1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/checksum.h>
18 #include <net/ip6_checksum.h>
19 #include <linux/mii.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/prefetch.h>
23 #include <linux/sctp.h>
24
25 #include "igbvf.h"
26
27 char igbvf_driver_name[] = "igbvf";
28 static const char igbvf_driver_string[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
32
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37
38 static int igbvf_poll(struct napi_struct *napi, int budget);
39 static void igbvf_reset(struct igbvf_adapter *);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42
43 static struct igbvf_info igbvf_vf_info = {
44 .mac = e1000_vfadapt,
45 .flags = 0,
46 .pba = 10,
47 .init_ops = e1000_init_function_pointers_vf,
48 };
49
50 static struct igbvf_info igbvf_i350_vf_info = {
51 .mac = e1000_vfadapt_i350,
52 .flags = 0,
53 .pba = 10,
54 .init_ops = e1000_init_function_pointers_vf,
55 };
56
57 static const struct igbvf_info *igbvf_info_tbl[] = {
58 [board_vf] = &igbvf_vf_info,
59 [board_i350_vf] = &igbvf_i350_vf_info,
60 };
61
62 /**
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @ring: address of receive ring structure
65 **/
igbvf_desc_unused(struct igbvf_ring * ring)66 static int igbvf_desc_unused(struct igbvf_ring *ring)
67 {
68 if (ring->next_to_clean > ring->next_to_use)
69 return ring->next_to_clean - ring->next_to_use - 1;
70
71 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72 }
73
74 /**
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @netdev: pointer to netdev struct
78 * @skb: skb to indicate to stack
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
igbvf_receive_skb(struct igbvf_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 status,__le16 vlan)83 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, __le16 vlan)
87 {
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101 }
102
igbvf_rx_checksum_adv(struct igbvf_adapter * adapter,u32 status_err,struct sk_buff * skb)103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105 {
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126 }
127
128 /**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
igbvf_alloc_rx_buffers(struct igbvf_ring * rx_ring,int cleaned_count)133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135 {
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217 no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233 }
234
235 /**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 * @work_done: output parameter used to indicate completed work
239 * @work_to_do: input parameter setting limit of work
240 *
241 * the return value indicates whether actual cleaning was done, there
242 * is no guarantee that everything was cleaned
243 **/
igbvf_clean_rx_irq(struct igbvf_adapter * adapter,int * work_done,int work_to_do)244 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 int *work_done, int work_to_do)
246 {
247 struct igbvf_ring *rx_ring = adapter->rx_ring;
248 struct net_device *netdev = adapter->netdev;
249 struct pci_dev *pdev = adapter->pdev;
250 union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 struct igbvf_buffer *buffer_info, *next_buffer;
252 struct sk_buff *skb;
253 bool cleaned = false;
254 int cleaned_count = 0;
255 unsigned int total_bytes = 0, total_packets = 0;
256 unsigned int i;
257 u32 length, hlen, staterr;
258
259 i = rx_ring->next_to_clean;
260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262
263 while (staterr & E1000_RXD_STAT_DD) {
264 if (*work_done >= work_to_do)
265 break;
266 (*work_done)++;
267 rmb(); /* read descriptor and rx_buffer_info after status DD */
268
269 buffer_info = &rx_ring->buffer_info[i];
270
271 /* HW will not DMA in data larger than the given buffer, even
272 * if it parses the (NFS, of course) header to be larger. In
273 * that case, it fills the header buffer and spills the rest
274 * into the page.
275 */
276 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
277 & E1000_RXDADV_HDRBUFLEN_MASK) >>
278 E1000_RXDADV_HDRBUFLEN_SHIFT;
279 if (hlen > adapter->rx_ps_hdr_size)
280 hlen = adapter->rx_ps_hdr_size;
281
282 length = le16_to_cpu(rx_desc->wb.upper.length);
283 cleaned = true;
284 cleaned_count++;
285
286 skb = buffer_info->skb;
287 prefetch(skb->data - NET_IP_ALIGN);
288 buffer_info->skb = NULL;
289 if (!adapter->rx_ps_hdr_size) {
290 dma_unmap_single(&pdev->dev, buffer_info->dma,
291 adapter->rx_buffer_len,
292 DMA_FROM_DEVICE);
293 buffer_info->dma = 0;
294 skb_put(skb, length);
295 goto send_up;
296 }
297
298 if (!skb_shinfo(skb)->nr_frags) {
299 dma_unmap_single(&pdev->dev, buffer_info->dma,
300 adapter->rx_ps_hdr_size,
301 DMA_FROM_DEVICE);
302 buffer_info->dma = 0;
303 skb_put(skb, hlen);
304 }
305
306 if (length) {
307 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
308 PAGE_SIZE / 2,
309 DMA_FROM_DEVICE);
310 buffer_info->page_dma = 0;
311
312 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
313 buffer_info->page,
314 buffer_info->page_offset,
315 length);
316
317 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
318 (page_count(buffer_info->page) != 1))
319 buffer_info->page = NULL;
320 else
321 get_page(buffer_info->page);
322
323 skb->len += length;
324 skb->data_len += length;
325 skb->truesize += PAGE_SIZE / 2;
326 }
327 send_up:
328 i++;
329 if (i == rx_ring->count)
330 i = 0;
331 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
332 prefetch(next_rxd);
333 next_buffer = &rx_ring->buffer_info[i];
334
335 if (!(staterr & E1000_RXD_STAT_EOP)) {
336 buffer_info->skb = next_buffer->skb;
337 buffer_info->dma = next_buffer->dma;
338 next_buffer->skb = skb;
339 next_buffer->dma = 0;
340 goto next_desc;
341 }
342
343 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
344 dev_kfree_skb_irq(skb);
345 goto next_desc;
346 }
347
348 total_bytes += skb->len;
349 total_packets++;
350
351 igbvf_rx_checksum_adv(adapter, staterr, skb);
352
353 skb->protocol = eth_type_trans(skb, netdev);
354
355 igbvf_receive_skb(adapter, netdev, skb, staterr,
356 rx_desc->wb.upper.vlan);
357
358 next_desc:
359 rx_desc->wb.upper.status_error = 0;
360
361 /* return some buffers to hardware, one at a time is too slow */
362 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
363 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
364 cleaned_count = 0;
365 }
366
367 /* use prefetched values */
368 rx_desc = next_rxd;
369 buffer_info = next_buffer;
370
371 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
372 }
373
374 rx_ring->next_to_clean = i;
375 cleaned_count = igbvf_desc_unused(rx_ring);
376
377 if (cleaned_count)
378 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
379
380 adapter->total_rx_packets += total_packets;
381 adapter->total_rx_bytes += total_bytes;
382 netdev->stats.rx_bytes += total_bytes;
383 netdev->stats.rx_packets += total_packets;
384 return cleaned;
385 }
386
igbvf_put_txbuf(struct igbvf_adapter * adapter,struct igbvf_buffer * buffer_info)387 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
388 struct igbvf_buffer *buffer_info)
389 {
390 if (buffer_info->dma) {
391 if (buffer_info->mapped_as_page)
392 dma_unmap_page(&adapter->pdev->dev,
393 buffer_info->dma,
394 buffer_info->length,
395 DMA_TO_DEVICE);
396 else
397 dma_unmap_single(&adapter->pdev->dev,
398 buffer_info->dma,
399 buffer_info->length,
400 DMA_TO_DEVICE);
401 buffer_info->dma = 0;
402 }
403 if (buffer_info->skb) {
404 dev_kfree_skb_any(buffer_info->skb);
405 buffer_info->skb = NULL;
406 }
407 buffer_info->time_stamp = 0;
408 }
409
410 /**
411 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
412 * @adapter: board private structure
413 * @tx_ring: ring being initialized
414 *
415 * Return 0 on success, negative on failure
416 **/
igbvf_setup_tx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring)417 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
418 struct igbvf_ring *tx_ring)
419 {
420 struct pci_dev *pdev = adapter->pdev;
421 int size;
422
423 size = sizeof(struct igbvf_buffer) * tx_ring->count;
424 tx_ring->buffer_info = vzalloc(size);
425 if (!tx_ring->buffer_info)
426 goto err;
427
428 /* round up to nearest 4K */
429 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
430 tx_ring->size = ALIGN(tx_ring->size, 4096);
431
432 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
433 &tx_ring->dma, GFP_KERNEL);
434 if (!tx_ring->desc)
435 goto err;
436
437 tx_ring->adapter = adapter;
438 tx_ring->next_to_use = 0;
439 tx_ring->next_to_clean = 0;
440
441 return 0;
442 err:
443 vfree(tx_ring->buffer_info);
444 dev_err(&adapter->pdev->dev,
445 "Unable to allocate memory for the transmit descriptor ring\n");
446 return -ENOMEM;
447 }
448
449 /**
450 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
451 * @adapter: board private structure
452 * @rx_ring: ring being initialized
453 *
454 * Returns 0 on success, negative on failure
455 **/
igbvf_setup_rx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * rx_ring)456 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
457 struct igbvf_ring *rx_ring)
458 {
459 struct pci_dev *pdev = adapter->pdev;
460 int size, desc_len;
461
462 size = sizeof(struct igbvf_buffer) * rx_ring->count;
463 rx_ring->buffer_info = vzalloc(size);
464 if (!rx_ring->buffer_info)
465 goto err;
466
467 desc_len = sizeof(union e1000_adv_rx_desc);
468
469 /* Round up to nearest 4K */
470 rx_ring->size = rx_ring->count * desc_len;
471 rx_ring->size = ALIGN(rx_ring->size, 4096);
472
473 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
474 &rx_ring->dma, GFP_KERNEL);
475 if (!rx_ring->desc)
476 goto err;
477
478 rx_ring->next_to_clean = 0;
479 rx_ring->next_to_use = 0;
480
481 rx_ring->adapter = adapter;
482
483 return 0;
484
485 err:
486 vfree(rx_ring->buffer_info);
487 rx_ring->buffer_info = NULL;
488 dev_err(&adapter->pdev->dev,
489 "Unable to allocate memory for the receive descriptor ring\n");
490 return -ENOMEM;
491 }
492
493 /**
494 * igbvf_clean_tx_ring - Free Tx Buffers
495 * @tx_ring: ring to be cleaned
496 **/
igbvf_clean_tx_ring(struct igbvf_ring * tx_ring)497 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
