1 /*******************************************************************************
2 
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
47 
48 #include "igbvf.h"
49 
50 #define DRV_VERSION "2.0.1-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54 		  "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56 		  "Copyright (c) 2009 - 2012 Intel Corporation.";
57 
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62 
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67 
68 static struct igbvf_info igbvf_vf_info = {
69 	.mac                    = e1000_vfadapt,
70 	.flags                  = 0,
71 	.pba                    = 10,
72 	.init_ops               = e1000_init_function_pointers_vf,
73 };
74 
75 static struct igbvf_info igbvf_i350_vf_info = {
76 	.mac			= e1000_vfadapt_i350,
77 	.flags			= 0,
78 	.pba			= 10,
79 	.init_ops		= e1000_init_function_pointers_vf,
80 };
81 
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83 	[board_vf]              = &igbvf_vf_info,
84 	[board_i350_vf]		= &igbvf_i350_vf_info,
85 };
86 
87 /**
88  * igbvf_desc_unused - calculate if we have unused descriptors
89  **/
igbvf_desc_unused(struct igbvf_ring * ring)90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92 	if (ring->next_to_clean > ring->next_to_use)
93 		return ring->next_to_clean - ring->next_to_use - 1;
94 
95 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97 
98 /**
99  * igbvf_receive_skb - helper function to handle Rx indications
100  * @adapter: board private structure
101  * @status: descriptor status field as written by hardware
102  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103  * @skb: pointer to sk_buff to be indicated to stack
104  **/
igbvf_receive_skb(struct igbvf_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 status,u16 vlan)105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106                               struct net_device *netdev,
107                               struct sk_buff *skb,
108                               u32 status, u16 vlan)
109 {
110 	if (status & E1000_RXD_STAT_VP) {
111 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
112 		if (test_bit(vid, adapter->active_vlans))
113 			__vlan_hwaccel_put_tag(skb, vid);
114 	}
115 	netif_receive_skb(skb);
116 }
117 
igbvf_rx_checksum_adv(struct igbvf_adapter * adapter,u32 status_err,struct sk_buff * skb)118 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
119                                          u32 status_err, struct sk_buff *skb)
120 {
121 	skb_checksum_none_assert(skb);
122 
123 	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
124 	if ((status_err & E1000_RXD_STAT_IXSM) ||
125 	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
126 		return;
127 
128 	/* TCP/UDP checksum error bit is set */
129 	if (status_err &
130 	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
131 		/* let the stack verify checksum errors */
132 		adapter->hw_csum_err++;
133 		return;
134 	}
135 
136 	/* It must be a TCP or UDP packet with a valid checksum */
137 	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
138 		skb->ip_summed = CHECKSUM_UNNECESSARY;
139 
140 	adapter->hw_csum_good++;
141 }
142 
143 /**
144  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
145  * @rx_ring: address of ring structure to repopulate
146  * @cleaned_count: number of buffers to repopulate
147  **/
igbvf_alloc_rx_buffers(struct igbvf_ring * rx_ring,int cleaned_count)148 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
149                                    int cleaned_count)
150 {
151 	struct igbvf_adapter *adapter = rx_ring->adapter;
152 	struct net_device *netdev = adapter->netdev;
153 	struct pci_dev *pdev = adapter->pdev;
154 	union e1000_adv_rx_desc *rx_desc;
155 	struct igbvf_buffer *buffer_info;
156 	struct sk_buff *skb;
157 	unsigned int i;
158 	int bufsz;
159 
160 	i = rx_ring->next_to_use;
161 	buffer_info = &rx_ring->buffer_info[i];
162 
163 	if (adapter->rx_ps_hdr_size)
164 		bufsz = adapter->rx_ps_hdr_size;
165 	else
166 		bufsz = adapter->rx_buffer_len;
167 
168 	while (cleaned_count--) {
169 		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
170 
171 		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
172 			if (!buffer_info->page) {
173 				buffer_info->page = alloc_page(GFP_ATOMIC);
174 				if (!buffer_info->page) {
175 					adapter->alloc_rx_buff_failed++;
176 					goto no_buffers;
177 				}
178 				buffer_info->page_offset = 0;
179 			} else {
180 				buffer_info->page_offset ^= PAGE_SIZE / 2;
181 			}
182 			buffer_info->page_dma =
183 				dma_map_page(&pdev->dev, buffer_info->page,
184 				             buffer_info->page_offset,
185 				             PAGE_SIZE / 2,
186 					     DMA_FROM_DEVICE);
187 		}
188 
189 		if (!buffer_info->skb) {
190 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
191 			if (!skb) {
192 				adapter->alloc_rx_buff_failed++;
193 				goto no_buffers;
194 			}
195 
196 			buffer_info->skb = skb;
197 			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
198 			                                  bufsz,
199 							  DMA_FROM_DEVICE);
200 		}
201 		/* Refresh the desc even if buffer_addrs didn't change because
202 		 * each write-back erases this info. */
203 		if (adapter->rx_ps_hdr_size) {
204 			rx_desc->read.pkt_addr =
205 			     cpu_to_le64(buffer_info->page_dma);
206 			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
207 		} else {
208 			rx_desc->read.pkt_addr =
209 			     cpu_to_le64(buffer_info->dma);
210 			rx_desc->read.hdr_addr = 0;
211 		}
212 
213 		i++;
214 		if (i == rx_ring->count)
215 			i = 0;
216 		buffer_info = &rx_ring->buffer_info[i];
217 	}
218 
219 no_buffers:
220 	if (rx_ring->next_to_use != i) {
221 		rx_ring->next_to_use = i;
222 		if (i == 0)
223 			i = (rx_ring->count - 1);
224 		else
225 			i--;
226 
227 		/* Force memory writes to complete before letting h/w
228 		 * know there are new descriptors to fetch.  (Only
229 		 * applicable for weak-ordered memory model archs,
230 		 * such as IA-64). */
231 		wmb();
232 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
233 	}
234 }
235 
236 /**
237  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
238  * @adapter: board private structure
239  *
240  * the return value indicates whether actual cleaning was done, there
241  * is no guarantee that everything was cleaned
242  **/
igbvf_clean_rx_irq(struct igbvf_adapter * adapter,int * work_done,int work_to_do)243 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
244                                int *work_done, int work_to_do)
245 {
246 	struct igbvf_ring *rx_ring = adapter->rx_ring;
247 	struct net_device *netdev = adapter->netdev;
248 	struct pci_dev *pdev = adapter->pdev;
249 	union e1000_adv_rx_desc *rx_desc, *next_rxd;
250 	struct igbvf_buffer *buffer_info, *next_buffer;
251 	struct sk_buff *skb;
252 	bool cleaned = false;
253 	int cleaned_count = 0;
254 	unsigned int total_bytes = 0, total_packets = 0;
255 	unsigned int i;
256 	u32 length, hlen, staterr;
257 
258 	i = rx_ring->next_to_clean;
259 	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
260 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
261 
262 	while (staterr & E1000_RXD_STAT_DD) {
263 		if (*work_done >= work_to_do)
264 			break;
265 		(*work_done)++;
266 		rmb(); /* read descriptor and rx_buffer_info after status DD */
267 
268 		buffer_info = &rx_ring->buffer_info[i];
269 
270 		/* HW will not DMA in data larger than the given buffer, even
271 		 * if it parses the (NFS, of course) header to be larger.  In
272 		 * that case, it fills the header buffer and spills the rest
273 		 * into the page.
274 		 */
275 		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
276 		  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
277 		if (hlen > adapter->rx_ps_hdr_size)
278 			hlen = adapter->rx_ps_hdr_size;
279 
280 		length = le16_to_cpu(rx_desc->wb.upper.length);
281 		cleaned = true;
282 		cleaned_count++;
283 
284 		skb = buffer_info->skb;
285 		prefetch(skb->data - NET_IP_ALIGN);
286 		buffer_info->skb = NULL;
287 		if (!adapter->rx_ps_hdr_size) {
288 			dma_unmap_single(&pdev->dev, buffer_info->dma,
289 			                 adapter->rx_buffer_len,
290 					 DMA_FROM_DEVICE);
291 			buffer_info->dma = 0;
292 			skb_put(skb, length);
293 			goto send_up;
294 		}
295 
296 		if (!skb_shinfo(skb)->nr_frags) {
297 			dma_unmap_single(&pdev->dev, buffer_info->dma,
298 			                 adapter->rx_ps_hdr_size,
299 					 DMA_FROM_DEVICE);
300 			skb_put(skb, hlen);
301 		}
302 
303 		if (length) {
304 			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
305 			               PAGE_SIZE / 2,
306 				       DMA_FROM_DEVICE);
307 			buffer_info->page_dma = 0;
308 
309 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
310 			                   buffer_info->page,
311 			                   buffer_info->page_offset,
312 			                   length);
313 
314 			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
315 			    (page_count(buffer_info->page) != 1))
316 				buffer_info->page = NULL;
317 			else
318 				get_page(buffer_info->page);
319 
320 			skb->len += length;
321 			skb->data_len += length;
322 			skb->truesize += PAGE_SIZE / 2;
323 		}
324 send_up:
325 		i++;
326 		if (i == rx_ring->count)
327 			i = 0;
328 		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
329 		prefetch(next_rxd);
330 		next_buffer = &rx_ring->buffer_info[i];
331 
332 		if (!(staterr & E1000_RXD_STAT_EOP)) {
333 			buffer_info->skb = next_buffer->skb;
334 			buffer_info->dma = next_buffer->dma;
335 			next_buffer->skb = skb;
336 			next_buffer->dma = 0;
337 			goto next_desc;
338 		}
339 
340 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
341 			dev_kfree_skb_irq(skb);
342 			goto next_desc;
343 		}
344 
345 		total_bytes += skb->len;
346 		total_packets++;
347 
348 		igbvf_rx_checksum_adv(adapter, staterr, skb);
349 
350 		skb->protocol = eth_type_trans(skb, netdev);
351 
352 		igbvf_receive_skb(adapter, netdev, skb, staterr,
353 		                  rx_desc->wb.upper.vlan);
354 
355 next_desc:
356 		rx_desc->wb.upper.status_error = 0;
357 
358 		/* return some buffers to hardware, one at a time is too slow */
359 		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
360 			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
361 			cleaned_count = 0;
362 		}
363 
364 		/* use prefetched values */
365 		rx_desc = next_rxd;
366 		buffer_info = next_buffer;
367 
368 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
369 	}
370 
371 	rx_ring->next_to_clean = i;
372 	cleaned_count = igbvf_desc_unused(rx_ring);
373 
374 	if (cleaned_count)
375 		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
376 
377 	adapter->total_rx_packets += total_packets;
378 	adapter->total_rx_bytes += total_bytes;
379 	adapter->net_stats.rx_bytes += total_bytes;
380 	adapter->net_stats.rx_packets += total_packets;
381 	return cleaned;
382 }
383 
igbvf_put_txbuf(struct igbvf_adapter * adapter,struct igbvf_buffer * buffer_info)384 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
385                             struct igbvf_buffer *buffer_info)
386 {
387 	if (buffer_info->dma) {
388 		if (buffer_info->mapped_as_page)
389 			dma_unmap_page(&adapter->pdev->dev,
390 				       buffer_info->dma,
