1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* ethtool support for igb */
29 
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 
40 #include "igb.h"
41 
42 struct igb_stats {
43 	char stat_string[ETH_GSTRING_LEN];
44 	int sizeof_stat;
45 	int stat_offset;
46 };
47 
48 #define IGB_STAT(_name, _stat) { \
49 	.stat_string = _name, \
50 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
51 	.stat_offset = offsetof(struct igb_adapter, _stat) \
52 }
53 static const struct igb_stats igb_gstrings_stats[] = {
54 	IGB_STAT("rx_packets", stats.gprc),
55 	IGB_STAT("tx_packets", stats.gptc),
56 	IGB_STAT("rx_bytes", stats.gorc),
57 	IGB_STAT("tx_bytes", stats.gotc),
58 	IGB_STAT("rx_broadcast", stats.bprc),
59 	IGB_STAT("tx_broadcast", stats.bptc),
60 	IGB_STAT("rx_multicast", stats.mprc),
61 	IGB_STAT("tx_multicast", stats.mptc),
62 	IGB_STAT("multicast", stats.mprc),
63 	IGB_STAT("collisions", stats.colc),
64 	IGB_STAT("rx_crc_errors", stats.crcerrs),
65 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
66 	IGB_STAT("rx_missed_errors", stats.mpc),
67 	IGB_STAT("tx_aborted_errors", stats.ecol),
68 	IGB_STAT("tx_carrier_errors", stats.tncrs),
69 	IGB_STAT("tx_window_errors", stats.latecol),
70 	IGB_STAT("tx_abort_late_coll", stats.latecol),
71 	IGB_STAT("tx_deferred_ok", stats.dc),
72 	IGB_STAT("tx_single_coll_ok", stats.scc),
73 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
74 	IGB_STAT("tx_timeout_count", tx_timeout_count),
75 	IGB_STAT("rx_long_length_errors", stats.roc),
76 	IGB_STAT("rx_short_length_errors", stats.ruc),
77 	IGB_STAT("rx_align_errors", stats.algnerrc),
78 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
79 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
81 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
83 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
84 	IGB_STAT("rx_long_byte_count", stats.gorc),
85 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
86 	IGB_STAT("tx_smbus", stats.mgptc),
87 	IGB_STAT("rx_smbus", stats.mgprc),
88 	IGB_STAT("dropped_smbus", stats.mgpdc),
89 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
90 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
91 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
92 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
93 };
94 
95 #define IGB_NETDEV_STAT(_net_stat) { \
96 	.stat_string = __stringify(_net_stat), \
97 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
98 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
99 }
100 static const struct igb_stats igb_gstrings_net_stats[] = {
101 	IGB_NETDEV_STAT(rx_errors),
102 	IGB_NETDEV_STAT(tx_errors),
103 	IGB_NETDEV_STAT(tx_dropped),
104 	IGB_NETDEV_STAT(rx_length_errors),
105 	IGB_NETDEV_STAT(rx_over_errors),
106 	IGB_NETDEV_STAT(rx_frame_errors),
107 	IGB_NETDEV_STAT(rx_fifo_errors),
108 	IGB_NETDEV_STAT(tx_fifo_errors),
109 	IGB_NETDEV_STAT(tx_heartbeat_errors)
110 };
111 
112 #define IGB_GLOBAL_STATS_LEN	\
113 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
114 #define IGB_NETDEV_STATS_LEN	\
115 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
116 #define IGB_RX_QUEUE_STATS_LEN \
117 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
118 
119 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
120 
121 #define IGB_QUEUE_STATS_LEN \
122 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
123 	  IGB_RX_QUEUE_STATS_LEN) + \
124 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
125 	  IGB_TX_QUEUE_STATS_LEN))
126 #define IGB_STATS_LEN \
127 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
128 
129 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
130 	"Register test  (offline)", "Eeprom test    (offline)",
131 	"Interrupt test (offline)", "Loopback test  (offline)",
132 	"Link test   (on/offline)"
133 };
134 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
135 
igb_get_settings(struct net_device * netdev,struct ethtool_cmd * ecmd)136 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
137 {
138 	struct igb_adapter *adapter = netdev_priv(netdev);
139 	struct e1000_hw *hw = &adapter->hw;
140 	u32 status;
141 
142 	if (hw->phy.media_type == e1000_media_type_copper) {
143 
144 		ecmd->supported = (SUPPORTED_10baseT_Half |
145 				   SUPPORTED_10baseT_Full |
146 				   SUPPORTED_100baseT_Half |
147 				   SUPPORTED_100baseT_Full |
148 				   SUPPORTED_1000baseT_Full|
149 				   SUPPORTED_Autoneg |
150 				   SUPPORTED_TP);
151 		ecmd->advertising = ADVERTISED_TP;
152 
153 		if (hw->mac.autoneg == 1) {
154 			ecmd->advertising |= ADVERTISED_Autoneg;
155 			/* the e1000 autoneg seems to match ethtool nicely */
156 			ecmd->advertising |= hw->phy.autoneg_advertised;
157 		}
158 
159 		ecmd->port = PORT_TP;
160 		ecmd->phy_address = hw->phy.addr;
161 	} else {
162 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
163 				     SUPPORTED_FIBRE |
164 				     SUPPORTED_Autoneg);
165 
166 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
167 				     ADVERTISED_FIBRE |
168 				     ADVERTISED_Autoneg);
169 
170 		ecmd->port = PORT_FIBRE;
171 	}
172 
173 	ecmd->transceiver = XCVR_INTERNAL;
174 
175 	status = rd32(E1000_STATUS);
176 
177 	if (status & E1000_STATUS_LU) {
178 
179 		if ((status & E1000_STATUS_SPEED_1000) ||
180 		    hw->phy.media_type != e1000_media_type_copper)
181 			ecmd->speed = SPEED_1000;
182 		else if (status & E1000_STATUS_SPEED_100)
183 			ecmd->speed = SPEED_100;
184 		else
185 			ecmd->speed = SPEED_10;
186 
187 		if ((status & E1000_STATUS_FD) ||
188 		    hw->phy.media_type != e1000_media_type_copper)
189 			ecmd->duplex = DUPLEX_FULL;
190 		else
191 			ecmd->duplex = DUPLEX_HALF;
192 	} else {
193 		ecmd->speed = -1;
194 		ecmd->duplex = -1;
195 	}
196 
197 	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
198 	return 0;
199 }
200 
igb_set_settings(struct net_device * netdev,struct ethtool_cmd * ecmd)201 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
202 {
203 	struct igb_adapter *adapter = netdev_priv(netdev);
204 	struct e1000_hw *hw = &adapter->hw;
205 
206 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
207 	 * cannot be changed */
208 	if (igb_check_reset_block(hw)) {
209 		dev_err(&adapter->pdev->dev, "Cannot change link "
210 			"characteristics when SoL/IDER is active.\n");
211 		return -EINVAL;
212 	}
213 
214 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
215 		msleep(1);
216 
217 	if (ecmd->autoneg == AUTONEG_ENABLE) {
218 		hw->mac.autoneg = 1;
219 		hw->phy.autoneg_advertised = ecmd->advertising |
220 					     ADVERTISED_TP |
221 					     ADVERTISED_Autoneg;
222 		ecmd->advertising = hw->phy.autoneg_advertised;
223 		if (adapter->fc_autoneg)
224 			hw->fc.requested_mode = e1000_fc_default;
225 	} else {
226 		if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
227 			clear_bit(__IGB_RESETTING, &adapter->state);
228 			return -EINVAL;
229 		}
230 	}
231 
232 	/* reset the link */
233 	if (netif_running(adapter->netdev)) {
234 		igb_down(adapter);
235 		igb_up(adapter);
236 	} else
237 		igb_reset(adapter);
238 
239 	clear_bit(__IGB_RESETTING, &adapter->state);
240 	return 0;
241 }
242 
igb_get_link(struct net_device * netdev)243 static u32 igb_get_link(struct net_device *netdev)
244 {
245 	struct igb_adapter *adapter = netdev_priv(netdev);
246 	struct e1000_mac_info *mac = &adapter->hw.mac;
247 
248 	/*
249 	 * If the link is not reported up to netdev, interrupts are disabled,
250 	 * and so the physical link state may have changed since we last
251 	 * looked. Set get_link_status to make sure that the true link
252 	 * state is interrogated, rather than pulling a cached and possibly
253 	 * stale link state from the driver.
