1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39
40 #include "igb.h"
41
42 struct igb_stats {
43 char stat_string[ETH_GSTRING_LEN];
44 int sizeof_stat;
45 int stat_offset;
46 };
47
48 #define IGB_STAT(_name, _stat) { \
49 .stat_string = _name, \
50 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
51 .stat_offset = offsetof(struct igb_adapter, _stat) \
52 }
53 static const struct igb_stats igb_gstrings_stats[] = {
54 IGB_STAT("rx_packets", stats.gprc),
55 IGB_STAT("tx_packets", stats.gptc),
56 IGB_STAT("rx_bytes", stats.gorc),
57 IGB_STAT("tx_bytes", stats.gotc),
58 IGB_STAT("rx_broadcast", stats.bprc),
59 IGB_STAT("tx_broadcast", stats.bptc),
60 IGB_STAT("rx_multicast", stats.mprc),
61 IGB_STAT("tx_multicast", stats.mptc),
62 IGB_STAT("multicast", stats.mprc),
63 IGB_STAT("collisions", stats.colc),
64 IGB_STAT("rx_crc_errors", stats.crcerrs),
65 IGB_STAT("rx_no_buffer_count", stats.rnbc),
66 IGB_STAT("rx_missed_errors", stats.mpc),
67 IGB_STAT("tx_aborted_errors", stats.ecol),
68 IGB_STAT("tx_carrier_errors", stats.tncrs),
69 IGB_STAT("tx_window_errors", stats.latecol),
70 IGB_STAT("tx_abort_late_coll", stats.latecol),
71 IGB_STAT("tx_deferred_ok", stats.dc),
72 IGB_STAT("tx_single_coll_ok", stats.scc),
73 IGB_STAT("tx_multi_coll_ok", stats.mcc),
74 IGB_STAT("tx_timeout_count", tx_timeout_count),
75 IGB_STAT("rx_long_length_errors", stats.roc),
76 IGB_STAT("rx_short_length_errors", stats.ruc),
77 IGB_STAT("rx_align_errors", stats.algnerrc),
78 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
79 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
81 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 IGB_STAT("tx_flow_control_xon", stats.xontxc),
83 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
84 IGB_STAT("rx_long_byte_count", stats.gorc),
85 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
86 IGB_STAT("tx_smbus", stats.mgptc),
87 IGB_STAT("rx_smbus", stats.mgprc),
88 IGB_STAT("dropped_smbus", stats.mgpdc),
89 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
90 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
91 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
92 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
93 };
94
95 #define IGB_NETDEV_STAT(_net_stat) { \
96 .stat_string = __stringify(_net_stat), \
97 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
98 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
99 }
100 static const struct igb_stats igb_gstrings_net_stats[] = {
101 IGB_NETDEV_STAT(rx_errors),
102 IGB_NETDEV_STAT(tx_errors),
103 IGB_NETDEV_STAT(tx_dropped),
104 IGB_NETDEV_STAT(rx_length_errors),
105 IGB_NETDEV_STAT(rx_over_errors),
106 IGB_NETDEV_STAT(rx_frame_errors),
107 IGB_NETDEV_STAT(rx_fifo_errors),
108 IGB_NETDEV_STAT(tx_fifo_errors),
109 IGB_NETDEV_STAT(tx_heartbeat_errors)
110 };
111
112 #define IGB_GLOBAL_STATS_LEN \
113 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
114 #define IGB_NETDEV_STATS_LEN \
115 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
116 #define IGB_RX_QUEUE_STATS_LEN \
117 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
118
119 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
120
121 #define IGB_QUEUE_STATS_LEN \
122 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
123 IGB_RX_QUEUE_STATS_LEN) + \
124 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
125 IGB_TX_QUEUE_STATS_LEN))
126 #define IGB_STATS_LEN \
127 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
128
129 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
130 "Register test (offline)", "Eeprom test (offline)",
131 "Interrupt test (offline)", "Loopback test (offline)",
132 "Link test (on/offline)"
133 };
134 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
135
igb_get_settings(struct net_device * netdev,struct ethtool_cmd * ecmd)136 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
137 {
138 struct igb_adapter *adapter = netdev_priv(netdev);
139 struct e1000_hw *hw = &adapter->hw;
140 u32 status;
141
142 if (hw->phy.media_type == e1000_media_type_copper) {
143
144 ecmd->supported = (SUPPORTED_10baseT_Half |
145 SUPPORTED_10baseT_Full |
146 SUPPORTED_100baseT_Half |
147 SUPPORTED_100baseT_Full |
148 SUPPORTED_1000baseT_Full|
149 SUPPORTED_Autoneg |
150 SUPPORTED_TP);
151 ecmd->advertising = ADVERTISED_TP;
152
153 if (hw->mac.autoneg == 1) {
154 ecmd->advertising |= ADVERTISED_Autoneg;
155 /* the e1000 autoneg seems to match ethtool nicely */
156 ecmd->advertising |= hw->phy.autoneg_advertised;
157 }
158
159 ecmd->port = PORT_TP;
160 ecmd->phy_address = hw->phy.addr;
161 } else {
162 ecmd->supported = (SUPPORTED_1000baseT_Full |
163 SUPPORTED_FIBRE |
164 SUPPORTED_Autoneg);
165
166 ecmd->advertising = (ADVERTISED_1000baseT_Full |
167 ADVERTISED_FIBRE |
168 ADVERTISED_Autoneg);
169
170 ecmd->port = PORT_FIBRE;
171 }
172
173 ecmd->transceiver = XCVR_INTERNAL;
174
175 status = rd32(E1000_STATUS);
176
177 if (status & E1000_STATUS_LU) {
178
179 if ((status & E1000_STATUS_SPEED_1000) ||
180 hw->phy.media_type != e1000_media_type_copper)
181 ecmd->speed = SPEED_1000;
182 else if (status & E1000_STATUS_SPEED_100)
183 ecmd->speed = SPEED_100;
184 else
185 ecmd->speed = SPEED_10;
186
187 if ((status & E1000_STATUS_FD) ||
188 hw->phy.media_type != e1000_media_type_copper)
189 ecmd->duplex = DUPLEX_FULL;
190 else
191 ecmd->duplex = DUPLEX_HALF;
192 } else {
193 ecmd->speed = -1;
194 ecmd->duplex = -1;
195 }
196
197 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
198 return 0;
199 }
200
igb_set_settings(struct net_device * netdev,struct ethtool_cmd * ecmd)201 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
202 {
203 struct igb_adapter *adapter = netdev_priv(netdev);
204 struct e1000_hw *hw = &adapter->hw;
205
206 /* When SoL/IDER sessions are active, autoneg/speed/duplex
207 * cannot be changed */
208 if (igb_check_reset_block(hw)) {
209 dev_err(&adapter->pdev->dev, "Cannot change link "
210 "characteristics when SoL/IDER is active.\n");
211 return -EINVAL;
212 }
213
214 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
215 msleep(1);
216
217 if (ecmd->autoneg == AUTONEG_ENABLE) {
218 hw->mac.autoneg = 1;
219 hw->phy.autoneg_advertised = ecmd->advertising |
220 ADVERTISED_TP |
221 ADVERTISED_Autoneg;
222 ecmd->advertising = hw->phy.autoneg_advertised;
223 if (adapter->fc_autoneg)
224 hw->fc.requested_mode = e1000_fc_default;
225 } else {
226 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
227 clear_bit(__IGB_RESETTING, &adapter->state);
228 return -EINVAL;
229 }
230 }
231
232 /* reset the link */
233 if (netif_running(adapter->netdev)) {
234 igb_down(adapter);
235 igb_up(adapter);
236 } else
237 igb_reset(adapter);
238
239 clear_bit(__IGB_RESETTING, &adapter->state);
240 return 0;
241 }
242
igb_get_link(struct net_device * netdev)243 static u32 igb_get_link(struct net_device *netdev)
244 {
245 struct igb_adapter *adapter = netdev_priv(netdev);
246 struct e1000_mac_info *mac = &adapter->hw.mac;
247
248 /*
249 * If the link is not reported up to netdev, interrupts are disabled,
250 * and so the physical link state may have changed since we last
251 * looked. Set get_link_status to make sure that the true link
252 * state is interrogated, rather than pulling a cached and possibly
253 * stale link state from the driver.