498 {
499 struct igbvf_adapter *adapter = tx_ring->adapter;
500 struct igbvf_buffer *buffer_info;
501 unsigned long size;
502 unsigned int i;
503
504 if (!tx_ring->buffer_info)
505 return;
506
507 /* Free all the Tx ring sk_buffs */
508 for (i = 0; i < tx_ring->count; i++) {
509 buffer_info = &tx_ring->buffer_info[i];
510 igbvf_put_txbuf(adapter, buffer_info);
511 }
512
513 size = sizeof(struct igbvf_buffer) * tx_ring->count;
514 memset(tx_ring->buffer_info, 0, size);
515
516 /* Zero out the descriptor ring */
517 memset(tx_ring->desc, 0, tx_ring->size);
518
519 tx_ring->next_to_use = 0;
520 tx_ring->next_to_clean = 0;
521
522 writel(0, adapter->hw.hw_addr + tx_ring->head);
523 writel(0, adapter->hw.hw_addr + tx_ring->tail);
524 }
525
526 /**
527 * igbvf_free_tx_resources - Free Tx Resources per Queue
528 * @tx_ring: ring to free resources from
529 *
530 * Free all transmit software resources
531 **/
igbvf_free_tx_resources(struct igbvf_ring * tx_ring)532 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
533 {
534 struct pci_dev *pdev = tx_ring->adapter->pdev;
535
536 igbvf_clean_tx_ring(tx_ring);
537
538 vfree(tx_ring->buffer_info);
539 tx_ring->buffer_info = NULL;
540
541 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
542 tx_ring->dma);
543
544 tx_ring->desc = NULL;
545 }
546
547 /**
548 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
549 * @rx_ring: ring structure pointer to free buffers from
550 **/
igbvf_clean_rx_ring(struct igbvf_ring * rx_ring)551 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
552 {
553 struct igbvf_adapter *adapter = rx_ring->adapter;
554 struct igbvf_buffer *buffer_info;
555 struct pci_dev *pdev = adapter->pdev;
556 unsigned long size;
557 unsigned int i;
558
559 if (!rx_ring->buffer_info)
560 return;
561
562 /* Free all the Rx ring sk_buffs */
563 for (i = 0; i < rx_ring->count; i++) {
564 buffer_info = &rx_ring->buffer_info[i];
565 if (buffer_info->dma) {
566 if (adapter->rx_ps_hdr_size) {
567 dma_unmap_single(&pdev->dev, buffer_info->dma,
568 adapter->rx_ps_hdr_size,
569 DMA_FROM_DEVICE);
570 } else {
571 dma_unmap_single(&pdev->dev, buffer_info->dma,
572 adapter->rx_buffer_len,
573 DMA_FROM_DEVICE);
574 }
575 buffer_info->dma = 0;
576 }
577
578 if (buffer_info->skb) {
579 dev_kfree_skb(buffer_info->skb);
580 buffer_info->skb = NULL;
581 }
582
583 if (buffer_info->page) {
584 if (buffer_info->page_dma)
585 dma_unmap_page(&pdev->dev,
586 buffer_info->page_dma,
587 PAGE_SIZE / 2,
588 DMA_FROM_DEVICE);
589 put_page(buffer_info->page);
590 buffer_info->page = NULL;
591 buffer_info->page_dma = 0;
592 buffer_info->page_offset = 0;
593 }
594 }
595
596 size = sizeof(struct igbvf_buffer) * rx_ring->count;
597 memset(rx_ring->buffer_info, 0, size);
598
599 /* Zero out the descriptor ring */
600 memset(rx_ring->desc, 0, rx_ring->size);
601
602 rx_ring->next_to_clean = 0;
603 rx_ring->next_to_use = 0;
604
605 writel(0, adapter->hw.hw_addr + rx_ring->head);
606 writel(0, adapter->hw.hw_addr + rx_ring->tail);
607 }
608
609 /**
610 * igbvf_free_rx_resources - Free Rx Resources
611 * @rx_ring: ring to clean the resources from
612 *
613 * Free all receive software resources
614 **/
615
igbvf_free_rx_resources(struct igbvf_ring * rx_ring)616 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
617 {
618 struct pci_dev *pdev = rx_ring->adapter->pdev;
619
620 igbvf_clean_rx_ring(rx_ring);
621
622 vfree(rx_ring->buffer_info);
623 rx_ring->buffer_info = NULL;
624
625 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
626 rx_ring->dma);
627 rx_ring->desc = NULL;
628 }
629
630 /**
631 * igbvf_update_itr - update the dynamic ITR value based on statistics
632 * @adapter: pointer to adapter
633 * @itr_setting: current adapter->itr
634 * @packets: the number of packets during this measurement interval
635 * @bytes: the number of bytes during this measurement interval
636 *
637 * Stores a new ITR value based on packets and byte counts during the last
638 * interrupt. The advantage of per interrupt computation is faster updates
639 * and more accurate ITR for the current traffic pattern. Constants in this
640 * function were computed based on theoretical maximum wire speed and thresholds
641 * were set based on testing data as well as attempting to minimize response
642 * time while increasing bulk throughput.
643 **/
igbvf_update_itr(struct igbvf_adapter * adapter,enum latency_range itr_setting,int packets,int bytes)644 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
645 enum latency_range itr_setting,
646 int packets, int bytes)
647 {
648 enum latency_range retval = itr_setting;
649
650 if (packets == 0)
651 goto update_itr_done;
652
653 switch (itr_setting) {
654 case lowest_latency:
655 /* handle TSO and jumbo frames */
656 if (bytes/packets > 8000)
657 retval = bulk_latency;
658 else if ((packets < 5) && (bytes > 512))
659 retval = low_latency;
660 break;
661 case low_latency: /* 50 usec aka 20000 ints/s */
662 if (bytes > 10000) {
663 /* this if handles the TSO accounting */
664 if (bytes/packets > 8000)
665 retval = bulk_latency;
666 else if ((packets < 10) || ((bytes/packets) > 1200))
667 retval = bulk_latency;
668 else if ((packets > 35))
669 retval = lowest_latency;
670 } else if (bytes/packets > 2000) {
671 retval = bulk_latency;
672 } else if (packets <= 2 && bytes < 512) {
673 retval = lowest_latency;
674 }
675 break;
676 case bulk_latency: /* 250 usec aka 4000 ints/s */
677 if (bytes > 25000) {
678 if (packets > 35)
679 retval = low_latency;
680 } else if (bytes < 6000) {
681 retval = low_latency;
682 }
683 break;
684 default:
685 break;
686 }
687
688 update_itr_done:
689 return retval;
690 }
691
igbvf_range_to_itr(enum latency_range current_range)692 static int igbvf_range_to_itr(enum latency_range current_range)
693 {
694 int new_itr;
695
696 switch (current_range) {
697 /* counts and packets in update_itr are dependent on these numbers */
698 case lowest_latency:
699 new_itr = IGBVF_70K_ITR;
700 break;
701 case low_latency:
702 new_itr = IGBVF_20K_ITR;
703 break;
704 case bulk_latency:
705 new_itr = IGBVF_4K_ITR;
706 break;
707 default:
708 new_itr = IGBVF_START_ITR;
709 break;
710 }
711 return new_itr;
712 }
713
igbvf_set_itr(struct igbvf_adapter * adapter)714 static void igbvf_set_itr(struct igbvf_adapter *adapter)
715 {
716 u32 new_itr;
717
718 adapter->tx_ring->itr_range =
719 igbvf_update_itr(adapter,
720 adapter->tx_ring->itr_val,
721 adapter->total_tx_packets,
722 adapter->total_tx_bytes);
723
724 /* conservative mode (itr 3) eliminates the lowest_latency setting */
725 if (adapter->requested_itr == 3 &&
726 adapter->tx_ring->itr_range == lowest_latency)
727 adapter->tx_ring->itr_range = low_latency;
728
729 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
730
731 if (new_itr != adapter->tx_ring->itr_val) {
732 u32 current_itr = adapter->tx_ring->itr_val;
733 /* this attempts to bias the interrupt rate towards Bulk
734 * by adding intermediate steps when interrupt rate is
735 * increasing
736 */
737 new_itr = new_itr > current_itr ?
738 min(current_itr + (new_itr >> 2), new_itr) :
739 new_itr;
740 adapter->tx_ring->itr_val = new_itr;
741
742 adapter->tx_ring->set_itr = 1;
743 }
744
745 adapter->rx_ring->itr_range =
746 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747 adapter->total_rx_packets,
748 adapter->total_rx_bytes);
749 if (adapter->requested_itr == 3 &&
750 adapter->rx_ring->itr_range == lowest_latency)
751 adapter->rx_ring->itr_range = low_latency;
752
753 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754
755 if (new_itr != adapter->rx_ring->itr_val) {
756 u32 current_itr = adapter->rx_ring->itr_val;
757
758 new_itr = new_itr > current_itr ?
759 min(current_itr + (new_itr >> 2), new_itr) :
760 new_itr;
761 adapter->rx_ring->itr_val = new_itr;
762
763 adapter->rx_ring->set_itr = 1;
764 }
765 }
766
767 /**
768 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
769 * @tx_ring: ring structure to clean descriptors from
770 *
771 * returns true if ring is completely cleaned
772 **/
igbvf_clean_tx_irq(struct igbvf_ring * tx_ring)773 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
774 {
775 struct igbvf_adapter *adapter = tx_ring->adapter;
776 struct net_device *netdev = adapter->netdev;
777 struct igbvf_buffer *buffer_info;
778 struct sk_buff *skb;
779 union e1000_adv_tx_desc *tx_desc, *eop_desc;
780 unsigned int total_bytes = 0, total_packets = 0;
781 unsigned int i, count = 0;
782 bool cleaned = false;
783
784 i = tx_ring->next_to_clean;
785 buffer_info = &tx_ring->buffer_info[i];
786 eop_desc = buffer_info->next_to_watch;
787
788 do {
789 /* if next_to_watch is not set then there is no work pending */
790 if (!eop_desc)
791 break;
792
793 /* prevent any other reads prior to eop_desc */
794 smp_rmb();
795
796 /* if DD is not set pending work has not been completed */
797 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
798 break;
799
800 /* clear next_to_watch to prevent false hangs */
801 buffer_info->next_to_watch = NULL;
802
803 for (cleaned = false; !cleaned; count++) {
804 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
805 cleaned = (tx_desc == eop_desc);
806 skb = buffer_info->skb;
807
808 if (skb) {
809 unsigned int segs, bytecount;
810
811 /* gso_segs is currently only valid for tcp */
812 segs = skb_shinfo(skb)->gso_segs ?: 1;
813 /* multiply data chunks by size of headers */
814 bytecount = ((segs - 1) * skb_headlen(skb)) +
815 skb->len;
816 total_packets += segs;
817 total_bytes += bytecount;
818 }
819
820 igbvf_put_txbuf(adapter, buffer_info);
821 tx_desc->wb.status = 0;
822
823 i++;
824 if (i == tx_ring->count)
825 i = 0;
826
827 buffer_info = &tx_ring->buffer_info[i];
828 }
829
830 eop_desc = buffer_info->next_to_watch;
831 } while (count < tx_ring->count);
832
833 tx_ring->next_to_clean = i;
834
835 if (unlikely(count && netif_carrier_ok(netdev) &&
836 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
837 /* Make sure that anybody stopping the queue after this
838 * sees the new next_to_clean.
