1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 /* e1000_82575
5 * e1000_82576
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/types.h>
11 #include <linux/if_ether.h>
12 #include <linux/i2c.h>
13
14 #include "e1000_mac.h"
15 #include "e1000_82575.h"
16 #include "e1000_i210.h"
17 #include "igb.h"
18
19 static s32 igb_get_invariants_82575(struct e1000_hw *);
20 static s32 igb_acquire_phy_82575(struct e1000_hw *);
21 static void igb_release_phy_82575(struct e1000_hw *);
22 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
23 static void igb_release_nvm_82575(struct e1000_hw *);
24 static s32 igb_check_for_link_82575(struct e1000_hw *);
25 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
26 static s32 igb_init_hw_82575(struct e1000_hw *);
27 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
28 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
29 static s32 igb_reset_hw_82575(struct e1000_hw *);
30 static s32 igb_reset_hw_82580(struct e1000_hw *);
31 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
32 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
33 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
34 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
35 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
36 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
37 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
38 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
39 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
40 u16 *);
41 static s32 igb_get_phy_id_82575(struct e1000_hw *);
42 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
43 static bool igb_sgmii_active_82575(struct e1000_hw *);
44 static s32 igb_reset_init_script_82575(struct e1000_hw *);
45 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
46 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
47 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
48 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
49 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
50 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
51 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
52 static const u16 e1000_82580_rxpbs_table[] = {
53 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
54
55 /* Due to a hw errata, if the host tries to configure the VFTA register
56 * while performing queries from the BMC or DMA, then the VFTA in some
57 * cases won't be written.
58 */
59
60 /**
61 * igb_write_vfta_i350 - Write value to VLAN filter table
62 * @hw: pointer to the HW structure
63 * @offset: register offset in VLAN filter table
64 * @value: register value written to VLAN filter table
65 *
66 * Writes value at the given offset in the register array which stores
67 * the VLAN filter table.
68 **/
igb_write_vfta_i350(struct e1000_hw * hw,u32 offset,u32 value)69 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
70 {
71 struct igb_adapter *adapter = hw->back;
72 int i;
73
74 for (i = 10; i--;)
75 array_wr32(E1000_VFTA, offset, value);
76
77 wrfl();
78 adapter->shadow_vfta[offset] = value;
79 }
80
81 /**
82 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
83 * @hw: pointer to the HW structure
84 *
85 * Called to determine if the I2C pins are being used for I2C or as an
86 * external MDIO interface since the two options are mutually exclusive.
87 **/
igb_sgmii_uses_mdio_82575(struct e1000_hw * hw)88 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
89 {
90 u32 reg = 0;
91 bool ext_mdio = false;
92
93 switch (hw->mac.type) {
94 case e1000_82575:
95 case e1000_82576:
96 reg = rd32(E1000_MDIC);
97 ext_mdio = !!(reg & E1000_MDIC_DEST);
98 break;
99 case e1000_82580:
100 case e1000_i350:
101 case e1000_i354:
102 case e1000_i210:
103 case e1000_i211:
104 reg = rd32(E1000_MDICNFG);
105 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106 break;
107 default:
108 break;
109 }
110 return ext_mdio;
111 }
112
113 /**
114 * igb_check_for_link_media_swap - Check which M88E1112 interface linked
115 * @hw: pointer to the HW structure
116 *
117 * Poll the M88E1112 interfaces to see which interface achieved link.
118 */
igb_check_for_link_media_swap(struct e1000_hw * hw)119 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
120 {
121 struct e1000_phy_info *phy = &hw->phy;
122 s32 ret_val;
123 u16 data;
124 u8 port = 0;
125
126 /* Check the copper medium. */
127 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
128 if (ret_val)
129 return ret_val;
130
131 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
132 if (ret_val)
133 return ret_val;
134
135 if (data & E1000_M88E1112_STATUS_LINK)
136 port = E1000_MEDIA_PORT_COPPER;
137
138 /* Check the other medium. */
139 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
140 if (ret_val)
141 return ret_val;
142
143 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
144 if (ret_val)
145 return ret_val;
146
147
148 if (data & E1000_M88E1112_STATUS_LINK)
149 port = E1000_MEDIA_PORT_OTHER;
150
151 /* Determine if a swap needs to happen. */
152 if (port && (hw->dev_spec._82575.media_port != port)) {
153 hw->dev_spec._82575.media_port = port;
154 hw->dev_spec._82575.media_changed = true;
155 }
156
157 if (port == E1000_MEDIA_PORT_COPPER) {
158 /* reset page to 0 */
159 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
160 if (ret_val)
161 return ret_val;
162 igb_check_for_link_82575(hw);
163 } else {
164 igb_check_for_link_82575(hw);
165 /* reset page to 0 */
166 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
167 if (ret_val)
168 return ret_val;
169 }
170
171 return 0;
172 }
173
174 /**
175 * igb_init_phy_params_82575 - Init PHY func ptrs.
176 * @hw: pointer to the HW structure
177 **/
igb_init_phy_params_82575(struct e1000_hw * hw)178 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
179 {
180 struct e1000_phy_info *phy = &hw->phy;
181 s32 ret_val = 0;
182 u32 ctrl_ext;
183
184 if (hw->phy.media_type != e1000_media_type_copper) {
185 phy->type = e1000_phy_none;
186 goto out;
187 }
188
189 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
190 phy->reset_delay_us = 100;
191
192 ctrl_ext = rd32(E1000_CTRL_EXT);
193
194 if (igb_sgmii_active_82575(hw)) {
195 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
196 ctrl_ext |= E1000_CTRL_I2C_ENA;
197 } else {
198 phy->ops.reset = igb_phy_hw_reset;
199 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
200 }
201
202 wr32(E1000_CTRL_EXT, ctrl_ext);
203 igb_reset_mdicnfg_82580(hw);
204
205 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
206 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
207 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
208 } else {
209 switch (hw->mac.type) {
210 case e1000_82580:
211 case e1000_i350:
212 case e1000_i354:
213 case e1000_i210:
214 case e1000_i211:
215 phy->ops.read_reg = igb_read_phy_reg_82580;
216 phy->ops.write_reg = igb_write_phy_reg_82580;
217 break;
218 default:
219 phy->ops.read_reg = igb_read_phy_reg_igp;
220 phy->ops.write_reg = igb_write_phy_reg_igp;
221 }
222 }
223
224 /* set lan id */
225 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
226 E1000_STATUS_FUNC_SHIFT;
227
228 /* Set phy->phy_addr and phy->id. */
229 ret_val = igb_get_phy_id_82575(hw);
230 if (ret_val)
231 return ret_val;
232
233 /* Verify phy id and set remaining function pointers */
234 switch (phy->id) {
235 case M88E1543_E_PHY_ID:
236 case M88E1512_E_PHY_ID:
237 case I347AT4_E_PHY_ID:
238 case M88E1112_E_PHY_ID:
239 case M88E1111_I_PHY_ID:
240 phy->type = e1000_phy_m88;
241 phy->ops.check_polarity = igb_check_polarity_m88;
242 phy->ops.get_phy_info = igb_get_phy_info_m88;
243 if (phy->id != M88E1111_I_PHY_ID)
244 phy->ops.get_cable_length =
245 igb_get_cable_length_m88_gen2;
246 else
247 phy->ops.get_cable_length = igb_get_cable_length_m88;
248 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
249 /* Check if this PHY is configured for media swap. */
250 if (phy->id == M88E1112_E_PHY_ID) {
251 u16 data;
252
253 ret_val = phy->ops.write_reg(hw,
254 E1000_M88E1112_PAGE_ADDR,
255 2);
256 if (ret_val)
257 goto out;
258
259 ret_val = phy->ops.read_reg(hw,
260 E1000_M88E1112_MAC_CTRL_1,
261 &data);
262 if (ret_val)
263 goto out;
264
265 data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
266 E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
267 if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
268 data == E1000_M88E1112_AUTO_COPPER_BASEX)
269 hw->mac.ops.check_for_link =
270 igb_check_for_link_media_swap;
271 }
272 if (phy->id == M88E1512_E_PHY_ID) {
273 ret_val = igb_initialize_M88E1512_phy(hw);
274 if (ret_val)
275 goto out;
276 }
277 if (phy->id == M88E1543_E_PHY_ID) {
278 ret_val = igb_initialize_M88E1543_phy(hw);
279 if (ret_val)
280 goto out;
281 }
282 break;
283 case IGP03E1000_E_PHY_ID:
284 phy->type = e1000_phy_igp_3;
285 phy->ops.get_phy_info = igb_get_phy_info_igp;
286 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
287 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
288 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
289 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
290 break;
291 case I82580_I_PHY_ID:
292 case I350_I_PHY_ID:
293 phy->type = e1000_phy_82580;
294 phy->ops.force_speed_duplex =
295 igb_phy_force_speed_duplex_82580;
296 phy->ops.get_cable_length = igb_get_cable_length_82580;
297 phy->ops.get_phy_info = igb_get_phy_info_82580;
298 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
299 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
300 break;
301 case I210_I_PHY_ID:
302 phy->type = e1000_phy_i210;
303 phy->ops.check_polarity = igb_check_polarity_m88;
304 phy->ops.get_cfg_done = igb_get_cfg_done_i210;
305 phy->ops.get_phy_info = igb_get_phy_info_m88;
306 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
307 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
308 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
309 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
310 break;
311 case BCM54616_E_PHY_ID:
312 phy->type = e1000_phy_bcm54616;
313 break;
314 default:
315 ret_val = -E1000_ERR_PHY;
316 goto out;
317 }
318
319 out:
320 return ret_val;
321 }
322
323 /**
324 * igb_init_nvm_params_82575 - Init NVM func ptrs.
325 * @hw: pointer to the HW structure
326 **/
igb_init_nvm_params_82575(struct e1000_hw * hw)327 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
328 {
329 struct e1000_nvm_info *nvm = &hw->nvm;
330 u32 eecd = rd32(E1000_EECD);
331 u16 size;
332
333 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
334 E1000_EECD_SIZE_EX_SHIFT);
335
336 /* Added to a constant, "size" becomes the left-shift value
337 * for setting word_size.
338 */
339 size += NVM_WORD_SIZE_BASE_SHIFT;
340
341 /* Just in case size is out of range, cap it to the largest
342 * EEPROM size supported
343 */
344 if (size > 15)
345 size = 15;
346
347 nvm->word_size = BIT(size);
348 nvm->opcode_bits = 8;
349 nvm->delay_usec = 1;
350
351 switch (nvm->override) {
352 case e1000_nvm_override_spi_large:
353 nvm->page_size = 32;
354 nvm->address_bits = 16;
355 break;
356 case e1000_nvm_override_spi_small:
357 nvm->page_size = 8;
358 nvm->address_bits = 8;
359 break;
360 default:
361 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
362 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
363 16 : 8;
364 break;
365 }
366 if (nvm->word_size == BIT(15))
367 nvm->page_size = 128;
368
369 nvm->type = e1000_nvm_eeprom_spi;
370
371 /* NVM Function Pointers */
372 nvm->ops.acquire = igb_acquire_nvm_82575;
373 nvm->ops.release = igb_release_nvm_82575;
374 nvm->ops.write = igb_write_nvm_spi;
375 nvm->ops.validate = igb_validate_nvm_checksum;
376 nvm->ops.update = igb_update_nvm_checksum;
377 if (nvm->word_size < BIT(15))
378 nvm->ops.read = igb_read_nvm_eerd;
379 else
380 nvm->ops.read = igb_read_nvm_spi;
381
382 /* override generic family function pointers for specific descendants */
383 switch (hw->mac.type) {
384 case e1000_82580:
385 nvm->ops.validate = igb_validate_nvm_checksum_82580;
386 nvm->ops.update = igb_update_nvm_checksum_82580;
387 break;
388 case e1000_i354:
389 case e1000_i350:
390 nvm->ops.validate = igb_validate_nvm_checksum_i350;
391 nvm->ops.update = igb_update_nvm_checksum_i350;
392 break;
393 default:
394 break;
395 }
396
397 return 0;
398 }
399
400 /**
401 * igb_init_mac_params_82575 - Init MAC func ptrs.
