC);
3822 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3823 }
3824
3825 wr32(IGC_IAM, 0);
3826 wr32(IGC_IMC, ~0);
3827 wrfl();
3828
3829 if (adapter->msix_entries) {
3830 int vector = 0, i;
3831
3832 synchronize_irq(adapter->msix_entries[vector++].vector);
3833
3834 for (i = 0; i < adapter->num_q_vectors; i++)
3835 synchronize_irq(adapter->msix_entries[vector++].vector);
3836 } else {
3837 synchronize_irq(adapter->pdev->irq);
3838 }
3839 }
3840
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)3841 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3842 const u32 max_rss_queues)
3843 {
3844 /* Determine if we need to pair queues. */
3845 /* If rss_queues > half of max_rss_queues, pair the queues in
3846 * order to conserve interrupts due to limited supply.
3847 */
3848 if (adapter->rss_queues > (max_rss_queues / 2))
3849 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3850 else
3851 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3852 }
3853
igc_get_max_rss_queues(struct igc_adapter * adapter)3854 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3855 {
3856 return IGC_MAX_RX_QUEUES;
3857 }
3858
igc_init_queue_configuration(struct igc_adapter * adapter)3859 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3860 {
3861 u32 max_rss_queues;
3862
3863 max_rss_queues = igc_get_max_rss_queues(adapter);
3864 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3865
3866 igc_set_flag_queue_pairs(adapter, max_rss_queues);
3867 }
3868
3869 /**
3870 * igc_reset_q_vector - Reset config for interrupt vector
3871 * @adapter: board private structure to initialize
3872 * @v_idx: Index of vector to be reset
3873 *
3874 * If NAPI is enabled it will delete any references to the
3875 * NAPI struct. This is preparation for igc_free_q_vector.
3876 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)3877 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3878 {
3879 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3880
3881 /* if we're coming from igc_set_interrupt_capability, the vectors are
3882 * not yet allocated
3883 */
3884 if (!q_vector)
3885 return;
3886
3887 if (q_vector->tx.ring)
3888 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3889
3890 if (q_vector->rx.ring)
3891 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3892
3893 netif_napi_del(&q_vector->napi);
3894 }
3895
3896 /**
3897 * igc_free_q_vector - Free memory allocated for specific interrupt vector
3898 * @adapter: board private structure to initialize
3899 * @v_idx: Index of vector to be freed
3900 *
3901 * This function frees the memory allocated to the q_vector.
3902 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)3903 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3904 {
3905 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3906
3907 adapter->q_vector[v_idx] = NULL;
3908
3909 /* igc_get_stats64() might access the rings on this vector,
3910 * we must wait a grace period before freeing it.
3911 */
3912 if (q_vector)
3913 kfree_rcu(q_vector, rcu);
3914 }
3915
3916 /**
3917 * igc_free_q_vectors - Free memory allocated for interrupt vectors
3918 * @adapter: board private structure to initialize
3919 *
3920 * This function frees the memory allocated to the q_vectors. In addition if
3921 * NAPI is enabled it will delete any references to the NAPI struct prior
3922 * to freeing the q_vector.
3923 */
igc_free_q_vectors(struct igc_adapter * adapter)3924 static void igc_free_q_vectors(struct igc_adapter *adapter)
3925 {
3926 int v_idx = adapter->num_q_vectors;
3927
3928 adapter->num_tx_queues = 0;
3929 adapter->num_rx_queues = 0;
3930 adapter->num_q_vectors = 0;
3931
3932 while (v_idx--) {
3933 igc_reset_q_vector(adapter, v_idx);
3934 igc_free_q_vector(adapter, v_idx);
3935 }
3936 }
3937
3938 /**
3939 * igc_update_itr - update the dynamic ITR value based on statistics
3940 * @q_vector: pointer to q_vector
3941 * @ring_container: ring info to update the itr for
3942 *
3943 * Stores a new ITR value based on packets and byte
3944 * counts during the last interrupt. The advantage of per interrupt
3945 * computation is faster updates and more accurate ITR for the current
3946 * traffic pattern. Constants in this function were computed
3947 * based on theoretical maximum wire speed and thresholds were set based
3948 * on testing data as well as attempting to minimize response time
3949 * while increasing bulk throughput.
3950 * NOTE: These calculations are only valid when operating in a single-
3951 * queue environment.
3952 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)3953 static void igc_update_itr(struct igc_q_vector *q_vector,
3954 struct igc_ring_container *ring_container)
3955 {
3956 unsigned int packets = ring_container->total_packets;
3957 unsigned int bytes = ring_container->total_bytes;
3958 u8 itrval = ring_container->itr;
3959
3960 /* no packets, exit with status unchanged */
3961 if (packets == 0)
3962 return;
3963
3964 switch (itrval) {
3965 case lowest_latency:
3966 /* handle TSO and jumbo frames */
3967 if (bytes / packets > 8000)
3968 itrval = bulk_latency;
3969 else if ((packets < 5) && (bytes > 512))
3970 itrval = low_latency;
3971 break;
3972 case low_latency: /* 50 usec aka 20000 ints/s */
3973 if (bytes > 10000) {
3974 /* this if handles the TSO accounting */
3975 if (bytes / packets > 8000)
3976 itrval = bulk_latency;
3977 else if ((packets < 10) || ((bytes / packets) > 1200))
3978 itrval = bulk_latency;
3979 else if ((packets > 35))
3980 itrval = lowest_latency;
3981 } else if (bytes / packets > 2000) {
3982 itrval = bulk_latency;
3983 } else if (packets <= 2 && bytes < 512) {
3984 itrval = lowest_latency;
3985 }
3986 break;
3987 case bulk_latency: /* 250 usec aka 4000 ints/s */
3988 if (bytes > 25000) {
3989 if (packets > 35)
3990 itrval = low_latency;
3991 } else if (bytes < 1500) {
3992 itrval = low_latency;
3993 }
3994 break;
3995 }
3996
3997 /* clear work counters since we have the values we need */
3998 ring_container->total_bytes = 0;
3999 ring_container->total_packets = 0;
4000
4001 /* write updated itr to ring container */
4002 ring_container->itr = itrval;
4003 }
4004
igc_set_itr(struct igc_q_vector * q_vector)4005 static void igc_set_itr(struct igc_q_vector *q_vector)
4006 {
4007 struct igc_adapter *adapter = q_vector->adapter;
4008 u32 new_itr = q_vector->itr_val;
4009 u8 current_itr = 0;
4010
4011 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4012 switch (adapter->link_speed) {
4013 case SPEED_10:
4014 case SPEED_100:
4015 current_itr = 0;
4016 new_itr = IGC_4K_ITR;
4017 goto set_itr_now;
4018 default:
4019 break;
4020 }
4021
4022 igc_update_itr(q_vector, &q_vector->tx);
4023 igc_update_itr(q_vector, &q_vector->rx);
4024
4025 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4026
4027 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4028 if (current_itr == lowest_latency &&
4029 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4030 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4031 current_itr = low_latency;
4032
4033 switch (current_itr) {
4034 /* counts and packets in update_itr are dependent on these numbers */
4035 case lowest_latency:
4036 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4037 break;
4038 case low_latency:
4039 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4040 break;
4041 case bulk_latency:
4042 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4043 break;
4044 default:
4045 break;
4046 }
4047
4048 set_itr_now:
4049 if (new_itr != q_vector->itr_val) {
4050 /* this attempts to bias the interrupt rate towards Bulk
4051 * by adding intermediate steps when interrupt rate is
4052 * increasing
4053 */
4054 new_itr = new_itr > q_vector->itr_val ?
4055 max((new_itr * q_vector->itr_val) /
4056 (new_itr + (q_vector->itr_val >> 2)),
4057 new_itr) : new_itr;
4058 /* Don't write the value here; it resets the adapter's
4059 * internal timer, and causes us to delay far longer than
4060 * we should between interrupts. Instead, we write the ITR
4061 * value at the beginning of the next interrupt so the timing
4062 * ends up being correct.
4063 */
4064 q_vector->itr_val = new_itr;
4065 q_vector->set_itr = 1;
4066 }
4067 }
4068
igc_reset_interrupt_capability(struct igc_adapter * adapter)4069 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4070 {
4071 int v_idx = adapter->num_q_vectors;
4072
4073 if (adapter->msix_entries) {
4074 pci_disable_msix(adapter->pdev);
4075 kfree(adapter->msix_entries);
4076 adapter->msix_entries = NULL;
4077 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4078 pci_disable_msi(adapter->pdev);
4079 }
4080
4081 while (v_idx--)
4082 igc_reset_q_vector(adapter, v_idx);
4083 }
4084
4085 /**
4086 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4087 * @adapter: Pointer to adapter structure
4088 * @msix: boolean value for MSI-X capability
4089 *
4090 * Attempt to configure interrupts using the best available
4091 * capabilities of the hardware and kernel.
4092 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4093 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4094 bool msix)
4095 {
4096 int numvecs, i;
4097 int err;
4098
4099 if (!msix)
4100 goto msi_only;
4101 adapter->flags |= IGC_FLAG_HAS_MSIX;
4102
4103 /* Number of supported queues. */
4104 adapter->num_rx_queues = adapter->rss_queues;
4105
4106 adapter->num_tx_queues = adapter->rss_queues;
4107
4108 /* start with one vector for every Rx queue */
4109 numvecs = adapter->num_rx_queues;
4110
4111 /* if Tx handler is separate add 1 for every Tx queue */
4112 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4113 numvecs += adapter->num_tx_queues;
4114
4115 /* store the number of vectors reserved for queues */
4116 adapter->num_q_vectors = numvecs;
4117
4118 /* add 1 vector for link status interrupts */
4119 numvecs++;
4120
4121 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4122 GFP_KERNEL);
4123
4124 if (!adapter->msix_entries)
4125 return;
4126
4127 /* populate entry values */
4128 for (i = 0; i < numvecs; i++)
4129 adapter->msix_entries[i].entry = i;
4130
4131 err = pci_enable_msix_range(adapter->pdev,
4132 adapter->msix_entries,
4133 numvecs,
4134 numvecs);
4135 if (err > 0)
4136 return;
4137
4138 kfree(adapter->msix_entries);
4139 adapter->msix_entries = NULL;
4140
4141 igc_reset_interrupt_capability(adapter);
4142
4143 msi_only:
4144 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4145
4146 adapter->rss_queues = 1;
4147 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4148 adapter->num_rx_queues = 1;
4149 adapter->num_tx_queues = 1;
4150 adapter->num_q_vectors = 1;
4151 if (!pci_enable_msi(adapter->pdev))
4152 adapter->flags |= IGC_FLAG_HAS_MSI;
4153 }
4154
4155 /**
4156 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4157 * @q_vector: pointer to q_vector
4158 *
4159 * Stores a new ITR value based on strictly on packet size. This
4160 * algorithm is less sophisticated than that used in igc_update_itr,
4161 * due to the difficulty of synchronizing statistics across multiple
4162 * receive rings. The divisors and thresholds used by this function
4163 * were determined based on theoretical maximum wire speed and testing
4164 * data, in order to minimize response time while increasing bulk
4165 * throughput.
4166 * NOTE: This function is called only when operating in a multiqueue
4167 * receive environment.
4168 */
igc_update_ring_itr(struct igc_q_vector * q_vector)4169 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4170 {
4171 struct igc_adapter *adapter = q_vector->adapter;
4172 int new_val = q_vector->itr_val;
4173 int avg_wire_size = 0;
4174 unsigned int packets;
4175
4176 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4177 * ints/sec - ITR timer value of 120 ticks.
