1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* e1000_82575
29  * e1000_82576
30  */
31 
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
34 
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
37 
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
54 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
55 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
56 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
57 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
58 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 						 u16 *);
60 static s32  igb_get_phy_id_82575(struct e1000_hw *);
61 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
62 static bool igb_sgmii_active_82575(struct e1000_hw *);
63 static s32  igb_reset_init_script_82575(struct e1000_hw *);
64 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
65 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
66 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
67 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
68 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
69 static s32  igb_update_nvm_checksum_with_offset(struct e1000_hw *hw,
70 						u16 offset);
71 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
72 						u16 offset);
73 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
74 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
75 static const u16 e1000_82580_rxpbs_table[] =
76 	{ 36, 72, 144, 1, 2, 4, 8, 16,
77 	  35, 70, 140 };
78 #define E1000_82580_RXPBS_TABLE_SIZE \
79 	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
80 
81 /**
82  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
83  *  @hw: pointer to the HW structure
84  *
85  *  Called to determine if the I2C pins are being used for I2C or as an
86  *  external MDIO interface since the two options are mutually exclusive.
87  **/
igb_sgmii_uses_mdio_82575(struct e1000_hw * hw)88 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
89 {
90 	u32 reg = 0;
91 	bool ext_mdio = false;
92 
93 	switch (hw->mac.type) {
94 	case e1000_82575:
95 	case e1000_82576:
96 		reg = rd32(E1000_MDIC);
97 		ext_mdio = !!(reg & E1000_MDIC_DEST);
98 		break;
99 	case e1000_82580:
100 	case e1000_i350:
101 		reg = rd32(E1000_MDICNFG);
102 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
103 		break;
104 	default:
105 		break;
106 	}
107 	return ext_mdio;
108 }
109 
igb_get_invariants_82575(struct e1000_hw * hw)110 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
111 {
112 	struct e1000_phy_info *phy = &hw->phy;
113 	struct e1000_nvm_info *nvm = &hw->nvm;
114 	struct e1000_mac_info *mac = &hw->mac;
115 	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
116 	u32 eecd;
117 	s32 ret_val;
118 	u16 size;
119 	u32 ctrl_ext = 0;
120 
121 	switch (hw->device_id) {
122 	case E1000_DEV_ID_82575EB_COPPER:
123 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
124 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
125 		mac->type = e1000_82575;
126 		break;
127 	case E1000_DEV_ID_82576:
128 	case E1000_DEV_ID_82576_NS:
129 	case E1000_DEV_ID_82576_NS_SERDES:
130 	case E1000_DEV_ID_82576_FIBER:
131 	case E1000_DEV_ID_82576_SERDES:
132 	case E1000_DEV_ID_82576_QUAD_COPPER:
133 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
134 	case E1000_DEV_ID_82576_SERDES_QUAD:
135 		mac->type = e1000_82576;
136 		break;
137 	case E1000_DEV_ID_82580_COPPER:
138 	case E1000_DEV_ID_82580_FIBER:
139 	case E1000_DEV_ID_82580_QUAD_FIBER:
140 	case E1000_DEV_ID_82580_SERDES:
141 	case E1000_DEV_ID_82580_SGMII:
142 	case E1000_DEV_ID_82580_COPPER_DUAL:
143 	case E1000_DEV_ID_DH89XXCC_SGMII:
144 	case E1000_DEV_ID_DH89XXCC_SERDES:
145 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
146 	case E1000_DEV_ID_DH89XXCC_SFP:
147 		mac->type = e1000_82580;
148 		break;
149 	case E1000_DEV_ID_I350_COPPER:
150 	case E1000_DEV_ID_I350_FIBER:
151 	case E1000_DEV_ID_I350_SERDES:
152 	case E1000_DEV_ID_I350_SGMII:
153 		mac->type = e1000_i350;
154 		break;
155 	default:
156 		return -E1000_ERR_MAC_INIT;
157 		break;
158 	}
159 
160 	/* Set media type */
161 	/*
162 	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
163 	 * based on the EEPROM. We cannot rely upon device ID. There