391 				       buffer_info->length,
392 				       DMA_TO_DEVICE);
393 		else
394 			dma_unmap_single(&adapter->pdev->dev,
395 					 buffer_info->dma,
396 					 buffer_info->length,
397 					 DMA_TO_DEVICE);
398 		buffer_info->dma = 0;
399 	}
400 	if (buffer_info->skb) {
401 		dev_kfree_skb_any(buffer_info->skb);
402 		buffer_info->skb = NULL;
403 	}
404 	buffer_info->time_stamp = 0;
405 }
406 
407 /**
408  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
409  * @adapter: board private structure
410  *
411  * Return 0 on success, negative on failure
412  **/
igbvf_setup_tx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring)413 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
414                              struct igbvf_ring *tx_ring)
415 {
416 	struct pci_dev *pdev = adapter->pdev;
417 	int size;
418 
419 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
420 	tx_ring->buffer_info = vzalloc(size);
421 	if (!tx_ring->buffer_info)
422 		goto err;
423 
424 	/* round up to nearest 4K */
425 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
426 	tx_ring->size = ALIGN(tx_ring->size, 4096);
427 
428 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
429 					   &tx_ring->dma, GFP_KERNEL);
430 
431 	if (!tx_ring->desc)
432 		goto err;
433 
434 	tx_ring->adapter = adapter;
435 	tx_ring->next_to_use = 0;
436 	tx_ring->next_to_clean = 0;
437 
438 	return 0;
439 err:
440 	vfree(tx_ring->buffer_info);
441 	dev_err(&adapter->pdev->dev,
442 	        "Unable to allocate memory for the transmit descriptor ring\n");
443 	return -ENOMEM;
444 }
445 
446 /**
447  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
448  * @adapter: board private structure
449  *
450  * Returns 0 on success, negative on failure
451  **/
igbvf_setup_rx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * rx_ring)452 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
453 			     struct igbvf_ring *rx_ring)
454 {
455 	struct pci_dev *pdev = adapter->pdev;
456 	int size, desc_len;
457 
458 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
459 	rx_ring->buffer_info = vzalloc(size);
460 	if (!rx_ring->buffer_info)
461 		goto err;
462 
463 	desc_len = sizeof(union e1000_adv_rx_desc);
464 
465 	/* Round up to nearest 4K */
466 	rx_ring->size = rx_ring->count * desc_len;
467 	rx_ring->size = ALIGN(rx_ring->size, 4096);
468 
469 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
470 					   &rx_ring->dma, GFP_KERNEL);
471 
472 	if (!rx_ring->desc)
473 		goto err;
474 
475 	rx_ring->next_to_clean = 0;
476 	rx_ring->next_to_use = 0;
477 
478 	rx_ring->adapter = adapter;
479 
480 	return 0;
481 
482 err:
483 	vfree(rx_ring->buffer_info);
484 	rx_ring->buffer_info = NULL;
485 	dev_err(&adapter->pdev->dev,
486 	        "Unable to allocate memory for the receive descriptor ring\n");
487 	return -ENOMEM;
488 }
489 
490 /**
491  * igbvf_clean_tx_ring - Free Tx Buffers
492  * @tx_ring: ring to be cleaned
493  **/
igbvf_clean_tx_ring(struct igbvf_ring * tx_ring)494 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
495 {
496 	struct igbvf_adapter *adapter = tx_ring->adapter;
497 	struct igbvf_buffer *buffer_info;
498 	unsigned long size;
499 	unsigned int i;
500 
501 	if (!tx_ring->buffer_info)
502 		return;
503 
504 	/* Free all the Tx ring sk_buffs */
505 	for (i = 0; i < tx_ring->count; i++) {
506 		buffer_info = &tx_ring->buffer_info[i];
507 		igbvf_put_txbuf(adapter, buffer_info);
508 	}
509 
510 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
511 	memset(tx_ring->buffer_info, 0, size);
512 
513 	/* Zero out the descriptor ring */
514 	memset(tx_ring->desc, 0, tx_ring->size);
515 
516 	tx_ring->next_to_use = 0;
517 	tx_ring->next_to_clean = 0;
518 
519 	writel(0, adapter->hw.hw_addr + tx_ring->head);
520 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
521 }
522 
523 /**
524  * igbvf_free_tx_resources - Free Tx Resources per Queue
525  * @tx_ring: ring to free resources from
526  *
527  * Free all transmit software resources
528  **/
igbvf_free_tx_resources(struct igbvf_ring * tx_ring)529 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
530 {
531 	struct pci_dev *pdev = tx_ring->adapter->pdev;
532 
533 	igbvf_clean_tx_ring(tx_ring);
534 
535 	vfree(tx_ring->buffer_info);
536 	tx_ring->buffer_info = NULL;
537 
538 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
539 			  tx_ring->dma);
540 
541 	tx_ring->desc = NULL;
542 }
543 
544 /**
545  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
546  * @adapter: board private structure
547  **/
igbvf_clean_rx_ring(struct igbvf_ring * rx_ring)548 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
549 {
550 	struct igbvf_adapter *adapter = rx_ring->adapter;
551 	struct igbvf_buffer *buffer_info;
552 	struct pci_dev *pdev = adapter->pdev;
553 	unsigned long size;
554 	unsigned int i;
555 
556 	if (!rx_ring->buffer_info)
557 		return;
558 
559 	/* Free all the Rx ring sk_buffs */
560 	for (i = 0; i < rx_ring->count; i++) {
561 		buffer_info = &rx_ring->buffer_info[i];
562 		if (buffer_info->dma) {
563 			if (adapter->rx_ps_hdr_size){
564 				dma_unmap_single(&pdev->dev, buffer_info->dma,
565 				                 adapter->rx_ps_hdr_size,
566 						 DMA_FROM_DEVICE);
567 			} else {
568 				dma_unmap_single(&pdev->dev, buffer_info->dma,
569 				                 adapter->rx_buffer_len,
570 						 DMA_FROM_DEVICE);
571 			}
572 			buffer_info->dma = 0;
573 		}
574 
575 		if (buffer_info->skb) {
576 			dev_kfree_skb(buffer_info->skb);
577 			buffer_info->skb = NULL;
578 		}
579 
580 		if (buffer_info->page) {
581 			if (buffer_info->page_dma)
582 				dma_unmap_page(&pdev->dev,
583 					       buffer_info->page_dma,
584 				               PAGE_SIZE / 2,
585 					       DMA_FROM_DEVICE);
586 			put_page(buffer_info->page);
587 			buffer_info->page = NULL;
588 			buffer_info->page_dma = 0;
589 			buffer_info->page_offset = 0;
590 		}
591 	}
592 
593 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
594 	memset(rx_ring->buffer_info, 0, size);
595 
596 	/* Zero out the descriptor ring */
597 	memset(rx_ring->desc, 0, rx_ring->size);
598 
599 	rx_ring->next_to_clean = 0;
600 	rx_ring->next_to_use = 0;
601 
602 	writel(0, adapter->hw.hw_addr + rx_ring->head);
603 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
604 }
605 
606 /**
607  * igbvf_free_rx_resources - Free Rx Resources
608  * @rx_ring: ring to clean the resources from
609  *
610  * Free all receive software resources
611  **/
612 
igbvf_free_rx_resources(struct igbvf_ring * rx_ring)613 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
614 {
615 	struct pci_dev *pdev = rx_ring->adapter->pdev;
616 
617 	igbvf_clean_rx_ring(rx_ring);
618 
619 	vfree(rx_ring->buffer_info);
620 	rx_ring->buffer_info = NULL;
621 
622 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
623 	                  rx_ring->dma);
624 	rx_ring->desc = NULL;
625 }
626 
627 /**
628  * igbvf_update_itr - update the dynamic ITR value based on statistics
629  * @adapter: pointer to adapter
630  * @itr_setting: current adapter->itr
631  * @packets: the number of packets during this measurement interval
632  * @bytes: the number of bytes during this measurement interval
633  *
634  *      Stores a new ITR value based on packets and byte
635  *      counts during the last interrupt.  The advantage of per interrupt
636  *      computation is faster updates and more accurate ITR for the current
637  *      traffic pattern.  Constants in this function were computed
638  *      based on theoretical maximum wire speed and thresholds were set based
639  *      on testing data as well as attempting to minimize response time
640  *      while increasing bulk throughput.
641  **/
igbvf_update_itr(struct igbvf_adapter * adapter,enum latency_range itr_setting,int packets,int bytes)642 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
643 					   enum latency_range itr_setting,
644 					   int packets, int bytes)
645 {
646 	enum latency_range retval = itr_setting;
647 
648 	if (packets == 0)
649 		goto update_itr_done;
650 
651 	switch (itr_setting) {
652 	case lowest_latency:
653 		/* handle TSO and jumbo frames */
654 		if (bytes/packets > 8000)
655 			retval = bulk_latency;
656 		else if ((packets < 5) && (bytes > 512))
657 			retval = low_latency;
658 		break;
659 	case low_latency:  /* 50 usec aka 20000 ints/s */
660 		if (bytes > 10000) {
661 			/* this if handles the TSO accounting */
662 			if (bytes/packets > 8000)
663 				retval = bulk_latency;
664 			else if ((packets < 10) || ((bytes/packets) > 1200))
665 				retval = bulk_latency;
666 			else if ((packets > 35))
667 				retval = lowest_latency;
668 		} else if (bytes/packets > 2000) {
669 			retval = bulk_latency;
670 		} else if (packets <= 2 && bytes < 512) {
671 			retval = lowest_latency;
672 		}
673 		break;
674 	case bulk_latency: /* 250 usec aka 4000 ints/s */
675 		if (bytes > 25000) {
676 			if (packets > 35)
677 				retval = low_latency;
678 		} else if (bytes < 6000) {
679 			retval = low_latency;
680 		}
681 		break;
682 	default:
683 		break;
684 	}
685 
686 update_itr_done:
687 	return retval;
688 }
689 
igbvf_range_to_itr(enum latency_range current_range)690 static int igbvf_range_to_itr(enum latency_range current_range)
691 {
692 	int new_itr;
693 
694 	switch (current_range) {
695 	/* counts and packets in update_itr are dependent on these numbers */
696 	case lowest_latency:
697 		new_itr = IGBVF_70K_ITR;
698 		break;
699 	case low_latency:
700 		new_itr = IGBVF_20K_ITR;
701 		break;
702 	case bulk_latency:
703 		new_itr = IGBVF_4K_ITR;
704 		break;
705 	default:
706 		new_itr = IGBVF_START_ITR;
707 		break;
708 	}
709 	return new_itr;
710 }
711 
igbvf_set_itr(struct igbvf_adapter * adapter)712 static void igbvf_set_itr(struct igbvf_adapter *adapter)
713 {
714 	u32 new_itr;
715 
716 	adapter->tx_ring->itr_range =
717 			igbvf_update_itr(adapter,
718 					 adapter->tx_ring->itr_val,
719 					 adapter->total_tx_packets,
720 					 adapter->total_tx_bytes);
721 
722 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
723 	if (adapter->requested_itr == 3 &&
724 	    adapter->tx_ring->itr_range == lowest_latency)
725 		adapter->tx_ring->itr_range = low_latency;
726 
727 	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
728 
729 
730 	if (new_itr != adapter->tx_ring->itr_val) {
731 		u32 current_itr = adapter->tx_ring->itr_val;
732 		/*
733 		 * this attempts to bias the interrupt rate towards Bulk
734 		 * by adding intermediate steps when interrupt rate is
735 		 * increasing
736 		 */
737 		new_itr = new_itr > current_itr ?
738 			     min(current_itr + (new_itr >> 2), new_itr) :
739 			     new_itr;
740 		adapter->tx_ring->itr_val = new_itr;
741 
742 		adapter->tx_ring->set_itr = 1;
743 	}
744 
745 	adapter->rx_ring->itr_range =
746 			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747 					 adapter->total_rx_packets,
748 					 adapter->total_rx_bytes);
749 	if (adapter->requested_itr == 3 &&
750 	    adapter->rx_ring->itr_range == lowest_latency)
751 		adapter->rx_ring->itr_range = low_latency;
752 
753 	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754 
755 	if (new_itr != adapter->rx_ring->itr_val) {
756 		u32 current_itr = adapter->rx_ring->itr_val;
757 		new_itr = new_itr > current_itr ?