839 */
840 smp_mb();
841 if (netif_queue_stopped(netdev) &&
842 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
843 netif_wake_queue(netdev);
844 ++adapter->restart_queue;
845 }
846 }
847
848 netdev->stats.tx_bytes += total_bytes;
849 netdev->stats.tx_packets += total_packets;
850 return count < tx_ring->count;
851 }
852
igbvf_msix_other(int irq,void * data)853 static irqreturn_t igbvf_msix_other(int irq, void *data)
854 {
855 struct net_device *netdev = data;
856 struct igbvf_adapter *adapter = netdev_priv(netdev);
857 struct e1000_hw *hw = &adapter->hw;
858
859 adapter->int_counter1++;
860
861 hw->mac.get_link_status = 1;
862 if (!test_bit(__IGBVF_DOWN, &adapter->state))
863 mod_timer(&adapter->watchdog_timer, jiffies + 1);
864
865 ew32(EIMS, adapter->eims_other);
866
867 return IRQ_HANDLED;
868 }
869
igbvf_intr_msix_tx(int irq,void * data)870 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
871 {
872 struct net_device *netdev = data;
873 struct igbvf_adapter *adapter = netdev_priv(netdev);
874 struct e1000_hw *hw = &adapter->hw;
875 struct igbvf_ring *tx_ring = adapter->tx_ring;
876
877 if (tx_ring->set_itr) {
878 writel(tx_ring->itr_val,
879 adapter->hw.hw_addr + tx_ring->itr_register);
880 adapter->tx_ring->set_itr = 0;
881 }
882
883 adapter->total_tx_bytes = 0;
884 adapter->total_tx_packets = 0;
885
886 /* auto mask will automatically re-enable the interrupt when we write
887 * EICS
888 */
889 if (!igbvf_clean_tx_irq(tx_ring))
890 /* Ring was not completely cleaned, so fire another interrupt */
891 ew32(EICS, tx_ring->eims_value);
892 else
893 ew32(EIMS, tx_ring->eims_value);
894
895 return IRQ_HANDLED;
896 }
897
igbvf_intr_msix_rx(int irq,void * data)898 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
899 {
900 struct net_device *netdev = data;
901 struct igbvf_adapter *adapter = netdev_priv(netdev);
902
903 adapter->int_counter0++;
904
905 /* Write the ITR value calculated at the end of the
906 * previous interrupt.
907 */
908 if (adapter->rx_ring->set_itr) {
909 writel(adapter->rx_ring->itr_val,
910 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
911 adapter->rx_ring->set_itr = 0;
912 }
913
914 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
915 adapter->total_rx_bytes = 0;
916 adapter->total_rx_packets = 0;
917 __napi_schedule(&adapter->rx_ring->napi);
918 }
919
920 return IRQ_HANDLED;
921 }
922
923 #define IGBVF_NO_QUEUE -1
924
igbvf_assign_vector(struct igbvf_adapter * adapter,int rx_queue,int tx_queue,int msix_vector)925 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
926 int tx_queue, int msix_vector)
927 {
928 struct e1000_hw *hw = &adapter->hw;
929 u32 ivar, index;
930
931 /* 82576 uses a table-based method for assigning vectors.
932 * Each queue has a single entry in the table to which we write
933 * a vector number along with a "valid" bit. Sadly, the layout
934 * of the table is somewhat counterintuitive.
935 */
936 if (rx_queue > IGBVF_NO_QUEUE) {
937 index = (rx_queue >> 1);
938 ivar = array_er32(IVAR0, index);
939 if (rx_queue & 0x1) {
940 /* vector goes into third byte of register */
941 ivar = ivar & 0xFF00FFFF;
942 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
943 } else {
944 /* vector goes into low byte of register */
945 ivar = ivar & 0xFFFFFF00;
946 ivar |= msix_vector | E1000_IVAR_VALID;
947 }
948 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
949 array_ew32(IVAR0, index, ivar);
950 }
951 if (tx_queue > IGBVF_NO_QUEUE) {
952 index = (tx_queue >> 1);
953 ivar = array_er32(IVAR0, index);
954 if (tx_queue & 0x1) {
955 /* vector goes into high byte of register */
956 ivar = ivar & 0x00FFFFFF;
957 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
958 } else {
959 /* vector goes into second byte of register */
960 ivar = ivar & 0xFFFF00FF;
961 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
962 }
963 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
964 array_ew32(IVAR0, index, ivar);
965 }
966 }
967
968 /**
969 * igbvf_configure_msix - Configure MSI-X hardware
970 * @adapter: board private structure
971 *
972 * igbvf_configure_msix sets up the hardware to properly
973 * generate MSI-X interrupts.
974 **/
igbvf_configure_msix(struct igbvf_adapter * adapter)975 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
976 {
977 u32 tmp;
978 struct e1000_hw *hw = &adapter->hw;
979 struct igbvf_ring *tx_ring = adapter->tx_ring;
980 struct igbvf_ring *rx_ring = adapter->rx_ring;
981 int vector = 0;
982
983 adapter->eims_enable_mask = 0;
984
985 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
986 adapter->eims_enable_mask |= tx_ring->eims_value;
987 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
988 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
989 adapter->eims_enable_mask |= rx_ring->eims_value;
990 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
991
992 /* set vector for other causes, i.e. link changes */
993
994 tmp = (vector++ | E1000_IVAR_VALID);
995
996 ew32(IVAR_MISC, tmp);
997
998 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
999 adapter->eims_other = BIT(vector - 1);
1000 e1e_flush();
1001 }
1002
igbvf_reset_interrupt_capability(struct igbvf_adapter * adapter)1003 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1004 {
1005 if (adapter->msix_entries) {
1006 pci_disable_msix(adapter->pdev);
1007 kfree(adapter->msix_entries);
1008 adapter->msix_entries = NULL;
1009 }
1010 }
1011
1012 /**
1013 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1014 * @adapter: board private structure
1015 *
1016 * Attempt to configure interrupts using the best available
1017 * capabilities of the hardware and kernel.
1018 **/
igbvf_set_interrupt_capability(struct igbvf_adapter * adapter)1019 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1020 {
1021 int err = -ENOMEM;
1022 int i;
1023
1024 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1025 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1026 GFP_KERNEL);
1027 if (adapter->msix_entries) {
1028 for (i = 0; i < 3; i++)
1029 adapter->msix_entries[i].entry = i;
1030
1031 err = pci_enable_msix_range(adapter->pdev,
1032 adapter->msix_entries, 3, 3);
1033 }
1034
1035 if (err < 0) {
1036 /* MSI-X failed */
1037 dev_err(&adapter->pdev->dev,
1038 "Failed to initialize MSI-X interrupts.\n");
1039 igbvf_reset_interrupt_capability(adapter);
1040 }
1041 }
1042
1043 /**
1044 * igbvf_request_msix - Initialize MSI-X interrupts
1045 * @adapter: board private structure
1046 *
1047 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1048 * kernel.
1049 **/
igbvf_request_msix(struct igbvf_adapter * adapter)1050 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1051 {
1052 struct net_device *netdev = adapter->netdev;
1053 int err = 0, vector = 0;
1054
1055 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1056 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1057 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1058 } else {
1059 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1060 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1061 }
1062
1063 err = request_irq(adapter->msix_entries[vector].vector,
1064 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1065 netdev);
1066 if (err)
1067 goto out;
1068
1069 adapter->tx_ring->itr_register = E1000_EITR(vector);
1070 adapter->tx_ring->itr_val = adapter->current_itr;
1071 vector++;
1072
1073 err = request_irq(adapter->msix_entries[vector].vector,
1074 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1075 netdev);
1076 if (err)
1077 goto out;
1078
1079 adapter->rx_ring->itr_register = E1000_EITR(vector);
1080 adapter->rx_ring->itr_val = adapter->current_itr;
1081 vector++;
1082
1083 err = request_irq(adapter->msix_entries[vector].vector,
1084 igbvf_msix_other, 0, netdev->name, netdev);
1085 if (err)
1086 goto out;
1087
1088 igbvf_configure_msix(adapter);
1089 return 0;
1090 out:
1091 return err;
1092 }
1093
1094 /**
1095 * igbvf_alloc_queues - Allocate memory for all rings
1096 * @adapter: board private structure to initialize
1097 **/
igbvf_alloc_queues(struct igbvf_adapter * adapter)1098 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1099 {
1100 struct net_device *netdev = adapter->netdev;
1101
1102 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103 if (!adapter->tx_ring)
1104 return -ENOMEM;
1105
1106 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1107 if (!adapter->rx_ring) {
1108 kfree(adapter->tx_ring);
1109 return -ENOMEM;
1110 }
1111
1112 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll);
1113
1114 return 0;
1115 }
1116
1117 /**
1118 * igbvf_request_irq - initialize interrupts
1119 * @adapter: board private structure
1120 *
1121 * Attempts to configure interrupts using the best available
1122 * capabilities of the hardware and kernel.
1123 **/
igbvf_request_irq(struct igbvf_adapter * adapter)1124 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1125 {
1126 int err = -1;
1127
1128 /* igbvf supports msi-x only */
1129 if (adapter->msix_entries)
1130 err = igbvf_request_msix(adapter);
1131
1132 if (!err)
1133 return err;
1134
1135 dev_err(&adapter->pdev->dev,
1136 "Unable to allocate interrupt, Error: %d\n", err);
1137
1138 return err;
1139 }
1140
igbvf_free_irq(struct igbvf_adapter * adapter)1141 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1142 {
1143 struct net_device *netdev = adapter->netdev;
1144 int vector;
1145
1146 if (adapter->msix_entries) {
1147 for (vector = 0; vector < 3; vector++)
1148 free_irq(adapter->msix_entries[vector].vector, netdev);
1149 }
1150 }
1151
1152 /**
1153 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1154 * @adapter: board private structure
1155 **/
igbvf_irq_disable(struct igbvf_adapter * adapter)1156 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1157 {
1158 struct e1000_hw *hw = &adapter->hw;
1159
1160 ew32(EIMC, ~0);
1161
1162 if (adapter->msix_entries)
1163 ew32(EIAC, 0);
1164 }
1165
1166 /**
1167 * igbvf_irq_enable - Enable default interrupt generation settings
1168 * @adapter: board private structure
1169 **/
igbvf_irq_enable(struct igbvf_adapter * adapter)1170 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171 {
1172 struct e1000_hw *hw = &adapter->hw;
1173
1174 ew32(EIAC, adapter->eims_enable_mask);
1175 ew32(EIAM, adapter->eims_enable_mask);
1176 ew32(EIMS, adapter->eims_enable_mask);
1177 }
1178
1179 /**
1180 * igbvf_poll - NAPI Rx polling callback
1181 * @napi: struct associated with this polling callback
1182 * @budget: amount of packets driver is allowed to process this poll
1183 **/
igbvf_poll(struct napi_struct * napi,int budget)1184 static int igbvf_poll(struct napi_struct *napi, int budget)
1185 {
1186 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187 struct igbvf_adapter *adapter = rx_ring->adapter;
1188 struct e1000_hw *hw = &adapter->hw;
1189 int work_done = 0;
1190
1191 igbvf_clean_rx_irq(adapter, &work_done, budget);
1192
1193 if (work_done == budget)
1194 return budget;
1195
1196 /* Exit the polling mode, but don't re-enable interrupts if stack might
1197 * poll us due to busy-polling
1198 */
1199 if (likely(napi_complete_done(napi, work_done))) {
1200 if (adapter->requested_itr & 3)
1201 igbvf_set_itr(adapter);
1202
1203 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1204 ew32(EIMS, adapter->rx_ring->eims_value);
1205 }
1206
1207 return work_done;
1208 }
1209
1210 /**
1211 * igbvf_set_rlpml - set receive large packet maximum length
1212 * @adapter: board private structure
1213 *
1214 * Configure the maximum size of packets that will be received
1215 */
igbvf_set_rlpml(struct igbvf_adapter * adapter)1216 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1217 {
1218 int max_frame_size;
1219 struct e1000_hw *hw = &adapter->hw;
1220
1221 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1222
1223 spin_lock_bh(&hw->mbx_lock);
1224
1225 e1000_rlpml_set_vf(hw, max_frame_size);
1226
1227 spin_unlock_bh(&hw->mbx_lock);
1228 }
1229
igbvf_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)1230 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1231 __be16 proto, u16 vid)
1232 {
1233 struct igbvf_adapter *adapter = netdev_priv(netdev);
1234 struct e1000_hw *hw = &adapter->hw;
1235
1236 spin_lock_bh(&hw->mbx_lock);
1237
1238 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1239 dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1240 spin_unlock_bh(&hw->mbx_lock);
1241 return -EINVAL;
1242 }
1243
1244 spin_unlock_bh(&hw->mbx_lock);
1245
1246 set_bit(vid, adapter->active_vlans);
1247 return 0;
1248 }
1249
igbvf_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)1250 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1251 __be16 proto, u16 vid)
1252 {
1253 struct igbvf_adapter *adapter = netdev_priv(netdev);
1254 struct e1000_hw *hw = &adapter->hw;
1255
1256 spin_lock_bh(&hw->mbx_lock);
1257
1258 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1259 dev_err(&adapter->pdev->dev,
1260 "Failed to remove vlan id %d\n", vid);
1261 spin_unlock_bh(&hw->mbx_lock);
1262 return -EINVAL;
1263 }
1264
1265 spin_unlock_bh(&hw->mbx_lock);
1266
1267 clear_bit(vid, adapter->active_vlans);
1268 return 0;
1269 }
1270
igbvf_restore_vlan(struct igbvf_adapter * adapter)1271 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1272 {
1273 u16 vid;
1274
1275 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1276 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1277 }
1278
1279 /**
1280 * igbvf_configure_tx - Configure Transmit Unit after Reset
1281 * @adapter: board private structure
1282 *
1283 * Configure the Tx unit of the MAC after a reset.