164 	 * is no distinguishable difference between fiber and internal
165 	 * SerDes mode on the 82575. There can be an external PHY attached
166 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
167 	 */
168 	phy->media_type = e1000_media_type_copper;
169 	dev_spec->sgmii_active = false;
170 
171 	ctrl_ext = rd32(E1000_CTRL_EXT);
172 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
173 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
174 		dev_spec->sgmii_active = true;
175 		break;
176 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
177 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
178 		hw->phy.media_type = e1000_media_type_internal_serdes;
179 		break;
180 	default:
181 		break;
182 	}
183 
184 	/* Set mta register count */
185 	mac->mta_reg_count = 128;
186 	/* Set rar entry count */
187 	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
188 	if (mac->type == e1000_82576)
189 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
190 	if (mac->type == e1000_82580)
191 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
192 	if (mac->type == e1000_i350)
193 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
194 	/* reset */
195 	if (mac->type >= e1000_82580)
196 		mac->ops.reset_hw = igb_reset_hw_82580;
197 	else
198 		mac->ops.reset_hw = igb_reset_hw_82575;
199 	/* Set if part includes ASF firmware */
200 	mac->asf_firmware_present = true;
201 	/* Set if manageability features are enabled. */
202 	mac->arc_subsystem_valid =
203 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
204 			? true : false;
205 	/* enable EEE on i350 parts */
206 	if (mac->type == e1000_i350)
207 		dev_spec->eee_disable = false;
208 	else
209 		dev_spec->eee_disable = true;
210 	/* physical interface link setup */
211 	mac->ops.setup_physical_interface =
212 		(hw->phy.media_type == e1000_media_type_copper)
213 			? igb_setup_copper_link_82575
214 			: igb_setup_serdes_link_82575;
215 
216 	/* NVM initialization */
217 	eecd = rd32(E1000_EECD);
218 
219 	nvm->opcode_bits        = 8;
220 	nvm->delay_usec         = 1;
221 	switch (nvm->override) {
222 	case e1000_nvm_override_spi_large:
223 		nvm->page_size    = 32;
224 		nvm->address_bits = 16;
225 		break;
226 	case e1000_nvm_override_spi_small:
227 		nvm->page_size    = 8;
228 		nvm->address_bits = 8;
229 		break;
230 	default:
231 		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
232 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
233 		break;
234 	}
235 
236 	nvm->type = e1000_nvm_eeprom_spi;
237 
238 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
239 		     E1000_EECD_SIZE_EX_SHIFT);
240 
241 	/*
242 	 * Added to a constant, "size" becomes the left-shift value
243 	 * for setting word_size.
244 	 */
245 	size += NVM_WORD_SIZE_BASE_SHIFT;
246 
247 	nvm->word_size = 1 << size;
248 	if (nvm->word_size == (1 << 15))
249 		nvm->page_size = 128;
250 
251 	/* NVM Function Pointers */
252 	nvm->ops.acquire = igb_acquire_nvm_82575;
253 	if (nvm->word_size < (1 << 15))
254 		nvm->ops.read = igb_read_nvm_eerd;
255 	else
256 		nvm->ops.read = igb_read_nvm_spi;
257 
258 	nvm->ops.release = igb_release_nvm_82575;
259 	switch (hw->mac.type) {
260 	case e1000_82580:
261 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
262 		nvm->ops.update = igb_update_nvm_checksum_82580;
263 		break;
264 	case e1000_i350:
265 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
266 		nvm->ops.update = igb_update_nvm_checksum_i350;
267 		break;
268 	default:
269 		nvm->ops.validate = igb_validate_nvm_checksum;
270 		nvm->ops.update = igb_update_nvm_checksum;
271 	}
272 	nvm->ops.write = igb_write_nvm_spi;
273 
274 	/* if part supports SR-IOV then initialize mailbox parameters */
275 	switch (mac->type) {
276 	case e1000_82576:
277 	case e1000_i350:
278 		igb_init_mbx_params_pf(hw);
279 		break;
280 	default:
281 		break;
282 	}
283 
284 	/* setup PHY parameters */
285 	if (phy->media_type != e1000_media_type_copper) {
286 		phy->type = e1000_phy_none;
287 		return 0;
288 	}
289 
290 	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
291 	phy->reset_delay_us      = 100;
292 
293 	ctrl_ext = rd32(E1000_CTRL_EXT);