758 			     min(current_itr + (new_itr >> 2), new_itr) :
759 			     new_itr;
760 		adapter->rx_ring->itr_val = new_itr;
761 
762 		adapter->rx_ring->set_itr = 1;
763 	}
764 }
765 
766 /**
767  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768  * @adapter: board private structure
769  * returns true if ring is completely cleaned
770  **/
igbvf_clean_tx_irq(struct igbvf_ring * tx_ring)771 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
772 {
773 	struct igbvf_adapter *adapter = tx_ring->adapter;
774 	struct net_device *netdev = adapter->netdev;
775 	struct igbvf_buffer *buffer_info;
776 	struct sk_buff *skb;
777 	union e1000_adv_tx_desc *tx_desc, *eop_desc;
778 	unsigned int total_bytes = 0, total_packets = 0;
779 	unsigned int i, eop, count = 0;
780 	bool cleaned = false;
781 
782 	i = tx_ring->next_to_clean;
783 	eop = tx_ring->buffer_info[i].next_to_watch;
784 	eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
785 
786 	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
787 	       (count < tx_ring->count)) {
788 		rmb();	/* read buffer_info after eop_desc status */
789 		for (cleaned = false; !cleaned; count++) {
790 			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
791 			buffer_info = &tx_ring->buffer_info[i];
792 			cleaned = (i == eop);
793 			skb = buffer_info->skb;
794 
795 			if (skb) {
796 				unsigned int segs, bytecount;
797 
798 				/* gso_segs is currently only valid for tcp */
799 				segs = skb_shinfo(skb)->gso_segs ?: 1;
800 				/* multiply data chunks by size of headers */
801 				bytecount = ((segs - 1) * skb_headlen(skb)) +
802 				            skb->len;
803 				total_packets += segs;
804 				total_bytes += bytecount;
805 			}
806 
807 			igbvf_put_txbuf(adapter, buffer_info);
808 			tx_desc->wb.status = 0;
809 
810 			i++;
811 			if (i == tx_ring->count)
812 				i = 0;
813 		}
814 		eop = tx_ring->buffer_info[i].next_to_watch;
815 		eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
816 	}
817 
818 	tx_ring->next_to_clean = i;
819 
820 	if (unlikely(count &&
821 	             netif_carrier_ok(netdev) &&
822 	             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
823 		/* Make sure that anybody stopping the queue after this
824 		 * sees the new next_to_clean.
825 		 */
826 		smp_mb();
827 		if (netif_queue_stopped(netdev) &&
828 		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
829 			netif_wake_queue(netdev);
830 			++adapter->restart_queue;
831 		}
832 	}
833 
834 	adapter->net_stats.tx_bytes += total_bytes;
835 	adapter->net_stats.tx_packets += total_packets;
836 	return count < tx_ring->count;
837 }
838 
igbvf_msix_other(int irq,void * data)839 static irqreturn_t igbvf_msix_other(int irq, void *data)
840 {
841 	struct net_device *netdev = data;
842 	struct igbvf_adapter *adapter = netdev_priv(netdev);
843 	struct e1000_hw *hw = &adapter->hw;
844 
845 	adapter->int_counter1++;
846 
847 	netif_carrier_off(netdev);
848 	hw->mac.get_link_status = 1;
849 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
850 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
851 
852 	ew32(EIMS, adapter->eims_other);
853 
854 	return IRQ_HANDLED;
855 }
856 
igbvf_intr_msix_tx(int irq,void * data)857 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
858 {
859 	struct net_device *netdev = data;
860 	struct igbvf_adapter *adapter = netdev_priv(netdev);
861 	struct e1000_hw *hw = &adapter->hw;
862 	struct igbvf_ring *tx_ring = adapter->tx_ring;
863 
864 	if (tx_ring->set_itr) {
865 		writel(tx_ring->itr_val,
866 		       adapter->hw.hw_addr + tx_ring->itr_register);
867 		adapter->tx_ring->set_itr = 0;
868 	}
869 
870 	adapter->total_tx_bytes = 0;
871 	adapter->total_tx_packets = 0;
872 
873 	/* auto mask will automatically reenable the interrupt when we write
874 	 * EICS */
875 	if (!igbvf_clean_tx_irq(tx_ring))
876 		/* Ring was not completely cleaned, so fire another interrupt */
877 		ew32(EICS, tx_ring->eims_value);
878 	else
879 		ew32(EIMS, tx_ring->eims_value);
880 
881 	return IRQ_HANDLED;
882 }
883 
igbvf_intr_msix_rx(int irq,void * data)884 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
885 {
886 	struct net_device *netdev = data;
887 	struct igbvf_adapter *adapter = netdev_priv(netdev);
888 
889 	adapter->int_counter0++;
890 
891 	/* Write the ITR value calculated at the end of the
892 	 * previous interrupt.
893 	 */
894 	if (adapter->rx_ring->set_itr) {
895 		writel(adapter->rx_ring->itr_val,
896 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
897 		adapter->rx_ring->set_itr = 0;
898 	}
899 
900 	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
901 		adapter->total_rx_bytes = 0;
902 		adapter->total_rx_packets = 0;
903 		__napi_schedule(&adapter->rx_ring->napi);
904 	}
905 
906 	return IRQ_HANDLED;
907 }
908 
909 #define IGBVF_NO_QUEUE -1
910 
igbvf_assign_vector(struct igbvf_adapter * adapter,int rx_queue,int tx_queue,int msix_vector)911 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
912                                 int tx_queue, int msix_vector)
913 {
914 	struct e1000_hw *hw = &adapter->hw;
915 	u32 ivar, index;
916 
917 	/* 82576 uses a table-based method for assigning vectors.
918 	   Each queue has a single entry in the table to which we write
919 	   a vector number along with a "valid" bit.  Sadly, the layout
920 	   of the table is somewhat counterintuitive. */
921 	if (rx_queue > IGBVF_NO_QUEUE) {
922 		index = (rx_queue >> 1);
923 		ivar = array_er32(IVAR0, index);
924 		if (rx_queue & 0x1) {
925 			/* vector goes into third byte of register */
926 			ivar = ivar & 0xFF00FFFF;
927 			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
928 		} else {
929 			/* vector goes into low byte of register */
930 			ivar = ivar & 0xFFFFFF00;
931 			ivar |= msix_vector | E1000_IVAR_VALID;
932 		}
933 		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
934 		array_ew32(IVAR0, index, ivar);
935 	}
936 	if (tx_queue > IGBVF_NO_QUEUE) {
937 		index = (tx_queue >> 1);
938 		ivar = array_er32(IVAR0, index);
939 		if (tx_queue & 0x1) {
940 			/* vector goes into high byte of register */
941 			ivar = ivar & 0x00FFFFFF;
942 			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
943 		} else {
944 			/* vector goes into second byte of register */
945 			ivar = ivar & 0xFFFF00FF;
946 			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
947 		}
948 		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
949 		array_ew32(IVAR0, index, ivar);
950 	}
951 }
952 
953 /**
954  * igbvf_configure_msix - Configure MSI-X hardware
955  *
956  * igbvf_configure_msix sets up the hardware to properly
957  * generate MSI-X interrupts.
958  **/
igbvf_configure_msix(struct igbvf_adapter * adapter)959 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
960 {
961 	u32 tmp;
962 	struct e1000_hw *hw = &adapter->hw;
963 	struct igbvf_ring *tx_ring = adapter->tx_ring;
964 	struct igbvf_ring *rx_ring = adapter->rx_ring;
965 	int vector = 0;
966 
967 	adapter->eims_enable_mask = 0;
968 
969 	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
970 	adapter->eims_enable_mask |= tx_ring->eims_value;
971 	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
972 	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
973 	adapter->eims_enable_mask |= rx_ring->eims_value;
974 	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
975 
976 	/* set vector for other causes, i.e. link changes */
977 
978 	tmp = (vector++ | E1000_IVAR_VALID);
979 
980 	ew32(IVAR_MISC, tmp);
981 
982 	adapter->eims_enable_mask = (1 << (vector)) - 1;
983 	adapter->eims_other = 1 << (vector - 1);
984 	e1e_flush();
985 }
986 
igbvf_reset_interrupt_capability(struct igbvf_adapter * adapter)987 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
988 {
989 	if (adapter->msix_entries) {
990 		pci_disable_msix(adapter->pdev);
991 		kfree(adapter->msix_entries);
992 		adapter->msix_entries = NULL;
993 	}
994 }
995 
996 /**
997  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
998  *
999  * Attempt to configure interrupts using the best available
1000  * capabilities of the hardware and kernel.
1001  **/
igbvf_set_interrupt_capability(struct igbvf_adapter * adapter)1002 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1003 {
1004 	int err = -ENOMEM;
1005 	int i;
1006 
1007 	/* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1008 	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1009 	                                GFP_KERNEL);
1010 	if (adapter->msix_entries) {
1011 		for (i = 0; i < 3; i++)
1012 			adapter->msix_entries[i].entry = i;
1013 
1014 		err = pci_enable_msix(adapter->pdev,
1015 		                      adapter->msix_entries, 3);
1016 	}
1017 
1018 	if (err) {
1019 		/* MSI-X failed */
1020 		dev_err(&adapter->pdev->dev,
1021 		        "Failed to initialize MSI-X interrupts.\n");
1022 		igbvf_reset_interrupt_capability(adapter);
1023 	}
1024 }
1025 
1026 /**
1027  * igbvf_request_msix - Initialize MSI-X interrupts
1028  *
1029  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1030  * kernel.
1031  **/
igbvf_request_msix(struct igbvf_adapter * adapter)1032 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1033 {
1034 	struct net_device *netdev = adapter->netdev;
1035 	int err = 0, vector = 0;
1036 
1037 	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1038 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1039 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1040 	} else {
1041 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1042 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1043 	}
1044 
1045 	err = request_irq(adapter->msix_entries[vector].vector,
1046 	                  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1047 	                  netdev);
1048 	if (err)
1049 		goto out;
1050 
1051 	adapter->tx_ring->itr_register = E1000_EITR(vector);
1052 	adapter->tx_ring->itr_val = adapter->current_itr;
1053 	vector++;
1054 
1055 	err = request_irq(adapter->msix_entries[vector].vector,
1056 	                  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1057 	                  netdev);
1058 	if (err)
1059 		goto out;
1060 
1061 	adapter->rx_ring->itr_register = E1000_EITR(vector);
1062 	adapter->rx_ring->itr_val = adapter->current_itr;
1063 	vector++;
1064 
1065 	err = request_irq(adapter->msix_entries[vector].vector,
1066 	                  igbvf_msix_other, 0, netdev->name, netdev);
1067 	if (err)
1068 		goto out;
1069 
1070 	igbvf_configure_msix(adapter);
1071 	return 0;
1072 out:
1073 	return err;
1074 }
1075 
1076 /**
1077  * igbvf_alloc_queues - Allocate memory for all rings
1078  * @adapter: board private structure to initialize
1079  **/
igbvf_alloc_queues(struct igbvf_adapter * adapter)1080 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1081 {
1082 	struct net_device *netdev = adapter->netdev;
1083 
1084 	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1085 	if (!adapter->tx_ring)
1086 		return -ENOMEM;
1087 
1088 	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1089 	if (!adapter->rx_ring) {
1090 		kfree(adapter->tx_ring);
1091 		return -ENOMEM;
1092 	}
1093 
1094 	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1095 
1096 	return 0;
1097 }
1098 
1099 /**
1100  * igbvf_request_irq - initialize interrupts
1101  *
1102  * Attempts to configure interrupts using the best available
1103  * capabilities of the hardware and kernel.
