1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <linux/pci.h>
16
17 #include <net/ipv6.h>
18
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23
24 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
25
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28 #define IGC_XDP_PASS 0
29 #define IGC_XDP_CONSUMED BIT(0)
30 #define IGC_XDP_TX BIT(1)
31 #define IGC_XDP_REDIRECT BIT(2)
32
33 static int debug = -1;
34
35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
36 MODULE_DESCRIPTION(DRV_SUMMARY);
37 MODULE_LICENSE("GPL v2");
38 module_param(debug, int, 0);
39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40
41 char igc_driver_name[] = "igc";
42 static const char igc_driver_string[] = DRV_SUMMARY;
43 static const char igc_copyright[] =
44 "Copyright(c) 2018 Intel Corporation.";
45
46 static const struct igc_info *igc_info_tbl[] = {
47 [board_base] = &igc_base_info,
48 };
49
50 static const struct pci_device_id igc_pci_tbl[] = {
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
66 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
67 /* required last entry */
68 {0, }
69 };
70
71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
72
73 enum latency_range {
74 lowest_latency = 0,
75 low_latency = 1,
76 bulk_latency = 2,
77 latency_invalid = 255
78 };
79
igc_reset(struct igc_adapter * adapter)80 void igc_reset(struct igc_adapter *adapter)
81 {
82 struct net_device *dev = adapter->netdev;
83 struct igc_hw *hw = &adapter->hw;
84 struct igc_fc_info *fc = &hw->fc;
85 u32 pba, hwm;
86
87 /* Repartition PBA for greater than 9k MTU if required */
88 pba = IGC_PBA_34K;
89
90 /* flow control settings
91 * The high water mark must be low enough to fit one full frame
92 * after transmitting the pause frame. As such we must have enough
93 * space to allow for us to complete our current transmit and then
94 * receive the frame that is in progress from the link partner.
95 * Set it to:
96 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
97 */
98 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
99
100 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
101 fc->low_water = fc->high_water - 16;
102 fc->pause_time = 0xFFFF;
103 fc->send_xon = 1;
104 fc->current_mode = fc->requested_mode;
105
106 hw->mac.ops.reset_hw(hw);
107
108 if (hw->mac.ops.init_hw(hw))
109 netdev_err(dev, "Error on hardware initialization\n");
110
111 /* Re-establish EEE setting */
112 igc_set_eee_i225(hw, true, true, true);
113
114 if (!netif_running(adapter->netdev))
115 igc_power_down_phy_copper_base(&adapter->hw);
116
117 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
118 wr32(IGC_VET, ETH_P_8021Q);
119
120 /* Re-enable PTP, where applicable. */
121 igc_ptp_reset(adapter);
122
123 /* Re-enable TSN offloading, where applicable. */
124 igc_tsn_reset(adapter);
125
126 igc_get_phy_info(hw);
127 }
128
129 /**
130 * igc_power_up_link - Power up the phy link
131 * @adapter: address of board private structure
132 */
igc_power_up_link(struct igc_adapter * adapter)133 static void igc_power_up_link(struct igc_adapter *adapter)
134 {
135 igc_reset_phy(&adapter->hw);
136
137 igc_power_up_phy_copper(&adapter->hw);
138
139 igc_setup_link(&adapter->hw);
140 }
141
142 /**
143 * igc_release_hw_control - release control of the h/w to f/w
144 * @adapter: address of board private structure
145 *
146 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
147 * For ASF and Pass Through versions of f/w this means that the
148 * driver is no longer loaded.
149 */
igc_release_hw_control(struct igc_adapter * adapter)150 static void igc_release_hw_control(struct igc_adapter *adapter)
151 {
152 struct igc_hw *hw = &adapter->hw;
153 u32 ctrl_ext;
154
155 if (!pci_device_is_present(adapter->pdev))
156 return;
157
158 /* Let firmware take over control of h/w */
159 ctrl_ext = rd32(IGC_CTRL_EXT);
160 wr32(IGC_CTRL_EXT,
161 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
162 }
163
164 /**
165 * igc_get_hw_control - get control of the h/w from f/w
166 * @adapter: address of board private structure
167 *
168 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
169 * For ASF and Pass Through versions of f/w this means that
170 * the driver is loaded.
171 */
igc_get_hw_control(struct igc_adapter * adapter)172 static void igc_get_hw_control(struct igc_adapter *adapter)
173 {
174 struct igc_hw *hw = &adapter->hw;
175 u32 ctrl_ext;
176
177 /* Let firmware know the driver has taken over */
178 ctrl_ext = rd32(IGC_CTRL_EXT);
179 wr32(IGC_CTRL_EXT,
180 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
181 }
182
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
184 {
185 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
186 dma_unmap_len(buf, len), DMA_TO_DEVICE);
187
188 dma_unmap_len_set(buf, len, 0);
189 }
190
191 /**
192 * igc_clean_tx_ring - Free Tx Buffers
193 * @tx_ring: ring to be cleaned
194 */
igc_clean_tx_ring(struct igc_ring * tx_ring)195 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
196 {
197 u16 i = tx_ring->next_to_clean;
198 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
199 u32 xsk_frames = 0;
200
201 while (i != tx_ring->next_to_use) {
202 union igc_adv_tx_desc *eop_desc, *tx_desc;
203
204 switch (tx_buffer->type) {
205 case IGC_TX_BUFFER_TYPE_XSK:
206 xsk_frames++;
207 break;
208 case IGC_TX_BUFFER_TYPE_XDP:
209 xdp_return_frame(tx_buffer->xdpf);
210 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
211 break;
212 case IGC_TX_BUFFER_TYPE_SKB:
213 dev_kfree_skb_any(tx_buffer->skb);
214 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
215 break;
216 default:
217 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
218 break;
219 }
220
221 /* check for eop_desc to determine the end of the packet */
222 eop_desc = tx_buffer->next_to_watch;
223 tx_desc = IGC_TX_DESC(tx_ring, i);
224
225 /* unmap remaining buffers */
226 while (tx_desc != eop_desc) {
227 tx_buffer++;
228 tx_desc++;
229 i++;
230 if (unlikely(i == tx_ring->count)) {
231 i = 0;
232 tx_buffer = tx_ring->tx_buffer_info;
233 tx_desc = IGC_TX_DESC(tx_ring, 0);
234 }
235
236 /* unmap any remaining paged data */
237 if (dma_unmap_len(tx_buffer, len))
238 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
239 }
240
241 tx_buffer->next_to_watch = NULL;
242
243 /* move us one more past the eop_desc for start of next pkt */
244 tx_buffer++;
245 i++;
246 if (unlikely(i == tx_ring->count)) {
247 i = 0;
248 tx_buffer = tx_ring->tx_buffer_info;
249 }
250 }
251
252 if (tx_ring->xsk_pool && xsk_frames)
253 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
254
255 /* reset BQL for queue */
256 netdev_tx_reset_queue(txring_txq(tx_ring));
257
258 /* reset next_to_use and next_to_clean */
259 tx_ring->next_to_use = 0;
260 tx_ring->next_to_clean = 0;
261 }
262
263 /**
264 * igc_free_tx_resources - Free Tx Resources per Queue
265 * @tx_ring: Tx descriptor ring for a specific queue
266 *
267 * Free all transmit software resources
268 */
igc_free_tx_resources(struct igc_ring * tx_ring)269 void igc_free_tx_resources(struct igc_ring *tx_ring)
270 {
271 igc_clean_tx_ring(tx_ring);
272
273 vfree(tx_ring->tx_buffer_info);
274 tx_ring->tx_buffer_info = NULL;
275
276 /* if not set, then don't free */
277 if (!tx_ring->desc)
278 return;
279
280 dma_free_coherent(tx_ring->dev, tx_ring->size,
281 tx_ring->desc, tx_ring->dma);
282
283 tx_ring->desc = NULL;
284 }
285
286 /**
287 * igc_free_all_tx_resources - Free Tx Resources for All Queues
288 * @adapter: board private structure
289 *
290 * Free all transmit software resources
291 */
igc_free_all_tx_resources(struct igc_adapter * adapter)292 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
293 {
294 int i;
295
296 for (i = 0; i < adapter->num_tx_queues; i++)
297 igc_free_tx_resources(adapter->tx_ring[i]);
298 }
299
300 /**
301 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
302 * @adapter: board private structure
303 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)304 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
305 {
306 int i;
307
308 for (i = 0; i < adapter->num_tx_queues; i++)
309 if (adapter->tx_ring[i])
310 igc_clean_tx_ring(adapter->tx_ring[i]);
311 }
312
313 /**
314 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
315 * @tx_ring: tx descriptor ring (for a specific queue) to setup
316 *
317 * Return 0 on success, negative on failure
318 */
igc_setup_tx_resources(struct igc_ring * tx_ring)319 int igc_setup_tx_resources(struct igc_ring *tx_ring)
320 {
321 struct net_device *ndev = tx_ring->netdev;
322 struct device *dev = tx_ring->dev;
323 int size = 0;
324
325 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
326 tx_ring->tx_buffer_info = vzalloc(size);
327 if (!tx_ring->tx_buffer_info)
328 goto err;
329
330 /* round up to nearest 4K */
331 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
332 tx_ring->size = ALIGN(tx_ring->size, 4096);
333
334 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
335 &tx_ring->dma, GFP_KERNEL);
336
337 if (!tx_ring->desc)
338 goto err;
339
340 tx_ring->next_to_use = 0;
341 tx_ring->next_to_clean = 0;
342
343 return 0;
344
345 err:
346 vfree(tx_ring->tx_buffer_info);
347 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
348 return -ENOMEM;
349 }
350
351 /**
352 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
353 * @adapter: board private structure
354 *
355 * Return 0 on success, negative on failure
356 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)357 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
358 {
359 struct net_device *dev = adapter->netdev;
360 int i, err = 0;
361
362 for (i = 0; i < adapter->num_tx_queues; i++) {
363 err = igc_setup_tx_resources(adapter->tx_ring[i]);
364 if (err) {
365 netdev_err(dev, "Error on Tx queue %u setup\n", i);
366 for (i--; i >= 0; i--)
367 igc_free_tx_resources(adapter->tx_ring[i]);
368 break;
369 }
370 }
371
372 return err;
373 }
374
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)375 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
376 {
377 u16 i = rx_ring->next_to_clean;
378
379 dev_kfree_skb(rx_ring->skb);
380 rx_ring->skb = NULL;
381
382 /* Free all the Rx ring sk_buffs */
383 while (i != rx_ring->next_to_alloc) {
384 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
385
386 /* Invalidate cache lines that may have been written to by
387 * device so that we avoid corrupting memory.
388 */
389 dma_sync_single_range_for_cpu(rx_ring->dev,
390 buffer_info->dma,
391 buffer_info->page_offset,
392 igc_rx_bufsz(rx_ring),
393 DMA_FROM_DEVICE);
394
395 /* free resources associated with mapping */
396 dma_unmap_page_attrs(rx_ring->dev,
397 buffer_info->dma,
398 igc_rx_pg_size(rx_ring),
399 DMA_FROM_DEVICE,
400 IGC_RX_DMA_ATTR);
401 __page_frag_cache_drain(buffer_info->page,
402 buffer_info->pagecnt_bias);
403
404 i++;
405 if (i == rx_ring->count)
406 i = 0;
407 }
408 }
409
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)410 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
411 {
412 struct igc_rx_buffer *bi;
413 u16 i;
414
415 for (i = 0; i < ring->count; i++) {
416 bi = &ring->rx_buffer_info[i];
417 if (!bi->xdp)
418 continue;
419
420 xsk_buff_free(bi->xdp);
421 bi->xdp = NULL;
422 }
423 }
424
425 /**
426 * igc_clean_rx_ring - Free Rx Buffers per Queue
427 * @ring: ring to free buffers from
428 */
igc_clean_rx_ring(struct igc_ring * ring)429 static void igc_clean_rx_ring(struct igc_ring *ring)
430 {
431 if (ring->xsk_pool)
432 igc_clean_rx_ring_xsk_pool(ring);
433 else
434 igc_clean_rx_ring_page_shared(ring);
435
436 clear_ring_uses_large_buffer(ring);
437
438 ring->next_to_alloc = 0;
439 ring->next_to_clean = 0;
440 ring->next_to_use = 0;
441 }
442
443 /**
444 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
445 * @adapter: board private structure
446 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)447 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
448 {
449 int i;
450
451 for (i = 0; i < adapter->num_rx_queues; i++)
452 if (adapter->rx_ring[i])
453 igc_clean_rx_ring(adapter->rx_ring[i]);
454 }
455
456 /**
457 * igc_free_rx_resources - Free Rx Resources
458 * @rx_ring: ring to clean the resources from
459 *
460 * Free all receive software resources
461 */
igc_free_rx_resources(struct igc_ring * rx_ring)462 void igc_free_rx_resources(struct igc_ring *rx_ring)
463 {
464 igc_clean_rx_ring(rx_ring);
465
466 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
467
468 vfree(rx_ring->rx_buffer_info);
469 rx_ring->rx_buffer_info = NULL;
470
471 /* if not set, then don't free */
472 if (!rx_ring->desc)
473 return;
474
475 dma_free_coherent(rx_ring->dev, rx_ring->size,
476 rx_ring->desc, rx_ring->dma);
477
478 rx_ring->desc = NULL;
479 }
480
481 /**
482 * igc_free_all_rx_resources - Free Rx Resources for All Queues
483 * @adapter: board private structure
484 *
485 * Free all receive software resources
486 */
igc_free_all_rx_resources(struct igc_adapter * adapter)487 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
488 {
489 int i;
490
491 for (i = 0; i < adapter->num_rx_queues; i++)
492 igc_free_rx_resources(adapter->rx_ring[i]);
493 }
494
495 /**
496 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
497 * @rx_ring: rx descriptor ring (for a specific queue) to setup
498 *
499 * Returns 0 on success, negative on failure
500 */
igc_setup_rx_resources(struct igc_ring * rx_ring)501 int igc_setup_rx_resources(struct igc_ring *rx_ring)
502 {
503 struct net_device *ndev = rx_ring->netdev;
504 struct device *dev = rx_ring->dev;
505 u8 index = rx_ring->queue_index;
506 int size, desc_len, res;
507
508 /* XDP RX-queue info */
509 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
510 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
511 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
512 rx_ring->q_vector->napi.napi_id);
513 if (res < 0) {
514 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
515 index);
516 return res;
517 }
518
519 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
520 rx_ring->rx_buffer_info = vzalloc(size);
521 if (!rx_ring->rx_buffer_info)
522 goto err;
523
524 desc_len = sizeof(union igc_adv_rx_desc);
525
526 /* Round up to nearest 4K */
527 rx_ring->size = rx_ring->count * desc_len;
528 rx_ring->size = ALIGN(rx_ring->size, 4096);
529
530 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
531 &rx_ring->dma, GFP_KERNEL);
532
533 if (!rx_ring->desc)
534 goto err;
535
536 rx_ring->next_to_alloc = 0;
537 rx_ring->next_to_clean = 0;
538 rx_ring->next_to_use = 0;
539
540 return 0;
541
542 err:
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 vfree(rx_ring->rx_buffer_info);
545 rx_ring->rx_buffer_info = NULL;
546 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
547 return -ENOMEM;
548 }
549
550 /**
551 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
552 * (Descriptors) for all queues
553 * @adapter: board private structure
554 *
555 * Return 0 on success, negative on failure
556 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)557 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
558 {
559 struct net_device *dev = adapter->netdev;
560 int i, err = 0;
561
562 for (i = 0; i < adapter->num_rx_queues; i++) {
563 err = igc_setup_rx_resources(adapter->rx_ring[i]);
564 if (err) {
565 netdev_err(dev, "Error on Rx queue %u setup\n", i);
566 for (i--; i >= 0; i--)
567 igc_free_rx_resources(adapter->rx_ring[i]);
568 break;
569 }
570 }
571
572 return err;
573 }
574
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)575 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
576 struct igc_ring *ring)
577 {
578 if (!igc_xdp_is_enabled(adapter) ||
579 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
580 return NULL;
581
582 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
583 }
584
585 /**
586 * igc_configure_rx_ring - Configure a receive ring after Reset
587 * @adapter: board private structure
588 * @ring: receive ring to be configured
589 *
590 * Configure the Rx unit of the MAC after a reset.
591 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)592 static void igc_configure_rx_ring(struct igc_adapter *adapter,
593 struct igc_ring *ring)
594 {
595 struct igc_hw *hw = &adapter->hw;
596 union igc_adv_rx_desc *rx_desc;
597 int reg_idx = ring->reg_idx;
598 u32 srrctl = 0, rxdctl = 0;
599 u64 rdba = ring->dma;
600 u32 buf_size;
601
602 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
603 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
604 if (ring->xsk_pool) {
605 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
606 MEM_TYPE_XSK_BUFF_POOL,
607 NULL));
608 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
609 } else {
610 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
611 MEM_TYPE_PAGE_SHARED,
612 NULL));
613 }
614
615 if (igc_xdp_is_enabled(adapter))
616 set_ring_uses_large_buffer(ring);
617
618 /* disable the queue */
619 wr32(IGC_RXDCTL(reg_idx), 0);
620
621 /* Set DMA base address registers */
622 wr32(IGC_RDBAL(reg_idx),
623 rdba & 0x00000000ffffffffULL);
624 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
625 wr32(IGC_RDLEN(reg_idx),
626 ring->count * sizeof(union igc_adv_rx_desc));
627
628 /* initialize head and tail */
629 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
630 wr32(IGC_RDH(reg_idx), 0);
631 writel(0, ring->tail);
632
633 /* reset next-to- use/clean to place SW in sync with hardware */
634 ring->next_to_clean = 0;
635 ring->next_to_use = 0;
636
637 if (ring->xsk_pool)
638 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
639 else if (ring_uses_large_buffer(ring))
640 buf_size = IGC_RXBUFFER_3072;
641 else
642 buf_size = IGC_RXBUFFER_2048;
643
644 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
645 srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
646 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
647
648 wr32(IGC_SRRCTL(reg_idx), srrctl);
649
650 rxdctl |= IGC_RX_PTHRESH;
651 rxdctl |= IGC_RX_HTHRESH << 8;
652 rxdctl |= IGC_RX_WTHRESH << 16;
653
654 /* initialize rx_buffer_info */
655 memset(ring->rx_buffer_info, 0,
656 sizeof(struct igc_rx_buffer) * ring->count);
657
658 /* initialize Rx descriptor 0 */
659 rx_desc = IGC_RX_DESC(ring, 0);
660 rx_desc->wb.upper.length = 0;
661
662 /* enable receive descriptor fetching */
663 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
664
665 wr32(IGC_RXDCTL(reg_idx), rxdctl);
666 }
667
668 /**
669 * igc_configure_rx - Configure receive Unit after Reset
670 * @adapter: board private structure
671 *
672 * Configure the Rx unit of the MAC after a reset.
673 */
igc_configure_rx(struct igc_adapter * adapter)674 static void igc_configure_rx(struct igc_adapter *adapter)
675 {
676 int i;
677
678 /* Setup the HW Rx Head and Tail Descriptor Pointers and
679 * the Base and Length of the Rx Descriptor Ring
680 */
681 for (i = 0; i < adapter->num_rx_queues; i++)
682 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
683 }
684
685 /**
686 * igc_configure_tx_ring - Configure transmit ring after Reset
687 * @adapter: board private structure
688 * @ring: tx ring to configure
689 *
690 * Configure a transmit ring after a reset.
691 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)692 static void igc_configure_tx_ring(struct igc_adapter *adapter,
693 struct igc_ring *ring)
694 {
695 struct igc_hw *hw = &adapter->hw;
696 int reg_idx = ring->reg_idx;
697 u64 tdba = ring->dma;
698 u32 txdctl = 0;
699
700 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
701
702 /* disable the queue */
703 wr32(IGC_TXDCTL(reg_idx), 0);
704 wrfl();
705 mdelay(10);
706
707 wr32(IGC_TDLEN(reg_idx),
708 ring->count * sizeof(union igc_adv_tx_desc));
709 wr32(IGC_TDBAL(reg_idx),
710 tdba & 0x00000000ffffffffULL);
711 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
712
713 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
714 wr32(IGC_TDH(reg_idx), 0);
715 writel(0, ring->tail);
716
717 txdctl |= IGC_TX_PTHRESH;
718 txdctl |= IGC_TX_HTHRESH << 8;
719 txdctl |= IGC_TX_WTHRESH << 16;
720
721 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
722 wr32(IGC_TXDCTL(reg_idx), txdctl);
723 }
724
725 /**
726 * igc_configure_tx - Configure transmit Unit after Reset
727 * @adapter: board private structure
728 *
729 * Configure the Tx unit of the MAC after a reset.
730 */
igc_configure_tx(struct igc_adapter * adapter)731 static void igc_configure_tx(struct igc_adapter *adapter)
732 {
733 int i;
734
735 for (i = 0; i < adapter->num_tx_queues; i++)
736 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
737 }
738
739 /**
740 * igc_setup_mrqc - configure the multiple receive queue control registers
741 * @adapter: Board private structure
742 */
igc_setup_mrqc(struct igc_adapter * adapter)743 static void igc_setup_mrqc(struct igc_adapter *adapter)
744 {
745 struct igc_hw *hw = &adapter->hw;
746 u32 j, num_rx_queues;
747 u32 mrqc, rxcsum;
748 u32 rss_key[10];
749
750 netdev_rss_key_fill(rss_key, sizeof(rss_key));
751 for (j = 0; j < 10; j++)
752 wr32(IGC_RSSRK(j), rss_key[j]);
753
754 num_rx_queues = adapter->rss_queues;
755
756 if (adapter->rss_indir_tbl_init != num_rx_queues) {
757 for (j = 0; j < IGC_RETA_SIZE; j++)
758 adapter->rss_indir_tbl[j] =
759 (j * num_rx_queues) / IGC_RETA_SIZE;
760 adapter->rss_indir_tbl_init = num_rx_queues;
761 }
762 igc_write_rss_indir_tbl(adapter);
763
764 /* Disable raw packet checksumming so that RSS hash is placed in
765 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
766 * offloads as they are enabled by default
767 */
768 rxcsum = rd32(IGC_RXCSUM);
769 rxcsum |= IGC_RXCSUM_PCSD;
770
771 /* Enable Receive Checksum Offload for SCTP */
772 rxcsum |= IGC_RXCSUM_CRCOFL;
773
774 /* Don't need to set TUOFL or IPOFL, they default to 1 */
775 wr32(IGC_RXCSUM, rxcsum);
776
777 /* Generate RSS hash based on packet types, TCP/UDP
778 * port numbers and/or IPv4/v6 src and dst addresses
779 */
780 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
781 IGC_MRQC_RSS_FIELD_IPV4_TCP |
782 IGC_MRQC_RSS_FIELD_IPV6 |
783 IGC_MRQC_RSS_FIELD_IPV6_TCP |
784 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
785
786 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
787 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
788 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
789 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
790
791 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
792
793 wr32(IGC_MRQC, mrqc);
794 }
795
796 /**
797 * igc_setup_rctl - configure the receive control registers
798 * @adapter: Board private structure
799 */
igc_setup_rctl(struct igc_adapter * adapter)800 static void igc_setup_rctl(struct igc_adapter *adapter)
801 {
802 struct igc_hw *hw = &adapter->hw;
803 u32 rctl;
804
805 rctl = rd32(IGC_RCTL);
806
807 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
808 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
809
810 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
811 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
812
813 /* enable stripping of CRC. Newer features require
814 * that the HW strips the CRC.
815 */
816 rctl |= IGC_RCTL_SECRC;
817
818 /* disable store bad packets and clear size bits. */
819 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
820
821 /* enable LPE to allow for reception of jumbo frames */
822 rctl |= IGC_RCTL_LPE;
823
824 /* disable queue 0 to prevent tail write w/o re-config */
825 wr32(IGC_RXDCTL(0), 0);
826
827 /* This is useful for sniffing bad packets. */
828 if (adapter->netdev->features & NETIF_F_RXALL) {
829 /* UPE and MPE will be handled by normal PROMISC logic
830 * in set_rx_mode
831 */
832 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
833 IGC_RCTL_BAM | /* RX All Bcast Pkts */
834 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
835
836 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
837 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
838 }
839
840 wr32(IGC_RCTL, rctl);
841 }
842
843 /**
844 * igc_setup_tctl - configure the transmit control registers
845 * @adapter: Board private structure
846 */
igc_setup_tctl(struct igc_adapter * adapter)847 static void igc_setup_tctl(struct igc_adapter *adapter)
848 {
849 struct igc_hw *hw = &adapter->hw;
850 u32 tctl;
851
852 /* disable queue 0 which icould be enabled by default */
853 wr32(IGC_TXDCTL(0), 0);
854
855 /* Program the Transmit Control Register */
856 tctl = rd32(IGC_TCTL);
857 tctl &= ~IGC_TCTL_CT;
858 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
859 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
860
861 /* Enable transmits */
862 tctl |= IGC_TCTL_EN;
863
864 wr32(IGC_TCTL, tctl);
865 }
866
867 /**
868 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
869 * @adapter: Pointer to adapter where the filter should be set
870 * @index: Filter index
871 * @type: MAC address filter type (source or destination)
872 * @addr: MAC address
873 * @queue: If non-negative, queue assignment feature is enabled and frames
874 * matching the filter are enqueued onto 'queue'. Otherwise, queue
875 * assignment is disabled.
876 */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)877 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
878 enum igc_mac_filter_type type,
879 const u8 *addr, int queue)
880 {
881 struct net_device *dev = adapter->netdev;
882 struct igc_hw *hw = &adapter->hw;
883 u32 ral, rah;
884
885 if (WARN_ON(index >= hw->mac.rar_entry_count))
886 return;
887
888 ral = le32_to_cpup((__le32 *)(addr));
889 rah = le16_to_cpup((__le16 *)(addr + 4));
890
891 if (type == IGC_MAC_FILTER_TYPE_SRC) {
892 rah &= ~IGC_RAH_ASEL_MASK;
893 rah |= IGC_RAH_ASEL_SRC_ADDR;
894 }
895
896 if (queue >= 0) {
897 rah &= ~IGC_RAH_QSEL_MASK;
898 rah |= (queue << IGC_RAH_QSEL_SHIFT);
899 rah |= IGC_RAH_QSEL_ENABLE;
900 }
901
902 rah |= IGC_RAH_AV;
903
904 wr32(IGC_RAL(index), ral);
905 wr32(IGC_RAH(index), rah);
906
907 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
908 }
909
910 /**
911 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
912 * @adapter: Pointer to adapter where the filter should be cleared
913 * @index: Filter index
914 */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)915 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
916 {
917 struct net_device *dev = adapter->netdev;
918 struct igc_hw *hw = &adapter->hw;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 wr32(IGC_RAL(index), 0);
924 wr32(IGC_RAH(index), 0);
925
926 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
927 }
928
929 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)930 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
931 {
932 struct net_device *dev = adapter->netdev;
933 u8 *addr = adapter->hw.mac.addr;
934
935 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
936
937 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
938 }
939
940 /**
941 * igc_set_mac - Change the Ethernet Address of the NIC
942 * @netdev: network interface device structure
943 * @p: pointer to an address structure
944 *
945 * Returns 0 on success, negative on failure
946 */
igc_set_mac(struct net_device * netdev,void * p)947 static int igc_set_mac(struct net_device *netdev, void *p)
948 {
949 struct igc_adapter *adapter = netdev_priv(netdev);
950 struct igc_hw *hw = &adapter->hw;
951 struct sockaddr *addr = p;
952
953 if (!is_valid_ether_addr(addr->sa_data))
954 return -EADDRNOTAVAIL;
955
956 eth_hw_addr_set(netdev, addr->sa_data);
957 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
958
959 /* set the correct pool for the new PF MAC address in entry 0 */
960 igc_set_default_mac_filter(adapter);
961
962 return 0;
963 }
964
965 /**
966 * igc_write_mc_addr_list - write multicast addresses to MTA
967 * @netdev: network interface device structure
968 *
969 * Writes multicast address list to the MTA hash table.