254 */
255 if (!netif_carrier_ok(netdev))
256 mac->get_link_status = 1;
257
258 return igb_has_link(adapter);
259 }
260
igb_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)261 static void igb_get_pauseparam(struct net_device *netdev,
262 struct ethtool_pauseparam *pause)
263 {
264 struct igb_adapter *adapter = netdev_priv(netdev);
265 struct e1000_hw *hw = &adapter->hw;
266
267 pause->autoneg =
268 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
269
270 if (hw->fc.current_mode == e1000_fc_rx_pause)
271 pause->rx_pause = 1;
272 else if (hw->fc.current_mode == e1000_fc_tx_pause)
273 pause->tx_pause = 1;
274 else if (hw->fc.current_mode == e1000_fc_full) {
275 pause->rx_pause = 1;
276 pause->tx_pause = 1;
277 }
278 }
279
igb_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)280 static int igb_set_pauseparam(struct net_device *netdev,
281 struct ethtool_pauseparam *pause)
282 {
283 struct igb_adapter *adapter = netdev_priv(netdev);
284 struct e1000_hw *hw = &adapter->hw;
285 int retval = 0;
286
287 adapter->fc_autoneg = pause->autoneg;
288
289 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
290 msleep(1);
291
292 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
293 hw->fc.requested_mode = e1000_fc_default;
294 if (netif_running(adapter->netdev)) {
295 igb_down(adapter);
296 igb_up(adapter);
297 } else {
298 igb_reset(adapter);
299 }
300 } else {
301 if (pause->rx_pause && pause->tx_pause)
302 hw->fc.requested_mode = e1000_fc_full;
303 else if (pause->rx_pause && !pause->tx_pause)
304 hw->fc.requested_mode = e1000_fc_rx_pause;
305 else if (!pause->rx_pause && pause->tx_pause)
306 hw->fc.requested_mode = e1000_fc_tx_pause;
307 else if (!pause->rx_pause && !pause->tx_pause)
308 hw->fc.requested_mode = e1000_fc_none;
309
310 hw->fc.current_mode = hw->fc.requested_mode;
311
312 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
313 igb_force_mac_fc(hw) : igb_setup_link(hw));
314 }
315
316 clear_bit(__IGB_RESETTING, &adapter->state);
317 return retval;
318 }
319
igb_get_rx_csum(struct net_device * netdev)320 static u32 igb_get_rx_csum(struct net_device *netdev)
321 {
322 struct igb_adapter *adapter = netdev_priv(netdev);
323 return !!(adapter->rx_ring[0]->flags & IGB_RING_FLAG_RX_CSUM);
324 }
325
igb_set_rx_csum(struct net_device * netdev,u32 data)326 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
327 {
328 struct igb_adapter *adapter = netdev_priv(netdev);
329 int i;
330
331 for (i = 0; i < adapter->num_rx_queues; i++) {
332 if (data)
333 adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
334 else
335 adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
336 }
337
338 return 0;
339 }
340
igb_get_tx_csum(struct net_device * netdev)341 static u32 igb_get_tx_csum(struct net_device *netdev)
342 {
343 return (netdev->features & NETIF_F_IP_CSUM) != 0;
344 }
345
igb_set_tx_csum(struct net_device * netdev,u32 data)346 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
347 {
348 struct igb_adapter *adapter = netdev_priv(netdev);
349
350 if (data) {
351 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
352 if (adapter->hw.mac.type >= e1000_82576)
353 netdev->features |= NETIF_F_SCTP_CSUM;
354 } else {
355 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
356 NETIF_F_SCTP_CSUM);
357 }
358
359 return 0;
360 }
361
igb_set_tso(struct net_device * netdev,u32 data)362 static int igb_set_tso(struct net_device *netdev, u32 data)
363 {
364 struct igb_adapter *adapter = netdev_priv(netdev);
365
366 if (data) {
367 netdev->features |= NETIF_F_TSO;
368 netdev->features |= NETIF_F_TSO6;
369 } else {
370 netdev->features &= ~NETIF_F_TSO;
371 netdev->features &= ~NETIF_F_TSO6;
372 }
373
374 dev_info(&adapter->pdev->dev, "TSO is %s\n",
375 data ? "Enabled" : "Disabled");
376 return 0;
377 }
378
igb_get_msglevel(struct net_device * netdev)379 static u32 igb_get_msglevel(struct net_device *netdev)
380 {
381 struct igb_adapter *adapter = netdev_priv(netdev);
382 return adapter->msg_enable;
383 }
384
igb_set_msglevel(struct net_device * netdev,u32 data)385 static void igb_set_msglevel(struct net_device *netdev, u32 data)
386 {
387 struct igb_adapter *adapter = netdev_priv(netdev);
388 adapter->msg_enable = data;
389 }
390
igb_get_regs_len(struct net_device * netdev)391 static int igb_get_regs_len(struct net_device *netdev)
392 {
393 #define IGB_REGS_LEN 551
394 return IGB_REGS_LEN * sizeof(u32);
395 }
396
igb_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)397 static void igb_get_regs(struct net_device *netdev,
398 struct ethtool_regs *regs, void *p)
399 {
400 struct igb_adapter *adapter = netdev_priv(netdev);
401 struct e1000_hw *hw = &adapter->hw;
402 u32 *regs_buff = p;
403 u8 i;
404
405 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
406
407 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
408
409 /* General Registers */
410 regs_buff[0] = rd32(E1000_CTRL);
411 regs_buff[1] = rd32(E1000_STATUS);
412 regs_buff[2] = rd32(E1000_CTRL_EXT);
413 regs_buff[3] = rd32(E1000_MDIC);
414 regs_buff[4] = rd32(E1000_SCTL);
415 regs_buff[5] = rd32(E1000_CONNSW);
416 regs_buff[6] = rd32(E1000_VET);
417 regs_buff[7] = rd32(E1000_LEDCTL);
418 regs_buff[8] = rd32(E1000_PBA);
419 regs_buff[9] = rd32(E1000_PBS);
420 regs_buff[10] = rd32(E1000_FRTIMER);
421 regs_buff[11] = rd32(E1000_TCPTIMER);
422
423 /* NVM Register */
424 regs_buff[12] = rd32(E1000_EECD);
425
426 /* Interrupt */
427 /* Reading EICS for EICR because they read the
428 * same but EICS does not clear on read */
429 regs_buff[13] = rd32(E1000_EICS);
430 regs_buff[14] = rd32(E1000_EICS);
431 regs_buff[15] = rd32(E1000_EIMS);
432 regs_buff[16] = rd32(E1000_EIMC);
433 regs_buff[17] = rd32(E1000_EIAC);
434 regs_buff[18] = rd32(E1000_EIAM);
435 /* Reading ICS for ICR because they read the
436 * same but ICS does not clear on read */
437 regs_buff[19] = rd32(E1000_ICS);
438 regs_buff[20] = rd32(E1000_ICS);
439 regs_buff[21] = rd32(E1000_IMS);
440 regs_buff[22] = rd32(E1000_IMC);
441 regs_buff[23] = rd32(E1000_IAC);
442 regs_buff[24] = rd32(E1000_IAM);
443 regs_buff[25] = rd32(E1000_IMIRVP);
444
445 /* Flow Control */
446 regs_buff[26] = rd32(E1000_FCAL);
447 regs_buff[27] = rd32(E1000_FCAH);
448 regs_buff[28] = rd32(E1000_FCTTV);
449 regs_buff[29] = rd32(E1000_FCRTL);
450 regs_buff[30] = rd32(E1000_FCRTH);
451 regs_buff[31] = rd32(E1000_FCRTV);
452
453 /* Receive */
454 regs_buff[32] = rd32(E1000_RCTL);
455 regs_buff[33] = rd32(E1000_RXCSUM);
456 regs_buff[34] = rd32(E1000_RLPML);
457 regs_buff[35] = rd32(E1000_RFCTL);
458 regs_buff[36] = rd32(E1000_MRQC);
459 regs_buff[37] = rd32(E1000_VT_CTL);
460
461 /* Transmit */
462 regs_buff[38] = rd32(E1000_TCTL);
463 regs_buff[39] = rd32(E1000_TCTL_EXT);
464 regs_buff[40] = rd32(E1000_TIPG);
465 regs_buff[41] = rd32(E1000_DTXCTL);
466
467 /* Wake Up */
468 regs_buff[42] = rd32(E1000_WUC);
469 regs_buff[43] = rd32(E1000_WUFC);
470 regs_buff[44] = rd32(E1000_WUS);
471 regs_buff[45] = rd32(E1000_IPAV);
472 regs_buff[46] = rd32(E1000_WUPL);
473
474 /* MAC */
475 regs_buff[47] = rd32(E1000_PCS_CFG0);
476 regs_buff[48] = rd32(E1000_PCS_LCTL);
477 regs_buff[49] = rd32(E1000_PCS_LSTAT);
478 regs_buff[50] = rd32(E1000_PCS_ANADV);
479 regs_buff[51] = rd32(E1000_PCS_LPAB);
480 regs_buff[52] = rd32(E1000_PCS_NPTX);
481 regs_buff[53] = rd32(E1000_PCS_LPABNP);
482
483 /* Statistics */
484 regs_buff[54] = adapter->stats.crcerrs;
485 regs_buff[55] = adapter->stats.algnerrc;
486 regs_buff[56] = adapter->stats.symerrs;
487 regs_buff[57] = adapter->stats.rxerrc;
488 regs_buff[58] = adapter->stats.mpc;
489 regs_buff[59] = adapter->stats.scc;
490 regs_buff[60] = adapter->stats.ecol;
491 regs_buff[61] = adapter->stats.mcc;
492 regs_buff[62] = adapter->stats.latecol;
493 regs_buff[63] = adapter->stats.colc;
494 regs_buff[64] = adapter->stats.dc;
495 regs_buff[65] = adapter->stats.tncrs;
496 regs_buff[66] = adapter->stats.sec;
497 regs_buff[67] = adapter->stats.htdpmc;
498 regs_buff[68] = adapter->stats.rlec;
499 regs_buff[69] = adapter->stats.xonrxc;
500 regs_buff[70] = adapter->stats.xontxc;
501 regs_buff[71] = adapter->stats.xoffrxc;
502 regs_buff[72] = adapter->stats.xofftxc;
503 regs_buff[73] = adapter->stats.fcruc;
504 regs_buff[74] = adapter->stats.prc64;
505 regs_buff[75] = adapter->stats.prc127;
506 regs_buff[76] = adapter->stats.prc255;
507 regs_buff[77] = adapter->stats.prc511;
508 regs_buff[78] = adapter->stats.prc1023;
509 regs_buff[79] = adapter->stats.prc1522;
510 regs_buff[80] = adapter->stats.gprc;
511 regs_buff[81] = adapter->stats.bprc;
512 regs_buff[82] = adapter->stats.mprc;
513 regs_buff[83] = adapter->stats.gptc;
514 regs_buff[84] = adapter->stats.gorc;
515 regs_buff[86] = adapter->stats.gotc;
516 regs_buff[88] = adapter->stats.rnbc;
517 regs_buff[89] = adapter->stats.ruc;
518 regs_buff[90] = adapter->stats.rfc;
519 regs_buff[91] = adapter->stats.roc;
520 regs_buff[92] = adapter->stats.rjc;
521 regs_buff[93] = adapter->stats.mgprc;
522 regs_buff[94] = adapter->stats.mgpdc;
523 regs_buff[95] = adapter->stats.mgptc;
524 regs_buff[96] = adapter->stats.tor;
525 regs_buff[98] = adapter->stats.tot;
526 regs_buff[100] = adapter->stats.tpr;
527 regs_buff[101] = adapter->stats.tpt;
528 regs_buff[102] = adapter->stats.ptc64;
529 regs_buff[103] = adapter->stats.ptc127;
530 regs_buff[104] = adapter->stats.ptc255;
531 regs_buff[105] = adapter->stats.ptc511;
532 regs_buff[106] = adapter->stats.ptc1023;
533 regs_buff[107] = adapter->stats.ptc1522;
534 regs_buff[108] = adapter->stats.mptc;
535 regs_buff[109] = adapter->stats.bptc;
536 regs_buff[110] = adapter->stats.tsctc;
537 regs_buff[111] = adapter->stats.iac;
538 regs_buff[112] = adapter->stats.rpthc;
539 regs_buff[113] = adapter->stats.hgptc;
540 regs_buff[114] = adapter->stats.hgorc;
541 regs_buff[116] = adapter->stats.hgotc;