4178 */
4179 switch (adapter->link_speed) {
4180 case SPEED_10:
4181 case SPEED_100:
4182 new_val = IGC_4K_ITR;
4183 goto set_itr_val;
4184 default:
4185 break;
4186 }
4187
4188 packets = q_vector->rx.total_packets;
4189 if (packets)
4190 avg_wire_size = q_vector->rx.total_bytes / packets;
4191
4192 packets = q_vector->tx.total_packets;
4193 if (packets)
4194 avg_wire_size = max_t(u32, avg_wire_size,
4195 q_vector->tx.total_bytes / packets);
4196
4197 /* if avg_wire_size isn't set no work was done */
4198 if (!avg_wire_size)
4199 goto clear_counts;
4200
4201 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4202 avg_wire_size += 24;
4203
4204 /* Don't starve jumbo frames */
4205 avg_wire_size = min(avg_wire_size, 3000);
4206
4207 /* Give a little boost to mid-size frames */
4208 if (avg_wire_size > 300 && avg_wire_size < 1200)
4209 new_val = avg_wire_size / 3;
4210 else
4211 new_val = avg_wire_size / 2;
4212
4213 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4214 if (new_val < IGC_20K_ITR &&
4215 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4216 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4217 new_val = IGC_20K_ITR;
4218
4219 set_itr_val:
4220 if (new_val != q_vector->itr_val) {
4221 q_vector->itr_val = new_val;
4222 q_vector->set_itr = 1;
4223 }
4224 clear_counts:
4225 q_vector->rx.total_bytes = 0;
4226 q_vector->rx.total_packets = 0;
4227 q_vector->tx.total_bytes = 0;
4228 q_vector->tx.total_packets = 0;
4229 }
4230
igc_ring_irq_enable(struct igc_q_vector * q_vector)4231 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4232 {
4233 struct igc_adapter *adapter = q_vector->adapter;
4234 struct igc_hw *hw = &adapter->hw;
4235
4236 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4237 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4238 if (adapter->num_q_vectors == 1)
4239 igc_set_itr(q_vector);
4240 else
4241 igc_update_ring_itr(q_vector);
4242 }
4243
4244 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4245 if (adapter->msix_entries)
4246 wr32(IGC_EIMS, q_vector->eims_value);
4247 else
4248 igc_irq_enable(adapter);
4249 }
4250 }
4251
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4252 static void igc_add_ring(struct igc_ring *ring,
4253 struct igc_ring_container *head)
4254 {
4255 head->ring = ring;
4256 head->count++;
4257 }
4258
4259 /**
4260 * igc_cache_ring_register - Descriptor ring to register mapping
4261 * @adapter: board private structure to initialize
4262 *
4263 * Once we know the feature-set enabled for the device, we'll cache
4264 * the register offset the descriptor ring is assigned to.
4265 */
igc_cache_ring_register(struct igc_adapter * adapter)4266 static void igc_cache_ring_register(struct igc_adapter *adapter)
4267 {
4268 int i = 0, j = 0;
4269
4270 switch (adapter->hw.mac.type) {
4271 case igc_i225:
4272 default:
4273 for (; i < adapter->num_rx_queues; i++)
4274 adapter->rx_ring[i]->reg_idx = i;
4275 for (; j < adapter->num_tx_queues; j++)
4276 adapter->tx_ring[j]->reg_idx = j;
4277 break;
4278 }
4279 }
4280
4281 /**
4282 * igc_poll - NAPI Rx polling callback
4283 * @napi: napi polling structure
4284 * @budget: count of how many packets we should handle
4285 */
igc_poll(struct napi_struct * napi,int budget)4286 static int igc_poll(struct napi_struct *napi, int budget)
4287 {
4288 struct igc_q_vector *q_vector = container_of(napi,
4289 struct igc_q_vector,
4290 napi);
4291 struct igc_ring *rx_ring = q_vector->rx.ring;
4292 bool clean_complete = true;
4293 int work_done = 0;
4294
4295 if (q_vector->tx.ring)
4296 clean_complete = igc_clean_tx_irq(q_vector, budget);
4297
4298 if (rx_ring) {
4299 int cleaned = rx_ring->xsk_pool ?
4300 igc_clean_rx_irq_zc(q_vector, budget) :
4301 igc_clean_rx_irq(q_vector, budget);
4302
4303 work_done += cleaned;
4304 if (cleaned >= budget)
4305 clean_complete = false;
4306 }
4307
4308 /* If all work not completed, return budget and keep polling */
4309 if (!clean_complete)
4310 return budget;
4311
4312 /* Exit the polling mode, but don't re-enable interrupts if stack might
4313 * poll us due to busy-polling
4314 */
4315 if (likely(napi_complete_done(napi, work_done)))
4316 igc_ring_irq_enable(q_vector);
4317
4318 return min(work_done, budget - 1);
4319 }
4320
4321 /**
4322 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4323 * @adapter: board private structure to initialize
4324 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4325 * @v_idx: index of vector in adapter struct
4326 * @txr_count: total number of Tx rings to allocate
4327 * @txr_idx: index of first Tx ring to allocate
4328 * @rxr_count: total number of Rx rings to allocate
4329 * @rxr_idx: index of first Rx ring to allocate
4330 *
4331 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4332 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4333 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4334 unsigned int v_count, unsigned int v_idx,
4335 unsigned int txr_count, unsigned int txr_idx,
4336 unsigned int rxr_count, unsigned int rxr_idx)
4337 {
4338 struct igc_q_vector *q_vector;
4339 struct igc_ring *ring;
4340 int ring_count;
4341
4342 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4343 if (txr_count > 1 || rxr_count > 1)
4344 return -ENOMEM;
4345
4346 ring_count = txr_count + rxr_count;
4347
4348 /* allocate q_vector and rings */
4349 q_vector = adapter->q_vector[v_idx];
4350 if (!q_vector)
4351 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4352 GFP_KERNEL);
4353 else
4354 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4355 if (!q_vector)
4356 return -ENOMEM;
4357
4358 /* initialize NAPI */
4359 netif_napi_add(adapter->netdev, &q_vector->napi,
4360 igc_poll, 64);
4361
4362 /* tie q_vector and adapter together */
4363 adapter->q_vector[v_idx] = q_vector;
4364 q_vector->adapter = adapter;
4365
4366 /* initialize work limits */
4367 q_vector->tx.work_limit = adapter->tx_work_limit;
4368
4369 /* initialize ITR configuration */
4370 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4371 q_vector->itr_val = IGC_START_ITR;
4372
4373 /* initialize pointer to rings */
4374 ring = q_vector->ring;
4375
4376 /* initialize ITR */
4377 if (rxr_count) {
4378 /* rx or rx/tx vector */
4379 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4380 q_vector->itr_val = adapter->rx_itr_setting;
4381 } else {
4382 /* tx only vector */
4383 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4384 q_vector->itr_val = adapter->tx_itr_setting;
4385 }
4386
4387 if (txr_count) {
4388 /* assign generic ring traits */
4389 ring->dev = &adapter->pdev->dev;
4390 ring->netdev = adapter->netdev;
4391
4392 /* configure backlink on ring */
4393 ring->q_vector = q_vector;
4394
4395 /* update q_vector Tx values */
4396 igc_add_ring(ring, &q_vector->tx);
4397
4398 /* apply Tx specific ring traits */
4399 ring->count = adapter->tx_ring_count;
4400 ring->queue_index = txr_idx;
4401
4402 /* assign ring to adapter */
4403 adapter->tx_ring[txr_idx] = ring;
4404
4405 /* push pointer to next ring */
4406 ring++;
4407 }
4408
4409 if (rxr_count) {
4410 /* assign generic ring traits */
4411 ring->dev = &adapter->pdev->dev;
4412 ring->netdev = adapter->netdev;
4413
4414 /* configure backlink on ring */
4415 ring->q_vector = q_vector;
4416
4417 /* update q_vector Rx values */
4418 igc_add_ring(ring, &q_vector->rx);
4419
4420 /* apply Rx specific ring traits */
4421 ring->count = adapter->rx_ring_count;
4422 ring->queue_index = rxr_idx;
4423
4424 /* assign ring to adapter */
4425 adapter->rx_ring[rxr_idx] = ring;
4426 }
4427
4428 return 0;
4429 }
4430
4431 /**
4432 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4433 * @adapter: board private structure to initialize
4434 *
4435 * We allocate one q_vector per queue interrupt. If allocation fails we
4436 * return -ENOMEM.
4437 */
igc_alloc_q_vectors(struct igc_adapter * adapter)4438 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4439 {
4440 int rxr_remaining = adapter->num_rx_queues;
4441 int txr_remaining = adapter->num_tx_queues;
4442 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4443 int q_vectors = adapter->num_q_vectors;
4444 int err;
4445
4446 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4447 for (; rxr_remaining; v_idx++) {
4448 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4449 0, 0, 1, rxr_idx);
4450
4451 if (err)
4452 goto err_out;
4453
4454 /* update counts and index */
4455 rxr_remaining--;
4456 rxr_idx++;
4457 }
4458 }
4459
4460 for (; v_idx < q_vectors; v_idx++) {
4461 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4462 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4463
4464 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4465 tqpv, txr_idx, rqpv, rxr_idx);
4466
4467 if (err)
4468 goto err_out;
4469
4470 /* update counts and index */
4471 rxr_remaining -= rqpv;
4472 txr_remaining -= tqpv;
4473 rxr_idx++;
4474 txr_idx++;
4475 }
4476
4477 return 0;
4478
4479 err_out:
4480 adapter->num_tx_queues = 0;
4481 adapter->num_rx_queues = 0;
4482 adapter->num_q_vectors = 0;
4483
4484 while (v_idx--)
4485 igc_free_q_vector(adapter, v_idx);
4486
4487 return -ENOMEM;
4488 }
4489
4490 /**
4491 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4492 * @adapter: Pointer to adapter structure
4493 * @msix: boolean for MSI-X capability
4494 *
4495 * This function initializes the interrupts and allocates all of the queues.
4496 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4497 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4498 {
4499 struct net_device *dev = adapter->netdev;
4500 int err = 0;
4501
4502 igc_set_interrupt_capability(adapter, msix);
4503
4504 err = igc_alloc_q_vectors(adapter);
4505 if (err) {
4506 netdev_err(dev, "Unable to allocate memory for vectors\n");
4507 goto err_alloc_q_vectors;
4508 }
4509
4510 igc_cache_ring_register(adapter);
4511
4512 return 0;
4513
4514 err_alloc_q_vectors:
4515 igc_reset_interrupt_capability(adapter);
4516 return err;
4517 }
4518
4519 /**
4520 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4521 * @adapter: board private structure to initialize
4522 *
4523 * igc_sw_init initializes the Adapter private data structure.
4524 * Fields are initialized based on PCI device information and
4525 * OS network device settings (MTU size).
4526 */
igc_sw_init(struct igc_adapter * adapter)4527 static int igc_sw_init(struct igc_adapter *adapter)
4528 {
4529 struct net_device *netdev = adapter->netdev;
4530 struct pci_dev *pdev = adapter->pdev;
4531 struct igc_hw *hw = &adapter->hw;
4532
4533 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4534
4535 /* set default ring sizes */
4536 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4537 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4538
4539 /* set default ITR values */
4540 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4541 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4542
4543 /* set default work limits */
4544 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4545
4546 /* adjust max frame to be at least the size of a standard frame */
4547 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4548 VLAN_HLEN;
4549 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4550
4551 mutex_init(&adapter->nfc_rule_lock);
4552 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4553 adapter->nfc_rule_count = 0;
4554
4555 spin_lock_init(&adapter->stats64_lock);
4556 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4557 adapter->flags |= IGC_FLAG_HAS_MSIX;
4558
4559 igc_init_queue_configuration(adapter);
4560
4561 /* This call may decrease the number of queues */
4562 if (igc_init_interrupt_scheme(adapter, true)) {
4563 netdev_err(netdev, "Unable to allocate memory for queues\n");
4564 return -ENOMEM;
4565 }
4566
4567 /* Explicitly disable IRQ since the NIC can be in any state. */
4568 igc_irq_disable(adapter);
4569
4570 set_bit(__IGC_DOWN, &adapter->state);
4571
4572 return 0;
4573 }
4574
4575 /**
4576 * igc_up - Open the interface and prepare it to handle traffic
4577 * @adapter: board private structure
4578 */
igc_up(struct igc_adapter * adapter)4579 void igc_up(struct igc_adapter *adapter)
4580 {
4581 struct igc_hw *hw = &adapter->hw;
4582 int i = 0;
4583
4584 /* hardware has been reset, we need to reload some things */
4585 igc_configure(adapter);
4586
4587 clear_bit(__IGC_DOWN, &adapter->state);
4588
4589 for (i = 0; i < adapter->num_q_vectors; i++)
4590 napi_enable(&adapter->q_vector[i]->napi);
4591
4592 if (adapter->msix_entries)
4593 igc_configure_msix(adapter);
4594 else
4595 igc_assign_vector(adapter->q_vector[0], 0);
4596
4597 /* Clear any pending interrupts. */
4598 rd32(IGC_ICR);
4599 igc_irq_enable(adapter);
4600
4601 netif_tx_start_all_queues(adapter->netdev);
4602
4603 /* start the watchdog. */
4604 hw->mac.get_link_status = true;
4605 schedule_work(&adapter->watchdog_task);
4606 }
4607
4608 /**
4609 * igc_update_stats - Update the board statistics counters
4610 * @adapter: board private structure
4611 */
igc_update_stats(struct igc_adapter * adapter)4612 void igc_update_stats(struct igc_adapter *adapter)
4613 {
4614 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4615 struct pci_dev *pdev = adapter->pdev;
4616 struct igc_hw *hw = &adapter->hw;
4617 u64 _bytes, _packets;
4618 u64 bytes, packets;
4619 unsigned int start;
4620 u32 mpc;
4621 int i;
4622
4623 /* Prevent stats update while adapter is being reset, or if the pci
4624 * connection is down.