402 * @hw: pointer to the HW structure
403 **/
igb_init_mac_params_82575(struct e1000_hw * hw)404 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
405 {
406 struct e1000_mac_info *mac = &hw->mac;
407 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
408
409 /* Set mta register count */
410 mac->mta_reg_count = 128;
411 /* Set uta register count */
412 mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
413 /* Set rar entry count */
414 switch (mac->type) {
415 case e1000_82576:
416 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
417 break;
418 case e1000_82580:
419 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
420 break;
421 case e1000_i350:
422 case e1000_i354:
423 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
424 break;
425 default:
426 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
427 break;
428 }
429 /* reset */
430 if (mac->type >= e1000_82580)
431 mac->ops.reset_hw = igb_reset_hw_82580;
432 else
433 mac->ops.reset_hw = igb_reset_hw_82575;
434
435 if (mac->type >= e1000_i210) {
436 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
437 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
438
439 } else {
440 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
441 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
442 }
443
444 if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
445 mac->ops.write_vfta = igb_write_vfta_i350;
446 else
447 mac->ops.write_vfta = igb_write_vfta;
448
449 /* Set if part includes ASF firmware */
450 mac->asf_firmware_present = true;
451 /* Set if manageability features are enabled. */
452 mac->arc_subsystem_valid =
453 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
454 ? true : false;
455 /* enable EEE on i350 parts and later parts */
456 if (mac->type >= e1000_i350)
457 dev_spec->eee_disable = false;
458 else
459 dev_spec->eee_disable = true;
460 /* Allow a single clear of the SW semaphore on I210 and newer */
461 if (mac->type >= e1000_i210)
462 dev_spec->clear_semaphore_once = true;
463 /* physical interface link setup */
464 mac->ops.setup_physical_interface =
465 (hw->phy.media_type == e1000_media_type_copper)
466 ? igb_setup_copper_link_82575
467 : igb_setup_serdes_link_82575;
468
469 if (mac->type == e1000_82580 || mac->type == e1000_i350) {
470 switch (hw->device_id) {
471 /* feature not supported on these id's */
472 case E1000_DEV_ID_DH89XXCC_SGMII:
473 case E1000_DEV_ID_DH89XXCC_SERDES:
474 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
475 case E1000_DEV_ID_DH89XXCC_SFP:
476 break;
477 default:
478 hw->dev_spec._82575.mas_capable = true;
479 break;
480 }
481 }
482 return 0;
483 }
484
485 /**
486 * igb_set_sfp_media_type_82575 - derives SFP module media type.
487 * @hw: pointer to the HW structure
488 *
489 * The media type is chosen based on SFP module.
490 * compatibility flags retrieved from SFP ID EEPROM.
491 **/
igb_set_sfp_media_type_82575(struct e1000_hw * hw)492 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
493 {
494 s32 ret_val = E1000_ERR_CONFIG;
495 u32 ctrl_ext = 0;
496 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
497 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
498 u8 tranceiver_type = 0;
499 s32 timeout = 3;
500
501 /* Turn I2C interface ON and power on sfp cage */
502 ctrl_ext = rd32(E1000_CTRL_EXT);
503 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
504 wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
505
506 wrfl();
507
508 /* Read SFP module data */
509 while (timeout) {
510 ret_val = igb_read_sfp_data_byte(hw,
511 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
512 &tranceiver_type);
513 if (ret_val == 0)
514 break;
515 msleep(100);
516 timeout--;
517 }
518 if (ret_val != 0)
519 goto out;
520
521 ret_val = igb_read_sfp_data_byte(hw,
522 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
523 (u8 *)eth_flags);
524 if (ret_val != 0)
525 goto out;
526
527 /* Check if there is some SFP module plugged and powered */
528 if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
529 (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
530 dev_spec->module_plugged = true;
531 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
532 hw->phy.media_type = e1000_media_type_internal_serdes;
533 } else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
534 dev_spec->sgmii_active = true;
535 hw->phy.media_type = e1000_media_type_internal_serdes;
536 } else if (eth_flags->e1000_base_t) {
537 dev_spec->sgmii_active = true;
538 hw->phy.media_type = e1000_media_type_copper;
539 } else {
540 hw->phy.media_type = e1000_media_type_unknown;
541 hw_dbg("PHY module has not been recognized\n");
542 goto out;
543 }
544 } else {
545 hw->phy.media_type = e1000_media_type_unknown;
546 }
547 ret_val = 0;
548 out:
549 /* Restore I2C interface setting */
550 wr32(E1000_CTRL_EXT, ctrl_ext);
551 return ret_val;
552 }
553
igb_get_invariants_82575(struct e1000_hw * hw)554 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
555 {
556 struct e1000_mac_info *mac = &hw->mac;
557 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
558 s32 ret_val;
559 u32 ctrl_ext = 0;
560 u32 link_mode = 0;
561
562 switch (hw->device_id) {
563 case E1000_DEV_ID_82575EB_COPPER:
564 case E1000_DEV_ID_82575EB_FIBER_SERDES:
565 case E1000_DEV_ID_82575GB_QUAD_COPPER:
566 mac->type = e1000_82575;
567 break;
568 case E1000_DEV_ID_82576:
569 case E1000_DEV_ID_82576_NS:
570 case E1000_DEV_ID_82576_NS_SERDES:
571 case E1000_DEV_ID_82576_FIBER:
572 case E1000_DEV_ID_82576_SERDES:
573 case E1000_DEV_ID_82576_QUAD_COPPER:
574 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
575 case E1000_DEV_ID_82576_SERDES_QUAD:
576 mac->type = e1000_82576;
577 break;
578 case E1000_DEV_ID_82580_COPPER:
579 case E1000_DEV_ID_82580_FIBER:
580 case E1000_DEV_ID_82580_QUAD_FIBER:
581 case E1000_DEV_ID_82580_SERDES:
582 case E1000_DEV_ID_82580_SGMII:
583 case E1000_DEV_ID_82580_COPPER_DUAL:
584 case E1000_DEV_ID_DH89XXCC_SGMII:
585 case E1000_DEV_ID_DH89XXCC_SERDES:
586 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
587 case E1000_DEV_ID_DH89XXCC_SFP:
588 mac->type = e1000_82580;
589 break;
590 case E1000_DEV_ID_I350_COPPER:
591 case E1000_DEV_ID_I350_FIBER:
592 case E1000_DEV_ID_I350_SERDES:
593 case E1000_DEV_ID_I350_SGMII:
594 mac->type = e1000_i350;
595 break;
596 case E1000_DEV_ID_I210_COPPER:
597 case E1000_DEV_ID_I210_FIBER:
598 case E1000_DEV_ID_I210_SERDES:
599 case E1000_DEV_ID_I210_SGMII:
600 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
601 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
602 mac->type = e1000_i210;
603 break;
604 case E1000_DEV_ID_I211_COPPER:
605 mac->type = e1000_i211;
606 break;
607 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
608 case E1000_DEV_ID_I354_SGMII:
609 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
610 mac->type = e1000_i354;
611 break;
612 default:
613 return -E1000_ERR_MAC_INIT;
614 }
615
616 /* Set media type */
617 /* The 82575 uses bits 22:23 for link mode. The mode can be changed
618 * based on the EEPROM. We cannot rely upon device ID. There
619 * is no distinguishable difference between fiber and internal
620 * SerDes mode on the 82575. There can be an external PHY attached
621 * on the SGMII interface. For this, we'll set sgmii_active to true.
622 */
623 hw->phy.media_type = e1000_media_type_copper;
624 dev_spec->sgmii_active = false;
625 dev_spec->module_plugged = false;
626
627 ctrl_ext = rd32(E1000_CTRL_EXT);
628
629 link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
630 switch (link_mode) {
631 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
632 hw->phy.media_type = e1000_media_type_internal_serdes;
633 break;
634 case E1000_CTRL_EXT_LINK_MODE_SGMII:
635 /* Get phy control interface type set (MDIO vs. I2C)*/
636 if (igb_sgmii_uses_mdio_82575(hw)) {
637 hw->phy.media_type = e1000_media_type_copper;
638 dev_spec->sgmii_active = true;
639 break;
640 }
641 fallthrough; /* for I2C based SGMII */
642 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
643 /* read media type from SFP EEPROM */
644 ret_val = igb_set_sfp_media_type_82575(hw);
645 if ((ret_val != 0) ||
646 (hw->phy.media_type == e1000_media_type_unknown)) {
647 /* If media type was not identified then return media
648 * type defined by the CTRL_EXT settings.
649 */
650 hw->phy.media_type = e1000_media_type_internal_serdes;
651
652 if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
653 hw->phy.media_type = e1000_media_type_copper;
654 dev_spec->sgmii_active = true;
655 }
656
657 break;
658 }
659
660 /* change current link mode setting */
661 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
662
663 if (dev_spec->sgmii_active)
664 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
665 else
666 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
667
668 wr32(E1000_CTRL_EXT, ctrl_ext);
669
670 break;
671 default:
672 break;
673 }
674
675 /* mac initialization and operations */
676 ret_val = igb_init_mac_params_82575(hw);
677 if (ret_val)
678 goto out;
679
680 /* NVM initialization */
681 ret_val = igb_init_nvm_params_82575(hw);
682 switch (hw->mac.type) {
683 case e1000_i210:
684 case e1000_i211:
685 ret_val = igb_init_nvm_params_i210(hw);
686 break;
687 default:
688 break;
689 }
690
691 if (ret_val)
692 goto out;
693
694 /* if part supports SR-IOV then initialize mailbox parameters */
695 switch (mac->type) {
696 case e1000_82576:
697 case e1000_i350:
698 igb_init_mbx_params_pf(hw);
699 break;
700 default:
701 break;
702 }
703
704 /* setup PHY parameters */
705 ret_val = igb_init_phy_params_82575(hw);
706
707 out:
708 return ret_val;
709 }
710
711 /**
712 * igb_acquire_phy_82575 - Acquire rights to access PHY
713 * @hw: pointer to the HW structure
714 *
715 * Acquire access rights to the correct PHY. This is a
716 * function pointer entry point called by the api module.
717 **/
igb_acquire_phy_82575(struct e1000_hw * hw)718 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
719 {
720 u16 mask = E1000_SWFW_PHY0_SM;
721
722 if (hw->bus.func == E1000_FUNC_1)
723 mask = E1000_SWFW_PHY1_SM;
724 else if (hw->bus.func == E1000_FUNC_2)
725 mask = E1000_SWFW_PHY2_SM;
726 else if (hw->bus.func == E1000_FUNC_3)
727 mask = E1000_SWFW_PHY3_SM;
728
729 return hw->mac.ops.acquire_swfw_sync(hw, mask);
730 }
731
732 /**
733 * igb_release_phy_82575 - Release rights to access PHY
734 * @hw: pointer to the HW structure
735 *
736 * A wrapper to release access rights to the correct PHY. This is a
737 * function pointer entry point called by the api module.