542 regs_buff[118] = adapter->stats.lenerrs;
543 regs_buff[119] = adapter->stats.scvpc;
544 regs_buff[120] = adapter->stats.hrmpc;
545
546 for (i = 0; i < 4; i++)
547 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
548 for (i = 0; i < 4; i++)
549 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
550 for (i = 0; i < 4; i++)
551 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
552 for (i = 0; i < 4; i++)
553 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
554 for (i = 0; i < 4; i++)
555 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
556 for (i = 0; i < 4; i++)
557 regs_buff[141 + i] = rd32(E1000_RDH(i));
558 for (i = 0; i < 4; i++)
559 regs_buff[145 + i] = rd32(E1000_RDT(i));
560 for (i = 0; i < 4; i++)
561 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
562
563 for (i = 0; i < 10; i++)
564 regs_buff[153 + i] = rd32(E1000_EITR(i));
565 for (i = 0; i < 8; i++)
566 regs_buff[163 + i] = rd32(E1000_IMIR(i));
567 for (i = 0; i < 8; i++)
568 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
569 for (i = 0; i < 16; i++)
570 regs_buff[179 + i] = rd32(E1000_RAL(i));
571 for (i = 0; i < 16; i++)
572 regs_buff[195 + i] = rd32(E1000_RAH(i));
573
574 for (i = 0; i < 4; i++)
575 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
576 for (i = 0; i < 4; i++)
577 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
578 for (i = 0; i < 4; i++)
579 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
580 for (i = 0; i < 4; i++)
581 regs_buff[223 + i] = rd32(E1000_TDH(i));
582 for (i = 0; i < 4; i++)
583 regs_buff[227 + i] = rd32(E1000_TDT(i));
584 for (i = 0; i < 4; i++)
585 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
586 for (i = 0; i < 4; i++)
587 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
588 for (i = 0; i < 4; i++)
589 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
590 for (i = 0; i < 4; i++)
591 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
592
593 for (i = 0; i < 4; i++)
594 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
595 for (i = 0; i < 4; i++)
596 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
597 for (i = 0; i < 32; i++)
598 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
599 for (i = 0; i < 128; i++)
600 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
601 for (i = 0; i < 128; i++)
602 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
603 for (i = 0; i < 4; i++)
604 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
605
606 regs_buff[547] = rd32(E1000_TDFH);
607 regs_buff[548] = rd32(E1000_TDFT);
608 regs_buff[549] = rd32(E1000_TDFHS);
609 regs_buff[550] = rd32(E1000_TDFPC);
610 regs_buff[551] = adapter->stats.o2bgptc;
611 regs_buff[552] = adapter->stats.b2ospc;
612 regs_buff[553] = adapter->stats.o2bspc;
613 regs_buff[554] = adapter->stats.b2ogprc;
614 }
615
igb_get_eeprom_len(struct net_device * netdev)616 static int igb_get_eeprom_len(struct net_device *netdev)
617 {
618 struct igb_adapter *adapter = netdev_priv(netdev);
619 return adapter->hw.nvm.word_size * 2;
620 }
621
igb_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)622 static int igb_get_eeprom(struct net_device *netdev,
623 struct ethtool_eeprom *eeprom, u8 *bytes)
624 {
625 struct igb_adapter *adapter = netdev_priv(netdev);
626 struct e1000_hw *hw = &adapter->hw;
627 u16 *eeprom_buff;
628 int first_word, last_word;
629 int ret_val = 0;
630 u16 i;
631
632 if (eeprom->len == 0)
633 return -EINVAL;
634
635 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
636
637 first_word = eeprom->offset >> 1;
638 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
639
640 eeprom_buff = kmalloc(sizeof(u16) *
641 (last_word - first_word + 1), GFP_KERNEL);
642 if (!eeprom_buff)
643 return -ENOMEM;
644
645 if (hw->nvm.type == e1000_nvm_eeprom_spi)
646 ret_val = hw->nvm.ops.read(hw, first_word,
647 last_word - first_word + 1,
648 eeprom_buff);
649 else {
650 for (i = 0; i < last_word - first_word + 1; i++) {
651 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
652 &eeprom_buff[i]);
653 if (ret_val)
654 break;
655 }
656 }
657
658 /* Device's eeprom is always little-endian, word addressable */
659 for (i = 0; i < last_word - first_word + 1; i++)
660 le16_to_cpus(&eeprom_buff[i]);
661
662 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
663 eeprom->len);
664 kfree(eeprom_buff);
665
666 return ret_val;
667 }
668
igb_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)669 static int igb_set_eeprom(struct net_device *netdev,
670 struct ethtool_eeprom *eeprom, u8 *bytes)
671 {
672 struct igb_adapter *adapter = netdev_priv(netdev);
673 struct e1000_hw *hw = &adapter->hw;
674 u16 *eeprom_buff;
675 void *ptr;
676 int max_len, first_word, last_word, ret_val = 0;
677 u16 i;
678
679 if (eeprom->len == 0)
680 return -EOPNOTSUPP;
681
682 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
683 return -EFAULT;
684
685 max_len = hw->nvm.word_size * 2;
686
687 first_word = eeprom->offset >> 1;
688 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
689 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
690 if (!eeprom_buff)
691 return -ENOMEM;
692
693 ptr = (void *)eeprom_buff;
694
695 if (eeprom->offset & 1) {
696 /* need read/modify/write of first changed EEPROM word */
697 /* only the second byte of the word is being modified */
698 ret_val = hw->nvm.ops.read(hw, first_word, 1,
699 &eeprom_buff[0]);
700 ptr++;
701 }
702 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
703 /* need read/modify/write of last changed EEPROM word */
704 /* only the first byte of the word is being modified */
705 ret_val = hw->nvm.ops.read(hw, last_word, 1,
706 &eeprom_buff[last_word - first_word]);
707 }
708
709 /* Device's eeprom is always little-endian, word addressable */
710 for (i = 0; i < last_word - first_word + 1; i++)
711 le16_to_cpus(&eeprom_buff[i]);
712
713 memcpy(ptr, bytes, eeprom->len);
714
715 for (i = 0; i < last_word - first_word + 1; i++)
716 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
717
718 ret_val = hw->nvm.ops.write(hw, first_word,
719 last_word - first_word + 1, eeprom_buff);
720
721 /* Update the checksum over the first part of the EEPROM if needed
722 * and flush shadow RAM for 82573 controllers */
723 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
724 hw->nvm.ops.update(hw);
725
726 kfree(eeprom_buff);
727 return ret_val;
728 }
729
igb_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)730 static void igb_get_drvinfo(struct net_device *netdev,
731 struct ethtool_drvinfo *drvinfo)
732 {
733 struct igb_adapter *adapter = netdev_priv(netdev);
734 char firmware_version[32];
735 u16 eeprom_data;
736
737 strncpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver) - 1);
738 strncpy(drvinfo->version, igb_driver_version,
739 sizeof(drvinfo->version) - 1);
740
741 /* EEPROM image version # is reported as firmware version # for
742 * 82575 controllers */
743 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
744 sprintf(firmware_version, "%d.%d-%d",
745 (eeprom_data & 0xF000) >> 12,
746 (eeprom_data & 0x0FF0) >> 4,
747 eeprom_data & 0x000F);
748
749 strncpy(drvinfo->fw_version, firmware_version,
750 sizeof(drvinfo->fw_version) - 1);
751 strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
752 sizeof(drvinfo->bus_info) - 1);
753 drvinfo->n_stats = IGB_STATS_LEN;
754 drvinfo->testinfo_len = IGB_TEST_LEN;
755 drvinfo->regdump_len = igb_get_regs_len(netdev);
756 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
757 }
758
igb_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)759 static void igb_get_ringparam(struct net_device *netdev,
760 struct ethtool_ringparam *ring)
761 {
762 struct igb_adapter *adapter = netdev_priv(netdev);
763
764 ring->rx_max_pending = IGB_MAX_RXD;
765 ring->tx_max_pending = IGB_MAX_TXD;
766 ring->rx_mini_max_pending = 0;
767 ring->rx_jumbo_max_pending = 0;
768 ring->rx_pending = adapter->rx_ring_count;
769 ring->tx_pending = adapter->tx_ring_count;
770 ring->rx_mini_pending = 0;
771 ring->rx_jumbo_pending = 0;
772 }
773
igb_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)774 static int igb_set_ringparam(struct net_device *netdev,
775 struct ethtool_ringparam *ring)
776 {
777 struct igb_adapter *adapter = netdev_priv(netdev);
778 struct igb_ring *temp_ring;
779 int i, err = 0;
780 u16 new_rx_count, new_tx_count;
781
782 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
783 return -EINVAL;
784
785 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
786 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
787 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
788
789 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
790 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
791 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
792
793 if ((new_tx_count == adapter->tx_ring_count) &&
794 (new_rx_count == adapter->rx_ring_count)) {
795 /* nothing to do */
796 return 0;
797 }
798
799 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
800 msleep(1);
801
802 if (!netif_running(adapter->netdev)) {
803 for (i = 0; i < adapter->num_tx_queues; i++)
804 adapter->tx_ring[i]->count = new_tx_count;
805 for (i = 0; i < adapter->num_rx_queues; i++)
806 adapter->rx_ring[i]->count = new_rx_count;
807 adapter->tx_ring_count = new_tx_count;
808 adapter->rx_ring_count = new_rx_count;
809 goto clear_reset;
810 }
811
812 if (adapter->num_tx_queues > adapter->num_rx_queues)
813 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
814 else
815 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
816
817 if (!temp_ring) {
818 err = -ENOMEM;
819 goto clear_reset;
820 }
821
822 igb_down(adapter);
823
824 /*
825 * We can't just free everything and then setup again,
826 * because the ISRs in MSI-X mode get passed pointers
827 * to the tx and rx ring structs.