4625 */
4626 if (adapter->link_speed == 0)
4627 return;
4628 if (pci_channel_offline(pdev))
4629 return;
4630
4631 packets = 0;
4632 bytes = 0;
4633
4634 rcu_read_lock();
4635 for (i = 0; i < adapter->num_rx_queues; i++) {
4636 struct igc_ring *ring = adapter->rx_ring[i];
4637 u32 rqdpc = rd32(IGC_RQDPC(i));
4638
4639 if (hw->mac.type >= igc_i225)
4640 wr32(IGC_RQDPC(i), 0);
4641
4642 if (rqdpc) {
4643 ring->rx_stats.drops += rqdpc;
4644 net_stats->rx_fifo_errors += rqdpc;
4645 }
4646
4647 do {
4648 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4649 _bytes = ring->rx_stats.bytes;
4650 _packets = ring->rx_stats.packets;
4651 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4652 bytes += _bytes;
4653 packets += _packets;
4654 }
4655
4656 net_stats->rx_bytes = bytes;
4657 net_stats->rx_packets = packets;
4658
4659 packets = 0;
4660 bytes = 0;
4661 for (i = 0; i < adapter->num_tx_queues; i++) {
4662 struct igc_ring *ring = adapter->tx_ring[i];
4663
4664 do {
4665 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4666 _bytes = ring->tx_stats.bytes;
4667 _packets = ring->tx_stats.packets;
4668 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4669 bytes += _bytes;
4670 packets += _packets;
4671 }
4672 net_stats->tx_bytes = bytes;
4673 net_stats->tx_packets = packets;
4674 rcu_read_unlock();
4675
4676 /* read stats registers */
4677 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4678 adapter->stats.gprc += rd32(IGC_GPRC);
4679 adapter->stats.gorc += rd32(IGC_GORCL);
4680 rd32(IGC_GORCH); /* clear GORCL */
4681 adapter->stats.bprc += rd32(IGC_BPRC);
4682 adapter->stats.mprc += rd32(IGC_MPRC);
4683 adapter->stats.roc += rd32(IGC_ROC);
4684
4685 adapter->stats.prc64 += rd32(IGC_PRC64);
4686 adapter->stats.prc127 += rd32(IGC_PRC127);
4687 adapter->stats.prc255 += rd32(IGC_PRC255);
4688 adapter->stats.prc511 += rd32(IGC_PRC511);
4689 adapter->stats.prc1023 += rd32(IGC_PRC1023);
4690 adapter->stats.prc1522 += rd32(IGC_PRC1522);
4691 adapter->stats.tlpic += rd32(IGC_TLPIC);
4692 adapter->stats.rlpic += rd32(IGC_RLPIC);
4693 adapter->stats.hgptc += rd32(IGC_HGPTC);
4694
4695 mpc = rd32(IGC_MPC);
4696 adapter->stats.mpc += mpc;
4697 net_stats->rx_fifo_errors += mpc;
4698 adapter->stats.scc += rd32(IGC_SCC);
4699 adapter->stats.ecol += rd32(IGC_ECOL);
4700 adapter->stats.mcc += rd32(IGC_MCC);
4701 adapter->stats.latecol += rd32(IGC_LATECOL);
4702 adapter->stats.dc += rd32(IGC_DC);
4703 adapter->stats.rlec += rd32(IGC_RLEC);
4704 adapter->stats.xonrxc += rd32(IGC_XONRXC);
4705 adapter->stats.xontxc += rd32(IGC_XONTXC);
4706 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4707 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4708 adapter->stats.fcruc += rd32(IGC_FCRUC);
4709 adapter->stats.gptc += rd32(IGC_GPTC);
4710 adapter->stats.gotc += rd32(IGC_GOTCL);
4711 rd32(IGC_GOTCH); /* clear GOTCL */
4712 adapter->stats.rnbc += rd32(IGC_RNBC);
4713 adapter->stats.ruc += rd32(IGC_RUC);
4714 adapter->stats.rfc += rd32(IGC_RFC);
4715 adapter->stats.rjc += rd32(IGC_RJC);
4716 adapter->stats.tor += rd32(IGC_TORH);
4717 adapter->stats.tot += rd32(IGC_TOTH);
4718 adapter->stats.tpr += rd32(IGC_TPR);
4719
4720 adapter->stats.ptc64 += rd32(IGC_PTC64);
4721 adapter->stats.ptc127 += rd32(IGC_PTC127);
4722 adapter->stats.ptc255 += rd32(IGC_PTC255);
4723 adapter->stats.ptc511 += rd32(IGC_PTC511);
4724 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4725 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4726
4727 adapter->stats.mptc += rd32(IGC_MPTC);
4728 adapter->stats.bptc += rd32(IGC_BPTC);
4729
4730 adapter->stats.tpt += rd32(IGC_TPT);
4731 adapter->stats.colc += rd32(IGC_COLC);
4732 adapter->stats.colc += rd32(IGC_RERC);
4733
4734 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4735
4736 adapter->stats.tsctc += rd32(IGC_TSCTC);
4737
4738 adapter->stats.iac += rd32(IGC_IAC);
4739
4740 /* Fill out the OS statistics structure */
4741 net_stats->multicast = adapter->stats.mprc;
4742 net_stats->collisions = adapter->stats.colc;
4743
4744 /* Rx Errors */
4745
4746 /* RLEC on some newer hardware can be incorrect so build
4747 * our own version based on RUC and ROC
4748 */
4749 net_stats->rx_errors = adapter->stats.rxerrc +
4750 adapter->stats.crcerrs + adapter->stats.algnerrc +
4751 adapter->stats.ruc + adapter->stats.roc +
4752 adapter->stats.cexterr;
4753 net_stats->rx_length_errors = adapter->stats.ruc +
4754 adapter->stats.roc;
4755 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4756 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4757 net_stats->rx_missed_errors = adapter->stats.mpc;
4758
4759 /* Tx Errors */
4760 net_stats->tx_errors = adapter->stats.ecol +
4761 adapter->stats.latecol;
4762 net_stats->tx_aborted_errors = adapter->stats.ecol;
4763 net_stats->tx_window_errors = adapter->stats.latecol;
4764 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4765
4766 /* Tx Dropped needs to be maintained elsewhere */
4767
4768 /* Management Stats */
4769 adapter->stats.mgptc += rd32(IGC_MGTPTC);
4770 adapter->stats.mgprc += rd32(IGC_MGTPRC);
4771 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4772 }
4773
4774 /**
4775 * igc_down - Close the interface
4776 * @adapter: board private structure
4777 */
igc_down(struct igc_adapter * adapter)4778 void igc_down(struct igc_adapter *adapter)
4779 {
4780 struct net_device *netdev = adapter->netdev;
4781 struct igc_hw *hw = &adapter->hw;
4782 u32 tctl, rctl;
4783 int i = 0;
4784
4785 set_bit(__IGC_DOWN, &adapter->state);
4786
4787 igc_ptp_suspend(adapter);
4788
4789 if (pci_device_is_present(adapter->pdev)) {
4790 /* disable receives in the hardware */
4791 rctl = rd32(IGC_RCTL);
4792 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4793 /* flush and sleep below */
4794 }
4795 /* set trans_start so we don't get spurious watchdogs during reset */
4796 netif_trans_update(netdev);
4797
4798 netif_carrier_off(netdev);
4799 netif_tx_stop_all_queues(netdev);
4800
4801 if (pci_device_is_present(adapter->pdev)) {
4802 /* disable transmits in the hardware */
4803 tctl = rd32(IGC_TCTL);
4804 tctl &= ~IGC_TCTL_EN;
4805 wr32(IGC_TCTL, tctl);
4806 /* flush both disables and wait for them to finish */
4807 wrfl();
4808 usleep_range(10000, 20000);
4809
4810 igc_irq_disable(adapter);
4811 }
4812
4813 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4814
4815 for (i = 0; i < adapter->num_q_vectors; i++) {
4816 if (adapter->q_vector[i]) {
4817 napi_synchronize(&adapter->q_vector[i]->napi);
4818 napi_disable(&adapter->q_vector[i]->napi);
4819 }
4820 }
4821
4822 del_timer_sync(&adapter->watchdog_timer);
4823 del_timer_sync(&adapter->phy_info_timer);
4824
4825 /* record the stats before reset*/
4826 spin_lock(&adapter->stats64_lock);
4827 igc_update_stats(adapter);
4828 spin_unlock(&adapter->stats64_lock);
4829
4830 adapter->link_speed = 0;
4831 adapter->link_duplex = 0;
4832
4833 if (!pci_channel_offline(adapter->pdev))
4834 igc_reset(adapter);
4835
4836 /* clear VLAN promisc flag so VFTA will be updated if necessary */
4837 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4838
4839 igc_clean_all_tx_rings(adapter);
4840 igc_clean_all_rx_rings(adapter);
4841 }
4842
igc_reinit_locked(struct igc_adapter * adapter)4843 void igc_reinit_locked(struct igc_adapter *adapter)
4844 {
4845 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4846 usleep_range(1000, 2000);
4847 igc_down(adapter);
4848 igc_up(adapter);
4849 clear_bit(__IGC_RESETTING, &adapter->state);
4850 }
4851
igc_reset_task(struct work_struct * work)4852 static void igc_reset_task(struct work_struct *work)
4853 {
4854 struct igc_adapter *adapter;
4855
4856 adapter = container_of(work, struct igc_adapter, reset_task);
4857
4858 rtnl_lock();
4859 /* If we're already down or resetting, just bail */
4860 if (test_bit(__IGC_DOWN, &adapter->state) ||
4861 test_bit(__IGC_RESETTING, &adapter->state)) {
4862 rtnl_unlock();
4863 return;
4864 }
4865
4866 igc_rings_dump(adapter);
4867 igc_regs_dump(adapter);
4868 netdev_err(adapter->netdev, "Reset adapter\n");
4869 igc_reinit_locked(adapter);
4870 rtnl_unlock();
4871 }
4872
4873 /**
4874 * igc_change_mtu - Change the Maximum Transfer Unit
4875 * @netdev: network interface device structure
4876 * @new_mtu: new value for maximum frame size
4877 *
4878 * Returns 0 on success, negative on failure
4879 */
igc_change_mtu(struct net_device * netdev,int new_mtu)4880 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4881 {
4882 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4883 struct igc_adapter *adapter = netdev_priv(netdev);
4884
4885 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4886 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4887 return -EINVAL;
4888 }
4889
4890 /* adjust max frame to be at least the size of a standard frame */
4891 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4892 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4893
4894 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4895 usleep_range(1000, 2000);
4896
4897 /* igc_down has a dependency on max_frame_size */
4898 adapter->max_frame_size = max_frame;
4899
4900 if (netif_running(netdev))
4901 igc_down(adapter);
4902
4903 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4904 netdev->mtu = new_mtu;
4905
4906 if (netif_running(netdev))
4907 igc_up(adapter);
4908 else
4909 igc_reset(adapter);
4910
4911 clear_bit(__IGC_RESETTING, &adapter->state);
4912
4913 return 0;
4914 }
4915
4916 /**
4917 * igc_get_stats64 - Get System Network Statistics
4918 * @netdev: network interface device structure
4919 * @stats: rtnl_link_stats64 pointer
4920 *
4921 * Returns the address of the device statistics structure.
4922 * The statistics are updated here and also from the timer callback.
4923 */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)4924 static void igc_get_stats64(struct net_device *netdev,
4925 struct rtnl_link_stats64 *stats)
4926 {
4927 struct igc_adapter *adapter = netdev_priv(netdev);
4928
4929 spin_lock(&adapter->stats64_lock);
4930 if (!test_bit(__IGC_RESETTING, &adapter->state))
4931 igc_update_stats(adapter);
4932 memcpy(stats, &adapter->stats64, sizeof(*stats));
4933 spin_unlock(&adapter->stats64_lock);
4934 }
4935
igc_fix_features(struct net_device * netdev,netdev_features_t features)4936 static netdev_features_t igc_fix_features(struct net_device *netdev,
4937 netdev_features_t features)
4938 {
4939 /* Since there is no support for separate Rx/Tx vlan accel
4940 * enable/disable make sure Tx flag is always in same state as Rx.