738 **/
igb_release_phy_82575(struct e1000_hw * hw)739 static void igb_release_phy_82575(struct e1000_hw *hw)
740 {
741 u16 mask = E1000_SWFW_PHY0_SM;
742
743 if (hw->bus.func == E1000_FUNC_1)
744 mask = E1000_SWFW_PHY1_SM;
745 else if (hw->bus.func == E1000_FUNC_2)
746 mask = E1000_SWFW_PHY2_SM;
747 else if (hw->bus.func == E1000_FUNC_3)
748 mask = E1000_SWFW_PHY3_SM;
749
750 hw->mac.ops.release_swfw_sync(hw, mask);
751 }
752
753 /**
754 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
755 * @hw: pointer to the HW structure
756 * @offset: register offset to be read
757 * @data: pointer to the read data
758 *
759 * Reads the PHY register at offset using the serial gigabit media independent
760 * interface and stores the retrieved information in data.
761 **/
igb_read_phy_reg_sgmii_82575(struct e1000_hw * hw,u32 offset,u16 * data)762 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
763 u16 *data)
764 {
765 s32 ret_val = -E1000_ERR_PARAM;
766
767 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
768 hw_dbg("PHY Address %u is out of range\n", offset);
769 goto out;
770 }
771
772 ret_val = hw->phy.ops.acquire(hw);
773 if (ret_val)
774 goto out;
775
776 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
777
778 hw->phy.ops.release(hw);
779
780 out:
781 return ret_val;
782 }
783
784 /**
785 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
786 * @hw: pointer to the HW structure
787 * @offset: register offset to write to
788 * @data: data to write at register offset
789 *
790 * Writes the data to PHY register at the offset using the serial gigabit
791 * media independent interface.
792 **/
igb_write_phy_reg_sgmii_82575(struct e1000_hw * hw,u32 offset,u16 data)793 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
794 u16 data)
795 {
796 s32 ret_val = -E1000_ERR_PARAM;
797
798
799 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
800 hw_dbg("PHY Address %d is out of range\n", offset);
801 goto out;
802 }
803
804 ret_val = hw->phy.ops.acquire(hw);
805 if (ret_val)
806 goto out;
807
808 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
809
810 hw->phy.ops.release(hw);
811
812 out:
813 return ret_val;
814 }
815
816 /**
817 * igb_get_phy_id_82575 - Retrieve PHY addr and id
818 * @hw: pointer to the HW structure
819 *
820 * Retrieves the PHY address and ID for both PHY's which do and do not use
821 * sgmi interface.
822 **/
igb_get_phy_id_82575(struct e1000_hw * hw)823 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
824 {
825 struct e1000_phy_info *phy = &hw->phy;
826 s32 ret_val = 0;
827 u16 phy_id;
828 u32 ctrl_ext;
829 u32 mdic;
830
831 /* Extra read required for some PHY's on i354 */
832 if (hw->mac.type == e1000_i354)
833 igb_get_phy_id(hw);
834
835 /* For SGMII PHYs, we try the list of possible addresses until
836 * we find one that works. For non-SGMII PHYs
837 * (e.g. integrated copper PHYs), an address of 1 should
838 * work. The result of this function should mean phy->phy_addr
839 * and phy->id are set correctly.
840 */
841 if (!(igb_sgmii_active_82575(hw))) {
842 phy->addr = 1;
843 ret_val = igb_get_phy_id(hw);
844 goto out;
845 }
846
847 if (igb_sgmii_uses_mdio_82575(hw)) {
848 switch (hw->mac.type) {
849 case e1000_82575:
850 case e1000_82576:
851 mdic = rd32(E1000_MDIC);
852 mdic &= E1000_MDIC_PHY_MASK;
853 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
854 break;
855 case e1000_82580:
856 case e1000_i350:
857 case e1000_i354:
858 case e1000_i210:
859 case e1000_i211:
860 mdic = rd32(E1000_MDICNFG);
861 mdic &= E1000_MDICNFG_PHY_MASK;
862 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
863 break;
864 default:
865 ret_val = -E1000_ERR_PHY;
866 goto out;
867 }
868 ret_val = igb_get_phy_id(hw);
869 goto out;
870 }
871
872 /* Power on sgmii phy if it is disabled */
873 ctrl_ext = rd32(E1000_CTRL_EXT);
874 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
875 wrfl();
876 msleep(300);
877
878 /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
879 * Therefore, we need to test 1-7
880 */
881 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
882 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
883 if (ret_val == 0) {
884 hw_dbg("Vendor ID 0x%08X read at address %u\n",
885 phy_id, phy->addr);
886 /* At the time of this writing, The M88 part is
887 * the only supported SGMII PHY product.
888 */
889 if (phy_id == M88_VENDOR)
890 break;
891 } else {
892 hw_dbg("PHY address %u was unreadable\n", phy->addr);
893 }
894 }
895
896 /* A valid PHY type couldn't be found. */
897 if (phy->addr == 8) {
898 phy->addr = 0;
899 ret_val = -E1000_ERR_PHY;
900 goto out;
901 } else {
902 ret_val = igb_get_phy_id(hw);
903 }
904
905 /* restore previous sfp cage power state */
906 wr32(E1000_CTRL_EXT, ctrl_ext);
907
908 out:
909 return ret_val;
910 }
911
912 /**
913 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
914 * @hw: pointer to the HW structure
915 *
916 * Resets the PHY using the serial gigabit media independent interface.
917 **/
igb_phy_hw_reset_sgmii_82575(struct e1000_hw * hw)918 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
919 {
920 struct e1000_phy_info *phy = &hw->phy;
921 s32 ret_val;
922
923 /* This isn't a true "hard" reset, but is the only reset
924 * available to us at this time.
925 */
926
927 hw_dbg("Soft resetting SGMII attached PHY...\n");
928
929 /* SFP documentation requires the following to configure the SPF module
930 * to work on SGMII. No further documentation is given.
931 */
932 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
933 if (ret_val)
934 goto out;
935
936 ret_val = igb_phy_sw_reset(hw);
937 if (ret_val)
938 goto out;
939
940 if (phy->id == M88E1512_E_PHY_ID)
941 ret_val = igb_initialize_M88E1512_phy(hw);
942 if (phy->id == M88E1543_E_PHY_ID)
943 ret_val = igb_initialize_M88E1543_phy(hw);
944 out:
945 return ret_val;
946 }
947
948 /**
949 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
950 * @hw: pointer to the HW structure
951 * @active: true to enable LPLU, false to disable
952 *
953 * Sets the LPLU D0 state according to the active flag. When
954 * activating LPLU this function also disables smart speed
955 * and vice versa. LPLU will not be activated unless the
956 * device autonegotiation advertisement meets standards of
957 * either 10 or 10/100 or 10/100/1000 at all duplexes.
958 * This is a function pointer entry point only called by
959 * PHY setup routines.
960 **/
igb_set_d0_lplu_state_82575(struct e1000_hw * hw,bool active)961 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
962 {
963 struct e1000_phy_info *phy = &hw->phy;
964 s32 ret_val;
965 u16 data;
966
967 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
968 if (ret_val)
969 goto out;
970
971 if (active) {
972 data |= IGP02E1000_PM_D0_LPLU;
973 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
974 data);
975 if (ret_val)
976 goto out;
977
978 /* When LPLU is enabled, we should disable SmartSpeed */
979 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
980 &data);
981 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
982 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
983 data);
984 if (ret_val)
985 goto out;
986 } else {
987 data &= ~IGP02E1000_PM_D0_LPLU;
988 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
989 data);
990 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
991 * during Dx states where the power conservation is most
992 * important. During driver activity we should enable
993 * SmartSpeed, so performance is maintained.
994 */
995 if (phy->smart_speed == e1000_smart_speed_on) {
996 ret_val = phy->ops.read_reg(hw,
997 IGP01E1000_PHY_PORT_CONFIG, &data);
998 if (ret_val)
999 goto out;
1000
1001 data |= IGP01E1000_PSCFR_SMART_SPEED;
1002 ret_val = phy->ops.write_reg(hw,
1003 IGP01E1000_PHY_PORT_CONFIG, data);
1004 if (ret_val)
1005 goto out;
1006 } else if (phy->smart_speed == e1000_smart_speed_off) {
1007 ret_val = phy->ops.read_reg(hw,
1008 IGP01E1000_PHY_PORT_CONFIG, &data);
1009 if (ret_val)
1010 goto out;
1011
1012 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1013 ret_val = phy->ops.write_reg(hw,
1014 IGP01E1000_PHY_PORT_CONFIG, data);
1015 if (ret_val)
1016 goto out;
1017 }
1018 }
1019
1020 out:
1021 return ret_val;
1022 }
1023
1024 /**
1025 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1026 * @hw: pointer to the HW structure
1027 * @active: true to enable LPLU, false to disable
1028 *
1029 * Sets the LPLU D0 state according to the active flag. When
1030 * activating LPLU this function also disables smart speed
1031 * and vice versa. LPLU will not be activated unless the
1032 * device autonegotiation advertisement meets standards of
1033 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1034 * This is a function pointer entry point only called by
1035 * PHY setup routines.
1036 **/
igb_set_d0_lplu_state_82580(struct e1000_hw * hw,bool active)1037 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1038 {
1039 struct e1000_phy_info *phy = &hw->phy;
1040 u16 data;
1041
1042 data = rd32(E1000_82580_PHY_POWER_MGMT);
1043
1044 if (active) {
1045 data |= E1000_82580_PM_D0_LPLU;
1046
1047 /* When LPLU is enabled, we should disable SmartSpeed */
1048 data &= ~E1000_82580_PM_SPD;
1049 } else {
1050 data &= ~E1000_82580_PM_D0_LPLU;
1051
1052 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1053 * during Dx states where the power conservation is most
1054 * important. During driver activity we should enable
1055 * SmartSpeed, so performance is maintained.
1056 */
1057 if (phy->smart_speed == e1000_smart_speed_on)
1058 data |= E1000_82580_PM_SPD;
1059 else if (phy->smart_speed == e1000_smart_speed_off)
1060 data &= ~E1000_82580_PM_SPD; }
1061
1062 wr32(E1000_82580_PHY_POWER_MGMT, data);
1063 return 0;
1064 }
1065
1066 /**
1067 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1068 * @hw: pointer to the HW structure
1069 * @active: boolean used to enable/disable lplu
1070 *
1071 * Success returns 0, Failure returns 1
1072 *
1073 * The low power link up (lplu) state is set to the power management level D3
1074 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1075 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1076 * is used during Dx states where the power conservation is most important.
1077 * During driver activity, SmartSpeed should be enabled so performance is
1078 * maintained.
1079 **/
igb_set_d3_lplu_state_82580(struct e1000_hw * hw,bool active)1080 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1081 {
1082 struct e1000_phy_info *phy = &hw->phy;
1083 u16 data;
1084
1085 data = rd32(E1000_82580_PHY_POWER_MGMT);
1086
1087 if (!active) {
1088 data &= ~E1000_82580_PM_D3_LPLU;
1089 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1090 * during Dx states where the power conservation is most
1091 * important. During driver activity we should enable
1092 * SmartSpeed, so performance is maintained.