828 */
829 if (new_tx_count != adapter->tx_ring_count) {
830 for (i = 0; i < adapter->num_tx_queues; i++) {
831 memcpy(&temp_ring[i], adapter->tx_ring[i],
832 sizeof(struct igb_ring));
833
834 temp_ring[i].count = new_tx_count;
835 err = igb_setup_tx_resources(&temp_ring[i]);
836 if (err) {
837 while (i) {
838 i--;
839 igb_free_tx_resources(&temp_ring[i]);
840 }
841 goto err_setup;
842 }
843 }
844
845 for (i = 0; i < adapter->num_tx_queues; i++) {
846 igb_free_tx_resources(adapter->tx_ring[i]);
847
848 memcpy(adapter->tx_ring[i], &temp_ring[i],
849 sizeof(struct igb_ring));
850 }
851
852 adapter->tx_ring_count = new_tx_count;
853 }
854
855 if (new_rx_count != adapter->rx_ring_count) {
856 for (i = 0; i < adapter->num_rx_queues; i++) {
857 memcpy(&temp_ring[i], adapter->rx_ring[i],
858 sizeof(struct igb_ring));
859
860 temp_ring[i].count = new_rx_count;
861 err = igb_setup_rx_resources(&temp_ring[i]);
862 if (err) {
863 while (i) {
864 i--;
865 igb_free_rx_resources(&temp_ring[i]);
866 }
867 goto err_setup;
868 }
869
870 }
871
872 for (i = 0; i < adapter->num_rx_queues; i++) {
873 igb_free_rx_resources(adapter->rx_ring[i]);
874
875 memcpy(adapter->rx_ring[i], &temp_ring[i],
876 sizeof(struct igb_ring));
877 }
878
879 adapter->rx_ring_count = new_rx_count;
880 }
881 err_setup:
882 igb_up(adapter);
883 vfree(temp_ring);
884 clear_reset:
885 clear_bit(__IGB_RESETTING, &adapter->state);
886 return err;
887 }
888
889 /* ethtool register test data */
890 struct igb_reg_test {
891 u16 reg;
892 u16 reg_offset;
893 u16 array_len;
894 u16 test_type;
895 u32 mask;
896 u32 write;
897 };
898
899 /* In the hardware, registers are laid out either singly, in arrays
900 * spaced 0x100 bytes apart, or in contiguous tables. We assume
901 * most tests take place on arrays or single registers (handled
902 * as a single-element array) and special-case the tables.
903 * Table tests are always pattern tests.
904 *
905 * We also make provision for some required setup steps by specifying
906 * registers to be written without any read-back testing.
907 */
908
909 #define PATTERN_TEST 1
910 #define SET_READ_TEST 2
911 #define WRITE_NO_TEST 3
912 #define TABLE32_TEST 4
913 #define TABLE64_TEST_LO 5
914 #define TABLE64_TEST_HI 6
915
916 /* i350 reg test */
917 static struct igb_reg_test reg_test_i350[] = {
918 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
919 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
920 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
921 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
922 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
923 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
924 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
925 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
926 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
927 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
928 /* RDH is read-only for i350, only test RDT. */
929 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
930 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
931 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
932 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
933 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
934 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
935 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
936 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
937 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
938 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
939 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
940 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
941 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
942 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
943 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
944 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
945 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
946 { E1000_RA, 0, 16, TABLE64_TEST_LO,
947 0xFFFFFFFF, 0xFFFFFFFF },
948 { E1000_RA, 0, 16, TABLE64_TEST_HI,
949 0xC3FFFFFF, 0xFFFFFFFF },
950 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
951 0xFFFFFFFF, 0xFFFFFFFF },
952 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
953 0xC3FFFFFF, 0xFFFFFFFF },
954 { E1000_MTA, 0, 128, TABLE32_TEST,
955 0xFFFFFFFF, 0xFFFFFFFF },
956 { 0, 0, 0, 0 }
957 };
958
959 /* 82580 reg test */
960 static struct igb_reg_test reg_test_82580[] = {
961 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
962 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
963 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
964 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
965 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
966 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
967 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
968 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
969 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
970 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
971 /* RDH is read-only for 82580, only test RDT. */
972 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
973 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
974 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
975 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
976 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
977 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
978 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
979 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
980 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
981 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
982 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
983 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
984 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
985 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
986 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
987 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
988 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
989 { E1000_RA, 0, 16, TABLE64_TEST_LO,
990 0xFFFFFFFF, 0xFFFFFFFF },
991 { E1000_RA, 0, 16, TABLE64_TEST_HI,
992 0x83FFFFFF, 0xFFFFFFFF },
993 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
994 0xFFFFFFFF, 0xFFFFFFFF },
995 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
996 0x83FFFFFF, 0xFFFFFFFF },
997 { E1000_MTA, 0, 128, TABLE32_TEST,
998 0xFFFFFFFF, 0xFFFFFFFF },
999 { 0, 0, 0, 0 }
1000 };
1001
1002 /* 82576 reg test */
1003 static struct igb_reg_test reg_test_82576[] = {
1004 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1006 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1007 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1008 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1009 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1010 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1011 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1012 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1014 /* Enable all RX queues before testing. */
1015 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1016 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1017 /* RDH is read-only for 82576, only test RDT. */
1018 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1020 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1021 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1022 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1023 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1024 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1025 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1026 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1028 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1029 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1030 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1031 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1032 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1033 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1034 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1035 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1036 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1037 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1038 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1039 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040 { 0, 0, 0, 0 }
1041 };
1042
1043 /* 82575 register test */
1044 static struct igb_reg_test reg_test_82575[] = {
1045 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1046 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1047 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1048 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1049 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1050 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1051 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1052 /* Enable all four RX queues before testing. */
1053 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1054 /* RDH is read-only for 82575, only test RDT. */
1055 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1057 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1058 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1059 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1060 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1063 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1064 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1065 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1066 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1067 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1068 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1069 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1070 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1071 { 0, 0, 0, 0 }
1072 };
1073
reg_pattern_test(struct igb_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)1074 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1075 int reg, u32 mask, u32 write)
1076 {
1077 struct e1000_hw *hw = &adapter->hw;
1078 u32 pat, val;
1079 static const u32 _test[] =
1080 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1081 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1082 wr32(reg, (_test[pat] & write));
1083 val = rd32(reg) & mask;
1084 if (val != (_test[pat] & write & mask)) {
1085 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1086 "failed: got 0x%08X expected 0x%08X\n",
1087 reg, val, (_test[pat] & write & mask));
1088 *data = reg;
1089 return 1;
1090 }
1091 }
1092
1093 return 0;
1094 }
1095
reg_set_and_check(struct igb_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)1096 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1097 int reg, u32 mask, u32 write)
1098 {
1099 struct e1000_hw *hw = &adapter->hw;
1100 u32 val;
1101 wr32(reg, write & mask);
1102 val = rd32(reg);
1103 if ((write & mask) != (val & mask)) {
1104 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1105 " got 0x%08X expected 0x%08X\n", reg,
1106 (val & mask), (write & mask));
1107 *data = reg;
1108 return 1;
1109 }
1110
1111 return 0;
1112 }
1113
1114 #define REG_PATTERN_TEST(reg, mask, write) \
1115 do { \
1116 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1117 return 1; \
1118 } while (0)
1119
1120 #define REG_SET_AND_CHECK(reg, mask, write) \
1121 do { \
1122 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1123 return 1; \
1124 } while (0)
1125
igb_reg_test(struct igb_adapter * adapter,u64 * data)1126 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1127 {
1128 struct e1000_hw *hw = &adapter->hw;
1129 struct igb_reg_test *test;
1130 u32 value, before, after;
1131 u32 i, toggle;
1132
1133 switch (adapter->hw.mac.type) {
1134 case e1000_i350:
1135 test = reg_test_i350;
1136 toggle = 0x7FEFF3FF;
1137 break;
1138 case e1000_82580:
1139 test = reg_test_82580;
1140 toggle = 0x7FEFF3FF;
1141 break;
1142 case e1000_82576:
1143 test = reg_test_82576;
1144 toggle = 0x7FFFF3FF;
1145 break;
1146 default:
1147 test = reg_test_82575;
1148 toggle = 0x7FFFF3FF;
1149 break;
1150 }
1151
1152 /* Because the status register is such a special case,
1153 * we handle it separately from the rest of the register
1154 * tests. Some bits are read-only, some toggle, and some
1155 * are writable on newer MACs.