4941 */
4942 if (features & NETIF_F_HW_VLAN_CTAG_RX)
4943 features |= NETIF_F_HW_VLAN_CTAG_TX;
4944 else
4945 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4946
4947 return features;
4948 }
4949
igc_set_features(struct net_device * netdev,netdev_features_t features)4950 static int igc_set_features(struct net_device *netdev,
4951 netdev_features_t features)
4952 {
4953 netdev_features_t changed = netdev->features ^ features;
4954 struct igc_adapter *adapter = netdev_priv(netdev);
4955
4956 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4957 igc_vlan_mode(netdev, features);
4958
4959 /* Add VLAN support */
4960 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4961 return 0;
4962
4963 if (!(features & NETIF_F_NTUPLE))
4964 igc_flush_nfc_rules(adapter);
4965
4966 netdev->features = features;
4967
4968 if (netif_running(netdev))
4969 igc_reinit_locked(adapter);
4970 else
4971 igc_reset(adapter);
4972
4973 return 1;
4974 }
4975
4976 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)4977 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4978 netdev_features_t features)
4979 {
4980 unsigned int network_hdr_len, mac_hdr_len;
4981
4982 /* Make certain the headers can be described by a context descriptor */
4983 mac_hdr_len = skb_network_header(skb) - skb->data;
4984 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4985 return features & ~(NETIF_F_HW_CSUM |
4986 NETIF_F_SCTP_CRC |
4987 NETIF_F_HW_VLAN_CTAG_TX |
4988 NETIF_F_TSO |
4989 NETIF_F_TSO6);
4990
4991 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4992 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
4993 return features & ~(NETIF_F_HW_CSUM |
4994 NETIF_F_SCTP_CRC |
4995 NETIF_F_TSO |
4996 NETIF_F_TSO6);
4997
4998 /* We can only support IPv4 TSO in tunnels if we can mangle the
4999 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5000 */
5001 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5002 features &= ~NETIF_F_TSO;
5003
5004 return features;
5005 }
5006
igc_tsync_interrupt(struct igc_adapter * adapter)5007 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5008 {
5009 u32 ack, tsauxc, sec, nsec, tsicr;
5010 struct igc_hw *hw = &adapter->hw;
5011 struct ptp_clock_event event;
5012 struct timespec64 ts;
5013
5014 tsicr = rd32(IGC_TSICR);
5015 ack = 0;
5016
5017 if (tsicr & IGC_TSICR_SYS_WRAP) {
5018 event.type = PTP_CLOCK_PPS;
5019 if (adapter->ptp_caps.pps)
5020 ptp_clock_event(adapter->ptp_clock, &event);
5021 ack |= IGC_TSICR_SYS_WRAP;
5022 }
5023
5024 if (tsicr & IGC_TSICR_TXTS) {
5025 /* retrieve hardware timestamp */
5026 schedule_work(&adapter->ptp_tx_work);
5027 ack |= IGC_TSICR_TXTS;
5028 }
5029
5030 if (tsicr & IGC_TSICR_TT0) {
5031 spin_lock(&adapter->tmreg_lock);
5032 ts = timespec64_add(adapter->perout[0].start,
5033 adapter->perout[0].period);
5034 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5035 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5036 tsauxc = rd32(IGC_TSAUXC);
5037 tsauxc |= IGC_TSAUXC_EN_TT0;
5038 wr32(IGC_TSAUXC, tsauxc);
5039 adapter->perout[0].start = ts;
5040 spin_unlock(&adapter->tmreg_lock);
5041 ack |= IGC_TSICR_TT0;
5042 }
5043
5044 if (tsicr & IGC_TSICR_TT1) {
5045 spin_lock(&adapter->tmreg_lock);
5046 ts = timespec64_add(adapter->perout[1].start,
5047 adapter->perout[1].period);
5048 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5049 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5050 tsauxc = rd32(IGC_TSAUXC);
5051 tsauxc |= IGC_TSAUXC_EN_TT1;
5052 wr32(IGC_TSAUXC, tsauxc);
5053 adapter->perout[1].start = ts;
5054 spin_unlock(&adapter->tmreg_lock);
5055 ack |= IGC_TSICR_TT1;
5056 }
5057
5058 if (tsicr & IGC_TSICR_AUTT0) {
5059 nsec = rd32(IGC_AUXSTMPL0);
5060 sec = rd32(IGC_AUXSTMPH0);
5061 event.type = PTP_CLOCK_EXTTS;
5062 event.index = 0;
5063 event.timestamp = sec * NSEC_PER_SEC + nsec;
5064 ptp_clock_event(adapter->ptp_clock, &event);
5065 ack |= IGC_TSICR_AUTT0;
5066 }
5067
5068 if (tsicr & IGC_TSICR_AUTT1) {
5069 nsec = rd32(IGC_AUXSTMPL1);
5070 sec = rd32(IGC_AUXSTMPH1);
5071 event.type = PTP_CLOCK_EXTTS;
5072 event.index = 1;
5073 event.timestamp = sec * NSEC_PER_SEC + nsec;
5074 ptp_clock_event(adapter->ptp_clock, &event);
5075 ack |= IGC_TSICR_AUTT1;
5076 }
5077
5078 /* acknowledge the interrupts */
5079 wr32(IGC_TSICR, ack);
5080 }
5081
5082 /**
5083 * igc_msix_other - msix other interrupt handler
5084 * @irq: interrupt number
5085 * @data: pointer to a q_vector
5086 */
igc_msix_other(int irq,void * data)5087 static irqreturn_t igc_msix_other(int irq, void *data)
5088 {
5089 struct igc_adapter *adapter = data;
5090 struct igc_hw *hw = &adapter->hw;
5091 u32 icr = rd32(IGC_ICR);
5092
5093 /* reading ICR causes bit 31 of EICR to be cleared */
5094 if (icr & IGC_ICR_DRSTA)
5095 schedule_work(&adapter->reset_task);
5096
5097 if (icr & IGC_ICR_DOUTSYNC) {
5098 /* HW is reporting DMA is out of sync */
5099 adapter->stats.doosync++;
5100 }
5101
5102 if (icr & IGC_ICR_LSC) {
5103 hw->mac.get_link_status = true;
5104 /* guard against interrupt when we're going down */
5105 if (!test_bit(__IGC_DOWN, &adapter->state))
5106 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5107 }
5108
5109 if (icr & IGC_ICR_TS)
5110 igc_tsync_interrupt(adapter);
5111
5112 wr32(IGC_EIMS, adapter->eims_other);
5113
5114 return IRQ_HANDLED;
5115 }
5116
igc_write_itr(struct igc_q_vector * q_vector)5117 static void igc_write_itr(struct igc_q_vector *q_vector)
5118 {
5119 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5120
5121 if (!q_vector->set_itr)
5122 return;
5123
5124 if (!itr_val)
5125 itr_val = IGC_ITR_VAL_MASK;
5126
5127 itr_val |= IGC_EITR_CNT_IGNR;
5128
5129 writel(itr_val, q_vector->itr_register);
5130 q_vector->set_itr = 0;
5131 }
5132
igc_msix_ring(int irq,void * data)5133 static irqreturn_t igc_msix_ring(int irq, void *data)
5134 {
5135 struct igc_q_vector *q_vector = data;
5136
5137 /* Write the ITR value calculated from the previous interrupt. */
5138 igc_write_itr(q_vector);
5139
5140 napi_schedule(&q_vector->napi);
5141
5142 return IRQ_HANDLED;
5143 }
5144
5145 /**
5146 * igc_request_msix - Initialize MSI-X interrupts
5147 * @adapter: Pointer to adapter structure
5148 *
5149 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5150 * kernel.
5151 */
igc_request_msix(struct igc_adapter * adapter)5152 static int igc_request_msix(struct igc_adapter *adapter)
5153 {
5154 unsigned int num_q_vectors = adapter->num_q_vectors;
5155 int i = 0, err = 0, vector = 0, free_vector = 0;
5156 struct net_device *netdev = adapter->netdev;
5157
5158 err = request_irq(adapter->msix_entries[vector].vector,
5159 &igc_msix_other, 0, netdev->name, adapter);
5160 if (err)
5161 goto err_out;
5162
5163 if (num_q_vectors > MAX_Q_VECTORS) {
5164 num_q_vectors = MAX_Q_VECTORS;
5165 dev_warn(&adapter->pdev->dev,
5166 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5167 adapter->num_q_vectors, MAX_Q_VECTORS);
5168 }
5169 for (i = 0; i < num_q_vectors; i++) {
5170 struct igc_q_vector *q_vector = adapter->q_vector[i];
5171
5172 vector++;
5173
5174 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5175
5176 if (q_vector->rx.ring && q_vector->tx.ring)
5177 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5178 q_vector->rx.ring->queue_index);
5179 else if (q_vector->tx.ring)
5180 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5181 q_vector->tx.ring->queue_index);
5182 else if (q_vector->rx.ring)
5183 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5184 q_vector->rx.ring->queue_index);
5185 else
5186 sprintf(q_vector->name, "%s-unused", netdev->name);
5187
5188 err = request_irq(adapter->msix_entries[vector].vector,
5189 igc_msix_ring, 0, q_vector->name,
5190 q_vector);
5191 if (err)
5192 goto err_free;
5193 }
5194
5195 igc_configure_msix(adapter);
5196 return 0;
5197
5198 err_free:
5199 /* free already assigned IRQs */
5200 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5201
5202 vector--;
5203 for (i = 0; i < vector; i++) {
5204 free_irq(adapter->msix_entries[free_vector++].vector,
5205 adapter->q_vector[i]);
5206 }
5207 err_out:
5208 return err;
5209 }
5210
5211 /**
5212 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5213 * @adapter: Pointer to adapter structure
5214 *
5215 * This function resets the device so that it has 0 rx queues, tx queues, and
5216 * MSI-X interrupts allocated.
5217 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5218 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5219 {
5220 igc_free_q_vectors(adapter);
5221 igc_reset_interrupt_capability(adapter);
5222 }
5223
5224 /* Need to wait a few seconds after link up to get diagnostic information from
5225 * the phy
5226 */
igc_update_phy_info(struct timer_list * t)5227 static void igc_update_phy_info(struct timer_list *t)
5228 {
5229 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5230
5231 igc_get_phy_info(&adapter->hw);
5232 }
5233
5234 /**
5235 * igc_has_link - check shared code for link and determine up/down
5236 * @adapter: pointer to driver private info
5237 */
igc_has_link(struct igc_adapter * adapter)5238 bool igc_has_link(struct igc_adapter *adapter)
5239 {
5240 struct igc_hw *hw = &adapter->hw;
5241 bool link_active = false;
5242
5243 /* get_link_status is set on LSC (link status) interrupt or
5244 * rx sequence error interrupt. get_link_status will stay
5245 * false until the igc_check_for_link establishes link
5246 * for copper adapters ONLY
5247 */
5248 if (!hw->mac.get_link_status)
5249 return true;
5250 hw->mac.ops.check_for_link(hw);
5251 link_active = !hw->mac.get_link_status;
5252
5253 if (hw->mac.type == igc_i225) {
5254 if (!netif_carrier_ok(adapter->netdev)) {
5255 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5256 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5257 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5258 adapter->link_check_timeout = jiffies;
5259 }
5260 }
5261
5262 return link_active;
5263 }
5264
5265 /**
5266 * igc_watchdog - Timer Call-back
5267 * @t: timer for the watchdog
5268 */
igc_watchdog(struct timer_list * t)5269 static void igc_watchdog(struct timer_list *t)
5270 {
5271 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5272 /* Do the rest outside of interrupt context */
5273 schedule_work(&adapter->watchdog_task);
5274 }
5275
igc_watchdog_task(struct work_struct * work)5276 static void igc_watchdog_task(struct work_struct *work)
5277 {
5278 struct igc_adapter *adapter = container_of(work,
5279 struct igc_adapter,
5280 watchdog_task);
5281 struct net_device *netdev = adapter->netdev;
5282 struct igc_hw *hw = &adapter->hw;
5283 struct igc_phy_info *phy = &hw->phy;
5284 u16 phy_data, retry_count = 20;
5285 u32 link;
5286 int i;
5287
5288 link = igc_has_link(adapter);
5289
5290 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5291 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5292 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5293 else
5294 link = false;
5295 }
5296
5297 if (link) {
5298 /* Cancel scheduled suspend requests. */
5299 pm_runtime_resume(netdev->dev.parent);
5300
5301 if (!netif_carrier_ok(netdev)) {
5302 u32 ctrl;
5303
5304 hw->mac.ops.get_speed_and_duplex(hw,
5305 &adapter->link_speed,
5306 &adapter->link_duplex);
5307
5308 ctrl = rd32(IGC_CTRL);
5309 /* Link status message must follow this format */
5310 netdev_info(netdev,
5311 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5312 adapter->link_speed,
5313 adapter->link_duplex == FULL_DUPLEX ?