294 
295 	/* PHY function pointers */
296 	if (igb_sgmii_active_82575(hw)) {
297 		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
298 		ctrl_ext |= E1000_CTRL_I2C_ENA;
299 	} else {
300 		phy->ops.reset      = igb_phy_hw_reset;
301 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
302 	}
303 
304 	wr32(E1000_CTRL_EXT, ctrl_ext);
305 	igb_reset_mdicnfg_82580(hw);
306 
307 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
308 		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
309 		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
310 	} else if (hw->mac.type >= e1000_82580) {
311 		phy->ops.read_reg   = igb_read_phy_reg_82580;
312 		phy->ops.write_reg  = igb_write_phy_reg_82580;
313 	} else {
314 		phy->ops.read_reg   = igb_read_phy_reg_igp;
315 		phy->ops.write_reg  = igb_write_phy_reg_igp;
316 	}
317 
318 	/* set lan id */
319 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
320 	               E1000_STATUS_FUNC_SHIFT;
321 
322 	/* Set phy->phy_addr and phy->id. */
323 	ret_val = igb_get_phy_id_82575(hw);
324 	if (ret_val)
325 		return ret_val;
326 
327 	/* Verify phy id and set remaining function pointers */
328 	switch (phy->id) {
329 	case I347AT4_E_PHY_ID:
330 	case M88E1112_E_PHY_ID:
331 	case M88E1111_I_PHY_ID:
332 		phy->type                   = e1000_phy_m88;
333 		phy->ops.get_phy_info       = igb_get_phy_info_m88;
334 
335 		if (phy->id == I347AT4_E_PHY_ID ||
336 		    phy->id == M88E1112_E_PHY_ID)
337 			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
338 		else
339 			phy->ops.get_cable_length = igb_get_cable_length_m88;
340 
341 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
342 		break;
343 	case IGP03E1000_E_PHY_ID:
344 		phy->type                   = e1000_phy_igp_3;
345 		phy->ops.get_phy_info       = igb_get_phy_info_igp;
346 		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
347 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
348 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
349 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
350 		break;
351 	case I82580_I_PHY_ID:
352 	case I350_I_PHY_ID:
353 		phy->type                   = e1000_phy_82580;
354 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
355 		phy->ops.get_cable_length   = igb_get_cable_length_82580;
356 		phy->ops.get_phy_info       = igb_get_phy_info_82580;
357 		break;
358 	default:
359 		return -E1000_ERR_PHY;
360 	}
361 
362 	return 0;
363 }
364 
365 /**
366  *  igb_acquire_phy_82575 - Acquire rights to access PHY
367  *  @hw: pointer to the HW structure
368  *
369  *  Acquire access rights to the correct PHY.  This is a
370  *  function pointer entry point called by the api module.
371  **/
igb_acquire_phy_82575(struct e1000_hw * hw)372 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
373 {
374 	u16 mask = E1000_SWFW_PHY0_SM;
375 
376 	if (hw->bus.func == E1000_FUNC_1)
377 		mask = E1000_SWFW_PHY1_SM;
378 	else if (hw->bus.func == E1000_FUNC_2)
379 		mask = E1000_SWFW_PHY2_SM;
380 	else if (hw->bus.func == E1000_FUNC_3)
381 		mask = E1000_SWFW_PHY3_SM;
382 
383 	return igb_acquire_swfw_sync_82575(hw, mask);
384 }
385 
386 /**
387  *  igb_release_phy_82575 - Release rights to access PHY
388  *  @hw: pointer to the HW structure
389  *
390  *  A wrapper to release access rights to the correct PHY.  This is a
391  *  function pointer entry point called by the api module.
392  **/
igb_release_phy_82575(struct e1000_hw * hw)393 static void igb_release_phy_82575(struct e1000_hw *hw)
394 {
395 	u16 mask = E1000_SWFW_PHY0_SM;
396 
397 	if (hw->bus.func == E1000_FUNC_1)
398 		mask = E1000_SWFW_PHY1_SM;
399 	else if (hw->bus.func == E1000_FUNC_2)
400 		mask = E1000_SWFW_PHY2_SM;
401 	else if (hw->bus.func == E1000_FUNC_3)
402 		mask = E1000_SWFW_PHY3_SM;
403 
404 	igb_release_swfw_sync_82575(hw, mask);
405 }
406 
407 /**
408  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
409  *  @hw: pointer to the HW structure
410  *  @offset: register offset to be read
411  *  @data: pointer to the read data
412  *
413  *  Reads the PHY register at offset using the serial gigabit media independent
414  *  interface and stores the retrieved information in data.