1284 **/
igbvf_configure_tx(struct igbvf_adapter * adapter)1285 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1286 {
1287 struct e1000_hw *hw = &adapter->hw;
1288 struct igbvf_ring *tx_ring = adapter->tx_ring;
1289 u64 tdba;
1290 u32 txdctl, dca_txctrl;
1291
1292 /* disable transmits */
1293 txdctl = er32(TXDCTL(0));
1294 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1295 e1e_flush();
1296 msleep(10);
1297
1298 /* Setup the HW Tx Head and Tail descriptor pointers */
1299 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1300 tdba = tx_ring->dma;
1301 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1302 ew32(TDBAH(0), (tdba >> 32));
1303 ew32(TDH(0), 0);
1304 ew32(TDT(0), 0);
1305 tx_ring->head = E1000_TDH(0);
1306 tx_ring->tail = E1000_TDT(0);
1307
1308 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1309 * MUST be delivered in order or it will completely screw up
1310 * our bookkeeping.
1311 */
1312 dca_txctrl = er32(DCA_TXCTRL(0));
1313 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1314 ew32(DCA_TXCTRL(0), dca_txctrl);
1315
1316 /* enable transmits */
1317 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1318 ew32(TXDCTL(0), txdctl);
1319
1320 /* Setup Transmit Descriptor Settings for eop descriptor */
1321 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1322
1323 /* enable Report Status bit */
1324 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1325 }
1326
1327 /**
1328 * igbvf_setup_srrctl - configure the receive control registers
1329 * @adapter: Board private structure
1330 **/
igbvf_setup_srrctl(struct igbvf_adapter * adapter)1331 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1332 {
1333 struct e1000_hw *hw = &adapter->hw;
1334 u32 srrctl = 0;
1335
1336 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1337 E1000_SRRCTL_BSIZEHDR_MASK |
1338 E1000_SRRCTL_BSIZEPKT_MASK);
1339
1340 /* Enable queue drop to avoid head of line blocking */
1341 srrctl |= E1000_SRRCTL_DROP_EN;
1342
1343 /* Setup buffer sizes */
1344 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1345 E1000_SRRCTL_BSIZEPKT_SHIFT;
1346
1347 if (adapter->rx_buffer_len < 2048) {
1348 adapter->rx_ps_hdr_size = 0;
1349 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1350 } else {
1351 adapter->rx_ps_hdr_size = 128;
1352 srrctl |= adapter->rx_ps_hdr_size <<
1353 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1354 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1355 }
1356
1357 ew32(SRRCTL(0), srrctl);
1358 }
1359
1360 /**
1361 * igbvf_configure_rx - Configure Receive Unit after Reset
1362 * @adapter: board private structure
1363 *
1364 * Configure the Rx unit of the MAC after a reset.
1365 **/
igbvf_configure_rx(struct igbvf_adapter * adapter)1366 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1367 {
1368 struct e1000_hw *hw = &adapter->hw;
1369 struct igbvf_ring *rx_ring = adapter->rx_ring;
1370 u64 rdba;
1371 u32 rxdctl;
1372
1373 /* disable receives */
1374 rxdctl = er32(RXDCTL(0));
1375 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1376 e1e_flush();
1377 msleep(10);
1378
1379 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1380 * the Base and Length of the Rx Descriptor Ring
1381 */
1382 rdba = rx_ring->dma;
1383 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1384 ew32(RDBAH(0), (rdba >> 32));
1385 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1386 rx_ring->head = E1000_RDH(0);
1387 rx_ring->tail = E1000_RDT(0);
1388 ew32(RDH(0), 0);
1389 ew32(RDT(0), 0);
1390
1391 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1392 rxdctl &= 0xFFF00000;
1393 rxdctl |= IGBVF_RX_PTHRESH;
1394 rxdctl |= IGBVF_RX_HTHRESH << 8;
1395 rxdctl |= IGBVF_RX_WTHRESH << 16;
1396
1397 igbvf_set_rlpml(adapter);
1398
1399 /* enable receives */
1400 ew32(RXDCTL(0), rxdctl);
1401 }
1402
1403 /**
1404 * igbvf_set_multi - Multicast and Promiscuous mode set
1405 * @netdev: network interface device structure
1406 *
1407 * The set_multi entry point is called whenever the multicast address
1408 * list or the network interface flags are updated. This routine is
1409 * responsible for configuring the hardware for proper multicast,
1410 * promiscuous mode, and all-multi behavior.
1411 **/
igbvf_set_multi(struct net_device * netdev)1412 static void igbvf_set_multi(struct net_device *netdev)
1413 {
1414 struct igbvf_adapter *adapter = netdev_priv(netdev);
1415 struct e1000_hw *hw = &adapter->hw;
1416 struct netdev_hw_addr *ha;
1417 u8 *mta_list = NULL;
1418 int i;
1419
1420 if (!netdev_mc_empty(netdev)) {
1421 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1422 GFP_ATOMIC);
1423 if (!mta_list)
1424 return;
1425 }
1426
1427 /* prepare a packed array of only addresses. */
1428 i = 0;
1429 netdev_for_each_mc_addr(ha, netdev)
1430 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1431
1432 spin_lock_bh(&hw->mbx_lock);
1433
1434 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1435
1436 spin_unlock_bh(&hw->mbx_lock);
1437 kfree(mta_list);
1438 }
1439
1440 /**
1441 * igbvf_set_uni - Configure unicast MAC filters
1442 * @netdev: network interface device structure
1443 *
1444 * This routine is responsible for configuring the hardware for proper
1445 * unicast filters.
1446 **/
igbvf_set_uni(struct net_device * netdev)1447 static int igbvf_set_uni(struct net_device *netdev)
1448 {
1449 struct igbvf_adapter *adapter = netdev_priv(netdev);
1450 struct e1000_hw *hw = &adapter->hw;
1451
1452 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1453 pr_err("Too many unicast filters - No Space\n");
1454 return -ENOSPC;
1455 }
1456
1457 spin_lock_bh(&hw->mbx_lock);
1458
1459 /* Clear all unicast MAC filters */
1460 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1461
1462 spin_unlock_bh(&hw->mbx_lock);
1463
1464 if (!netdev_uc_empty(netdev)) {
1465 struct netdev_hw_addr *ha;
1466
1467 /* Add MAC filters one by one */
1468 netdev_for_each_uc_addr(ha, netdev) {
1469 spin_lock_bh(&hw->mbx_lock);
1470
1471 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1472 ha->addr);
1473
1474 spin_unlock_bh(&hw->mbx_lock);
1475 udelay(200);
1476 }
1477 }
1478
1479 return 0;
1480 }
1481
igbvf_set_rx_mode(struct net_device * netdev)1482 static void igbvf_set_rx_mode(struct net_device *netdev)
1483 {
1484 igbvf_set_multi(netdev);
1485 igbvf_set_uni(netdev);
1486 }
1487
1488 /**
1489 * igbvf_configure - configure the hardware for Rx and Tx
1490 * @adapter: private board structure
1491 **/
igbvf_configure(struct igbvf_adapter * adapter)1492 static void igbvf_configure(struct igbvf_adapter *adapter)
1493 {
1494 igbvf_set_rx_mode(adapter->netdev);
1495
1496 igbvf_restore_vlan(adapter);
1497
1498 igbvf_configure_tx(adapter);
1499 igbvf_setup_srrctl(adapter);
1500 igbvf_configure_rx(adapter);
1501 igbvf_alloc_rx_buffers(adapter->rx_ring,
1502 igbvf_desc_unused(adapter->rx_ring));
1503 }
1504
1505 /* igbvf_reset - bring the hardware into a known good state
1506 * @adapter: private board structure
1507 *
1508 * This function boots the hardware and enables some settings that
1509 * require a configuration cycle of the hardware - those cannot be
1510 * set/changed during runtime. After reset the device needs to be
1511 * properly configured for Rx, Tx etc.
1512 */
igbvf_reset(struct igbvf_adapter * adapter)1513 static void igbvf_reset(struct igbvf_adapter *adapter)
1514 {
1515 struct e1000_mac_info *mac = &adapter->hw.mac;
1516 struct net_device *netdev = adapter->netdev;
1517 struct e1000_hw *hw = &adapter->hw;
1518
1519 spin_lock_bh(&hw->mbx_lock);
1520
1521 /* Allow time for pending master requests to run */
1522 if (mac->ops.reset_hw(hw))
1523 dev_info(&adapter->pdev->dev, "PF still resetting\n");
1524
1525 mac->ops.init_hw(hw);
1526
1527 spin_unlock_bh(&hw->mbx_lock);
1528
1529 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1530 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
1531 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1532 netdev->addr_len);
1533 }
1534
1535 adapter->last_reset = jiffies;
1536 }
1537
igbvf_up(struct igbvf_adapter * adapter)1538 int igbvf_up(struct igbvf_adapter *adapter)
1539 {
1540 struct e1000_hw *hw = &adapter->hw;
1541
1542 /* hardware has been reset, we need to reload some things */
1543 igbvf_configure(adapter);
1544
1545 clear_bit(__IGBVF_DOWN, &adapter->state);
1546
1547 napi_enable(&adapter->rx_ring->napi);
1548 if (adapter->msix_entries)
1549 igbvf_configure_msix(adapter);
1550
1551 /* Clear any pending interrupts. */
1552 er32(EICR);
1553 igbvf_irq_enable(adapter);
1554
1555 /* start the watchdog */
1556 hw->mac.get_link_status = 1;
1557 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1558
1559 return 0;
1560 }
1561
igbvf_down(struct igbvf_adapter * adapter)1562 void igbvf_down(struct igbvf_adapter *adapter)
1563 {
1564 struct net_device *netdev = adapter->netdev;
1565 struct e1000_hw *hw = &adapter->hw;
1566 u32 rxdctl, txdctl;
1567
1568 /* signal that we're down so the interrupt handler does not
1569 * reschedule our watchdog timer
1570 */
1571 set_bit(__IGBVF_DOWN, &adapter->state);
1572
1573 /* disable receives in the hardware */
1574 rxdctl = er32(RXDCTL(0));
1575 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1576
1577 netif_carrier_off(netdev);
1578 netif_stop_queue(netdev);
1579
1580 /* disable transmits in the hardware */
1581 txdctl = er32(TXDCTL(0));
1582 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1583
1584 /* flush both disables and wait for them to finish */
1585 e1e_flush();
1586 msleep(10);
1587
1588 napi_disable(&adapter->rx_ring->napi);
1589
1590 igbvf_irq_disable(adapter);
1591
1592 del_timer_sync(&adapter->watchdog_timer);
1593
1594 /* record the stats before reset*/
1595 igbvf_update_stats(adapter);
1596
1597 adapter->link_speed = 0;
1598 adapter->link_duplex = 0;
1599
1600 igbvf_reset(adapter);
1601 igbvf_clean_tx_ring(adapter->tx_ring);
1602 igbvf_clean_rx_ring(adapter->rx_ring);
1603 }
1604
igbvf_reinit_locked(struct igbvf_adapter * adapter)1605 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1606 {
1607 might_sleep();
1608 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1609 usleep_range(1000, 2000);
1610 igbvf_down(adapter);
1611 igbvf_up(adapter);
1612 clear_bit(__IGBVF_RESETTING, &adapter->state);
1613 }
1614
1615 /**
1616 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1617 * @adapter: board private structure to initialize
1618 *
1619 * igbvf_sw_init initializes the Adapter private data structure.