254 	 */
255 	if (!netif_carrier_ok(netdev))
256 		mac->get_link_status = 1;
257 
258 	return igb_has_link(adapter);
259 }
260 
igb_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)261 static void igb_get_pauseparam(struct net_device *netdev,
262 			       struct ethtool_pauseparam *pause)
263 {
264 	struct igb_adapter *adapter = netdev_priv(netdev);
265 	struct e1000_hw *hw = &adapter->hw;
266 
267 	pause->autoneg =
268 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
269 
270 	if (hw->fc.current_mode == e1000_fc_rx_pause)
271 		pause->rx_pause = 1;
272 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
273 		pause->tx_pause = 1;
274 	else if (hw->fc.current_mode == e1000_fc_full) {
275 		pause->rx_pause = 1;
276 		pause->tx_pause = 1;
277 	}
278 }
279 
igb_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)280 static int igb_set_pauseparam(struct net_device *netdev,
281 			      struct ethtool_pauseparam *pause)
282 {
283 	struct igb_adapter *adapter = netdev_priv(netdev);
284 	struct e1000_hw *hw = &adapter->hw;
285 	int retval = 0;
286 
287 	adapter->fc_autoneg = pause->autoneg;
288 
289 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
290 		msleep(1);
291 
292 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
293 		hw->fc.requested_mode = e1000_fc_default;
294 		if (netif_running(adapter->netdev)) {
295 			igb_down(adapter);
296 			igb_up(adapter);
297 		} else {
298 			igb_reset(adapter);
299 		}
300 	} else {
301 		if (pause->rx_pause && pause->tx_pause)
302 			hw->fc.requested_mode = e1000_fc_full;
303 		else if (pause->rx_pause && !pause->tx_pause)
304 			hw->fc.requested_mode = e1000_fc_rx_pause;
305 		else if (!pause->rx_pause && pause->tx_pause)
306 			hw->fc.requested_mode = e1000_fc_tx_pause;
307 		else if (!pause->rx_pause && !pause->tx_pause)
308 			hw->fc.requested_mode = e1000_fc_none;
309 
310 		hw->fc.current_mode = hw->fc.requested_mode;
311 
312 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
313 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
314 	}
315 
316 	clear_bit(__IGB_RESETTING, &adapter->state);
317 	return retval;
318 }
319 
igb_get_rx_csum(struct net_device * netdev)320 static u32 igb_get_rx_csum(struct net_device *netdev)
321 {
322 	struct igb_adapter *adapter = netdev_priv(netdev);
323 	return !!(adapter->rx_ring[0]->flags & IGB_RING_FLAG_RX_CSUM);
324 }
325 
igb_set_rx_csum(struct net_device * netdev,u32 data)326 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
327 {
328 	struct igb_adapter *adapter = netdev_priv(netdev);
329 	int i;
330 
331 	for (i = 0; i < adapter->num_rx_queues; i++) {
332 		if (data)
333 			adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
334 		else
335 			adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
336 	}
337 
338 	return 0;
339 }
340 
igb_get_tx_csum(struct net_device * netdev)341 static u32 igb_get_tx_csum(struct net_device *netdev)
342 {
343 	return (netdev->features & NETIF_F_IP_CSUM) != 0;
344 }
345 
igb_set_tx_csum(struct net_device * netdev,u32 data)346 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
347 {
348 	struct igb_adapter *adapter = netdev_priv(netdev);
349 
350 	if (data) {
351 		netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
352 		if (adapter->hw.mac.type >= e1000_82576)
353 			netdev->features |= NETIF_F_SCTP_CSUM;
354 	} else {
355 		netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
356 		                      NETIF_F_SCTP_CSUM);
357 	}
358 
359 	return 0;
360 }
361 
igb_set_tso(struct net_device * netdev,u32 data)362 static int igb_set_tso(struct net_device *netdev, u32 data)
363 {
364 	struct igb_adapter *adapter = netdev_priv(netdev);
365 
366 	if (data) {
367 		netdev->features |= NETIF_F_TSO;
368 		netdev->features |= NETIF_F_TSO6;
369 	} else {
370 		netdev->features &= ~NETIF_F_TSO;
371 		netdev->features &= ~NETIF_F_TSO6;
372 	}
373 
374 	dev_info(&adapter->pdev->dev, "TSO is %s\n",
375 		 data ? "Enabled" : "Disabled");
376 	return 0;
377 }
378 
igb_get_msglevel(struct net_device * netdev)379 static u32 igb_get_msglevel(struct net_device *netdev)
380 {
381 	struct igb_adapter *adapter = netdev_priv(netdev);
382 	return adapter->msg_enable;
383 }
384 
igb_set_msglevel(struct net_device * netdev,u32 data)385 static void igb_set_msglevel(struct net_device *netdev, u32 data)
386 {
387 	struct igb_adapter *adapter = netdev_priv(netdev);
388 	adapter->msg_enable = data;
389 }
390 
igb_get_regs_len(struct net_device * netdev)391 static int igb_get_regs_len(struct net_device *netdev)
392 {
393 #define IGB_REGS_LEN 551
394 	return IGB_REGS_LEN * sizeof(u32);
395 }
396 
igb_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)397 static void igb_get_regs(struct net_device *netdev,
398 			 struct ethtool_regs *regs, void *p)
399 {
400 	struct igb_adapter *adapter = netdev_priv(netdev);
401 	struct e1000_hw *hw = &adapter->hw;
402 	u32 *regs_buff = p;
403 	u8 i;
404 
405 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
406 
407 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
408 
409 	/* General Registers */
410 	regs_buff[0] = rd32(E1000_CTRL);
411 	regs_buff[1] = rd32(E1000_STATUS);
412 	regs_buff[2] = rd32(E1000_CTRL_EXT);
413 	regs_buff[3] = rd32(E1000_MDIC);
414 	regs_buff[4] = rd32(E1000_SCTL);
415 	regs_buff[5] = rd32(E1000_CONNSW);
416 	regs_buff[6] = rd32(E1000_VET);
417 	regs_buff[7] = rd32(E1000_LEDCTL);
418 	regs_buff[8] = rd32(E1000_PBA);
419 	regs_buff[9] = rd32(E1000_PBS);
420 	regs_buff[10] = rd32(E1000_FRTIMER);
421 	regs_buff[11] = rd32(E1000_TCPTIMER);
422 
423 	/* NVM Register */
424 	regs_buff[12] = rd32(E1000_EECD);
425 
426 	/* Interrupt */
427 	/* Reading EICS for EICR because they read the
428 	 * same but EICS does not clear on read */
429 	regs_buff[13] = rd32(E1000_EICS);
430 	regs_buff[14] = rd32(E1000_EICS);
431 	regs_buff[15] = rd32(E1000_EIMS);
432 	regs_buff[16] = rd32(E1000_EIMC);
433 	regs_buff[17] = rd32(E1000_EIAC);
434 	regs_buff[18] = rd32(E1000_EIAM);
435 	/* Reading ICS for ICR because they read the
436 	 * same but ICS does not clear on read */
437 	regs_buff[19] = rd32(E1000_ICS);
438 	regs_buff[20] = rd32(E1000_ICS);
439 	regs_buff[21] = rd32(E1000_IMS);
440 	regs_buff[22] = rd32(E1000_IMC);
441 	regs_buff[23] = rd32(E1000_IAC);
442 	regs_buff[24] = rd32(E1000_IAM);
443 	regs_buff[25] = rd32(E1000_IMIRVP);
444 
445 	/* Flow Control */
446 	regs_buff[26] = rd32(E1000_FCAL);
447 	regs_buff[27] = rd32(E1000_FCAH);
448 	regs_buff[28] = rd32(E1000_FCTTV);
449 	regs_buff[29] = rd32(E1000_FCRTL);
450 	regs_buff[30] = rd32(E1000_FCRTH);
451 	regs_buff[31] = rd32(E1000_FCRTV);
452 
453 	/* Receive */
454 	regs_buff[32] = rd32(E1000_RCTL);
455 	regs_buff[33] = rd32(E1000_RXCSUM);
456 	regs_buff[34] = rd32(E1000_RLPML);
457 	regs_buff[35] = rd32(E1000_RFCTL);
458 	regs_buff[36] = rd32(E1000_MRQC);
459 	regs_buff[37] = rd32(E1000_VT_CTL);
460 
461 	/* Transmit */
462 	regs_buff[38] = rd32(E1000_TCTL);
463 	regs_buff[39] = rd32(E1000_TCTL_EXT);
464 	regs_buff[40] = rd32(E1000_TIPG);
465 	regs_buff[41] = rd32(E1000_DTXCTL);
466 
467 	/* Wake Up */
468 	regs_buff[42] = rd32(E1000_WUC);
469 	regs_buff[43] = rd32(E1000_WUFC);
470 	regs_buff[44] = rd32(E1000_WUS);
471 	regs_buff[45] = rd32(E1000_IPAV);
472 	regs_buff[46] = rd32(E1000_WUPL);
473 
474 	/* MAC */
475 	regs_buff[47] = rd32(E1000_PCS_CFG0);
476 	regs_buff[48] = rd32(E1000_PCS_LCTL);
477 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
478 	regs_buff[50] = rd32(E1000_PCS_ANADV);
479 	regs_buff[51] = rd32(E1000_PCS_LPAB);
480 	regs_buff[52] = rd32(E1000_PCS_NPTX);
481 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
482 
483 	/* Statistics */
484 	regs_buff[54] = adapter->stats.crcerrs;
485 	regs_buff[55] = adapter->stats.algnerrc;
486 	regs_buff[56] = adapter->stats.symerrs;
487 	regs_buff[57] = adapter->stats.rxerrc;
488 	regs_buff[58] = adapter->stats.mpc;
489 	regs_buff[59] = adapter->stats.scc;
490 	regs_buff[60] = adapter->stats.ecol;
491 	regs_buff[61] = adapter->stats.mcc;
492 	regs_buff[62] = adapter->stats.latecol;
493 	regs_buff[63] = adapter->stats.colc;
494 	regs_buff[64] = adapter->stats.dc;
495 	regs_buff[65] = adapter->stats.tncrs;
496 	regs_buff[66] = adapter->stats.sec;
497 	regs_buff[67] = adapter->stats.htdpmc;
498 	regs_buff[68] = adapter->stats.rlec;
499 	regs_buff[69] = adapter->stats.xonrxc;
500 	regs_buff[70] = adapter->stats.xontxc;
501 	regs_buff[71] = adapter->stats.xoffrxc;
502 	regs_buff[72] = adapter->stats.xofftxc;
503 	regs_buff[73] = adapter->stats.fcruc;
504 	regs_buff[74] = adapter->stats.prc64;
505 	regs_buff[75] = adapter->stats.prc127;
506 	regs_buff[76] = adapter->stats.prc255;
507 	regs_buff[77] = adapter->stats.prc511;
508 	regs_buff[78] = adapter->stats.prc1023;
509 	regs_buff[79] = adapter->stats.prc1522;
510 	regs_buff[80] = adapter->stats.gprc;
511 	regs_buff[81] = adapter->stats.bprc;
512 	regs_buff[82] = adapter->stats.mprc;
513 	regs_buff[83] = adapter->stats.gptc;
514 	regs_buff[84] = adapter->stats.gorc;
515 	regs_buff[86] = adapter->stats.gotc;
516 	regs_buff[88] = adapter->stats.rnbc;
517 	regs_buff[89] = adapter->stats.ruc;
518 	regs_buff[90] = adapter->stats.rfc;
519 	regs_buff[91] = adapter->stats.roc;
520 	regs_buff[92] = adapter->stats.rjc;
521 	regs_buff[93] = adapter->stats.mgprc;
522 	regs_buff[94] = adapter->stats.mgpdc;
523 	regs_buff[95] = adapter->stats.mgptc;
524 	regs_buff[96] = adapter->stats.tor;
525 	regs_buff[98] = adapter->stats.tot;
526 	regs_buff[100] = adapter->stats.tpr;
527 	regs_buff[101] = adapter->stats.tpt;
528 	regs_buff[102] = adapter->stats.ptc64;
529 	regs_buff[103] = adapter->stats.ptc127;
530 	regs_buff[104] = adapter->stats.ptc255;
531 	regs_buff[105] = adapter->stats.ptc511;
532 	regs_buff[106] = adapter->stats.ptc1023;
533 	regs_buff[107] = adapter->stats.ptc1522;
534 	regs_buff[108] = adapter->stats.mptc;
535 	regs_buff[109] = adapter->stats.bptc;
536 	regs_buff[110] = adapter->stats.tsctc;
537 	regs_buff[111] = adapter->stats.iac;
538 	regs_buff[112] = adapter->stats.rpthc;
539 	regs_buff[113] = adapter->stats.hgptc;
540 	regs_buff[114] = adapter->stats.hgorc;
541 	regs_buff[116] = adapter->stats.hgotc;