5314 "Full" : "Half",
5315 (ctrl & IGC_CTRL_TFCE) &&
5316 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5317 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5318 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5319
5320 /* disable EEE if enabled */
5321 if ((adapter->flags & IGC_FLAG_EEE) &&
5322 adapter->link_duplex == HALF_DUPLEX) {
5323 netdev_info(netdev,
5324 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5325 adapter->hw.dev_spec._base.eee_enable = false;
5326 adapter->flags &= ~IGC_FLAG_EEE;
5327 }
5328
5329 /* check if SmartSpeed worked */
5330 igc_check_downshift(hw);
5331 if (phy->speed_downgraded)
5332 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5333
5334 /* adjust timeout factor according to speed/duplex */
5335 adapter->tx_timeout_factor = 1;
5336 switch (adapter->link_speed) {
5337 case SPEED_10:
5338 adapter->tx_timeout_factor = 14;
5339 break;
5340 case SPEED_100:
5341 case SPEED_1000:
5342 case SPEED_2500:
5343 adapter->tx_timeout_factor = 7;
5344 break;
5345 }
5346
5347 if (adapter->link_speed != SPEED_1000)
5348 goto no_wait;
5349
5350 /* wait for Remote receiver status OK */
5351 retry_read_status:
5352 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5353 &phy_data)) {
5354 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5355 retry_count) {
5356 msleep(100);
5357 retry_count--;
5358 goto retry_read_status;
5359 } else if (!retry_count) {
5360 netdev_err(netdev, "exceed max 2 second\n");
5361 }
5362 } else {
5363 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5364 }
5365 no_wait:
5366 netif_carrier_on(netdev);
5367
5368 /* link state has changed, schedule phy info update */
5369 if (!test_bit(__IGC_DOWN, &adapter->state))
5370 mod_timer(&adapter->phy_info_timer,
5371 round_jiffies(jiffies + 2 * HZ));
5372 }
5373 } else {
5374 if (netif_carrier_ok(netdev)) {
5375 adapter->link_speed = 0;
5376 adapter->link_duplex = 0;
5377
5378 /* Links status message must follow this format */
5379 netdev_info(netdev, "NIC Link is Down\n");
5380 netif_carrier_off(netdev);
5381
5382 /* link state has changed, schedule phy info update */
5383 if (!test_bit(__IGC_DOWN, &adapter->state))
5384 mod_timer(&adapter->phy_info_timer,
5385 round_jiffies(jiffies + 2 * HZ));
5386
5387 /* link is down, time to check for alternate media */
5388 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5389 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5390 schedule_work(&adapter->reset_task);
5391 /* return immediately */
5392 return;
5393 }
5394 }
5395 pm_schedule_suspend(netdev->dev.parent,
5396 MSEC_PER_SEC * 5);
5397
5398 /* also check for alternate media here */
5399 } else if (!netif_carrier_ok(netdev) &&
5400 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5401 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5402 schedule_work(&adapter->reset_task);
5403 /* return immediately */
5404 return;
5405 }
5406 }
5407 }
5408
5409 spin_lock(&adapter->stats64_lock);
5410 igc_update_stats(adapter);
5411 spin_unlock(&adapter->stats64_lock);
5412
5413 for (i = 0; i < adapter->num_tx_queues; i++) {
5414 struct igc_ring *tx_ring = adapter->tx_ring[i];
5415
5416 if (!netif_carrier_ok(netdev)) {
5417 /* We've lost link, so the controller stops DMA,
5418 * but we've got queued Tx work that's never going
5419 * to get done, so reset controller to flush Tx.
5420 * (Do the reset outside of interrupt context).
5421 */
5422 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5423 adapter->tx_timeout_count++;
5424 schedule_work(&adapter->reset_task);
5425 /* return immediately since reset is imminent */
5426 return;
5427 }
5428 }
5429
5430 /* Force detection of hung controller every watchdog period */
5431 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5432 }
5433
5434 /* Cause software interrupt to ensure Rx ring is cleaned */
5435 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5436 u32 eics = 0;
5437
5438 for (i = 0; i < adapter->num_q_vectors; i++)
5439 eics |= adapter->q_vector[i]->eims_value;
5440 wr32(IGC_EICS, eics);
5441 } else {
5442 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5443 }
5444
5445 igc_ptp_tx_hang(adapter);
5446
5447 /* Reset the timer */
5448 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5449 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5450 mod_timer(&adapter->watchdog_timer,
5451 round_jiffies(jiffies + HZ));
5452 else
5453 mod_timer(&adapter->watchdog_timer,
5454 round_jiffies(jiffies + 2 * HZ));
5455 }
5456 }
5457
5458 /**
5459 * igc_intr_msi - Interrupt Handler
5460 * @irq: interrupt number
5461 * @data: pointer to a network interface device structure
5462 */
igc_intr_msi(int irq,void * data)5463 static irqreturn_t igc_intr_msi(int irq, void *data)
5464 {
5465 struct igc_adapter *adapter = data;
5466 struct igc_q_vector *q_vector = adapter->q_vector[0];
5467 struct igc_hw *hw = &adapter->hw;
5468 /* read ICR disables interrupts using IAM */
5469 u32 icr = rd32(IGC_ICR);
5470
5471 igc_write_itr(q_vector);
5472
5473 if (icr & IGC_ICR_DRSTA)
5474 schedule_work(&adapter->reset_task);
5475
5476 if (icr & IGC_ICR_DOUTSYNC) {
5477 /* HW is reporting DMA is out of sync */
5478 adapter->stats.doosync++;
5479 }
5480
5481 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5482 hw->mac.get_link_status = true;
5483 if (!test_bit(__IGC_DOWN, &adapter->state))
5484 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5485 }
5486
5487 if (icr & IGC_ICR_TS)
5488 igc_tsync_interrupt(adapter);
5489
5490 napi_schedule(&q_vector->napi);
5491
5492 return IRQ_HANDLED;
5493 }
5494
5495 /**
5496 * igc_intr - Legacy Interrupt Handler
5497 * @irq: interrupt number
5498 * @data: pointer to a network interface device structure
5499 */
igc_intr(int irq,void * data)5500 static irqreturn_t igc_intr(int irq, void *data)
5501 {
5502 struct igc_adapter *adapter = data;
5503 struct igc_q_vector *q_vector = adapter->q_vector[0];
5504 struct igc_hw *hw = &adapter->hw;
5505 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5506 * need for the IMC write
5507 */
5508 u32 icr = rd32(IGC_ICR);
5509
5510 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5511 * not set, then the adapter didn't send an interrupt
5512 */
5513 if (!(icr & IGC_ICR_INT_ASSERTED))
5514 return IRQ_NONE;
5515
5516 igc_write_itr(q_vector);
5517
5518 if (icr & IGC_ICR_DRSTA)
5519 schedule_work(&adapter->reset_task);
5520
5521 if (icr & IGC_ICR_DOUTSYNC) {
5522 /* HW is reporting DMA is out of sync */
5523 adapter->stats.doosync++;
5524 }
5525
5526 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5527 hw->mac.get_link_status = true;
5528 /* guard against interrupt when we're going down */
5529 if (!test_bit(__IGC_DOWN, &adapter->state))
5530 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5531 }
5532
5533 if (icr & IGC_ICR_TS)
5534 igc_tsync_interrupt(adapter);
5535
5536 napi_schedule(&q_vector->napi);
5537
5538 return IRQ_HANDLED;
5539 }
5540
igc_free_irq(struct igc_adapter * adapter)5541 static void igc_free_irq(struct igc_adapter *adapter)
5542 {
5543 if (adapter->msix_entries) {
5544 int vector = 0, i;
5545
5546 free_irq(adapter->msix_entries[vector++].vector, adapter);
5547
5548 for (i = 0; i < adapter->num_q_vectors; i++)
5549 free_irq(adapter->msix_entries[vector++].vector,
5550 adapter->q_vector[i]);
5551 } else {
5552 free_irq(adapter->pdev->irq, adapter);
5553 }
5554 }
5555
5556 /**
5557 * igc_request_irq - initialize interrupts
5558 * @adapter: Pointer to adapter structure
5559 *
5560 * Attempts to configure interrupts using the best available
5561 * capabilities of the hardware and kernel.
5562 */
igc_request_irq(struct igc_adapter * adapter)5563 static int igc_request_irq(struct igc_adapter *adapter)
5564 {
5565 struct net_device *netdev = adapter->netdev;
5566 struct pci_dev *pdev = adapter->pdev;
5567 int err = 0;
5568
5569 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5570 err = igc_request_msix(adapter);
5571 if (!err)
5572 goto request_done;
5573 /* fall back to MSI */
5574 igc_free_all_tx_resources(adapter);
5575 igc_free_all_rx_resources(adapter);
5576
5577 igc_clear_interrupt_scheme(adapter);
5578 err = igc_init_interrupt_scheme(adapter, false);
5579 if (err)
5580 goto request_done;
5581 igc_setup_all_tx_resources(adapter);
5582 igc_setup_all_rx_resources(adapter);
5583 igc_configure(adapter);
5584 }
5585
5586 igc_assign_vector(adapter->q_vector[0], 0);
5587
5588 if (adapter->flags & IGC_FLAG_HAS_MSI) {
5589 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5590 netdev->name, adapter);
5591 if (!err)
5592 goto request_done;
5593
5594 /* fall back to legacy interrupts */
5595 igc_reset_interrupt_capability(adapter);
5596 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5597 }
5598
5599 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5600 netdev->name, adapter);
5601
5602 if (err)
5603 netdev_err(netdev, "Error %d getting interrupt\n", err);
5604
5605 request_done:
5606 return err;
5607 }
5608
5609 /**
5610 * __igc_open - Called when a network interface is made active
5611 * @netdev: network interface device structure
5612 * @resuming: boolean indicating if the device is resuming
5613 *
5614 * Returns 0 on success, negative value on failure
5615 *
5616 * The open entry point is called when a network interface is made
5617 * active by the system (IFF_UP). At this point all resources needed
5618 * for transmit and receive operations are allocated, the interrupt
5619 * handler is registered with the OS, the watchdog timer is started,
5620 * and the stack is notified that the interface is ready.
5621 */
__igc_open(struct net_device * netdev,bool resuming)5622 static int __igc_open(struct net_device *netdev, bool resuming)
5623 {
5624 struct igc_adapter *adapter = netdev_priv(netdev);
5625 struct pci_dev *pdev = adapter->pdev;
5626 struct igc_hw *hw = &adapter->hw;
5627 int err = 0;
5628 int i = 0;
5629
5630 /* disallow open during test */
5631
5632 if (test_bit(__IGC_TESTING, &adapter->state)) {
5633 WARN_ON(resuming);
5634 return -EBUSY;
5635 }
5636
5637 if (!resuming)
5638 pm_runtime_get_sync(&pdev->dev);
5639
5640 netif_carrier_off(netdev);
5641
5642 /* allocate transmit descriptors */
5643 err = igc_setup_all_tx_resources(adapter);
5644 if (err)
5645 goto err_setup_tx;
5646
5647 /* allocate receive descriptors */
5648 err = igc_setup_all_rx_resources(adapter);
5649 if (err)
5650 goto err_setup_rx;
5651
5652 igc_power_up_link(adapter);
5653
5654 igc_configure(adapter);
5655
5656 err = igc_request_irq(adapter);
5657 if (err)
5658 goto err_req_irq;
5659
5660 /* Notify the stack of the actual queue counts. */
5661 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5662 if (err)
5663 goto err_set_queues;
5664
5665 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5666 if (err)
5667 goto err_set_queues;
5668
5669 clear_bit(__IGC_DOWN, &adapter->state);
5670
5671 for (i = 0; i < adapter->num_q_vectors; i++)
5672 napi_enable(&adapter->q_vector[i]->napi);
5673
5674 /* Clear any pending interrupts. */
5675 rd32(IGC_ICR);
5676 igc_irq_enable(adapter);
5677
5678 if (!resuming)
5679 pm_runtime_put(&pdev->dev);
5680
5681 netif_tx_start_all_queues(netdev);
5682
5683 /* start the watchdog. */
5684 hw->mac.get_link_status = true;
5685 schedule_work(&adapter->watchdog_task);
5686
5687 return IGC_SUCCESS;
5688
5689 err_set_queues:
5690 igc_free_irq(adapter);
5691 err_req_irq:
5692 igc_release_hw_control(adapter);
5693 igc_power_down_phy_copper_base(&adapter->hw);
5694 igc_free_all_rx_resources(adapter);
5695 err_setup_rx:
5696 igc_free_all_tx_resources(adapter);
5697 err_setup_tx:
5698 igc_reset(adapter);
5699 if (!resuming)
5700 pm_runtime_put(&pdev->dev);
5701
5702 return err;
5703 }
5704
igc_open(struct net_device * netdev)5705 int igc_open(struct net_device *netdev)
5706 {
5707 return __igc_open(netdev, false);
5708 }
5709
5710 /**
5711 * __igc_close - Disables a network interface
5712 * @netdev: network interface device structure
5713 * @suspending: boolean indicating the device is suspending
5714 *
5715 * Returns 0, this is not allowed to fail
5716 *
5717 * The close entry point is called when an interface is de-activated
5718 * by the OS. The hardware is still under the driver's control, but
5719 * needs to be disabled. A global MAC reset is issued to stop the
5720 * hardware, and all transmit and receive resources are freed.