1620 * Fields are initialized based on PCI device information and
1621 * OS network device settings (MTU size).
1622 **/
igbvf_sw_init(struct igbvf_adapter * adapter)1623 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1624 {
1625 struct net_device *netdev = adapter->netdev;
1626 s32 rc;
1627
1628 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1629 adapter->rx_ps_hdr_size = 0;
1630 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1631 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1632
1633 adapter->tx_int_delay = 8;
1634 adapter->tx_abs_int_delay = 32;
1635 adapter->rx_int_delay = 0;
1636 adapter->rx_abs_int_delay = 8;
1637 adapter->requested_itr = 3;
1638 adapter->current_itr = IGBVF_START_ITR;
1639
1640 /* Set various function pointers */
1641 adapter->ei->init_ops(&adapter->hw);
1642
1643 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1644 if (rc)
1645 return rc;
1646
1647 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1648 if (rc)
1649 return rc;
1650
1651 igbvf_set_interrupt_capability(adapter);
1652
1653 if (igbvf_alloc_queues(adapter))
1654 return -ENOMEM;
1655
1656 spin_lock_init(&adapter->tx_queue_lock);
1657
1658 /* Explicitly disable IRQ since the NIC can be in any state. */
1659 igbvf_irq_disable(adapter);
1660
1661 spin_lock_init(&adapter->stats_lock);
1662 spin_lock_init(&adapter->hw.mbx_lock);
1663
1664 set_bit(__IGBVF_DOWN, &adapter->state);
1665 return 0;
1666 }
1667
igbvf_initialize_last_counter_stats(struct igbvf_adapter * adapter)1668 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1669 {
1670 struct e1000_hw *hw = &adapter->hw;
1671
1672 adapter->stats.last_gprc = er32(VFGPRC);
1673 adapter->stats.last_gorc = er32(VFGORC);
1674 adapter->stats.last_gptc = er32(VFGPTC);
1675 adapter->stats.last_gotc = er32(VFGOTC);
1676 adapter->stats.last_mprc = er32(VFMPRC);
1677 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1678 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1679 adapter->stats.last_gorlbc = er32(VFGORLBC);
1680 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1681
1682 adapter->stats.base_gprc = er32(VFGPRC);
1683 adapter->stats.base_gorc = er32(VFGORC);
1684 adapter->stats.base_gptc = er32(VFGPTC);
1685 adapter->stats.base_gotc = er32(VFGOTC);
1686 adapter->stats.base_mprc = er32(VFMPRC);
1687 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1688 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1689 adapter->stats.base_gorlbc = er32(VFGORLBC);
1690 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1691 }
1692
1693 /**
1694 * igbvf_open - Called when a network interface is made active
1695 * @netdev: network interface device structure
1696 *
1697 * Returns 0 on success, negative value on failure
1698 *
1699 * The open entry point is called when a network interface is made
1700 * active by the system (IFF_UP). At this point all resources needed
1701 * for transmit and receive operations are allocated, the interrupt
1702 * handler is registered with the OS, the watchdog timer is started,
1703 * and the stack is notified that the interface is ready.
1704 **/
igbvf_open(struct net_device * netdev)1705 static int igbvf_open(struct net_device *netdev)
1706 {
1707 struct igbvf_adapter *adapter = netdev_priv(netdev);
1708 struct e1000_hw *hw = &adapter->hw;
1709 int err;
1710
1711 /* disallow open during test */
1712 if (test_bit(__IGBVF_TESTING, &adapter->state))
1713 return -EBUSY;
1714
1715 /* allocate transmit descriptors */
1716 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1717 if (err)
1718 goto err_setup_tx;
1719
1720 /* allocate receive descriptors */
1721 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1722 if (err)
1723 goto err_setup_rx;
1724
1725 /* before we allocate an interrupt, we must be ready to handle it.
1726 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1727 * as soon as we call pci_request_irq, so we have to setup our
1728 * clean_rx handler before we do so.
1729 */
1730 igbvf_configure(adapter);
1731
1732 err = igbvf_request_irq(adapter);
1733 if (err)
1734 goto err_req_irq;
1735
1736 /* From here on the code is the same as igbvf_up() */
1737 clear_bit(__IGBVF_DOWN, &adapter->state);
1738
1739 napi_enable(&adapter->rx_ring->napi);
1740
1741 /* clear any pending interrupts */
1742 er32(EICR);
1743
1744 igbvf_irq_enable(adapter);
1745
1746 /* start the watchdog */
1747 hw->mac.get_link_status = 1;
1748 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1749
1750 return 0;
1751
1752 err_req_irq:
1753 igbvf_free_rx_resources(adapter->rx_ring);
1754 err_setup_rx:
1755 igbvf_free_tx_resources(adapter->tx_ring);
1756 err_setup_tx:
1757 igbvf_reset(adapter);
1758
1759 return err;
1760 }
1761
1762 /**
1763 * igbvf_close - Disables a network interface
1764 * @netdev: network interface device structure
1765 *
1766 * Returns 0, this is not allowed to fail
1767 *
1768 * The close entry point is called when an interface is de-activated
1769 * by the OS. The hardware is still under the drivers control, but
1770 * needs to be disabled. A global MAC reset is issued to stop the
1771 * hardware, and all transmit and receive resources are freed.
1772 **/
igbvf_close(struct net_device * netdev)1773 static int igbvf_close(struct net_device *netdev)
1774 {
1775 struct igbvf_adapter *adapter = netdev_priv(netdev);
1776
1777 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1778 igbvf_down(adapter);
1779
1780 igbvf_free_irq(adapter);
1781
1782 igbvf_free_tx_resources(adapter->tx_ring);
1783 igbvf_free_rx_resources(adapter->rx_ring);
1784
1785 return 0;
1786 }
1787
1788 /**
1789 * igbvf_set_mac - Change the Ethernet Address of the NIC
1790 * @netdev: network interface device structure
1791 * @p: pointer to an address structure
1792 *
1793 * Returns 0 on success, negative on failure
1794 **/
igbvf_set_mac(struct net_device * netdev,void * p)1795 static int igbvf_set_mac(struct net_device *netdev, void *p)
1796 {
1797 struct igbvf_adapter *adapter = netdev_priv(netdev);
1798 struct e1000_hw *hw = &adapter->hw;
1799 struct sockaddr *addr = p;
1800
1801 if (!is_valid_ether_addr(addr->sa_data))
1802 return -EADDRNOTAVAIL;
1803
1804 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1805
1806 spin_lock_bh(&hw->mbx_lock);
1807
1808 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1809
1810 spin_unlock_bh(&hw->mbx_lock);
1811
1812 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1813 return -EADDRNOTAVAIL;
1814
1815 eth_hw_addr_set(netdev, addr->sa_data);
1816
1817 return 0;
1818 }
1819
1820 #define UPDATE_VF_COUNTER(reg, name) \
1821 { \
1822 u32 current_counter = er32(reg); \
1823 if (current_counter < adapter->stats.last_##name) \
1824 adapter->stats.name += 0x100000000LL; \
1825 adapter->stats.last_##name = current_counter; \
1826 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1827 adapter->stats.name |= current_counter; \
1828 }
1829
1830 /**
1831 * igbvf_update_stats - Update the board statistics counters
1832 * @adapter: board private structure
1833 **/
igbvf_update_stats(struct igbvf_adapter * adapter)1834 void igbvf_update_stats(struct igbvf_adapter *adapter)
1835 {
1836 struct e1000_hw *hw = &adapter->hw;
1837 struct pci_dev *pdev = adapter->pdev;
1838
1839 /* Prevent stats update while adapter is being reset, link is down
1840 * or if the pci connection is down.
1841 */
1842 if (adapter->link_speed == 0)
1843 return;
1844
1845 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1846 return;
1847
1848 if (pci_channel_offline(pdev))
1849 return;
1850
1851 UPDATE_VF_COUNTER(VFGPRC, gprc);
1852 UPDATE_VF_COUNTER(VFGORC, gorc);
1853 UPDATE_VF_COUNTER(VFGPTC, gptc);
1854 UPDATE_VF_COUNTER(VFGOTC, gotc);
1855 UPDATE_VF_COUNTER(VFMPRC, mprc);
1856 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1857 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1858 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1859 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1860
1861 /* Fill out the OS statistics structure */
1862 adapter->netdev->stats.multicast = adapter->stats.mprc;
1863 }
1864
igbvf_print_link_info(struct igbvf_adapter * adapter)1865 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1866 {
1867 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1868 adapter->link_speed,
1869 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1870 }
1871
igbvf_has_link(struct igbvf_adapter * adapter)1872 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1873 {
1874 struct e1000_hw *hw = &adapter->hw;
1875 s32 ret_val = E1000_SUCCESS;
1876 bool link_active;
1877
1878 /* If interface is down, stay link down */
1879 if (test_bit(__IGBVF_DOWN, &adapter->state))
1880 return false;
1881
1882 spin_lock_bh(&hw->mbx_lock);
1883
1884 ret_val = hw->mac.ops.check_for_link(hw);
1885
1886 spin_unlock_bh(&hw->mbx_lock);
1887
1888 link_active = !hw->mac.get_link_status;
1889
1890 /* if check for link returns error we will need to reset */
1891 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1892 schedule_work(&adapter->reset_task);
1893
1894 return link_active;
1895 }
1896
1897 /**
1898 * igbvf_watchdog - Timer Call-back
1899 * @t: timer list pointer containing private struct
1900 **/
igbvf_watchdog(struct timer_list * t)1901 static void igbvf_watchdog(struct timer_list *t)
1902 {
1903 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1904
1905 /* Do the rest outside of interrupt context */
1906 schedule_work(&adapter->watchdog_task);
1907 }
1908
igbvf_watchdog_task(struct work_struct * work)1909 static void igbvf_watchdog_task(struct work_struct *work)
1910 {
1911 struct igbvf_adapter *adapter = container_of(work,
1912 struct igbvf_adapter,
1913 watchdog_task);
1914 struct net_device *netdev = adapter->netdev;
1915 struct e1000_mac_info *mac = &adapter->hw.mac;
1916 struct igbvf_ring *tx_ring = adapter->tx_ring;
1917 struct e1000_hw *hw = &adapter->hw;
1918 u32 link;
1919 int tx_pending = 0;
1920
1921 link = igbvf_has_link(adapter);
1922
1923 if (link) {
1924 if (!netif_carrier_ok(netdev)) {
1925 mac->ops.get_link_up_info(&adapter->hw,
1926 &adapter->link_speed,
1927 &adapter->link_duplex);
1928 igbvf_print_link_info(adapter);
1929
1930 netif_carrier_on(netdev);
1931 netif_wake_queue(netdev);
1932 }
1933 } else {
1934 if (netif_carrier_ok(netdev)) {
1935 adapter->link_speed = 0;
1936 adapter->link_duplex = 0;
1937 dev_info(&adapter->pdev->dev, "Link is Down\n");
1938 netif_carrier_off(netdev);
1939 netif_stop_queue(netdev);
1940 }
1941 }
1942
1943 if (netif_carrier_ok(netdev)) {
1944 igbvf_update_stats(adapter);
1945 } else {
1946 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1947 tx_ring->count);
1948 if (tx_pending) {
1949 /* We've lost link, so the controller stops DMA,
1950 * but we've got queued Tx work that's never going
1951 * to get done, so reset controller to flush Tx.