542 	regs_buff[118] = adapter->stats.lenerrs;
543 	regs_buff[119] = adapter->stats.scvpc;
544 	regs_buff[120] = adapter->stats.hrmpc;
545 
546 	for (i = 0; i < 4; i++)
547 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
548 	for (i = 0; i < 4; i++)
549 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
550 	for (i = 0; i < 4; i++)
551 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
552 	for (i = 0; i < 4; i++)
553 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
554 	for (i = 0; i < 4; i++)
555 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
556 	for (i = 0; i < 4; i++)
557 		regs_buff[141 + i] = rd32(E1000_RDH(i));
558 	for (i = 0; i < 4; i++)
559 		regs_buff[145 + i] = rd32(E1000_RDT(i));
560 	for (i = 0; i < 4; i++)
561 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
562 
563 	for (i = 0; i < 10; i++)
564 		regs_buff[153 + i] = rd32(E1000_EITR(i));
565 	for (i = 0; i < 8; i++)
566 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
567 	for (i = 0; i < 8; i++)
568 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
569 	for (i = 0; i < 16; i++)
570 		regs_buff[179 + i] = rd32(E1000_RAL(i));
571 	for (i = 0; i < 16; i++)
572 		regs_buff[195 + i] = rd32(E1000_RAH(i));
573 
574 	for (i = 0; i < 4; i++)
575 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
576 	for (i = 0; i < 4; i++)
577 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
578 	for (i = 0; i < 4; i++)
579 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
580 	for (i = 0; i < 4; i++)
581 		regs_buff[223 + i] = rd32(E1000_TDH(i));
582 	for (i = 0; i < 4; i++)
583 		regs_buff[227 + i] = rd32(E1000_TDT(i));
584 	for (i = 0; i < 4; i++)
585 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
586 	for (i = 0; i < 4; i++)
587 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
588 	for (i = 0; i < 4; i++)
589 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
590 	for (i = 0; i < 4; i++)
591 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
592 
593 	for (i = 0; i < 4; i++)
594 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
595 	for (i = 0; i < 4; i++)
596 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
597 	for (i = 0; i < 32; i++)
598 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
599 	for (i = 0; i < 128; i++)
600 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
601 	for (i = 0; i < 128; i++)
602 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
603 	for (i = 0; i < 4; i++)
604 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
605 
606 	regs_buff[547] = rd32(E1000_TDFH);
607 	regs_buff[548] = rd32(E1000_TDFT);
608 	regs_buff[549] = rd32(E1000_TDFHS);
609 	regs_buff[550] = rd32(E1000_TDFPC);
610 	regs_buff[551] = adapter->stats.o2bgptc;
611 	regs_buff[552] = adapter->stats.b2ospc;
612 	regs_buff[553] = adapter->stats.o2bspc;
613 	regs_buff[554] = adapter->stats.b2ogprc;
614 }
615 
igb_get_eeprom_len(struct net_device * netdev)616 static int igb_get_eeprom_len(struct net_device *netdev)
617 {
618 	struct igb_adapter *adapter = netdev_priv(netdev);
619 	return adapter->hw.nvm.word_size * 2;
620 }
621 
igb_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)622 static int igb_get_eeprom(struct net_device *netdev,
623 			  struct ethtool_eeprom *eeprom, u8 *bytes)
624 {
625 	struct igb_adapter *adapter = netdev_priv(netdev);
626 	struct e1000_hw *hw = &adapter->hw;
627 	u16 *eeprom_buff;
628 	int first_word, last_word;
629 	int ret_val = 0;
630 	u16 i;
631 
632 	if (eeprom->len == 0)
633 		return -EINVAL;
634 
635 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
636 
637 	first_word = eeprom->offset >> 1;
638 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
639 
640 	eeprom_buff = kmalloc(sizeof(u16) *
641 			(last_word - first_word + 1), GFP_KERNEL);
642 	if (!eeprom_buff)
643 		return -ENOMEM;
644 
645 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
646 		ret_val = hw->nvm.ops.read(hw, first_word,
647 					    last_word - first_word + 1,
648 					    eeprom_buff);
649 	else {
650 		for (i = 0; i < last_word - first_word + 1; i++) {
651 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
652 						    &eeprom_buff[i]);
653 			if (ret_val)
654 				break;
655 		}
656 	}
657 
658 	/* Device's eeprom is always little-endian, word addressable */
659 	for (i = 0; i < last_word - first_word + 1; i++)
660 		le16_to_cpus(&eeprom_buff[i]);
661 
662 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
663 			eeprom->len);
664 	kfree(eeprom_buff);
665 
666 	return ret_val;
667 }
668 
igb_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)669 static int igb_set_eeprom(struct net_device *netdev,
670 			  struct ethtool_eeprom *eeprom, u8 *bytes)
671 {
672 	struct igb_adapter *adapter = netdev_priv(netdev);
673 	struct e1000_hw *hw = &adapter->hw;
674 	u16 *eeprom_buff;
675 	void *ptr;
676 	int max_len, first_word, last_word, ret_val = 0;
677 	u16 i;
678 
679 	if (eeprom->len == 0)
680 		return -EOPNOTSUPP;
681 
682 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
683 		return -EFAULT;
684 
685 	max_len = hw->nvm.word_size * 2;
686 
687 	first_word = eeprom->offset >> 1;
688 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
689 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
690 	if (!eeprom_buff)
691 		return -ENOMEM;
692 
693 	ptr = (void *)eeprom_buff;
694 
695 	if (eeprom->offset & 1) {
696 		/* need read/modify/write of first changed EEPROM word */
697 		/* only the second byte of the word is being modified */
698 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
699 					    &eeprom_buff[0]);
700 		ptr++;
701 	}
702 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
703 		/* need read/modify/write of last changed EEPROM word */
704 		/* only the first byte of the word is being modified */
705 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
706 				   &eeprom_buff[last_word - first_word]);
707 	}
708 
709 	/* Device's eeprom is always little-endian, word addressable */
710 	for (i = 0; i < last_word - first_word + 1; i++)
711 		le16_to_cpus(&eeprom_buff[i]);
712 
713 	memcpy(ptr, bytes, eeprom->len);
714 
715 	for (i = 0; i < last_word - first_word + 1; i++)
716 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
717 
718 	ret_val = hw->nvm.ops.write(hw, first_word,
719 				     last_word - first_word + 1, eeprom_buff);
720 
721 	/* Update the checksum over the first part of the EEPROM if needed
722 	 * and flush shadow RAM for 82573 controllers */
723 	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
724 		hw->nvm.ops.update(hw);
725 
726 	kfree(eeprom_buff);
727 	return ret_val;
728 }
729 
igb_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)730 static void igb_get_drvinfo(struct net_device *netdev,
731 			    struct ethtool_drvinfo *drvinfo)
732 {
733 	struct igb_adapter *adapter = netdev_priv(netdev);
734 	char firmware_version[32];
735 	u16 eeprom_data;
736 
737 	strncpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver) - 1);
738 	strncpy(drvinfo->version, igb_driver_version,
739 		sizeof(drvinfo->version) - 1);
740 
741 	/* EEPROM image version # is reported as firmware version # for
742 	 * 82575 controllers */
743 	adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
744 	sprintf(firmware_version, "%d.%d-%d",
745 		(eeprom_data & 0xF000) >> 12,
746 		(eeprom_data & 0x0FF0) >> 4,
747 		eeprom_data & 0x000F);
748 
749 	strncpy(drvinfo->fw_version, firmware_version,
750 		sizeof(drvinfo->fw_version) - 1);
751 	strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
752 		sizeof(drvinfo->bus_info) - 1);
753 	drvinfo->n_stats = IGB_STATS_LEN;
754 	drvinfo->testinfo_len = IGB_TEST_LEN;
755 	drvinfo->regdump_len = igb_get_regs_len(netdev);
756 	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
757 }
758 
igb_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)759 static void igb_get_ringparam(struct net_device *netdev,
760 			      struct ethtool_ringparam *ring)
761 {
762 	struct igb_adapter *adapter = netdev_priv(netdev);
763 
764 	ring->rx_max_pending = IGB_MAX_RXD;
765 	ring->tx_max_pending = IGB_MAX_TXD;
766 	ring->rx_mini_max_pending = 0;
767 	ring->rx_jumbo_max_pending = 0;
768 	ring->rx_pending = adapter->rx_ring_count;
769 	ring->tx_pending = adapter->tx_ring_count;
770 	ring->rx_mini_pending = 0;
771 	ring->rx_jumbo_pending = 0;
772 }
773 
igb_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)774 static int igb_set_ringparam(struct net_device *netdev,
775 			     struct ethtool_ringparam *ring)
776 {
777 	struct igb_adapter *adapter = netdev_priv(netdev);
778 	struct igb_ring *temp_ring;
779 	int i, err = 0;
780 	u16 new_rx_count, new_tx_count;
781 
782 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
783 		return -EINVAL;
784 
785 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
786 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
787 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
788 
789 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
790 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
791 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
792 
793 	if ((new_tx_count == adapter->tx_ring_count) &&
794 	    (new_rx_count == adapter->rx_ring_count)) {
795 		/* nothing to do */
796 		return 0;
797 	}
798 
799 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
800 		msleep(1);
801 
802 	if (!netif_running(adapter->netdev)) {
803 		for (i = 0; i < adapter->num_tx_queues; i++)
804 			adapter->tx_ring[i]->count = new_tx_count;
805 		for (i = 0; i < adapter->num_rx_queues; i++)
806 			adapter->rx_ring[i]->count = new_rx_count;
807 		adapter->tx_ring_count = new_tx_count;
808 		adapter->rx_ring_count = new_rx_count;
809 		goto clear_reset;
810 	}
811 
812 	if (adapter->num_tx_queues > adapter->num_rx_queues)
813 		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
814 	else
815 		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
816 
817 	if (!temp_ring) {
818 		err = -ENOMEM;
819 		goto clear_reset;
820 	}
821 
822 	igb_down(adapter);
823 
824 	/*
825 	 * We can't just free everything and then setup again,
826 	 * because the ISRs in MSI-X mode get passed pointers
827 	 * to the tx and rx ring structs.