1156 */
1157 before = rd32(E1000_STATUS);
1158 value = (rd32(E1000_STATUS) & toggle);
1159 wr32(E1000_STATUS, toggle);
1160 after = rd32(E1000_STATUS) & toggle;
1161 if (value != after) {
1162 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1163 "got: 0x%08X expected: 0x%08X\n", after, value);
1164 *data = 1;
1165 return 1;
1166 }
1167 /* restore previous status */
1168 wr32(E1000_STATUS, before);
1169
1170 /* Perform the remainder of the register test, looping through
1171 * the test table until we either fail or reach the null entry.
1172 */
1173 while (test->reg) {
1174 for (i = 0; i < test->array_len; i++) {
1175 switch (test->test_type) {
1176 case PATTERN_TEST:
1177 REG_PATTERN_TEST(test->reg +
1178 (i * test->reg_offset),
1179 test->mask,
1180 test->write);
1181 break;
1182 case SET_READ_TEST:
1183 REG_SET_AND_CHECK(test->reg +
1184 (i * test->reg_offset),
1185 test->mask,
1186 test->write);
1187 break;
1188 case WRITE_NO_TEST:
1189 writel(test->write,
1190 (adapter->hw.hw_addr + test->reg)
1191 + (i * test->reg_offset));
1192 break;
1193 case TABLE32_TEST:
1194 REG_PATTERN_TEST(test->reg + (i * 4),
1195 test->mask,
1196 test->write);
1197 break;
1198 case TABLE64_TEST_LO:
1199 REG_PATTERN_TEST(test->reg + (i * 8),
1200 test->mask,
1201 test->write);
1202 break;
1203 case TABLE64_TEST_HI:
1204 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1205 test->mask,
1206 test->write);
1207 break;
1208 }
1209 }
1210 test++;
1211 }
1212
1213 *data = 0;
1214 return 0;
1215 }
1216
igb_eeprom_test(struct igb_adapter * adapter,u64 * data)1217 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1218 {
1219 u16 temp;
1220 u16 checksum = 0;
1221 u16 i;
1222
1223 *data = 0;
1224 /* Read and add up the contents of the EEPROM */
1225 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1226 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
1227 *data = 1;
1228 break;
1229 }
1230 checksum += temp;
1231 }
1232
1233 /* If Checksum is not Correct return error else test passed */
1234 if ((checksum != (u16) NVM_SUM) && !(*data))
1235 *data = 2;
1236
1237 return *data;
1238 }
1239
igb_test_intr(int irq,void * data)1240 static irqreturn_t igb_test_intr(int irq, void *data)
1241 {
1242 struct igb_adapter *adapter = (struct igb_adapter *) data;
1243 struct e1000_hw *hw = &adapter->hw;
1244
1245 adapter->test_icr |= rd32(E1000_ICR);
1246
1247 return IRQ_HANDLED;
1248 }
1249
igb_intr_test(struct igb_adapter * adapter,u64 * data)1250 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1251 {
1252 struct e1000_hw *hw = &adapter->hw;
1253 struct net_device *netdev = adapter->netdev;
1254 u32 mask, ics_mask, i = 0, shared_int = true;
1255 u32 irq = adapter->pdev->irq;
1256
1257 *data = 0;
1258
1259 /* Hook up test interrupt handler just for this test */
1260 if (adapter->msix_entries) {
1261 if (request_irq(adapter->msix_entries[0].vector,
1262 igb_test_intr, 0, netdev->name, adapter)) {
1263 *data = 1;
1264 return -1;
1265 }
1266 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1267 shared_int = false;
1268 if (request_irq(irq,
1269 igb_test_intr, 0, netdev->name, adapter)) {
1270 *data = 1;
1271 return -1;
1272 }
1273 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1274 netdev->name, adapter)) {
1275 shared_int = false;
1276 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1277 netdev->name, adapter)) {
1278 *data = 1;
1279 return -1;
1280 }
1281 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1282 (shared_int ? "shared" : "unshared"));
1283
1284 /* Disable all the interrupts */
1285 wr32(E1000_IMC, ~0);
1286 msleep(10);
1287
1288 /* Define all writable bits for ICS */
1289 switch (hw->mac.type) {
1290 case e1000_82575:
1291 ics_mask = 0x37F47EDD;
1292 break;
1293 case e1000_82576:
1294 ics_mask = 0x77D4FBFD;
1295 break;
1296 case e1000_82580:
1297 ics_mask = 0x77DCFED5;
1298 break;
1299 case e1000_i350:
1300 ics_mask = 0x77DCFED5;
1301 break;
1302 default:
1303 ics_mask = 0x7FFFFFFF;
1304 break;
1305 }
1306
1307 /* Test each interrupt */
1308 for (; i < 31; i++) {
1309 /* Interrupt to test */
1310 mask = 1 << i;
1311
1312 if (!(mask & ics_mask))
1313 continue;
1314
1315 if (!shared_int) {
1316 /* Disable the interrupt to be reported in
1317 * the cause register and then force the same
1318 * interrupt and see if one gets posted. If
1319 * an interrupt was posted to the bus, the
1320 * test failed.
1321 */
1322 adapter->test_icr = 0;
1323
1324 /* Flush any pending interrupts */
1325 wr32(E1000_ICR, ~0);
1326
1327 wr32(E1000_IMC, mask);
1328 wr32(E1000_ICS, mask);
1329 msleep(10);
1330
1331 if (adapter->test_icr & mask) {
1332 *data = 3;
1333 break;
1334 }
1335 }
1336
1337 /* Enable the interrupt to be reported in
1338 * the cause register and then force the same
1339 * interrupt and see if one gets posted. If
1340 * an interrupt was not posted to the bus, the
1341 * test failed.
1342 */
1343 adapter->test_icr = 0;
1344
1345 /* Flush any pending interrupts */
1346 wr32(E1000_ICR, ~0);
1347
1348 wr32(E1000_IMS, mask);
1349 wr32(E1000_ICS, mask);
1350 msleep(10);
1351
1352 if (!(adapter->test_icr & mask)) {
1353 *data = 4;
1354 break;
1355 }
1356
1357 if (!shared_int) {
1358 /* Disable the other interrupts to be reported in
1359 * the cause register and then force the other
1360 * interrupts and see if any get posted. If
1361 * an interrupt was posted to the bus, the
1362 * test failed.