970 * Returns: -ENOMEM on failure
971 * 0 on no addresses written
972 * X on writing X addresses to MTA
973 **/
igc_write_mc_addr_list(struct net_device * netdev)974 static int igc_write_mc_addr_list(struct net_device *netdev)
975 {
976 struct igc_adapter *adapter = netdev_priv(netdev);
977 struct igc_hw *hw = &adapter->hw;
978 struct netdev_hw_addr *ha;
979 u8 *mta_list;
980 int i;
981
982 if (netdev_mc_empty(netdev)) {
983 /* nothing to program, so clear mc list */
984 igc_update_mc_addr_list(hw, NULL, 0);
985 return 0;
986 }
987
988 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
989 if (!mta_list)
990 return -ENOMEM;
991
992 /* The shared function expects a packed array of only addresses. */
993 i = 0;
994 netdev_for_each_mc_addr(ha, netdev)
995 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
996
997 igc_update_mc_addr_list(hw, mta_list, i);
998 kfree(mta_list);
999
1000 return netdev_mc_count(netdev);
1001 }
1002
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1003 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1004 bool *first_flag, bool *insert_empty)
1005 {
1006 struct igc_adapter *adapter = netdev_priv(ring->netdev);
1007 ktime_t cycle_time = adapter->cycle_time;
1008 ktime_t base_time = adapter->base_time;
1009 ktime_t now = ktime_get_clocktai();
1010 ktime_t baset_est, end_of_cycle;
1011 u32 launchtime;
1012 s64 n;
1013
1014 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1015
1016 baset_est = ktime_add_ns(base_time, cycle_time * (n));
1017 end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1018
1019 if (ktime_compare(txtime, end_of_cycle) >= 0) {
1020 if (baset_est != ring->last_ff_cycle) {
1021 *first_flag = true;
1022 ring->last_ff_cycle = baset_est;
1023
1024 if (ktime_compare(txtime, ring->last_tx_cycle) > 0)
1025 *insert_empty = true;
1026 }
1027 }
1028
1029 /* Introducing a window at end of cycle on which packets
1030 * potentially not honor launchtime. Window of 5us chosen
1031 * considering software update the tail pointer and packets
1032 * are dma'ed to packet buffer.
1033 */
1034 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1035 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1036 txtime);
1037
1038 ring->last_tx_cycle = end_of_cycle;
1039
1040 launchtime = ktime_sub_ns(txtime, baset_est);
1041 if (launchtime > 0)
1042 div_s64_rem(launchtime, cycle_time, &launchtime);
1043 else
1044 launchtime = 0;
1045
1046 return cpu_to_le32(launchtime);
1047 }
1048
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1049 static int igc_init_empty_frame(struct igc_ring *ring,
1050 struct igc_tx_buffer *buffer,
1051 struct sk_buff *skb)
1052 {
1053 unsigned int size;
1054 dma_addr_t dma;
1055
1056 size = skb_headlen(skb);
1057
1058 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1059 if (dma_mapping_error(ring->dev, dma)) {
1060 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1061 return -ENOMEM;
1062 }
1063
1064 buffer->skb = skb;
1065 buffer->protocol = 0;
1066 buffer->bytecount = skb->len;
1067 buffer->gso_segs = 1;
1068 buffer->time_stamp = jiffies;
1069 dma_unmap_len_set(buffer, len, skb->len);
1070 dma_unmap_addr_set(buffer, dma, dma);
1071
1072 return 0;
1073 }
1074
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1075 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1076 struct sk_buff *skb,
1077 struct igc_tx_buffer *first)
1078 {
1079 union igc_adv_tx_desc *desc;
1080 u32 cmd_type, olinfo_status;
1081 int err;
1082
1083 if (!igc_desc_unused(ring))
1084 return -EBUSY;
1085
1086 err = igc_init_empty_frame(ring, first, skb);
1087 if (err)
1088 return err;
1089
1090 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1091 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1092 first->bytecount;
1093 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1094
1095 desc = IGC_TX_DESC(ring, ring->next_to_use);
1096 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1097 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1098 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1099
1100 netdev_tx_sent_queue(txring_txq(ring), skb->len);
1101
1102 first->next_to_watch = desc;
1103
1104 ring->next_to_use++;
1105 if (ring->next_to_use == ring->count)
1106 ring->next_to_use = 0;
1107
1108 return 0;
1109 }
1110
1111 #define IGC_EMPTY_FRAME_SIZE 60
1112
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1113 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1114 __le32 launch_time, bool first_flag,
1115 u32 vlan_macip_lens, u32 type_tucmd,
1116 u32 mss_l4len_idx)
1117 {
1118 struct igc_adv_tx_context_desc *context_desc;
1119 u16 i = tx_ring->next_to_use;
1120
1121 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1122
1123 i++;
1124 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1125
1126 /* set bits to identify this as an advanced context descriptor */
1127 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1128
1129 /* For i225, context index must be unique per ring. */
1130 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1131 mss_l4len_idx |= tx_ring->reg_idx << 4;
1132
1133 if (first_flag)
1134 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1135
1136 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1137 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1138 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1139 context_desc->launch_time = launch_time;
1140 }
1141
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1142 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1143 __le32 launch_time, bool first_flag)
1144 {
1145 struct sk_buff *skb = first->skb;
1146 u32 vlan_macip_lens = 0;
1147 u32 type_tucmd = 0;
1148
1149 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1150 csum_failed:
1151 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1152 !tx_ring->launchtime_enable)
1153 return;
1154 goto no_csum;
1155 }
1156
1157 switch (skb->csum_offset) {
1158 case offsetof(struct tcphdr, check):
1159 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1160 fallthrough;
1161 case offsetof(struct udphdr, check):
1162 break;
1163 case offsetof(struct sctphdr, checksum):
1164 /* validate that this is actually an SCTP request */
1165 if (skb_csum_is_sctp(skb)) {
1166 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1167 break;
1168 }
1169 fallthrough;
1170 default:
1171 skb_checksum_help(skb);
1172 goto csum_failed;
1173 }
1174
1175 /* update TX checksum flag */
1176 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1177 vlan_macip_lens = skb_checksum_start_offset(skb) -
1178 skb_network_offset(skb);
1179 no_csum:
1180 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1181 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1182
1183 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1184 vlan_macip_lens, type_tucmd, 0);
1185 }
1186
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1187 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1188 {
1189 struct net_device *netdev = tx_ring->netdev;
1190
1191 netif_stop_subqueue(netdev, tx_ring->queue_index);
1192
1193 /* memory barriier comment */
1194 smp_mb();
1195
1196 /* We need to check again in a case another CPU has just
1197 * made room available.
1198 */
1199 if (igc_desc_unused(tx_ring) < size)
1200 return -EBUSY;
1201
1202 /* A reprieve! */
1203 netif_wake_subqueue(netdev, tx_ring->queue_index);
1204
1205 u64_stats_update_begin(&tx_ring->tx_syncp2);
1206 tx_ring->tx_stats.restart_queue2++;
1207 u64_stats_update_end(&tx_ring->tx_syncp2);
1208
1209 return 0;
1210 }
1211
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1212 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1213 {
1214 if (igc_desc_unused(tx_ring) >= size)
1215 return 0;
1216 return __igc_maybe_stop_tx(tx_ring, size);
1217 }
1218
1219 #define IGC_SET_FLAG(_input, _flag, _result) \
1220 (((_flag) <= (_result)) ? \
1221 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1222 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1223
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1224 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1225 {
1226 /* set type for advanced descriptor with frame checksum insertion */
1227 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1228 IGC_ADVTXD_DCMD_DEXT |
1229 IGC_ADVTXD_DCMD_IFCS;
1230
1231 /* set HW vlan bit if vlan is present */
1232 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1233 IGC_ADVTXD_DCMD_VLE);
1234
1235 /* set segmentation bits for TSO */
1236 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1237 (IGC_ADVTXD_DCMD_TSE));
1238
1239 /* set timestamp bit if present */
1240 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1241 (IGC_ADVTXD_MAC_TSTAMP));
1242
1243 /* insert frame checksum */
1244 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1245
1246 return cmd_type;
1247 }
1248
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1249 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1250 union igc_adv_tx_desc *tx_desc,
1251 u32 tx_flags, unsigned int paylen)
1252 {
1253 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1254
1255 /* insert L4 checksum */
1256 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1257 ((IGC_TXD_POPTS_TXSM << 8) /
1258 IGC_TX_FLAGS_CSUM);
1259
1260 /* insert IPv4 checksum */
1261 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1262 (((IGC_TXD_POPTS_IXSM << 8)) /
1263 IGC_TX_FLAGS_IPV4);
1264
1265 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1266 }
1267
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1268 static int igc_tx_map(struct igc_ring *tx_ring,
1269 struct igc_tx_buffer *first,
1270 const u8 hdr_len)
1271 {
1272 struct sk_buff *skb = first->skb;
1273 struct igc_tx_buffer *tx_buffer;
1274 union igc_adv_tx_desc *tx_desc;
1275 u32 tx_flags = first->tx_flags;
1276 skb_frag_t *frag;
1277 u16 i = tx_ring->next_to_use;
1278 unsigned int data_len, size;
1279 dma_addr_t dma;
1280 u32 cmd_type;
1281
1282 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1283 tx_desc = IGC_TX_DESC(tx_ring, i);
1284
1285 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1286
1287 size = skb_headlen(skb);
1288 data_len = skb->data_len;
1289
1290 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1291
1292 tx_buffer = first;
1293
1294 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1295 if (dma_mapping_error(tx_ring->dev, dma))
1296 goto dma_error;
1297
1298 /* record length, and DMA address */
1299 dma_unmap_len_set(tx_buffer, len, size);
1300 dma_unmap_addr_set(tx_buffer, dma, dma);
1301
1302 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1303
1304 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1305 tx_desc->read.cmd_type_len =
1306 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1307
1308 i++;
1309 tx_desc++;
1310 if (i == tx_ring->count) {
1311 tx_desc = IGC_TX_DESC(tx_ring, 0);
1312 i = 0;
1313 }
1314 tx_desc->read.olinfo_status = 0;
1315
1316 dma += IGC_MAX_DATA_PER_TXD;
1317 size -= IGC_MAX_DATA_PER_TXD;
1318
1319 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1320 }
1321
1322 if (likely(!data_len))
1323 break;
1324
1325 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1326
1327 i++;
1328 tx_desc++;
1329 if (i == tx_ring->count) {
1330 tx_desc = IGC_TX_DESC(tx_ring, 0);
1331 i = 0;
1332 }
1333 tx_desc->read.olinfo_status = 0;
1334
1335 size = skb_frag_size(frag);
1336 data_len -= size;
1337
1338 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1339 size, DMA_TO_DEVICE);
1340
1341 tx_buffer = &tx_ring->tx_buffer_info[i];
1342 }
1343
1344 /* write last descriptor with RS and EOP bits */
1345 cmd_type |= size | IGC_TXD_DCMD;
1346 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1347
1348 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1349
1350 /* set the timestamp */
1351 first->time_stamp = jiffies;
1352
1353 skb_tx_timestamp(skb);
1354
1355 /* Force memory writes to complete before letting h/w know there
1356 * are new descriptors to fetch. (Only applicable for weak-ordered
1357 * memory model archs, such as IA-64).
1358 *
1359 * We also need this memory barrier to make certain all of the
1360 * status bits have been updated before next_to_watch is written.
1361 */
1362 wmb();
1363
1364 /* set next_to_watch value indicating a packet is present */
1365 first->next_to_watch = tx_desc;
1366
1367 i++;
1368 if (i == tx_ring->count)
1369 i = 0;
1370
1371 tx_ring->next_to_use = i;
1372
1373 /* Make sure there is space in the ring for the next send. */
1374 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1375
1376 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1377 writel(i, tx_ring->tail);
1378 }
1379
1380 return 0;
1381 dma_error:
1382 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1383 tx_buffer = &tx_ring->tx_buffer_info[i];
1384
1385 /* clear dma mappings for failed tx_buffer_info map */
1386 while (tx_buffer != first) {
1387 if (dma_unmap_len(tx_buffer, len))
1388 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1389
1390 if (i-- == 0)
1391 i += tx_ring->count;
1392 tx_buffer = &tx_ring->tx_buffer_info[i];
1393 }
1394
1395 if (dma_unmap_len(tx_buffer, len))
1396 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1397
1398 dev_kfree_skb_any(tx_buffer->skb);
1399 tx_buffer->skb = NULL;
1400
1401 tx_ring->next_to_use = i;
1402
1403 return -1;
1404 }
1405
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1406 static int igc_tso(struct igc_ring *tx_ring,
1407 struct igc_tx_buffer *first,
1408 __le32 launch_time, bool first_flag,
1409 u8 *hdr_len)
1410 {
1411 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1412 struct sk_buff *skb = first->skb;
1413 union {
1414 struct iphdr *v4;
1415 struct ipv6hdr *v6;
1416 unsigned char *hdr;
1417 } ip;
1418 union {
1419 struct tcphdr *tcp;
1420 struct udphdr *udp;
1421 unsigned char *hdr;
1422 } l4;
1423 u32 paylen, l4_offset;
1424 int err;
1425
1426 if (skb->ip_summed != CHECKSUM_PARTIAL)
1427 return 0;
1428
1429 if (!skb_is_gso(skb))
1430 return 0;
1431
1432 err = skb_cow_head(skb, 0);
1433 if (err < 0)
1434 return err;
1435
1436 ip.hdr = skb_network_header(skb);
1437 l4.hdr = skb_checksum_start(skb);
1438
1439 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1440 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1441
1442 /* initialize outer IP header fields */
1443 if (ip.v4->version == 4) {
1444 unsigned char *csum_start = skb_checksum_start(skb);
1445 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1446
1447 /* IP header will have to cancel out any data that
1448 * is not a part of the outer IP header
1449 */
1450 ip.v4->check = csum_fold(csum_partial(trans_start,
1451 csum_start - trans_start,
1452 0));
1453 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1454
1455 ip.v4->tot_len = 0;
1456 first->tx_flags |= IGC_TX_FLAGS_TSO |
1457 IGC_TX_FLAGS_CSUM |
1458 IGC_TX_FLAGS_IPV4;
1459 } else {
1460 ip.v6->payload_len = 0;
1461 first->tx_flags |= IGC_TX_FLAGS_TSO |
1462 IGC_TX_FLAGS_CSUM;
1463 }
1464
1465 /* determine offset of inner transport header */
1466 l4_offset = l4.hdr - skb->data;
1467
1468 /* remove payload length from inner checksum */
1469 paylen = skb->len - l4_offset;
1470 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1471 /* compute length of segmentation header */
1472 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1473 csum_replace_by_diff(&l4.tcp->check,
1474 (__force __wsum)htonl(paylen));
1475 } else {
1476 /* compute length of segmentation header */
1477 *hdr_len = sizeof(*l4.udp) + l4_offset;
1478 csum_replace_by_diff(&l4.udp->check,
1479 (__force __wsum)htonl(paylen));
1480 }
1481
1482 /* update gso size and bytecount with header size */
1483 first->gso_segs = skb_shinfo(skb)->gso_segs;
1484 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1485
1486 /* MSS L4LEN IDX */
1487 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1488 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1489
1490 /* VLAN MACLEN IPLEN */
1491 vlan_macip_lens = l4.hdr - ip.hdr;
1492 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1493 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1494
1495 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1496 vlan_macip_lens, type_tucmd, mss_l4len_idx);
1497
1498 return 1;
1499 }
1500
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1501 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1502 struct igc_ring *tx_ring)
1503 {
1504 bool first_flag = false, insert_empty = false;
1505 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1506 __be16 protocol = vlan_get_protocol(skb);
1507 struct igc_tx_buffer *first;
1508 __le32 launch_time = 0;
1509 u32 tx_flags = 0;
1510 unsigned short f;
1511 ktime_t txtime;
1512 u8 hdr_len = 0;
1513 int tso = 0;
1514
1515 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1516 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1517 * + 2 desc gap to keep tail from touching head,
1518 * + 1 desc for context descriptor,
1519 * otherwise try next time
1520 */
1521 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1522 count += TXD_USE_COUNT(skb_frag_size(
1523 &skb_shinfo(skb)->frags[f]));
1524
1525 if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1526 /* this is a hard error */
1527 return NETDEV_TX_BUSY;
1528 }
1529
1530 if (!tx_ring->launchtime_enable)
1531 goto done;
1532
1533 txtime = skb->tstamp;
1534 skb->tstamp = ktime_set(0, 0);
1535 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1536
1537 if (insert_empty) {
1538 struct igc_tx_buffer *empty_info;
1539 struct sk_buff *empty;
1540 void *data;
1541
1542 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1543 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1544 if (!empty)
1545 goto done;
1546
1547 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1548 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1549
1550 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1551
1552 if (igc_init_tx_empty_descriptor(tx_ring,
1553 empty,
1554 empty_info) < 0)
1555 dev_kfree_skb_any(empty);
1556 }
1557
1558 done:
1559 /* record the location of the first descriptor for this packet */
1560 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1561 first->type = IGC_TX_BUFFER_TYPE_SKB;
1562 first->skb = skb;
1563 first->bytecount = skb->len;
1564 first->gso_segs = 1;
1565
1566 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1567 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1568
1569 /* FIXME: add support for retrieving timestamps from
1570 * the other timer registers before skipping the
1571 * timestamping request.
1572 */
1573 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1574 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1575 &adapter->state)) {
1576 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1577 tx_flags |= IGC_TX_FLAGS_TSTAMP;
1578
1579 adapter->ptp_tx_skb = skb_get(skb);
1580 adapter->ptp_tx_start = jiffies;
1581 } else {
1582 adapter->tx_hwtstamp_skipped++;
1583 }
1584 }
1585
1586 if (skb_vlan_tag_present(skb)) {
1587 tx_flags |= IGC_TX_FLAGS_VLAN;
1588 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1589 }
1590
1591 /* record initial flags and protocol */
1592 first->tx_flags = tx_flags;
1593 first->protocol = protocol;
1594
1595 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1596 if (tso < 0)
1597 goto out_drop;
1598 else if (!tso)
1599 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1600
1601 igc_tx_map(tx_ring, first, hdr_len);
1602
1603 return NETDEV_TX_OK;
1604
1605 out_drop:
1606 dev_kfree_skb_any(first->skb);
1607 first->skb = NULL;
1608
1609 return NETDEV_TX_OK;
1610 }
1611
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1612 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1613 struct sk_buff *skb)
1614 {
1615 unsigned int r_idx = skb->queue_mapping;
1616
1617 if (r_idx >= adapter->num_tx_queues)
1618 r_idx = r_idx % adapter->num_tx_queues;
1619
1620 return adapter->tx_ring[r_idx];
1621 }
1622
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1623 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1624 struct net_device *netdev)
1625 {
1626 struct igc_adapter *adapter = netdev_priv(netdev);
1627
1628 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1629 * in order to meet this minimum size requirement.
1630 */
1631 if (skb->len < 17) {
1632 if (skb_padto(skb, 17))
1633 return NETDEV_TX_OK;
1634 skb->len = 17;
1635 }
1636
1637 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1638 }
1639
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1640 static void igc_rx_checksum(struct igc_ring *ring,
1641 union igc_adv_rx_desc *rx_desc,
1642 struct sk_buff *skb)
1643 {
1644 skb_checksum_none_assert(skb);
1645
1646 /* Ignore Checksum bit is set */
1647 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1648 return;
1649
1650 /* Rx checksum disabled via ethtool */
1651 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1652 return;
1653
1654 /* TCP/UDP checksum error bit is set */
1655 if (igc_test_staterr(rx_desc,
1656 IGC_RXDEXT_STATERR_L4E |
1657 IGC_RXDEXT_STATERR_IPE)) {
1658 /* work around errata with sctp packets where the TCPE aka
1659 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1660 * packets (aka let the stack check the crc32c)
1661 */
1662 if (!(skb->len == 60 &&
1663 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1664 u64_stats_update_begin(&ring->rx_syncp);
1665 ring->rx_stats.csum_err++;
1666 u64_stats_update_end(&ring->rx_syncp);
1667 }
1668 /* let the stack verify checksum errors */
1669 return;
1670 }
1671 /* It must be a TCP or UDP packet with a valid checksum */
1672 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1673 IGC_RXD_STAT_UDPCS))
1674 skb->ip_summed = CHECKSUM_UNNECESSARY;
1675
1676 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1677 le32_to_cpu(rx_desc->wb.upper.status_error));
1678 }
1679
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1680 static inline void igc_rx_hash(struct igc_ring *ring,
1681 union igc_adv_rx_desc *rx_desc,
1682 struct sk_buff *skb)
1683 {
1684 if (ring->netdev->features & NETIF_F_RXHASH)
1685 skb_set_hash(skb,
1686 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1687 PKT_HASH_TYPE_L3);
1688 }
1689
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1690 static void igc_rx_vlan(struct igc_ring *rx_ring,
1691 union igc_adv_rx_desc *rx_desc,
1692 struct sk_buff *skb)
1693 {
1694 struct net_device *dev = rx_ring->netdev;
1695 u16 vid;
1696
1697 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1698 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1699 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1700 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1701 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1702 else
1703 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1704
1705 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1706 }
1707 }
1708
1709 /**
1710 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1711 * @rx_ring: rx descriptor ring packet is being transacted on
1712 * @rx_desc: pointer to the EOP Rx descriptor
1713 * @skb: pointer to current skb being populated
1714 *
1715 * This function checks the ring, descriptor, and packet information in order
1716 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1717 * skb.
1718 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1719 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1720 union igc_adv_rx_desc *rx_desc,
1721 struct sk_buff *skb)
1722 {
1723 igc_rx_hash(rx_ring, rx_desc, skb);
1724
1725 igc_rx_checksum(rx_ring, rx_desc, skb);
1726
1727 igc_rx_vlan(rx_ring, rx_desc, skb);
1728
1729 skb_record_rx_queue(skb, rx_ring->queue_index);
1730
1731 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1732 }
1733
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1734 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1735 {
1736 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1737 struct igc_adapter *adapter = netdev_priv(netdev);
1738 struct igc_hw *hw = &adapter->hw;
1739 u32 ctrl;
1740
1741 ctrl = rd32(IGC_CTRL);
1742
1743 if (enable) {
1744 /* enable VLAN tag insert/strip */
1745 ctrl |= IGC_CTRL_VME;
1746 } else {
1747 /* disable VLAN tag insert/strip */
1748 ctrl &= ~IGC_CTRL_VME;
1749 }
1750 wr32(IGC_CTRL, ctrl);
1751 }
1752
igc_restore_vlan(struct igc_adapter * adapter)1753 static void igc_restore_vlan(struct igc_adapter *adapter)
1754 {
1755 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1756 }
1757
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1758 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1759 const unsigned int size,
1760 int *rx_buffer_pgcnt)
1761 {
1762 struct igc_rx_buffer *rx_buffer;
1763
1764 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1765 *rx_buffer_pgcnt =
1766 #if (PAGE_SIZE < 8192)
1767 page_count(rx_buffer->page);
1768 #else
1769 0;
1770 #endif
1771 prefetchw(rx_buffer->page);
1772
1773 /* we are reusing so sync this buffer for CPU use */
1774 dma_sync_single_range_for_cpu(rx_ring->dev,
1775 rx_buffer->dma,
1776 rx_buffer->page_offset,
1777 size,
1778 DMA_FROM_DEVICE);
1779
1780 rx_buffer->pagecnt_bias--;
1781
1782 return rx_buffer;
1783 }
1784
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1785 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1786 unsigned int truesize)
1787 {
1788 #if (PAGE_SIZE < 8192)
1789 buffer->page_offset ^= truesize;
1790 #else
1791 buffer->page_offset += truesize;
1792 #endif
1793 }
1794
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1795 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1796 unsigned int size)
1797 {
1798 unsigned int truesize;
1799
1800 #if (PAGE_SIZE < 8192)
1801 truesize = igc_rx_pg_size(ring) / 2;
1802 #else
1803 truesize = ring_uses_build_skb(ring) ?
1804 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1805 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1806 SKB_DATA_ALIGN(size);
1807 #endif
1808 return truesize;
1809 }
1810
1811 /**
1812 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1813 * @rx_ring: rx descriptor ring to transact packets on
1814 * @rx_buffer: buffer containing page to add
1815 * @skb: sk_buff to place the data into
1816 * @size: size of buffer to be added
1817 *
1818 * This function will add the data contained in rx_buffer->page to the skb.
1819 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1820 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1821 struct igc_rx_buffer *rx_buffer,
1822 struct sk_buff *skb,
1823 unsigned int size)
1824 {
1825 unsigned int truesize;
1826
1827 #if (PAGE_SIZE < 8192)
1828 truesize = igc_rx_pg_size(rx_ring) / 2;
1829 #else
1830 truesize = ring_uses_build_skb(rx_ring) ?
1831 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1832 SKB_DATA_ALIGN(size);
1833 #endif
1834 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1835 rx_buffer->page_offset, size, truesize);
1836
1837 igc_rx_buffer_flip(rx_buffer, truesize);
1838 }
1839
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1840 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1841 struct igc_rx_buffer *rx_buffer,
1842 struct xdp_buff *xdp)
1843 {
1844 unsigned int size = xdp->data_end - xdp->data;
1845 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1846 unsigned int metasize = xdp->data - xdp->data_meta;
1847 struct sk_buff *skb;
1848
1849 /* prefetch first cache line of first page */
1850 net_prefetch(xdp->data_meta);
1851
1852 /* build an skb around the page buffer */
1853 skb = napi_build_skb(xdp->data_hard_start, truesize);
1854 if (unlikely(!skb))
1855 return NULL;
1856
1857 /* update pointers within the skb to store the data */
1858 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1859 __skb_put(skb, size);
1860 if (metasize)
1861 skb_metadata_set(skb, metasize);
1862
1863 igc_rx_buffer_flip(rx_buffer, truesize);
1864 return skb;
1865 }
1866
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)1867 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1868 struct igc_rx_buffer *rx_buffer,
1869 struct xdp_buff *xdp,
1870 ktime_t timestamp)
1871 {
1872 unsigned int metasize = xdp->data - xdp->data_meta;
1873 unsigned int size = xdp->data_end - xdp->data;
1874 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1875 void *va = xdp->data;
1876 unsigned int headlen;
1877 struct sk_buff *skb;
1878
1879 /* prefetch first cache line of first page */
1880 net_prefetch(xdp->data_meta);
1881
1882 /* allocate a skb to store the frags */
1883 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1884 IGC_RX_HDR_LEN + metasize);
1885 if (unlikely(!skb))
1886 return NULL;
1887
1888 if (timestamp)
1889 skb_hwtstamps(skb)->hwtstamp = timestamp;
1890
1891 /* Determine available headroom for copy */
1892 headlen = size;
1893 if (headlen > IGC_RX_HDR_LEN)
1894 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1895
1896 /* align pull length to size of long to optimize memcpy performance */
1897 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1898 ALIGN(headlen + metasize, sizeof(long)));
1899
1900 if (metasize) {
1901 skb_metadata_set(skb, metasize);
1902 __skb_pull(skb, metasize);
1903 }
1904
1905 /* update all of the pointers */
1906 size -= headlen;
1907 if (size) {
1908 skb_add_rx_frag(skb, 0, rx_buffer->page,
1909 (va + headlen) - page_address(rx_buffer->page),
1910 size, truesize);
1911 igc_rx_buffer_flip(rx_buffer, truesize);
1912 } else {
1913 rx_buffer->pagecnt_bias++;
1914 }
1915
1916 return skb;
1917 }
1918
1919 /**
1920 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1921 * @rx_ring: rx descriptor ring to store buffers on
1922 * @old_buff: donor buffer to have page reused
1923 *
1924 * Synchronizes page for reuse by the adapter
1925 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)1926 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1927 struct igc_rx_buffer *old_buff)
1928 {
1929 u16 nta = rx_ring->next_to_alloc;
1930 struct igc_rx_buffer *new_buff;
1931
1932 new_buff = &rx_ring->rx_buffer_info[nta];
1933
1934 /* update, and store next to alloc */
1935 nta++;
1936 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1937
1938 /* Transfer page from old buffer to new buffer.