828 	 */
829 	if (new_tx_count != adapter->tx_ring_count) {
830 		for (i = 0; i < adapter->num_tx_queues; i++) {
831 			memcpy(&temp_ring[i], adapter->tx_ring[i],
832 			       sizeof(struct igb_ring));
833 
834 			temp_ring[i].count = new_tx_count;
835 			err = igb_setup_tx_resources(&temp_ring[i]);
836 			if (err) {
837 				while (i) {
838 					i--;
839 					igb_free_tx_resources(&temp_ring[i]);
840 				}
841 				goto err_setup;
842 			}
843 		}
844 
845 		for (i = 0; i < adapter->num_tx_queues; i++) {
846 			igb_free_tx_resources(adapter->tx_ring[i]);
847 
848 			memcpy(adapter->tx_ring[i], &temp_ring[i],
849 			       sizeof(struct igb_ring));
850 		}
851 
852 		adapter->tx_ring_count = new_tx_count;
853 	}
854 
855 	if (new_rx_count != adapter->rx_ring_count) {
856 		for (i = 0; i < adapter->num_rx_queues; i++) {
857 			memcpy(&temp_ring[i], adapter->rx_ring[i],
858 			       sizeof(struct igb_ring));
859 
860 			temp_ring[i].count = new_rx_count;
861 			err = igb_setup_rx_resources(&temp_ring[i]);
862 			if (err) {
863 				while (i) {
864 					i--;
865 					igb_free_rx_resources(&temp_ring[i]);
866 				}
867 				goto err_setup;
868 			}
869 
870 		}
871 
872 		for (i = 0; i < adapter->num_rx_queues; i++) {
873 			igb_free_rx_resources(adapter->rx_ring[i]);
874 
875 			memcpy(adapter->rx_ring[i], &temp_ring[i],
876 			       sizeof(struct igb_ring));
877 		}
878 
879 		adapter->rx_ring_count = new_rx_count;
880 	}
881 err_setup:
882 	igb_up(adapter);
883 	vfree(temp_ring);
884 clear_reset:
885 	clear_bit(__IGB_RESETTING, &adapter->state);
886 	return err;
887 }
888 
889 /* ethtool register test data */
890 struct igb_reg_test {
891 	u16 reg;
892 	u16 reg_offset;
893 	u16 array_len;
894 	u16 test_type;
895 	u32 mask;
896 	u32 write;
897 };
898 
899 /* In the hardware, registers are laid out either singly, in arrays
900  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
901  * most tests take place on arrays or single registers (handled
902  * as a single-element array) and special-case the tables.
903  * Table tests are always pattern tests.
904  *
905  * We also make provision for some required setup steps by specifying
906  * registers to be written without any read-back testing.
907  */
908 
909 #define PATTERN_TEST	1
910 #define SET_READ_TEST	2
911 #define WRITE_NO_TEST	3
912 #define TABLE32_TEST	4
913 #define TABLE64_TEST_LO	5
914 #define TABLE64_TEST_HI	6
915 
916 /* i350 reg test */
917 static struct igb_reg_test reg_test_i350[] = {
918 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
919 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
920 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
921 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
922 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
923 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
924 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
925 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
926 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
927 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
928 	/* RDH is read-only for i350, only test RDT. */
929 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
930 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
931 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
932 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
933 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
934 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
935 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
936 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
937 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
938 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
939 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
940 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
941 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
942 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
943 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
944 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
945 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
946 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
947 						0xFFFFFFFF, 0xFFFFFFFF },
948 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
949 						0xC3FFFFFF, 0xFFFFFFFF },
950 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
951 						0xFFFFFFFF, 0xFFFFFFFF },
952 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
953 						0xC3FFFFFF, 0xFFFFFFFF },
954 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
955 						0xFFFFFFFF, 0xFFFFFFFF },
956 	{ 0, 0, 0, 0 }
957 };
958 
959 /* 82580 reg test */
960 static struct igb_reg_test reg_test_82580[] = {
961 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
962 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
963 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
964 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
965 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
966 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
967 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
968 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
969 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
970 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
971 	/* RDH is read-only for 82580, only test RDT. */
972 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
973 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
974 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
975 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
976 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
977 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
978 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
979 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
980 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
981 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
982 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
983 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
984 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
985 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
986 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
987 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
988 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
989 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
990 						0xFFFFFFFF, 0xFFFFFFFF },
991 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
992 						0x83FFFFFF, 0xFFFFFFFF },
993 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
994 						0xFFFFFFFF, 0xFFFFFFFF },
995 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
996 						0x83FFFFFF, 0xFFFFFFFF },
997 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
998 						0xFFFFFFFF, 0xFFFFFFFF },
999 	{ 0, 0, 0, 0 }
1000 };
1001 
1002 /* 82576 reg test */
1003 static struct igb_reg_test reg_test_82576[] = {
1004 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1006 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1007 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1008 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1009 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1010 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1011 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1012 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1014 	/* Enable all RX queues before testing. */
1015 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1016 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1017 	/* RDH is read-only for 82576, only test RDT. */
1018 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1020 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1021 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1022 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1023 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1024 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1025 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1026 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1028 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1029 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1030 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1031 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1032 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1033 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1034 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1035 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1036 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1037 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1038 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1039 	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040 	{ 0, 0, 0, 0 }
1041 };
1042 
1043 /* 82575 register test */
1044 static struct igb_reg_test reg_test_82575[] = {
1045 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1046 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1047 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1048 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1049 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1050 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1051 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1052 	/* Enable all four RX queues before testing. */
1053 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1054 	/* RDH is read-only for 82575, only test RDT. */
1055 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1057 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1058 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1059 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1060 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1063 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1064 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1065 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1066 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1067 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1068 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1069 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1070 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1071 	{ 0, 0, 0, 0 }
1072 };
1073 
reg_pattern_test(struct igb_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)1074 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1075 			     int reg, u32 mask, u32 write)
1076 {
1077 	struct e1000_hw *hw = &adapter->hw;
1078 	u32 pat, val;
1079 	static const u32 _test[] =
1080 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1081 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1082 		wr32(reg, (_test[pat] & write));
1083 		val = rd32(reg) & mask;
1084 		if (val != (_test[pat] & write & mask)) {
1085 			dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1086 				"failed: got 0x%08X expected 0x%08X\n",
1087 				reg, val, (_test[pat] & write & mask));
1088 			*data = reg;
1089 			return 1;
1090 		}
1091 	}
1092 
1093 	return 0;
1094 }
1095 
reg_set_and_check(struct igb_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)1096 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1097 			      int reg, u32 mask, u32 write)
1098 {
1099 	struct e1000_hw *hw = &adapter->hw;
1100 	u32 val;
1101 	wr32(reg, write & mask);
1102 	val = rd32(reg);
1103 	if ((write & mask) != (val & mask)) {
1104 		dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1105 			" got 0x%08X expected 0x%08X\n", reg,
1106 			(val & mask), (write & mask));
1107 		*data = reg;
1108 		return 1;
1109 	}
1110 
1111 	return 0;
1112 }
1113 
1114 #define REG_PATTERN_TEST(reg, mask, write) \
1115 	do { \
1116 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1117 			return 1; \
1118 	} while (0)
1119 
1120 #define REG_SET_AND_CHECK(reg, mask, write) \
1121 	do { \
1122 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1123 			return 1; \
1124 	} while (0)
1125 
igb_reg_test(struct igb_adapter * adapter,u64 * data)1126 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1127 {
1128 	struct e1000_hw *hw = &adapter->hw;
1129 	struct igb_reg_test *test;
1130 	u32 value, before, after;
1131 	u32 i, toggle;
1132 
1133 	switch (adapter->hw.mac.type) {
1134 	case e1000_i350:
1135 		test = reg_test_i350;
1136 		toggle = 0x7FEFF3FF;
1137 		break;
1138 	case e1000_82580:
1139 		test = reg_test_82580;
1140 		toggle = 0x7FEFF3FF;
1141 		break;
1142 	case e1000_82576:
1143 		test = reg_test_82576;
1144 		toggle = 0x7FFFF3FF;
1145 		break;
1146 	default:
1147 		test = reg_test_82575;
1148 		toggle = 0x7FFFF3FF;
1149 		break;
1150 	}
1151 
1152 	/* Because the status register is such a special case,
1153 	 * we handle it separately from the rest of the register
1154 	 * tests.  Some bits are read-only, some toggle, and some
1155 	 * are writable on newer MACs.