1363 */
1364 adapter->test_icr = 0;
1365
1366 /* Flush any pending interrupts */
1367 wr32(E1000_ICR, ~0);
1368
1369 wr32(E1000_IMC, ~mask);
1370 wr32(E1000_ICS, ~mask);
1371 msleep(10);
1372
1373 if (adapter->test_icr & mask) {
1374 *data = 5;
1375 break;
1376 }
1377 }
1378 }
1379
1380 /* Disable all the interrupts */
1381 wr32(E1000_IMC, ~0);
1382 msleep(10);
1383
1384 /* Unhook test interrupt handler */
1385 if (adapter->msix_entries)
1386 free_irq(adapter->msix_entries[0].vector, adapter);
1387 else
1388 free_irq(irq, adapter);
1389
1390 return *data;
1391 }
1392
igb_free_desc_rings(struct igb_adapter * adapter)1393 static void igb_free_desc_rings(struct igb_adapter *adapter)
1394 {
1395 igb_free_tx_resources(&adapter->test_tx_ring);
1396 igb_free_rx_resources(&adapter->test_rx_ring);
1397 }
1398
igb_setup_desc_rings(struct igb_adapter * adapter)1399 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1400 {
1401 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1402 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1403 struct e1000_hw *hw = &adapter->hw;
1404 int ret_val;
1405
1406 /* Setup Tx descriptor ring and Tx buffers */
1407 tx_ring->count = IGB_DEFAULT_TXD;
1408 tx_ring->dev = &adapter->pdev->dev;
1409 tx_ring->netdev = adapter->netdev;
1410 tx_ring->reg_idx = adapter->vfs_allocated_count;
1411
1412 if (igb_setup_tx_resources(tx_ring)) {
1413 ret_val = 1;
1414 goto err_nomem;
1415 }
1416
1417 igb_setup_tctl(adapter);
1418 igb_configure_tx_ring(adapter, tx_ring);
1419
1420 /* Setup Rx descriptor ring and Rx buffers */
1421 rx_ring->count = IGB_DEFAULT_RXD;
1422 rx_ring->dev = &adapter->pdev->dev;
1423 rx_ring->netdev = adapter->netdev;
1424 rx_ring->rx_buffer_len = IGB_RXBUFFER_2048;
1425 rx_ring->reg_idx = adapter->vfs_allocated_count;
1426
1427 if (igb_setup_rx_resources(rx_ring)) {
1428 ret_val = 3;
1429 goto err_nomem;
1430 }
1431
1432 /* set the default queue to queue 0 of PF */
1433 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1434
1435 /* enable receive ring */
1436 igb_setup_rctl(adapter);
1437 igb_configure_rx_ring(adapter, rx_ring);
1438
1439 igb_alloc_rx_buffers_adv(rx_ring, igb_desc_unused(rx_ring));
1440
1441 return 0;
1442
1443 err_nomem:
1444 igb_free_desc_rings(adapter);
1445 return ret_val;
1446 }
1447
igb_phy_disable_receiver(struct igb_adapter * adapter)1448 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1449 {
1450 struct e1000_hw *hw = &adapter->hw;
1451
1452 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1453 igb_write_phy_reg(hw, 29, 0x001F);
1454 igb_write_phy_reg(hw, 30, 0x8FFC);
1455 igb_write_phy_reg(hw, 29, 0x001A);
1456 igb_write_phy_reg(hw, 30, 0x8FF0);
1457 }
1458
igb_integrated_phy_loopback(struct igb_adapter * adapter)1459 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1460 {
1461 struct e1000_hw *hw = &adapter->hw;
1462 u32 ctrl_reg = 0;
1463
1464 hw->mac.autoneg = false;
1465
1466 if (hw->phy.type == e1000_phy_m88) {
1467 /* Auto-MDI/MDIX Off */
1468 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1469 /* reset to update Auto-MDI/MDIX */
1470 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1471 /* autoneg off */
1472 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1473 } else if (hw->phy.type == e1000_phy_82580) {
1474 /* enable MII loopback */
1475 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1476 }
1477
1478 ctrl_reg = rd32(E1000_CTRL);
1479
1480 /* force 1000, set loopback */
1481 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1482
1483 /* Now set up the MAC to the same speed/duplex as the PHY. */
1484 ctrl_reg = rd32(E1000_CTRL);
1485 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1486 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1487 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1488 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1489 E1000_CTRL_FD | /* Force Duplex to FULL */
1490 E1000_CTRL_SLU); /* Set link up enable bit */
1491
1492 if (hw->phy.type == e1000_phy_m88)
1493 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1494
1495 wr32(E1000_CTRL, ctrl_reg);
1496
1497 /* Disable the receiver on the PHY so when a cable is plugged in, the
1498 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1499 */
1500 if (hw->phy.type == e1000_phy_m88)
1501 igb_phy_disable_receiver(adapter);
1502
1503 udelay(500);
1504
1505 return 0;
1506 }
1507
igb_set_phy_loopback(struct igb_adapter * adapter)1508 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1509 {
1510 return igb_integrated_phy_loopback(adapter);
1511 }
1512
igb_setup_loopback_test(struct igb_adapter * adapter)1513 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1514 {
1515 struct e1000_hw *hw = &adapter->hw;
1516 u32 reg;
1517
1518 reg = rd32(E1000_CTRL_EXT);
1519
1520 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1521 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1522 reg = rd32(E1000_RCTL);
1523 reg |= E1000_RCTL_LBM_TCVR;
1524 wr32(E1000_RCTL, reg);
1525
1526 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1527
1528 reg = rd32(E1000_CTRL);
1529 reg &= ~(E1000_CTRL_RFCE |
1530 E1000_CTRL_TFCE |
1531 E1000_CTRL_LRST);
1532 reg |= E1000_CTRL_SLU |
1533 E1000_CTRL_FD;
1534 wr32(E1000_CTRL, reg);
1535
1536 /* Unset switch control to serdes energy detect */
1537 reg = rd32(E1000_CONNSW);
1538 reg &= ~E1000_CONNSW_ENRGSRC;
1539 wr32(E1000_CONNSW, reg);
1540
1541 /* Set PCS register for forced speed */
1542 reg = rd32(E1000_PCS_LCTL);
1543 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1544 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1545 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1546 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1547 E1000_PCS_LCTL_FSD | /* Force Speed */
1548 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1549 wr32(E1000_PCS_LCTL, reg);
1550
1551 return 0;
1552 }
1553
1554 return igb_set_phy_loopback(adapter);
1555 }
1556
igb_loopback_cleanup(struct igb_adapter * adapter)1557 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1558 {
1559 struct e1000_hw *hw = &adapter->hw;
1560 u32 rctl;
1561 u16 phy_reg;
1562
1563 rctl = rd32(E1000_RCTL);
1564 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1565 wr32(E1000_RCTL, rctl);
1566
1567 hw->mac.autoneg = true;
1568 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1569 if (phy_reg & MII_CR_LOOPBACK) {
1570 phy_reg &= ~MII_CR_LOOPBACK;
1571 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1572 igb_phy_sw_reset(hw);
1573 }
1574 }
1575
igb_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1576 static void igb_create_lbtest_frame(struct sk_buff *skb,
1577 unsigned int frame_size)
1578 {
1579 memset(skb->data, 0xFF, frame_size);
1580 frame_size /= 2;
1581 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1582 memset(&skb->data[frame_size + 10], 0xBE, 1);
1583 memset(&skb->data[frame_size + 12], 0xAF, 1);
1584 }
1585
igb_check_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1586 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1587 {
1588 frame_size /= 2;
1589 if (*(skb->data + 3) == 0xFF) {
1590 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1591 (*(skb->data + frame_size + 12) == 0xAF)) {
1592 return 0;
1593 }
1594 }
1595 return 13;
1596 }
1597
igb_clean_test_rings(struct igb_ring * rx_ring,struct igb_ring * tx_ring,unsigned int size)1598 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1599 struct igb_ring *tx_ring,
1600 unsigned int size)
1601 {
1602 union e1000_adv_rx_desc *rx_desc;
1603 struct igb_buffer *buffer_info;
1604 int rx_ntc, tx_ntc, count = 0;
1605 u32 staterr;
1606
1607 /* initialize next to clean and descriptor values */
1608 rx_ntc = rx_ring->next_to_clean;
1609 tx_ntc = tx_ring->next_to_clean;
1610 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1611 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1612
1613 while (staterr & E1000_RXD_STAT_DD) {
1614 /* check rx buffer */
1615 buffer_info = &rx_ring->buffer_info[rx_ntc];
1616
1617 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1618 dma_unmap_single(rx_ring->dev,
1619 buffer_info->dma,
1620 rx_ring->rx_buffer_len,
1621 DMA_FROM_DEVICE);
1622 buffer_info->dma = 0;
1623
1624 /* verify contents of skb */
1625 if (!igb_check_lbtest_frame(buffer_info->skb, size))
1626 count++;
1627
1628 /* unmap buffer on tx side */
1629 buffer_info = &tx_ring->buffer_info[tx_ntc];
1630 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
1631
1632 /* increment rx/tx next to clean counters */
1633 rx_ntc++;
1634 if (rx_ntc == rx_ring->count)
1635 rx_ntc = 0;
1636 tx_ntc++;
1637 if (tx_ntc == tx_ring->count)
1638 tx_ntc = 0;
1639
1640 /* fetch next descriptor */
1641 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1642 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1643 }
1644
1645 /* re-map buffers to ring, store next to clean values */
1646 igb_alloc_rx_buffers_adv(rx_ring, count);
1647 rx_ring->next_to_clean = rx_ntc;
1648 tx_ring->next_to_clean = tx_ntc;
1649
1650 return count;
1651 }
1652
igb_run_loopback_test(struct igb_adapter * adapter)1653 static int igb_run_loopback_test(struct igb_adapter *adapter)