1093 */
1094 if (phy->smart_speed == e1000_smart_speed_on)
1095 data |= E1000_82580_PM_SPD;
1096 else if (phy->smart_speed == e1000_smart_speed_off)
1097 data &= ~E1000_82580_PM_SPD;
1098 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1099 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1100 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1101 data |= E1000_82580_PM_D3_LPLU;
1102 /* When LPLU is enabled, we should disable SmartSpeed */
1103 data &= ~E1000_82580_PM_SPD;
1104 }
1105
1106 wr32(E1000_82580_PHY_POWER_MGMT, data);
1107 return 0;
1108 }
1109
1110 /**
1111 * igb_acquire_nvm_82575 - Request for access to EEPROM
1112 * @hw: pointer to the HW structure
1113 *
1114 * Acquire the necessary semaphores for exclusive access to the EEPROM.
1115 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1116 * Return successful if access grant bit set, else clear the request for
1117 * EEPROM access and return -E1000_ERR_NVM (-1).
1118 **/
igb_acquire_nvm_82575(struct e1000_hw * hw)1119 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1120 {
1121 s32 ret_val;
1122
1123 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1124 if (ret_val)
1125 goto out;
1126
1127 ret_val = igb_acquire_nvm(hw);
1128
1129 if (ret_val)
1130 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1131
1132 out:
1133 return ret_val;
1134 }
1135
1136 /**
1137 * igb_release_nvm_82575 - Release exclusive access to EEPROM
1138 * @hw: pointer to the HW structure
1139 *
1140 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
1141 * then release the semaphores acquired.
1142 **/
igb_release_nvm_82575(struct e1000_hw * hw)1143 static void igb_release_nvm_82575(struct e1000_hw *hw)
1144 {
1145 igb_release_nvm(hw);
1146 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1147 }
1148
1149 /**
1150 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1151 * @hw: pointer to the HW structure
1152 * @mask: specifies which semaphore to acquire
1153 *
1154 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
1155 * will also specify which port we're acquiring the lock for.
1156 **/
igb_acquire_swfw_sync_82575(struct e1000_hw * hw,u16 mask)1157 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1158 {
1159 u32 swfw_sync;
1160 u32 swmask = mask;
1161 u32 fwmask = mask << 16;
1162 s32 ret_val = 0;
1163 s32 i = 0, timeout = 200;
1164
1165 while (i < timeout) {
1166 if (igb_get_hw_semaphore(hw)) {
1167 ret_val = -E1000_ERR_SWFW_SYNC;
1168 goto out;
1169 }
1170
1171 swfw_sync = rd32(E1000_SW_FW_SYNC);
1172 if (!(swfw_sync & (fwmask | swmask)))
1173 break;
1174
1175 /* Firmware currently using resource (fwmask)
1176 * or other software thread using resource (swmask)
1177 */
1178 igb_put_hw_semaphore(hw);
1179 mdelay(5);
1180 i++;
1181 }
1182
1183 if (i == timeout) {
1184 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1185 ret_val = -E1000_ERR_SWFW_SYNC;
1186 goto out;
1187 }
1188
1189 swfw_sync |= swmask;
1190 wr32(E1000_SW_FW_SYNC, swfw_sync);
1191
1192 igb_put_hw_semaphore(hw);
1193
1194 out:
1195 return ret_val;
1196 }
1197
1198 /**
1199 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
1200 * @hw: pointer to the HW structure
1201 * @mask: specifies which semaphore to acquire
1202 *
1203 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
1204 * will also specify which port we're releasing the lock for.
1205 **/
igb_release_swfw_sync_82575(struct e1000_hw * hw,u16 mask)1206 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1207 {
1208 u32 swfw_sync;
1209
1210 while (igb_get_hw_semaphore(hw) != 0)
1211 ; /* Empty */
1212
1213 swfw_sync = rd32(E1000_SW_FW_SYNC);
1214 swfw_sync &= ~mask;
1215 wr32(E1000_SW_FW_SYNC, swfw_sync);
1216
1217 igb_put_hw_semaphore(hw);
1218 }
1219
1220 /**
1221 * igb_get_cfg_done_82575 - Read config done bit
1222 * @hw: pointer to the HW structure
1223 *
1224 * Read the management control register for the config done bit for
1225 * completion status. NOTE: silicon which is EEPROM-less will fail trying
1226 * to read the config done bit, so an error is *ONLY* logged and returns
1227 * 0. If we were to return with error, EEPROM-less silicon
1228 * would not be able to be reset or change link.
1229 **/
igb_get_cfg_done_82575(struct e1000_hw * hw)1230 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1231 {
1232 s32 timeout = PHY_CFG_TIMEOUT;
1233 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1234
1235 if (hw->bus.func == 1)
1236 mask = E1000_NVM_CFG_DONE_PORT_1;
1237 else if (hw->bus.func == E1000_FUNC_2)
1238 mask = E1000_NVM_CFG_DONE_PORT_2;
1239 else if (hw->bus.func == E1000_FUNC_3)
1240 mask = E1000_NVM_CFG_DONE_PORT_3;
1241
1242 while (timeout) {
1243 if (rd32(E1000_EEMNGCTL) & mask)
1244 break;
1245 usleep_range(1000, 2000);
1246 timeout--;
1247 }
1248 if (!timeout)
1249 hw_dbg("MNG configuration cycle has not completed.\n");
1250
1251 /* If EEPROM is not marked present, init the PHY manually */
1252 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1253 (hw->phy.type == e1000_phy_igp_3))
1254 igb_phy_init_script_igp3(hw);
1255
1256 return 0;
1257 }
1258
1259 /**
1260 * igb_get_link_up_info_82575 - Get link speed/duplex info
1261 * @hw: pointer to the HW structure
1262 * @speed: stores the current speed
1263 * @duplex: stores the current duplex
1264 *
1265 * This is a wrapper function, if using the serial gigabit media independent
1266 * interface, use PCS to retrieve the link speed and duplex information.
1267 * Otherwise, use the generic function to get the link speed and duplex info.
1268 **/
igb_get_link_up_info_82575(struct e1000_hw * hw,u16 * speed,u16 * duplex)1269 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1270 u16 *duplex)
1271 {
1272 s32 ret_val;
1273
1274 if (hw->phy.media_type != e1000_media_type_copper)
1275 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1276 duplex);
1277 else
1278 ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1279 duplex);
1280
1281 return ret_val;
1282 }
1283
1284 /**
1285 * igb_check_for_link_82575 - Check for link
1286 * @hw: pointer to the HW structure
1287 *
1288 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1289 * use the generic interface for determining link.
1290 **/
igb_check_for_link_82575(struct e1000_hw * hw)1291 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1292 {
1293 s32 ret_val;
1294 u16 speed, duplex;
1295
1296 if (hw->phy.media_type != e1000_media_type_copper) {
1297 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1298 &duplex);
1299 /* Use this flag to determine if link needs to be checked or
1300 * not. If we have link clear the flag so that we do not
1301 * continue to check for link.
1302 */
1303 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1304
1305 /* Configure Flow Control now that Auto-Neg has completed.
1306 * First, we need to restore the desired flow control
1307 * settings because we may have had to re-autoneg with a
1308 * different link partner.
1309 */
1310 ret_val = igb_config_fc_after_link_up(hw);
1311 if (ret_val)
1312 hw_dbg("Error configuring flow control\n");
1313 } else {
1314 ret_val = igb_check_for_copper_link(hw);
1315 }
1316
1317 return ret_val;
1318 }
1319
1320 /**
1321 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1322 * @hw: pointer to the HW structure
1323 **/
igb_power_up_serdes_link_82575(struct e1000_hw * hw)1324 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1325 {
1326 u32 reg;
1327
1328
1329 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1330 !igb_sgmii_active_82575(hw))
1331 return;
1332
1333 /* Enable PCS to turn on link */
1334 reg = rd32(E1000_PCS_CFG0);
1335 reg |= E1000_PCS_CFG_PCS_EN;
1336 wr32(E1000_PCS_CFG0, reg);
1337
1338 /* Power up the laser */
1339 reg = rd32(E1000_CTRL_EXT);
1340 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1341 wr32(E1000_CTRL_EXT, reg);
1342
1343 /* flush the write to verify completion */
1344 wrfl();
1345 usleep_range(1000, 2000);
1346 }
1347
1348 /**
1349 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1350 * @hw: pointer to the HW structure
1351 * @speed: stores the current speed
1352 * @duplex: stores the current duplex
1353 *
1354 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1355 * duplex, then store the values in the pointers provided.
1356 **/
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw * hw,u16 * speed,u16 * duplex)1357 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1358 u16 *duplex)
1359 {
1360 struct e1000_mac_info *mac = &hw->mac;
1361 u32 pcs, status;
1362
1363 /* Set up defaults for the return values of this function */
1364 mac->serdes_has_link = false;
1365 *speed = 0;
1366 *duplex = 0;
1367
1368 /* Read the PCS Status register for link state. For non-copper mode,
1369 * the status register is not accurate. The PCS status register is
1370 * used instead.
1371 */
1372 pcs = rd32(E1000_PCS_LSTAT);
1373
1374 /* The link up bit determines when link is up on autoneg. The sync ok
1375 * gets set once both sides sync up and agree upon link. Stable link
1376 * can be determined by checking for both link up and link sync ok
1377 */
1378 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1379 mac->serdes_has_link = true;
1380
1381 /* Detect and store PCS speed */
1382 if (pcs & E1000_PCS_LSTS_SPEED_1000)
1383 *speed = SPEED_1000;
1384 else if (pcs & E1000_PCS_LSTS_SPEED_100)
1385 *speed = SPEED_100;
1386 else
1387 *speed = SPEED_10;
1388
1389 /* Detect and store PCS duplex */
1390 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1391 *duplex = FULL_DUPLEX;
1392 else
1393 *duplex = HALF_DUPLEX;
1394
1395 /* Check if it is an I354 2.5Gb backplane connection. */
1396 if (mac->type == e1000_i354) {
1397 status = rd32(E1000_STATUS);
1398 if ((status & E1000_STATUS_2P5_SKU) &&
1399 !(status & E1000_STATUS_2P5_SKU_OVER)) {
1400 *speed = SPEED_2500;
1401 *duplex = FULL_DUPLEX;
1402 hw_dbg("2500 Mbs, ");
1403 hw_dbg("Full Duplex\n");
1404 }
1405 }
1406
1407 }
1408
1409 return 0;
1410 }
1411
1412 /**
1413 * igb_shutdown_serdes_link_82575 - Remove link during power down
1414 * @hw: pointer to the HW structure
1415 *
1416 * In the case of fiber serdes, shut down optics and PCS on driver unload
1417 * when management pass thru is not enabled.
1418 **/
igb_shutdown_serdes_link_82575(struct e1000_hw * hw)1419 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1420 {
1421 u32 reg;
1422
1423 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1424 igb_sgmii_active_82575(hw))
1425 return;
1426
1427 if (!igb_enable_mng_pass_thru(hw)) {
1428 /* Disable PCS to turn off link */
1429 reg = rd32(E1000_PCS_CFG0);
1430 reg &= ~E1000_PCS_CFG_PCS_EN;
1431 wr32(E1000_PCS_CFG0, reg);
1432
1433 /* shutdown the laser */
1434 reg = rd32(E1000_CTRL_EXT);
1435 reg |= E1000_CTRL_EXT_SDP3_DATA;
1436 wr32(E1000_CTRL_EXT, reg);
1437
1438 /* flush the write to verify completion */
1439 wrfl();
1440 usleep_range(1000, 2000);
1441 }
1442 }
1443
1444 /**
1445 * igb_reset_hw_82575 - Reset hardware
1446 * @hw: pointer to the HW structure
1447 *
1448 * This resets the hardware into a known state. This is a
1449 * function pointer entry point called by the api module.