1939 * Move each member individually to avoid possible store
1940 * forwarding stalls.
1941 */
1942 new_buff->dma = old_buff->dma;
1943 new_buff->page = old_buff->page;
1944 new_buff->page_offset = old_buff->page_offset;
1945 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1946 }
1947
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)1948 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1949 int rx_buffer_pgcnt)
1950 {
1951 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1952 struct page *page = rx_buffer->page;
1953
1954 /* avoid re-using remote and pfmemalloc pages */
1955 if (!dev_page_is_reusable(page))
1956 return false;
1957
1958 #if (PAGE_SIZE < 8192)
1959 /* if we are only owner of page we can reuse it */
1960 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1961 return false;
1962 #else
1963 #define IGC_LAST_OFFSET \
1964 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1965
1966 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1967 return false;
1968 #endif
1969
1970 /* If we have drained the page fragment pool we need to update
1971 * the pagecnt_bias and page count so that we fully restock the
1972 * number of references the driver holds.
1973 */
1974 if (unlikely(pagecnt_bias == 1)) {
1975 page_ref_add(page, USHRT_MAX - 1);
1976 rx_buffer->pagecnt_bias = USHRT_MAX;
1977 }
1978
1979 return true;
1980 }
1981
1982 /**
1983 * igc_is_non_eop - process handling of non-EOP buffers
1984 * @rx_ring: Rx ring being processed
1985 * @rx_desc: Rx descriptor for current buffer
1986 *
1987 * This function updates next to clean. If the buffer is an EOP buffer
1988 * this function exits returning false, otherwise it will place the
1989 * sk_buff in the next buffer to be chained and return true indicating
1990 * that this is in fact a non-EOP buffer.
1991 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)1992 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1993 union igc_adv_rx_desc *rx_desc)
1994 {
1995 u32 ntc = rx_ring->next_to_clean + 1;
1996
1997 /* fetch, update, and store next to clean */
1998 ntc = (ntc < rx_ring->count) ? ntc : 0;
1999 rx_ring->next_to_clean = ntc;
2000
2001 prefetch(IGC_RX_DESC(rx_ring, ntc));
2002
2003 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2004 return false;
2005
2006 return true;
2007 }
2008
2009 /**
2010 * igc_cleanup_headers - Correct corrupted or empty headers
2011 * @rx_ring: rx descriptor ring packet is being transacted on
2012 * @rx_desc: pointer to the EOP Rx descriptor
2013 * @skb: pointer to current skb being fixed
2014 *
2015 * Address the case where we are pulling data in on pages only
2016 * and as such no data is present in the skb header.
2017 *
2018 * In addition if skb is not at least 60 bytes we need to pad it so that
2019 * it is large enough to qualify as a valid Ethernet frame.
2020 *
2021 * Returns true if an error was encountered and skb was freed.
2022 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2023 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2024 union igc_adv_rx_desc *rx_desc,
2025 struct sk_buff *skb)
2026 {
2027 /* XDP packets use error pointer so abort at this point */
2028 if (IS_ERR(skb))
2029 return true;
2030
2031 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2032 struct net_device *netdev = rx_ring->netdev;
2033
2034 if (!(netdev->features & NETIF_F_RXALL)) {
2035 dev_kfree_skb_any(skb);
2036 return true;
2037 }
2038 }
2039
2040 /* if eth_skb_pad returns an error the skb was freed */
2041 if (eth_skb_pad(skb))
2042 return true;
2043
2044 return false;
2045 }
2046
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2047 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2048 struct igc_rx_buffer *rx_buffer,
2049 int rx_buffer_pgcnt)
2050 {
2051 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2052 /* hand second half of page back to the ring */
2053 igc_reuse_rx_page(rx_ring, rx_buffer);
2054 } else {
2055 /* We are not reusing the buffer so unmap it and free
2056 * any references we are holding to it
2057 */
2058 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2059 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2060 IGC_RX_DMA_ATTR);
2061 __page_frag_cache_drain(rx_buffer->page,
2062 rx_buffer->pagecnt_bias);
2063 }
2064
2065 /* clear contents of rx_buffer */
2066 rx_buffer->page = NULL;
2067 }
2068
igc_rx_offset(struct igc_ring * rx_ring)2069 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2070 {
2071 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2072
2073 if (ring_uses_build_skb(rx_ring))
2074 return IGC_SKB_PAD;
2075 if (igc_xdp_is_enabled(adapter))
2076 return XDP_PACKET_HEADROOM;
2077
2078 return 0;
2079 }
2080
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2081 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2082 struct igc_rx_buffer *bi)
2083 {
2084 struct page *page = bi->page;
2085 dma_addr_t dma;
2086
2087 /* since we are recycling buffers we should seldom need to alloc */
2088 if (likely(page))
2089 return true;
2090
2091 /* alloc new page for storage */
2092 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2093 if (unlikely(!page)) {
2094 rx_ring->rx_stats.alloc_failed++;
2095 return false;
2096 }
2097
2098 /* map page for use */
2099 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2100 igc_rx_pg_size(rx_ring),
2101 DMA_FROM_DEVICE,
2102 IGC_RX_DMA_ATTR);
2103
2104 /* if mapping failed free memory back to system since
2105 * there isn't much point in holding memory we can't use
2106 */
2107 if (dma_mapping_error(rx_ring->dev, dma)) {
2108 __free_page(page);
2109
2110 rx_ring->rx_stats.alloc_failed++;
2111 return false;
2112 }
2113
2114 bi->dma = dma;
2115 bi->page = page;
2116 bi->page_offset = igc_rx_offset(rx_ring);
2117 page_ref_add(page, USHRT_MAX - 1);
2118 bi->pagecnt_bias = USHRT_MAX;
2119
2120 return true;
2121 }
2122
2123 /**
2124 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2125 * @rx_ring: rx descriptor ring
2126 * @cleaned_count: number of buffers to clean
2127 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2128 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2129 {
2130 union igc_adv_rx_desc *rx_desc;
2131 u16 i = rx_ring->next_to_use;
2132 struct igc_rx_buffer *bi;
2133 u16 bufsz;
2134
2135 /* nothing to do */
2136 if (!cleaned_count)
2137 return;
2138
2139 rx_desc = IGC_RX_DESC(rx_ring, i);
2140 bi = &rx_ring->rx_buffer_info[i];
2141 i -= rx_ring->count;
2142
2143 bufsz = igc_rx_bufsz(rx_ring);
2144
2145 do {
2146 if (!igc_alloc_mapped_page(rx_ring, bi))
2147 break;
2148
2149 /* sync the buffer for use by the device */
2150 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2151 bi->page_offset, bufsz,
2152 DMA_FROM_DEVICE);
2153
2154 /* Refresh the desc even if buffer_addrs didn't change
2155 * because each write-back erases this info.
2156 */
2157 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2158
2159 rx_desc++;
2160 bi++;
2161 i++;
2162 if (unlikely(!i)) {
2163 rx_desc = IGC_RX_DESC(rx_ring, 0);
2164 bi = rx_ring->rx_buffer_info;
2165 i -= rx_ring->count;
2166 }
2167
2168 /* clear the length for the next_to_use descriptor */
2169 rx_desc->wb.upper.length = 0;
2170
2171 cleaned_count--;
2172 } while (cleaned_count);
2173
2174 i += rx_ring->count;
2175
2176 if (rx_ring->next_to_use != i) {
2177 /* record the next descriptor to use */
2178 rx_ring->next_to_use = i;
2179
2180 /* update next to alloc since we have filled the ring */
2181 rx_ring->next_to_alloc = i;
2182
2183 /* Force memory writes to complete before letting h/w
2184 * know there are new descriptors to fetch. (Only
2185 * applicable for weak-ordered memory model archs,
2186 * such as IA-64).
2187 */
2188 wmb();
2189 writel(i, rx_ring->tail);
2190 }
2191 }
2192
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2193 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2194 {
2195 union igc_adv_rx_desc *desc;
2196 u16 i = ring->next_to_use;
2197 struct igc_rx_buffer *bi;
2198 dma_addr_t dma;
2199 bool ok = true;
2200
2201 if (!count)
2202 return ok;
2203
2204 desc = IGC_RX_DESC(ring, i);
2205 bi = &ring->rx_buffer_info[i];
2206 i -= ring->count;
2207
2208 do {
2209 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2210 if (!bi->xdp) {
2211 ok = false;
2212 break;
2213 }
2214
2215 dma = xsk_buff_xdp_get_dma(bi->xdp);
2216 desc->read.pkt_addr = cpu_to_le64(dma);
2217
2218 desc++;
2219 bi++;
2220 i++;
2221 if (unlikely(!i)) {
2222 desc = IGC_RX_DESC(ring, 0);
2223 bi = ring->rx_buffer_info;
2224 i -= ring->count;
2225 }
2226
2227 /* Clear the length for the next_to_use descriptor. */
2228 desc->wb.upper.length = 0;
2229
2230 count--;
2231 } while (count);
2232
2233 i += ring->count;
2234
2235 if (ring->next_to_use != i) {
2236 ring->next_to_use = i;
2237
2238 /* Force memory writes to complete before letting h/w
2239 * know there are new descriptors to fetch. (Only
2240 * applicable for weak-ordered memory model archs,
2241 * such as IA-64).
2242 */
2243 wmb();
2244 writel(i, ring->tail);
2245 }
2246
2247 return ok;
2248 }
2249
2250 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2251 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2252 struct xdp_frame *xdpf)
2253 {
2254 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2255 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2256 u16 count, index = ring->next_to_use;
2257 struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2258 struct igc_tx_buffer *buffer = head;
2259 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2260 u32 olinfo_status, len = xdpf->len, cmd_type;
2261 void *data = xdpf->data;
2262 u16 i;
2263
2264 count = TXD_USE_COUNT(len);
2265 for (i = 0; i < nr_frags; i++)
2266 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2267
2268 if (igc_maybe_stop_tx(ring, count + 3)) {
2269 /* this is a hard error */
2270 return -EBUSY;
2271 }
2272
2273 i = 0;
2274 head->bytecount = xdp_get_frame_len(xdpf);
2275 head->type = IGC_TX_BUFFER_TYPE_XDP;
2276 head->gso_segs = 1;
2277 head->xdpf = xdpf;
2278
2279 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2280 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2281
2282 for (;;) {
2283 dma_addr_t dma;
2284
2285 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2286 if (dma_mapping_error(ring->dev, dma)) {
2287 netdev_err_once(ring->netdev,
2288 "Failed to map DMA for TX\n");
2289 goto unmap;
2290 }
2291
2292 dma_unmap_len_set(buffer, len, len);
2293 dma_unmap_addr_set(buffer, dma, dma);
2294
2295 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2296 IGC_ADVTXD_DCMD_IFCS | len;
2297
2298 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2299 desc->read.buffer_addr = cpu_to_le64(dma);
2300
2301 buffer->protocol = 0;
2302
2303 if (++index == ring->count)
2304 index = 0;
2305
2306 if (i == nr_frags)
2307 break;
2308
2309 buffer = &ring->tx_buffer_info[index];
2310 desc = IGC_TX_DESC(ring, index);
2311 desc->read.olinfo_status = 0;
2312
2313 data = skb_frag_address(&sinfo->frags[i]);
2314 len = skb_frag_size(&sinfo->frags[i]);
2315 i++;
2316 }
2317 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2318
2319 netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2320 /* set the timestamp */
2321 head->time_stamp = jiffies;
2322 /* set next_to_watch value indicating a packet is present */
2323 head->next_to_watch = desc;
2324 ring->next_to_use = index;
2325
2326 return 0;
2327
2328 unmap:
2329 for (;;) {
2330 buffer = &ring->tx_buffer_info[index];
2331 if (dma_unmap_len(buffer, len))
2332 dma_unmap_page(ring->dev,
2333 dma_unmap_addr(buffer, dma),
2334 dma_unmap_len(buffer, len),
2335 DMA_TO_DEVICE);
2336 dma_unmap_len_set(buffer, len, 0);
2337 if (buffer == head)
2338 break;
2339
2340 if (!index)
2341 index += ring->count;
2342 index--;
2343 }
2344
2345 return -ENOMEM;
2346 }
2347
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2348 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2349 int cpu)
2350 {
2351 int index = cpu;
2352
2353 if (unlikely(index < 0))
2354 index = 0;
2355
2356 while (index >= adapter->num_tx_queues)
2357 index -= adapter->num_tx_queues;
2358
2359 return adapter->tx_ring[index];
2360 }
2361
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2362 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2363 {
2364 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2365 int cpu = smp_processor_id();
2366 struct netdev_queue *nq;
2367 struct igc_ring *ring;
2368 int res;
2369
2370 if (unlikely(!xdpf))
2371 return -EFAULT;
2372
2373 ring = igc_xdp_get_tx_ring(adapter, cpu);
2374 nq = txring_txq(ring);
2375
2376 __netif_tx_lock(nq, cpu);
2377 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2378 __netif_tx_unlock(nq);
2379 return res;
2380 }
2381
2382 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2383 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2384 struct bpf_prog *prog,
2385 struct xdp_buff *xdp)
2386 {
2387 u32 act = bpf_prog_run_xdp(prog, xdp);
2388
2389 switch (act) {
2390 case XDP_PASS:
2391 return IGC_XDP_PASS;
2392 case XDP_TX:
2393 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2394 goto out_failure;
2395 return IGC_XDP_TX;
2396 case XDP_REDIRECT:
2397 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2398 goto out_failure;
2399 return IGC_XDP_REDIRECT;
2400 break;
2401 default:
2402 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2403 fallthrough;
2404 case XDP_ABORTED:
2405 out_failure:
2406 trace_xdp_exception(adapter->netdev, prog, act);
2407 fallthrough;
2408 case XDP_DROP:
2409 return IGC_XDP_CONSUMED;
2410 }
2411 }
2412
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2413 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2414 struct xdp_buff *xdp)
2415 {
2416 struct bpf_prog *prog;
2417 int res;
2418
2419 prog = READ_ONCE(adapter->xdp_prog);
2420 if (!prog) {
2421 res = IGC_XDP_PASS;
2422 goto out;
2423 }
2424
2425 res = __igc_xdp_run_prog(adapter, prog, xdp);
2426
2427 out:
2428 return ERR_PTR(-res);
2429 }
2430
2431 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2432 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2433 {
2434 /* Once tail pointer is updated, hardware can fetch the descriptors
2435 * any time so we issue a write membar here to ensure all memory
2436 * writes are complete before the tail pointer is updated.
2437 */
2438 wmb();
2439 writel(ring->next_to_use, ring->tail);
2440 }
2441
igc_finalize_xdp(struct igc_adapter * adapter,int status)2442 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2443 {
2444 int cpu = smp_processor_id();
2445 struct netdev_queue *nq;
2446 struct igc_ring *ring;
2447
2448 if (status & IGC_XDP_TX) {
2449 ring = igc_xdp_get_tx_ring(adapter, cpu);
2450 nq = txring_txq(ring);
2451
2452 __netif_tx_lock(nq, cpu);
2453 igc_flush_tx_descriptors(ring);
2454 __netif_tx_unlock(nq);
2455 }
2456
2457 if (status & IGC_XDP_REDIRECT)
2458 xdp_do_flush();
2459 }
2460
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2461 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2462 unsigned int packets, unsigned int bytes)
2463 {
2464 struct igc_ring *ring = q_vector->rx.ring;
2465
2466 u64_stats_update_begin(&ring->rx_syncp);
2467 ring->rx_stats.packets += packets;
2468 ring->rx_stats.bytes += bytes;
2469 u64_stats_update_end(&ring->rx_syncp);
2470
2471 q_vector->rx.total_packets += packets;
2472 q_vector->rx.total_bytes += bytes;
2473 }
2474
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2475 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2476 {
2477 unsigned int total_bytes = 0, total_packets = 0;
2478 struct igc_adapter *adapter = q_vector->adapter;
2479 struct igc_ring *rx_ring = q_vector->rx.ring;
2480 struct sk_buff *skb = rx_ring->skb;
2481 u16 cleaned_count = igc_desc_unused(rx_ring);
2482 int xdp_status = 0, rx_buffer_pgcnt;
2483
2484 while (likely(total_packets < budget)) {
2485 union igc_adv_rx_desc *rx_desc;
2486 struct igc_rx_buffer *rx_buffer;
2487 unsigned int size, truesize;
2488 ktime_t timestamp = 0;
2489 struct xdp_buff xdp;
2490 int pkt_offset = 0;
2491 void *pktbuf;
2492
2493 /* return some buffers to hardware, one at a time is too slow */
2494 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2495 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2496 cleaned_count = 0;
2497 }
2498
2499 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2500 size = le16_to_cpu(rx_desc->wb.upper.length);
2501 if (!size)
2502 break;
2503
2504 /* This memory barrier is needed to keep us from reading
2505 * any other fields out of the rx_desc until we know the
2506 * descriptor has been written back
2507 */
2508 dma_rmb();
2509
2510 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2511 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2512
2513 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2514
2515 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2516 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2517 pktbuf);
2518 pkt_offset = IGC_TS_HDR_LEN;
2519 size -= IGC_TS_HDR_LEN;
2520 }
2521
2522 if (!skb) {
2523 xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2524 xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2525 igc_rx_offset(rx_ring) + pkt_offset,
2526 size, true);
2527 xdp_buff_clear_frags_flag(&xdp);
2528
2529 skb = igc_xdp_run_prog(adapter, &xdp);
2530 }
2531
2532 if (IS_ERR(skb)) {
2533 unsigned int xdp_res = -PTR_ERR(skb);
2534
2535 switch (xdp_res) {
2536 case IGC_XDP_CONSUMED:
2537 rx_buffer->pagecnt_bias++;
2538 break;
2539 case IGC_XDP_TX:
2540 case IGC_XDP_REDIRECT:
2541 igc_rx_buffer_flip(rx_buffer, truesize);
2542 xdp_status |= xdp_res;
2543 break;
2544 }
2545
2546 total_packets++;
2547 total_bytes += size;
2548 } else if (skb)
2549 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2550 else if (ring_uses_build_skb(rx_ring))
2551 skb = igc_build_skb(rx_ring, rx_buffer, &xdp);
2552 else
2553 skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2554 timestamp);
2555
2556 /* exit if we failed to retrieve a buffer */
2557 if (!skb) {
2558 rx_ring->rx_stats.alloc_failed++;
2559 rx_buffer->pagecnt_bias++;
2560 break;
2561 }
2562
2563 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2564 cleaned_count++;
2565
2566 /* fetch next buffer in frame if non-eop */
2567 if (igc_is_non_eop(rx_ring, rx_desc))
2568 continue;
2569
2570 /* verify the packet layout is correct */
2571 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2572 skb = NULL;
2573 continue;
2574 }
2575
2576 /* probably a little skewed due to removing CRC */
2577 total_bytes += skb->len;
2578
2579 /* populate checksum, VLAN, and protocol */
2580 igc_process_skb_fields(rx_ring, rx_desc, skb);
2581
2582 napi_gro_receive(&q_vector->napi, skb);
2583
2584 /* reset skb pointer */
2585 skb = NULL;
2586
2587 /* update budget accounting */
2588 total_packets++;
2589 }
2590
2591 if (xdp_status)
2592 igc_finalize_xdp(adapter, xdp_status);
2593
2594 /* place incomplete frames back on ring for completion */
2595 rx_ring->skb = skb;
2596
2597 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2598
2599 if (cleaned_count)
2600 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2601
2602 return total_packets;
2603 }
2604
igc_construct_skb_zc(struct igc_ring * ring,struct xdp_buff * xdp)2605 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2606 struct xdp_buff *xdp)
2607 {
2608 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2609 unsigned int metasize = xdp->data - xdp->data_meta;
2610 struct sk_buff *skb;
2611
2612 net_prefetch(xdp->data_meta);
2613
2614 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2615 GFP_ATOMIC | __GFP_NOWARN);
2616 if (unlikely(!skb))
2617 return NULL;
2618
2619 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2620 ALIGN(totalsize, sizeof(long)));
2621
2622 if (metasize) {
2623 skb_metadata_set(skb, metasize);
2624 __skb_pull(skb, metasize);
2625 }
2626
2627 return skb;
2628 }
2629
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct xdp_buff * xdp,ktime_t timestamp)2630 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2631 union igc_adv_rx_desc *desc,
2632 struct xdp_buff *xdp,
2633 ktime_t timestamp)
2634 {
2635 struct igc_ring *ring = q_vector->rx.ring;
2636 struct sk_buff *skb;
2637
2638 skb = igc_construct_skb_zc(ring, xdp);
2639 if (!skb) {
2640 ring->rx_stats.alloc_failed++;
2641 return;
2642 }
2643
2644 if (timestamp)
2645 skb_hwtstamps(skb)->hwtstamp = timestamp;
2646
2647 if (igc_cleanup_headers(ring, desc, skb))
2648 return;
2649
2650 igc_process_skb_fields(ring, desc, skb);
2651 napi_gro_receive(&q_vector->napi, skb);
2652 }
2653
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2654 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2655 {
2656 struct igc_adapter *adapter = q_vector->adapter;
2657 struct igc_ring *ring = q_vector->rx.ring;
2658 u16 cleaned_count = igc_desc_unused(ring);
2659 int total_bytes = 0, total_packets = 0;
2660 u16 ntc = ring->next_to_clean;
2661 struct bpf_prog *prog;
2662 bool failure = false;
2663 int xdp_status = 0;
2664
2665 rcu_read_lock();
2666
2667 prog = READ_ONCE(adapter->xdp_prog);
2668
2669 while (likely(total_packets < budget)) {
2670 union igc_adv_rx_desc *desc;
2671 struct igc_rx_buffer *bi;
2672 ktime_t timestamp = 0;
2673 unsigned int size;
2674 int res;
2675
2676 desc = IGC_RX_DESC(ring, ntc);
2677 size = le16_to_cpu(desc->wb.upper.length);
2678 if (!size)
2679 break;
2680
2681 /* This memory barrier is needed to keep us from reading
2682 * any other fields out of the rx_desc until we know the
2683 * descriptor has been written back
2684 */
2685 dma_rmb();
2686
2687 bi = &ring->rx_buffer_info[ntc];
2688
2689 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2690 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2691 bi->xdp->data);
2692
2693 bi->xdp->data += IGC_TS_HDR_LEN;
2694
2695 /* HW timestamp has been copied into local variable. Metadata
2696 * length when XDP program is called should be 0.