1156 	 */
1157 	before = rd32(E1000_STATUS);
1158 	value = (rd32(E1000_STATUS) & toggle);
1159 	wr32(E1000_STATUS, toggle);
1160 	after = rd32(E1000_STATUS) & toggle;
1161 	if (value != after) {
1162 		dev_err(&adapter->pdev->dev, "failed STATUS register test "
1163 			"got: 0x%08X expected: 0x%08X\n", after, value);
1164 		*data = 1;
1165 		return 1;
1166 	}
1167 	/* restore previous status */
1168 	wr32(E1000_STATUS, before);
1169 
1170 	/* Perform the remainder of the register test, looping through
1171 	 * the test table until we either fail or reach the null entry.
1172 	 */
1173 	while (test->reg) {
1174 		for (i = 0; i < test->array_len; i++) {
1175 			switch (test->test_type) {
1176 			case PATTERN_TEST:
1177 				REG_PATTERN_TEST(test->reg +
1178 						(i * test->reg_offset),
1179 						test->mask,
1180 						test->write);
1181 				break;
1182 			case SET_READ_TEST:
1183 				REG_SET_AND_CHECK(test->reg +
1184 						(i * test->reg_offset),
1185 						test->mask,
1186 						test->write);
1187 				break;
1188 			case WRITE_NO_TEST:
1189 				writel(test->write,
1190 				    (adapter->hw.hw_addr + test->reg)
1191 					+ (i * test->reg_offset));
1192 				break;
1193 			case TABLE32_TEST:
1194 				REG_PATTERN_TEST(test->reg + (i * 4),
1195 						test->mask,
1196 						test->write);
1197 				break;
1198 			case TABLE64_TEST_LO:
1199 				REG_PATTERN_TEST(test->reg + (i * 8),
1200 						test->mask,
1201 						test->write);
1202 				break;
1203 			case TABLE64_TEST_HI:
1204 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1205 						test->mask,
1206 						test->write);
1207 				break;
1208 			}
1209 		}
1210 		test++;
1211 	}
1212 
1213 	*data = 0;
1214 	return 0;
1215 }
1216 
igb_eeprom_test(struct igb_adapter * adapter,u64 * data)1217 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1218 {
1219 	u16 temp;
1220 	u16 checksum = 0;
1221 	u16 i;
1222 
1223 	*data = 0;
1224 	/* Read and add up the contents of the EEPROM */
1225 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1226 		if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
1227 			*data = 1;
1228 			break;
1229 		}
1230 		checksum += temp;
1231 	}
1232 
1233 	/* If Checksum is not Correct return error else test passed */
1234 	if ((checksum != (u16) NVM_SUM) && !(*data))
1235 		*data = 2;
1236 
1237 	return *data;
1238 }
1239 
igb_test_intr(int irq,void * data)1240 static irqreturn_t igb_test_intr(int irq, void *data)
1241 {
1242 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1243 	struct e1000_hw *hw = &adapter->hw;
1244 
1245 	adapter->test_icr |= rd32(E1000_ICR);
1246 
1247 	return IRQ_HANDLED;
1248 }
1249 
igb_intr_test(struct igb_adapter * adapter,u64 * data)1250 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1251 {
1252 	struct e1000_hw *hw = &adapter->hw;
1253 	struct net_device *netdev = adapter->netdev;
1254 	u32 mask, ics_mask, i = 0, shared_int = true;
1255 	u32 irq = adapter->pdev->irq;
1256 
1257 	*data = 0;
1258 
1259 	/* Hook up test interrupt handler just for this test */
1260 	if (adapter->msix_entries) {
1261 		if (request_irq(adapter->msix_entries[0].vector,
1262 		                igb_test_intr, 0, netdev->name, adapter)) {
1263 			*data = 1;
1264 			return -1;
1265 		}
1266 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1267 		shared_int = false;
1268 		if (request_irq(irq,
1269 		                igb_test_intr, 0, netdev->name, adapter)) {
1270 			*data = 1;
1271 			return -1;
1272 		}
1273 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1274 				netdev->name, adapter)) {
1275 		shared_int = false;
1276 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1277 		 netdev->name, adapter)) {
1278 		*data = 1;
1279 		return -1;
1280 	}
1281 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1282 		(shared_int ? "shared" : "unshared"));
1283 
1284 	/* Disable all the interrupts */
1285 	wr32(E1000_IMC, ~0);
1286 	msleep(10);
1287 
1288 	/* Define all writable bits for ICS */
1289 	switch (hw->mac.type) {
1290 	case e1000_82575:
1291 		ics_mask = 0x37F47EDD;
1292 		break;
1293 	case e1000_82576:
1294 		ics_mask = 0x77D4FBFD;
1295 		break;
1296 	case e1000_82580:
1297 		ics_mask = 0x77DCFED5;
1298 		break;
1299 	case e1000_i350:
1300 		ics_mask = 0x77DCFED5;
1301 		break;
1302 	default:
1303 		ics_mask = 0x7FFFFFFF;
1304 		break;
1305 	}
1306 
1307 	/* Test each interrupt */
1308 	for (; i < 31; i++) {
1309 		/* Interrupt to test */
1310 		mask = 1 << i;
1311 
1312 		if (!(mask & ics_mask))
1313 			continue;
1314 
1315 		if (!shared_int) {
1316 			/* Disable the interrupt to be reported in
1317 			 * the cause register and then force the same
1318 			 * interrupt and see if one gets posted.  If
1319 			 * an interrupt was posted to the bus, the
1320 			 * test failed.
1321 			 */
1322 			adapter->test_icr = 0;
1323 
1324 			/* Flush any pending interrupts */
1325 			wr32(E1000_ICR, ~0);
1326 
1327 			wr32(E1000_IMC, mask);
1328 			wr32(E1000_ICS, mask);
1329 			msleep(10);
1330 
1331 			if (adapter->test_icr & mask) {
1332 				*data = 3;
1333 				break;
1334 			}
1335 		}
1336 
1337 		/* Enable the interrupt to be reported in
1338 		 * the cause register and then force the same
1339 		 * interrupt and see if one gets posted.  If
1340 		 * an interrupt was not posted to the bus, the
1341 		 * test failed.
1342 		 */
1343 		adapter->test_icr = 0;
1344 
1345 		/* Flush any pending interrupts */
1346 		wr32(E1000_ICR, ~0);
1347 
1348 		wr32(E1000_IMS, mask);
1349 		wr32(E1000_ICS, mask);
1350 		msleep(10);
1351 
1352 		if (!(adapter->test_icr & mask)) {
1353 			*data = 4;
1354 			break;
1355 		}
1356 
1357 		if (!shared_int) {
1358 			/* Disable the other interrupts to be reported in
1359 			 * the cause register and then force the other
1360 			 * interrupts and see if any get posted.  If
1361 			 * an interrupt was posted to the bus, the
1362 			 * test failed.