1104  **/
igbvf_request_irq(struct igbvf_adapter * adapter)1105 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1106 {
1107 	int err = -1;
1108 
1109 	/* igbvf supports msi-x only */
1110 	if (adapter->msix_entries)
1111 		err = igbvf_request_msix(adapter);
1112 
1113 	if (!err)
1114 		return err;
1115 
1116 	dev_err(&adapter->pdev->dev,
1117 	        "Unable to allocate interrupt, Error: %d\n", err);
1118 
1119 	return err;
1120 }
1121 
igbvf_free_irq(struct igbvf_adapter * adapter)1122 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1123 {
1124 	struct net_device *netdev = adapter->netdev;
1125 	int vector;
1126 
1127 	if (adapter->msix_entries) {
1128 		for (vector = 0; vector < 3; vector++)
1129 			free_irq(adapter->msix_entries[vector].vector, netdev);
1130 	}
1131 }
1132 
1133 /**
1134  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1135  **/
igbvf_irq_disable(struct igbvf_adapter * adapter)1136 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1137 {
1138 	struct e1000_hw *hw = &adapter->hw;
1139 
1140 	ew32(EIMC, ~0);
1141 
1142 	if (adapter->msix_entries)
1143 		ew32(EIAC, 0);
1144 }
1145 
1146 /**
1147  * igbvf_irq_enable - Enable default interrupt generation settings
1148  **/
igbvf_irq_enable(struct igbvf_adapter * adapter)1149 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1150 {
1151 	struct e1000_hw *hw = &adapter->hw;
1152 
1153 	ew32(EIAC, adapter->eims_enable_mask);
1154 	ew32(EIAM, adapter->eims_enable_mask);
1155 	ew32(EIMS, adapter->eims_enable_mask);
1156 }
1157 
1158 /**
1159  * igbvf_poll - NAPI Rx polling callback
1160  * @napi: struct associated with this polling callback
1161  * @budget: amount of packets driver is allowed to process this poll
1162  **/
igbvf_poll(struct napi_struct * napi,int budget)1163 static int igbvf_poll(struct napi_struct *napi, int budget)
1164 {
1165 	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1166 	struct igbvf_adapter *adapter = rx_ring->adapter;
1167 	struct e1000_hw *hw = &adapter->hw;
1168 	int work_done = 0;
1169 
1170 	igbvf_clean_rx_irq(adapter, &work_done, budget);
1171 
1172 	/* If not enough Rx work done, exit the polling mode */
1173 	if (work_done < budget) {
1174 		napi_complete(napi);
1175 
1176 		if (adapter->requested_itr & 3)
1177 			igbvf_set_itr(adapter);
1178 
1179 		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1180 			ew32(EIMS, adapter->rx_ring->eims_value);
1181 	}
1182 
1183 	return work_done;
1184 }
1185 
1186 /**
1187  * igbvf_set_rlpml - set receive large packet maximum length
1188  * @adapter: board private structure
1189  *
1190  * Configure the maximum size of packets that will be received
1191  */
igbvf_set_rlpml(struct igbvf_adapter * adapter)1192 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1193 {
1194 	int max_frame_size;
1195 	struct e1000_hw *hw = &adapter->hw;
1196 
1197 	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1198 	e1000_rlpml_set_vf(hw, max_frame_size);
1199 }
1200 
igbvf_vlan_rx_add_vid(struct net_device * netdev,u16 vid)1201 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1202 {
1203 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1204 	struct e1000_hw *hw = &adapter->hw;
1205 
1206 	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1207 		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1208 		return -EINVAL;
1209 	}
1210 	set_bit(vid, adapter->active_vlans);
1211 	return 0;
1212 }
1213 
igbvf_vlan_rx_kill_vid(struct net_device * netdev,u16 vid)1214 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1215 {
1216 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1217 	struct e1000_hw *hw = &adapter->hw;
1218 
1219 	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1220 		dev_err(&adapter->pdev->dev,
1221 		        "Failed to remove vlan id %d\n", vid);
1222 		return -EINVAL;
1223 	}
1224 	clear_bit(vid, adapter->active_vlans);
1225 	return 0;
1226 }
1227 
igbvf_restore_vlan(struct igbvf_adapter * adapter)1228 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1229 {
1230 	u16 vid;
1231 
1232 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1233 		igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1234 }
1235 
1236 /**
1237  * igbvf_configure_tx - Configure Transmit Unit after Reset
1238  * @adapter: board private structure
1239  *
1240  * Configure the Tx unit of the MAC after a reset.
1241  **/
igbvf_configure_tx(struct igbvf_adapter * adapter)1242 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1243 {
1244 	struct e1000_hw *hw = &adapter->hw;
1245 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1246 	u64 tdba;
1247 	u32 txdctl, dca_txctrl;
1248 
1249 	/* disable transmits */
1250 	txdctl = er32(TXDCTL(0));
1251 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1252 	e1e_flush();
1253 	msleep(10);
1254 
1255 	/* Setup the HW Tx Head and Tail descriptor pointers */
1256 	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1257 	tdba = tx_ring->dma;
1258 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1259 	ew32(TDBAH(0), (tdba >> 32));
1260 	ew32(TDH(0), 0);
1261 	ew32(TDT(0), 0);
1262 	tx_ring->head = E1000_TDH(0);
1263 	tx_ring->tail = E1000_TDT(0);
1264 
1265 	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1266 	 * MUST be delivered in order or it will completely screw up
1267 	 * our bookeeping.
1268 	 */
1269 	dca_txctrl = er32(DCA_TXCTRL(0));
1270 	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1271 	ew32(DCA_TXCTRL(0), dca_txctrl);
1272 
1273 	/* enable transmits */
1274 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1275 	ew32(TXDCTL(0), txdctl);
1276 
1277 	/* Setup Transmit Descriptor Settings for eop descriptor */
1278 	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1279 
1280 	/* enable Report Status bit */
1281 	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1282 }
1283 
1284 /**
1285  * igbvf_setup_srrctl - configure the receive control registers
1286  * @adapter: Board private structure
1287  **/
igbvf_setup_srrctl(struct igbvf_adapter * adapter)1288 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1289 {
1290 	struct e1000_hw *hw = &adapter->hw;
1291 	u32 srrctl = 0;
1292 
1293 	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1294 	            E1000_SRRCTL_BSIZEHDR_MASK |
1295 	            E1000_SRRCTL_BSIZEPKT_MASK);
1296 
1297 	/* Enable queue drop to avoid head of line blocking */
1298 	srrctl |= E1000_SRRCTL_DROP_EN;
1299 
1300 	/* Setup buffer sizes */
1301 	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1302 	          E1000_SRRCTL_BSIZEPKT_SHIFT;
1303 
1304 	if (adapter->rx_buffer_len < 2048) {
1305 		adapter->rx_ps_hdr_size = 0;
1306 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1307 	} else {
1308 		adapter->rx_ps_hdr_size = 128;
1309 		srrctl |= adapter->rx_ps_hdr_size <<
1310 		          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1311 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1312 	}
1313 
1314 	ew32(SRRCTL(0), srrctl);
1315 }
1316 
1317 /**
1318  * igbvf_configure_rx - Configure Receive Unit after Reset
1319  * @adapter: board private structure
1320  *
1321  * Configure the Rx unit of the MAC after a reset.
1322  **/
igbvf_configure_rx(struct igbvf_adapter * adapter)1323 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1324 {
1325 	struct e1000_hw *hw = &adapter->hw;
1326 	struct igbvf_ring *rx_ring = adapter->rx_ring;
1327 	u64 rdba;
1328 	u32 rdlen, rxdctl;
1329 
1330 	/* disable receives */
1331 	rxdctl = er32(RXDCTL(0));
1332 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1333 	e1e_flush();
1334 	msleep(10);
1335 
1336 	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1337 
1338 	/*
1339 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
1340 	 * the Base and Length of the Rx Descriptor Ring
1341 	 */
1342 	rdba = rx_ring->dma;
1343 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1344 	ew32(RDBAH(0), (rdba >> 32));
1345 	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1346 	rx_ring->head = E1000_RDH(0);
1347 	rx_ring->tail = E1000_RDT(0);
1348 	ew32(RDH(0), 0);
1349 	ew32(RDT(0), 0);
1350 
1351 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1352 	rxdctl &= 0xFFF00000;
1353 	rxdctl |= IGBVF_RX_PTHRESH;
1354 	rxdctl |= IGBVF_RX_HTHRESH << 8;
1355 	rxdctl |= IGBVF_RX_WTHRESH << 16;
1356 
1357 	igbvf_set_rlpml(adapter);
1358 
1359 	/* enable receives */
1360 	ew32(RXDCTL(0), rxdctl);
1361 }
1362 
1363 /**
1364  * igbvf_set_multi - Multicast and Promiscuous mode set
1365  * @netdev: network interface device structure
1366  *
1367  * The set_multi entry point is called whenever the multicast address
1368  * list or the network interface flags are updated.  This routine is
1369  * responsible for configuring the hardware for proper multicast,
1370  * promiscuous mode, and all-multi behavior.
1371  **/
igbvf_set_multi(struct net_device * netdev)1372 static void igbvf_set_multi(struct net_device *netdev)
1373 {
1374 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1375 	struct e1000_hw *hw = &adapter->hw;
1376 	struct netdev_hw_addr *ha;
1377 	u8  *mta_list = NULL;
1378 	int i;
1379 
1380 	if (!netdev_mc_empty(netdev)) {
1381 		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1382 		if (!mta_list) {
1383 			dev_err(&adapter->pdev->dev,
1384 			        "failed to allocate multicast filter list\n");
1385 			return;
1386 		}
1387 	}
1388 
1389 	/* prepare a packed array of only addresses. */
1390 	i = 0;
1391 	netdev_for_each_mc_addr(ha, netdev)
1392 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1393 
1394 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1395 	kfree(mta_list);
1396 }
1397 
1398 /**
1399  * igbvf_configure - configure the hardware for Rx and Tx
1400  * @adapter: private board structure
1401  **/
igbvf_configure(struct igbvf_adapter * adapter)1402 static void igbvf_configure(struct igbvf_adapter *adapter)
1403 {
1404 	igbvf_set_multi(adapter->netdev);
1405 
1406 	igbvf_restore_vlan(adapter);
1407 
1408 	igbvf_configure_tx(adapter);
1409 	igbvf_setup_srrctl(adapter);
1410 	igbvf_configure_rx(adapter);
1411 	igbvf_alloc_rx_buffers(adapter->rx_ring,
1412 	                       igbvf_desc_unused(adapter->rx_ring));
1413 }
1414 
1415 /* igbvf_reset - bring the hardware into a known good state
1416  *
1417  * This function boots the hardware and enables some settings that
1418  * require a configuration cycle of the hardware - those cannot be
1419  * set/changed during runtime. After reset the device needs to be
1420  * properly configured for Rx, Tx etc.