2697 */
2698 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2699 size -= IGC_TS_HDR_LEN;
2700 }
2701
2702 bi->xdp->data_end = bi->xdp->data + size;
2703 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2704
2705 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2706 switch (res) {
2707 case IGC_XDP_PASS:
2708 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2709 fallthrough;
2710 case IGC_XDP_CONSUMED:
2711 xsk_buff_free(bi->xdp);
2712 break;
2713 case IGC_XDP_TX:
2714 case IGC_XDP_REDIRECT:
2715 xdp_status |= res;
2716 break;
2717 }
2718
2719 bi->xdp = NULL;
2720 total_bytes += size;
2721 total_packets++;
2722 cleaned_count++;
2723 ntc++;
2724 if (ntc == ring->count)
2725 ntc = 0;
2726 }
2727
2728 ring->next_to_clean = ntc;
2729 rcu_read_unlock();
2730
2731 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2732 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2733
2734 if (xdp_status)
2735 igc_finalize_xdp(adapter, xdp_status);
2736
2737 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2738
2739 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2740 if (failure || ring->next_to_clean == ring->next_to_use)
2741 xsk_set_rx_need_wakeup(ring->xsk_pool);
2742 else
2743 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2744 return total_packets;
2745 }
2746
2747 return failure ? budget : total_packets;
2748 }
2749
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2750 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2751 unsigned int packets, unsigned int bytes)
2752 {
2753 struct igc_ring *ring = q_vector->tx.ring;
2754
2755 u64_stats_update_begin(&ring->tx_syncp);
2756 ring->tx_stats.bytes += bytes;
2757 ring->tx_stats.packets += packets;
2758 u64_stats_update_end(&ring->tx_syncp);
2759
2760 q_vector->tx.total_bytes += bytes;
2761 q_vector->tx.total_packets += packets;
2762 }
2763
igc_xdp_xmit_zc(struct igc_ring * ring)2764 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2765 {
2766 struct xsk_buff_pool *pool = ring->xsk_pool;
2767 struct netdev_queue *nq = txring_txq(ring);
2768 union igc_adv_tx_desc *tx_desc = NULL;
2769 int cpu = smp_processor_id();
2770 u16 ntu = ring->next_to_use;
2771 struct xdp_desc xdp_desc;
2772 u16 budget;
2773
2774 if (!netif_carrier_ok(ring->netdev))
2775 return;
2776
2777 __netif_tx_lock(nq, cpu);
2778
2779 budget = igc_desc_unused(ring);
2780
2781 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2782 u32 cmd_type, olinfo_status;
2783 struct igc_tx_buffer *bi;
2784 dma_addr_t dma;
2785
2786 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2787 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2788 xdp_desc.len;
2789 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2790
2791 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2792 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2793
2794 tx_desc = IGC_TX_DESC(ring, ntu);
2795 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2796 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2797 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2798
2799 bi = &ring->tx_buffer_info[ntu];
2800 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2801 bi->protocol = 0;
2802 bi->bytecount = xdp_desc.len;
2803 bi->gso_segs = 1;
2804 bi->time_stamp = jiffies;
2805 bi->next_to_watch = tx_desc;
2806
2807 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2808
2809 ntu++;
2810 if (ntu == ring->count)
2811 ntu = 0;
2812 }
2813
2814 ring->next_to_use = ntu;
2815 if (tx_desc) {
2816 igc_flush_tx_descriptors(ring);
2817 xsk_tx_release(pool);
2818 }
2819
2820 __netif_tx_unlock(nq);
2821 }
2822
2823 /**
2824 * igc_clean_tx_irq - Reclaim resources after transmit completes
2825 * @q_vector: pointer to q_vector containing needed info
2826 * @napi_budget: Used to determine if we are in netpoll
2827 *
2828 * returns true if ring is completely cleaned
2829 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)2830 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2831 {
2832 struct igc_adapter *adapter = q_vector->adapter;
2833 unsigned int total_bytes = 0, total_packets = 0;
2834 unsigned int budget = q_vector->tx.work_limit;
2835 struct igc_ring *tx_ring = q_vector->tx.ring;
2836 unsigned int i = tx_ring->next_to_clean;
2837 struct igc_tx_buffer *tx_buffer;
2838 union igc_adv_tx_desc *tx_desc;
2839 u32 xsk_frames = 0;
2840
2841 if (test_bit(__IGC_DOWN, &adapter->state))
2842 return true;
2843
2844 tx_buffer = &tx_ring->tx_buffer_info[i];
2845 tx_desc = IGC_TX_DESC(tx_ring, i);
2846 i -= tx_ring->count;
2847
2848 do {
2849 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2850
2851 /* if next_to_watch is not set then there is no work pending */
2852 if (!eop_desc)
2853 break;
2854
2855 /* prevent any other reads prior to eop_desc */
2856 smp_rmb();
2857
2858 /* if DD is not set pending work has not been completed */
2859 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2860 break;
2861
2862 /* clear next_to_watch to prevent false hangs */
2863 tx_buffer->next_to_watch = NULL;
2864
2865 /* update the statistics for this packet */
2866 total_bytes += tx_buffer->bytecount;
2867 total_packets += tx_buffer->gso_segs;
2868
2869 switch (tx_buffer->type) {
2870 case IGC_TX_BUFFER_TYPE_XSK:
2871 xsk_frames++;
2872 break;
2873 case IGC_TX_BUFFER_TYPE_XDP:
2874 xdp_return_frame(tx_buffer->xdpf);
2875 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2876 break;
2877 case IGC_TX_BUFFER_TYPE_SKB:
2878 napi_consume_skb(tx_buffer->skb, napi_budget);
2879 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2880 break;
2881 default:
2882 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2883 break;
2884 }
2885
2886 /* clear last DMA location and unmap remaining buffers */
2887 while (tx_desc != eop_desc) {
2888 tx_buffer++;
2889 tx_desc++;
2890 i++;
2891 if (unlikely(!i)) {
2892 i -= tx_ring->count;
2893 tx_buffer = tx_ring->tx_buffer_info;
2894 tx_desc = IGC_TX_DESC(tx_ring, 0);
2895 }
2896
2897 /* unmap any remaining paged data */
2898 if (dma_unmap_len(tx_buffer, len))
2899 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2900 }
2901
2902 /* move us one more past the eop_desc for start of next pkt */
2903 tx_buffer++;
2904 tx_desc++;
2905 i++;
2906 if (unlikely(!i)) {
2907 i -= tx_ring->count;
2908 tx_buffer = tx_ring->tx_buffer_info;
2909 tx_desc = IGC_TX_DESC(tx_ring, 0);
2910 }
2911
2912 /* issue prefetch for next Tx descriptor */
2913 prefetch(tx_desc);
2914
2915 /* update budget accounting */
2916 budget--;
2917 } while (likely(budget));
2918
2919 netdev_tx_completed_queue(txring_txq(tx_ring),
2920 total_packets, total_bytes);
2921
2922 i += tx_ring->count;
2923 tx_ring->next_to_clean = i;
2924
2925 igc_update_tx_stats(q_vector, total_packets, total_bytes);
2926
2927 if (tx_ring->xsk_pool) {
2928 if (xsk_frames)
2929 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2930 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2931 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2932 igc_xdp_xmit_zc(tx_ring);
2933 }
2934
2935 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2936 struct igc_hw *hw = &adapter->hw;
2937
2938 /* Detect a transmit hang in hardware, this serializes the
2939 * check with the clearing of time_stamp and movement of i
2940 */
2941 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2942 if (tx_buffer->next_to_watch &&
2943 time_after(jiffies, tx_buffer->time_stamp +
2944 (adapter->tx_timeout_factor * HZ)) &&
2945 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2946 /* detected Tx unit hang */
2947 netdev_err(tx_ring->netdev,
2948 "Detected Tx Unit Hang\n"
2949 " Tx Queue <%d>\n"
2950 " TDH <%x>\n"
2951 " TDT <%x>\n"
2952 " next_to_use <%x>\n"
2953 " next_to_clean <%x>\n"
2954 "buffer_info[next_to_clean]\n"
2955 " time_stamp <%lx>\n"
2956 " next_to_watch <%p>\n"
2957 " jiffies <%lx>\n"
2958 " desc.status <%x>\n",
2959 tx_ring->queue_index,
2960 rd32(IGC_TDH(tx_ring->reg_idx)),
2961 readl(tx_ring->tail),
2962 tx_ring->next_to_use,
2963 tx_ring->next_to_clean,
2964 tx_buffer->time_stamp,
2965 tx_buffer->next_to_watch,
2966 jiffies,
2967 tx_buffer->next_to_watch->wb.status);
2968 netif_stop_subqueue(tx_ring->netdev,
2969 tx_ring->queue_index);
2970
2971 /* we are about to reset, no point in enabling stuff */
2972 return true;
2973 }
2974 }
2975
2976 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2977 if (unlikely(total_packets &&
2978 netif_carrier_ok(tx_ring->netdev) &&
2979 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2980 /* Make sure that anybody stopping the queue after this
2981 * sees the new next_to_clean.
2982 */
2983 smp_mb();
2984 if (__netif_subqueue_stopped(tx_ring->netdev,
2985 tx_ring->queue_index) &&
2986 !(test_bit(__IGC_DOWN, &adapter->state))) {
2987 netif_wake_subqueue(tx_ring->netdev,
2988 tx_ring->queue_index);
2989
2990 u64_stats_update_begin(&tx_ring->tx_syncp);
2991 tx_ring->tx_stats.restart_queue++;
2992 u64_stats_update_end(&tx_ring->tx_syncp);
2993 }
2994 }
2995
2996 return !!budget;
2997 }
2998
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)2999 static int igc_find_mac_filter(struct igc_adapter *adapter,
3000 enum igc_mac_filter_type type, const u8 *addr)
3001 {
3002 struct igc_hw *hw = &adapter->hw;
3003 int max_entries = hw->mac.rar_entry_count;
3004 u32 ral, rah;
3005 int i;
3006
3007 for (i = 0; i < max_entries; i++) {
3008 ral = rd32(IGC_RAL(i));
3009 rah = rd32(IGC_RAH(i));
3010
3011 if (!(rah & IGC_RAH_AV))
3012 continue;
3013 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3014 continue;
3015 if ((rah & IGC_RAH_RAH_MASK) !=
3016 le16_to_cpup((__le16 *)(addr + 4)))
3017 continue;
3018 if (ral != le32_to_cpup((__le32 *)(addr)))
3019 continue;
3020
3021 return i;
3022 }
3023
3024 return -1;
3025 }
3026
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3027 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3028 {
3029 struct igc_hw *hw = &adapter->hw;
3030 int max_entries = hw->mac.rar_entry_count;
3031 u32 rah;
3032 int i;
3033
3034 for (i = 0; i < max_entries; i++) {
3035 rah = rd32(IGC_RAH(i));
3036
3037 if (!(rah & IGC_RAH_AV))
3038 return i;
3039 }
3040
3041 return -1;
3042 }
3043
3044 /**
3045 * igc_add_mac_filter() - Add MAC address filter
3046 * @adapter: Pointer to adapter where the filter should be added
3047 * @type: MAC address filter type (source or destination)
3048 * @addr: MAC address
3049 * @queue: If non-negative, queue assignment feature is enabled and frames
3050 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3051 * assignment is disabled.
3052 *
3053 * Return: 0 in case of success, negative errno code otherwise.
3054 */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3055 static int igc_add_mac_filter(struct igc_adapter *adapter,
3056 enum igc_mac_filter_type type, const u8 *addr,
3057 int queue)
3058 {
3059 struct net_device *dev = adapter->netdev;
3060 int index;
3061
3062 index = igc_find_mac_filter(adapter, type, addr);
3063 if (index >= 0)
3064 goto update_filter;
3065
3066 index = igc_get_avail_mac_filter_slot(adapter);
3067 if (index < 0)
3068 return -ENOSPC;
3069
3070 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3071 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3072 addr, queue);
3073
3074 update_filter:
3075 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3076 return 0;
3077 }
3078
3079 /**
3080 * igc_del_mac_filter() - Delete MAC address filter
3081 * @adapter: Pointer to adapter where the filter should be deleted from
3082 * @type: MAC address filter type (source or destination)
3083 * @addr: MAC address
3084 */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3085 static void igc_del_mac_filter(struct igc_adapter *adapter,
3086 enum igc_mac_filter_type type, const u8 *addr)
3087 {
3088 struct net_device *dev = adapter->netdev;
3089 int index;
3090
3091 index = igc_find_mac_filter(adapter, type, addr);
3092 if (index < 0)
3093 return;
3094
3095 if (index == 0) {
3096 /* If this is the default filter, we don't actually delete it.
3097 * We just reset to its default value i.e. disable queue
3098 * assignment.
3099 */
3100 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3101
3102 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3103 } else {
3104 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3105 index,
3106 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3107 addr);
3108
3109 igc_clear_mac_filter_hw(adapter, index);
3110 }
3111 }
3112
3113 /**
3114 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3115 * @adapter: Pointer to adapter where the filter should be added
3116 * @prio: VLAN priority value
3117 * @queue: Queue number which matching frames are assigned to
3118 *
3119 * Return: 0 in case of success, negative errno code otherwise.
3120 */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3121 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3122 int queue)
3123 {
3124 struct net_device *dev = adapter->netdev;
3125 struct igc_hw *hw = &adapter->hw;
3126 u32 vlanpqf;
3127
3128 vlanpqf = rd32(IGC_VLANPQF);
3129
3130 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3131 netdev_dbg(dev, "VLAN priority filter already in use\n");
3132 return -EEXIST;
3133 }
3134
3135 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3136 vlanpqf |= IGC_VLANPQF_VALID(prio);
3137
3138 wr32(IGC_VLANPQF, vlanpqf);
3139
3140 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3141 prio, queue);
3142 return 0;
3143 }
3144
3145 /**
3146 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3147 * @adapter: Pointer to adapter where the filter should be deleted from
3148 * @prio: VLAN priority value
3149 */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3150 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3151 {
3152 struct igc_hw *hw = &adapter->hw;
3153 u32 vlanpqf;
3154
3155 vlanpqf = rd32(IGC_VLANPQF);
3156
3157 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3158 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3159
3160 wr32(IGC_VLANPQF, vlanpqf);
3161
3162 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3163 prio);
3164 }
3165
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3166 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3167 {
3168 struct igc_hw *hw = &adapter->hw;
3169 int i;
3170
3171 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3172 u32 etqf = rd32(IGC_ETQF(i));
3173
3174 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3175 return i;
3176 }
3177
3178 return -1;
3179 }
3180
3181 /**
3182 * igc_add_etype_filter() - Add ethertype filter
3183 * @adapter: Pointer to adapter where the filter should be added
3184 * @etype: Ethertype value
3185 * @queue: If non-negative, queue assignment feature is enabled and frames
3186 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3187 * assignment is disabled.
3188 *
3189 * Return: 0 in case of success, negative errno code otherwise.
3190 */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3191 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3192 int queue)
3193 {
3194 struct igc_hw *hw = &adapter->hw;
3195 int index;
3196 u32 etqf;
3197
3198 index = igc_get_avail_etype_filter_slot(adapter);
3199 if (index < 0)
3200 return -ENOSPC;
3201
3202 etqf = rd32(IGC_ETQF(index));
3203
3204 etqf &= ~IGC_ETQF_ETYPE_MASK;
3205 etqf |= etype;
3206
3207 if (queue >= 0) {
3208 etqf &= ~IGC_ETQF_QUEUE_MASK;
3209 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3210 etqf |= IGC_ETQF_QUEUE_ENABLE;
3211 }
3212
3213 etqf |= IGC_ETQF_FILTER_ENABLE;
3214
3215 wr32(IGC_ETQF(index), etqf);
3216
3217 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3218 etype, queue);
3219 return 0;
3220 }
3221
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3222 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3223 {
3224 struct igc_hw *hw = &adapter->hw;
3225 int i;
3226
3227 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3228 u32 etqf = rd32(IGC_ETQF(i));
3229
3230 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3231 return i;
3232 }
3233
3234 return -1;
3235 }
3236
3237 /**
3238 * igc_del_etype_filter() - Delete ethertype filter
3239 * @adapter: Pointer to adapter where the filter should be deleted from
3240 * @etype: Ethertype value
3241 */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3242 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3243 {
3244 struct igc_hw *hw = &adapter->hw;
3245 int index;
3246
3247 index = igc_find_etype_filter(adapter, etype);
3248 if (index < 0)
3249 return;
3250
3251 wr32(IGC_ETQF(index), 0);
3252
3253 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3254 etype);
3255 }
3256
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3257 static int igc_flex_filter_select(struct igc_adapter *adapter,
3258 struct igc_flex_filter *input,
3259 u32 *fhft)
3260 {
3261 struct igc_hw *hw = &adapter->hw;
3262 u8 fhft_index;
3263 u32 fhftsl;
3264
3265 if (input->index >= MAX_FLEX_FILTER) {
3266 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3267 return -EINVAL;
3268 }
3269
3270 /* Indirect table select register */
3271 fhftsl = rd32(IGC_FHFTSL);
3272 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3273 switch (input->index) {
3274 case 0 ... 7:
3275 fhftsl |= 0x00;
3276 break;
3277 case 8 ... 15:
3278 fhftsl |= 0x01;
3279 break;
3280 case 16 ... 23:
3281 fhftsl |= 0x02;
3282 break;
3283 case 24 ... 31:
3284 fhftsl |= 0x03;
3285 break;
3286 }
3287 wr32(IGC_FHFTSL, fhftsl);
3288
3289 /* Normalize index down to host table register */
3290 fhft_index = input->index % 8;
3291
3292 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3293 IGC_FHFT_EXT(fhft_index - 4);
3294
3295 return 0;
3296 }
3297
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3298 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3299 struct igc_flex_filter *input)
3300 {
3301 struct device *dev = &adapter->pdev->dev;
3302 struct igc_hw *hw = &adapter->hw;
3303 u8 *data = input->data;
3304 u8 *mask = input->mask;
3305 u32 queuing;
3306 u32 fhft;
3307 u32 wufc;
3308 int ret;
3309 int i;
3310
3311 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3312 * out early to avoid surprises later.
3313 */
3314 if (input->length % 8 != 0) {
3315 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3316 return -EINVAL;
3317 }
3318
3319 /* Select corresponding flex filter register and get base for host table. */
3320 ret = igc_flex_filter_select(adapter, input, &fhft);
3321 if (ret)
3322 return ret;
3323
3324 /* When adding a filter globally disable flex filter feature. That is
3325 * recommended within the datasheet.
3326 */
3327 wufc = rd32(IGC_WUFC);
3328 wufc &= ~IGC_WUFC_FLEX_HQ;
3329 wr32(IGC_WUFC, wufc);
3330
3331 /* Configure filter */
3332 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3333 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3334 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3335
3336 if (input->immediate_irq)
3337 queuing |= IGC_FHFT_IMM_INT;
3338
3339 if (input->drop)
3340 queuing |= IGC_FHFT_DROP;
3341
3342 wr32(fhft + 0xFC, queuing);
3343
3344 /* Write data (128 byte) and mask (128 bit) */
3345 for (i = 0; i < 16; ++i) {
3346 const size_t data_idx = i * 8;
3347 const size_t row_idx = i * 16;
3348 u32 dw0 =
3349 (data[data_idx + 0] << 0) |
3350 (data[data_idx + 1] << 8) |
3351 (data[data_idx + 2] << 16) |
3352 (data[data_idx + 3] << 24);
3353 u32 dw1 =
3354 (data[data_idx + 4] << 0) |
3355 (data[data_idx + 5] << 8) |
3356 (data[data_idx + 6] << 16) |
3357 (data[data_idx + 7] << 24);
3358 u32 tmp;
3359
3360 /* Write row: dw0, dw1 and mask */
3361 wr32(fhft + row_idx, dw0);
3362 wr32(fhft + row_idx + 4, dw1);
3363
3364 /* mask is only valid for MASK(7, 0) */
3365 tmp = rd32(fhft + row_idx + 8);
3366 tmp &= ~GENMASK(7, 0);
3367 tmp |= mask[i];
3368 wr32(fhft + row_idx + 8, tmp);
3369 }
3370
3371 /* Enable filter. */
3372 wufc |= IGC_WUFC_FLEX_HQ;
3373 if (input->index > 8) {
3374 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3375 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3376
3377 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3378
3379 wr32(IGC_WUFC_EXT, wufc_ext);
3380 } else {
3381 wufc |= (IGC_WUFC_FLX0 << input->index);
3382 }
3383 wr32(IGC_WUFC, wufc);
3384
3385 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3386 input->index);
3387
3388 return 0;
3389 }
3390
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3391 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3392 const void *src, unsigned int offset,
3393 size_t len, const void *mask)
3394 {
3395 int i;
3396
3397 /* data */
3398 memcpy(&flex->data[offset], src, len);
3399
3400 /* mask */
3401 for (i = 0; i < len; ++i) {
3402 const unsigned int idx = i + offset;
3403 const u8 *ptr = mask;
3404
3405 if (mask) {
3406 if (ptr[i] & 0xff)
3407 flex->mask[idx / 8] |= BIT(idx % 8);
3408
3409 continue;
3410 }
3411
3412 flex->mask[idx / 8] |= BIT(idx % 8);
3413 }
3414 }
3415
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3416 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3417 {
3418 struct igc_hw *hw = &adapter->hw;
3419 u32 wufc, wufc_ext;
3420 int i;
3421
3422 wufc = rd32(IGC_WUFC);
3423 wufc_ext = rd32(IGC_WUFC_EXT);
3424
3425 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3426 if (i < 8) {
3427 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3428 return i;
3429 } else {
3430 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3431 return i;
3432 }
3433 }
3434
3435 return -ENOSPC;
3436 }
3437
igc_flex_filter_in_use(struct igc_adapter * adapter)3438 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3439 {
3440 struct igc_hw *hw = &adapter->hw;
3441 u32 wufc, wufc_ext;
3442
3443 wufc = rd32(IGC_WUFC);
3444 wufc_ext = rd32(IGC_WUFC_EXT);
3445
3446 if (wufc & IGC_WUFC_FILTER_MASK)
3447 return true;
3448
3449 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3450 return true;
3451
3452 return false;
3453 }
3454
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3455 static int igc_add_flex_filter(struct igc_adapter *adapter,
3456 struct igc_nfc_rule *rule)
3457 {
3458 struct igc_flex_filter flex = { };
3459 struct igc_nfc_filter *filter = &rule->filter;
3460 unsigned int eth_offset, user_offset;
3461 int ret, index;
3462 bool vlan;
3463
3464 index = igc_find_avail_flex_filter_slot(adapter);
3465 if (index < 0)
3466 return -ENOSPC;
3467
3468 /* Construct the flex filter:
3469 * -> dest_mac [6]
3470 * -> src_mac [6]
3471 * -> tpid [2]
3472 * -> vlan tci [2]
3473 * -> ether type [2]
3474 * -> user data [8]
3475 * -> = 26 bytes => 32 length
3476 */
3477 flex.index = index;
3478 flex.length = 32;
3479 flex.rx_queue = rule->action;
3480
3481 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3482 eth_offset = vlan ? 16 : 12;
3483 user_offset = vlan ? 18 : 14;
3484
3485 /* Add destination MAC */
3486 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3487 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3488 ETH_ALEN, NULL);
3489
3490 /* Add source MAC */
3491 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3492 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3493 ETH_ALEN, NULL);
3494
3495 /* Add VLAN etype */
3496 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3497 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3498 sizeof(filter->vlan_etype),
3499 NULL);
3500
3501 /* Add VLAN TCI */
3502 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3503 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3504 sizeof(filter->vlan_tci), NULL);
3505
3506 /* Add Ether type */
3507 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3508 __be16 etype = cpu_to_be16(filter->etype);
3509
3510 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3511 sizeof(etype), NULL);
3512 }
3513
3514 /* Add user data */
3515 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3516 igc_flex_filter_add_field(&flex, &filter->user_data,
3517 user_offset,
3518 sizeof(filter->user_data),
3519 filter->user_mask);
3520
3521 /* Add it down to the hardware and enable it. */
3522 ret = igc_write_flex_filter_ll(adapter, &flex);
3523 if (ret)
3524 return ret;
3525
3526 filter->flex_index = index;
3527
3528 return 0;
3529 }
3530
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3531 static void igc_del_flex_filter(struct igc_adapter *adapter,
3532 u16 reg_index)
3533 {
3534 struct igc_hw *hw = &adapter->hw;
3535 u32 wufc;
3536
3537 /* Just disable the filter. The filter table itself is kept
3538 * intact. Another flex_filter_add() should override the "old" data
3539 * then.
3540 */
3541 if (reg_index > 8) {
3542 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3543
3544 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3545 wr32(IGC_WUFC_EXT, wufc_ext);
3546 } else {
3547 wufc = rd32(IGC_WUFC);
3548
3549 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3550 wr32(IGC_WUFC, wufc);
3551 }
3552
3553 if (igc_flex_filter_in_use(adapter))
3554 return;
3555
3556 /* No filters are in use, we may disable flex filters */
3557 wufc = rd32(IGC_WUFC);
3558 wufc &= ~IGC_WUFC_FLEX_HQ;
3559 wr32(IGC_WUFC, wufc);
3560 }
3561
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3562 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3563 struct igc_nfc_rule *rule)
3564 {
3565 int err;
3566
3567 if (rule->flex) {
3568 return igc_add_flex_filter(adapter, rule);
3569 }
3570
3571 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3572 err = igc_add_etype_filter(adapter, rule->filter.etype,
3573 rule->action);
3574 if (err)
3575 return err;
3576 }
3577
3578 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3579 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3580 rule->filter.src_addr, rule->action);
3581 if (err)
3582 return err;
3583 }
3584
3585 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3586 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3587 rule->filter.dst_addr, rule->action);
3588 if (err)
3589 return err;
3590 }
3591
3592 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3593 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3594 VLAN_PRIO_SHIFT;
3595
3596 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3597 if (err)
3598 return err;
3599 }
3600
3601 return 0;
3602 }
3603
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3604 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3605 const struct igc_nfc_rule *rule)
3606 {
3607 if (rule->flex) {
3608 igc_del_flex_filter(adapter, rule->filter.flex_index);
3609 return;
3610 }
3611
3612 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3613 igc_del_etype_filter(adapter, rule->filter.etype);
3614
3615 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3616 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3617 VLAN_PRIO_SHIFT;
3618
3619 igc_del_vlan_prio_filter(adapter, prio);
3620 }
3621
3622 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3623 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3624 rule->filter.src_addr);
3625
3626 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3627 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3628 rule->filter.dst_addr);
3629 }
3630
3631 /**
3632 * igc_get_nfc_rule() - Get NFC rule
3633 * @adapter: Pointer to adapter
3634 * @location: Rule location
3635 *
3636 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3637 *
3638 * Return: Pointer to NFC rule at @location. If not found, NULL.
3639 */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3640 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3641 u32 location)
3642 {
3643 struct igc_nfc_rule *rule;
3644
3645 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3646 if (rule->location == location)
3647 return rule;
3648 if (rule->location > location)
3649 break;
3650 }
3651
3652 return NULL;
3653 }
3654
3655 /**
3656 * igc_del_nfc_rule() - Delete NFC rule
3657 * @adapter: Pointer to adapter
3658 * @rule: Pointer to rule to be deleted
3659 *
3660 * Disable NFC rule in hardware and delete it from adapter.
3661 *
3662 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3663 */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3664 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3665 {
3666 igc_disable_nfc_rule(adapter, rule);
3667
3668 list_del(&rule->list);
3669 adapter->nfc_rule_count--;
3670
3671 kfree(rule);
3672 }
3673
igc_flush_nfc_rules(struct igc_adapter * adapter)3674 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3675 {
3676 struct igc_nfc_rule *rule, *tmp;
3677
3678 mutex_lock(&adapter->nfc_rule_lock);
3679
3680 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3681 igc_del_nfc_rule(adapter, rule);
3682
3683 mutex_unlock(&adapter->nfc_rule_lock);
3684 }
3685
3686 /**
3687 * igc_add_nfc_rule() - Add NFC rule
3688 * @adapter: Pointer to adapter
3689 * @rule: Pointer to rule to be added
3690 *
3691 * Enable NFC rule in hardware and add it to adapter.
3692 *
3693 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3694 *
3695 * Return: 0 on success, negative errno on failure.
3696 */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3697 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3698 {
3699 struct igc_nfc_rule *pred, *cur;
3700 int err;
3701
3702 err = igc_enable_nfc_rule(adapter, rule);
3703 if (err)
3704 return err;
3705
3706 pred = NULL;
3707 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3708 if (cur->location >= rule->location)
3709 break;
3710 pred = cur;
3711 }
3712
3713 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3714 adapter->nfc_rule_count++;
3715 return 0;
3716 }
3717
igc_restore_nfc_rules(struct igc_adapter * adapter)3718 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3719 {
3720 struct igc_nfc_rule *rule;
3721
3722 mutex_lock(&adapter->nfc_rule_lock);
3723
3724 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3725 igc_enable_nfc_rule(adapter, rule);
3726
3727 mutex_unlock(&adapter->nfc_rule_lock);
3728 }
3729
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)3730 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3731 {
3732 struct igc_adapter *adapter = netdev_priv(netdev);
3733
3734 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3735 }
3736
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)3737 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3738 {
3739 struct igc_adapter *adapter = netdev_priv(netdev);
3740
3741 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3742 return 0;
3743 }
3744
3745 /**
3746 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3747 * @netdev: network interface device structure
3748 *
3749 * The set_rx_mode entry point is called whenever the unicast or multicast
3750 * address lists or the network interface flags are updated. This routine is
3751 * responsible for configuring the hardware for proper unicast, multicast,
3752 * promiscuous mode, and all-multi behavior.