1654 {
1655 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1656 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1657 int i, j, lc, good_cnt, ret_val = 0;
1658 unsigned int size = 1024;
1659 netdev_tx_t tx_ret_val;
1660 struct sk_buff *skb;
1661
1662 /* allocate test skb */
1663 skb = alloc_skb(size, GFP_KERNEL);
1664 if (!skb)
1665 return 11;
1666
1667 /* place data into test skb */
1668 igb_create_lbtest_frame(skb, size);
1669 skb_put(skb, size);
1670
1671 /*
1672 * Calculate the loop count based on the largest descriptor ring
1673 * The idea is to wrap the largest ring a number of times using 64
1674 * send/receive pairs during each loop
1675 */
1676
1677 if (rx_ring->count <= tx_ring->count)
1678 lc = ((tx_ring->count / 64) * 2) + 1;
1679 else
1680 lc = ((rx_ring->count / 64) * 2) + 1;
1681
1682 for (j = 0; j <= lc; j++) { /* loop count loop */
1683 /* reset count of good packets */
1684 good_cnt = 0;
1685
1686 /* place 64 packets on the transmit queue*/
1687 for (i = 0; i < 64; i++) {
1688 skb_get(skb);
1689 tx_ret_val = igb_xmit_frame_ring_adv(skb, tx_ring);
1690 if (tx_ret_val == NETDEV_TX_OK)
1691 good_cnt++;
1692 }
1693
1694 if (good_cnt != 64) {
1695 ret_val = 12;
1696 break;
1697 }
1698
1699 /* allow 200 milliseconds for packets to go from tx to rx */
1700 msleep(200);
1701
1702 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1703 if (good_cnt != 64) {
1704 ret_val = 13;
1705 break;
1706 }
1707 } /* end loop count loop */
1708
1709 /* free the original skb */
1710 kfree_skb(skb);
1711
1712 return ret_val;
1713 }
1714
igb_loopback_test(struct igb_adapter * adapter,u64 * data)1715 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1716 {
1717 /* PHY loopback cannot be performed if SoL/IDER
1718 * sessions are active */
1719 if (igb_check_reset_block(&adapter->hw)) {
1720 dev_err(&adapter->pdev->dev,
1721 "Cannot do PHY loopback test "
1722 "when SoL/IDER is active.\n");
1723 *data = 0;
1724 goto out;
1725 }
1726 *data = igb_setup_desc_rings(adapter);
1727 if (*data)
1728 goto out;
1729 *data = igb_setup_loopback_test(adapter);
1730 if (*data)
1731 goto err_loopback;
1732 *data = igb_run_loopback_test(adapter);
1733 igb_loopback_cleanup(adapter);
1734
1735 err_loopback:
1736 igb_free_desc_rings(adapter);
1737 out:
1738 return *data;
1739 }
1740
igb_link_test(struct igb_adapter * adapter,u64 * data)1741 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1742 {
1743 struct e1000_hw *hw = &adapter->hw;
1744 *data = 0;
1745 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1746 int i = 0;
1747 hw->mac.serdes_has_link = false;
1748
1749 /* On some blade server designs, link establishment
1750 * could take as long as 2-3 minutes */
1751 do {
1752 hw->mac.ops.check_for_link(&adapter->hw);
1753 if (hw->mac.serdes_has_link)
1754 return *data;
1755 msleep(20);
1756 } while (i++ < 3750);
1757
1758 *data = 1;
1759 } else {
1760 hw->mac.ops.check_for_link(&adapter->hw);
1761 if (hw->mac.autoneg)
1762 msleep(4000);
1763
1764 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1765 *data = 1;
1766 }
1767 return *data;
1768 }
1769
igb_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1770 static void igb_diag_test(struct net_device *netdev,
1771 struct ethtool_test *eth_test, u64 *data)
1772 {
1773 struct igb_adapter *adapter = netdev_priv(netdev);
1774 u16 autoneg_advertised;
1775 u8 forced_speed_duplex, autoneg;
1776 bool if_running = netif_running(netdev);
1777
1778 set_bit(__IGB_TESTING, &adapter->state);
1779 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1780 /* Offline tests */
1781
1782 /* save speed, duplex, autoneg settings */
1783 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1784 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1785 autoneg = adapter->hw.mac.autoneg;
1786
1787 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1788
1789 /* power up link for link test */
1790 igb_power_up_link(adapter);
1791
1792 /* Link test performed before hardware reset so autoneg doesn't
1793 * interfere with test result */
1794 if (igb_link_test(adapter, &data[4]))
1795 eth_test->flags |= ETH_TEST_FL_FAILED;
1796
1797 if (if_running)
1798 /* indicate we're in test mode */
1799 dev_close(netdev);
1800 else
1801 igb_reset(adapter);
1802
1803 if (igb_reg_test(adapter, &data[0]))
1804 eth_test->flags |= ETH_TEST_FL_FAILED;
1805
1806 igb_reset(adapter);
1807 if (igb_eeprom_test(adapter, &data[1]))
1808 eth_test->flags |= ETH_TEST_FL_FAILED;
1809
1810 igb_reset(adapter);
1811 if (igb_intr_test(adapter, &data[2]))
1812 eth_test->flags |= ETH_TEST_FL_FAILED;
1813
1814 igb_reset(adapter);
1815 /* power up link for loopback test */
1816 igb_power_up_link(adapter);
1817 if (igb_loopback_test(adapter, &data[3]))
1818 eth_test->flags |= ETH_TEST_FL_FAILED;
1819
1820 /* restore speed, duplex, autoneg settings */
1821 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1822 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1823 adapter->hw.mac.autoneg = autoneg;
1824
1825 /* force this routine to wait until autoneg complete/timeout */
1826 adapter->hw.phy.autoneg_wait_to_complete = true;
1827 igb_reset(adapter);
1828 adapter->hw.phy.autoneg_wait_to_complete = false;
1829
1830 clear_bit(__IGB_TESTING, &adapter->state);
1831 if (if_running)
1832 dev_open(netdev);
1833 } else {
1834 dev_info(&adapter->pdev->dev, "online testing starting\n");
1835
1836 /* PHY is powered down when interface is down */
1837 if (if_running && igb_link_test(adapter, &data[4]))
1838 eth_test->flags |= ETH_TEST_FL_FAILED;
1839 else
1840 data[4] = 0;
1841
1842 /* Online tests aren't run; pass by default */
1843 data[0] = 0;
1844 data[1] = 0;
1845 data[2] = 0;
1846 data[3] = 0;
1847
1848 clear_bit(__IGB_TESTING, &adapter->state);
1849 }
1850 msleep_interruptible(4 * 1000);
1851 }
1852
igb_wol_exclusion(struct igb_adapter * adapter,struct ethtool_wolinfo * wol)1853 static int igb_wol_exclusion(struct igb_adapter *adapter,
1854 struct ethtool_wolinfo *wol)
1855 {
1856 struct e1000_hw *hw = &adapter->hw;
1857 int retval = 1; /* fail by default */
1858
1859 switch (hw->device_id) {
1860 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1861 /* WoL not supported */
1862 wol->supported = 0;
1863 break;
1864 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1865 case E1000_DEV_ID_82576_FIBER:
1866 case E1000_DEV_ID_82576_SERDES:
1867 /* Wake events not supported on port B */
1868 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1869 wol->supported = 0;
1870 break;
1871 }
1872 /* return success for non excluded adapter ports */
1873 retval = 0;
1874 break;
1875 case E1000_DEV_ID_82576_QUAD_COPPER:
1876 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1877 /* quad port adapters only support WoL on port A */
1878 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1879 wol->supported = 0;
1880 break;
1881 }
1882 /* return success for non excluded adapter ports */
1883 retval = 0;
1884 break;
1885 default:
1886 /* dual port cards only support WoL on port A from now on
1887 * unless it was enabled in the eeprom for port B
1888 * so exclude FUNC_1 ports from having WoL enabled */
1889 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1890 !adapter->eeprom_wol) {
1891 wol->supported = 0;
1892 break;
1893 }
1894
1895 retval = 0;
1896 }
1897
1898 return retval;
1899 }
1900
igb_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1901 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1902 {
1903 struct igb_adapter *adapter = netdev_priv(netdev);
1904
1905 wol->supported = WAKE_UCAST | WAKE_MCAST |
1906 WAKE_BCAST | WAKE_MAGIC |
1907 WAKE_PHY;
1908 wol->wolopts = 0;
1909
1910 /* this function will set ->supported = 0 and return 1 if wol is not
1911 * supported by this hardware */
1912 if (igb_wol_exclusion(adapter, wol) ||
1913 !device_can_wakeup(&adapter->pdev->dev))
1914 return;
1915
1916 /* apply any specific unsupported masks here */
1917 switch (adapter->hw.device_id) {
1918 default:
1919 break;
1920 }
1921
1922 if (adapter->wol & E1000_WUFC_EX)
1923 wol->wolopts |= WAKE_UCAST;
1924 if (adapter->wol & E1000_WUFC_MC)
1925 wol->wolopts |= WAKE_MCAST;
1926 if (adapter->wol & E1000_WUFC_BC)
1927 wol->wolopts |= WAKE_BCAST;
1928 if (adapter->wol & E1000_WUFC_MAG)
1929 wol->wolopts |= WAKE_MAGIC;
1930 if (adapter->wol & E1000_WUFC_LNKC)
1931 wol->wolopts |= WAKE_PHY;
1932 }
1933
igb_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1934 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1935 {
1936 struct igb_adapter *adapter = netdev_priv(netdev);
1937
1938 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
1939 return -EOPNOTSUPP;
1940
1941 if (igb_wol_exclusion(adapter, wol) ||
1942 !device_can_wakeup(&adapter->pdev->dev))
1943 return wol->wolopts ? -EOPNOTSUPP : 0;
1944
1945 /* these settings will always override what we currently have */
1946 adapter->wol = 0;
1947
1948 if (wol->wolopts & WAKE_UCAST)
1949 adapter->wol |= E1000_WUFC_EX;
1950 if (wol->wolopts & WAKE_MCAST)
1951 adapter->wol |= E1000_WUFC_MC;
1952 if (wol->wolopts & WAKE_BCAST)
1953 adapter->wol |= E1000_WUFC_BC;
1954 if (wol->wolopts & WAKE_MAGIC)