1952 * (Do the reset outside of interrupt context).
1953 */
1954 adapter->tx_timeout_count++;
1955 schedule_work(&adapter->reset_task);
1956 }
1957 }
1958
1959 /* Cause software interrupt to ensure Rx ring is cleaned */
1960 ew32(EICS, adapter->rx_ring->eims_value);
1961
1962 /* Reset the timer */
1963 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1964 mod_timer(&adapter->watchdog_timer,
1965 round_jiffies(jiffies + (2 * HZ)));
1966 }
1967
1968 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1969 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1970 #define IGBVF_TX_FLAGS_TSO 0x00000004
1971 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1972 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1973 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1974
igbvf_tx_ctxtdesc(struct igbvf_ring * tx_ring,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1975 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1976 u32 type_tucmd, u32 mss_l4len_idx)
1977 {
1978 struct e1000_adv_tx_context_desc *context_desc;
1979 struct igbvf_buffer *buffer_info;
1980 u16 i = tx_ring->next_to_use;
1981
1982 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1983 buffer_info = &tx_ring->buffer_info[i];
1984
1985 i++;
1986 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1987
1988 /* set bits to identify this as an advanced context descriptor */
1989 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1990
1991 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1992 context_desc->seqnum_seed = 0;
1993 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1994 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1995
1996 buffer_info->time_stamp = jiffies;
1997 buffer_info->dma = 0;
1998 }
1999
igbvf_tso(struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u8 * hdr_len)2000 static int igbvf_tso(struct igbvf_ring *tx_ring,
2001 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2002 {
2003 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2004 union {
2005 struct iphdr *v4;
2006 struct ipv6hdr *v6;
2007 unsigned char *hdr;
2008 } ip;
2009 union {
2010 struct tcphdr *tcp;
2011 unsigned char *hdr;
2012 } l4;
2013 u32 paylen, l4_offset;
2014 int err;
2015
2016 if (skb->ip_summed != CHECKSUM_PARTIAL)
2017 return 0;
2018
2019 if (!skb_is_gso(skb))
2020 return 0;
2021
2022 err = skb_cow_head(skb, 0);
2023 if (err < 0)
2024 return err;
2025
2026 ip.hdr = skb_network_header(skb);
2027 l4.hdr = skb_checksum_start(skb);
2028
2029 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2030 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2031
2032 /* initialize outer IP header fields */
2033 if (ip.v4->version == 4) {
2034 unsigned char *csum_start = skb_checksum_start(skb);
2035 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2036
2037 /* IP header will have to cancel out any data that
2038 * is not a part of the outer IP header
2039 */
2040 ip.v4->check = csum_fold(csum_partial(trans_start,
2041 csum_start - trans_start,
2042 0));
2043 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2044
2045 ip.v4->tot_len = 0;
2046 } else {
2047 ip.v6->payload_len = 0;
2048 }
2049
2050 /* determine offset of inner transport header */
2051 l4_offset = l4.hdr - skb->data;
2052
2053 /* compute length of segmentation header */
2054 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2055
2056 /* remove payload length from inner checksum */
2057 paylen = skb->len - l4_offset;
2058 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2059
2060 /* MSS L4LEN IDX */
2061 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2062 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2063
2064 /* VLAN MACLEN IPLEN */
2065 vlan_macip_lens = l4.hdr - ip.hdr;
2066 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2067 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2068
2069 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2070
2071 return 1;
2072 }
2073
igbvf_tx_csum(struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,__be16 protocol)2074 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2075 u32 tx_flags, __be16 protocol)
2076 {
2077 u32 vlan_macip_lens = 0;
2078 u32 type_tucmd = 0;
2079
2080 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2081 csum_failed:
2082 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2083 return false;
2084 goto no_csum;
2085 }
2086
2087 switch (skb->csum_offset) {
2088 case offsetof(struct tcphdr, check):
2089 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2090 fallthrough;
2091 case offsetof(struct udphdr, check):
2092 break;
2093 case offsetof(struct sctphdr, checksum):
2094 /* validate that this is actually an SCTP request */
2095 if (skb_csum_is_sctp(skb)) {
2096 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2097 break;
2098 }
2099 fallthrough;
2100 default:
2101 skb_checksum_help(skb);
2102 goto csum_failed;
2103 }
2104
2105 vlan_macip_lens = skb_checksum_start_offset(skb) -
2106 skb_network_offset(skb);
2107 no_csum:
2108 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2109 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2110
2111 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2112 return true;
2113 }
2114
igbvf_maybe_stop_tx(struct net_device * netdev,int size)2115 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2116 {
2117 struct igbvf_adapter *adapter = netdev_priv(netdev);
2118
2119 /* there is enough descriptors then we don't need to worry */
2120 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2121 return 0;
2122
2123 netif_stop_queue(netdev);
2124
2125 /* Herbert's original patch had:
2126 * smp_mb__after_netif_stop_queue();
2127 * but since that doesn't exist yet, just open code it.
2128 */
2129 smp_mb();
2130
2131 /* We need to check again just in case room has been made available */
2132 if (igbvf_desc_unused(adapter->tx_ring) < size)
2133 return -EBUSY;
2134
2135 netif_wake_queue(netdev);
2136
2137 ++adapter->restart_queue;
2138 return 0;
2139 }
2140
2141 #define IGBVF_MAX_TXD_PWR 16
2142 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2143
igbvf_tx_map_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb)2144 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2145 struct igbvf_ring *tx_ring,
2146 struct sk_buff *skb)
2147 {
2148 struct igbvf_buffer *buffer_info;
2149 struct pci_dev *pdev = adapter->pdev;
2150 unsigned int len = skb_headlen(skb);
2151 unsigned int count = 0, i;
2152 unsigned int f;
2153
2154 i = tx_ring->next_to_use;
2155
2156 buffer_info = &tx_ring->buffer_info[i];
2157 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2158 buffer_info->length = len;
2159 /* set time_stamp *before* dma to help avoid a possible race */
2160 buffer_info->time_stamp = jiffies;
2161 buffer_info->mapped_as_page = false;
2162 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2163 DMA_TO_DEVICE);
2164 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2165 goto dma_error;
2166
2167 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2168 const skb_frag_t *frag;
2169
2170 count++;
2171 i++;
2172 if (i == tx_ring->count)
2173 i = 0;
2174
2175 frag = &skb_shinfo(skb)->frags[f];
2176 len = skb_frag_size(frag);
2177
2178 buffer_info = &tx_ring->buffer_info[i];
2179 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2180 buffer_info->length = len;
2181 buffer_info->time_stamp = jiffies;
2182 buffer_info->mapped_as_page = true;
2183 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2184 DMA_TO_DEVICE);
2185 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2186 goto dma_error;
2187 }
2188
2189 tx_ring->buffer_info[i].skb = skb;
2190
2191 return ++count;
2192
2193 dma_error:
2194 dev_err(&pdev->dev, "TX DMA map failed\n");
2195
2196 /* clear timestamp and dma mappings for failed buffer_info mapping */
2197 buffer_info->dma = 0;
2198 buffer_info->time_stamp = 0;
2199 buffer_info->length = 0;
2200 buffer_info->mapped_as_page = false;
2201 if (count)
2202 count--;
2203
2204 /* clear timestamp and dma mappings for remaining portion of packet */
2205 while (count--) {
2206 if (i == 0)
2207 i += tx_ring->count;
2208 i--;
2209 buffer_info = &tx_ring->buffer_info[i];
2210 igbvf_put_txbuf(adapter, buffer_info);
2211 }
2212
2213 return 0;
2214 }
2215
igbvf_tx_queue_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,int tx_flags,int count,unsigned int first,u32 paylen,u8 hdr_len)2216 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2217 struct igbvf_ring *tx_ring,
2218 int tx_flags, int count,
2219 unsigned int first, u32 paylen,
2220 u8 hdr_len)
2221 {
2222 union e1000_adv_tx_desc *tx_desc = NULL;
2223 struct igbvf_buffer *buffer_info;
2224 u32 olinfo_status = 0, cmd_type_len;
2225 unsigned int i;
2226
2227 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2228 E1000_ADVTXD_DCMD_DEXT);
2229
2230 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2231 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2232
2233 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2234 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2235
2236 /* insert tcp checksum */
2237 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2238
2239 /* insert ip checksum */
2240 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2241 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2242
2243 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2244 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2245 }
2246
2247 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2248
2249 i = tx_ring->next_to_use;
2250 while (count--) {
2251 buffer_info = &tx_ring->buffer_info[i];
2252 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2253 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2254 tx_desc->read.cmd_type_len =
2255 cpu_to_le32(cmd_type_len | buffer_info->length);
2256 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2257 i++;
2258 if (i == tx_ring->count)
2259 i = 0;
2260 }
2261
2262 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2263 /* Force memory writes to complete before letting h/w
2264 * know there are new descriptors to fetch. (Only
2265 * applicable for weak-ordered memory model archs,
2266 * such as IA-64).