3753 */
igc_set_rx_mode(struct net_device * netdev)3754 static void igc_set_rx_mode(struct net_device *netdev)
3755 {
3756 struct igc_adapter *adapter = netdev_priv(netdev);
3757 struct igc_hw *hw = &adapter->hw;
3758 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3759 int count;
3760
3761 /* Check for Promiscuous and All Multicast modes */
3762 if (netdev->flags & IFF_PROMISC) {
3763 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3764 } else {
3765 if (netdev->flags & IFF_ALLMULTI) {
3766 rctl |= IGC_RCTL_MPE;
3767 } else {
3768 /* Write addresses to the MTA, if the attempt fails
3769 * then we should just turn on promiscuous mode so
3770 * that we can at least receive multicast traffic
3771 */
3772 count = igc_write_mc_addr_list(netdev);
3773 if (count < 0)
3774 rctl |= IGC_RCTL_MPE;
3775 }
3776 }
3777
3778 /* Write addresses to available RAR registers, if there is not
3779 * sufficient space to store all the addresses then enable
3780 * unicast promiscuous mode
3781 */
3782 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3783 rctl |= IGC_RCTL_UPE;
3784
3785 /* update state of unicast and multicast */
3786 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3787 wr32(IGC_RCTL, rctl);
3788
3789 #if (PAGE_SIZE < 8192)
3790 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3791 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3792 #endif
3793 wr32(IGC_RLPML, rlpml);
3794 }
3795
3796 /**
3797 * igc_configure - configure the hardware for RX and TX
3798 * @adapter: private board structure
3799 */
igc_configure(struct igc_adapter * adapter)3800 static void igc_configure(struct igc_adapter *adapter)
3801 {
3802 struct net_device *netdev = adapter->netdev;
3803 int i = 0;
3804
3805 igc_get_hw_control(adapter);
3806 igc_set_rx_mode(netdev);
3807
3808 igc_restore_vlan(adapter);
3809
3810 igc_setup_tctl(adapter);
3811 igc_setup_mrqc(adapter);
3812 igc_setup_rctl(adapter);
3813
3814 igc_set_default_mac_filter(adapter);
3815 igc_restore_nfc_rules(adapter);
3816
3817 igc_configure_tx(adapter);
3818 igc_configure_rx(adapter);
3819
3820 igc_rx_fifo_flush_base(&adapter->hw);
3821
3822 /* call igc_desc_unused which always leaves
3823 * at least 1 descriptor unused to make sure
3824 * next_to_use != next_to_clean
3825 */
3826 for (i = 0; i < adapter->num_rx_queues; i++) {
3827 struct igc_ring *ring = adapter->rx_ring[i];
3828
3829 if (ring->xsk_pool)
3830 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3831 else
3832 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3833 }
3834 }
3835
3836 /**
3837 * igc_write_ivar - configure ivar for given MSI-X vector
3838 * @hw: pointer to the HW structure
3839 * @msix_vector: vector number we are allocating to a given ring
3840 * @index: row index of IVAR register to write within IVAR table
3841 * @offset: column offset of in IVAR, should be multiple of 8
3842 *
3843 * The IVAR table consists of 2 columns,
3844 * each containing an cause allocation for an Rx and Tx ring, and a
3845 * variable number of rows depending on the number of queues supported.
3846 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)3847 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3848 int index, int offset)
3849 {
3850 u32 ivar = array_rd32(IGC_IVAR0, index);
3851
3852 /* clear any bits that are currently set */
3853 ivar &= ~((u32)0xFF << offset);
3854
3855 /* write vector and valid bit */
3856 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3857
3858 array_wr32(IGC_IVAR0, index, ivar);
3859 }
3860
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)3861 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3862 {
3863 struct igc_adapter *adapter = q_vector->adapter;
3864 struct igc_hw *hw = &adapter->hw;
3865 int rx_queue = IGC_N0_QUEUE;
3866 int tx_queue = IGC_N0_QUEUE;
3867
3868 if (q_vector->rx.ring)
3869 rx_queue = q_vector->rx.ring->reg_idx;
3870 if (q_vector->tx.ring)
3871 tx_queue = q_vector->tx.ring->reg_idx;
3872
3873 switch (hw->mac.type) {
3874 case igc_i225:
3875 if (rx_queue > IGC_N0_QUEUE)
3876 igc_write_ivar(hw, msix_vector,
3877 rx_queue >> 1,
3878 (rx_queue & 0x1) << 4);
3879 if (tx_queue > IGC_N0_QUEUE)
3880 igc_write_ivar(hw, msix_vector,
3881 tx_queue >> 1,
3882 ((tx_queue & 0x1) << 4) + 8);
3883 q_vector->eims_value = BIT(msix_vector);
3884 break;
3885 default:
3886 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3887 break;
3888 }
3889
3890 /* add q_vector eims value to global eims_enable_mask */
3891 adapter->eims_enable_mask |= q_vector->eims_value;
3892
3893 /* configure q_vector to set itr on first interrupt */
3894 q_vector->set_itr = 1;
3895 }
3896
3897 /**
3898 * igc_configure_msix - Configure MSI-X hardware
3899 * @adapter: Pointer to adapter structure
3900 *
3901 * igc_configure_msix sets up the hardware to properly
3902 * generate MSI-X interrupts.
3903 */
igc_configure_msix(struct igc_adapter * adapter)3904 static void igc_configure_msix(struct igc_adapter *adapter)
3905 {
3906 struct igc_hw *hw = &adapter->hw;
3907 int i, vector = 0;
3908 u32 tmp;
3909
3910 adapter->eims_enable_mask = 0;
3911
3912 /* set vector for other causes, i.e. link changes */
3913 switch (hw->mac.type) {
3914 case igc_i225:
3915 /* Turn on MSI-X capability first, or our settings
3916 * won't stick. And it will take days to debug.
3917 */
3918 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3919 IGC_GPIE_PBA | IGC_GPIE_EIAME |
3920 IGC_GPIE_NSICR);
3921
3922 /* enable msix_other interrupt */
3923 adapter->eims_other = BIT(vector);
3924 tmp = (vector++ | IGC_IVAR_VALID) << 8;
3925
3926 wr32(IGC_IVAR_MISC, tmp);
3927 break;
3928 default:
3929 /* do nothing, since nothing else supports MSI-X */
3930 break;
3931 } /* switch (hw->mac.type) */
3932
3933 adapter->eims_enable_mask |= adapter->eims_other;
3934
3935 for (i = 0; i < adapter->num_q_vectors; i++)
3936 igc_assign_vector(adapter->q_vector[i], vector++);
3937
3938 wrfl();
3939 }
3940
3941 /**
3942 * igc_irq_enable - Enable default interrupt generation settings
3943 * @adapter: board private structure
3944 */
igc_irq_enable(struct igc_adapter * adapter)3945 static void igc_irq_enable(struct igc_adapter *adapter)
3946 {
3947 struct igc_hw *hw = &adapter->hw;
3948
3949 if (adapter->msix_entries) {
3950 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3951 u32 regval = rd32(IGC_EIAC);
3952
3953 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3954 regval = rd32(IGC_EIAM);
3955 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3956 wr32(IGC_EIMS, adapter->eims_enable_mask);
3957 wr32(IGC_IMS, ims);
3958 } else {
3959 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3960 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3961 }
3962 }
3963
3964 /**
3965 * igc_irq_disable - Mask off interrupt generation on the NIC
3966 * @adapter: board private structure
3967 */
igc_irq_disable(struct igc_adapter * adapter)3968 static void igc_irq_disable(struct igc_adapter *adapter)
3969 {
3970 struct igc_hw *hw = &adapter->hw;
3971
3972 if (adapter->msix_entries) {
3973 u32 regval = rd32(IGC_EIAM);
3974
3975 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3976 wr32(IGC_EIMC, adapter->eims_enable_mask);
3977 regval = rd32(IGC_EIAC);
3978 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3979 }
3980
3981 wr32(IGC_IAM, 0);
3982 wr32(IGC_IMC, ~0);
3983 wrfl();
3984
3985 if (adapter->msix_entries) {
3986 int vector = 0, i;
3987
3988 synchronize_irq(adapter->msix_entries[vector++].vector);
3989
3990 for (i = 0; i < adapter->num_q_vectors; i++)
3991 synchronize_irq(adapter->msix_entries[vector++].vector);
3992 } else {
3993 synchronize_irq(adapter->pdev->irq);
3994 }
3995 }
3996
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)3997 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3998 const u32 max_rss_queues)
3999 {
4000 /* Determine if we need to pair queues. */
4001 /* If rss_queues > half of max_rss_queues, pair the queues in
4002 * order to conserve interrupts due to limited supply.
4003 */
4004 if (adapter->rss_queues > (max_rss_queues / 2))
4005 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4006 else
4007 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4008 }
4009
igc_get_max_rss_queues(struct igc_adapter * adapter)4010 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4011 {
4012 return IGC_MAX_RX_QUEUES;
4013 }
4014
igc_init_queue_configuration(struct igc_adapter * adapter)4015 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4016 {
4017 u32 max_rss_queues;
4018
4019 max_rss_queues = igc_get_max_rss_queues(adapter);
4020 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4021
4022 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4023 }
4024
4025 /**
4026 * igc_reset_q_vector - Reset config for interrupt vector
4027 * @adapter: board private structure to initialize
4028 * @v_idx: Index of vector to be reset
4029 *
4030 * If NAPI is enabled it will delete any references to the
4031 * NAPI struct. This is preparation for igc_free_q_vector.
4032 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4033 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4034 {
4035 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4036
4037 /* if we're coming from igc_set_interrupt_capability, the vectors are
4038 * not yet allocated
4039 */
4040 if (!q_vector)
4041 return;
4042
4043 if (q_vector->tx.ring)
4044 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4045
4046 if (q_vector->rx.ring)
4047 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4048
4049 netif_napi_del(&q_vector->napi);
4050 }
4051
4052 /**
4053 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4054 * @adapter: board private structure to initialize
4055 * @v_idx: Index of vector to be freed
4056 *
4057 * This function frees the memory allocated to the q_vector.
4058 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4059 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4060 {
4061 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4062
4063 adapter->q_vector[v_idx] = NULL;
4064
4065 /* igc_get_stats64() might access the rings on this vector,
4066 * we must wait a grace period before freeing it.
4067 */
4068 if (q_vector)
4069 kfree_rcu(q_vector, rcu);
4070 }
4071
4072 /**
4073 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4074 * @adapter: board private structure to initialize
4075 *
4076 * This function frees the memory allocated to the q_vectors. In addition if
4077 * NAPI is enabled it will delete any references to the NAPI struct prior
4078 * to freeing the q_vector.
4079 */
igc_free_q_vectors(struct igc_adapter * adapter)4080 static void igc_free_q_vectors(struct igc_adapter *adapter)
4081 {
4082 int v_idx = adapter->num_q_vectors;
4083
4084 adapter->num_tx_queues = 0;
4085 adapter->num_rx_queues = 0;
4086 adapter->num_q_vectors = 0;
4087
4088 while (v_idx--) {
4089 igc_reset_q_vector(adapter, v_idx);
4090 igc_free_q_vector(adapter, v_idx);
4091 }
4092 }
4093
4094 /**
4095 * igc_update_itr - update the dynamic ITR value based on statistics
4096 * @q_vector: pointer to q_vector
4097 * @ring_container: ring info to update the itr for
4098 *
4099 * Stores a new ITR value based on packets and byte
4100 * counts during the last interrupt. The advantage of per interrupt
4101 * computation is faster updates and more accurate ITR for the current
4102 * traffic pattern. Constants in this function were computed
4103 * based on theoretical maximum wire speed and thresholds were set based
4104 * on testing data as well as attempting to minimize response time
4105 * while increasing bulk throughput.
4106 * NOTE: These calculations are only valid when operating in a single-
4107 * queue environment.
4108 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4109 static void igc_update_itr(struct igc_q_vector *q_vector,
4110 struct igc_ring_container *ring_container)
4111 {
4112 unsigned int packets = ring_container->total_packets;
4113 unsigned int bytes = ring_container->total_bytes;
4114 u8 itrval = ring_container->itr;
4115
4116 /* no packets, exit with status unchanged */
4117 if (packets == 0)
4118 return;
4119
4120 switch (itrval) {
4121 case lowest_latency:
4122 /* handle TSO and jumbo frames */
4123 if (bytes / packets > 8000)
4124 itrval = bulk_latency;
4125 else if ((packets < 5) && (bytes > 512))
4126 itrval = low_latency;
4127 break;
4128 case low_latency: /* 50 usec aka 20000 ints/s */
4129 if (bytes > 10000) {
4130 /* this if handles the TSO accounting */
4131 if (bytes / packets > 8000)
4132 itrval = bulk_latency;
4133 else if ((packets < 10) || ((bytes / packets) > 1200))
4134 itrval = bulk_latency;
4135 else if ((packets > 35))
4136 itrval = lowest_latency;
4137 } else if (bytes / packets > 2000) {
4138 itrval = bulk_latency;
4139 } else if (packets <= 2 && bytes < 512) {
4140 itrval = lowest_latency;
4141 }
4142 break;
4143 case bulk_latency: /* 250 usec aka 4000 ints/s */
4144 if (bytes > 25000) {
4145 if (packets > 35)
4146 itrval = low_latency;
4147 } else if (bytes < 1500) {
4148 itrval = low_latency;
4149 }
4150 break;
4151 }
4152
4153 /* clear work counters since we have the values we need */
4154 ring_container->total_bytes = 0;
4155 ring_container->total_packets = 0;
4156
4157 /* write updated itr to ring container */
4158 ring_container->itr = itrval;
4159 }
4160
igc_set_itr(struct igc_q_vector * q_vector)4161 static void igc_set_itr(struct igc_q_vector *q_vector)
4162 {
4163 struct igc_adapter *adapter = q_vector->adapter;
4164 u32 new_itr = q_vector->itr_val;
4165 u8 current_itr = 0;
4166
4167 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4168 switch (adapter->link_speed) {
4169 case SPEED_10:
4170 case SPEED_100:
4171 current_itr = 0;
4172 new_itr = IGC_4K_ITR;
4173 goto set_itr_now;
4174 default:
4175 break;
4176 }
4177
4178 igc_update_itr(q_vector, &q_vector->tx);
4179 igc_update_itr(q_vector, &q_vector->rx);
4180
4181 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4182
4183 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4184 if (current_itr == lowest_latency &&
4185 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4186 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4187 current_itr = low_latency;
4188
4189 switch (current_itr) {
4190 /* counts and packets in update_itr are dependent on these numbers */
4191 case lowest_latency:
4192 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4193 break;
4194 case low_latency:
4195 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4196 break;
4197 case bulk_latency:
4198 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4199 break;
4200 default:
4201 break;
4202 }
4203
4204 set_itr_now:
4205 if (new_itr != q_vector->itr_val) {
4206 /* this attempts to bias the interrupt rate towards Bulk
4207 * by adding intermediate steps when interrupt rate is
4208 * increasing
4209 */
4210 new_itr = new_itr > q_vector->itr_val ?
4211 max((new_itr * q_vector->itr_val) /
4212 (new_itr + (q_vector->itr_val >> 2)),
4213 new_itr) : new_itr;
4214 /* Don't write the value here; it resets the adapter's
4215 * internal timer, and causes us to delay far longer than
4216 * we should between interrupts. Instead, we write the ITR
4217 * value at the beginning of the next interrupt so the timing
4218 * ends up being correct.
4219 */
4220 q_vector->itr_val = new_itr;
4221 q_vector->set_itr = 1;
4222 }
4223 }
4224
igc_reset_interrupt_capability(struct igc_adapter * adapter)4225 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4226 {
4227 int v_idx = adapter->num_q_vectors;
4228
4229 if (adapter->msix_entries) {
4230 pci_disable_msix(adapter->pdev);
4231 kfree(adapter->msix_entries);
4232 adapter->msix_entries = NULL;
4233 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4234 pci_disable_msi(adapter->pdev);
4235 }
4236
4237 while (v_idx--)
4238 igc_reset_q_vector(adapter, v_idx);
4239 }
4240
4241 /**
4242 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4243 * @adapter: Pointer to adapter structure
4244 * @msix: boolean value for MSI-X capability
4245 *
4246 * Attempt to configure interrupts using the best available
4247 * capabilities of the hardware and kernel.
4248 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4249 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4250 bool msix)
4251 {
4252 int numvecs, i;
4253 int err;
4254
4255 if (!msix)
4256 goto msi_only;
4257 adapter->flags |= IGC_FLAG_HAS_MSIX;
4258
4259 /* Number of supported queues. */
4260 adapter->num_rx_queues = adapter->rss_queues;
4261
4262 adapter->num_tx_queues = adapter->rss_queues;
4263
4264 /* start with one vector for every Rx queue */
4265 numvecs = adapter->num_rx_queues;
4266
4267 /* if Tx handler is separate add 1 for every Tx queue */
4268 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4269 numvecs += adapter->num_tx_queues;
4270
4271 /* store the number of vectors reserved for queues */
4272 adapter->num_q_vectors = numvecs;
4273
4274 /* add 1 vector for link status interrupts */
4275 numvecs++;
4276
4277 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4278 GFP_KERNEL);
4279
4280 if (!adapter->msix_entries)
4281 return;
4282
4283 /* populate entry values */
4284 for (i = 0; i < numvecs; i++)
4285 adapter->msix_entries[i].entry = i;
4286
4287 err = pci_enable_msix_range(adapter->pdev,
4288 adapter->msix_entries,
4289 numvecs,
4290 numvecs);
4291 if (err > 0)
4292 return;
4293
4294 kfree(adapter->msix_entries);
4295 adapter->msix_entries = NULL;
4296
4297 igc_reset_interrupt_capability(adapter);
4298
4299 msi_only:
4300 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4301
4302 adapter->rss_queues = 1;
4303 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4304 adapter->num_rx_queues = 1;
4305 adapter->num_tx_queues = 1;
4306 adapter->num_q_vectors = 1;
4307 if (!pci_enable_msi(adapter->pdev))
4308 adapter->flags |= IGC_FLAG_HAS_MSI;
4309 }
4310
4311 /**
4312 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4313 * @q_vector: pointer to q_vector
4314 *
4315 * Stores a new ITR value based on strictly on packet size. This
4316 * algorithm is less sophisticated than that used in igc_update_itr,
4317 * due to the difficulty of synchronizing statistics across multiple
4318 * receive rings. The divisors and thresholds used by this function
4319 * were determined based on theoretical maximum wire speed and testing
4320 * data, in order to minimize response time while increasing bulk
4321 * throughput.
4322 * NOTE: This function is called only when operating in a multiqueue
4323 * receive environment.
4324 */
igc_update_ring_itr(struct igc_q_vector * q_vector)4325 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4326 {
4327 struct igc_adapter *adapter = q_vector->adapter;
4328 int new_val = q_vector->itr_val;
4329 int avg_wire_size = 0;
4330 unsigned int packets;
4331
4332 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4333 * ints/sec - ITR timer value of 120 ticks.
4334 */
4335 switch (adapter->link_speed) {
4336 case SPEED_10:
4337 case SPEED_100:
4338 new_val = IGC_4K_ITR;
4339 goto set_itr_val;
4340 default:
4341 break;
4342 }
4343
4344 packets = q_vector->rx.total_packets;
4345 if (packets)
4346 avg_wire_size = q_vector->rx.total_bytes / packets;
4347
4348 packets = q_vector->tx.total_packets;
4349 if (packets)
4350 avg_wire_size = max_t(u32, avg_wire_size,
4351 q_vector->tx.total_bytes / packets);
4352
4353 /* if avg_wire_size isn't set no work was done */
4354 if (!avg_wire_size)
4355 goto clear_counts;
4356
4357 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4358 avg_wire_size += 24;
4359
4360 /* Don't starve jumbo frames */
4361 avg_wire_size = min(avg_wire_size, 3000);
4362
4363 /* Give a little boost to mid-size frames */
4364 if (avg_wire_size > 300 && avg_wire_size < 1200)
4365 new_val = avg_wire_size / 3;
4366 else
4367 new_val = avg_wire_size / 2;
4368
4369 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4370 if (new_val < IGC_20K_ITR &&
4371 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4372 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4373 new_val = IGC_20K_ITR;
4374
4375 set_itr_val:
4376 if (new_val != q_vector->itr_val) {
4377 q_vector->itr_val = new_val;
4378 q_vector->set_itr = 1;
4379 }
4380 clear_counts:
4381 q_vector->rx.total_bytes = 0;
4382 q_vector->rx.total_packets = 0;
4383 q_vector->tx.total_bytes = 0;
4384 q_vector->tx.total_packets = 0;
4385 }
4386
igc_ring_irq_enable(struct igc_q_vector * q_vector)4387 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4388 {
4389 struct igc_adapter *adapter = q_vector->adapter;
4390 struct igc_hw *hw = &adapter->hw;
4391
4392 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4393 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4394 if (adapter->num_q_vectors == 1)
4395 igc_set_itr(q_vector);
4396 else
4397 igc_update_ring_itr(q_vector);
4398 }
4399
4400 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4401 if (adapter->msix_entries)
4402 wr32(IGC_EIMS, q_vector->eims_value);
4403 else
4404 igc_irq_enable(adapter);
4405 }
4406 }
4407
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4408 static void igc_add_ring(struct igc_ring *ring,
4409 struct igc_ring_container *head)
4410 {
4411 head->ring = ring;
4412 head->count++;
4413 }
4414
4415 /**
4416 * igc_cache_ring_register - Descriptor ring to register mapping
4417 * @adapter: board private structure to initialize
4418 *
4419 * Once we know the feature-set enabled for the device, we'll cache
4420 * the register offset the descriptor ring is assigned to.
4421 */
igc_cache_ring_register(struct igc_adapter * adapter)4422 static void igc_cache_ring_register(struct igc_adapter *adapter)
4423 {
4424 int i = 0, j = 0;
4425
4426 switch (adapter->hw.mac.type) {
4427 case igc_i225:
4428 default:
4429 for (; i < adapter->num_rx_queues; i++)
4430 adapter->rx_ring[i]->reg_idx = i;
4431 for (; j < adapter->num_tx_queues; j++)
4432 adapter->tx_ring[j]->reg_idx = j;
4433 break;
4434 }
4435 }
4436
4437 /**
4438 * igc_poll - NAPI Rx polling callback
4439 * @napi: napi polling structure
4440 * @budget: count of how many packets we should handle
4441 */
igc_poll(struct napi_struct * napi,int budget)4442 static int igc_poll(struct napi_struct *napi, int budget)
4443 {
4444 struct igc_q_vector *q_vector = container_of(napi,
4445 struct igc_q_vector,
4446 napi);
4447 struct igc_ring *rx_ring = q_vector->rx.ring;
4448 bool clean_complete = true;
4449 int work_done = 0;
4450
4451 if (q_vector->tx.ring)
4452 clean_complete = igc_clean_tx_irq(q_vector, budget);
4453
4454 if (rx_ring) {
4455 int cleaned = rx_ring->xsk_pool ?
4456 igc_clean_rx_irq_zc(q_vector, budget) :
4457 igc_clean_rx_irq(q_vector, budget);
4458
4459 work_done += cleaned;
4460 if (cleaned >= budget)
4461 clean_complete = false;
4462 }
4463
4464 /* If all work not completed, return budget and keep polling */
4465 if (!clean_complete)
4466 return budget;
4467
4468 /* Exit the polling mode, but don't re-enable interrupts if stack might
4469 * poll us due to busy-polling
4470 */
4471 if (likely(napi_complete_done(napi, work_done)))
4472 igc_ring_irq_enable(q_vector);
4473
4474 return min(work_done, budget - 1);
4475 }
4476
4477 /**
4478 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4479 * @adapter: board private structure to initialize
4480 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4481 * @v_idx: index of vector in adapter struct
4482 * @txr_count: total number of Tx rings to allocate
4483 * @txr_idx: index of first Tx ring to allocate
4484 * @rxr_count: total number of Rx rings to allocate
4485 * @rxr_idx: index of first Rx ring to allocate
4486 *
4487 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4488 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4489 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4490 unsigned int v_count, unsigned int v_idx,
4491 unsigned int txr_count, unsigned int txr_idx,
4492 unsigned int rxr_count, unsigned int rxr_idx)
4493 {
4494 struct igc_q_vector *q_vector;
4495 struct igc_ring *ring;
4496 int ring_count;
4497
4498 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4499 if (txr_count > 1 || rxr_count > 1)
4500 return -ENOMEM;
4501
4502 ring_count = txr_count + rxr_count;
4503
4504 /* allocate q_vector and rings */
4505 q_vector = adapter->q_vector[v_idx];
4506 if (!q_vector)
4507 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4508 GFP_KERNEL);
4509 else
4510 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4511 if (!q_vector)
4512 return -ENOMEM;
4513
4514 /* initialize NAPI */
4515 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4516
4517 /* tie q_vector and adapter together */
4518 adapter->q_vector[v_idx] = q_vector;
4519 q_vector->adapter = adapter;
4520
4521 /* initialize work limits */
4522 q_vector->tx.work_limit = adapter->tx_work_limit;
4523
4524 /* initialize ITR configuration */
4525 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4526 q_vector->itr_val = IGC_START_ITR;
4527
4528 /* initialize pointer to rings */
4529 ring = q_vector->ring;
4530
4531 /* initialize ITR */
4532 if (rxr_count) {
4533 /* rx or rx/tx vector */
4534 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4535 q_vector->itr_val = adapter->rx_itr_setting;
4536 } else {
4537 /* tx only vector */
4538 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4539 q_vector->itr_val = adapter->tx_itr_setting;
4540 }
4541
4542 if (txr_count) {
4543 /* assign generic ring traits */
4544 ring->dev = &adapter->pdev->dev;
4545 ring->netdev = adapter->netdev;
4546
4547 /* configure backlink on ring */
4548 ring->q_vector = q_vector;
4549
4550 /* update q_vector Tx values */
4551 igc_add_ring(ring, &q_vector->tx);
4552
4553 /* apply Tx specific ring traits */
4554 ring->count = adapter->tx_ring_count;
4555 ring->queue_index = txr_idx;
4556
4557 /* assign ring to adapter */
4558 adapter->tx_ring[txr_idx] = ring;
4559
4560 /* push pointer to next ring */
4561 ring++;
4562 }
4563
4564 if (rxr_count) {
4565 /* assign generic ring traits */
4566 ring->dev = &adapter->pdev->dev;
4567 ring->netdev = adapter->netdev;
4568
4569 /* configure backlink on ring */
4570 ring->q_vector = q_vector;
4571
4572 /* update q_vector Rx values */
4573 igc_add_ring(ring, &q_vector->rx);
4574
4575 /* apply Rx specific ring traits */
4576 ring->count = adapter->rx_ring_count;
4577 ring->queue_index = rxr_idx;
4578
4579 /* assign ring to adapter */
4580 adapter->rx_ring[rxr_idx] = ring;
4581 }
4582
4583 return 0;
4584 }
4585
4586 /**
4587 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4588 * @adapter: board private structure to initialize
4589 *
4590 * We allocate one q_vector per queue interrupt. If allocation fails we
4591 * return -ENOMEM.
4592 */
igc_alloc_q_vectors(struct igc_adapter * adapter)4593 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4594 {
4595 int rxr_remaining = adapter->num_rx_queues;
4596 int txr_remaining = adapter->num_tx_queues;
4597 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4598 int q_vectors = adapter->num_q_vectors;
4599 int err;
4600
4601 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4602 for (; rxr_remaining; v_idx++) {
4603 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4604 0, 0, 1, rxr_idx);
4605
4606 if (err)
4607 goto err_out;
4608
4609 /* update counts and index */
4610 rxr_remaining--;
4611 rxr_idx++;
4612 }
4613 }
4614
4615 for (; v_idx < q_vectors; v_idx++) {
4616 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4617 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4618
4619 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4620 tqpv, txr_idx, rqpv, rxr_idx);
4621
4622 if (err)
4623 goto err_out;
4624
4625 /* update counts and index */
4626 rxr_remaining -= rqpv;
4627 txr_remaining -= tqpv;
4628 rxr_idx++;
4629 txr_idx++;
4630 }
4631
4632 return 0;
4633
4634 err_out:
4635 adapter->num_tx_queues = 0;
4636 adapter->num_rx_queues = 0;
4637 adapter->num_q_vectors = 0;
4638
4639 while (v_idx--)
4640 igc_free_q_vector(adapter, v_idx);
4641
4642 return -ENOMEM;
4643 }
4644
4645 /**
4646 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4647 * @adapter: Pointer to adapter structure
4648 * @msix: boolean for MSI-X capability
4649 *
4650 * This function initializes the interrupts and allocates all of the queues.