1363 			 */
1364 			adapter->test_icr = 0;
1365 
1366 			/* Flush any pending interrupts */
1367 			wr32(E1000_ICR, ~0);
1368 
1369 			wr32(E1000_IMC, ~mask);
1370 			wr32(E1000_ICS, ~mask);
1371 			msleep(10);
1372 
1373 			if (adapter->test_icr & mask) {
1374 				*data = 5;
1375 				break;
1376 			}
1377 		}
1378 	}
1379 
1380 	/* Disable all the interrupts */
1381 	wr32(E1000_IMC, ~0);
1382 	msleep(10);
1383 
1384 	/* Unhook test interrupt handler */
1385 	if (adapter->msix_entries)
1386 		free_irq(adapter->msix_entries[0].vector, adapter);
1387 	else
1388 		free_irq(irq, adapter);
1389 
1390 	return *data;
1391 }
1392 
igb_free_desc_rings(struct igb_adapter * adapter)1393 static void igb_free_desc_rings(struct igb_adapter *adapter)
1394 {
1395 	igb_free_tx_resources(&adapter->test_tx_ring);
1396 	igb_free_rx_resources(&adapter->test_rx_ring);
1397 }
1398 
igb_setup_desc_rings(struct igb_adapter * adapter)1399 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1400 {
1401 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1402 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1403 	struct e1000_hw *hw = &adapter->hw;
1404 	int ret_val;
1405 
1406 	/* Setup Tx descriptor ring and Tx buffers */
1407 	tx_ring->count = IGB_DEFAULT_TXD;
1408 	tx_ring->dev = &adapter->pdev->dev;
1409 	tx_ring->netdev = adapter->netdev;
1410 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1411 
1412 	if (igb_setup_tx_resources(tx_ring)) {
1413 		ret_val = 1;
1414 		goto err_nomem;
1415 	}
1416 
1417 	igb_setup_tctl(adapter);
1418 	igb_configure_tx_ring(adapter, tx_ring);
1419 
1420 	/* Setup Rx descriptor ring and Rx buffers */
1421 	rx_ring->count = IGB_DEFAULT_RXD;
1422 	rx_ring->dev = &adapter->pdev->dev;
1423 	rx_ring->netdev = adapter->netdev;
1424 	rx_ring->rx_buffer_len = IGB_RXBUFFER_2048;
1425 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1426 
1427 	if (igb_setup_rx_resources(rx_ring)) {
1428 		ret_val = 3;
1429 		goto err_nomem;
1430 	}
1431 
1432 	/* set the default queue to queue 0 of PF */
1433 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1434 
1435 	/* enable receive ring */
1436 	igb_setup_rctl(adapter);
1437 	igb_configure_rx_ring(adapter, rx_ring);
1438 
1439 	igb_alloc_rx_buffers_adv(rx_ring, igb_desc_unused(rx_ring));
1440 
1441 	return 0;
1442 
1443 err_nomem:
1444 	igb_free_desc_rings(adapter);
1445 	return ret_val;
1446 }
1447 
igb_phy_disable_receiver(struct igb_adapter * adapter)1448 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1449 {
1450 	struct e1000_hw *hw = &adapter->hw;
1451 
1452 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1453 	igb_write_phy_reg(hw, 29, 0x001F);
1454 	igb_write_phy_reg(hw, 30, 0x8FFC);
1455 	igb_write_phy_reg(hw, 29, 0x001A);
1456 	igb_write_phy_reg(hw, 30, 0x8FF0);
1457 }
1458 
igb_integrated_phy_loopback(struct igb_adapter * adapter)1459 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1460 {
1461 	struct e1000_hw *hw = &adapter->hw;
1462 	u32 ctrl_reg = 0;
1463 
1464 	hw->mac.autoneg = false;
1465 
1466 	if (hw->phy.type == e1000_phy_m88) {
1467 		/* Auto-MDI/MDIX Off */
1468 		igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1469 		/* reset to update Auto-MDI/MDIX */
1470 		igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1471 		/* autoneg off */
1472 		igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1473 	} else if (hw->phy.type == e1000_phy_82580) {
1474 		/* enable MII loopback */
1475 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1476 	}
1477 
1478 	ctrl_reg = rd32(E1000_CTRL);
1479 
1480 	/* force 1000, set loopback */
1481 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1482 
1483 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1484 	ctrl_reg = rd32(E1000_CTRL);
1485 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1486 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1487 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1488 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1489 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1490 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1491 
1492 	if (hw->phy.type == e1000_phy_m88)
1493 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1494 
1495 	wr32(E1000_CTRL, ctrl_reg);
1496 
1497 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1498 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1499 	 */
1500 	if (hw->phy.type == e1000_phy_m88)
1501 		igb_phy_disable_receiver(adapter);
1502 
1503 	udelay(500);
1504 
1505 	return 0;
1506 }
1507 
igb_set_phy_loopback(struct igb_adapter * adapter)1508 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1509 {
1510 	return igb_integrated_phy_loopback(adapter);
1511 }
1512 
igb_setup_loopback_test(struct igb_adapter * adapter)1513 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1514 {
1515 	struct e1000_hw *hw = &adapter->hw;
1516 	u32 reg;
1517 
1518 	reg = rd32(E1000_CTRL_EXT);
1519 
1520 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1521 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1522 		reg = rd32(E1000_RCTL);
1523 		reg |= E1000_RCTL_LBM_TCVR;
1524 		wr32(E1000_RCTL, reg);
1525 
1526 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1527 
1528 		reg = rd32(E1000_CTRL);
1529 		reg &= ~(E1000_CTRL_RFCE |
1530 			 E1000_CTRL_TFCE |
1531 			 E1000_CTRL_LRST);
1532 		reg |= E1000_CTRL_SLU |
1533 		       E1000_CTRL_FD;
1534 		wr32(E1000_CTRL, reg);
1535 
1536 		/* Unset switch control to serdes energy detect */
1537 		reg = rd32(E1000_CONNSW);
1538 		reg &= ~E1000_CONNSW_ENRGSRC;
1539 		wr32(E1000_CONNSW, reg);
1540 
1541 		/* Set PCS register for forced speed */
1542 		reg = rd32(E1000_PCS_LCTL);
1543 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1544 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1545 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1546 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1547 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1548 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1549 		wr32(E1000_PCS_LCTL, reg);
1550 
1551 		return 0;
1552 	}
1553 
1554 	return igb_set_phy_loopback(adapter);
1555 }
1556 
igb_loopback_cleanup(struct igb_adapter * adapter)1557 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1558 {
1559 	struct e1000_hw *hw = &adapter->hw;
1560 	u32 rctl;
1561 	u16 phy_reg;
1562 
1563 	rctl = rd32(E1000_RCTL);
1564 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1565 	wr32(E1000_RCTL, rctl);
1566 
1567 	hw->mac.autoneg = true;
1568 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1569 	if (phy_reg & MII_CR_LOOPBACK) {
1570 		phy_reg &= ~MII_CR_LOOPBACK;
1571 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1572 		igb_phy_sw_reset(hw);
1573 	}
1574 }
1575 
igb_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1576 static void igb_create_lbtest_frame(struct sk_buff *skb,
1577 				    unsigned int frame_size)
1578 {
1579 	memset(skb->data, 0xFF, frame_size);
1580 	frame_size /= 2;
1581 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1582 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1583 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1584 }
1585 
igb_check_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1586 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1587 {
1588 	frame_size /= 2;
1589 	if (*(skb->data + 3) == 0xFF) {
1590 		if ((*(skb->data + frame_size + 10) == 0xBE) &&
1591 		   (*(skb->data + frame_size + 12) == 0xAF)) {
1592 			return 0;
1593 		}
1594 	}
1595 	return 13;
1596 }
1597 
igb_clean_test_rings(struct igb_ring * rx_ring,struct igb_ring * tx_ring,unsigned int size)1598 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1599                                 struct igb_ring *tx_ring,
1600                                 unsigned int size)
1601 {
1602 	union e1000_adv_rx_desc *rx_desc;
1603 	struct igb_buffer *buffer_info;
1604 	int rx_ntc, tx_ntc, count = 0;
1605 	u32 staterr;
1606 
1607 	/* initialize next to clean and descriptor values */
1608 	rx_ntc = rx_ring->next_to_clean;
1609 	tx_ntc = tx_ring->next_to_clean;
1610 	rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1611 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1612 
1613 	while (staterr & E1000_RXD_STAT_DD) {
1614 		/* check rx buffer */
1615 		buffer_info = &rx_ring->buffer_info[rx_ntc];
1616 
1617 		/* unmap rx buffer, will be remapped by alloc_rx_buffers */
1618 		dma_unmap_single(rx_ring->dev,
1619 		                 buffer_info->dma,
1620 				 rx_ring->rx_buffer_len,
1621 				 DMA_FROM_DEVICE);
1622 		buffer_info->dma = 0;
1623 
1624 		/* verify contents of skb */
1625 		if (!igb_check_lbtest_frame(buffer_info->skb, size))
1626 			count++;
1627 
1628 		/* unmap buffer on tx side */
1629 		buffer_info = &tx_ring->buffer_info[tx_ntc];
1630 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
1631 
1632 		/* increment rx/tx next to clean counters */
1633 		rx_ntc++;
1634 		if (rx_ntc == rx_ring->count)
1635 			rx_ntc = 0;
1636 		tx_ntc++;
1637 		if (tx_ntc == tx_ring->count)
1638 			tx_ntc = 0;
1639 
1640 		/* fetch next descriptor */
1641 		rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1642 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1643 	}
1644 
1645 	/* re-map buffers to ring, store next to clean values */
1646 	igb_alloc_rx_buffers_adv(rx_ring, count);
1647 	rx_ring->next_to_clean = rx_ntc;
1648 	tx_ring->next_to_clean = tx_ntc;
1649 
1650 	return count;
1651 }
1652 
igb_run_loopback_test(struct igb_adapter * adapter)1653 static int igb_run_loopback_test(struct igb_adapter *adapter)
1654 {
1655 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1656 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1657 	int i, j, lc, good_cnt, ret_val = 0;