1450 **/
igb_reset_hw_82575(struct e1000_hw * hw)1451 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1452 {
1453 u32 ctrl;
1454 s32 ret_val;
1455
1456 /* Prevent the PCI-E bus from sticking if there is no TLP connection
1457 * on the last TLP read/write transaction when MAC is reset.
1458 */
1459 ret_val = igb_disable_pcie_master(hw);
1460 if (ret_val)
1461 hw_dbg("PCI-E Master disable polling has failed.\n");
1462
1463 /* set the completion timeout for interface */
1464 ret_val = igb_set_pcie_completion_timeout(hw);
1465 if (ret_val)
1466 hw_dbg("PCI-E Set completion timeout has failed.\n");
1467
1468 hw_dbg("Masking off all interrupts\n");
1469 wr32(E1000_IMC, 0xffffffff);
1470
1471 wr32(E1000_RCTL, 0);
1472 wr32(E1000_TCTL, E1000_TCTL_PSP);
1473 wrfl();
1474
1475 usleep_range(10000, 20000);
1476
1477 ctrl = rd32(E1000_CTRL);
1478
1479 hw_dbg("Issuing a global reset to MAC\n");
1480 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1481
1482 ret_val = igb_get_auto_rd_done(hw);
1483 if (ret_val) {
1484 /* When auto config read does not complete, do not
1485 * return with an error. This can happen in situations
1486 * where there is no eeprom and prevents getting link.
1487 */
1488 hw_dbg("Auto Read Done did not complete\n");
1489 }
1490
1491 /* If EEPROM is not present, run manual init scripts */
1492 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1493 igb_reset_init_script_82575(hw);
1494
1495 /* Clear any pending interrupt events. */
1496 wr32(E1000_IMC, 0xffffffff);
1497 rd32(E1000_ICR);
1498
1499 /* Install any alternate MAC address into RAR0 */
1500 ret_val = igb_check_alt_mac_addr(hw);
1501
1502 return ret_val;
1503 }
1504
1505 /**
1506 * igb_init_hw_82575 - Initialize hardware
1507 * @hw: pointer to the HW structure
1508 *
1509 * This inits the hardware readying it for operation.
1510 **/
igb_init_hw_82575(struct e1000_hw * hw)1511 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1512 {
1513 struct e1000_mac_info *mac = &hw->mac;
1514 s32 ret_val;
1515 u16 i, rar_count = mac->rar_entry_count;
1516
1517 if ((hw->mac.type >= e1000_i210) &&
1518 !(igb_get_flash_presence_i210(hw))) {
1519 ret_val = igb_pll_workaround_i210(hw);
1520 if (ret_val)
1521 return ret_val;
1522 }
1523
1524 /* Initialize identification LED */
1525 ret_val = igb_id_led_init(hw);
1526 if (ret_val) {
1527 hw_dbg("Error initializing identification LED\n");
1528 /* This is not fatal and we should not stop init due to this */
1529 }
1530
1531 /* Disabling VLAN filtering */
1532 hw_dbg("Initializing the IEEE VLAN\n");
1533 igb_clear_vfta(hw);
1534
1535 /* Setup the receive address */
1536 igb_init_rx_addrs(hw, rar_count);
1537
1538 /* Zero out the Multicast HASH table */
1539 hw_dbg("Zeroing the MTA\n");
1540 for (i = 0; i < mac->mta_reg_count; i++)
1541 array_wr32(E1000_MTA, i, 0);
1542
1543 /* Zero out the Unicast HASH table */
1544 hw_dbg("Zeroing the UTA\n");
1545 for (i = 0; i < mac->uta_reg_count; i++)
1546 array_wr32(E1000_UTA, i, 0);
1547
1548 /* Setup link and flow control */
1549 ret_val = igb_setup_link(hw);
1550
1551 /* Clear all of the statistics registers (clear on read). It is
1552 * important that we do this after we have tried to establish link
1553 * because the symbol error count will increment wildly if there
1554 * is no link.
1555 */
1556 igb_clear_hw_cntrs_82575(hw);
1557 return ret_val;
1558 }
1559
1560 /**
1561 * igb_setup_copper_link_82575 - Configure copper link settings
1562 * @hw: pointer to the HW structure
1563 *
1564 * Configures the link for auto-neg or forced speed and duplex. Then we check
1565 * for link, once link is established calls to configure collision distance
1566 * and flow control are called.
1567 **/
igb_setup_copper_link_82575(struct e1000_hw * hw)1568 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1569 {
1570 u32 ctrl;
1571 s32 ret_val;
1572 u32 phpm_reg;
1573
1574 ctrl = rd32(E1000_CTRL);
1575 ctrl |= E1000_CTRL_SLU;
1576 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1577 wr32(E1000_CTRL, ctrl);
1578
1579 /* Clear Go Link Disconnect bit on supported devices */
1580 switch (hw->mac.type) {
1581 case e1000_82580:
1582 case e1000_i350:
1583 case e1000_i210:
1584 case e1000_i211:
1585 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1586 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1587 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1588 break;
1589 default:
1590 break;
1591 }
1592
1593 ret_val = igb_setup_serdes_link_82575(hw);
1594 if (ret_val)
1595 goto out;
1596
1597 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1598 /* allow time for SFP cage time to power up phy */
1599 msleep(300);
1600
1601 ret_val = hw->phy.ops.reset(hw);
1602 if (ret_val) {
1603 hw_dbg("Error resetting the PHY.\n");
1604 goto out;
1605 }
1606 }
1607 switch (hw->phy.type) {
1608 case e1000_phy_i210:
1609 case e1000_phy_m88:
1610 switch (hw->phy.id) {
1611 case I347AT4_E_PHY_ID:
1612 case M88E1112_E_PHY_ID:
1613 case M88E1543_E_PHY_ID:
1614 case M88E1512_E_PHY_ID:
1615 case I210_I_PHY_ID:
1616 ret_val = igb_copper_link_setup_m88_gen2(hw);
1617 break;
1618 default:
1619 ret_val = igb_copper_link_setup_m88(hw);
1620 break;
1621 }
1622 break;
1623 case e1000_phy_igp_3:
1624 ret_val = igb_copper_link_setup_igp(hw);
1625 break;
1626 case e1000_phy_82580:
1627 ret_val = igb_copper_link_setup_82580(hw);
1628 break;
1629 case e1000_phy_bcm54616:
1630 ret_val = 0;
1631 break;
1632 default:
1633 ret_val = -E1000_ERR_PHY;
1634 break;
1635 }
1636
1637 if (ret_val)
1638 goto out;
1639
1640 ret_val = igb_setup_copper_link(hw);
1641 out:
1642 return ret_val;
1643 }
1644
1645 /**
1646 * igb_setup_serdes_link_82575 - Setup link for serdes
1647 * @hw: pointer to the HW structure
1648 *
1649 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1650 * used on copper connections where the serialized gigabit media independent
1651 * interface (sgmii), or serdes fiber is being used. Configures the link
1652 * for auto-negotiation or forces speed/duplex.
1653 **/
igb_setup_serdes_link_82575(struct e1000_hw * hw)1654 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1655 {
1656 u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1657 bool pcs_autoneg;
1658 s32 ret_val = 0;
1659 u16 data;
1660
1661 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1662 !igb_sgmii_active_82575(hw))
1663 return ret_val;
1664
1665
1666 /* On the 82575, SerDes loopback mode persists until it is
1667 * explicitly turned off or a power cycle is performed. A read to
1668 * the register does not indicate its status. Therefore, we ensure
1669 * loopback mode is disabled during initialization.
1670 */
1671 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1672
1673 /* power on the sfp cage if present and turn on I2C */
1674 ctrl_ext = rd32(E1000_CTRL_EXT);
1675 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1676 ctrl_ext |= E1000_CTRL_I2C_ENA;
1677 wr32(E1000_CTRL_EXT, ctrl_ext);
1678
1679 ctrl_reg = rd32(E1000_CTRL);
1680 ctrl_reg |= E1000_CTRL_SLU;
1681
1682 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1683 /* set both sw defined pins */
1684 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1685
1686 /* Set switch control to serdes energy detect */
1687 reg = rd32(E1000_CONNSW);
1688 reg |= E1000_CONNSW_ENRGSRC;
1689 wr32(E1000_CONNSW, reg);
1690 }
1691
1692 reg = rd32(E1000_PCS_LCTL);
1693
1694 /* default pcs_autoneg to the same setting as mac autoneg */
1695 pcs_autoneg = hw->mac.autoneg;
1696
1697 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1698 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1699 /* sgmii mode lets the phy handle forcing speed/duplex */
1700 pcs_autoneg = true;
1701 /* autoneg time out should be disabled for SGMII mode */
1702 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1703 break;
1704 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1705 /* disable PCS autoneg and support parallel detect only */
1706 pcs_autoneg = false;
1707 fallthrough;
1708 default:
1709 if (hw->mac.type == e1000_82575 ||
1710 hw->mac.type == e1000_82576) {
1711 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1712 if (ret_val) {
1713 hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1714 return ret_val;
1715 }
1716
1717 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1718 pcs_autoneg = false;
1719 }
1720
1721 /* non-SGMII modes only supports a speed of 1000/Full for the
1722 * link so it is best to just force the MAC and let the pcs
1723 * link either autoneg or be forced to 1000/Full
1724 */
1725 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1726 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1727
1728 /* set speed of 1000/Full if speed/duplex is forced */
1729 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1730 break;
1731 }
1732
1733 wr32(E1000_CTRL, ctrl_reg);
1734
1735 /* New SerDes mode allows for forcing speed or autonegotiating speed
1736 * at 1gb. Autoneg should be default set by most drivers. This is the
1737 * mode that will be compatible with older link partners and switches.
1738 * However, both are supported by the hardware and some drivers/tools.
1739 */
1740 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1741 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1742
1743 if (pcs_autoneg) {
1744 /* Set PCS register for autoneg */
1745 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1746 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1747
1748 /* Disable force flow control for autoneg */
1749 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1750
1751 /* Configure flow control advertisement for autoneg */
1752 anadv_reg = rd32(E1000_PCS_ANADV);
1753 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1754 switch (hw->fc.requested_mode) {
1755 case e1000_fc_full:
1756 case e1000_fc_rx_pause:
1757 anadv_reg |= E1000_TXCW_ASM_DIR;
1758 anadv_reg |= E1000_TXCW_PAUSE;
1759 break;
1760 case e1000_fc_tx_pause:
1761 anadv_reg |= E1000_TXCW_ASM_DIR;
1762 break;
1763 default:
1764 break;
1765 }
1766 wr32(E1000_PCS_ANADV, anadv_reg);
1767
1768 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1769 } else {
1770 /* Set PCS register for forced link */
1771 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1772
1773 /* Force flow control for forced link */
1774 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1775
1776 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1777 }
1778
1779 wr32(E1000_PCS_LCTL, reg);
1780
1781 if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1782 igb_force_mac_fc(hw);
1783
1784 return ret_val;
1785 }
1786
1787 /**
1788 * igb_sgmii_active_82575 - Return sgmii state
1789 * @hw: pointer to the HW structure
1790 *
1791 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1792 * which can be enabled for use in the embedded applications. Simply
1793 * return the current state of the sgmii interface.