4651 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4652 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4653 {
4654 struct net_device *dev = adapter->netdev;
4655 int err = 0;
4656
4657 igc_set_interrupt_capability(adapter, msix);
4658
4659 err = igc_alloc_q_vectors(adapter);
4660 if (err) {
4661 netdev_err(dev, "Unable to allocate memory for vectors\n");
4662 goto err_alloc_q_vectors;
4663 }
4664
4665 igc_cache_ring_register(adapter);
4666
4667 return 0;
4668
4669 err_alloc_q_vectors:
4670 igc_reset_interrupt_capability(adapter);
4671 return err;
4672 }
4673
4674 /**
4675 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4676 * @adapter: board private structure to initialize
4677 *
4678 * igc_sw_init initializes the Adapter private data structure.
4679 * Fields are initialized based on PCI device information and
4680 * OS network device settings (MTU size).
4681 */
igc_sw_init(struct igc_adapter * adapter)4682 static int igc_sw_init(struct igc_adapter *adapter)
4683 {
4684 struct net_device *netdev = adapter->netdev;
4685 struct pci_dev *pdev = adapter->pdev;
4686 struct igc_hw *hw = &adapter->hw;
4687
4688 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4689
4690 /* set default ring sizes */
4691 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4692 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4693
4694 /* set default ITR values */
4695 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4696 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4697
4698 /* set default work limits */
4699 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4700
4701 /* adjust max frame to be at least the size of a standard frame */
4702 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4703 VLAN_HLEN;
4704 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4705
4706 mutex_init(&adapter->nfc_rule_lock);
4707 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4708 adapter->nfc_rule_count = 0;
4709
4710 spin_lock_init(&adapter->stats64_lock);
4711 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4712 adapter->flags |= IGC_FLAG_HAS_MSIX;
4713
4714 igc_init_queue_configuration(adapter);
4715
4716 /* This call may decrease the number of queues */
4717 if (igc_init_interrupt_scheme(adapter, true)) {
4718 netdev_err(netdev, "Unable to allocate memory for queues\n");
4719 return -ENOMEM;
4720 }
4721
4722 /* Explicitly disable IRQ since the NIC can be in any state. */
4723 igc_irq_disable(adapter);
4724
4725 set_bit(__IGC_DOWN, &adapter->state);
4726
4727 return 0;
4728 }
4729
4730 /**
4731 * igc_up - Open the interface and prepare it to handle traffic
4732 * @adapter: board private structure
4733 */
igc_up(struct igc_adapter * adapter)4734 void igc_up(struct igc_adapter *adapter)
4735 {
4736 struct igc_hw *hw = &adapter->hw;
4737 int i = 0;
4738
4739 /* hardware has been reset, we need to reload some things */
4740 igc_configure(adapter);
4741
4742 clear_bit(__IGC_DOWN, &adapter->state);
4743
4744 for (i = 0; i < adapter->num_q_vectors; i++)
4745 napi_enable(&adapter->q_vector[i]->napi);
4746
4747 if (adapter->msix_entries)
4748 igc_configure_msix(adapter);
4749 else
4750 igc_assign_vector(adapter->q_vector[0], 0);
4751
4752 /* Clear any pending interrupts. */
4753 rd32(IGC_ICR);
4754 igc_irq_enable(adapter);
4755
4756 netif_tx_start_all_queues(adapter->netdev);
4757
4758 /* start the watchdog. */
4759 hw->mac.get_link_status = true;
4760 schedule_work(&adapter->watchdog_task);
4761 }
4762
4763 /**
4764 * igc_update_stats - Update the board statistics counters
4765 * @adapter: board private structure
4766 */
igc_update_stats(struct igc_adapter * adapter)4767 void igc_update_stats(struct igc_adapter *adapter)
4768 {
4769 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4770 struct pci_dev *pdev = adapter->pdev;
4771 struct igc_hw *hw = &adapter->hw;
4772 u64 _bytes, _packets;
4773 u64 bytes, packets;
4774 unsigned int start;
4775 u32 mpc;
4776 int i;
4777
4778 /* Prevent stats update while adapter is being reset, or if the pci
4779 * connection is down.
4780 */
4781 if (adapter->link_speed == 0)
4782 return;
4783 if (pci_channel_offline(pdev))
4784 return;
4785
4786 packets = 0;
4787 bytes = 0;
4788
4789 rcu_read_lock();
4790 for (i = 0; i < adapter->num_rx_queues; i++) {
4791 struct igc_ring *ring = adapter->rx_ring[i];
4792 u32 rqdpc = rd32(IGC_RQDPC(i));
4793
4794 if (hw->mac.type >= igc_i225)
4795 wr32(IGC_RQDPC(i), 0);
4796
4797 if (rqdpc) {
4798 ring->rx_stats.drops += rqdpc;
4799 net_stats->rx_fifo_errors += rqdpc;
4800 }
4801
4802 do {
4803 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4804 _bytes = ring->rx_stats.bytes;
4805 _packets = ring->rx_stats.packets;
4806 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4807 bytes += _bytes;
4808 packets += _packets;
4809 }
4810
4811 net_stats->rx_bytes = bytes;
4812 net_stats->rx_packets = packets;
4813
4814 packets = 0;
4815 bytes = 0;
4816 for (i = 0; i < adapter->num_tx_queues; i++) {
4817 struct igc_ring *ring = adapter->tx_ring[i];
4818
4819 do {
4820 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4821 _bytes = ring->tx_stats.bytes;
4822 _packets = ring->tx_stats.packets;
4823 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4824 bytes += _bytes;
4825 packets += _packets;
4826 }
4827 net_stats->tx_bytes = bytes;
4828 net_stats->tx_packets = packets;
4829 rcu_read_unlock();
4830
4831 /* read stats registers */
4832 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4833 adapter->stats.gprc += rd32(IGC_GPRC);
4834 adapter->stats.gorc += rd32(IGC_GORCL);
4835 rd32(IGC_GORCH); /* clear GORCL */
4836 adapter->stats.bprc += rd32(IGC_BPRC);
4837 adapter->stats.mprc += rd32(IGC_MPRC);
4838 adapter->stats.roc += rd32(IGC_ROC);
4839
4840 adapter->stats.prc64 += rd32(IGC_PRC64);
4841 adapter->stats.prc127 += rd32(IGC_PRC127);
4842 adapter->stats.prc255 += rd32(IGC_PRC255);
4843 adapter->stats.prc511 += rd32(IGC_PRC511);
4844 adapter->stats.prc1023 += rd32(IGC_PRC1023);
4845 adapter->stats.prc1522 += rd32(IGC_PRC1522);
4846 adapter->stats.tlpic += rd32(IGC_TLPIC);
4847 adapter->stats.rlpic += rd32(IGC_RLPIC);
4848 adapter->stats.hgptc += rd32(IGC_HGPTC);
4849
4850 mpc = rd32(IGC_MPC);
4851 adapter->stats.mpc += mpc;
4852 net_stats->rx_fifo_errors += mpc;
4853 adapter->stats.scc += rd32(IGC_SCC);
4854 adapter->stats.ecol += rd32(IGC_ECOL);
4855 adapter->stats.mcc += rd32(IGC_MCC);
4856 adapter->stats.latecol += rd32(IGC_LATECOL);
4857 adapter->stats.dc += rd32(IGC_DC);
4858 adapter->stats.rlec += rd32(IGC_RLEC);
4859 adapter->stats.xonrxc += rd32(IGC_XONRXC);
4860 adapter->stats.xontxc += rd32(IGC_XONTXC);
4861 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4862 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4863 adapter->stats.fcruc += rd32(IGC_FCRUC);
4864 adapter->stats.gptc += rd32(IGC_GPTC);
4865 adapter->stats.gotc += rd32(IGC_GOTCL);
4866 rd32(IGC_GOTCH); /* clear GOTCL */
4867 adapter->stats.rnbc += rd32(IGC_RNBC);
4868 adapter->stats.ruc += rd32(IGC_RUC);
4869 adapter->stats.rfc += rd32(IGC_RFC);
4870 adapter->stats.rjc += rd32(IGC_RJC);
4871 adapter->stats.tor += rd32(IGC_TORH);
4872 adapter->stats.tot += rd32(IGC_TOTH);
4873 adapter->stats.tpr += rd32(IGC_TPR);
4874
4875 adapter->stats.ptc64 += rd32(IGC_PTC64);
4876 adapter->stats.ptc127 += rd32(IGC_PTC127);
4877 adapter->stats.ptc255 += rd32(IGC_PTC255);
4878 adapter->stats.ptc511 += rd32(IGC_PTC511);
4879 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4880 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4881
4882 adapter->stats.mptc += rd32(IGC_MPTC);
4883 adapter->stats.bptc += rd32(IGC_BPTC);
4884
4885 adapter->stats.tpt += rd32(IGC_TPT);
4886 adapter->stats.colc += rd32(IGC_COLC);
4887 adapter->stats.colc += rd32(IGC_RERC);
4888
4889 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4890
4891 adapter->stats.tsctc += rd32(IGC_TSCTC);
4892
4893 adapter->stats.iac += rd32(IGC_IAC);
4894
4895 /* Fill out the OS statistics structure */
4896 net_stats->multicast = adapter->stats.mprc;
4897 net_stats->collisions = adapter->stats.colc;
4898
4899 /* Rx Errors */
4900
4901 /* RLEC on some newer hardware can be incorrect so build
4902 * our own version based on RUC and ROC
4903 */
4904 net_stats->rx_errors = adapter->stats.rxerrc +
4905 adapter->stats.crcerrs + adapter->stats.algnerrc +
4906 adapter->stats.ruc + adapter->stats.roc +
4907 adapter->stats.cexterr;
4908 net_stats->rx_length_errors = adapter->stats.ruc +
4909 adapter->stats.roc;
4910 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4911 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4912 net_stats->rx_missed_errors = adapter->stats.mpc;
4913
4914 /* Tx Errors */
4915 net_stats->tx_errors = adapter->stats.ecol +
4916 adapter->stats.latecol;
4917 net_stats->tx_aborted_errors = adapter->stats.ecol;
4918 net_stats->tx_window_errors = adapter->stats.latecol;
4919 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4920
4921 /* Tx Dropped needs to be maintained elsewhere */
4922
4923 /* Management Stats */
4924 adapter->stats.mgptc += rd32(IGC_MGTPTC);
4925 adapter->stats.mgprc += rd32(IGC_MGTPRC);
4926 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4927 }
4928
4929 /**
4930 * igc_down - Close the interface
4931 * @adapter: board private structure
4932 */
igc_down(struct igc_adapter * adapter)4933 void igc_down(struct igc_adapter *adapter)
4934 {
4935 struct net_device *netdev = adapter->netdev;
4936 struct igc_hw *hw = &adapter->hw;
4937 u32 tctl, rctl;
4938 int i = 0;
4939
4940 set_bit(__IGC_DOWN, &adapter->state);
4941
4942 igc_ptp_suspend(adapter);
4943
4944 if (pci_device_is_present(adapter->pdev)) {
4945 /* disable receives in the hardware */
4946 rctl = rd32(IGC_RCTL);
4947 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4948 /* flush and sleep below */
4949 }
4950 /* set trans_start so we don't get spurious watchdogs during reset */
4951 netif_trans_update(netdev);
4952
4953 netif_carrier_off(netdev);
4954 netif_tx_stop_all_queues(netdev);
4955
4956 if (pci_device_is_present(adapter->pdev)) {
4957 /* disable transmits in the hardware */
4958 tctl = rd32(IGC_TCTL);
4959 tctl &= ~IGC_TCTL_EN;
4960 wr32(IGC_TCTL, tctl);
4961 /* flush both disables and wait for them to finish */
4962 wrfl();
4963 usleep_range(10000, 20000);
4964
4965 igc_irq_disable(adapter);
4966 }
4967
4968 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4969
4970 for (i = 0; i < adapter->num_q_vectors; i++) {
4971 if (adapter->q_vector[i]) {
4972 napi_synchronize(&adapter->q_vector[i]->napi);
4973 napi_disable(&adapter->q_vector[i]->napi);
4974 }
4975 }
4976
4977 del_timer_sync(&adapter->watchdog_timer);
4978 del_timer_sync(&adapter->phy_info_timer);
4979
4980 /* record the stats before reset*/
4981 spin_lock(&adapter->stats64_lock);
4982 igc_update_stats(adapter);
4983 spin_unlock(&adapter->stats64_lock);
4984
4985 adapter->link_speed = 0;
4986 adapter->link_duplex = 0;
4987
4988 if (!pci_channel_offline(adapter->pdev))
4989 igc_reset(adapter);
4990
4991 /* clear VLAN promisc flag so VFTA will be updated if necessary */
4992 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4993
4994 igc_clean_all_tx_rings(adapter);
4995 igc_clean_all_rx_rings(adapter);
4996 }
4997
igc_reinit_locked(struct igc_adapter * adapter)4998 void igc_reinit_locked(struct igc_adapter *adapter)
4999 {
5000 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5001 usleep_range(1000, 2000);
5002 igc_down(adapter);
5003 igc_up(adapter);
5004 clear_bit(__IGC_RESETTING, &adapter->state);
5005 }
5006
igc_reset_task(struct work_struct * work)5007 static void igc_reset_task(struct work_struct *work)
5008 {
5009 struct igc_adapter *adapter;
5010
5011 adapter = container_of(work, struct igc_adapter, reset_task);
5012
5013 rtnl_lock();
5014 /* If we're already down or resetting, just bail */
5015 if (test_bit(__IGC_DOWN, &adapter->state) ||
5016 test_bit(__IGC_RESETTING, &adapter->state)) {
5017 rtnl_unlock();
5018 return;
5019 }
5020
5021 igc_rings_dump(adapter);
5022 igc_regs_dump(adapter);
5023 netdev_err(adapter->netdev, "Reset adapter\n");
5024 igc_reinit_locked(adapter);
5025 rtnl_unlock();
5026 }
5027
5028 /**
5029 * igc_change_mtu - Change the Maximum Transfer Unit
5030 * @netdev: network interface device structure
5031 * @new_mtu: new value for maximum frame size
5032 *
5033 * Returns 0 on success, negative on failure
5034 */
igc_change_mtu(struct net_device * netdev,int new_mtu)5035 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5036 {
5037 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5038 struct igc_adapter *adapter = netdev_priv(netdev);
5039
5040 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5041 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5042 return -EINVAL;
5043 }
5044
5045 /* adjust max frame to be at least the size of a standard frame */
5046 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5047 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5048
5049 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5050 usleep_range(1000, 2000);
5051
5052 /* igc_down has a dependency on max_frame_size */
5053 adapter->max_frame_size = max_frame;
5054
5055 if (netif_running(netdev))
5056 igc_down(adapter);
5057
5058 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5059 netdev->mtu = new_mtu;
5060
5061 if (netif_running(netdev))
5062 igc_up(adapter);
5063 else
5064 igc_reset(adapter);
5065
5066 clear_bit(__IGC_RESETTING, &adapter->state);
5067
5068 return 0;
5069 }
5070
5071 /**
5072 * igc_get_stats64 - Get System Network Statistics
5073 * @netdev: network interface device structure
5074 * @stats: rtnl_link_stats64 pointer
5075 *
5076 * Returns the address of the device statistics structure.
5077 * The statistics are updated here and also from the timer callback.
5078 */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5079 static void igc_get_stats64(struct net_device *netdev,
5080 struct rtnl_link_stats64 *stats)
5081 {
5082 struct igc_adapter *adapter = netdev_priv(netdev);
5083
5084 spin_lock(&adapter->stats64_lock);
5085 if (!test_bit(__IGC_RESETTING, &adapter->state))
5086 igc_update_stats(adapter);
5087 memcpy(stats, &adapter->stats64, sizeof(*stats));
5088 spin_unlock(&adapter->stats64_lock);
5089 }
5090
igc_fix_features(struct net_device * netdev,netdev_features_t features)5091 static netdev_features_t igc_fix_features(struct net_device *netdev,
5092 netdev_features_t features)
5093 {
5094 /* Since there is no support for separate Rx/Tx vlan accel
5095 * enable/disable make sure Tx flag is always in same state as Rx.
5096 */
5097 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5098 features |= NETIF_F_HW_VLAN_CTAG_TX;
5099 else
5100 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5101
5102 return features;
5103 }
5104
igc_set_features(struct net_device * netdev,netdev_features_t features)5105 static int igc_set_features(struct net_device *netdev,
5106 netdev_features_t features)
5107 {
5108 netdev_features_t changed = netdev->features ^ features;
5109 struct igc_adapter *adapter = netdev_priv(netdev);
5110
5111 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5112 igc_vlan_mode(netdev, features);
5113
5114 /* Add VLAN support */
5115 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5116 return 0;
5117
5118 if (!(features & NETIF_F_NTUPLE))
5119 igc_flush_nfc_rules(adapter);
5120
5121 netdev->features = features;
5122
5123 if (netif_running(netdev))
5124 igc_reinit_locked(adapter);
5125 else
5126 igc_reset(adapter);
5127
5128 return 1;
5129 }
5130
5131 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5132 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5133 netdev_features_t features)
5134 {
5135 unsigned int network_hdr_len, mac_hdr_len;
5136
5137 /* Make certain the headers can be described by a context descriptor */
5138 mac_hdr_len = skb_network_header(skb) - skb->data;
5139 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5140 return features & ~(NETIF_F_HW_CSUM |
5141 NETIF_F_SCTP_CRC |
5142 NETIF_F_HW_VLAN_CTAG_TX |
5143 NETIF_F_TSO |
5144 NETIF_F_TSO6);
5145
5146 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5147 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
5148 return features & ~(NETIF_F_HW_CSUM |
5149 NETIF_F_SCTP_CRC |
5150 NETIF_F_TSO |
5151 NETIF_F_TSO6);
5152
5153 /* We can only support IPv4 TSO in tunnels if we can mangle the
5154 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5155 */
5156 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5157 features &= ~NETIF_F_TSO;
5158
5159 return features;
5160 }
5161
igc_tsync_interrupt(struct igc_adapter * adapter)5162 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5163 {
5164 u32 ack, tsauxc, sec, nsec, tsicr;
5165 struct igc_hw *hw = &adapter->hw;
5166 struct ptp_clock_event event;
5167 struct timespec64 ts;
5168
5169 tsicr = rd32(IGC_TSICR);
5170 ack = 0;
5171
5172 if (tsicr & IGC_TSICR_SYS_WRAP) {
5173 event.type = PTP_CLOCK_PPS;
5174 if (adapter->ptp_caps.pps)
5175 ptp_clock_event(adapter->ptp_clock, &event);
5176 ack |= IGC_TSICR_SYS_WRAP;
5177 }
5178
5179 if (tsicr & IGC_TSICR_TXTS) {
5180 /* retrieve hardware timestamp */
5181 schedule_work(&adapter->ptp_tx_work);
5182 ack |= IGC_TSICR_TXTS;
5183 }
5184
5185 if (tsicr & IGC_TSICR_TT0) {
5186 spin_lock(&adapter->tmreg_lock);
5187 ts = timespec64_add(adapter->perout[0].start,
5188 adapter->perout[0].period);
5189 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5190 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5191 tsauxc = rd32(IGC_TSAUXC);
5192 tsauxc |= IGC_TSAUXC_EN_TT0;
5193 wr32(IGC_TSAUXC, tsauxc);
5194 adapter->perout[0].start = ts;
5195 spin_unlock(&adapter->tmreg_lock);
5196 ack |= IGC_TSICR_TT0;
5197 }
5198
5199 if (tsicr & IGC_TSICR_TT1) {
5200 spin_lock(&adapter->tmreg_lock);
5201 ts = timespec64_add(adapter->perout[1].start,
5202 adapter->perout[1].period);
5203 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5204 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5205 tsauxc = rd32(IGC_TSAUXC);
5206 tsauxc |= IGC_TSAUXC_EN_TT1;
5207 wr32(IGC_TSAUXC, tsauxc);
5208 adapter->perout[1].start = ts;
5209 spin_unlock(&adapter->tmreg_lock);
5210 ack |= IGC_TSICR_TT1;
5211 }
5212
5213 if (tsicr & IGC_TSICR_AUTT0) {
5214 nsec = rd32(IGC_AUXSTMPL0);
5215 sec = rd32(IGC_AUXSTMPH0);
5216 event.type = PTP_CLOCK_EXTTS;
5217 event.index = 0;
5218 event.timestamp = sec * NSEC_PER_SEC + nsec;
5219 ptp_clock_event(adapter->ptp_clock, &event);
5220 ack |= IGC_TSICR_AUTT0;
5221 }
5222
5223 if (tsicr & IGC_TSICR_AUTT1) {
5224 nsec = rd32(IGC_AUXSTMPL1);
5225 sec = rd32(IGC_AUXSTMPH1);
5226 event.type = PTP_CLOCK_EXTTS;
5227 event.index = 1;
5228 event.timestamp = sec * NSEC_PER_SEC + nsec;
5229 ptp_clock_event(adapter->ptp_clock, &event);
5230 ack |= IGC_TSICR_AUTT1;
5231 }
5232
5233 /* acknowledge the interrupts */
5234 wr32(IGC_TSICR, ack);
5235 }
5236
5237 /**
5238 * igc_msix_other - msix other interrupt handler
5239 * @irq: interrupt number
5240 * @data: pointer to a q_vector
5241 */
igc_msix_other(int irq,void * data)5242 static irqreturn_t igc_msix_other(int irq, void *data)
5243 {
5244 struct igc_adapter *adapter = data;
5245 struct igc_hw *hw = &adapter->hw;
5246 u32 icr = rd32(IGC_ICR);
5247
5248 /* reading ICR causes bit 31 of EICR to be cleared */
5249 if (icr & IGC_ICR_DRSTA)
5250 schedule_work(&adapter->reset_task);
5251
5252 if (icr & IGC_ICR_DOUTSYNC) {
5253 /* HW is reporting DMA is out of sync */
5254 adapter->stats.doosync++;
5255 }
5256
5257 if (icr & IGC_ICR_LSC) {
5258 hw->mac.get_link_status = true;
5259 /* guard against interrupt when we're going down */
5260 if (!test_bit(__IGC_DOWN, &adapter->state))
5261 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5262 }
5263
5264 if (icr & IGC_ICR_TS)
5265 igc_tsync_interrupt(adapter);
5266
5267 wr32(IGC_EIMS, adapter->eims_other);
5268
5269 return IRQ_HANDLED;
5270 }
5271
igc_write_itr(struct igc_q_vector * q_vector)5272 static void igc_write_itr(struct igc_q_vector *q_vector)
5273 {
5274 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5275
5276 if (!q_vector->set_itr)
5277 return;
5278
5279 if (!itr_val)
5280 itr_val = IGC_ITR_VAL_MASK;
5281
5282 itr_val |= IGC_EITR_CNT_IGNR;
5283
5284 writel(itr_val, q_vector->itr_register);
5285 q_vector->set_itr = 0;
5286 }
5287
igc_msix_ring(int irq,void * data)5288 static irqreturn_t igc_msix_ring(int irq, void *data)
5289 {
5290 struct igc_q_vector *q_vector = data;
5291
5292 /* Write the ITR value calculated from the previous interrupt. */
5293 igc_write_itr(q_vector);
5294
5295 napi_schedule(&q_vector->napi);
5296
5297 return IRQ_HANDLED;
5298 }
5299
5300 /**
5301 * igc_request_msix - Initialize MSI-X interrupts
5302 * @adapter: Pointer to adapter structure
5303 *
5304 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5305 * kernel.
5306 */
igc_request_msix(struct igc_adapter * adapter)5307 static int igc_request_msix(struct igc_adapter *adapter)
5308 {
5309 unsigned int num_q_vectors = adapter->num_q_vectors;
5310 int i = 0, err = 0, vector = 0, free_vector = 0;
5311 struct net_device *netdev = adapter->netdev;
5312
5313 err = request_irq(adapter->msix_entries[vector].vector,
5314 &igc_msix_other, 0, netdev->name, adapter);
5315 if (err)
5316 goto err_out;
5317
5318 if (num_q_vectors > MAX_Q_VECTORS) {
5319 num_q_vectors = MAX_Q_VECTORS;
5320 dev_warn(&adapter->pdev->dev,
5321 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5322 adapter->num_q_vectors, MAX_Q_VECTORS);
5323 }
5324 for (i = 0; i < num_q_vectors; i++) {
5325 struct igc_q_vector *q_vector = adapter->q_vector[i];
5326
5327 vector++;
5328
5329 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5330
5331 if (q_vector->rx.ring && q_vector->tx.ring)
5332 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5333 q_vector->rx.ring->queue_index);
5334 else if (q_vector->tx.ring)
5335 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5336 q_vector->tx.ring->queue_index);
5337 else if (q_vector->rx.ring)
5338 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5339 q_vector->rx.ring->queue_index);
5340 else
5341 sprintf(q_vector->name, "%s-unused", netdev->name);
5342
5343 err = request_irq(adapter->msix_entries[vector].vector,
5344 igc_msix_ring, 0, q_vector->name,
5345 q_vector);
5346 if (err)
5347 goto err_free;
5348 }
5349
5350 igc_configure_msix(adapter);
5351 return 0;
5352
5353 err_free:
5354 /* free already assigned IRQs */
5355 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5356
5357 vector--;
5358 for (i = 0; i < vector; i++) {
5359 free_irq(adapter->msix_entries[free_vector++].vector,
5360 adapter->q_vector[i]);
5361 }
5362 err_out:
5363 return err;
5364 }
5365
5366 /**
5367 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5368 * @adapter: Pointer to adapter structure
5369 *
5370 * This function resets the device so that it has 0 rx queues, tx queues, and
5371 * MSI-X interrupts allocated.