5721 */
__igc_close(struct net_device * netdev,bool suspending)5722 static int __igc_close(struct net_device *netdev, bool suspending)
5723 {
5724 struct igc_adapter *adapter = netdev_priv(netdev);
5725 struct pci_dev *pdev = adapter->pdev;
5726
5727 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5728
5729 if (!suspending)
5730 pm_runtime_get_sync(&pdev->dev);
5731
5732 igc_down(adapter);
5733
5734 igc_release_hw_control(adapter);
5735
5736 igc_free_irq(adapter);
5737
5738 igc_free_all_tx_resources(adapter);
5739 igc_free_all_rx_resources(adapter);
5740
5741 if (!suspending)
5742 pm_runtime_put_sync(&pdev->dev);
5743
5744 return 0;
5745 }
5746
igc_close(struct net_device * netdev)5747 int igc_close(struct net_device *netdev)
5748 {
5749 if (netif_device_present(netdev) || netdev->dismantle)
5750 return __igc_close(netdev, false);
5751 return 0;
5752 }
5753
5754 /**
5755 * igc_ioctl - Access the hwtstamp interface
5756 * @netdev: network interface device structure
5757 * @ifr: interface request data
5758 * @cmd: ioctl command
5759 **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)5760 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5761 {
5762 switch (cmd) {
5763 case SIOCGHWTSTAMP:
5764 return igc_ptp_get_ts_config(netdev, ifr);
5765 case SIOCSHWTSTAMP:
5766 return igc_ptp_set_ts_config(netdev, ifr);
5767 default:
5768 return -EOPNOTSUPP;
5769 }
5770 }
5771
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)5772 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5773 bool enable)
5774 {
5775 struct igc_ring *ring;
5776
5777 if (queue < 0 || queue >= adapter->num_tx_queues)
5778 return -EINVAL;
5779
5780 ring = adapter->tx_ring[queue];
5781 ring->launchtime_enable = enable;
5782
5783 return 0;
5784 }
5785
is_base_time_past(ktime_t base_time,const struct timespec64 * now)5786 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5787 {
5788 struct timespec64 b;
5789
5790 b = ktime_to_timespec64(base_time);
5791
5792 return timespec64_compare(now, &b) > 0;
5793 }
5794
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)5795 static bool validate_schedule(struct igc_adapter *adapter,
5796 const struct tc_taprio_qopt_offload *qopt)
5797 {
5798 int queue_uses[IGC_MAX_TX_QUEUES] = { };
5799 struct timespec64 now;
5800 size_t n;
5801
5802 if (qopt->cycle_time_extension)
5803 return false;
5804
5805 igc_ptp_read(adapter, &now);
5806
5807 /* If we program the controller's BASET registers with a time
5808 * in the future, it will hold all the packets until that
5809 * time, causing a lot of TX Hangs, so to avoid that, we
5810 * reject schedules that would start in the future.
5811 */
5812 if (!is_base_time_past(qopt->base_time, &now))
5813 return false;
5814
5815 for (n = 0; n < qopt->num_entries; n++) {
5816 const struct tc_taprio_sched_entry *e;
5817 int i;
5818
5819 e = &qopt->entries[n];
5820
5821 /* i225 only supports "global" frame preemption
5822 * settings.
5823 */
5824 if (e->command != TC_TAPRIO_CMD_SET_GATES)
5825 return false;
5826
5827 for (i = 0; i < adapter->num_tx_queues; i++) {
5828 if (e->gate_mask & BIT(i))
5829 queue_uses[i]++;
5830
5831 if (queue_uses[i] > 1)
5832 return false;
5833 }
5834 }
5835
5836 return true;
5837 }
5838
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)5839 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5840 struct tc_etf_qopt_offload *qopt)
5841 {
5842 struct igc_hw *hw = &adapter->hw;
5843 int err;
5844
5845 if (hw->mac.type != igc_i225)
5846 return -EOPNOTSUPP;
5847
5848 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5849 if (err)
5850 return err;
5851
5852 return igc_tsn_offload_apply(adapter);
5853 }
5854
igc_tsn_clear_schedule(struct igc_adapter * adapter)5855 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
5856 {
5857 int i;
5858
5859 adapter->base_time = 0;
5860 adapter->cycle_time = NSEC_PER_SEC;
5861
5862 for (i = 0; i < adapter->num_tx_queues; i++) {
5863 struct igc_ring *ring = adapter->tx_ring[i];
5864
5865 ring->start_time = 0;
5866 ring->end_time = NSEC_PER_SEC;
5867 }
5868
5869 return 0;
5870 }
5871
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)5872 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5873 struct tc_taprio_qopt_offload *qopt)
5874 {
5875 u32 start_time = 0, end_time = 0;
5876 size_t n;
5877
5878 if (!qopt->enable)
5879 return igc_tsn_clear_schedule(adapter);
5880
5881 if (adapter->base_time)
5882 return -EALREADY;
5883
5884 if (!validate_schedule(adapter, qopt))
5885 return -EINVAL;
5886
5887 adapter->cycle_time = qopt->cycle_time;
5888 adapter->base_time = qopt->base_time;
5889
5890 /* FIXME: be a little smarter about cases when the gate for a
5891 * queue stays open for more than one entry.
5892 */
5893 for (n = 0; n < qopt->num_entries; n++) {
5894 struct tc_taprio_sched_entry *e = &qopt->entries[n];
5895 int i;
5896
5897 end_time += e->interval;
5898
5899 for (i = 0; i < adapter->num_tx_queues; i++) {
5900 struct igc_ring *ring = adapter->tx_ring[i];
5901
5902 if (!(e->gate_mask & BIT(i)))
5903 continue;
5904
5905 ring->start_time = start_time;
5906 ring->end_time = end_time;
5907 }
5908
5909 start_time += e->interval;
5910 }
5911
5912 return 0;
5913 }
5914
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)5915 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5916 struct tc_taprio_qopt_offload *qopt)
5917 {
5918 struct igc_hw *hw = &adapter->hw;
5919 int err;
5920
5921 if (hw->mac.type != igc_i225)
5922 return -EOPNOTSUPP;
5923
5924 err = igc_save_qbv_schedule(adapter, qopt);
5925 if (err)
5926 return err;
5927
5928 return igc_tsn_offload_apply(adapter);
5929 }
5930
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)5931 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
5932 bool enable, int idleslope, int sendslope,
5933 int hicredit, int locredit)
5934 {
5935 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
5936 struct net_device *netdev = adapter->netdev;
5937 struct igc_ring *ring;
5938 int i;
5939
5940 /* i225 has two sets of credit-based shaper logic.
5941 * Supporting it only on the top two priority queues
5942 */
5943 if (queue < 0 || queue > 1)
5944 return -EINVAL;
5945
5946 ring = adapter->tx_ring[queue];
5947
5948 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
5949 if (adapter->tx_ring[i])
5950 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
5951
5952 /* CBS should be enabled on the highest priority queue first in order
5953 * for the CBS algorithm to operate as intended.
5954 */
5955 if (enable) {
5956 if (queue == 1 && !cbs_status[0]) {
5957 netdev_err(netdev,
5958 "Enabling CBS on queue1 before queue0\n");
5959 return -EINVAL;
5960 }
5961 } else {
5962 if (queue == 0 && cbs_status[1]) {
5963 netdev_err(netdev,
5964 "Disabling CBS on queue0 before queue1\n");
5965 return -EINVAL;
5966 }
5967 }
5968
5969 ring->cbs_enable = enable;
5970 ring->idleslope = idleslope;
5971 ring->sendslope = sendslope;
5972 ring->hicredit = hicredit;
5973 ring->locredit = locredit;
5974
5975 return 0;
5976 }
5977
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)5978 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
5979 struct tc_cbs_qopt_offload *qopt)
5980 {
5981 struct igc_hw *hw = &adapter->hw;
5982 int err;
5983
5984 if (hw->mac.type != igc_i225)
5985 return -EOPNOTSUPP;
5986
5987 if (qopt->queue < 0 || qopt->queue > 1)
5988 return -EINVAL;
5989
5990 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
5991 qopt->idleslope, qopt->sendslope,
5992 qopt->hicredit, qopt->locredit);
5993 if (err)
5994 return err;
5995
5996 return igc_tsn_offload_apply(adapter);
5997 }
5998
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)5999 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6000 void *type_data)
6001 {
6002 struct igc_adapter *adapter = netdev_priv(dev);
6003
6004 switch (type) {
6005 case TC_SETUP_QDISC_TAPRIO:
6006 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6007
6008 case TC_SETUP_QDISC_ETF:
6009 return igc_tsn_enable_launchtime(adapter, type_data);
6010
6011 case TC_SETUP_QDISC_CBS:
6012 return igc_tsn_enable_cbs(adapter, type_data);
6013
6014 default:
6015 return -EOPNOTSUPP;
6016 }
6017 }
6018
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6019 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6020 {
6021 struct igc_adapter *adapter = netdev_priv(dev);
6022
6023 switch (bpf->command) {
6024 case XDP_SETUP_PROG:
6025 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6026 case XDP_SETUP_XSK_POOL:
6027 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6028 bpf->xsk.queue_id);
6029 default:
6030 return -EOPNOTSUPP;
6031 }
6032 }
6033
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6034 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6035 struct xdp_frame **frames, u32 flags)
6036 {
6037 struct igc_adapter *adapter = netdev_priv(dev);
6038 int cpu = smp_processor_id();
6039 struct netdev_queue *nq;
6040 struct igc_ring *ring;
6041 int i, drops;
6042
6043 if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
6044 return -ENETDOWN;
6045
6046 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6047 return -EINVAL;
6048
6049 ring = igc_xdp_get_tx_ring(adapter, cpu);
6050 nq = txring_txq(ring);
6051
6052 __netif_tx_lock(nq, cpu);
6053
6054 drops = 0;
6055 for (i = 0; i < num_frames; i++) {
6056 int err;
6057 struct xdp_frame *xdpf = frames[i];
6058
6059 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6060 if (err) {
6061 xdp_return_frame_rx_napi(xdpf);
6062 drops++;
6063 }
6064 }
6065
6066 if (flags & XDP_XMIT_FLUSH)
6067 igc_flush_tx_descriptors(ring);
6068
6069 __netif_tx_unlock(nq);
6070
6071 return num_frames - drops;
6072 }
6073
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6074 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6075 struct igc_q_vector *q_vector)
6076 {
6077 struct igc_hw *hw = &adapter->hw;
6078 u32 eics = 0;
6079
6080 eics |= q_vector->eims_value;
6081 wr32(IGC_EICS, eics);
6082 }
6083
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6084 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6085 {
6086 struct igc_adapter *adapter = netdev_priv(dev);
6087 struct igc_q_vector *q_vector;
6088 struct igc_ring *ring;
6089
6090 if (test_bit(__IGC_DOWN, &adapter->state))
6091 return -ENETDOWN;
6092
6093 if (!igc_xdp_is_enabled(adapter))
6094 return -ENXIO;
6095
6096 if (queue_id >= adapter->num_rx_queues)
6097 return -EINVAL;
6098
6099 ring = adapter->rx_ring[queue_id];
6100
6101 if (!ring->xsk_pool)
6102 return -ENXIO;
6103
6104 q_vector = adapter->q_vector[queue_id];
6105 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6106 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6107
6108 return 0;
6109 }
6110
6111 static const struct net_device_ops igc_netdev_ops = {
6112 .ndo_open = igc_open,
6113 .ndo_stop = igc_close,
6114 .ndo_start_xmit = igc_xmit_frame,
6115 .ndo_set_rx_mode = igc_set_rx_mode,
6116 .ndo_set_mac_address = igc_set_mac,
6117 .ndo_change_mtu = igc_change_mtu,
6118 .ndo_get_stats64 = igc_get_stats64,
6119 .ndo_fix_features = igc_fix_features,
6120 .ndo_set_features = igc_set_features,
6121 .ndo_features_check = igc_features_check,
6122 .ndo_eth_ioctl = igc_ioctl,
6123 .ndo_setup_tc = igc_setup_tc,
6124 .ndo_bpf = igc_bpf,
6125 .ndo_xdp_xmit = igc_xdp_xmit,
6126 .ndo_xsk_wakeup = igc_xsk_wakeup,
6127 };
6128
6129 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6130 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6131 {
6132 struct igc_adapter *adapter = hw->back;
6133
6134 pci_read_config_word(adapter->pdev, reg, value);
6135 }
6136
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6137 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6138 {
6139 struct igc_adapter *adapter = hw->back;
6140
6141 pci_write_config_word(adapter->pdev, reg, *value);
6142 }
6143
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6144 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6145 {
6146 struct igc_adapter *adapter = hw->back;
6147
6148 if (!pci_is_pcie(adapter->pdev))
6149 return -IGC_ERR_CONFIG;
6150
6151 pcie_capability_read_word(adapter->pdev, reg, value);
6152
6153 return IGC_SUCCESS;
6154 }
6155
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6156 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6157 {
6158 struct igc_adapter *adapter = hw->back;
6159
6160 if (!pci_is_pcie(adapter->pdev))
6161 return -IGC_ERR_CONFIG;
6162
6163 pcie_capability_write_word(adapter->pdev, reg, *value);
6164
6165 return IGC_SUCCESS;
6166 }
6167
igc_rd32(struct igc_hw * hw,u32 reg)6168 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6169 {
6170 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6171 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6172 u32 value = 0;
6173
6174 if (IGC_REMOVED(hw_addr))
6175 return ~value;
6176
6177 value = readl(&hw_addr[reg]);
6178
6179 /* reads should not return all F's */
6180 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6181 struct net_device *netdev = igc->netdev;
6182
6183 hw->hw_addr = NULL;
6184 netif_device_detach(netdev);
6185 netdev_err(netdev, "PCIe link lost, device now detached\n");
6186 WARN(pci_device_is_present(igc->pdev),
6187 "igc: Failed to read reg 0x%x!\n", reg);
6188 }
6189
6190 return value;
6191 }
6192
6193 /**
6194 * igc_probe - Device Initialization Routine
6195 * @pdev: PCI device information struct
6196 * @ent: entry in igc_pci_tbl
6197 *
6198 * Returns 0 on success, negative on failure
6199 *
6200 * igc_probe initializes an adapter identified by a pci_dev structure.