1794 **/
igb_sgmii_active_82575(struct e1000_hw * hw)1795 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1796 {
1797 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1798 return dev_spec->sgmii_active;
1799 }
1800
1801 /**
1802 * igb_reset_init_script_82575 - Inits HW defaults after reset
1803 * @hw: pointer to the HW structure
1804 *
1805 * Inits recommended HW defaults after a reset when there is no EEPROM
1806 * detected. This is only for the 82575.
1807 **/
igb_reset_init_script_82575(struct e1000_hw * hw)1808 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1809 {
1810 if (hw->mac.type == e1000_82575) {
1811 hw_dbg("Running reset init script for 82575\n");
1812 /* SerDes configuration via SERDESCTRL */
1813 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1814 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1815 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1816 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1817
1818 /* CCM configuration via CCMCTL register */
1819 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1820 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1821
1822 /* PCIe lanes configuration */
1823 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1824 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1825 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1826 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1827
1828 /* PCIe PLL Configuration */
1829 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1830 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1831 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1832 }
1833
1834 return 0;
1835 }
1836
1837 /**
1838 * igb_read_mac_addr_82575 - Read device MAC address
1839 * @hw: pointer to the HW structure
1840 **/
igb_read_mac_addr_82575(struct e1000_hw * hw)1841 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1842 {
1843 s32 ret_val = 0;
1844
1845 /* If there's an alternate MAC address place it in RAR0
1846 * so that it will override the Si installed default perm
1847 * address.
1848 */
1849 ret_val = igb_check_alt_mac_addr(hw);
1850 if (ret_val)
1851 goto out;
1852
1853 ret_val = igb_read_mac_addr(hw);
1854
1855 out:
1856 return ret_val;
1857 }
1858
1859 /**
1860 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1861 * @hw: pointer to the HW structure
1862 *
1863 * In the case of a PHY power down to save power, or to turn off link during a
1864 * driver unload, or wake on lan is not enabled, remove the link.
1865 **/
igb_power_down_phy_copper_82575(struct e1000_hw * hw)1866 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1867 {
1868 /* If the management interface is not enabled, then power down */
1869 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1870 igb_power_down_phy_copper(hw);
1871 }
1872
1873 /**
1874 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1875 * @hw: pointer to the HW structure
1876 *
1877 * Clears the hardware counters by reading the counter registers.
1878 **/
igb_clear_hw_cntrs_82575(struct e1000_hw * hw)1879 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1880 {
1881 igb_clear_hw_cntrs_base(hw);
1882
1883 rd32(E1000_PRC64);
1884 rd32(E1000_PRC127);
1885 rd32(E1000_PRC255);
1886 rd32(E1000_PRC511);
1887 rd32(E1000_PRC1023);
1888 rd32(E1000_PRC1522);
1889 rd32(E1000_PTC64);
1890 rd32(E1000_PTC127);
1891 rd32(E1000_PTC255);
1892 rd32(E1000_PTC511);
1893 rd32(E1000_PTC1023);
1894 rd32(E1000_PTC1522);
1895
1896 rd32(E1000_ALGNERRC);
1897 rd32(E1000_RXERRC);
1898 rd32(E1000_TNCRS);
1899 rd32(E1000_CEXTERR);
1900 rd32(E1000_TSCTC);
1901 rd32(E1000_TSCTFC);
1902
1903 rd32(E1000_MGTPRC);
1904 rd32(E1000_MGTPDC);
1905 rd32(E1000_MGTPTC);
1906
1907 rd32(E1000_IAC);
1908 rd32(E1000_ICRXOC);
1909
1910 rd32(E1000_ICRXPTC);
1911 rd32(E1000_ICRXATC);
1912 rd32(E1000_ICTXPTC);
1913 rd32(E1000_ICTXATC);
1914 rd32(E1000_ICTXQEC);
1915 rd32(E1000_ICTXQMTC);
1916 rd32(E1000_ICRXDMTC);
1917
1918 rd32(E1000_CBTMPC);
1919 rd32(E1000_HTDPMC);
1920 rd32(E1000_CBRMPC);
1921 rd32(E1000_RPTHC);
1922 rd32(E1000_HGPTC);
1923 rd32(E1000_HTCBDPC);
1924 rd32(E1000_HGORCL);
1925 rd32(E1000_HGORCH);
1926 rd32(E1000_HGOTCL);
1927 rd32(E1000_HGOTCH);
1928 rd32(E1000_LENERRS);
1929
1930 /* This register should not be read in copper configurations */
1931 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1932 igb_sgmii_active_82575(hw))
1933 rd32(E1000_SCVPC);
1934 }
1935
1936 /**
1937 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1938 * @hw: pointer to the HW structure
1939 *
1940 * After rx enable if manageability is enabled then there is likely some
1941 * bad data at the start of the fifo and possibly in the DMA fifo. This
1942 * function clears the fifos and flushes any packets that came in as rx was
1943 * being enabled.
1944 **/
igb_rx_fifo_flush_82575(struct e1000_hw * hw)1945 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1946 {
1947 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1948 int i, ms_wait;
1949
1950 /* disable IPv6 options as per hardware errata */
1951 rfctl = rd32(E1000_RFCTL);
1952 rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1953 wr32(E1000_RFCTL, rfctl);
1954
1955 if (hw->mac.type != e1000_82575 ||
1956 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1957 return;
1958
1959 /* Disable all RX queues */
1960 for (i = 0; i < 4; i++) {
1961 rxdctl[i] = rd32(E1000_RXDCTL(i));
1962 wr32(E1000_RXDCTL(i),
1963 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1964 }
1965 /* Poll all queues to verify they have shut down */
1966 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1967 usleep_range(1000, 2000);
1968 rx_enabled = 0;
1969 for (i = 0; i < 4; i++)
1970 rx_enabled |= rd32(E1000_RXDCTL(i));
1971 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1972 break;
1973 }
1974
1975 if (ms_wait == 10)
1976 hw_dbg("Queue disable timed out after 10ms\n");
1977
1978 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1979 * incoming packets are rejected. Set enable and wait 2ms so that
1980 * any packet that was coming in as RCTL.EN was set is flushed
1981 */
1982 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1983
1984 rlpml = rd32(E1000_RLPML);
1985 wr32(E1000_RLPML, 0);
1986
1987 rctl = rd32(E1000_RCTL);
1988 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1989 temp_rctl |= E1000_RCTL_LPE;
1990
1991 wr32(E1000_RCTL, temp_rctl);
1992 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1993 wrfl();
1994 usleep_range(2000, 3000);
1995
1996 /* Enable RX queues that were previously enabled and restore our
1997 * previous state
1998 */
1999 for (i = 0; i < 4; i++)
2000 wr32(E1000_RXDCTL(i), rxdctl[i]);
2001 wr32(E1000_RCTL, rctl);
2002 wrfl();
2003
2004 wr32(E1000_RLPML, rlpml);
2005 wr32(E1000_RFCTL, rfctl);
2006
2007 /* Flush receive errors generated by workaround */
2008 rd32(E1000_ROC);
2009 rd32(E1000_RNBC);
2010 rd32(E1000_MPC);
2011 }
2012
2013 /**
2014 * igb_set_pcie_completion_timeout - set pci-e completion timeout
2015 * @hw: pointer to the HW structure
2016 *
2017 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2018 * however the hardware default for these parts is 500us to 1ms which is less
2019 * than the 10ms recommended by the pci-e spec. To address this we need to
2020 * increase the value to either 10ms to 200ms for capability version 1 config,
2021 * or 16ms to 55ms for version 2.
2022 **/
igb_set_pcie_completion_timeout(struct e1000_hw * hw)2023 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2024 {
2025 u32 gcr = rd32(E1000_GCR);
2026 s32 ret_val = 0;
2027 u16 pcie_devctl2;
2028
2029 /* only take action if timeout value is defaulted to 0 */
2030 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2031 goto out;
2032
2033 /* if capabilities version is type 1 we can write the
2034 * timeout of 10ms to 200ms through the GCR register
2035 */
2036 if (!(gcr & E1000_GCR_CAP_VER2)) {
2037 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2038 goto out;
2039 }
2040
2041 /* for version 2 capabilities we need to write the config space
2042 * directly in order to set the completion timeout value for
2043 * 16ms to 55ms
2044 */
2045 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2046 &pcie_devctl2);
2047 if (ret_val)
2048 goto out;
2049
2050 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2051
2052 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2053 &pcie_devctl2);
2054 out:
2055 /* disable completion timeout resend */
2056 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2057
2058 wr32(E1000_GCR, gcr);
2059 return ret_val;
2060 }
2061
2062 /**
2063 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2064 * @hw: pointer to the hardware struct
2065 * @enable: state to enter, either enabled or disabled
2066 * @pf: Physical Function pool - do not set anti-spoofing for the PF
2067 *
2068 * enables/disables L2 switch anti-spoofing functionality.
2069 **/
igb_vmdq_set_anti_spoofing_pf(struct e1000_hw * hw,bool enable,int pf)2070 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2071 {
2072 u32 reg_val, reg_offset;
2073
2074 switch (hw->mac.type) {
2075 case e1000_82576:
2076 reg_offset = E1000_DTXSWC;
2077 break;
2078 case e1000_i350:
2079 case e1000_i354:
2080 reg_offset = E1000_TXSWC;
2081 break;
2082 default:
2083 return;
2084 }
2085
2086 reg_val = rd32(reg_offset);
2087 if (enable) {
2088 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2089 E1000_DTXSWC_VLAN_SPOOF_MASK);
2090 /* The PF can spoof - it has to in order to
2091 * support emulation mode NICs
2092 */
2093 reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2094 } else {
2095 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2096 E1000_DTXSWC_VLAN_SPOOF_MASK);
2097 }
2098 wr32(reg_offset, reg_val);
2099 }
2100
2101 /**
2102 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2103 * @hw: pointer to the hardware struct
2104 * @enable: state to enter, either enabled or disabled
2105 *
2106 * enables/disables L2 switch loopback functionality.
2107 **/
igb_vmdq_set_loopback_pf(struct e1000_hw * hw,bool enable)2108 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2109 {
2110 u32 dtxswc;
2111
2112 switch (hw->mac.type) {
2113 case e1000_82576:
2114 dtxswc = rd32(E1000_DTXSWC);
2115 if (enable)
2116 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2117 else
2118 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2119 wr32(E1000_DTXSWC, dtxswc);
2120 break;
2121 case e1000_i354:
2122 case e1000_i350:
2123 dtxswc = rd32(E1000_TXSWC);
2124 if (enable)
2125 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2126 else
2127 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2128 wr32(E1000_TXSWC, dtxswc);
2129 break;
2130 default:
2131 /* Currently no other hardware supports loopback */
2132 break;
2133 }
2134
2135 }
2136
2137 /**
2138 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
2139 * @hw: pointer to the hardware struct
2140 * @enable: state to enter, either enabled or disabled
2141 *
2142 * enables/disables replication of packets across multiple pools.
2143 **/
igb_vmdq_set_replication_pf(struct e1000_hw * hw,bool enable)2144 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2145 {
2146 u32 vt_ctl = rd32(E1000_VT_CTL);
2147
2148 if (enable)
2149 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2150 else
2151 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2152
2153 wr32(E1000_VT_CTL, vt_ctl);
2154 }
2155
2156 /**
2157 * igb_read_phy_reg_82580 - Read 82580 MDI control register
2158 * @hw: pointer to the HW structure
2159 * @offset: register offset to be read
2160 * @data: pointer to the read data
2161 *
2162 * Reads the MDI control register in the PHY at offset and stores the
2163 * information read to data.