5372 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5373 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5374 {
5375 igc_free_q_vectors(adapter);
5376 igc_reset_interrupt_capability(adapter);
5377 }
5378
5379 /* Need to wait a few seconds after link up to get diagnostic information from
5380 * the phy
5381 */
igc_update_phy_info(struct timer_list * t)5382 static void igc_update_phy_info(struct timer_list *t)
5383 {
5384 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5385
5386 igc_get_phy_info(&adapter->hw);
5387 }
5388
5389 /**
5390 * igc_has_link - check shared code for link and determine up/down
5391 * @adapter: pointer to driver private info
5392 */
igc_has_link(struct igc_adapter * adapter)5393 bool igc_has_link(struct igc_adapter *adapter)
5394 {
5395 struct igc_hw *hw = &adapter->hw;
5396 bool link_active = false;
5397
5398 /* get_link_status is set on LSC (link status) interrupt or
5399 * rx sequence error interrupt. get_link_status will stay
5400 * false until the igc_check_for_link establishes link
5401 * for copper adapters ONLY
5402 */
5403 if (!hw->mac.get_link_status)
5404 return true;
5405 hw->mac.ops.check_for_link(hw);
5406 link_active = !hw->mac.get_link_status;
5407
5408 if (hw->mac.type == igc_i225) {
5409 if (!netif_carrier_ok(adapter->netdev)) {
5410 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5411 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5412 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5413 adapter->link_check_timeout = jiffies;
5414 }
5415 }
5416
5417 return link_active;
5418 }
5419
5420 /**
5421 * igc_watchdog - Timer Call-back
5422 * @t: timer for the watchdog
5423 */
igc_watchdog(struct timer_list * t)5424 static void igc_watchdog(struct timer_list *t)
5425 {
5426 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5427 /* Do the rest outside of interrupt context */
5428 schedule_work(&adapter->watchdog_task);
5429 }
5430
igc_watchdog_task(struct work_struct * work)5431 static void igc_watchdog_task(struct work_struct *work)
5432 {
5433 struct igc_adapter *adapter = container_of(work,
5434 struct igc_adapter,
5435 watchdog_task);
5436 struct net_device *netdev = adapter->netdev;
5437 struct igc_hw *hw = &adapter->hw;
5438 struct igc_phy_info *phy = &hw->phy;
5439 u16 phy_data, retry_count = 20;
5440 u32 link;
5441 int i;
5442
5443 link = igc_has_link(adapter);
5444
5445 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5446 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5447 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5448 else
5449 link = false;
5450 }
5451
5452 if (link) {
5453 /* Cancel scheduled suspend requests. */
5454 pm_runtime_resume(netdev->dev.parent);
5455
5456 if (!netif_carrier_ok(netdev)) {
5457 u32 ctrl;
5458
5459 hw->mac.ops.get_speed_and_duplex(hw,
5460 &adapter->link_speed,
5461 &adapter->link_duplex);
5462
5463 ctrl = rd32(IGC_CTRL);
5464 /* Link status message must follow this format */
5465 netdev_info(netdev,
5466 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5467 adapter->link_speed,
5468 adapter->link_duplex == FULL_DUPLEX ?
5469 "Full" : "Half",
5470 (ctrl & IGC_CTRL_TFCE) &&
5471 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5472 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5473 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5474
5475 /* disable EEE if enabled */
5476 if ((adapter->flags & IGC_FLAG_EEE) &&
5477 adapter->link_duplex == HALF_DUPLEX) {
5478 netdev_info(netdev,
5479 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5480 adapter->hw.dev_spec._base.eee_enable = false;
5481 adapter->flags &= ~IGC_FLAG_EEE;
5482 }
5483
5484 /* check if SmartSpeed worked */
5485 igc_check_downshift(hw);
5486 if (phy->speed_downgraded)
5487 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5488
5489 /* adjust timeout factor according to speed/duplex */
5490 adapter->tx_timeout_factor = 1;
5491 switch (adapter->link_speed) {
5492 case SPEED_10:
5493 adapter->tx_timeout_factor = 14;
5494 break;
5495 case SPEED_100:
5496 case SPEED_1000:
5497 case SPEED_2500:
5498 adapter->tx_timeout_factor = 7;
5499 break;
5500 }
5501
5502 if (adapter->link_speed != SPEED_1000)
5503 goto no_wait;
5504
5505 /* wait for Remote receiver status OK */
5506 retry_read_status:
5507 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5508 &phy_data)) {
5509 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5510 retry_count) {
5511 msleep(100);
5512 retry_count--;
5513 goto retry_read_status;
5514 } else if (!retry_count) {
5515 netdev_err(netdev, "exceed max 2 second\n");
5516 }
5517 } else {
5518 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5519 }
5520 no_wait:
5521 netif_carrier_on(netdev);
5522
5523 /* link state has changed, schedule phy info update */
5524 if (!test_bit(__IGC_DOWN, &adapter->state))
5525 mod_timer(&adapter->phy_info_timer,
5526 round_jiffies(jiffies + 2 * HZ));
5527 }
5528 } else {
5529 if (netif_carrier_ok(netdev)) {
5530 adapter->link_speed = 0;
5531 adapter->link_duplex = 0;
5532
5533 /* Links status message must follow this format */
5534 netdev_info(netdev, "NIC Link is Down\n");
5535 netif_carrier_off(netdev);
5536
5537 /* link state has changed, schedule phy info update */
5538 if (!test_bit(__IGC_DOWN, &adapter->state))
5539 mod_timer(&adapter->phy_info_timer,
5540 round_jiffies(jiffies + 2 * HZ));
5541
5542 /* link is down, time to check for alternate media */
5543 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5544 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5545 schedule_work(&adapter->reset_task);
5546 /* return immediately */
5547 return;
5548 }
5549 }
5550 pm_schedule_suspend(netdev->dev.parent,
5551 MSEC_PER_SEC * 5);
5552
5553 /* also check for alternate media here */
5554 } else if (!netif_carrier_ok(netdev) &&
5555 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5556 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5557 schedule_work(&adapter->reset_task);
5558 /* return immediately */
5559 return;
5560 }
5561 }
5562 }
5563
5564 spin_lock(&adapter->stats64_lock);
5565 igc_update_stats(adapter);
5566 spin_unlock(&adapter->stats64_lock);
5567
5568 for (i = 0; i < adapter->num_tx_queues; i++) {
5569 struct igc_ring *tx_ring = adapter->tx_ring[i];
5570
5571 if (!netif_carrier_ok(netdev)) {
5572 /* We've lost link, so the controller stops DMA,
5573 * but we've got queued Tx work that's never going
5574 * to get done, so reset controller to flush Tx.
5575 * (Do the reset outside of interrupt context).
5576 */
5577 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5578 adapter->tx_timeout_count++;
5579 schedule_work(&adapter->reset_task);
5580 /* return immediately since reset is imminent */
5581 return;
5582 }
5583 }
5584
5585 /* Force detection of hung controller every watchdog period */
5586 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5587 }
5588
5589 /* Cause software interrupt to ensure Rx ring is cleaned */
5590 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5591 u32 eics = 0;
5592
5593 for (i = 0; i < adapter->num_q_vectors; i++)
5594 eics |= adapter->q_vector[i]->eims_value;
5595 wr32(IGC_EICS, eics);
5596 } else {
5597 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5598 }
5599
5600 igc_ptp_tx_hang(adapter);
5601
5602 /* Reset the timer */
5603 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5604 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5605 mod_timer(&adapter->watchdog_timer,
5606 round_jiffies(jiffies + HZ));
5607 else
5608 mod_timer(&adapter->watchdog_timer,
5609 round_jiffies(jiffies + 2 * HZ));
5610 }
5611 }
5612
5613 /**
5614 * igc_intr_msi - Interrupt Handler
5615 * @irq: interrupt number
5616 * @data: pointer to a network interface device structure
5617 */
igc_intr_msi(int irq,void * data)5618 static irqreturn_t igc_intr_msi(int irq, void *data)
5619 {
5620 struct igc_adapter *adapter = data;
5621 struct igc_q_vector *q_vector = adapter->q_vector[0];
5622 struct igc_hw *hw = &adapter->hw;
5623 /* read ICR disables interrupts using IAM */
5624 u32 icr = rd32(IGC_ICR);
5625
5626 igc_write_itr(q_vector);
5627
5628 if (icr & IGC_ICR_DRSTA)
5629 schedule_work(&adapter->reset_task);
5630
5631 if (icr & IGC_ICR_DOUTSYNC) {
5632 /* HW is reporting DMA is out of sync */
5633 adapter->stats.doosync++;
5634 }
5635
5636 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5637 hw->mac.get_link_status = true;
5638 if (!test_bit(__IGC_DOWN, &adapter->state))
5639 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5640 }
5641
5642 if (icr & IGC_ICR_TS)
5643 igc_tsync_interrupt(adapter);
5644
5645 napi_schedule(&q_vector->napi);
5646
5647 return IRQ_HANDLED;
5648 }
5649
5650 /**
5651 * igc_intr - Legacy Interrupt Handler
5652 * @irq: interrupt number
5653 * @data: pointer to a network interface device structure
5654 */
igc_intr(int irq,void * data)5655 static irqreturn_t igc_intr(int irq, void *data)
5656 {
5657 struct igc_adapter *adapter = data;
5658 struct igc_q_vector *q_vector = adapter->q_vector[0];
5659 struct igc_hw *hw = &adapter->hw;
5660 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5661 * need for the IMC write
5662 */
5663 u32 icr = rd32(IGC_ICR);
5664
5665 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5666 * not set, then the adapter didn't send an interrupt
5667 */
5668 if (!(icr & IGC_ICR_INT_ASSERTED))
5669 return IRQ_NONE;
5670
5671 igc_write_itr(q_vector);
5672
5673 if (icr & IGC_ICR_DRSTA)
5674 schedule_work(&adapter->reset_task);
5675
5676 if (icr & IGC_ICR_DOUTSYNC) {
5677 /* HW is reporting DMA is out of sync */
5678 adapter->stats.doosync++;
5679 }
5680
5681 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5682 hw->mac.get_link_status = true;
5683 /* guard against interrupt when we're going down */
5684 if (!test_bit(__IGC_DOWN, &adapter->state))
5685 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5686 }
5687
5688 if (icr & IGC_ICR_TS)
5689 igc_tsync_interrupt(adapter);
5690
5691 napi_schedule(&q_vector->napi);
5692
5693 return IRQ_HANDLED;
5694 }
5695
igc_free_irq(struct igc_adapter * adapter)5696 static void igc_free_irq(struct igc_adapter *adapter)
5697 {
5698 if (adapter->msix_entries) {
5699 int vector = 0, i;
5700
5701 free_irq(adapter->msix_entries[vector++].vector, adapter);
5702
5703 for (i = 0; i < adapter->num_q_vectors; i++)
5704 free_irq(adapter->msix_entries[vector++].vector,
5705 adapter->q_vector[i]);
5706 } else {
5707 free_irq(adapter->pdev->irq, adapter);
5708 }
5709 }
5710
5711 /**
5712 * igc_request_irq - initialize interrupts
5713 * @adapter: Pointer to adapter structure
5714 *
5715 * Attempts to configure interrupts using the best available
5716 * capabilities of the hardware and kernel.
5717 */
igc_request_irq(struct igc_adapter * adapter)5718 static int igc_request_irq(struct igc_adapter *adapter)
5719 {
5720 struct net_device *netdev = adapter->netdev;
5721 struct pci_dev *pdev = adapter->pdev;
5722 int err = 0;
5723
5724 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5725 err = igc_request_msix(adapter);
5726 if (!err)
5727 goto request_done;
5728 /* fall back to MSI */
5729 igc_free_all_tx_resources(adapter);
5730 igc_free_all_rx_resources(adapter);
5731
5732 igc_clear_interrupt_scheme(adapter);
5733 err = igc_init_interrupt_scheme(adapter, false);
5734 if (err)
5735 goto request_done;
5736 igc_setup_all_tx_resources(adapter);
5737 igc_setup_all_rx_resources(adapter);
5738 igc_configure(adapter);
5739 }
5740
5741 igc_assign_vector(adapter->q_vector[0], 0);
5742
5743 if (adapter->flags & IGC_FLAG_HAS_MSI) {
5744 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5745 netdev->name, adapter);
5746 if (!err)
5747 goto request_done;
5748
5749 /* fall back to legacy interrupts */
5750 igc_reset_interrupt_capability(adapter);
5751 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5752 }
5753
5754 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5755 netdev->name, adapter);
5756
5757 if (err)
5758 netdev_err(netdev, "Error %d getting interrupt\n", err);
5759
5760 request_done:
5761 return err;
5762 }
5763
5764 /**
5765 * __igc_open - Called when a network interface is made active
5766 * @netdev: network interface device structure
5767 * @resuming: boolean indicating if the device is resuming
5768 *
5769 * Returns 0 on success, negative value on failure
5770 *
5771 * The open entry point is called when a network interface is made
5772 * active by the system (IFF_UP). At this point all resources needed
5773 * for transmit and receive operations are allocated, the interrupt
5774 * handler is registered with the OS, the watchdog timer is started,
5775 * and the stack is notified that the interface is ready.
5776 */
__igc_open(struct net_device * netdev,bool resuming)5777 static int __igc_open(struct net_device *netdev, bool resuming)
5778 {
5779 struct igc_adapter *adapter = netdev_priv(netdev);
5780 struct pci_dev *pdev = adapter->pdev;
5781 struct igc_hw *hw = &adapter->hw;
5782 int err = 0;
5783 int i = 0;
5784
5785 /* disallow open during test */
5786
5787 if (test_bit(__IGC_TESTING, &adapter->state)) {
5788 WARN_ON(resuming);
5789 return -EBUSY;
5790 }
5791
5792 if (!resuming)
5793 pm_runtime_get_sync(&pdev->dev);
5794
5795 netif_carrier_off(netdev);
5796
5797 /* allocate transmit descriptors */
5798 err = igc_setup_all_tx_resources(adapter);
5799 if (err)
5800 goto err_setup_tx;
5801
5802 /* allocate receive descriptors */
5803 err = igc_setup_all_rx_resources(adapter);
5804 if (err)
5805 goto err_setup_rx;
5806
5807 igc_power_up_link(adapter);
5808
5809 igc_configure(adapter);
5810
5811 err = igc_request_irq(adapter);
5812 if (err)
5813 goto err_req_irq;
5814
5815 /* Notify the stack of the actual queue counts. */
5816 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5817 if (err)
5818 goto err_set_queues;
5819
5820 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5821 if (err)
5822 goto err_set_queues;
5823
5824 clear_bit(__IGC_DOWN, &adapter->state);
5825
5826 for (i = 0; i < adapter->num_q_vectors; i++)
5827 napi_enable(&adapter->q_vector[i]->napi);
5828
5829 /* Clear any pending interrupts. */
5830 rd32(IGC_ICR);
5831 igc_irq_enable(adapter);
5832
5833 if (!resuming)
5834 pm_runtime_put(&pdev->dev);
5835
5836 netif_tx_start_all_queues(netdev);
5837
5838 /* start the watchdog. */
5839 hw->mac.get_link_status = true;
5840 schedule_work(&adapter->watchdog_task);
5841
5842 return IGC_SUCCESS;
5843
5844 err_set_queues:
5845 igc_free_irq(adapter);
5846 err_req_irq:
5847 igc_release_hw_control(adapter);
5848 igc_power_down_phy_copper_base(&adapter->hw);
5849 igc_free_all_rx_resources(adapter);
5850 err_setup_rx:
5851 igc_free_all_tx_resources(adapter);
5852 err_setup_tx:
5853 igc_reset(adapter);
5854 if (!resuming)
5855 pm_runtime_put(&pdev->dev);
5856
5857 return err;
5858 }
5859
igc_open(struct net_device * netdev)5860 int igc_open(struct net_device *netdev)
5861 {
5862 return __igc_open(netdev, false);
5863 }
5864
5865 /**
5866 * __igc_close - Disables a network interface
5867 * @netdev: network interface device structure
5868 * @suspending: boolean indicating the device is suspending
5869 *
5870 * Returns 0, this is not allowed to fail
5871 *
5872 * The close entry point is called when an interface is de-activated
5873 * by the OS. The hardware is still under the driver's control, but
5874 * needs to be disabled. A global MAC reset is issued to stop the
5875 * hardware, and all transmit and receive resources are freed.
5876 */
__igc_close(struct net_device * netdev,bool suspending)5877 static int __igc_close(struct net_device *netdev, bool suspending)
5878 {
5879 struct igc_adapter *adapter = netdev_priv(netdev);
5880 struct pci_dev *pdev = adapter->pdev;
5881
5882 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5883
5884 if (!suspending)
5885 pm_runtime_get_sync(&pdev->dev);
5886
5887 igc_down(adapter);
5888
5889 igc_release_hw_control(adapter);
5890
5891 igc_free_irq(adapter);
5892
5893 igc_free_all_tx_resources(adapter);
5894 igc_free_all_rx_resources(adapter);
5895
5896 if (!suspending)
5897 pm_runtime_put_sync(&pdev->dev);
5898
5899 return 0;
5900 }
5901
igc_close(struct net_device * netdev)5902 int igc_close(struct net_device *netdev)
5903 {
5904 if (netif_device_present(netdev) || netdev->dismantle)
5905 return __igc_close(netdev, false);
5906 return 0;
5907 }
5908
5909 /**
5910 * igc_ioctl - Access the hwtstamp interface
5911 * @netdev: network interface device structure
5912 * @ifr: interface request data
5913 * @cmd: ioctl command
5914 **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)5915 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5916 {
5917 switch (cmd) {
5918 case SIOCGHWTSTAMP:
5919 return igc_ptp_get_ts_config(netdev, ifr);
5920 case SIOCSHWTSTAMP:
5921 return igc_ptp_set_ts_config(netdev, ifr);
5922 default:
5923 return -EOPNOTSUPP;
5924 }
5925 }
5926
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)5927 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5928 bool enable)
5929 {
5930 struct igc_ring *ring;
5931
5932 if (queue < 0 || queue >= adapter->num_tx_queues)
5933 return -EINVAL;
5934
5935 ring = adapter->tx_ring[queue];
5936 ring->launchtime_enable = enable;
5937
5938 return 0;
5939 }
5940
is_base_time_past(ktime_t base_time,const struct timespec64 * now)5941 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5942 {
5943 struct timespec64 b;
5944
5945 b = ktime_to_timespec64(base_time);
5946
5947 return timespec64_compare(now, &b) > 0;
5948 }
5949
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)5950 static bool validate_schedule(struct igc_adapter *adapter,
5951 const struct tc_taprio_qopt_offload *qopt)
5952 {
5953 int queue_uses[IGC_MAX_TX_QUEUES] = { };
5954 struct timespec64 now;
5955 size_t n;
5956
5957 if (qopt->cycle_time_extension)
5958 return false;
5959
5960 igc_ptp_read(adapter, &now);
5961
5962 /* If we program the controller's BASET registers with a time
5963 * in the future, it will hold all the packets until that
5964 * time, causing a lot of TX Hangs, so to avoid that, we
5965 * reject schedules that would start in the future.
5966 */
5967 if (!is_base_time_past(qopt->base_time, &now))
5968 return false;
5969
5970 for (n = 0; n < qopt->num_entries; n++) {
5971 const struct tc_taprio_sched_entry *e, *prev;
5972 int i;
5973
5974 prev = n ? &qopt->entries[n - 1] : NULL;
5975 e = &qopt->entries[n];
5976
5977 /* i225 only supports "global" frame preemption
5978 * settings.
5979 */
5980 if (e->command != TC_TAPRIO_CMD_SET_GATES)
5981 return false;
5982
5983 for (i = 0; i < adapter->num_tx_queues; i++) {
5984 if (e->gate_mask & BIT(i))
5985 queue_uses[i]++;
5986
5987 /* There are limitations: A single queue cannot be
5988 * opened and closed multiple times per cycle unless the
5989 * gate stays open. Check for it.
5990 */
5991 if (queue_uses[i] > 1 &&
5992 !(prev->gate_mask & BIT(i)))
5993 return false;
5994 }
5995 }
5996
5997 return true;
5998 }
5999
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6000 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6001 struct tc_etf_qopt_offload *qopt)
6002 {
6003 struct igc_hw *hw = &adapter->hw;
6004 int err;
6005
6006 if (hw->mac.type != igc_i225)
6007 return -EOPNOTSUPP;
6008
6009 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6010 if (err)
6011 return err;
6012
6013 return igc_tsn_offload_apply(adapter);
6014 }
6015
igc_tsn_clear_schedule(struct igc_adapter * adapter)6016 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6017 {
6018 int i;
6019
6020 adapter->base_time = 0;
6021 adapter->cycle_time = NSEC_PER_SEC;
6022
6023 for (i = 0; i < adapter->num_tx_queues; i++) {
6024 struct igc_ring *ring = adapter->tx_ring[i];
6025
6026 ring->start_time = 0;
6027 ring->end_time = NSEC_PER_SEC;
6028 }
6029
6030 return 0;
6031 }
6032
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6033 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6034 struct tc_taprio_qopt_offload *qopt)
6035 {
6036 bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6037 u32 start_time = 0, end_time = 0;
6038 size_t n;
6039 int i;
6040
6041 adapter->qbv_enable = qopt->enable;
6042
6043 if (!qopt->enable)
6044 return igc_tsn_clear_schedule(adapter);
6045
6046 if (qopt->base_time < 0)
6047 return -ERANGE;
6048
6049 if (adapter->base_time)
6050 return -EALREADY;
6051
6052 if (!validate_schedule(adapter, qopt))
6053 return -EINVAL;
6054
6055 adapter->cycle_time = qopt->cycle_time;
6056 adapter->base_time = qopt->base_time;
6057
6058 for (n = 0; n < qopt->num_entries; n++) {
6059 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6060
6061 end_time += e->interval;
6062
6063 /* If any of the conditions below are true, we need to manually
6064 * control the end time of the cycle.
6065 * 1. Qbv users can specify a cycle time that is not equal
6066 * to the total GCL intervals. Hence, recalculation is
6067 * necessary here to exclude the time interval that
6068 * exceeds the cycle time.
6069 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6070 * once the end of the list is reached, it will switch
6071 * to the END_OF_CYCLE state and leave the gates in the
6072 * same state until the next cycle is started.
6073 */
6074 if (end_time > adapter->cycle_time ||
6075 n + 1 == qopt->num_entries)
6076 end_time = adapter->cycle_time;
6077
6078 for (i = 0; i < adapter->num_tx_queues; i++) {
6079 struct igc_ring *ring = adapter->tx_ring[i];
6080
6081 if (!(e->gate_mask & BIT(i)))
6082 continue;
6083
6084 /* Check whether a queue stays open for more than one
6085 * entry. If so, keep the start and advance the end
6086 * time.
6087 */
6088 if (!queue_configured[i])
6089 ring->start_time = start_time;
6090 ring->end_time = end_time;
6091
6092 queue_configured[i] = true;
6093 }
6094
6095 start_time += e->interval;
6096 }
6097
6098 /* Check whether a queue gets configured.
6099 * If not, set the start and end time to be end time.
6100 */
6101 for (i = 0; i < adapter->num_tx_queues; i++) {
6102 if (!queue_configured[i]) {
6103 struct igc_ring *ring = adapter->tx_ring[i];
6104
6105 ring->start_time = end_time;
6106 ring->end_time = end_time;
6107 }
6108 }
6109
6110 return 0;
6111 }
6112
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6113 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6114 struct tc_taprio_qopt_offload *qopt)
6115 {
6116 struct igc_hw *hw = &adapter->hw;
6117 int err;
6118
6119 if (hw->mac.type != igc_i225)
6120 return -EOPNOTSUPP;
6121
6122 err = igc_save_qbv_schedule(adapter, qopt);
6123 if (err)
6124 return err;
6125
6126 return igc_tsn_offload_apply(adapter);
6127 }
6128
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6129 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6130 bool enable, int idleslope, int sendslope,
6131 int hicredit, int locredit)
6132 {
6133 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6134 struct net_device *netdev = adapter->netdev;
6135 struct igc_ring *ring;
6136 int i;
6137
6138 /* i225 has two sets of credit-based shaper logic.
6139 * Supporting it only on the top two priority queues
6140 */
6141 if (queue < 0 || queue > 1)
6142 return -EINVAL;
6143
6144 ring = adapter->tx_ring[queue];
6145
6146 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6147 if (adapter->tx_ring[i])
6148 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6149
6150 /* CBS should be enabled on the highest priority queue first in order
6151 * for the CBS algorithm to operate as intended.
6152 */
6153 if (enable) {
6154 if (queue == 1 && !cbs_status[0]) {
6155 netdev_err(netdev,
6156 "Enabling CBS on queue1 before queue0\n");
6157 return -EINVAL;
6158 }
6159 } else {
6160 if (queue == 0 && cbs_status[1]) {
6161 netdev_err(netdev,
6162 "Disabling CBS on queue0 before queue1\n");
6163 return -EINVAL;
6164 }
6165 }
6166
6167 ring->cbs_enable = enable;
6168 ring->idleslope = idleslope;
6169 ring->sendslope = sendslope;
6170 ring->hicredit = hicredit;
6171 ring->locredit = locredit;
6172
6173 return 0;
6174 }
6175
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6176 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6177 struct tc_cbs_qopt_offload *qopt)
6178 {
6179 struct igc_hw *hw = &adapter->hw;
6180 int err;
6181
6182 if (hw->mac.type != igc_i225)
6183 return -EOPNOTSUPP;
6184
6185 if (qopt->queue < 0 || qopt->queue > 1)
6186 return -EINVAL;
6187
6188 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6189 qopt->idleslope, qopt->sendslope,
6190 qopt->hicredit, qopt->locredit);
6191 if (err)
6192 return err;
6193
6194 return igc_tsn_offload_apply(adapter);
6195 }
6196
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6197 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6198 void *type_data)
6199 {
6200 struct igc_adapter *adapter = netdev_priv(dev);
6201
6202 switch (type) {
6203 case TC_SETUP_QDISC_TAPRIO:
6204 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6205
6206 case TC_SETUP_QDISC_ETF:
6207 return igc_tsn_enable_launchtime(adapter, type_data);
6208
6209 case TC_SETUP_QDISC_CBS:
6210 return igc_tsn_enable_cbs(adapter, type_data);
6211
6212 default:
6213 return -EOPNOTSUPP;
6214 }
6215 }
6216
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6217 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6218 {
6219 struct igc_adapter *adapter = netdev_priv(dev);
6220
6221 switch (bpf->command) {
6222 case XDP_SETUP_PROG:
6223 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6224 case XDP_SETUP_XSK_POOL:
6225 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6226 bpf->xsk.queue_id);
6227 default:
6228 return -EOPNOTSUPP;
6229 }
6230 }
6231
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6232 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6233 struct xdp_frame **frames, u32 flags)
6234 {
6235 struct igc_adapter *adapter = netdev_priv(dev);
6236 int cpu = smp_processor_id();
6237 struct netdev_queue *nq;
6238 struct igc_ring *ring;
6239 int i, drops;
6240
6241 if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
6242 return -ENETDOWN;
6243
6244 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6245 return -EINVAL;
6246
6247 ring = igc_xdp_get_tx_ring(adapter, cpu);
6248 nq = txring_txq(ring);
6249
6250 __netif_tx_lock(nq, cpu);
6251
6252 drops = 0;
6253 for (i = 0; i < num_frames; i++) {
6254 int err;
6255 struct xdp_frame *xdpf = frames[i];
6256
6257 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6258 if (err) {
6259 xdp_return_frame_rx_napi(xdpf);
6260 drops++;
6261 }
6262 }
6263
6264 if (flags & XDP_XMIT_FLUSH)
6265 igc_flush_tx_descriptors(ring);
6266
6267 __netif_tx_unlock(nq);
6268
6269 return num_frames - drops;
6270 }
6271
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6272 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6273 struct igc_q_vector *q_vector)
6274 {
6275 struct igc_hw *hw = &adapter->hw;
6276 u32 eics = 0;
6277
6278 eics |= q_vector->eims_value;
6279 wr32(IGC_EICS, eics);
6280 }
6281
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6282 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6283 {
6284 struct igc_adapter *adapter = netdev_priv(dev);
6285 struct igc_q_vector *q_vector;
6286 struct igc_ring *ring;
6287
6288 if (test_bit(__IGC_DOWN, &adapter->state))
6289 return -ENETDOWN;
6290
6291 if (!igc_xdp_is_enabled(adapter))
6292 return -ENXIO;
6293
6294 if (queue_id >= adapter->num_rx_queues)
6295 return -EINVAL;
6296
6297 ring = adapter->rx_ring[queue_id];
6298
6299 if (!ring->xsk_pool)
6300 return -ENXIO;
6301
6302 q_vector = adapter->q_vector[queue_id];
6303 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6304 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6305
6306 return 0;
6307 }
6308
6309 static const struct net_device_ops igc_netdev_ops = {
6310 .ndo_open = igc_open,
6311 .ndo_stop = igc_close,
6312 .ndo_start_xmit = igc_xmit_frame,
6313 .ndo_set_rx_mode = igc_set_rx_mode,
6314 .ndo_set_mac_address = igc_set_mac,
6315 .ndo_change_mtu = igc_change_mtu,
6316 .ndo_get_stats64 = igc_get_stats64,
6317 .ndo_fix_features = igc_fix_features,
6318 .ndo_set_features = igc_set_features,
6319 .ndo_features_check = igc_features_check,
6320 .ndo_eth_ioctl = igc_ioctl,
6321 .ndo_setup_tc = igc_setup_tc,
6322 .ndo_bpf = igc_bpf,
6323 .ndo_xdp_xmit = igc_xdp_xmit,
6324 .ndo_xsk_wakeup = igc_xsk_wakeup,
6325 };
6326
6327 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6328 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6329 {
6330 struct igc_adapter *adapter = hw->back;
6331
6332 pci_read_config_word(adapter->pdev, reg, value);
6333 }
6334
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6335 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6336 {
6337 struct igc_adapter *adapter = hw->back;
6338
6339 pci_write_config_word(adapter->pdev, reg, *value);
6340 }
6341
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6342 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6343 {
6344 struct igc_adapter *adapter = hw->back;
6345
6346 if (!pci_is_pcie(adapter->pdev))
6347 return -IGC_ERR_CONFIG;
6348
6349 pcie_capability_read_word(adapter->pdev, reg, value);
6350
6351 return IGC_SUCCESS;
6352 }
6353
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6354 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6355 {
6356 struct igc_adapter *adapter = hw->back;
6357
6358 if (!pci_is_pcie(adapter->pdev))
6359 return -IGC_ERR_CONFIG;
6360
6361 pcie_capability_write_word(adapter->pdev, reg, *value);
6362
6363 return IGC_SUCCESS;
6364 }
6365
igc_rd32(struct igc_hw * hw,u32 reg)6366 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6367 {
6368 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6369 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6370 u32 value = 0;
6371
6372 if (IGC_REMOVED(hw_addr))
6373 return ~value;
6374
6375 value = readl(&hw_addr[reg]);
6376
6377 /* reads should not return all F's */
6378 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6379 struct net_device *netdev = igc->netdev;
6380
6381 hw->hw_addr = NULL;
6382 netif_device_detach(netdev);
6383 netdev_err(netdev, "PCIe link lost, device now detached\n");
6384 WARN(pci_device_is_present(igc->pdev),
6385 "igc: Failed to read reg 0x%x!\n", reg);
6386 }
6387
6388 return value;
6389 }
6390
6391 /**
6392 * igc_probe - Device Initialization Routine
6393 * @pdev: PCI device information struct
6394 * @ent: entry in igc_pci_tbl
6395 *
6396 * Returns 0 on success, negative on failure
6397 *
6398 * igc_probe initializes an adapter identified by a pci_dev structure.