1421  */
igbvf_reset(struct igbvf_adapter * adapter)1422 static void igbvf_reset(struct igbvf_adapter *adapter)
1423 {
1424 	struct e1000_mac_info *mac = &adapter->hw.mac;
1425 	struct net_device *netdev = adapter->netdev;
1426 	struct e1000_hw *hw = &adapter->hw;
1427 
1428 	/* Allow time for pending master requests to run */
1429 	if (mac->ops.reset_hw(hw))
1430 		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1431 
1432 	mac->ops.init_hw(hw);
1433 
1434 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1435 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1436 		       netdev->addr_len);
1437 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1438 		       netdev->addr_len);
1439 	}
1440 
1441 	adapter->last_reset = jiffies;
1442 }
1443 
igbvf_up(struct igbvf_adapter * adapter)1444 int igbvf_up(struct igbvf_adapter *adapter)
1445 {
1446 	struct e1000_hw *hw = &adapter->hw;
1447 
1448 	/* hardware has been reset, we need to reload some things */
1449 	igbvf_configure(adapter);
1450 
1451 	clear_bit(__IGBVF_DOWN, &adapter->state);
1452 
1453 	napi_enable(&adapter->rx_ring->napi);
1454 	if (adapter->msix_entries)
1455 		igbvf_configure_msix(adapter);
1456 
1457 	/* Clear any pending interrupts. */
1458 	er32(EICR);
1459 	igbvf_irq_enable(adapter);
1460 
1461 	/* start the watchdog */
1462 	hw->mac.get_link_status = 1;
1463 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1464 
1465 
1466 	return 0;
1467 }
1468 
igbvf_down(struct igbvf_adapter * adapter)1469 void igbvf_down(struct igbvf_adapter *adapter)
1470 {
1471 	struct net_device *netdev = adapter->netdev;
1472 	struct e1000_hw *hw = &adapter->hw;
1473 	u32 rxdctl, txdctl;
1474 
1475 	/*
1476 	 * signal that we're down so the interrupt handler does not
1477 	 * reschedule our watchdog timer
1478 	 */
1479 	set_bit(__IGBVF_DOWN, &adapter->state);
1480 
1481 	/* disable receives in the hardware */
1482 	rxdctl = er32(RXDCTL(0));
1483 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1484 
1485 	netif_stop_queue(netdev);
1486 
1487 	/* disable transmits in the hardware */
1488 	txdctl = er32(TXDCTL(0));
1489 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1490 
1491 	/* flush both disables and wait for them to finish */
1492 	e1e_flush();
1493 	msleep(10);
1494 
1495 	napi_disable(&adapter->rx_ring->napi);
1496 
1497 	igbvf_irq_disable(adapter);
1498 
1499 	del_timer_sync(&adapter->watchdog_timer);
1500 
1501 	netif_carrier_off(netdev);
1502 
1503 	/* record the stats before reset*/
1504 	igbvf_update_stats(adapter);
1505 
1506 	adapter->link_speed = 0;
1507 	adapter->link_duplex = 0;
1508 
1509 	igbvf_reset(adapter);
1510 	igbvf_clean_tx_ring(adapter->tx_ring);
1511 	igbvf_clean_rx_ring(adapter->rx_ring);
1512 }
1513 
igbvf_reinit_locked(struct igbvf_adapter * adapter)1514 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1515 {
1516 	might_sleep();
1517 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1518 		msleep(1);
1519 	igbvf_down(adapter);
1520 	igbvf_up(adapter);
1521 	clear_bit(__IGBVF_RESETTING, &adapter->state);
1522 }
1523 
1524 /**
1525  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1526  * @adapter: board private structure to initialize
1527  *
1528  * igbvf_sw_init initializes the Adapter private data structure.
1529  * Fields are initialized based on PCI device information and
1530  * OS network device settings (MTU size).
1531  **/
igbvf_sw_init(struct igbvf_adapter * adapter)1532 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1533 {
1534 	struct net_device *netdev = adapter->netdev;
1535 	s32 rc;
1536 
1537 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1538 	adapter->rx_ps_hdr_size = 0;
1539 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1540 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1541 
1542 	adapter->tx_int_delay = 8;
1543 	adapter->tx_abs_int_delay = 32;
1544 	adapter->rx_int_delay = 0;
1545 	adapter->rx_abs_int_delay = 8;
1546 	adapter->requested_itr = 3;
1547 	adapter->current_itr = IGBVF_START_ITR;
1548 
1549 	/* Set various function pointers */
1550 	adapter->ei->init_ops(&adapter->hw);
1551 
1552 	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1553 	if (rc)
1554 		return rc;
1555 
1556 	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1557 	if (rc)
1558 		return rc;
1559 
1560 	igbvf_set_interrupt_capability(adapter);
1561 
1562 	if (igbvf_alloc_queues(adapter))
1563 		return -ENOMEM;
1564 
1565 	spin_lock_init(&adapter->tx_queue_lock);
1566 
1567 	/* Explicitly disable IRQ since the NIC can be in any state. */
1568 	igbvf_irq_disable(adapter);
1569 
1570 	spin_lock_init(&adapter->stats_lock);
1571 
1572 	set_bit(__IGBVF_DOWN, &adapter->state);
1573 	return 0;
1574 }
1575 
igbvf_initialize_last_counter_stats(struct igbvf_adapter * adapter)1576 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1577 {
1578 	struct e1000_hw *hw = &adapter->hw;
1579 
1580 	adapter->stats.last_gprc = er32(VFGPRC);
1581 	adapter->stats.last_gorc = er32(VFGORC);
1582 	adapter->stats.last_gptc = er32(VFGPTC);
1583 	adapter->stats.last_gotc = er32(VFGOTC);
1584 	adapter->stats.last_mprc = er32(VFMPRC);
1585 	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1586 	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1587 	adapter->stats.last_gorlbc = er32(VFGORLBC);
1588 	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1589 
1590 	adapter->stats.base_gprc = er32(VFGPRC);
1591 	adapter->stats.base_gorc = er32(VFGORC);
1592 	adapter->stats.base_gptc = er32(VFGPTC);
1593 	adapter->stats.base_gotc = er32(VFGOTC);
1594 	adapter->stats.base_mprc = er32(VFMPRC);
1595 	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1596 	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1597 	adapter->stats.base_gorlbc = er32(VFGORLBC);
1598 	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1599 }
1600 
1601 /**
1602  * igbvf_open - Called when a network interface is made active
1603  * @netdev: network interface device structure
1604  *
1605  * Returns 0 on success, negative value on failure
1606  *
1607  * The open entry point is called when a network interface is made
1608  * active by the system (IFF_UP).  At this point all resources needed
1609  * for transmit and receive operations are allocated, the interrupt
1610  * handler is registered with the OS, the watchdog timer is started,
1611  * and the stack is notified that the interface is ready.
1612  **/
igbvf_open(struct net_device * netdev)1613 static int igbvf_open(struct net_device *netdev)
1614 {
1615 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1616 	struct e1000_hw *hw = &adapter->hw;
1617 	int err;
1618 
1619 	/* disallow open during test */
1620 	if (test_bit(__IGBVF_TESTING, &adapter->state))
1621 		return -EBUSY;
1622 
1623 	/* allocate transmit descriptors */
1624 	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1625 	if (err)
1626 		goto err_setup_tx;
1627 
1628 	/* allocate receive descriptors */
1629 	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1630 	if (err)
1631 		goto err_setup_rx;
1632 
1633 	/*
1634 	 * before we allocate an interrupt, we must be ready to handle it.
1635 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1636 	 * as soon as we call pci_request_irq, so we have to setup our
1637 	 * clean_rx handler before we do so.
1638 	 */
1639 	igbvf_configure(adapter);
1640 
1641 	err = igbvf_request_irq(adapter);
1642 	if (err)
1643 		goto err_req_irq;
1644 
1645 	/* From here on the code is the same as igbvf_up() */
1646 	clear_bit(__IGBVF_DOWN, &adapter->state);
1647 
1648 	napi_enable(&adapter->rx_ring->napi);
1649 
1650 	/* clear any pending interrupts */
1651 	er32(EICR);
1652 
1653 	igbvf_irq_enable(adapter);
1654 
1655 	/* start the watchdog */
1656 	hw->mac.get_link_status = 1;
1657 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1658 
1659 	return 0;
1660 
1661 err_req_irq:
1662 	igbvf_free_rx_resources(adapter->rx_ring);
1663 err_setup_rx:
1664 	igbvf_free_tx_resources(adapter->tx_ring);
1665 err_setup_tx:
1666 	igbvf_reset(adapter);
1667 
1668 	return err;
1669 }
1670 
1671 /**
1672  * igbvf_close - Disables a network interface
1673  * @netdev: network interface device structure
1674  *
1675  * Returns 0, this is not allowed to fail
1676  *
1677  * The close entry point is called when an interface is de-activated
1678  * by the OS.  The hardware is still under the drivers control, but
1679  * needs to be disabled.  A global MAC reset is issued to stop the
1680  * hardware, and all transmit and receive resources are freed.
1681  **/
igbvf_close(struct net_device * netdev)1682 static int igbvf_close(struct net_device *netdev)
1683 {
1684 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1685 
1686 	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1687 	igbvf_down(adapter);
1688 
1689 	igbvf_free_irq(adapter);
1690 
1691 	igbvf_free_tx_resources(adapter->tx_ring);
1692 	igbvf_free_rx_resources(adapter->rx_ring);
1693 
1694 	return 0;
1695 }
1696 /**
1697  * igbvf_set_mac - Change the Ethernet Address of the NIC
1698  * @netdev: network interface device structure
1699  * @p: pointer to an address structure
1700  *
1701  * Returns 0 on success, negative on failure
1702  **/
igbvf_set_mac(struct net_device * netdev,void * p)1703 static int igbvf_set_mac(struct net_device *netdev, void *p)
1704 {
1705 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1706 	struct e1000_hw *hw = &adapter->hw;
1707 	struct sockaddr *addr = p;
1708 
1709 	if (!is_valid_ether_addr(addr->sa_data))
1710 		return -EADDRNOTAVAIL;
1711 
1712 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1713 
1714 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1715 
1716 	if (memcmp(addr->sa_data, hw->mac.addr, 6))
1717 		return -EADDRNOTAVAIL;
1718 
1719 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1720 	netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
1721 
1722 	return 0;
1723 }
1724 
1725 #define UPDATE_VF_COUNTER(reg, name)                                    \
1726 	{                                                               \
1727 		u32 current_counter = er32(reg);                        \
1728 		if (current_counter < adapter->stats.last_##name)       \
1729 			adapter->stats.name += 0x100000000LL;           \
1730 		adapter->stats.last_##name = current_counter;           \
1731 		adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1732 		adapter->stats.name |= current_counter;                 \
1733 	}
1734 
1735 /**
1736  * igbvf_update_stats - Update the board statistics counters
1737  * @adapter: board private structure
1738 **/
igbvf_update_stats(struct igbvf_adapter * adapter)1739 void igbvf_update_stats(struct igbvf_adapter *adapter)
1740 {
1741 	struct e1000_hw *hw = &adapter->hw;
1742 	struct pci_dev *pdev = adapter->pdev;
1743 
1744 	/*
1745 	 * Prevent stats update while adapter is being reset, link is down
1746 	 * or if the pci connection is down.
1747 	 */
1748 	if (adapter->link_speed == 0)
1749 		return;
1750 
1751 	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1752 		return;
1753 
1754 	if (pci_channel_offline(pdev))
1755 		return;
1756 
1757 	UPDATE_VF_COUNTER(VFGPRC, gprc);
1758 	UPDATE_VF_COUNTER(VFGORC, gorc);
1759 	UPDATE_VF_COUNTER(VFGPTC, gptc);
1760 	UPDATE_VF_COUNTER(VFGOTC, gotc);
1761 	UPDATE_VF_COUNTER(VFMPRC, mprc);
1762 	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1763 	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1764 	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1765 	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1766 
1767 	/* Fill out the OS statistics structure */
1768 	adapter->net_stats.multicast = adapter->stats.mprc;
1769 }
1770 
igbvf_print_link_info(struct igbvf_adapter * adapter)1771 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1772 {
1773 	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1774 		 adapter->link_speed,
1775 		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1776 }
1777 
igbvf_has_link(struct igbvf_adapter * adapter)1778 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1779 {
1780 	struct e1000_hw *hw = &adapter->hw;
1781 	s32 ret_val = E1000_SUCCESS;
1782 	bool link_active;
1783 
1784 	/* If interface is down, stay link down */
1785 	if (test_bit(__IGBVF_DOWN, &adapter->state))
1786 		return false;
1787 
1788 	ret_val = hw->mac.ops.check_for_link(hw);
1789 	link_active = !hw->mac.get_link_status;
1790 
1791 	/* if check for link returns error we will need to reset */
1792 	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1793 		schedule_work(&adapter->reset_task);
1794 
1795 	return link_active;
1796 }
1797 
1798 /**
1799  * igbvf_watchdog - Timer Call-back
1800  * @data: pointer to adapter cast into an unsigned long
1801  **/
igbvf_watchdog(unsigned long data)1802 static void igbvf_watchdog(unsigned long data)
1803 {
1804 	struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1805 
1806 	/* Do the rest outside of interrupt context */
1807 	schedule_work(&adapter->watchdog_task);
1808 }
1809 
igbvf_watchdog_task(struct work_struct * work)1810 static void igbvf_watchdog_task(struct work_struct *work)
1811 {
1812 	struct igbvf_adapter *adapter = container_of(work,
1813 	                                             struct igbvf_adapter,
1814 	                                             watchdog_task);
1815 	struct net_device *netdev = adapter->netdev;
1816 	struct e1000_mac_info *mac = &adapter->hw.mac;
1817 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1818 	struct e1000_hw *hw = &adapter->hw;
1819 	u32 link;
1820 	int tx_pending = 0;
1821 
1822 	link = igbvf_has_link(adapter);
1823 
1824 	if (link) {
1825 		if (!netif_carrier_ok(netdev)) {
1826 			mac->ops.get_link_up_info(&adapter->hw,
1827 			                          &adapter->link_speed,
1828 			                          &adapter->link_duplex);
1829 			igbvf_print_link_info(adapter);
1830 
1831 			netif_carrier_on(netdev);
1832 			netif_wake_queue(netdev);
1833 		}
1834 	} else {
1835 		if (netif_carrier_ok(netdev)) {
1836 			adapter->link_speed = 0;
1837 			adapter->link_duplex = 0;
1838 			dev_info(&adapter->pdev->dev, "Link is Down\n");
1839 			netif_carrier_off(netdev);
1840 			netif_stop_queue(netdev);
1841 		}
1842 	}
1843 
1844 	if (netif_carrier_ok(netdev)) {
1845 		igbvf_update_stats(adapter);
1846 	} else {
1847 		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1848 		              tx_ring->count);
1849 		if (tx_pending) {
1850 			/*
1851 			 * We've lost link, so the controller stops DMA,
1852 			 * but we've got queued Tx work that's never going
1853 			 * to get done, so reset controller to flush Tx.