2164 **/
igb_read_phy_reg_82580(struct e1000_hw * hw,u32 offset,u16 * data)2165 s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2166 {
2167 s32 ret_val;
2168
2169 ret_val = hw->phy.ops.acquire(hw);
2170 if (ret_val)
2171 goto out;
2172
2173 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2174
2175 hw->phy.ops.release(hw);
2176
2177 out:
2178 return ret_val;
2179 }
2180
2181 /**
2182 * igb_write_phy_reg_82580 - Write 82580 MDI control register
2183 * @hw: pointer to the HW structure
2184 * @offset: register offset to write to
2185 * @data: data to write to register at offset
2186 *
2187 * Writes data to MDI control register in the PHY at offset.
2188 **/
igb_write_phy_reg_82580(struct e1000_hw * hw,u32 offset,u16 data)2189 s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2190 {
2191 s32 ret_val;
2192
2193
2194 ret_val = hw->phy.ops.acquire(hw);
2195 if (ret_val)
2196 goto out;
2197
2198 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2199
2200 hw->phy.ops.release(hw);
2201
2202 out:
2203 return ret_val;
2204 }
2205
2206 /**
2207 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2208 * @hw: pointer to the HW structure
2209 *
2210 * This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2211 * the values found in the EEPROM. This addresses an issue in which these
2212 * bits are not restored from EEPROM after reset.
2213 **/
igb_reset_mdicnfg_82580(struct e1000_hw * hw)2214 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2215 {
2216 s32 ret_val = 0;
2217 u32 mdicnfg;
2218 u16 nvm_data = 0;
2219
2220 if (hw->mac.type != e1000_82580)
2221 goto out;
2222 if (!igb_sgmii_active_82575(hw))
2223 goto out;
2224
2225 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2226 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2227 &nvm_data);
2228 if (ret_val) {
2229 hw_dbg("NVM Read Error\n");
2230 goto out;
2231 }
2232
2233 mdicnfg = rd32(E1000_MDICNFG);
2234 if (nvm_data & NVM_WORD24_EXT_MDIO)
2235 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2236 if (nvm_data & NVM_WORD24_COM_MDIO)
2237 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2238 wr32(E1000_MDICNFG, mdicnfg);
2239 out:
2240 return ret_val;
2241 }
2242
2243 /**
2244 * igb_reset_hw_82580 - Reset hardware
2245 * @hw: pointer to the HW structure
2246 *
2247 * This resets function or entire device (all ports, etc.)
2248 * to a known state.
2249 **/
igb_reset_hw_82580(struct e1000_hw * hw)2250 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2251 {
2252 s32 ret_val = 0;
2253 /* BH SW mailbox bit in SW_FW_SYNC */
2254 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2255 u32 ctrl;
2256 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2257
2258 hw->dev_spec._82575.global_device_reset = false;
2259
2260 /* due to hw errata, global device reset doesn't always
2261 * work on 82580
2262 */
2263 if (hw->mac.type == e1000_82580)
2264 global_device_reset = false;
2265
2266 /* Get current control state. */
2267 ctrl = rd32(E1000_CTRL);
2268
2269 /* Prevent the PCI-E bus from sticking if there is no TLP connection
2270 * on the last TLP read/write transaction when MAC is reset.
2271 */
2272 ret_val = igb_disable_pcie_master(hw);
2273 if (ret_val)
2274 hw_dbg("PCI-E Master disable polling has failed.\n");
2275
2276 hw_dbg("Masking off all interrupts\n");
2277 wr32(E1000_IMC, 0xffffffff);
2278 wr32(E1000_RCTL, 0);
2279 wr32(E1000_TCTL, E1000_TCTL_PSP);
2280 wrfl();
2281
2282 usleep_range(10000, 11000);
2283
2284 /* Determine whether or not a global dev reset is requested */
2285 if (global_device_reset &&
2286 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2287 global_device_reset = false;
2288
2289 if (global_device_reset &&
2290 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2291 ctrl |= E1000_CTRL_DEV_RST;
2292 else
2293 ctrl |= E1000_CTRL_RST;
2294
2295 wr32(E1000_CTRL, ctrl);
2296 wrfl();
2297
2298 /* Add delay to insure DEV_RST has time to complete */
2299 if (global_device_reset)
2300 usleep_range(5000, 6000);
2301
2302 ret_val = igb_get_auto_rd_done(hw);
2303 if (ret_val) {
2304 /* When auto config read does not complete, do not
2305 * return with an error. This can happen in situations
2306 * where there is no eeprom and prevents getting link.
2307 */
2308 hw_dbg("Auto Read Done did not complete\n");
2309 }
2310
2311 /* clear global device reset status bit */
2312 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2313
2314 /* Clear any pending interrupt events. */
2315 wr32(E1000_IMC, 0xffffffff);
2316 rd32(E1000_ICR);
2317
2318 ret_val = igb_reset_mdicnfg_82580(hw);
2319 if (ret_val)
2320 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2321
2322 /* Install any alternate MAC address into RAR0 */
2323 ret_val = igb_check_alt_mac_addr(hw);
2324
2325 /* Release semaphore */
2326 if (global_device_reset)
2327 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2328
2329 return ret_val;
2330 }
2331
2332 /**
2333 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2334 * @data: data received by reading RXPBS register
2335 *
2336 * The 82580 uses a table based approach for packet buffer allocation sizes.
2337 * This function converts the retrieved value into the correct table value
2338 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2339 * 0x0 36 72 144 1 2 4 8 16
2340 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2341 */
igb_rxpbs_adjust_82580(u32 data)2342 u16 igb_rxpbs_adjust_82580(u32 data)
2343 {
2344 u16 ret_val = 0;
2345
2346 if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2347 ret_val = e1000_82580_rxpbs_table[data];
2348
2349 return ret_val;
2350 }
2351
2352 /**
2353 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2354 * checksum
2355 * @hw: pointer to the HW structure
2356 * @offset: offset in words of the checksum protected region
2357 *
2358 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2359 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2360 **/
igb_validate_nvm_checksum_with_offset(struct e1000_hw * hw,u16 offset)2361 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2362 u16 offset)
2363 {
2364 s32 ret_val = 0;
2365 u16 checksum = 0;
2366 u16 i, nvm_data;
2367
2368 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2369 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2370 if (ret_val) {
2371 hw_dbg("NVM Read Error\n");
2372 goto out;
2373 }
2374 checksum += nvm_data;
2375 }
2376
2377 if (checksum != (u16) NVM_SUM) {
2378 hw_dbg("NVM Checksum Invalid\n");
2379 ret_val = -E1000_ERR_NVM;
2380 goto out;
2381 }
2382
2383 out:
2384 return ret_val;
2385 }
2386
2387 /**
2388 * igb_update_nvm_checksum_with_offset - Update EEPROM
2389 * checksum
2390 * @hw: pointer to the HW structure
2391 * @offset: offset in words of the checksum protected region
2392 *
2393 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2394 * up to the checksum. Then calculates the EEPROM checksum and writes the
2395 * value to the EEPROM.
2396 **/
igb_update_nvm_checksum_with_offset(struct e1000_hw * hw,u16 offset)2397 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2398 {
2399 s32 ret_val;
2400 u16 checksum = 0;
2401 u16 i, nvm_data;
2402
2403 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2404 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2405 if (ret_val) {
2406 hw_dbg("NVM Read Error while updating checksum.\n");
2407 goto out;
2408 }
2409 checksum += nvm_data;
2410 }
2411 checksum = (u16) NVM_SUM - checksum;
2412 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2413 &checksum);
2414 if (ret_val)
2415 hw_dbg("NVM Write Error while updating checksum.\n");
2416
2417 out:
2418 return ret_val;
2419 }
2420
2421 /**
2422 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2423 * @hw: pointer to the HW structure
2424 *
2425 * Calculates the EEPROM section checksum by reading/adding each word of
2426 * the EEPROM and then verifies that the sum of the EEPROM is
2427 * equal to 0xBABA.
2428 **/
igb_validate_nvm_checksum_82580(struct e1000_hw * hw)2429 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2430 {
2431 s32 ret_val = 0;
2432 u16 eeprom_regions_count = 1;
2433 u16 j, nvm_data;
2434 u16 nvm_offset;
2435
2436 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2437 if (ret_val) {
2438 hw_dbg("NVM Read Error\n");
2439 goto out;
2440 }
2441
2442 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2443 /* if checksums compatibility bit is set validate checksums
2444 * for all 4 ports.
2445 */
2446 eeprom_regions_count = 4;
2447 }
2448
2449 for (j = 0; j < eeprom_regions_count; j++) {
2450 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2451 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2452 nvm_offset);
2453 if (ret_val != 0)
2454 goto out;
2455 }
2456
2457 out:
2458 return ret_val;
2459 }
2460
2461 /**
2462 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2463 * @hw: pointer to the HW structure
2464 *
2465 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2466 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2467 * checksum and writes the value to the EEPROM.
2468 **/
igb_update_nvm_checksum_82580(struct e1000_hw * hw)2469 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2470 {
2471 s32 ret_val;
2472 u16 j, nvm_data;
2473 u16 nvm_offset;
2474
2475 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2476 if (ret_val) {
2477 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2478 goto out;
2479 }
2480
2481 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2482 /* set compatibility bit to validate checksums appropriately */
2483 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2484 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2485 &nvm_data);
2486 if (ret_val) {
2487 hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2488 goto out;
2489 }
2490 }
2491
2492 for (j = 0; j < 4; j++) {
2493 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2494 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2495 if (ret_val)
2496 goto out;
2497 }
2498
2499 out:
2500 return ret_val;
2501 }
2502
2503 /**
2504 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2505 * @hw: pointer to the HW structure
2506 *
2507 * Calculates the EEPROM section checksum by reading/adding each word of
2508 * the EEPROM and then verifies that the sum of the EEPROM is
2509 * equal to 0xBABA.
2510 **/
igb_validate_nvm_checksum_i350(struct e1000_hw * hw)2511 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2512 {
2513 s32 ret_val = 0;
2514 u16 j;
2515 u16 nvm_offset;
2516
2517 for (j = 0; j < 4; j++) {
2518 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2519 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2520 nvm_offset);
2521 if (ret_val != 0)
2522 goto out;
2523 }
2524
2525 out:
2526 return ret_val;
2527 }
2528
2529 /**
2530 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2531 * @hw: pointer to the HW structure
2532 *
2533 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2534 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2535 * checksum and writes the value to the EEPROM.