1955 adapter->wol |= E1000_WUFC_MAG;
1956 if (wol->wolopts & WAKE_PHY)
1957 adapter->wol |= E1000_WUFC_LNKC;
1958 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1959
1960 return 0;
1961 }
1962
1963 /* bit defines for adapter->led_status */
1964 #define IGB_LED_ON 0
1965
igb_phys_id(struct net_device * netdev,u32 data)1966 static int igb_phys_id(struct net_device *netdev, u32 data)
1967 {
1968 struct igb_adapter *adapter = netdev_priv(netdev);
1969 struct e1000_hw *hw = &adapter->hw;
1970 unsigned long timeout;
1971
1972 timeout = data * 1000;
1973
1974 /*
1975 * msleep_interruptable only accepts unsigned int so we are limited
1976 * in how long a duration we can wait
1977 */
1978 if (!timeout || timeout > UINT_MAX)
1979 timeout = UINT_MAX;
1980
1981 igb_blink_led(hw);
1982 msleep_interruptible(timeout);
1983
1984 igb_led_off(hw);
1985 clear_bit(IGB_LED_ON, &adapter->led_status);
1986 igb_cleanup_led(hw);
1987
1988 return 0;
1989 }
1990
igb_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)1991 static int igb_set_coalesce(struct net_device *netdev,
1992 struct ethtool_coalesce *ec)
1993 {
1994 struct igb_adapter *adapter = netdev_priv(netdev);
1995 int i;
1996
1997 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1998 ((ec->rx_coalesce_usecs > 3) &&
1999 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2000 (ec->rx_coalesce_usecs == 2))
2001 return -EINVAL;
2002
2003 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2004 ((ec->tx_coalesce_usecs > 3) &&
2005 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2006 (ec->tx_coalesce_usecs == 2))
2007 return -EINVAL;
2008
2009 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2010 return -EINVAL;
2011
2012 /* If ITR is disabled, disable DMAC */
2013 if (ec->rx_coalesce_usecs == 0) {
2014 if (adapter->flags & IGB_FLAG_DMAC)
2015 adapter->flags &= ~IGB_FLAG_DMAC;
2016 }
2017
2018 /* convert to rate of irq's per second */
2019 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2020 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2021 else
2022 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2023
2024 /* convert to rate of irq's per second */
2025 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2026 adapter->tx_itr_setting = adapter->rx_itr_setting;
2027 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2028 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2029 else
2030 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2031
2032 for (i = 0; i < adapter->num_q_vectors; i++) {
2033 struct igb_q_vector *q_vector = adapter->q_vector[i];
2034 if (q_vector->rx_ring)
2035 q_vector->itr_val = adapter->rx_itr_setting;
2036 else
2037 q_vector->itr_val = adapter->tx_itr_setting;
2038 if (q_vector->itr_val && q_vector->itr_val <= 3)
2039 q_vector->itr_val = IGB_START_ITR;
2040 q_vector->set_itr = 1;
2041 }
2042
2043 return 0;
2044 }
2045
igb_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)2046 static int igb_get_coalesce(struct net_device *netdev,
2047 struct ethtool_coalesce *ec)
2048 {
2049 struct igb_adapter *adapter = netdev_priv(netdev);
2050
2051 if (adapter->rx_itr_setting <= 3)
2052 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2053 else
2054 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2055
2056 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2057 if (adapter->tx_itr_setting <= 3)
2058 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2059 else
2060 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2061 }
2062
2063 return 0;
2064 }
2065
igb_nway_reset(struct net_device * netdev)2066 static int igb_nway_reset(struct net_device *netdev)
2067 {
2068 struct igb_adapter *adapter = netdev_priv(netdev);
2069 if (netif_running(netdev))
2070 igb_reinit_locked(adapter);
2071 return 0;
2072 }
2073
igb_get_sset_count(struct net_device * netdev,int sset)2074 static int igb_get_sset_count(struct net_device *netdev, int sset)
2075 {
2076 switch (sset) {
2077 case ETH_SS_STATS:
2078 return IGB_STATS_LEN;
2079 case ETH_SS_TEST:
2080 return IGB_TEST_LEN;
2081 default:
2082 return -ENOTSUPP;
2083 }
2084 }
2085
igb_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2086 static void igb_get_ethtool_stats(struct net_device *netdev,
2087 struct ethtool_stats *stats, u64 *data)
2088 {
2089 struct igb_adapter *adapter = netdev_priv(netdev);
2090 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2091 unsigned int start;
2092 struct igb_ring *ring;
2093 int i, j;
2094 char *p;
2095
2096 spin_lock(&adapter->stats64_lock);
2097 igb_update_stats(adapter, net_stats);
2098
2099 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2100 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2101 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2102 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2103 }
2104 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2105 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2106 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2107 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2108 }
2109 for (j = 0; j < adapter->num_tx_queues; j++) {
2110 u64 restart2;
2111
2112 ring = adapter->tx_ring[j];
2113 do {
2114 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2115 data[i] = ring->tx_stats.packets;
2116 data[i+1] = ring->tx_stats.bytes;
2117 data[i+2] = ring->tx_stats.restart_queue;
2118 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2119 do {
2120 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2121 restart2 = ring->tx_stats.restart_queue2;
2122 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2123 data[i+2] += restart2;
2124
2125 i += IGB_TX_QUEUE_STATS_LEN;
2126 }
2127 for (j = 0; j < adapter->num_rx_queues; j++) {
2128 ring = adapter->rx_ring[j];
2129 do {
2130 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2131 data[i] = ring->rx_stats.packets;
2132 data[i+1] = ring->rx_stats.bytes;
2133 data[i+2] = ring->rx_stats.drops;
2134 data[i+3] = ring->rx_stats.csum_err;
2135 data[i+4] = ring->rx_stats.alloc_failed;
2136 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2137 i += IGB_RX_QUEUE_STATS_LEN;
2138 }
2139 spin_unlock(&adapter->stats64_lock);
2140 }
2141
igb_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2142 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2143 {
2144 struct igb_adapter *adapter = netdev_priv(netdev);
2145 u8 *p = data;
2146 int i;
2147
2148 switch (stringset) {
2149 case ETH_SS_TEST:
2150 memcpy(data, *igb_gstrings_test,
2151 IGB_TEST_LEN*ETH_GSTRING_LEN);
2152 break;
2153 case ETH_SS_STATS:
2154 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2155 memcpy(p, igb_gstrings_stats[i].stat_string,
2156 ETH_GSTRING_LEN);
2157 p += ETH_GSTRING_LEN;
2158 }
2159 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2160 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2161 ETH_GSTRING_LEN);
2162 p += ETH_GSTRING_LEN;
2163 }
2164 for (i = 0; i < adapter->num_tx_queues; i++) {
2165 sprintf(p, "tx_queue_%u_packets", i);
2166 p += ETH_GSTRING_LEN;
2167 sprintf(p, "tx_queue_%u_bytes", i);
2168 p += ETH_GSTRING_LEN;
2169 sprintf(p, "tx_queue_%u_restart", i);
2170 p += ETH_GSTRING_LEN;
2171 }
2172 for (i = 0; i < adapter->num_rx_queues; i++) {
2173 sprintf(p, "rx_queue_%u_packets", i);
2174 p += ETH_GSTRING_LEN;
2175 sprintf(p, "rx_queue_%u_bytes", i);
2176 p += ETH_GSTRING_LEN;
2177 sprintf(p, "rx_queue_%u_drops", i);
2178 p += ETH_GSTRING_LEN;
2179 sprintf(p, "rx_queue_%u_csum_err", i);
2180 p += ETH_GSTRING_LEN;
2181 sprintf(p, "rx_queue_%u_alloc_failed", i);
2182 p += ETH_GSTRING_LEN;
2183 }
2184 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2185 break;
2186 }
2187 }
2188
2189 static const struct ethtool_ops igb_ethtool_ops = {
2190 .get_settings = igb_get_settings,
2191 .set_settings = igb_set_settings,
2192 .get_drvinfo = igb_get_drvinfo,
2193 .get_regs_len = igb_get_regs_len,
2194 .get_regs = igb_get_regs,
2195 .get_wol = igb_get_wol,
2196 .set_wol = igb_set_wol,
2197 .get_msglevel = igb_get_msglevel,
2198 .set_msglevel = igb_set_msglevel,
2199 .nway_reset = igb_nway_reset,
2200 .get_link = igb_get_link,
2201 .get_eeprom_len = igb_get_eeprom_len,
2202 .get_eeprom = igb_get_eeprom,
2203 .set_eeprom = igb_set_eeprom,
2204 .get_ringparam = igb_get_ringparam,
2205 .set_ringparam = igb_set_ringparam,
2206 .get_pauseparam = igb_get_pauseparam,
2207 .set_pauseparam = igb_set_pauseparam,
2208 .get_rx_csum = igb_get_rx_csum,
2209 .set_rx_csum = igb_set_rx_csum,
2210 .get_tx_csum = igb_get_tx_csum,
2211 .set_tx_csum = igb_set_tx_csum,
2212 .get_sg = ethtool_op_get_sg,
2213 .set_sg = ethtool_op_set_sg,
2214 .get_tso = ethtool_op_get_tso,
2215 .set_tso = igb_set_tso,
2216 .self_test = igb_diag_test,
2217 .get_strings = igb_get_strings,
2218 .phys_id = igb_phys_id,
2219 .get_sset_count = igb_get_sset_count,
2220 .get_ethtool_stats = igb_get_ethtool_stats,
2221 .get_coalesce = igb_get_coalesce,
2222 .set_coalesce = igb_set_coalesce,
2223 };
2224
igb_set_ethtool_ops(struct net_device * netdev)2225 void igb_set_ethtool_ops(struct net_device *netdev)
2226 {
2227 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2228 }
2229