1658 	unsigned int size = 1024;
1659 	netdev_tx_t tx_ret_val;
1660 	struct sk_buff *skb;
1661 
1662 	/* allocate test skb */
1663 	skb = alloc_skb(size, GFP_KERNEL);
1664 	if (!skb)
1665 		return 11;
1666 
1667 	/* place data into test skb */
1668 	igb_create_lbtest_frame(skb, size);
1669 	skb_put(skb, size);
1670 
1671 	/*
1672 	 * Calculate the loop count based on the largest descriptor ring
1673 	 * The idea is to wrap the largest ring a number of times using 64
1674 	 * send/receive pairs during each loop
1675 	 */
1676 
1677 	if (rx_ring->count <= tx_ring->count)
1678 		lc = ((tx_ring->count / 64) * 2) + 1;
1679 	else
1680 		lc = ((rx_ring->count / 64) * 2) + 1;
1681 
1682 	for (j = 0; j <= lc; j++) { /* loop count loop */
1683 		/* reset count of good packets */
1684 		good_cnt = 0;
1685 
1686 		/* place 64 packets on the transmit queue*/
1687 		for (i = 0; i < 64; i++) {
1688 			skb_get(skb);
1689 			tx_ret_val = igb_xmit_frame_ring_adv(skb, tx_ring);
1690 			if (tx_ret_val == NETDEV_TX_OK)
1691 				good_cnt++;
1692 		}
1693 
1694 		if (good_cnt != 64) {
1695 			ret_val = 12;
1696 			break;
1697 		}
1698 
1699 		/* allow 200 milliseconds for packets to go from tx to rx */
1700 		msleep(200);
1701 
1702 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1703 		if (good_cnt != 64) {
1704 			ret_val = 13;
1705 			break;
1706 		}
1707 	} /* end loop count loop */
1708 
1709 	/* free the original skb */
1710 	kfree_skb(skb);
1711 
1712 	return ret_val;
1713 }
1714 
igb_loopback_test(struct igb_adapter * adapter,u64 * data)1715 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1716 {
1717 	/* PHY loopback cannot be performed if SoL/IDER
1718 	 * sessions are active */
1719 	if (igb_check_reset_block(&adapter->hw)) {
1720 		dev_err(&adapter->pdev->dev,
1721 			"Cannot do PHY loopback test "
1722 			"when SoL/IDER is active.\n");
1723 		*data = 0;
1724 		goto out;
1725 	}
1726 	*data = igb_setup_desc_rings(adapter);
1727 	if (*data)
1728 		goto out;
1729 	*data = igb_setup_loopback_test(adapter);
1730 	if (*data)
1731 		goto err_loopback;
1732 	*data = igb_run_loopback_test(adapter);
1733 	igb_loopback_cleanup(adapter);
1734 
1735 err_loopback:
1736 	igb_free_desc_rings(adapter);
1737 out:
1738 	return *data;
1739 }
1740 
igb_link_test(struct igb_adapter * adapter,u64 * data)1741 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1742 {
1743 	struct e1000_hw *hw = &adapter->hw;
1744 	*data = 0;
1745 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1746 		int i = 0;
1747 		hw->mac.serdes_has_link = false;
1748 
1749 		/* On some blade server designs, link establishment
1750 		 * could take as long as 2-3 minutes */
1751 		do {
1752 			hw->mac.ops.check_for_link(&adapter->hw);
1753 			if (hw->mac.serdes_has_link)
1754 				return *data;
1755 			msleep(20);
1756 		} while (i++ < 3750);
1757 
1758 		*data = 1;
1759 	} else {
1760 		hw->mac.ops.check_for_link(&adapter->hw);
1761 		if (hw->mac.autoneg)
1762 			msleep(4000);
1763 
1764 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1765 			*data = 1;
1766 	}
1767 	return *data;
1768 }
1769 
igb_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1770 static void igb_diag_test(struct net_device *netdev,
1771 			  struct ethtool_test *eth_test, u64 *data)
1772 {
1773 	struct igb_adapter *adapter = netdev_priv(netdev);
1774 	u16 autoneg_advertised;
1775 	u8 forced_speed_duplex, autoneg;
1776 	bool if_running = netif_running(netdev);
1777 
1778 	set_bit(__IGB_TESTING, &adapter->state);
1779 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1780 		/* Offline tests */
1781 
1782 		/* save speed, duplex, autoneg settings */
1783 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1784 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1785 		autoneg = adapter->hw.mac.autoneg;
1786 
1787 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1788 
1789 		/* power up link for link test */
1790 		igb_power_up_link(adapter);
1791 
1792 		/* Link test performed before hardware reset so autoneg doesn't
1793 		 * interfere with test result */
1794 		if (igb_link_test(adapter, &data[4]))
1795 			eth_test->flags |= ETH_TEST_FL_FAILED;
1796 
1797 		if (if_running)
1798 			/* indicate we're in test mode */
1799 			dev_close(netdev);
1800 		else
1801 			igb_reset(adapter);
1802 
1803 		if (igb_reg_test(adapter, &data[0]))
1804 			eth_test->flags |= ETH_TEST_FL_FAILED;
1805 
1806 		igb_reset(adapter);
1807 		if (igb_eeprom_test(adapter, &data[1]))
1808 			eth_test->flags |= ETH_TEST_FL_FAILED;
1809 
1810 		igb_reset(adapter);
1811 		if (igb_intr_test(adapter, &data[2]))
1812 			eth_test->flags |= ETH_TEST_FL_FAILED;
1813 
1814 		igb_reset(adapter);
1815 		/* power up link for loopback test */
1816 		igb_power_up_link(adapter);
1817 		if (igb_loopback_test(adapter, &data[3]))
1818 			eth_test->flags |= ETH_TEST_FL_FAILED;
1819 
1820 		/* restore speed, duplex, autoneg settings */
1821 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1822 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1823 		adapter->hw.mac.autoneg = autoneg;
1824 
1825 		/* force this routine to wait until autoneg complete/timeout */
1826 		adapter->hw.phy.autoneg_wait_to_complete = true;
1827 		igb_reset(adapter);
1828 		adapter->hw.phy.autoneg_wait_to_complete = false;
1829 
1830 		clear_bit(__IGB_TESTING, &adapter->state);
1831 		if (if_running)
1832 			dev_open(netdev);
1833 	} else {
1834 		dev_info(&adapter->pdev->dev, "online testing starting\n");
1835 
1836 		/* PHY is powered down when interface is down */
1837 		if (if_running && igb_link_test(adapter, &data[4]))
1838 			eth_test->flags |= ETH_TEST_FL_FAILED;
1839 		else
1840 			data[4] = 0;
1841 
1842 		/* Online tests aren't run; pass by default */
1843 		data[0] = 0;
1844 		data[1] = 0;
1845 		data[2] = 0;
1846 		data[3] = 0;
1847 
1848 		clear_bit(__IGB_TESTING, &adapter->state);
1849 	}
1850 	msleep_interruptible(4 * 1000);
1851 }
1852 
igb_wol_exclusion(struct igb_adapter * adapter,struct ethtool_wolinfo * wol)1853 static int igb_wol_exclusion(struct igb_adapter *adapter,
1854 			     struct ethtool_wolinfo *wol)
1855 {
1856 	struct e1000_hw *hw = &adapter->hw;
1857 	int retval = 1; /* fail by default */
1858 
1859 	switch (hw->device_id) {
1860 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
1861 		/* WoL not supported */
1862 		wol->supported = 0;
1863 		break;
1864 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
1865 	case E1000_DEV_ID_82576_FIBER:
1866 	case E1000_DEV_ID_82576_SERDES:
1867 		/* Wake events not supported on port B */
1868 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1869 			wol->supported = 0;
1870 			break;
1871 		}
1872 		/* return success for non excluded adapter ports */
1873 		retval = 0;
1874 		break;
1875 	case E1000_DEV_ID_82576_QUAD_COPPER:
1876 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1877 		/* quad port adapters only support WoL on port A */
1878 		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1879 			wol->supported = 0;
1880 			break;
1881 		}
1882 		/* return success for non excluded adapter ports */
1883 		retval = 0;
1884 		break;
1885 	default:
1886 		/* dual port cards only support WoL on port A from now on
1887 		 * unless it was enabled in the eeprom for port B
1888 		 * so exclude FUNC_1 ports from having WoL enabled */
1889 		if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1890 		    !adapter->eeprom_wol) {
1891 			wol->supported = 0;
1892 			break;
1893 		}
1894 
1895 		retval = 0;
1896 	}
1897 
1898 	return retval;
1899 }
1900 
igb_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1901 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1902 {
1903 	struct igb_adapter *adapter = netdev_priv(netdev);
1904 
1905 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1906 	                 WAKE_BCAST | WAKE_MAGIC |
1907 	                 WAKE_PHY;
1908 	wol->wolopts = 0;
1909 
1910 	/* this function will set ->supported = 0 and return 1 if wol is not
1911 	 * supported by this hardware */
1912 	if (igb_wol_exclusion(adapter, wol) ||
1913 	    !device_can_wakeup(&adapter->pdev->dev))
1914 		return;
1915 
1916 	/* apply any specific unsupported masks here */
1917 	switch (adapter->hw.device_id) {
1918 	default:
1919 		break;
1920 	}
1921 
1922 	if (adapter->wol & E1000_WUFC_EX)
1923 		wol->wolopts |= WAKE_UCAST;
1924 	if (adapter->wol & E1000_WUFC_MC)
1925 		wol->wolopts |= WAKE_MCAST;
1926 	if (adapter->wol & E1000_WUFC_BC)
1927 		wol->wolopts |= WAKE_BCAST;
1928 	if (adapter->wol & E1000_WUFC_MAG)
1929 		wol->wolopts |= WAKE_MAGIC;
1930 	if (adapter->wol & E1000_WUFC_LNKC)
1931 		wol->wolopts |= WAKE_PHY;
1932 }
1933 
igb_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1934 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1935 {
1936 	struct igb_adapter *adapter = netdev_priv(netdev);
1937 
1938 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
1939 		return -EOPNOTSUPP;
1940 
1941 	if (igb_wol_exclusion(adapter, wol) ||
1942 	    !device_can_wakeup(&adapter->pdev->dev))
1943 		return wol->wolopts ? -EOPNOTSUPP : 0;
1944 
1945 	/* these settings will always override what we currently have */
1946 	adapter->wol = 0;
1947 
1948 	if (wol->wolopts & WAKE_UCAST)
1949 		adapter->wol |= E1000_WUFC_EX;
1950 	if (wol->wolopts & WAKE_MCAST)
1951 		adapter->wol |= E1000_WUFC_MC;
1952 	if (wol->wolopts & WAKE_BCAST)
1953 		adapter->wol |= E1000_WUFC_BC;
1954 	if (wol->wolopts & WAKE_MAGIC)
1955 		adapter->wol |= E1000_WUFC_MAG;
1956 	if (wol->wolopts & WAKE_PHY)
1957 		adapter->wol |= E1000_WUFC_LNKC;
1958 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1959 
1960 	return 0;