1854 			 * (Do the reset outside of interrupt context).
1855 			 */
1856 			adapter->tx_timeout_count++;
1857 			schedule_work(&adapter->reset_task);
1858 		}
1859 	}
1860 
1861 	/* Cause software interrupt to ensure Rx ring is cleaned */
1862 	ew32(EICS, adapter->rx_ring->eims_value);
1863 
1864 	/* Reset the timer */
1865 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1866 		mod_timer(&adapter->watchdog_timer,
1867 			  round_jiffies(jiffies + (2 * HZ)));
1868 }
1869 
1870 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1871 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1872 #define IGBVF_TX_FLAGS_TSO              0x00000004
1873 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1874 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1875 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1876 
igbvf_tso(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u8 * hdr_len)1877 static int igbvf_tso(struct igbvf_adapter *adapter,
1878                      struct igbvf_ring *tx_ring,
1879                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1880 {
1881 	struct e1000_adv_tx_context_desc *context_desc;
1882 	unsigned int i;
1883 	int err;
1884 	struct igbvf_buffer *buffer_info;
1885 	u32 info = 0, tu_cmd = 0;
1886 	u32 mss_l4len_idx, l4len;
1887 	*hdr_len = 0;
1888 
1889 	if (skb_header_cloned(skb)) {
1890 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1891 		if (err) {
1892 			dev_err(&adapter->pdev->dev,
1893 			        "igbvf_tso returning an error\n");
1894 			return err;
1895 		}
1896 	}
1897 
1898 	l4len = tcp_hdrlen(skb);
1899 	*hdr_len += l4len;
1900 
1901 	if (skb->protocol == htons(ETH_P_IP)) {
1902 		struct iphdr *iph = ip_hdr(skb);
1903 		iph->tot_len = 0;
1904 		iph->check = 0;
1905 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1906 		                                         iph->daddr, 0,
1907 		                                         IPPROTO_TCP,
1908 		                                         0);
1909 	} else if (skb_is_gso_v6(skb)) {
1910 		ipv6_hdr(skb)->payload_len = 0;
1911 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1912 		                                       &ipv6_hdr(skb)->daddr,
1913 		                                       0, IPPROTO_TCP, 0);
1914 	}
1915 
1916 	i = tx_ring->next_to_use;
1917 
1918 	buffer_info = &tx_ring->buffer_info[i];
1919 	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1920 	/* VLAN MACLEN IPLEN */
1921 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1922 		info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1923 	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1924 	*hdr_len += skb_network_offset(skb);
1925 	info |= (skb_transport_header(skb) - skb_network_header(skb));
1926 	*hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1927 	context_desc->vlan_macip_lens = cpu_to_le32(info);
1928 
1929 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1930 	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1931 
1932 	if (skb->protocol == htons(ETH_P_IP))
1933 		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1934 	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1935 
1936 	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1937 
1938 	/* MSS L4LEN IDX */
1939 	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1940 	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1941 
1942 	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1943 	context_desc->seqnum_seed = 0;
1944 
1945 	buffer_info->time_stamp = jiffies;
1946 	buffer_info->next_to_watch = i;
1947 	buffer_info->dma = 0;
1948 	i++;
1949 	if (i == tx_ring->count)
1950 		i = 0;
1951 
1952 	tx_ring->next_to_use = i;
1953 
1954 	return true;
1955 }
1956 
igbvf_tx_csum(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)1957 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1958                                  struct igbvf_ring *tx_ring,
1959                                  struct sk_buff *skb, u32 tx_flags)
1960 {
1961 	struct e1000_adv_tx_context_desc *context_desc;
1962 	unsigned int i;
1963 	struct igbvf_buffer *buffer_info;
1964 	u32 info = 0, tu_cmd = 0;
1965 
1966 	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1967 	    (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1968 		i = tx_ring->next_to_use;
1969 		buffer_info = &tx_ring->buffer_info[i];
1970 		context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1971 
1972 		if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1973 			info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1974 
1975 		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1976 		if (skb->ip_summed == CHECKSUM_PARTIAL)
1977 			info |= (skb_transport_header(skb) -
1978 			         skb_network_header(skb));
1979 
1980 
1981 		context_desc->vlan_macip_lens = cpu_to_le32(info);
1982 
1983 		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1984 
1985 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1986 			switch (skb->protocol) {
1987 			case __constant_htons(ETH_P_IP):
1988 				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1989 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1990 					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1991 				break;
1992 			case __constant_htons(ETH_P_IPV6):
1993 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1994 					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1995 				break;
1996 			default:
1997 				break;
1998 			}
1999 		}
2000 
2001 		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2002 		context_desc->seqnum_seed = 0;
2003 		context_desc->mss_l4len_idx = 0;
2004 
2005 		buffer_info->time_stamp = jiffies;
2006 		buffer_info->next_to_watch = i;
2007 		buffer_info->dma = 0;
2008 		i++;
2009 		if (i == tx_ring->count)
2010 			i = 0;
2011 		tx_ring->next_to_use = i;
2012 
2013 		return true;
2014 	}
2015 
2016 	return false;
2017 }
2018 
igbvf_maybe_stop_tx(struct net_device * netdev,int size)2019 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2020 {
2021 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2022 
2023 	/* there is enough descriptors then we don't need to worry  */
2024 	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2025 		return 0;
2026 
2027 	netif_stop_queue(netdev);
2028 
2029 	smp_mb();
2030 
2031 	/* We need to check again just in case room has been made available */
2032 	if (igbvf_desc_unused(adapter->tx_ring) < size)
2033 		return -EBUSY;
2034 
2035 	netif_wake_queue(netdev);
2036 
2037 	++adapter->restart_queue;
2038 	return 0;
2039 }
2040 
2041 #define IGBVF_MAX_TXD_PWR       16
2042 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2043 
igbvf_tx_map_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb,unsigned int first)2044 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2045                                    struct igbvf_ring *tx_ring,
2046                                    struct sk_buff *skb,
2047                                    unsigned int first)
2048 {
2049 	struct igbvf_buffer *buffer_info;
2050 	struct pci_dev *pdev = adapter->pdev;
2051 	unsigned int len = skb_headlen(skb);
2052 	unsigned int count = 0, i;
2053 	unsigned int f;
2054 
2055 	i = tx_ring->next_to_use;
2056 
2057 	buffer_info = &tx_ring->buffer_info[i];
2058 	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2059 	buffer_info->length = len;
2060 	/* set time_stamp *before* dma to help avoid a possible race */
2061 	buffer_info->time_stamp = jiffies;
2062 	buffer_info->next_to_watch = i;
2063 	buffer_info->mapped_as_page = false;
2064 	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2065 					  DMA_TO_DEVICE);
2066 	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2067 		goto dma_error;
2068 
2069 
2070 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2071 		const struct skb_frag_struct *frag;
2072 
2073 		count++;
2074 		i++;
2075 		if (i == tx_ring->count)
2076 			i = 0;
2077 
2078 		frag = &skb_shinfo(skb)->frags[f];
2079 		len = skb_frag_size(frag);
2080 
2081 		buffer_info = &tx_ring->buffer_info[i];
2082 		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2083 		buffer_info->length = len;
2084 		buffer_info->time_stamp = jiffies;
2085 		buffer_info->next_to_watch = i;
2086 		buffer_info->mapped_as_page = true;
2087 		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2088 						DMA_TO_DEVICE);
2089 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2090 			goto dma_error;
2091 	}
2092 
2093 	tx_ring->buffer_info[i].skb = skb;
2094 	tx_ring->buffer_info[first].next_to_watch = i;
2095 
2096 	return ++count;
2097 
2098 dma_error:
2099 	dev_err(&pdev->dev, "TX DMA map failed\n");
2100 
2101 	/* clear timestamp and dma mappings for failed buffer_info mapping */
2102 	buffer_info->dma = 0;
2103 	buffer_info->time_stamp = 0;
2104 	buffer_info->length = 0;
2105 	buffer_info->next_to_watch = 0;
2106 	buffer_info->mapped_as_page = false;
2107 	if (count)
2108 		count--;
2109 
2110 	/* clear timestamp and dma mappings for remaining portion of packet */
2111 	while (count--) {
2112 		if (i==0)
2113 			i += tx_ring->count;
2114 		i--;
2115 		buffer_info = &tx_ring->buffer_info[i];
2116 		igbvf_put_txbuf(adapter, buffer_info);
2117 	}
2118 
2119 	return 0;
2120 }
2121 
igbvf_tx_queue_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,int tx_flags,int count,u32 paylen,u8 hdr_len)2122 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2123                                       struct igbvf_ring *tx_ring,
2124                                       int tx_flags, int count, u32 paylen,
2125                                       u8 hdr_len)
2126 {
2127 	union e1000_adv_tx_desc *tx_desc = NULL;
2128 	struct igbvf_buffer *buffer_info;
2129 	u32 olinfo_status = 0, cmd_type_len;
2130 	unsigned int i;
2131 
2132 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2133 	                E1000_ADVTXD_DCMD_DEXT);
2134 
2135 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2136 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2137 
2138 	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2139 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2140 
2141 		/* insert tcp checksum */
2142 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2143 
2144 		/* insert ip checksum */
2145 		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2146 			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2147 
2148 	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2149 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2150 	}
2151 
2152 	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2153 
2154 	i = tx_ring->next_to_use;
2155 	while (count--) {
2156 		buffer_info = &tx_ring->buffer_info[i];
2157 		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2158 		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2159 		tx_desc->read.cmd_type_len =
2160 		         cpu_to_le32(cmd_type_len | buffer_info->length);
2161 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2162 		i++;
2163 		if (i == tx_ring->count)
2164 			i = 0;
2165 	}
2166 
2167 	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2168 	/* Force memory writes to complete before letting h/w
2169 	 * know there are new descriptors to fetch.  (Only
2170 	 * applicable for weak-ordered memory model archs,
2171 	 * such as IA-64). */
2172 	wmb();
2173 
2174 	tx_ring->next_to_use = i;
2175 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2176 	/* we need this if more than one processor can write to our tail
2177 	 * at a time, it syncronizes IO on IA64/Altix systems */
2178 	mmiowb();
2179 }
2180 
igbvf_xmit_frame_ring_adv(struct sk_buff * skb,struct net_device * netdev,struct igbvf_ring * tx_ring)2181 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2182 					     struct net_device *netdev,
2183 					     struct igbvf_ring *tx_ring)
2184 {
2185 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2186 	unsigned int first, tx_flags = 0;
2187 	u8 hdr_len = 0;
2188 	int count = 0;
2189 	int tso = 0;
2190 
2191 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2192 		dev_kfree_skb_any(skb);
2193 		return NETDEV_TX_OK;
2194 	}
2195 
2196 	if (skb->len <= 0) {
2197 		dev_kfree_skb_any(skb);
2198 		return NETDEV_TX_OK;
2199 	}
2200 
2201 	/*
2202 	 * need: count + 4 desc gap to keep tail from touching
2203          *       + 2 desc gap to keep tail from touching head,
2204          *       + 1 desc for skb->data,
2205          *       + 1 desc for context descriptor,
2206 	 * head, otherwise try next time
2207 	 */
2208 	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2209 		/* this is a hard error */
2210 		return NETDEV_TX_BUSY;
2211 	}
2212 
2213 	if (vlan_tx_tag_present(skb)) {
2214 		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2215 		tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2216 	}
2217 
2218 	if (skb->protocol == htons(ETH_P_IP))
2219 		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2220 
2221 	first = tx_ring->next_to_use;
2222 
2223 	tso = skb_is_gso(skb) ?