2536 **/
igb_update_nvm_checksum_i350(struct e1000_hw * hw)2537 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2538 {
2539 s32 ret_val = 0;
2540 u16 j;
2541 u16 nvm_offset;
2542
2543 for (j = 0; j < 4; j++) {
2544 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2545 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2546 if (ret_val != 0)
2547 goto out;
2548 }
2549
2550 out:
2551 return ret_val;
2552 }
2553
2554 /**
2555 * __igb_access_emi_reg - Read/write EMI register
2556 * @hw: pointer to the HW structure
2557 * @address: EMI address to program
2558 * @data: pointer to value to read/write from/to the EMI address
2559 * @read: boolean flag to indicate read or write
2560 **/
__igb_access_emi_reg(struct e1000_hw * hw,u16 address,u16 * data,bool read)2561 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2562 u16 *data, bool read)
2563 {
2564 s32 ret_val = 0;
2565
2566 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2567 if (ret_val)
2568 return ret_val;
2569
2570 if (read)
2571 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2572 else
2573 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2574
2575 return ret_val;
2576 }
2577
2578 /**
2579 * igb_read_emi_reg - Read Extended Management Interface register
2580 * @hw: pointer to the HW structure
2581 * @addr: EMI address to program
2582 * @data: value to be read from the EMI address
2583 **/
igb_read_emi_reg(struct e1000_hw * hw,u16 addr,u16 * data)2584 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2585 {
2586 return __igb_access_emi_reg(hw, addr, data, true);
2587 }
2588
2589 /**
2590 * igb_set_eee_i350 - Enable/disable EEE support
2591 * @hw: pointer to the HW structure
2592 * @adv1G: boolean flag enabling 1G EEE advertisement
2593 * @adv100M: boolean flag enabling 100M EEE advertisement
2594 *
2595 * Enable/disable EEE based on setting in dev_spec structure.
2596 *
2597 **/
igb_set_eee_i350(struct e1000_hw * hw,bool adv1G,bool adv100M)2598 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2599 {
2600 u32 ipcnfg, eeer;
2601
2602 if ((hw->mac.type < e1000_i350) ||
2603 (hw->phy.media_type != e1000_media_type_copper))
2604 goto out;
2605 ipcnfg = rd32(E1000_IPCNFG);
2606 eeer = rd32(E1000_EEER);
2607
2608 /* enable or disable per user setting */
2609 if (!(hw->dev_spec._82575.eee_disable)) {
2610 u32 eee_su = rd32(E1000_EEE_SU);
2611
2612 if (adv100M)
2613 ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2614 else
2615 ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2616
2617 if (adv1G)
2618 ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2619 else
2620 ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2621
2622 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2623 E1000_EEER_LPI_FC);
2624
2625 /* This bit should not be set in normal operation. */
2626 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2627 hw_dbg("LPI Clock Stop Bit should not be set!\n");
2628
2629 } else {
2630 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2631 E1000_IPCNFG_EEE_100M_AN);
2632 eeer &= ~(E1000_EEER_TX_LPI_EN |
2633 E1000_EEER_RX_LPI_EN |
2634 E1000_EEER_LPI_FC);
2635 }
2636 wr32(E1000_IPCNFG, ipcnfg);
2637 wr32(E1000_EEER, eeer);
2638 rd32(E1000_IPCNFG);
2639 rd32(E1000_EEER);
2640 out:
2641
2642 return 0;
2643 }
2644
2645 /**
2646 * igb_set_eee_i354 - Enable/disable EEE support
2647 * @hw: pointer to the HW structure
2648 * @adv1G: boolean flag enabling 1G EEE advertisement
2649 * @adv100M: boolean flag enabling 100M EEE advertisement
2650 *
2651 * Enable/disable EEE legacy mode based on setting in dev_spec structure.
2652 *
2653 **/
igb_set_eee_i354(struct e1000_hw * hw,bool adv1G,bool adv100M)2654 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2655 {
2656 struct e1000_phy_info *phy = &hw->phy;
2657 s32 ret_val = 0;
2658 u16 phy_data;
2659
2660 if ((hw->phy.media_type != e1000_media_type_copper) ||
2661 ((phy->id != M88E1543_E_PHY_ID) &&
2662 (phy->id != M88E1512_E_PHY_ID)))
2663 goto out;
2664
2665 if (!hw->dev_spec._82575.eee_disable) {
2666 /* Switch to PHY page 18. */
2667 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2668 if (ret_val)
2669 goto out;
2670
2671 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2672 &phy_data);
2673 if (ret_val)
2674 goto out;
2675
2676 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2677 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2678 phy_data);
2679 if (ret_val)
2680 goto out;
2681
2682 /* Return the PHY to page 0. */
2683 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2684 if (ret_val)
2685 goto out;
2686
2687 /* Turn on EEE advertisement. */
2688 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2689 E1000_EEE_ADV_DEV_I354,
2690 &phy_data);
2691 if (ret_val)
2692 goto out;
2693
2694 if (adv100M)
2695 phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2696 else
2697 phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2698
2699 if (adv1G)
2700 phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2701 else
2702 phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2703
2704 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2705 E1000_EEE_ADV_DEV_I354,
2706 phy_data);
2707 } else {
2708 /* Turn off EEE advertisement. */
2709 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2710 E1000_EEE_ADV_DEV_I354,
2711 &phy_data);
2712 if (ret_val)
2713 goto out;
2714
2715 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2716 E1000_EEE_ADV_1000_SUPPORTED);
2717 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2718 E1000_EEE_ADV_DEV_I354,
2719 phy_data);
2720 }
2721
2722 out:
2723 return ret_val;
2724 }
2725
2726 /**
2727 * igb_get_eee_status_i354 - Get EEE status
2728 * @hw: pointer to the HW structure
2729 * @status: EEE status
2730 *
2731 * Get EEE status by guessing based on whether Tx or Rx LPI indications have
2732 * been received.
2733 **/
igb_get_eee_status_i354(struct e1000_hw * hw,bool * status)2734 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2735 {
2736 struct e1000_phy_info *phy = &hw->phy;
2737 s32 ret_val = 0;
2738 u16 phy_data;
2739
2740 /* Check if EEE is supported on this device. */
2741 if ((hw->phy.media_type != e1000_media_type_copper) ||
2742 ((phy->id != M88E1543_E_PHY_ID) &&
2743 (phy->id != M88E1512_E_PHY_ID)))
2744 goto out;
2745
2746 ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2747 E1000_PCS_STATUS_DEV_I354,
2748 &phy_data);
2749 if (ret_val)
2750 goto out;
2751
2752 *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2753 E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2754
2755 out:
2756 return ret_val;
2757 }
2758
2759 #ifdef CONFIG_IGB_HWMON
2760 static const u8 e1000_emc_temp_data[4] = {
2761 E1000_EMC_INTERNAL_DATA,
2762 E1000_EMC_DIODE1_DATA,
2763 E1000_EMC_DIODE2_DATA,
2764 E1000_EMC_DIODE3_DATA
2765 };
2766 static const u8 e1000_emc_therm_limit[4] = {
2767 E1000_EMC_INTERNAL_THERM_LIMIT,
2768 E1000_EMC_DIODE1_THERM_LIMIT,
2769 E1000_EMC_DIODE2_THERM_LIMIT,
2770 E1000_EMC_DIODE3_THERM_LIMIT
2771 };
2772
2773 /**
2774 * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2775 * @hw: pointer to hardware structure
2776 *
2777 * Updates the temperatures in mac.thermal_sensor_data
2778 **/
igb_get_thermal_sensor_data_generic(struct e1000_hw * hw)2779 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2780 {
2781 u16 ets_offset;
2782 u16 ets_cfg;
2783 u16 ets_sensor;
2784 u8 num_sensors;
2785 u8 sensor_index;
2786 u8 sensor_location;
2787 u8 i;
2788 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2789
2790 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2791 return E1000_NOT_IMPLEMENTED;
2792
2793 data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2794
2795 /* Return the internal sensor only if ETS is unsupported */
2796 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2797 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2798 return 0;
2799
2800 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2801 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2802 != NVM_ETS_TYPE_EMC)
2803 return E1000_NOT_IMPLEMENTED;
2804
2805 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2806 if (num_sensors > E1000_MAX_SENSORS)
2807 num_sensors = E1000_MAX_SENSORS;
2808
2809 for (i = 1; i < num_sensors; i++) {
2810 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2811 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2812 NVM_ETS_DATA_INDEX_SHIFT);
2813 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2814 NVM_ETS_DATA_LOC_SHIFT);
2815
2816 if (sensor_location != 0)
2817 hw->phy.ops.read_i2c_byte(hw,
2818 e1000_emc_temp_data[sensor_index],
2819 E1000_I2C_THERMAL_SENSOR_ADDR,
2820 &data->sensor[i].temp);
2821 }
2822 return 0;
2823 }
2824
2825 /**
2826 * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2827 * @hw: pointer to hardware structure
2828 *
2829 * Sets the thermal sensor thresholds according to the NVM map
2830 * and save off the threshold and location values into mac.thermal_sensor_data
2831 **/
igb_init_thermal_sensor_thresh_generic(struct e1000_hw * hw)2832 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2833 {
2834 u16 ets_offset;
2835 u16 ets_cfg;
2836 u16 ets_sensor;
2837 u8 low_thresh_delta;
2838 u8 num_sensors;
2839 u8 sensor_index;
2840 u8 sensor_location;
2841 u8 therm_limit;
2842 u8 i;
2843 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2844
2845 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2846 return E1000_NOT_IMPLEMENTED;
2847
2848 memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2849
2850 data->sensor[0].location = 0x1;
2851 data->sensor[0].caution_thresh =
2852 (rd32(E1000_THHIGHTC) & 0xFF);
2853 data->sensor[0].max_op_thresh =
2854 (rd32(E1000_THLOWTC) & 0xFF);
2855
2856 /* Return the internal sensor only if ETS is unsupported */
2857 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2858 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2859 return 0;
2860
2861 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2862 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2863 != NVM_ETS_TYPE_EMC)
2864 return E1000_NOT_IMPLEMENTED;
2865
2866 low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2867 NVM_ETS_LTHRES_DELTA_SHIFT);
2868 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2869
2870 for (i = 1; i <= num_sensors; i++) {
2871 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2872 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2873 NVM_ETS_DATA_INDEX_SHIFT);
2874 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2875 NVM_ETS_DATA_LOC_SHIFT);
2876 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2877
2878 hw->phy.ops.write_i2c_byte(hw,
2879 e1000_emc_therm_limit[sensor_index],
2880 E1000_I2C_THERMAL_SENSOR_ADDR,
2881 therm_limit);
2882
2883 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2884 data->sensor[i].location = sensor_location;
2885 data->sensor[i].caution_thresh = therm_limit;
2886 data->sensor[i].max_op_thresh = therm_limit -
2887 low_thresh_delta;
2888 }
2889 }
2890 return 0;
2891 }
2892
2893 #endif
2894 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2895 .init_hw = igb_init_hw_82575,
2896 .check_for_link = igb_check_for_link_82575,
2897 .rar_set = igb_rar_set,
2898 .read_mac_addr = igb_read_mac_addr_82575,
2899 .get_speed_and_duplex = igb_get_link_up_info_82575,
2900 #ifdef CONFIG_IGB_HWMON
2901 .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2902 .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2903 #endif
2904 };
2905
2906 static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2907 .acquire = igb_acquire_phy_82575,
2908 .get_cfg_done = igb_get_cfg_done_82575,
2909 .release = igb_release_phy_82575,
2910 .write_i2c_byte = igb_write_i2c_byte,
2911 .read_i2c_byte = igb_read_i2c_byte,
2912 };
2913
2914 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2915 .acquire = igb_acquire_nvm_82575,
2916 .read = igb_read_nvm_eerd,
2917 .release = igb_release_nvm_82575,
2918 .write = igb_write_nvm_spi,
2919 };
2920
2921 const struct e1000_info e1000_82575_info = {
2922 .get_invariants = igb_get_invariants_82575,
2923 .mac_ops = &e1000_mac_ops_82575,
2924 .phy_ops = &e1000_phy_ops_82575,
2925 .nvm_ops = &e1000_nvm_ops_82575,
2926 };
2927
2928