1961 }
1962 
1963 /* bit defines for adapter->led_status */
1964 #define IGB_LED_ON		0
1965 
igb_phys_id(struct net_device * netdev,u32 data)1966 static int igb_phys_id(struct net_device *netdev, u32 data)
1967 {
1968 	struct igb_adapter *adapter = netdev_priv(netdev);
1969 	struct e1000_hw *hw = &adapter->hw;
1970 	unsigned long timeout;
1971 
1972 	timeout = data * 1000;
1973 
1974 	/*
1975 	 *  msleep_interruptable only accepts unsigned int so we are limited
1976 	 * in how long a duration we can wait
1977 	 */
1978 	if (!timeout || timeout > UINT_MAX)
1979 		timeout = UINT_MAX;
1980 
1981 	igb_blink_led(hw);
1982 	msleep_interruptible(timeout);
1983 
1984 	igb_led_off(hw);
1985 	clear_bit(IGB_LED_ON, &adapter->led_status);
1986 	igb_cleanup_led(hw);
1987 
1988 	return 0;
1989 }
1990 
igb_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)1991 static int igb_set_coalesce(struct net_device *netdev,
1992 			    struct ethtool_coalesce *ec)
1993 {
1994 	struct igb_adapter *adapter = netdev_priv(netdev);
1995 	int i;
1996 
1997 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1998 	    ((ec->rx_coalesce_usecs > 3) &&
1999 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2000 	    (ec->rx_coalesce_usecs == 2))
2001 		return -EINVAL;
2002 
2003 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2004 	    ((ec->tx_coalesce_usecs > 3) &&
2005 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2006 	    (ec->tx_coalesce_usecs == 2))
2007 		return -EINVAL;
2008 
2009 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2010 		return -EINVAL;
2011 
2012 	/* If ITR is disabled, disable DMAC */
2013 	if (ec->rx_coalesce_usecs == 0) {
2014 		if (adapter->flags & IGB_FLAG_DMAC)
2015 			adapter->flags &= ~IGB_FLAG_DMAC;
2016 	}
2017 
2018 	/* convert to rate of irq's per second */
2019 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2020 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2021 	else
2022 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2023 
2024 	/* convert to rate of irq's per second */
2025 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2026 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2027 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2028 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2029 	else
2030 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2031 
2032 	for (i = 0; i < adapter->num_q_vectors; i++) {
2033 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2034 		if (q_vector->rx_ring)
2035 			q_vector->itr_val = adapter->rx_itr_setting;
2036 		else
2037 			q_vector->itr_val = adapter->tx_itr_setting;
2038 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2039 			q_vector->itr_val = IGB_START_ITR;
2040 		q_vector->set_itr = 1;
2041 	}
2042 
2043 	return 0;
2044 }
2045 
igb_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)2046 static int igb_get_coalesce(struct net_device *netdev,
2047 			    struct ethtool_coalesce *ec)
2048 {
2049 	struct igb_adapter *adapter = netdev_priv(netdev);
2050 
2051 	if (adapter->rx_itr_setting <= 3)
2052 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2053 	else
2054 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2055 
2056 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2057 		if (adapter->tx_itr_setting <= 3)
2058 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2059 		else
2060 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2061 	}
2062 
2063 	return 0;
2064 }
2065 
igb_nway_reset(struct net_device * netdev)2066 static int igb_nway_reset(struct net_device *netdev)
2067 {
2068 	struct igb_adapter *adapter = netdev_priv(netdev);
2069 	if (netif_running(netdev))
2070 		igb_reinit_locked(adapter);
2071 	return 0;
2072 }
2073 
igb_get_sset_count(struct net_device * netdev,int sset)2074 static int igb_get_sset_count(struct net_device *netdev, int sset)
2075 {
2076 	switch (sset) {
2077 	case ETH_SS_STATS:
2078 		return IGB_STATS_LEN;
2079 	case ETH_SS_TEST:
2080 		return IGB_TEST_LEN;
2081 	default:
2082 		return -ENOTSUPP;
2083 	}
2084 }
2085 
igb_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2086 static void igb_get_ethtool_stats(struct net_device *netdev,
2087 				  struct ethtool_stats *stats, u64 *data)
2088 {
2089 	struct igb_adapter *adapter = netdev_priv(netdev);
2090 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2091 	unsigned int start;
2092 	struct igb_ring *ring;
2093 	int i, j;
2094 	char *p;
2095 
2096 	spin_lock(&adapter->stats64_lock);
2097 	igb_update_stats(adapter, net_stats);
2098 
2099 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2100 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2101 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2102 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2103 	}
2104 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2105 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2106 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2107 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2108 	}
2109 	for (j = 0; j < adapter->num_tx_queues; j++) {
2110 		u64	restart2;
2111 
2112 		ring = adapter->tx_ring[j];
2113 		do {
2114 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2115 			data[i]   = ring->tx_stats.packets;
2116 			data[i+1] = ring->tx_stats.bytes;
2117 			data[i+2] = ring->tx_stats.restart_queue;
2118 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2119 		do {
2120 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2121 			restart2  = ring->tx_stats.restart_queue2;
2122 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2123 		data[i+2] += restart2;
2124 
2125 		i += IGB_TX_QUEUE_STATS_LEN;
2126 	}
2127 	for (j = 0; j < adapter->num_rx_queues; j++) {
2128 		ring = adapter->rx_ring[j];
2129 		do {
2130 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2131 			data[i]   = ring->rx_stats.packets;
2132 			data[i+1] = ring->rx_stats.bytes;
2133 			data[i+2] = ring->rx_stats.drops;
2134 			data[i+3] = ring->rx_stats.csum_err;
2135 			data[i+4] = ring->rx_stats.alloc_failed;
2136 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2137 		i += IGB_RX_QUEUE_STATS_LEN;
2138 	}
2139 	spin_unlock(&adapter->stats64_lock);
2140 }
2141 
igb_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2142 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2143 {
2144 	struct igb_adapter *adapter = netdev_priv(netdev);
2145 	u8 *p = data;
2146 	int i;
2147 
2148 	switch (stringset) {
2149 	case ETH_SS_TEST:
2150 		memcpy(data, *igb_gstrings_test,
2151 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2152 		break;
2153 	case ETH_SS_STATS:
2154 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2155 			memcpy(p, igb_gstrings_stats[i].stat_string,
2156 			       ETH_GSTRING_LEN);
2157 			p += ETH_GSTRING_LEN;
2158 		}
2159 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2160 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2161 			       ETH_GSTRING_LEN);
2162 			p += ETH_GSTRING_LEN;
2163 		}
2164 		for (i = 0; i < adapter->num_tx_queues; i++) {
2165 			sprintf(p, "tx_queue_%u_packets", i);
2166 			p += ETH_GSTRING_LEN;
2167 			sprintf(p, "tx_queue_%u_bytes", i);
2168 			p += ETH_GSTRING_LEN;
2169 			sprintf(p, "tx_queue_%u_restart", i);
2170 			p += ETH_GSTRING_LEN;
2171 		}
2172 		for (i = 0; i < adapter->num_rx_queues; i++) {
2173 			sprintf(p, "rx_queue_%u_packets", i);
2174 			p += ETH_GSTRING_LEN;
2175 			sprintf(p, "rx_queue_%u_bytes", i);
2176 			p += ETH_GSTRING_LEN;
2177 			sprintf(p, "rx_queue_%u_drops", i);
2178 			p += ETH_GSTRING_LEN;
2179 			sprintf(p, "rx_queue_%u_csum_err", i);
2180 			p += ETH_GSTRING_LEN;
2181 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2182 			p += ETH_GSTRING_LEN;
2183 		}
2184 /*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2185 		break;
2186 	}
2187 }
2188 
2189 static const struct ethtool_ops igb_ethtool_ops = {
2190 	.get_settings           = igb_get_settings,
2191 	.set_settings           = igb_set_settings,
2192 	.get_drvinfo            = igb_get_drvinfo,
2193 	.get_regs_len           = igb_get_regs_len,
2194 	.get_regs               = igb_get_regs,
2195 	.get_wol                = igb_get_wol,
2196 	.set_wol                = igb_set_wol,
2197 	.get_msglevel           = igb_get_msglevel,
2198 	.set_msglevel           = igb_set_msglevel,
2199 	.nway_reset             = igb_nway_reset,
2200 	.get_link               = igb_get_link,
2201 	.get_eeprom_len         = igb_get_eeprom_len,
2202 	.get_eeprom             = igb_get_eeprom,
2203 	.set_eeprom             = igb_set_eeprom,
2204 	.get_ringparam          = igb_get_ringparam,
2205 	.set_ringparam          = igb_set_ringparam,
2206 	.get_pauseparam         = igb_get_pauseparam,
2207 	.set_pauseparam         = igb_set_pauseparam,
2208 	.get_rx_csum            = igb_get_rx_csum,
2209 	.set_rx_csum            = igb_set_rx_csum,
2210 	.get_tx_csum            = igb_get_tx_csum,
2211 	.set_tx_csum            = igb_set_tx_csum,
2212 	.get_sg                 = ethtool_op_get_sg,
2213 	.set_sg                 = ethtool_op_set_sg,
2214 	.get_tso                = ethtool_op_get_tso,
2215 	.set_tso                = igb_set_tso,
2216 	.self_test              = igb_diag_test,
2217 	.get_strings            = igb_get_strings,
2218 	.phys_id                = igb_phys_id,
2219 	.get_sset_count         = igb_get_sset_count,
2220 	.get_ethtool_stats      = igb_get_ethtool_stats,
2221 	.get_coalesce           = igb_get_coalesce,
2222 	.set_coalesce           = igb_set_coalesce,
2223 };
2224 
igb_set_ethtool_ops(struct net_device * netdev)2225 void igb_set_ethtool_ops(struct net_device *netdev)
2226 {
2227 	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2228 }
2229