2224 		igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2225 	if (unlikely(tso < 0)) {
2226 		dev_kfree_skb_any(skb);
2227 		return NETDEV_TX_OK;
2228 	}
2229 
2230 	if (tso)
2231 		tx_flags |= IGBVF_TX_FLAGS_TSO;
2232 	else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2233 	         (skb->ip_summed == CHECKSUM_PARTIAL))
2234 		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2235 
2236 	/*
2237 	 * count reflects descriptors mapped, if 0 then mapping error
2238 	 * has occurred and we need to rewind the descriptor queue
2239 	 */
2240 	count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2241 
2242 	if (count) {
2243 		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2244 		                   skb->len, hdr_len);
2245 		/* Make sure there is space in the ring for the next send. */
2246 		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2247 	} else {
2248 		dev_kfree_skb_any(skb);
2249 		tx_ring->buffer_info[first].time_stamp = 0;
2250 		tx_ring->next_to_use = first;
2251 	}
2252 
2253 	return NETDEV_TX_OK;
2254 }
2255 
igbvf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2256 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2257 				    struct net_device *netdev)
2258 {
2259 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2260 	struct igbvf_ring *tx_ring;
2261 
2262 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2263 		dev_kfree_skb_any(skb);
2264 		return NETDEV_TX_OK;
2265 	}
2266 
2267 	tx_ring = &adapter->tx_ring[0];
2268 
2269 	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2270 }
2271 
2272 /**
2273  * igbvf_tx_timeout - Respond to a Tx Hang
2274  * @netdev: network interface device structure
2275  **/
igbvf_tx_timeout(struct net_device * netdev)2276 static void igbvf_tx_timeout(struct net_device *netdev)
2277 {
2278 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2279 
2280 	/* Do the reset outside of interrupt context */
2281 	adapter->tx_timeout_count++;
2282 	schedule_work(&adapter->reset_task);
2283 }
2284 
igbvf_reset_task(struct work_struct * work)2285 static void igbvf_reset_task(struct work_struct *work)
2286 {
2287 	struct igbvf_adapter *adapter;
2288 	adapter = container_of(work, struct igbvf_adapter, reset_task);
2289 
2290 	igbvf_reinit_locked(adapter);
2291 }
2292 
2293 /**
2294  * igbvf_get_stats - Get System Network Statistics
2295  * @netdev: network interface device structure
2296  *
2297  * Returns the address of the device statistics structure.
2298  * The statistics are actually updated from the timer callback.
2299  **/
igbvf_get_stats(struct net_device * netdev)2300 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2301 {
2302 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2303 
2304 	/* only return the current stats */
2305 	return &adapter->net_stats;
2306 }
2307 
2308 /**
2309  * igbvf_change_mtu - Change the Maximum Transfer Unit
2310  * @netdev: network interface device structure
2311  * @new_mtu: new value for maximum frame size
2312  *
2313  * Returns 0 on success, negative on failure
2314  **/
igbvf_change_mtu(struct net_device * netdev,int new_mtu)2315 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2316 {
2317 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2318 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2319 
2320 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2321 		dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2322 		return -EINVAL;
2323 	}
2324 
2325 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2326 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2327 		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2328 		return -EINVAL;
2329 	}
2330 
2331 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2332 		msleep(1);
2333 	/* igbvf_down has a dependency on max_frame_size */
2334 	adapter->max_frame_size = max_frame;
2335 	if (netif_running(netdev))
2336 		igbvf_down(adapter);
2337 
2338 	/*
2339 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2340 	 * means we reserve 2 more, this pushes us to allocate from the next
2341 	 * larger slab size.
2342 	 * i.e. RXBUFFER_2048 --> size-4096 slab
2343 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2344 	 * fragmented skbs
2345 	 */
2346 
2347 	if (max_frame <= 1024)
2348 		adapter->rx_buffer_len = 1024;
2349 	else if (max_frame <= 2048)
2350 		adapter->rx_buffer_len = 2048;
2351 	else
2352 #if (PAGE_SIZE / 2) > 16384
2353 		adapter->rx_buffer_len = 16384;
2354 #else
2355 		adapter->rx_buffer_len = PAGE_SIZE / 2;
2356 #endif
2357 
2358 
2359 	/* adjust allocation if LPE protects us, and we aren't using SBP */
2360 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2361 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2362 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2363 		                         ETH_FCS_LEN;
2364 
2365 	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2366 	         netdev->mtu, new_mtu);
2367 	netdev->mtu = new_mtu;
2368 
2369 	if (netif_running(netdev))
2370 		igbvf_up(adapter);
2371 	else
2372 		igbvf_reset(adapter);
2373 
2374 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2375 
2376 	return 0;
2377 }
2378 
igbvf_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2379 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2380 {
2381 	switch (cmd) {
2382 	default:
2383 		return -EOPNOTSUPP;
2384 	}
2385 }
2386 
igbvf_suspend(struct pci_dev * pdev,pm_message_t state)2387 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2388 {
2389 	struct net_device *netdev = pci_get_drvdata(pdev);
2390 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2391 #ifdef CONFIG_PM
2392 	int retval = 0;
2393 #endif
2394 
2395 	netif_device_detach(netdev);
2396 
2397 	if (netif_running(netdev)) {
2398 		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2399 		igbvf_down(adapter);
2400 		igbvf_free_irq(adapter);
2401 	}
2402 
2403 #ifdef CONFIG_PM
2404 	retval = pci_save_state(pdev);
2405 	if (retval)
2406 		return retval;
2407 #endif
2408 
2409 	pci_disable_device(pdev);
2410 
2411 	return 0;
2412 }
2413 
2414 #ifdef CONFIG_PM
igbvf_resume(struct pci_dev * pdev)2415 static int igbvf_resume(struct pci_dev *pdev)
2416 {
2417 	struct net_device *netdev = pci_get_drvdata(pdev);
2418 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2419 	u32 err;
2420 
2421 	pci_restore_state(pdev);
2422 	err = pci_enable_device_mem(pdev);
2423 	if (err) {
2424 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2425 		return err;
2426 	}
2427 
2428 	pci_set_master(pdev);
2429 
2430 	if (netif_running(netdev)) {
2431 		err = igbvf_request_irq(adapter);
2432 		if (err)
2433 			return err;
2434 	}
2435 
2436 	igbvf_reset(adapter);
2437 
2438 	if (netif_running(netdev))
2439 		igbvf_up(adapter);
2440 
2441 	netif_device_attach(netdev);
2442 
2443 	return 0;
2444 }
2445 #endif
2446 
igbvf_shutdown(struct pci_dev * pdev)2447 static void igbvf_shutdown(struct pci_dev *pdev)
2448 {
2449 	igbvf_suspend(pdev, PMSG_SUSPEND);
2450 }
2451 
2452 #ifdef CONFIG_NET_POLL_CONTROLLER
2453 /*
2454  * Polling 'interrupt' - used by things like netconsole to send skbs
2455  * without having to re-enable interrupts. It's not called while
2456  * the interrupt routine is executing.
2457  */
igbvf_netpoll(struct net_device * netdev)2458 static void igbvf_netpoll(struct net_device *netdev)
2459 {
2460 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2461 
2462 	disable_irq(adapter->pdev->irq);
2463 
2464 	igbvf_clean_tx_irq(adapter->tx_ring);
2465 
2466 	enable_irq(adapter->pdev->irq);
2467 }
2468 #endif
2469 
2470 /**
2471  * igbvf_io_error_detected - called when PCI error is detected
2472  * @pdev: Pointer to PCI device
2473  * @state: The current pci connection state
2474  *
2475  * This function is called after a PCI bus error affecting
2476  * this device has been detected.
2477  */
igbvf_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2478 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2479                                                 pci_channel_state_t state)
2480 {
2481 	struct net_device *netdev = pci_get_drvdata(pdev);
2482 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2483 
2484 	netif_device_detach(netdev);
2485 
2486 	if (state == pci_channel_io_perm_failure)
2487 		return PCI_ERS_RESULT_DISCONNECT;
2488 
2489 	if (netif_running(netdev))
2490 		igbvf_down(adapter);
2491 	pci_disable_device(pdev);
2492 
2493 	/* Request a slot slot reset. */
2494 	return PCI_ERS_RESULT_NEED_RESET;
2495 }
2496 
2497 /**
2498  * igbvf_io_slot_reset - called after the pci bus has been reset.
2499  * @pdev: Pointer to PCI device
2500  *
2501  * Restart the card from scratch, as if from a cold-boot. Implementation
2502  * resembles the first-half of the igbvf_resume routine.
2503  */
igbvf_io_slot_reset(struct pci_dev * pdev)2504 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2505 {
2506 	struct net_device *netdev = pci_get_drvdata(pdev);
2507 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2508 
2509 	if (pci_enable_device_mem(pdev)) {
2510 		dev_err(&pdev->dev,
2511 			"Cannot re-enable PCI device after reset.\n");
2512 		return PCI_ERS_RESULT_DISCONNECT;
2513 	}
2514 	pci_set_master(pdev);
2515 
2516 	igbvf_reset(adapter);
2517 
2518 	return PCI_ERS_RESULT_RECOVERED;
2519 }
2520 
2521 /**
2522  * igbvf_io_resume - called when traffic can start flowing again.
2523  * @pdev: Pointer to PCI device
2524  *
2525  * This callback is called when the error recovery driver tells us that
2526  * its OK to resume normal operation. Implementation resembles the
2527  * second-half of the igbvf_resume routine.