2267 */
2268 wmb();
2269
2270 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2271 tx_ring->next_to_use = i;
2272 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2273 }
2274
igbvf_xmit_frame_ring_adv(struct sk_buff * skb,struct net_device * netdev,struct igbvf_ring * tx_ring)2275 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2276 struct net_device *netdev,
2277 struct igbvf_ring *tx_ring)
2278 {
2279 struct igbvf_adapter *adapter = netdev_priv(netdev);
2280 unsigned int first, tx_flags = 0;
2281 u8 hdr_len = 0;
2282 int count = 0;
2283 int tso = 0;
2284 __be16 protocol = vlan_get_protocol(skb);
2285
2286 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287 dev_kfree_skb_any(skb);
2288 return NETDEV_TX_OK;
2289 }
2290
2291 if (skb->len <= 0) {
2292 dev_kfree_skb_any(skb);
2293 return NETDEV_TX_OK;
2294 }
2295
2296 /* need: count + 4 desc gap to keep tail from touching
2297 * + 2 desc gap to keep tail from touching head,
2298 * + 1 desc for skb->data,
2299 * + 1 desc for context descriptor,
2300 * head, otherwise try next time
2301 */
2302 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2303 /* this is a hard error */
2304 return NETDEV_TX_BUSY;
2305 }
2306
2307 if (skb_vlan_tag_present(skb)) {
2308 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2309 tx_flags |= (skb_vlan_tag_get(skb) <<
2310 IGBVF_TX_FLAGS_VLAN_SHIFT);
2311 }
2312
2313 if (protocol == htons(ETH_P_IP))
2314 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2315
2316 first = tx_ring->next_to_use;
2317
2318 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2319 if (unlikely(tso < 0)) {
2320 dev_kfree_skb_any(skb);
2321 return NETDEV_TX_OK;
2322 }
2323
2324 if (tso)
2325 tx_flags |= IGBVF_TX_FLAGS_TSO;
2326 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2327 (skb->ip_summed == CHECKSUM_PARTIAL))
2328 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2329
2330 /* count reflects descriptors mapped, if 0 then mapping error
2331 * has occurred and we need to rewind the descriptor queue
2332 */
2333 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2334
2335 if (count) {
2336 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2337 first, skb->len, hdr_len);
2338 /* Make sure there is space in the ring for the next send. */
2339 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2340 } else {
2341 dev_kfree_skb_any(skb);
2342 tx_ring->buffer_info[first].time_stamp = 0;
2343 tx_ring->next_to_use = first;
2344 }
2345
2346 return NETDEV_TX_OK;
2347 }
2348
igbvf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2349 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2350 struct net_device *netdev)
2351 {
2352 struct igbvf_adapter *adapter = netdev_priv(netdev);
2353 struct igbvf_ring *tx_ring;
2354
2355 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2356 dev_kfree_skb_any(skb);
2357 return NETDEV_TX_OK;
2358 }
2359
2360 tx_ring = &adapter->tx_ring[0];
2361
2362 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2363 }
2364
2365 /**
2366 * igbvf_tx_timeout - Respond to a Tx Hang
2367 * @netdev: network interface device structure
2368 * @txqueue: queue timing out (unused)
2369 **/
igbvf_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)2370 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2371 {
2372 struct igbvf_adapter *adapter = netdev_priv(netdev);
2373
2374 /* Do the reset outside of interrupt context */
2375 adapter->tx_timeout_count++;
2376 schedule_work(&adapter->reset_task);
2377 }
2378
igbvf_reset_task(struct work_struct * work)2379 static void igbvf_reset_task(struct work_struct *work)
2380 {
2381 struct igbvf_adapter *adapter;
2382
2383 adapter = container_of(work, struct igbvf_adapter, reset_task);
2384
2385 igbvf_reinit_locked(adapter);
2386 }
2387
2388 /**
2389 * igbvf_change_mtu - Change the Maximum Transfer Unit
2390 * @netdev: network interface device structure
2391 * @new_mtu: new value for maximum frame size
2392 *
2393 * Returns 0 on success, negative on failure
2394 **/
igbvf_change_mtu(struct net_device * netdev,int new_mtu)2395 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2396 {
2397 struct igbvf_adapter *adapter = netdev_priv(netdev);
2398 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2399
2400 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2401 usleep_range(1000, 2000);
2402 /* igbvf_down has a dependency on max_frame_size */
2403 adapter->max_frame_size = max_frame;
2404 if (netif_running(netdev))
2405 igbvf_down(adapter);
2406
2407 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2408 * means we reserve 2 more, this pushes us to allocate from the next
2409 * larger slab size.
2410 * i.e. RXBUFFER_2048 --> size-4096 slab
2411 * However with the new *_jumbo_rx* routines, jumbo receives will use
2412 * fragmented skbs
2413 */
2414
2415 if (max_frame <= 1024)
2416 adapter->rx_buffer_len = 1024;
2417 else if (max_frame <= 2048)
2418 adapter->rx_buffer_len = 2048;
2419 else
2420 #if (PAGE_SIZE / 2) > 16384
2421 adapter->rx_buffer_len = 16384;
2422 #else
2423 adapter->rx_buffer_len = PAGE_SIZE / 2;
2424 #endif
2425
2426 /* adjust allocation if LPE protects us, and we aren't using SBP */
2427 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2428 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2429 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2430 ETH_FCS_LEN;
2431
2432 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2433 netdev->mtu, new_mtu);
2434 netdev->mtu = new_mtu;
2435
2436 if (netif_running(netdev))
2437 igbvf_up(adapter);
2438 else
2439 igbvf_reset(adapter);
2440
2441 clear_bit(__IGBVF_RESETTING, &adapter->state);
2442
2443 return 0;
2444 }
2445
igbvf_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2446 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2447 {
2448 switch (cmd) {
2449 default:
2450 return -EOPNOTSUPP;
2451 }
2452 }
2453
igbvf_suspend(struct device * dev_d)2454 static int igbvf_suspend(struct device *dev_d)
2455 {
2456 struct net_device *netdev = dev_get_drvdata(dev_d);
2457 struct igbvf_adapter *adapter = netdev_priv(netdev);
2458
2459 netif_device_detach(netdev);
2460
2461 if (netif_running(netdev)) {
2462 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2463 igbvf_down(adapter);
2464 igbvf_free_irq(adapter);
2465 }
2466
2467 return 0;
2468 }
2469
igbvf_resume(struct device * dev_d)2470 static int __maybe_unused igbvf_resume(struct device *dev_d)
2471 {
2472 struct pci_dev *pdev = to_pci_dev(dev_d);
2473 struct net_device *netdev = pci_get_drvdata(pdev);
2474 struct igbvf_adapter *adapter = netdev_priv(netdev);
2475 u32 err;
2476
2477 pci_set_master(pdev);
2478
2479 if (netif_running(netdev)) {
2480 err = igbvf_request_irq(adapter);
2481 if (err)
2482 return err;
2483 }
2484
2485 igbvf_reset(adapter);
2486
2487 if (netif_running(netdev))
2488 igbvf_up(adapter);
2489
2490 netif_device_attach(netdev);
2491
2492 return 0;
2493 }
2494
igbvf_shutdown(struct pci_dev * pdev)2495 static void igbvf_shutdown(struct pci_dev *pdev)
2496 {
2497 igbvf_suspend(&pdev->dev);
2498 }
2499
2500 #ifdef CONFIG_NET_POLL_CONTROLLER
2501 /* Polling 'interrupt' - used by things like netconsole to send skbs
2502 * without having to re-enable interrupts. It's not called while
2503 * the interrupt routine is executing.
2504 */
igbvf_netpoll(struct net_device * netdev)2505 static void igbvf_netpoll(struct net_device *netdev)
2506 {
2507 struct igbvf_adapter *adapter = netdev_priv(netdev);
2508
2509 disable_irq(adapter->pdev->irq);
2510
2511 igbvf_clean_tx_irq(adapter->tx_ring);
2512
2513 enable_irq(adapter->pdev->irq);
2514 }
2515 #endif
2516
2517 /**
2518 * igbvf_io_error_detected - called when PCI error is detected
2519 * @pdev: Pointer to PCI device
2520 * @state: The current pci connection state
2521 *
2522 * This function is called after a PCI bus error affecting
2523 * this device has been detected.
2524 */
igbvf_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2525 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2526 pci_channel_state_t state)
2527 {
2528 struct net_device *netdev = pci_get_drvdata(pdev);
2529 struct igbvf_adapter *adapter = netdev_priv(netdev);
2530
2531 netif_device_detach(netdev);
2532
2533 if (state == pci_channel_io_perm_failure)
2534 return PCI_ERS_RESULT_DISCONNECT;
2535
2536 if (netif_running(netdev))
2537 igbvf_down(adapter);
2538 pci_disable_device(pdev);
2539
2540 /* Request a slot reset. */
2541 return PCI_ERS_RESULT_NEED_RESET;
2542 }
2543
2544 /**
2545 * igbvf_io_slot_reset - called after the pci bus has been reset.
2546 * @pdev: Pointer to PCI device
2547 *
2548 * Restart the card from scratch, as if from a cold-boot. Implementation
2549 * resembles the first-half of the igbvf_resume routine.
2550 */
igbvf_io_slot_reset(struct pci_dev * pdev)2551 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2552 {
2553 struct net_device *netdev = pci_get_drvdata(pdev);
2554 struct igbvf_adapter *adapter = netdev_priv(netdev);
2555
2556 if (pci_enable_device_mem(pdev)) {
2557 dev_err(&pdev->dev,
2558 "Cannot re-enable PCI device after reset.\n");
2559 return PCI_ERS_RESULT_DISCONNECT;
2560 }
2561 pci_set_master(pdev);
2562
2563 igbvf_reset(adapter);
2564
2565 return PCI_ERS_RESULT_RECOVERED;
2566 }
2567
2568 /**
2569 * igbvf_io_resume - called when traffic can start flowing again.
2570 * @pdev: Pointer to PCI device
2571 *
2572 * This callback is called when the error recovery driver tells us that
2573 * its OK to resume normal operation. Implementation resembles the
2574 * second-half of the igbvf_resume routine.
2575 */
igbvf_io_resume(struct pci_dev * pdev)2576 static void igbvf_io_resume(struct pci_dev *pdev)
2577 {
2578 struct net_device *netdev = pci_get_drvdata(pdev);
2579 struct igbvf_adapter *adapter = netdev_priv(netdev);
2580
2581 if (netif_running(netdev)) {
2582 if (igbvf_up(adapter)) {
2583 dev_err(&pdev->dev,
2584 "can't bring device back up after reset\n");
2585 return;
2586 }
2587 }
2588
2589 netif_device_attach(netdev);
2590 }
2591
igbvf_print_device_info(struct igbvf_adapter * adapter)2592 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2593 {
2594 struct e1000_hw *hw = &adapter->hw;
2595 struct net_device *netdev = adapter->netdev;
2596 struct pci_dev *pdev = adapter->pdev;
2597
2598 if (hw->mac.type == e1000_vfadapt_i350)
2599 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2600 else
2601 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2602 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2603 }
2604
igbvf_set_features(struct net_device * netdev,netdev_features_t features)2605 static int igbvf_set_features(struct net_device *netdev,
2606 netdev_features_t features)
2607 {
2608 struct igbvf_adapter *adapter = netdev_priv(netdev);
2609
2610 if (features & NETIF_F_RXCSUM)
2611 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2612 else
2613 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2614
2615 return 0;
2616 }
2617
2618 #define IGBVF_MAX_MAC_HDR_LEN 127
2619 #define IGBVF_MAX_NETWORK_HDR_LEN 511
2620
2621 static netdev_features_t
igbvf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2622 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2623 netdev_features_t features)
2624 {
2625 unsigned int network_hdr_len, mac_hdr_len;
2626
2627 /* Make certain the headers can be described by a context descriptor */
2628 mac_hdr_len = skb_network_header(skb) - skb->data;
2629 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2630 return features & ~(NETIF_F_HW_CSUM |
2631 NETIF_F_SCTP_CRC |
2632 NETIF_F_HW_VLAN_CTAG_TX |
2633 NETIF_F_TSO |
2634 NETIF_F_TSO6);
2635
2636 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2637 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2638 return features & ~(NETIF_F_HW_CSUM |
2639 NETIF_F_SCTP_CRC |
2640 NETIF_F_TSO |
2641 NETIF_F_TSO6);
2642
2643 /* We can only support IPV4 TSO in tunnels if we can mangle the
2644 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2645 */
2646 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2647 features &= ~NETIF_F_TSO;
2648
2649 return features;
2650 }
2651
2652 static const struct net_device_ops igbvf_netdev_ops = {
2653 .ndo_open = igbvf_open,
2654 .ndo_stop = igbvf_close,
2655 .ndo_start_xmit = igbvf_xmit_frame,
2656 .ndo_set_rx_mode = igbvf_set_rx_mode,
2657 .ndo_set_mac_address = igbvf_set_mac,
2658 .ndo_change_mtu = igbvf_change_mtu,
2659 .ndo_eth_ioctl = igbvf_ioctl,
2660 .ndo_tx_timeout = igbvf_tx_timeout,
2661 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2662 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2663 #ifdef CONFIG_NET_POLL_CONTROLLER
2664 .ndo_poll_controller = igbvf_netpoll,
2665 #endif
2666 .ndo_set_features = igbvf_set_features,
2667 .ndo_features_check = igbvf_features_check,
2668 };
2669
2670 /**
2671 * igbvf_probe - Device Initialization Routine
2672 * @pdev: PCI device information struct
2673 * @ent: entry in igbvf_pci_tbl
2674 *
2675 * Returns 0 on success, negative on failure
2676 *
2677 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2678 * The OS initialization, configuring of the adapter private structure,
2679 * and a hardware reset occur.