6201 * The OS initialization, configuring the adapter private structure,
6202 * and a hardware reset occur.
6203 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)6204 static int igc_probe(struct pci_dev *pdev,
6205 const struct pci_device_id *ent)
6206 {
6207 struct igc_adapter *adapter;
6208 struct net_device *netdev;
6209 struct igc_hw *hw;
6210 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6211 int err;
6212
6213 err = pci_enable_device_mem(pdev);
6214 if (err)
6215 return err;
6216
6217 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6218 if (err) {
6219 dev_err(&pdev->dev,
6220 "No usable DMA configuration, aborting\n");
6221 goto err_dma;
6222 }
6223
6224 err = pci_request_mem_regions(pdev, igc_driver_name);
6225 if (err)
6226 goto err_pci_reg;
6227
6228 pci_enable_pcie_error_reporting(pdev);
6229
6230 err = pci_enable_ptm(pdev, NULL);
6231 if (err < 0)
6232 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6233
6234 pci_set_master(pdev);
6235
6236 err = -ENOMEM;
6237 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6238 IGC_MAX_TX_QUEUES);
6239
6240 if (!netdev)
6241 goto err_alloc_etherdev;
6242
6243 SET_NETDEV_DEV(netdev, &pdev->dev);
6244
6245 pci_set_drvdata(pdev, netdev);
6246 adapter = netdev_priv(netdev);
6247 adapter->netdev = netdev;
6248 adapter->pdev = pdev;
6249 hw = &adapter->hw;
6250 hw->back = adapter;
6251 adapter->port_num = hw->bus.func;
6252 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6253
6254 err = pci_save_state(pdev);
6255 if (err)
6256 goto err_ioremap;
6257
6258 err = -EIO;
6259 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6260 pci_resource_len(pdev, 0));
6261 if (!adapter->io_addr)
6262 goto err_ioremap;
6263
6264 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6265 hw->hw_addr = adapter->io_addr;
6266
6267 netdev->netdev_ops = &igc_netdev_ops;
6268 igc_ethtool_set_ops(netdev);
6269 netdev->watchdog_timeo = 5 * HZ;
6270
6271 netdev->mem_start = pci_resource_start(pdev, 0);
6272 netdev->mem_end = pci_resource_end(pdev, 0);
6273
6274 /* PCI config space info */
6275 hw->vendor_id = pdev->vendor;
6276 hw->device_id = pdev->device;
6277 hw->revision_id = pdev->revision;
6278 hw->subsystem_vendor_id = pdev->subsystem_vendor;
6279 hw->subsystem_device_id = pdev->subsystem_device;
6280
6281 /* Copy the default MAC and PHY function pointers */
6282 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6283 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6284
6285 /* Initialize skew-specific constants */
6286 err = ei->get_invariants(hw);
6287 if (err)
6288 goto err_sw_init;
6289
6290 /* Add supported features to the features list*/
6291 netdev->features |= NETIF_F_SG;
6292 netdev->features |= NETIF_F_TSO;
6293 netdev->features |= NETIF_F_TSO6;
6294 netdev->features |= NETIF_F_TSO_ECN;
6295 netdev->features |= NETIF_F_RXCSUM;
6296 netdev->features |= NETIF_F_HW_CSUM;
6297 netdev->features |= NETIF_F_SCTP_CRC;
6298 netdev->features |= NETIF_F_HW_TC;
6299
6300 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6301 NETIF_F_GSO_GRE_CSUM | \
6302 NETIF_F_GSO_IPXIP4 | \
6303 NETIF_F_GSO_IPXIP6 | \
6304 NETIF_F_GSO_UDP_TUNNEL | \
6305 NETIF_F_GSO_UDP_TUNNEL_CSUM)
6306
6307 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6308 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6309
6310 /* setup the private structure */
6311 err = igc_sw_init(adapter);
6312 if (err)
6313 goto err_sw_init;
6314
6315 /* copy netdev features into list of user selectable features */
6316 netdev->hw_features |= NETIF_F_NTUPLE;
6317 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6318 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6319 netdev->hw_features |= netdev->features;
6320
6321 netdev->features |= NETIF_F_HIGHDMA;
6322
6323 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6324 netdev->mpls_features |= NETIF_F_HW_CSUM;
6325 netdev->hw_enc_features |= netdev->vlan_features;
6326
6327 /* MTU range: 68 - 9216 */
6328 netdev->min_mtu = ETH_MIN_MTU;
6329 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6330
6331 /* before reading the NVM, reset the controller to put the device in a
6332 * known good starting state
6333 */
6334 hw->mac.ops.reset_hw(hw);
6335
6336 if (igc_get_flash_presence_i225(hw)) {
6337 if (hw->nvm.ops.validate(hw) < 0) {
6338 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6339 err = -EIO;
6340 goto err_eeprom;
6341 }
6342 }
6343
6344 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6345 /* copy the MAC address out of the NVM */
6346 if (hw->mac.ops.read_mac_addr(hw))
6347 dev_err(&pdev->dev, "NVM Read Error\n");
6348 }
6349
6350 eth_hw_addr_set(netdev, hw->mac.addr);
6351
6352 if (!is_valid_ether_addr(netdev->dev_addr)) {
6353 dev_err(&pdev->dev, "Invalid MAC Address\n");
6354 err = -EIO;
6355 goto err_eeprom;
6356 }
6357
6358 /* configure RXPBSIZE and TXPBSIZE */
6359 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6360 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6361
6362 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6363 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6364
6365 INIT_WORK(&adapter->reset_task, igc_reset_task);
6366 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6367
6368 /* Initialize link properties that are user-changeable */
6369 adapter->fc_autoneg = true;
6370 hw->mac.autoneg = true;
6371 hw->phy.autoneg_advertised = 0xaf;
6372
6373 hw->fc.requested_mode = igc_fc_default;
6374 hw->fc.current_mode = igc_fc_default;
6375
6376 /* By default, support wake on port A */
6377 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6378
6379 /* initialize the wol settings based on the eeprom settings */
6380 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6381 adapter->wol |= IGC_WUFC_MAG;
6382
6383 device_set_wakeup_enable(&adapter->pdev->dev,
6384 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6385
6386 igc_ptp_init(adapter);
6387
6388 igc_tsn_clear_schedule(adapter);
6389
6390 /* reset the hardware with the new settings */
6391 igc_reset(adapter);
6392
6393 /* let the f/w know that the h/w is now under the control of the
6394 * driver.
6395 */
6396 igc_get_hw_control(adapter);
6397
6398 strncpy(netdev->name, "eth%d", IFNAMSIZ);
6399 err = register_netdev(netdev);
6400 if (err)
6401 goto err_register;
6402
6403 /* carrier off reporting is important to ethtool even BEFORE open */
6404 netif_carrier_off(netdev);
6405
6406 /* Check if Media Autosense is enabled */
6407 adapter->ei = *ei;
6408
6409 /* print pcie link status and MAC address */
6410 pcie_print_link_status(pdev);
6411 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6412
6413 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6414 /* Disable EEE for internal PHY devices */
6415 hw->dev_spec._base.eee_enable = false;
6416 adapter->flags &= ~IGC_FLAG_EEE;
6417 igc_set_eee_i225(hw, false, false, false);
6418
6419 pm_runtime_put_noidle(&pdev->dev);
6420
6421 return 0;
6422
6423 err_register:
6424 igc_release_hw_control(adapter);
6425 err_eeprom:
6426 if (!igc_check_reset_block(hw))
6427 igc_reset_phy(hw);
6428 err_sw_init:
6429 igc_clear_interrupt_scheme(adapter);
6430 iounmap(adapter->io_addr);
6431 err_ioremap:
6432 free_netdev(netdev);
6433 err_alloc_etherdev:
6434 pci_disable_pcie_error_reporting(pdev);
6435 pci_release_mem_regions(pdev);
6436 err_pci_reg:
6437 err_dma:
6438 pci_disable_device(pdev);
6439 return err;
6440 }
6441
6442 /**
6443 * igc_remove - Device Removal Routine
6444 * @pdev: PCI device information struct
6445 *
6446 * igc_remove is called by the PCI subsystem to alert the driver
6447 * that it should release a PCI device. This could be caused by a
6448 * Hot-Plug event, or because the driver is going to be removed from
6449 * memory.
6450 */
igc_remove(struct pci_dev * pdev)6451 static void igc_remove(struct pci_dev *pdev)
6452 {
6453 struct net_device *netdev = pci_get_drvdata(pdev);
6454 struct igc_adapter *adapter = netdev_priv(netdev);
6455
6456 pm_runtime_get_noresume(&pdev->dev);
6457
6458 igc_flush_nfc_rules(adapter);
6459
6460 igc_ptp_stop(adapter);
6461
6462 set_bit(__IGC_DOWN, &adapter->state);
6463
6464 del_timer_sync(&adapter->watchdog_timer);
6465 del_timer_sync(&adapter->phy_info_timer);
6466
6467 cancel_work_sync(&adapter->reset_task);
6468 cancel_work_sync(&adapter->watchdog_task);
6469
6470 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6471 * would have already happened in close and is redundant.
6472 */
6473 igc_release_hw_control(adapter);
6474 unregister_netdev(netdev);
6475
6476 igc_clear_interrupt_scheme(adapter);
6477 pci_iounmap(pdev, adapter->io_addr);
6478 pci_release_mem_regions(pdev);
6479
6480 free_netdev(netdev);
6481
6482 pci_disable_pcie_error_reporting(pdev);
6483
6484 pci_disable_device(pdev);
6485 }
6486
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)6487 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6488 bool runtime)
6489 {
6490 struct net_device *netdev = pci_get_drvdata(pdev);
6491 struct igc_adapter *adapter = netdev_priv(netdev);
6492 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6493 struct igc_hw *hw = &adapter->hw;
6494 u32 ctrl, rctl, status;
6495 bool wake;
6496
6497 rtnl_lock();
6498 netif_device_detach(netdev);
6499
6500 if (netif_running(netdev))
6501 __igc_close(netdev, true);
6502
6503 igc_ptp_suspend(adapter);
6504
6505 igc_clear_interrupt_scheme(adapter);
6506 rtnl_unlock();
6507
6508 status = rd32(IGC_STATUS);
6509 if (status & IGC_STATUS_LU)
6510 wufc &= ~IGC_WUFC_LNKC;
6511
6512 if (wufc) {
6513 igc_setup_rctl(adapter);
6514 igc_set_rx_mode(netdev);
6515
6516 /* turn on all-multi mode if wake on multicast is enabled */
6517 if (wufc & IGC_WUFC_MC) {
6518 rctl = rd32(IGC_RCTL);
6519 rctl |= IGC_RCTL_MPE;
6520 wr32(IGC_RCTL, rctl);
6521 }
6522
6523 ctrl = rd32(IGC_CTRL);
6524 ctrl |= IGC_CTRL_ADVD3WUC;
6525 wr32(IGC_CTRL, ctrl);
6526
6527 /* Allow time for pending master requests to run */
6528 igc_disable_pcie_master(hw);
6529
6530 wr32(IGC_WUC, IGC_WUC_PME_EN);
6531 wr32(IGC_WUFC, wufc);
6532 } else {
6533 wr32(IGC_WUC, 0);
6534 wr32(IGC_WUFC, 0);
6535 }
6536
6537 wake = wufc || adapter->en_mng_pt;
6538 if (!wake)
6539 igc_power_down_phy_copper_base(&adapter->hw);
6540 else
6541 igc_power_up_link(adapter);
6542
6543 if (enable_wake)
6544 *enable_wake = wake;
6545
6546 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6547 * would have already happened in close and is redundant.