2528  */
igbvf_io_resume(struct pci_dev * pdev)2529 static void igbvf_io_resume(struct pci_dev *pdev)
2530 {
2531 	struct net_device *netdev = pci_get_drvdata(pdev);
2532 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2533 
2534 	if (netif_running(netdev)) {
2535 		if (igbvf_up(adapter)) {
2536 			dev_err(&pdev->dev,
2537 				"can't bring device back up after reset\n");
2538 			return;
2539 		}
2540 	}
2541 
2542 	netif_device_attach(netdev);
2543 }
2544 
igbvf_print_device_info(struct igbvf_adapter * adapter)2545 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2546 {
2547 	struct e1000_hw *hw = &adapter->hw;
2548 	struct net_device *netdev = adapter->netdev;
2549 	struct pci_dev *pdev = adapter->pdev;
2550 
2551 	if (hw->mac.type == e1000_vfadapt_i350)
2552 		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2553 	else
2554 		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2555 	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2556 }
2557 
igbvf_set_features(struct net_device * netdev,netdev_features_t features)2558 static int igbvf_set_features(struct net_device *netdev,
2559 	netdev_features_t features)
2560 {
2561 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2562 
2563 	if (features & NETIF_F_RXCSUM)
2564 		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2565 	else
2566 		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2567 
2568 	return 0;
2569 }
2570 
2571 static const struct net_device_ops igbvf_netdev_ops = {
2572 	.ndo_open                       = igbvf_open,
2573 	.ndo_stop                       = igbvf_close,
2574 	.ndo_start_xmit                 = igbvf_xmit_frame,
2575 	.ndo_get_stats                  = igbvf_get_stats,
2576 	.ndo_set_rx_mode		= igbvf_set_multi,
2577 	.ndo_set_mac_address            = igbvf_set_mac,
2578 	.ndo_change_mtu                 = igbvf_change_mtu,
2579 	.ndo_do_ioctl                   = igbvf_ioctl,
2580 	.ndo_tx_timeout                 = igbvf_tx_timeout,
2581 	.ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2582 	.ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2583 #ifdef CONFIG_NET_POLL_CONTROLLER
2584 	.ndo_poll_controller            = igbvf_netpoll,
2585 #endif
2586 	.ndo_set_features               = igbvf_set_features,
2587 };
2588 
2589 /**
2590  * igbvf_probe - Device Initialization Routine
2591  * @pdev: PCI device information struct
2592  * @ent: entry in igbvf_pci_tbl
2593  *
2594  * Returns 0 on success, negative on failure
2595  *
2596  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2597  * The OS initialization, configuring of the adapter private structure,
2598  * and a hardware reset occur.
2599  **/
igbvf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2600 static int __devinit igbvf_probe(struct pci_dev *pdev,
2601                                  const struct pci_device_id *ent)
2602 {
2603 	struct net_device *netdev;
2604 	struct igbvf_adapter *adapter;
2605 	struct e1000_hw *hw;
2606 	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2607 
2608 	static int cards_found;
2609 	int err, pci_using_dac;
2610 
2611 	err = pci_enable_device_mem(pdev);
2612 	if (err)
2613 		return err;
2614 
2615 	pci_using_dac = 0;
2616 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2617 	if (!err) {
2618 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2619 		if (!err)
2620 			pci_using_dac = 1;
2621 	} else {
2622 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2623 		if (err) {
2624 			err = dma_set_coherent_mask(&pdev->dev,
2625 						    DMA_BIT_MASK(32));
2626 			if (err) {
2627 				dev_err(&pdev->dev, "No usable DMA "
2628 				        "configuration, aborting\n");
2629 				goto err_dma;
2630 			}
2631 		}
2632 	}
2633 
2634 	err = pci_request_regions(pdev, igbvf_driver_name);
2635 	if (err)
2636 		goto err_pci_reg;
2637 
2638 	pci_set_master(pdev);
2639 
2640 	err = -ENOMEM;
2641 	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2642 	if (!netdev)
2643 		goto err_alloc_etherdev;
2644 
2645 	SET_NETDEV_DEV(netdev, &pdev->dev);
2646 
2647 	pci_set_drvdata(pdev, netdev);
2648 	adapter = netdev_priv(netdev);
2649 	hw = &adapter->hw;
2650 	adapter->netdev = netdev;
2651 	adapter->pdev = pdev;
2652 	adapter->ei = ei;
2653 	adapter->pba = ei->pba;
2654 	adapter->flags = ei->flags;
2655 	adapter->hw.back = adapter;
2656 	adapter->hw.mac.type = ei->mac;
2657 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2658 
2659 	/* PCI config space info */
2660 
2661 	hw->vendor_id = pdev->vendor;
2662 	hw->device_id = pdev->device;
2663 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2664 	hw->subsystem_device_id = pdev->subsystem_device;
2665 	hw->revision_id = pdev->revision;
2666 
2667 	err = -EIO;
2668 	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2669 	                              pci_resource_len(pdev, 0));
2670 
2671 	if (!adapter->hw.hw_addr)
2672 		goto err_ioremap;
2673 
2674 	if (ei->get_variants) {
2675 		err = ei->get_variants(adapter);
2676 		if (err)
2677 			goto err_ioremap;
2678 	}
2679 
2680 	/* setup adapter struct */
2681 	err = igbvf_sw_init(adapter);
2682 	if (err)
2683 		goto err_sw_init;
2684 
2685 	/* construct the net_device struct */
2686 	netdev->netdev_ops = &igbvf_netdev_ops;
2687 
2688 	igbvf_set_ethtool_ops(netdev);
2689 	netdev->watchdog_timeo = 5 * HZ;
2690 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2691 
2692 	adapter->bd_number = cards_found++;
2693 
2694 	netdev->hw_features = NETIF_F_SG |
2695 	                   NETIF_F_IP_CSUM |
2696 			   NETIF_F_IPV6_CSUM |
2697 			   NETIF_F_TSO |
2698 			   NETIF_F_TSO6 |
2699 			   NETIF_F_RXCSUM;
2700 
2701 	netdev->features = netdev->hw_features |
2702 	                   NETIF_F_HW_VLAN_TX |
2703 	                   NETIF_F_HW_VLAN_RX |
2704 	                   NETIF_F_HW_VLAN_FILTER;
2705 
2706 	if (pci_using_dac)
2707 		netdev->features |= NETIF_F_HIGHDMA;
2708 
2709 	netdev->vlan_features |= NETIF_F_TSO;
2710 	netdev->vlan_features |= NETIF_F_TSO6;
2711 	netdev->vlan_features |= NETIF_F_IP_CSUM;
2712 	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2713 	netdev->vlan_features |= NETIF_F_SG;
2714 
2715 	/*reset the controller to put the device in a known good state */
2716 	err = hw->mac.ops.reset_hw(hw);
2717 	if (err) {
2718 		dev_info(&pdev->dev,
2719 			 "PF still in reset state, assigning new address."
2720 			 " Is the PF interface up?\n");
2721 		eth_hw_addr_random(netdev);
2722 		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2723 			netdev->addr_len);
2724 	} else {
2725 		err = hw->mac.ops.read_mac_addr(hw);
2726 		if (err) {
2727 			dev_err(&pdev->dev, "Error reading MAC address\n");
2728 			goto err_hw_init;
2729 		}
2730 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2731 			netdev->addr_len);
2732 	}
2733 
2734 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2735 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2736 		        netdev->dev_addr);
2737 		err = -EIO;
2738 		goto err_hw_init;
2739 	}
2740 
2741 	memcpy(netdev->perm_addr, netdev->dev_addr, netdev->addr_len);
2742 
2743 	setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2744 	            (unsigned long) adapter);
2745 
2746 	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2747 	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2748 
2749 	/* ring size defaults */
2750 	adapter->rx_ring->count = 1024;
2751 	adapter->tx_ring->count = 1024;
2752 
2753 	/* reset the hardware with the new settings */
2754 	igbvf_reset(adapter);
2755 
2756 	strcpy(netdev->name, "eth%d");
2757 	err = register_netdev(netdev);
2758 	if (err)
2759 		goto err_hw_init;
2760 
2761 	/* tell the stack to leave us alone until igbvf_open() is called */
2762 	netif_carrier_off(netdev);
2763 	netif_stop_queue(netdev);
2764 
2765 	igbvf_print_device_info(adapter);
2766 
2767 	igbvf_initialize_last_counter_stats(adapter);
2768 
2769 	return 0;
2770 
2771 err_hw_init:
2772 	kfree(adapter->tx_ring);
2773 	kfree(adapter->rx_ring);
2774 err_sw_init:
2775 	igbvf_reset_interrupt_capability(adapter);
2776 	iounmap(adapter->hw.hw_addr);
2777 err_ioremap:
2778 	free_netdev(netdev);
2779 err_alloc_etherdev:
2780 	pci_release_regions(pdev);
2781 err_pci_reg:
2782 err_dma:
2783 	pci_disable_device(pdev);
2784 	return err;
2785 }
2786 
2787 /**
2788  * igbvf_remove - Device Removal Routine
2789  * @pdev: PCI device information struct
2790  *
2791  * igbvf_remove is called by the PCI subsystem to alert the driver
2792  * that it should release a PCI device.  The could be caused by a
2793  * Hot-Plug event, or because the driver is going to be removed from
2794  * memory.
2795  **/
igbvf_remove(struct pci_dev * pdev)2796 static void __devexit igbvf_remove(struct pci_dev *pdev)
2797 {
2798 	struct net_device *netdev = pci_get_drvdata(pdev);
2799 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2800 	struct e1000_hw *hw = &adapter->hw;
2801 
2802 	/*
2803 	 * The watchdog timer may be rescheduled, so explicitly
2804 	 * disable it from being rescheduled.
2805 	 */
2806 	set_bit(__IGBVF_DOWN, &adapter->state);
2807 	del_timer_sync(&adapter->watchdog_timer);
2808 
2809 	cancel_work_sync(&adapter->reset_task);
2810 	cancel_work_sync(&adapter->watchdog_task);
2811 
2812 	unregister_netdev(netdev);
2813 
2814 	igbvf_reset_interrupt_capability(adapter);
2815 
2816 	/*
2817 	 * it is important to delete the napi struct prior to freeing the
2818 	 * rx ring so that you do not end up with null pointer refs
2819 	 */
2820 	netif_napi_del(&adapter->rx_ring->napi);
2821 	kfree(adapter->tx_ring);
2822 	kfree(adapter->rx_ring);
2823 
2824 	iounmap(hw->hw_addr);
2825 	if (hw->flash_address)
2826 		iounmap(hw->flash_address);
2827 	pci_release_regions(pdev);
2828 
2829 	free_netdev(netdev);
2830 
2831 	pci_disable_device(pdev);
2832 }
2833 
2834 /* PCI Error Recovery (ERS) */
2835 static struct pci_error_handlers igbvf_err_handler = {
2836 	.error_detected = igbvf_io_error_detected,
2837 	.slot_reset = igbvf_io_slot_reset,
2838 	.resume = igbvf_io_resume,
2839 };
2840 
2841 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2842 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2843 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2844 	{ } /* terminate list */
2845 };
2846 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2847 
2848 /* PCI Device API Driver */
2849 static struct pci_driver igbvf_driver = {
2850 	.name     = igbvf_driver_name,
2851 	.id_table = igbvf_pci_tbl,
2852 	.probe    = igbvf_probe,
2853 	.remove   = __devexit_p(igbvf_remove),
2854 #ifdef CONFIG_PM
2855 	/* Power Management Hooks */
2856 	.suspend  = igbvf_suspend,
2857 	.resume   = igbvf_resume,
2858 #endif
2859 	.shutdown = igbvf_shutdown,
2860 	.err_handler = &igbvf_err_handler
2861 };
2862 
2863 /**
2864  * igbvf_init_module - Driver Registration Routine
2865  *
2866  * igbvf_init_module is the first routine called when the driver is
2867  * loaded. All it does is register with the PCI subsystem.
2868  **/
igbvf_init_module(void)2869 static int __init igbvf_init_module(void)
2870 {
2871 	int ret;
2872 	pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2873 	pr_info("%s\n", igbvf_copyright);
2874 
2875 	ret = pci_register_driver(&igbvf_driver);
2876 
2877 	return ret;
2878 }
2879 module_init(igbvf_init_module);
2880 
2881 /**
2882  * igbvf_exit_module - Driver Exit Cleanup Routine
2883  *
2884  * igbvf_exit_module is called just before the driver is removed
2885  * from memory.
2886  **/
igbvf_exit_module(void)2887 static void __exit igbvf_exit_module(void)
2888 {
2889 	pci_unregister_driver(&igbvf_driver);
2890 }
2891 module_exit(igbvf_exit_module);
2892 
2893 
2894 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2895 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2896 MODULE_LICENSE("GPL");
2897 MODULE_VERSION(DRV_VERSION);
2898 
2899 /* netdev.c */
2900