6399 * The OS initialization, configuring the adapter private structure,
6400 * and a hardware reset occur.
6401 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)6402 static int igc_probe(struct pci_dev *pdev,
6403 const struct pci_device_id *ent)
6404 {
6405 struct igc_adapter *adapter;
6406 struct net_device *netdev;
6407 struct igc_hw *hw;
6408 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6409 int err;
6410
6411 err = pci_enable_device_mem(pdev);
6412 if (err)
6413 return err;
6414
6415 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6416 if (err) {
6417 dev_err(&pdev->dev,
6418 "No usable DMA configuration, aborting\n");
6419 goto err_dma;
6420 }
6421
6422 err = pci_request_mem_regions(pdev, igc_driver_name);
6423 if (err)
6424 goto err_pci_reg;
6425
6426 pci_enable_pcie_error_reporting(pdev);
6427
6428 err = pci_enable_ptm(pdev, NULL);
6429 if (err < 0)
6430 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6431
6432 pci_set_master(pdev);
6433
6434 err = -ENOMEM;
6435 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6436 IGC_MAX_TX_QUEUES);
6437
6438 if (!netdev)
6439 goto err_alloc_etherdev;
6440
6441 SET_NETDEV_DEV(netdev, &pdev->dev);
6442
6443 pci_set_drvdata(pdev, netdev);
6444 adapter = netdev_priv(netdev);
6445 adapter->netdev = netdev;
6446 adapter->pdev = pdev;
6447 hw = &adapter->hw;
6448 hw->back = adapter;
6449 adapter->port_num = hw->bus.func;
6450 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6451
6452 err = pci_save_state(pdev);
6453 if (err)
6454 goto err_ioremap;
6455
6456 err = -EIO;
6457 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6458 pci_resource_len(pdev, 0));
6459 if (!adapter->io_addr)
6460 goto err_ioremap;
6461
6462 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6463 hw->hw_addr = adapter->io_addr;
6464
6465 netdev->netdev_ops = &igc_netdev_ops;
6466 igc_ethtool_set_ops(netdev);
6467 netdev->watchdog_timeo = 5 * HZ;
6468
6469 netdev->mem_start = pci_resource_start(pdev, 0);
6470 netdev->mem_end = pci_resource_end(pdev, 0);
6471
6472 /* PCI config space info */
6473 hw->vendor_id = pdev->vendor;
6474 hw->device_id = pdev->device;
6475 hw->revision_id = pdev->revision;
6476 hw->subsystem_vendor_id = pdev->subsystem_vendor;
6477 hw->subsystem_device_id = pdev->subsystem_device;
6478
6479 /* Copy the default MAC and PHY function pointers */
6480 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6481 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6482
6483 /* Initialize skew-specific constants */
6484 err = ei->get_invariants(hw);
6485 if (err)
6486 goto err_sw_init;
6487
6488 /* Add supported features to the features list*/
6489 netdev->features |= NETIF_F_SG;
6490 netdev->features |= NETIF_F_TSO;
6491 netdev->features |= NETIF_F_TSO6;
6492 netdev->features |= NETIF_F_TSO_ECN;
6493 netdev->features |= NETIF_F_RXCSUM;
6494 netdev->features |= NETIF_F_HW_CSUM;
6495 netdev->features |= NETIF_F_SCTP_CRC;
6496 netdev->features |= NETIF_F_HW_TC;
6497
6498 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6499 NETIF_F_GSO_GRE_CSUM | \
6500 NETIF_F_GSO_IPXIP4 | \
6501 NETIF_F_GSO_IPXIP6 | \
6502 NETIF_F_GSO_UDP_TUNNEL | \
6503 NETIF_F_GSO_UDP_TUNNEL_CSUM)
6504
6505 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6506 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6507
6508 /* setup the private structure */
6509 err = igc_sw_init(adapter);
6510 if (err)
6511 goto err_sw_init;
6512
6513 /* copy netdev features into list of user selectable features */
6514 netdev->hw_features |= NETIF_F_NTUPLE;
6515 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6516 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6517 netdev->hw_features |= netdev->features;
6518
6519 netdev->features |= NETIF_F_HIGHDMA;
6520
6521 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6522 netdev->mpls_features |= NETIF_F_HW_CSUM;
6523 netdev->hw_enc_features |= netdev->vlan_features;
6524
6525 /* MTU range: 68 - 9216 */
6526 netdev->min_mtu = ETH_MIN_MTU;
6527 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6528
6529 /* before reading the NVM, reset the controller to put the device in a
6530 * known good starting state
6531 */
6532 hw->mac.ops.reset_hw(hw);
6533
6534 if (igc_get_flash_presence_i225(hw)) {
6535 if (hw->nvm.ops.validate(hw) < 0) {
6536 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6537 err = -EIO;
6538 goto err_eeprom;
6539 }
6540 }
6541
6542 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6543 /* copy the MAC address out of the NVM */
6544 if (hw->mac.ops.read_mac_addr(hw))
6545 dev_err(&pdev->dev, "NVM Read Error\n");
6546 }
6547
6548 eth_hw_addr_set(netdev, hw->mac.addr);
6549
6550 if (!is_valid_ether_addr(netdev->dev_addr)) {
6551 dev_err(&pdev->dev, "Invalid MAC Address\n");
6552 err = -EIO;
6553 goto err_eeprom;
6554 }
6555
6556 /* configure RXPBSIZE and TXPBSIZE */
6557 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6558 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6559
6560 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6561 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6562
6563 INIT_WORK(&adapter->reset_task, igc_reset_task);
6564 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6565
6566 /* Initialize link properties that are user-changeable */
6567 adapter->fc_autoneg = true;
6568 hw->mac.autoneg = true;
6569 hw->phy.autoneg_advertised = 0xaf;
6570
6571 hw->fc.requested_mode = igc_fc_default;
6572 hw->fc.current_mode = igc_fc_default;
6573
6574 /* By default, support wake on port A */
6575 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6576
6577 /* initialize the wol settings based on the eeprom settings */
6578 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6579 adapter->wol |= IGC_WUFC_MAG;
6580
6581 device_set_wakeup_enable(&adapter->pdev->dev,
6582 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6583
6584 igc_ptp_init(adapter);
6585
6586 igc_tsn_clear_schedule(adapter);
6587
6588 /* reset the hardware with the new settings */
6589 igc_reset(adapter);
6590
6591 /* let the f/w know that the h/w is now under the control of the
6592 * driver.
6593 */
6594 igc_get_hw_control(adapter);
6595
6596 strncpy(netdev->name, "eth%d", IFNAMSIZ);
6597 err = register_netdev(netdev);
6598 if (err)
6599 goto err_register;
6600
6601 /* carrier off reporting is important to ethtool even BEFORE open */
6602 netif_carrier_off(netdev);
6603
6604 /* Check if Media Autosense is enabled */
6605 adapter->ei = *ei;
6606
6607 /* print pcie link status and MAC address */
6608 pcie_print_link_status(pdev);
6609 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6610
6611 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6612 /* Disable EEE for internal PHY devices */
6613 hw->dev_spec._base.eee_enable = false;
6614 adapter->flags &= ~IGC_FLAG_EEE;
6615 igc_set_eee_i225(hw, false, false, false);
6616
6617 pm_runtime_put_noidle(&pdev->dev);
6618
6619 return 0;
6620
6621 err_register:
6622 igc_release_hw_control(adapter);
6623 err_eeprom:
6624 if (!igc_check_reset_block(hw))
6625 igc_reset_phy(hw);
6626 err_sw_init:
6627 igc_clear_interrupt_scheme(adapter);
6628 iounmap(adapter->io_addr);
6629 err_ioremap:
6630 free_netdev(netdev);
6631 err_alloc_etherdev:
6632 pci_disable_pcie_error_reporting(pdev);
6633 pci_release_mem_regions(pdev);
6634 err_pci_reg:
6635 err_dma:
6636 pci_disable_device(pdev);
6637 return err;
6638 }
6639
6640 /**
6641 * igc_remove - Device Removal Routine
6642 * @pdev: PCI device information struct
6643 *
6644 * igc_remove is called by the PCI subsystem to alert the driver
6645 * that it should release a PCI device. This could be caused by a
6646 * Hot-Plug event, or because the driver is going to be removed from
6647 * memory.
6648 */
igc_remove(struct pci_dev * pdev)6649 static void igc_remove(struct pci_dev *pdev)
6650 {
6651 struct net_device *netdev = pci_get_drvdata(pdev);
6652 struct igc_adapter *adapter = netdev_priv(netdev);
6653
6654 pm_runtime_get_noresume(&pdev->dev);
6655
6656 igc_flush_nfc_rules(adapter);
6657
6658 igc_ptp_stop(adapter);
6659
6660 set_bit(__IGC_DOWN, &adapter->state);
6661
6662 del_timer_sync(&adapter->watchdog_timer);
6663 del_timer_sync(&adapter->phy_info_timer);
6664
6665 cancel_work_sync(&adapter->reset_task);
6666 cancel_work_sync(&adapter->watchdog_task);
6667
6668 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6669 * would have already happened in close and is redundant.
6670 */
6671 igc_release_hw_control(adapter);
6672 unregister_netdev(netdev);
6673
6674 igc_clear_interrupt_scheme(adapter);
6675 pci_iounmap(pdev, adapter->io_addr);
6676 pci_release_mem_regions(pdev);
6677
6678 free_netdev(netdev);
6679
6680 pci_disable_pcie_error_reporting(pdev);
6681
6682 pci_disable_device(pdev);
6683 }
6684
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)6685 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6686 bool runtime)
6687 {
6688 struct net_device *netdev = pci_get_drvdata(pdev);
6689 struct igc_adapter *adapter = netdev_priv(netdev);
6690 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6691 struct igc_hw *hw = &adapter->hw;
6692 u32 ctrl, rctl, status;
6693 bool wake;
6694
6695 rtnl_lock();
6696 netif_device_detach(netdev);
6697
6698 if (netif_running(netdev))
6699 __igc_close(netdev, true);
6700
6701 igc_ptp_suspend(adapter);
6702
6703 igc_clear_interrupt_scheme(adapter);
6704 rtnl_unlock();
6705
6706 status = rd32(IGC_STATUS);
6707 if (status & IGC_STATUS_LU)
6708 wufc &= ~IGC_WUFC_LNKC;
6709
6710 if (wufc) {
6711 igc_setup_rctl(adapter);
6712 igc_set_rx_mode(netdev);
6713
6714 /* turn on all-multi mode if wake on multicast is enabled */
6715 if (wufc & IGC_WUFC_MC) {
6716 rctl = rd32(IGC_RCTL);
6717 rctl |= IGC_RCTL_MPE;
6718 wr32(IGC_RCTL, rctl);
6719 }
6720
6721 ctrl = rd32(IGC_CTRL);
6722 ctrl |= IGC_CTRL_ADVD3WUC;
6723 wr32(IGC_CTRL, ctrl);
6724
6725 /* Allow time for pending master requests to run */
6726 igc_disable_pcie_master(hw);
6727
6728 wr32(IGC_WUC, IGC_WUC_PME_EN);
6729 wr32(IGC_WUFC, wufc);
6730 } else {
6731 wr32(IGC_WUC, 0);
6732 wr32(IGC_WUFC, 0);
6733 }
6734
6735 wake = wufc || adapter->en_mng_pt;
6736 if (!wake)
6737 igc_power_down_phy_copper_base(&adapter->hw);
6738 else
6739 igc_power_up_link(adapter);
6740
6741 if (enable_wake)
6742 *enable_wake = wake;
6743
6744 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6745 * would have already happened in close and is redundant.
6746 */
6747 igc_release_hw_control(adapter);
6748
6749 pci_disable_device(pdev);
6750
6751 return 0;
6752 }
6753
6754 #ifdef CONFIG_PM
igc_runtime_suspend(struct device * dev)6755 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6756 {
6757 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6758 }
6759
igc_deliver_wake_packet(struct net_device * netdev)6760 static void igc_deliver_wake_packet(struct net_device *netdev)
6761 {
6762 struct igc_adapter *adapter = netdev_priv(netdev);
6763 struct igc_hw *hw = &adapter->hw;
6764 struct sk_buff *skb;
6765 u32 wupl;
6766
6767 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6768
6769 /* WUPM stores only the first 128 bytes of the wake packet.
6770 * Read the packet only if we have the whole thing.
6771 */
6772 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6773 return;
6774
6775 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6776 if (!skb)
6777 return;
6778
6779 skb_put(skb, wupl);
6780
6781 /* Ensure reads are 32-bit aligned */
6782 wupl = roundup(wupl, 4);
6783
6784 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6785
6786 skb->protocol = eth_type_trans(skb, netdev);
6787 netif_rx(skb);
6788 }
6789
igc_resume(struct device * dev)6790 static int __maybe_unused igc_resume(struct device *dev)
6791 {
6792 struct pci_dev *pdev = to_pci_dev(dev);
6793 struct net_device *netdev = pci_get_drvdata(pdev);
6794 struct igc_adapter *adapter = netdev_priv(netdev);
6795 struct igc_hw *hw = &adapter->hw;
6796 u32 err, val;
6797
6798 pci_set_power_state(pdev, PCI_D0);
6799 pci_restore_state(pdev);
6800 pci_save_state(pdev);
6801
6802 if (!pci_device_is_present(pdev))
6803 return -ENODEV;
6804 err = pci_enable_device_mem(pdev);
6805 if (err) {
6806 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6807 return err;
6808 }
6809 pci_set_master(pdev);
6810
6811 pci_enable_wake(pdev, PCI_D3hot, 0);
6812 pci_enable_wake(pdev, PCI_D3cold, 0);
6813
6814 if (igc_init_interrupt_scheme(adapter, true)) {
6815 netdev_err(netdev, "Unable to allocate memory for queues\n");
6816 return -ENOMEM;
6817 }
6818
6819 igc_reset(adapter);
6820
6821 /* let the f/w know that the h/w is now under the control of the
6822 * driver.
6823 */
6824 igc_get_hw_control(adapter);
6825
6826 val = rd32(IGC_WUS);
6827 if (val & WAKE_PKT_WUS)
6828 igc_deliver_wake_packet(netdev);
6829
6830 wr32(IGC_WUS, ~0);
6831
6832 rtnl_lock();
6833 if (!err && netif_running(netdev))
6834 err = __igc_open(netdev, true);
6835
6836 if (!err)
6837 netif_device_attach(netdev);
6838 rtnl_unlock();
6839
6840 return err;
6841 }
6842
igc_runtime_resume(struct device * dev)6843 static int __maybe_unused igc_runtime_resume(struct device *dev)
6844 {
6845 return igc_resume(dev);
6846 }
6847
igc_suspend(struct device * dev)6848 static int __maybe_unused igc_suspend(struct device *dev)
6849 {
6850 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6851 }
6852
igc_runtime_idle(struct device * dev)6853 static int __maybe_unused igc_runtime_idle(struct device *dev)
6854 {
6855 struct net_device *netdev = dev_get_drvdata(dev);
6856 struct igc_adapter *adapter = netdev_priv(netdev);
6857
6858 if (!igc_has_link(adapter))
6859 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6860
6861 return -EBUSY;
6862 }
6863 #endif /* CONFIG_PM */
6864
igc_shutdown(struct pci_dev * pdev)6865 static void igc_shutdown(struct pci_dev *pdev)
6866 {
6867 bool wake;
6868
6869 __igc_shutdown(pdev, &wake, 0);
6870
6871 if (system_state == SYSTEM_POWER_OFF) {
6872 pci_wake_from_d3(pdev, wake);
6873 pci_set_power_state(pdev, PCI_D3hot);
6874 }
6875 }
6876
6877 /**
6878 * igc_io_error_detected - called when PCI error is detected
6879 * @pdev: Pointer to PCI device
6880 * @state: The current PCI connection state
6881 *
6882 * This function is called after a PCI bus error affecting
6883 * this device has been detected.
6884 **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)6885 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6886 pci_channel_state_t state)
6887 {
6888 struct net_device *netdev = pci_get_drvdata(pdev);
6889 struct igc_adapter *adapter = netdev_priv(netdev);
6890
6891 netif_device_detach(netdev);
6892
6893 if (state == pci_channel_io_perm_failure)
6894 return PCI_ERS_RESULT_DISCONNECT;
6895
6896 if (netif_running(netdev))
6897 igc_down(adapter);
6898 pci_disable_device(pdev);
6899
6900 /* Request a slot reset. */
6901 return PCI_ERS_RESULT_NEED_RESET;
6902 }
6903
6904 /**
6905 * igc_io_slot_reset - called after the PCI bus has been reset.
6906 * @pdev: Pointer to PCI device
6907 *
6908 * Restart the card from scratch, as if from a cold-boot. Implementation
6909 * resembles the first-half of the igc_resume routine.
6910 **/
igc_io_slot_reset(struct pci_dev * pdev)6911 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6912 {
6913 struct net_device *netdev = pci_get_drvdata(pdev);
6914 struct igc_adapter *adapter = netdev_priv(netdev);
6915 struct igc_hw *hw = &adapter->hw;
6916 pci_ers_result_t result;
6917
6918 if (pci_enable_device_mem(pdev)) {
6919 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6920 result = PCI_ERS_RESULT_DISCONNECT;
6921 } else {
6922 pci_set_master(pdev);
6923 pci_restore_state(pdev);
6924 pci_save_state(pdev);
6925
6926 pci_enable_wake(pdev, PCI_D3hot, 0);
6927 pci_enable_wake(pdev, PCI_D3cold, 0);
6928
6929 /* In case of PCI error, adapter loses its HW address
6930 * so we should re-assign it here.
6931 */
6932 hw->hw_addr = adapter->io_addr;
6933
6934 igc_reset(adapter);
6935 wr32(IGC_WUS, ~0);
6936 result = PCI_ERS_RESULT_RECOVERED;
6937 }
6938
6939 return result;
6940 }
6941
6942 /**
6943 * igc_io_resume - called when traffic can start to flow again.
6944 * @pdev: Pointer to PCI device
6945 *
6946 * This callback is called when the error recovery driver tells us that
6947 * its OK to resume normal operation. Implementation resembles the
6948 * second-half of the igc_resume routine.
6949 */
igc_io_resume(struct pci_dev * pdev)6950 static void igc_io_resume(struct pci_dev *pdev)
6951 {
6952 struct net_device *netdev = pci_get_drvdata(pdev);
6953 struct igc_adapter *adapter = netdev_priv(netdev);
6954
6955 rtnl_lock();
6956 if (netif_running(netdev)) {
6957 if (igc_open(netdev)) {
6958 netdev_err(netdev, "igc_open failed after reset\n");
6959 return;
6960 }
6961 }
6962
6963 netif_device_attach(netdev);
6964
6965 /* let the f/w know that the h/w is now under the control of the
6966 * driver.
6967 */
6968 igc_get_hw_control(adapter);
6969 rtnl_unlock();
6970 }
6971
6972 static const struct pci_error_handlers igc_err_handler = {
6973 .error_detected = igc_io_error_detected,
6974 .slot_reset = igc_io_slot_reset,
6975 .resume = igc_io_resume,
6976 };
6977
6978 #ifdef CONFIG_PM
6979 static const struct dev_pm_ops igc_pm_ops = {
6980 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6981 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6982 igc_runtime_idle)
6983 };
6984 #endif
6985
6986 static struct pci_driver igc_driver = {
6987 .name = igc_driver_name,
6988 .id_table = igc_pci_tbl,
6989 .probe = igc_probe,
6990 .remove = igc_remove,
6991 #ifdef CONFIG_PM
6992 .driver.pm = &igc_pm_ops,
6993 #endif
6994 .shutdown = igc_shutdown,
6995 .err_handler = &igc_err_handler,
6996 };
6997
6998 /**
6999 * igc_reinit_queues - return error
7000 * @adapter: pointer to adapter structure
7001 */
igc_reinit_queues(struct igc_adapter * adapter)7002 int igc_reinit_queues(struct igc_adapter *adapter)
7003 {
7004 struct net_device *netdev = adapter->netdev;
7005 int err = 0;
7006
7007 if (netif_running(netdev))
7008 igc_close(netdev);
7009
7010 igc_reset_interrupt_capability(adapter);
7011
7012 if (igc_init_interrupt_scheme(adapter, true)) {
7013 netdev_err(netdev, "Unable to allocate memory for queues\n");
7014 return -ENOMEM;
7015 }
7016
7017 if (netif_running(netdev))
7018 err = igc_open(netdev);
7019
7020 return err;
7021 }
7022
7023 /**
7024 * igc_get_hw_dev - return device
7025 * @hw: pointer to hardware structure
7026 *
7027 * used by hardware layer to print debugging information
7028 */
igc_get_hw_dev(struct igc_hw * hw)7029 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7030 {
7031 struct igc_adapter *adapter = hw->back;
7032
7033 return adapter->netdev;
7034 }
7035
igc_disable_rx_ring_hw(struct igc_ring * ring)7036 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7037 {
7038 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7039 u8 idx = ring->reg_idx;
7040 u32 rxdctl;
7041
7042 rxdctl = rd32(IGC_RXDCTL(idx));
7043 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7044 rxdctl |= IGC_RXDCTL_SWFLUSH;
7045 wr32(IGC_RXDCTL(idx), rxdctl);
7046 }
7047
igc_disable_rx_ring(struct igc_ring * ring)7048 void igc_disable_rx_ring(struct igc_ring *ring)
7049 {
7050 igc_disable_rx_ring_hw(ring);
7051 igc_clean_rx_ring(ring);
7052 }
7053
igc_enable_rx_ring(struct igc_ring * ring)7054 void igc_enable_rx_ring(struct igc_ring *ring)
7055 {
7056 struct igc_adapter *adapter = ring->q_vector->adapter;
7057
7058 igc_configure_rx_ring(adapter, ring);
7059
7060 if (ring->xsk_pool)
7061 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7062 else
7063 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7064 }
7065
igc_disable_tx_ring_hw(struct igc_ring * ring)7066 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
7067 {
7068 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7069 u8 idx = ring->reg_idx;
7070 u32 txdctl;
7071
7072 txdctl = rd32(IGC_TXDCTL(idx));
7073 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
7074 txdctl |= IGC_TXDCTL_SWFLUSH;
7075 wr32(IGC_TXDCTL(idx), txdctl);
7076 }
7077
igc_disable_tx_ring(struct igc_ring * ring)7078 void igc_disable_tx_ring(struct igc_ring *ring)
7079 {
7080 igc_disable_tx_ring_hw(ring);
7081 igc_clean_tx_ring(ring);
7082 }
7083
igc_enable_tx_ring(struct igc_ring * ring)7084 void igc_enable_tx_ring(struct igc_ring *ring)
7085 {
7086 struct igc_adapter *adapter = ring->q_vector->adapter;
7087
7088 igc_configure_tx_ring(adapter, ring);
7089 }
7090
7091 /**
7092 * igc_init_module - Driver Registration Routine
7093 *
7094 * igc_init_module is the first routine called when the driver is
7095 * loaded. All it does is register with the PCI subsystem.
7096 */
igc_init_module(void)7097 static int __init igc_init_module(void)
7098 {
7099 int ret;
7100
7101 pr_info("%s\n", igc_driver_string);
7102 pr_info("%s\n", igc_copyright);
7103
7104 ret = pci_register_driver(&igc_driver);
7105 return ret;
7106 }
7107
7108 module_init(igc_init_module);
7109
7110 /**
7111 * igc_exit_module - Driver Exit Cleanup Routine
7112 *
7113 * igc_exit_module is called just before the driver is removed
7114 * from memory.
7115 */
igc_exit_module(void)7116 static void __exit igc_exit_module(void)
7117 {
7118 pci_unregister_driver(&igc_driver);
7119 }
7120
7121 module_exit(igc_exit_module);
7122 /* igc_main.c */
7123