2680 **/
igbvf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2681 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2682 {
2683 struct net_device *netdev;
2684 struct igbvf_adapter *adapter;
2685 struct e1000_hw *hw;
2686 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2687 static int cards_found;
2688 int err;
2689
2690 err = pci_enable_device_mem(pdev);
2691 if (err)
2692 return err;
2693
2694 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2695 if (err) {
2696 dev_err(&pdev->dev,
2697 "No usable DMA configuration, aborting\n");
2698 goto err_dma;
2699 }
2700
2701 err = pci_request_regions(pdev, igbvf_driver_name);
2702 if (err)
2703 goto err_pci_reg;
2704
2705 pci_set_master(pdev);
2706
2707 err = -ENOMEM;
2708 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2709 if (!netdev)
2710 goto err_alloc_etherdev;
2711
2712 SET_NETDEV_DEV(netdev, &pdev->dev);
2713
2714 pci_set_drvdata(pdev, netdev);
2715 adapter = netdev_priv(netdev);
2716 hw = &adapter->hw;
2717 adapter->netdev = netdev;
2718 adapter->pdev = pdev;
2719 adapter->ei = ei;
2720 adapter->pba = ei->pba;
2721 adapter->flags = ei->flags;
2722 adapter->hw.back = adapter;
2723 adapter->hw.mac.type = ei->mac;
2724 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2725
2726 /* PCI config space info */
2727
2728 hw->vendor_id = pdev->vendor;
2729 hw->device_id = pdev->device;
2730 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2731 hw->subsystem_device_id = pdev->subsystem_device;
2732 hw->revision_id = pdev->revision;
2733
2734 err = -EIO;
2735 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2736 pci_resource_len(pdev, 0));
2737
2738 if (!adapter->hw.hw_addr)
2739 goto err_ioremap;
2740
2741 if (ei->get_variants) {
2742 err = ei->get_variants(adapter);
2743 if (err)
2744 goto err_get_variants;
2745 }
2746
2747 /* setup adapter struct */
2748 err = igbvf_sw_init(adapter);
2749 if (err)
2750 goto err_sw_init;
2751
2752 /* construct the net_device struct */
2753 netdev->netdev_ops = &igbvf_netdev_ops;
2754
2755 igbvf_set_ethtool_ops(netdev);
2756 netdev->watchdog_timeo = 5 * HZ;
2757 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2758
2759 adapter->bd_number = cards_found++;
2760
2761 netdev->hw_features = NETIF_F_SG |
2762 NETIF_F_TSO |
2763 NETIF_F_TSO6 |
2764 NETIF_F_RXCSUM |
2765 NETIF_F_HW_CSUM |
2766 NETIF_F_SCTP_CRC;
2767
2768 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2769 NETIF_F_GSO_GRE_CSUM | \
2770 NETIF_F_GSO_IPXIP4 | \
2771 NETIF_F_GSO_IPXIP6 | \
2772 NETIF_F_GSO_UDP_TUNNEL | \
2773 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2774
2775 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2776 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2777 IGBVF_GSO_PARTIAL_FEATURES;
2778
2779 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
2780
2781 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2782 netdev->mpls_features |= NETIF_F_HW_CSUM;
2783 netdev->hw_enc_features |= netdev->vlan_features;
2784
2785 /* set this bit last since it cannot be part of vlan_features */
2786 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2787 NETIF_F_HW_VLAN_CTAG_RX |
2788 NETIF_F_HW_VLAN_CTAG_TX;
2789
2790 /* MTU range: 68 - 9216 */
2791 netdev->min_mtu = ETH_MIN_MTU;
2792 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2793
2794 spin_lock_bh(&hw->mbx_lock);
2795
2796 /*reset the controller to put the device in a known good state */
2797 err = hw->mac.ops.reset_hw(hw);
2798 if (err) {
2799 dev_info(&pdev->dev,
2800 "PF still in reset state. Is the PF interface up?\n");
2801 } else {
2802 err = hw->mac.ops.read_mac_addr(hw);
2803 if (err)
2804 dev_info(&pdev->dev, "Error reading MAC address.\n");
2805 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2806 dev_info(&pdev->dev,
2807 "MAC address not assigned by administrator.\n");
2808 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2809 }
2810
2811 spin_unlock_bh(&hw->mbx_lock);
2812
2813 if (!is_valid_ether_addr(netdev->dev_addr)) {
2814 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2815 eth_hw_addr_random(netdev);
2816 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2817 netdev->addr_len);
2818 }
2819
2820 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2821
2822 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2823 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2824
2825 /* ring size defaults */
2826 adapter->rx_ring->count = 1024;
2827 adapter->tx_ring->count = 1024;
2828
2829 /* reset the hardware with the new settings */
2830 igbvf_reset(adapter);
2831
2832 /* set hardware-specific flags */
2833 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2834 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2835
2836 strcpy(netdev->name, "eth%d");
2837 err = register_netdev(netdev);
2838 if (err)
2839 goto err_hw_init;
2840
2841 /* tell the stack to leave us alone until igbvf_open() is called */
2842 netif_carrier_off(netdev);
2843 netif_stop_queue(netdev);
2844
2845 igbvf_print_device_info(adapter);
2846
2847 igbvf_initialize_last_counter_stats(adapter);
2848
2849 return 0;
2850
2851 err_hw_init:
2852 netif_napi_del(&adapter->rx_ring->napi);
2853 kfree(adapter->tx_ring);
2854 kfree(adapter->rx_ring);
2855 err_sw_init:
2856 igbvf_reset_interrupt_capability(adapter);
2857 err_get_variants:
2858 iounmap(adapter->hw.hw_addr);
2859 err_ioremap:
2860 free_netdev(netdev);
2861 err_alloc_etherdev:
2862 pci_release_regions(pdev);
2863 err_pci_reg:
2864 err_dma:
2865 pci_disable_device(pdev);
2866 return err;
2867 }
2868
2869 /**
2870 * igbvf_remove - Device Removal Routine
2871 * @pdev: PCI device information struct
2872 *
2873 * igbvf_remove is called by the PCI subsystem to alert the driver
2874 * that it should release a PCI device. The could be caused by a
2875 * Hot-Plug event, or because the driver is going to be removed from
2876 * memory.
2877 **/
igbvf_remove(struct pci_dev * pdev)2878 static void igbvf_remove(struct pci_dev *pdev)
2879 {
2880 struct net_device *netdev = pci_get_drvdata(pdev);
2881 struct igbvf_adapter *adapter = netdev_priv(netdev);
2882 struct e1000_hw *hw = &adapter->hw;
2883
2884 /* The watchdog timer may be rescheduled, so explicitly
2885 * disable it from being rescheduled.
2886 */
2887 set_bit(__IGBVF_DOWN, &adapter->state);
2888 del_timer_sync(&adapter->watchdog_timer);
2889
2890 cancel_work_sync(&adapter->reset_task);
2891 cancel_work_sync(&adapter->watchdog_task);
2892
2893 unregister_netdev(netdev);
2894
2895 igbvf_reset_interrupt_capability(adapter);
2896
2897 /* it is important to delete the NAPI struct prior to freeing the
2898 * Rx ring so that you do not end up with null pointer refs
2899 */
2900 netif_napi_del(&adapter->rx_ring->napi);
2901 kfree(adapter->tx_ring);
2902 kfree(adapter->rx_ring);
2903
2904 iounmap(hw->hw_addr);
2905 if (hw->flash_address)
2906 iounmap(hw->flash_address);
2907 pci_release_regions(pdev);
2908
2909 free_netdev(netdev);
2910
2911 pci_disable_device(pdev);
2912 }
2913
2914 /* PCI Error Recovery (ERS) */
2915 static const struct pci_error_handlers igbvf_err_handler = {
2916 .error_detected = igbvf_io_error_detected,
2917 .slot_reset = igbvf_io_slot_reset,
2918 .resume = igbvf_io_resume,
2919 };
2920
2921 static const struct pci_device_id igbvf_pci_tbl[] = {
2922 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2923 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2924 { } /* terminate list */
2925 };
2926 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2927
2928 static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2929
2930 /* PCI Device API Driver */
2931 static struct pci_driver igbvf_driver = {
2932 .name = igbvf_driver_name,
2933 .id_table = igbvf_pci_tbl,
2934 .probe = igbvf_probe,
2935 .remove = igbvf_remove,
2936 .driver.pm = &igbvf_pm_ops,
2937 .shutdown = igbvf_shutdown,
2938 .err_handler = &igbvf_err_handler
2939 };
2940
2941 /**
2942 * igbvf_init_module - Driver Registration Routine
2943 *
2944 * igbvf_init_module is the first routine called when the driver is
2945 * loaded. All it does is register with the PCI subsystem.
2946 **/
igbvf_init_module(void)2947 static int __init igbvf_init_module(void)
2948 {
2949 int ret;
2950
2951 pr_info("%s\n", igbvf_driver_string);
2952 pr_info("%s\n", igbvf_copyright);
2953
2954 ret = pci_register_driver(&igbvf_driver);
2955
2956 return ret;
2957 }
2958 module_init(igbvf_init_module);
2959
2960 /**
2961 * igbvf_exit_module - Driver Exit Cleanup Routine
2962 *
2963 * igbvf_exit_module is called just before the driver is removed
2964 * from memory.
2965 **/
igbvf_exit_module(void)2966 static void __exit igbvf_exit_module(void)
2967 {
2968 pci_unregister_driver(&igbvf_driver);
2969 }
2970 module_exit(igbvf_exit_module);
2971
2972 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2973 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2974 MODULE_LICENSE("GPL v2");
2975
2976 /* netdev.c */
2977