6548 */
6549 igc_release_hw_control(adapter);
6550
6551 pci_disable_device(pdev);
6552
6553 return 0;
6554 }
6555
6556 #ifdef CONFIG_PM
igc_runtime_suspend(struct device * dev)6557 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6558 {
6559 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6560 }
6561
igc_deliver_wake_packet(struct net_device * netdev)6562 static void igc_deliver_wake_packet(struct net_device *netdev)
6563 {
6564 struct igc_adapter *adapter = netdev_priv(netdev);
6565 struct igc_hw *hw = &adapter->hw;
6566 struct sk_buff *skb;
6567 u32 wupl;
6568
6569 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6570
6571 /* WUPM stores only the first 128 bytes of the wake packet.
6572 * Read the packet only if we have the whole thing.
6573 */
6574 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6575 return;
6576
6577 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6578 if (!skb)
6579 return;
6580
6581 skb_put(skb, wupl);
6582
6583 /* Ensure reads are 32-bit aligned */
6584 wupl = roundup(wupl, 4);
6585
6586 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6587
6588 skb->protocol = eth_type_trans(skb, netdev);
6589 netif_rx(skb);
6590 }
6591
igc_resume(struct device * dev)6592 static int __maybe_unused igc_resume(struct device *dev)
6593 {
6594 struct pci_dev *pdev = to_pci_dev(dev);
6595 struct net_device *netdev = pci_get_drvdata(pdev);
6596 struct igc_adapter *adapter = netdev_priv(netdev);
6597 struct igc_hw *hw = &adapter->hw;
6598 u32 err, val;
6599
6600 pci_set_power_state(pdev, PCI_D0);
6601 pci_restore_state(pdev);
6602 pci_save_state(pdev);
6603
6604 if (!pci_device_is_present(pdev))
6605 return -ENODEV;
6606 err = pci_enable_device_mem(pdev);
6607 if (err) {
6608 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6609 return err;
6610 }
6611 pci_set_master(pdev);
6612
6613 pci_enable_wake(pdev, PCI_D3hot, 0);
6614 pci_enable_wake(pdev, PCI_D3cold, 0);
6615
6616 if (igc_init_interrupt_scheme(adapter, true)) {
6617 netdev_err(netdev, "Unable to allocate memory for queues\n");
6618 return -ENOMEM;
6619 }
6620
6621 igc_reset(adapter);
6622
6623 /* let the f/w know that the h/w is now under the control of the
6624 * driver.
6625 */
6626 igc_get_hw_control(adapter);
6627
6628 val = rd32(IGC_WUS);
6629 if (val & WAKE_PKT_WUS)
6630 igc_deliver_wake_packet(netdev);
6631
6632 wr32(IGC_WUS, ~0);
6633
6634 rtnl_lock();
6635 if (!err && netif_running(netdev))
6636 err = __igc_open(netdev, true);
6637
6638 if (!err)
6639 netif_device_attach(netdev);
6640 rtnl_unlock();
6641
6642 return err;
6643 }
6644
igc_runtime_resume(struct device * dev)6645 static int __maybe_unused igc_runtime_resume(struct device *dev)
6646 {
6647 return igc_resume(dev);
6648 }
6649
igc_suspend(struct device * dev)6650 static int __maybe_unused igc_suspend(struct device *dev)
6651 {
6652 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6653 }
6654
igc_runtime_idle(struct device * dev)6655 static int __maybe_unused igc_runtime_idle(struct device *dev)
6656 {
6657 struct net_device *netdev = dev_get_drvdata(dev);
6658 struct igc_adapter *adapter = netdev_priv(netdev);
6659
6660 if (!igc_has_link(adapter))
6661 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6662
6663 return -EBUSY;
6664 }
6665 #endif /* CONFIG_PM */
6666
igc_shutdown(struct pci_dev * pdev)6667 static void igc_shutdown(struct pci_dev *pdev)
6668 {
6669 bool wake;
6670
6671 __igc_shutdown(pdev, &wake, 0);
6672
6673 if (system_state == SYSTEM_POWER_OFF) {
6674 pci_wake_from_d3(pdev, wake);
6675 pci_set_power_state(pdev, PCI_D3hot);
6676 }
6677 }
6678
6679 /**
6680 * igc_io_error_detected - called when PCI error is detected
6681 * @pdev: Pointer to PCI device
6682 * @state: The current PCI connection state
6683 *
6684 * This function is called after a PCI bus error affecting
6685 * this device has been detected.
6686 **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)6687 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6688 pci_channel_state_t state)
6689 {
6690 struct net_device *netdev = pci_get_drvdata(pdev);
6691 struct igc_adapter *adapter = netdev_priv(netdev);
6692
6693 netif_device_detach(netdev);
6694
6695 if (state == pci_channel_io_perm_failure)
6696 return PCI_ERS_RESULT_DISCONNECT;
6697
6698 if (netif_running(netdev))
6699 igc_down(adapter);
6700 pci_disable_device(pdev);
6701
6702 /* Request a slot reset. */
6703 return PCI_ERS_RESULT_NEED_RESET;
6704 }
6705
6706 /**
6707 * igc_io_slot_reset - called after the PCI bus has been reset.
6708 * @pdev: Pointer to PCI device
6709 *
6710 * Restart the card from scratch, as if from a cold-boot. Implementation
6711 * resembles the first-half of the igc_resume routine.
6712 **/
igc_io_slot_reset(struct pci_dev * pdev)6713 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6714 {
6715 struct net_device *netdev = pci_get_drvdata(pdev);
6716 struct igc_adapter *adapter = netdev_priv(netdev);
6717 struct igc_hw *hw = &adapter->hw;
6718 pci_ers_result_t result;
6719
6720 if (pci_enable_device_mem(pdev)) {
6721 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6722 result = PCI_ERS_RESULT_DISCONNECT;
6723 } else {
6724 pci_set_master(pdev);
6725 pci_restore_state(pdev);
6726 pci_save_state(pdev);
6727
6728 pci_enable_wake(pdev, PCI_D3hot, 0);
6729 pci_enable_wake(pdev, PCI_D3cold, 0);
6730
6731 /* In case of PCI error, adapter loses its HW address
6732 * so we should re-assign it here.
6733 */
6734 hw->hw_addr = adapter->io_addr;
6735
6736 igc_reset(adapter);
6737 wr32(IGC_WUS, ~0);
6738 result = PCI_ERS_RESULT_RECOVERED;
6739 }
6740
6741 return result;
6742 }
6743
6744 /**
6745 * igc_io_resume - called when traffic can start to flow again.
6746 * @pdev: Pointer to PCI device
6747 *
6748 * This callback is called when the error recovery driver tells us that
6749 * its OK to resume normal operation. Implementation resembles the
6750 * second-half of the igc_resume routine.
6751 */
igc_io_resume(struct pci_dev * pdev)6752 static void igc_io_resume(struct pci_dev *pdev)
6753 {
6754 struct net_device *netdev = pci_get_drvdata(pdev);
6755 struct igc_adapter *adapter = netdev_priv(netdev);
6756
6757 rtnl_lock();
6758 if (netif_running(netdev)) {
6759 if (igc_open(netdev)) {
6760 netdev_err(netdev, "igc_open failed after reset\n");
6761 return;
6762 }
6763 }
6764
6765 netif_device_attach(netdev);
6766
6767 /* let the f/w know that the h/w is now under the control of the
6768 * driver.
6769 */
6770 igc_get_hw_control(adapter);
6771 rtnl_unlock();
6772 }
6773
6774 static const struct pci_error_handlers igc_err_handler = {
6775 .error_detected = igc_io_error_detected,
6776 .slot_reset = igc_io_slot_reset,
6777 .resume = igc_io_resume,
6778 };
6779
6780 #ifdef CONFIG_PM
6781 static const struct dev_pm_ops igc_pm_ops = {
6782 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6783 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6784 igc_runtime_idle)
6785 };
6786 #endif
6787
6788 static struct pci_driver igc_driver = {
6789 .name = igc_driver_name,
6790 .id_table = igc_pci_tbl,
6791 .probe = igc_probe,
6792 .remove = igc_remove,
6793 #ifdef CONFIG_PM
6794 .driver.pm = &igc_pm_ops,
6795 #endif
6796 .shutdown = igc_shutdown,
6797 .err_handler = &igc_err_handler,
6798 };
6799
6800 /**
6801 * igc_reinit_queues - return error
6802 * @adapter: pointer to adapter structure
6803 */
igc_reinit_queues(struct igc_adapter * adapter)6804 int igc_reinit_queues(struct igc_adapter *adapter)
6805 {
6806 struct net_device *netdev = adapter->netdev;
6807 int err = 0;
6808
6809 if (netif_running(netdev))
6810 igc_close(netdev);
6811
6812 igc_reset_interrupt_capability(adapter);
6813
6814 if (igc_init_interrupt_scheme(adapter, true)) {
6815 netdev_err(netdev, "Unable to allocate memory for queues\n");
6816 return -ENOMEM;
6817 }
6818
6819 if (netif_running(netdev))
6820 err = igc_open(netdev);
6821
6822 return err;
6823 }
6824
6825 /**
6826 * igc_get_hw_dev - return device
6827 * @hw: pointer to hardware structure
6828 *
6829 * used by hardware layer to print debugging information
6830 */
igc_get_hw_dev(struct igc_hw * hw)6831 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6832 {
6833 struct igc_adapter *adapter = hw->back;
6834
6835 return adapter->netdev;
6836 }
6837
igc_disable_rx_ring_hw(struct igc_ring * ring)6838 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6839 {
6840 struct igc_hw *hw = &ring->q_vector->adapter->hw;
6841 u8 idx = ring->reg_idx;
6842 u32 rxdctl;
6843
6844 rxdctl = rd32(IGC_RXDCTL(idx));
6845 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6846 rxdctl |= IGC_RXDCTL_SWFLUSH;
6847 wr32(IGC_RXDCTL(idx), rxdctl);
6848 }
6849
igc_disable_rx_ring(struct igc_ring * ring)6850 void igc_disable_rx_ring(struct igc_ring *ring)
6851 {
6852 igc_disable_rx_ring_hw(ring);
6853 igc_clean_rx_ring(ring);
6854 }
6855
igc_enable_rx_ring(struct igc_ring * ring)6856 void igc_enable_rx_ring(struct igc_ring *ring)
6857 {
6858 struct igc_adapter *adapter = ring->q_vector->adapter;
6859
6860 igc_configure_rx_ring(adapter, ring);
6861
6862 if (ring->xsk_pool)
6863 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6864 else
6865 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6866 }
6867
igc_disable_tx_ring_hw(struct igc_ring * ring)6868 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6869 {
6870 struct igc_hw *hw = &ring->q_vector->adapter->hw;
6871 u8 idx = ring->reg_idx;
6872 u32 txdctl;
6873
6874 txdctl = rd32(IGC_TXDCTL(idx));
6875 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6876 txdctl |= IGC_TXDCTL_SWFLUSH;
6877 wr32(IGC_TXDCTL(idx), txdctl);
6878 }
6879
igc_disable_tx_ring(struct igc_ring * ring)6880 void igc_disable_tx_ring(struct igc_ring *ring)
6881 {
6882 igc_disable_tx_ring_hw(ring);
6883 igc_clean_tx_ring(ring);
6884 }
6885
igc_enable_tx_ring(struct igc_ring * ring)6886 void igc_enable_tx_ring(struct igc_ring *ring)
6887 {
6888 struct igc_adapter *adapter = ring->q_vector->adapter;
6889
6890 igc_configure_tx_ring(adapter, ring);
6891 }
6892
6893 /**
6894 * igc_init_module - Driver Registration Routine
6895 *
6896 * igc_init_module is the first routine called when the driver is
6897 * loaded. All it does is register with the PCI subsystem.
6898 */
igc_init_module(void)6899 static int __init igc_init_module(void)
6900 {
6901 int ret;
6902
6903 pr_info("%s\n", igc_driver_string);
6904 pr_info("%s\n", igc_copyright);
6905
6906 ret = pci_register_driver(&igc_driver);
6907 return ret;
6908 }
6909
6910 module_init(igc_init_module);
6911
6912 /**
6913 * igc_exit_module - Driver Exit Cleanup Routine
6914 *
6915 * igc_exit_module is called just before the driver is removed
6916 * from memory.
6917 */
igc_exit_module(void)6918 static void __exit igc_exit_module(void)
6919 {
6920 pci_unregister_driver(&igc_driver);
6921 }
6922
6923 module_exit(igc_exit_module);
6924 /* igc_main.c */
6925