415  **/
igb_read_phy_reg_sgmii_82575(struct e1000_hw * hw,u32 offset,u16 * data)416 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
417 					  u16 *data)
418 {
419 	s32 ret_val = -E1000_ERR_PARAM;
420 
421 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
422 		hw_dbg("PHY Address %u is out of range\n", offset);
423 		goto out;
424 	}
425 
426 	ret_val = hw->phy.ops.acquire(hw);
427 	if (ret_val)
428 		goto out;
429 
430 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
431 
432 	hw->phy.ops.release(hw);
433 
434 out:
435 	return ret_val;
436 }
437 
438 /**
439  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
440  *  @hw: pointer to the HW structure
441  *  @offset: register offset to write to
442  *  @data: data to write at register offset
443  *
444  *  Writes the data to PHY register at the offset using the serial gigabit
445  *  media independent interface.
446  **/
igb_write_phy_reg_sgmii_82575(struct e1000_hw * hw,u32 offset,u16 data)447 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
448 					   u16 data)
449 {
450 	s32 ret_val = -E1000_ERR_PARAM;
451 
452 
453 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
454 		hw_dbg("PHY Address %d is out of range\n", offset);
455 		goto out;
456 	}
457 
458 	ret_val = hw->phy.ops.acquire(hw);
459 	if (ret_val)
460 		goto out;
461 
462 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
463 
464 	hw->phy.ops.release(hw);
465 
466 out:
467 	return ret_val;
468 }
469 
470 /**
471  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
472  *  @hw: pointer to the HW structure
473  *
474  *  Retrieves the PHY address and ID for both PHY's which do and do not use
475  *  sgmi interface.
476  **/
igb_get_phy_id_82575(struct e1000_hw * hw)477 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
478 {
479 	struct e1000_phy_info *phy = &hw->phy;
480 	s32  ret_val = 0;
481 	u16 phy_id;
482 	u32 ctrl_ext;
483 	u32 mdic;
484 
485 	/*
486 	 * For SGMII PHYs, we try the list of possible addresses until
487 	 * we find one that works.  For non-SGMII PHYs
488 	 * (e.g. integrated copper PHYs), an address of 1 should
489 	 * work.  The result of this function should mean phy->phy_addr
490 	 * and phy->id are set correctly.
491 	 */
492 	if (!(igb_sgmii_active_82575(hw))) {
493 		phy->addr = 1;
494 		ret_val = igb_get_phy_id(hw);
495 		goto out;
496 	}
497 
498 	if (igb_sgmii_uses_mdio_82575(hw)) {
499 		switch (hw->mac.type) {
500 		case e1000_82575:
501 		case e1000_82576:
502 			mdic = rd32(E1000_MDIC);
503 			mdic &= E1000_MDIC_PHY_MASK;
504 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
505 			break;
506 		case e1000_82580:
507 		case e1000_i350:
508 			mdic = rd32(E1000_MDICNFG);
509 			mdic &= E1000_MDICNFG_PHY_MASK;
510 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
511 			break;
512 		default:
513 			ret_val = -E1000_ERR_PHY;
514 			goto out;
515 			break;
516 		}
517 		ret_val = igb_get_phy_id(hw);
518 		goto out;
519 	}
520 
521 	/* Power on sgmii phy if it is disabled */
522 	ctrl_ext = rd32(E1000_CTRL_EXT);
523 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
524 	wrfl();
525 	msleep(300);
526 
527 	/*
528 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
529 	 * Therefore, we need to test 1-7
530 	 */
531 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
532 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
533 		if (ret_val == 0) {
534 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
535 			       phy_id, phy->addr);
536 			/*
537 			 * At the time of this writing, The M88 part is
538 			 * the only supported SGMII PHY product.
539 			 */
540 			if (phy_id == M88_VENDOR)
541 				break;
542 		} else {
543 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
544 		}
545 	}
546 
547 	/* A valid PHY type couldn't be found. */
548 	if (phy->addr == 8) {
549 		phy->addr = 0;
550 		ret_val = -E1000_ERR_PHY;
551 		goto out;
552 	} else {
553 		ret_val = igb_get_phy_id(hw);
554 	}
555 
556 	/* restore previous sfp cage power state */
557 	wr32(E1000_CTRL_EXT, ctrl_ext);
558 
559 out:
560 	return ret_val;
561 }
562 
563 /**
564  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
565  *  @hw: pointer to the HW structure
566  *
567  *  Resets the PHY using the serial gigabit media independent interface.
568  **/
igb_phy_hw_reset_sgmii_82575(struct e1000_hw * hw)569 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
570 {
571 	s32 ret_val;
572 
573 	/*
574 	 * This isn't a true "hard" reset, but is the only reset
575 	 * available to us at this time.
576 	 */
577 
578 	hw_dbg("Soft resetting SGMII attached PHY...\n");
579 
580 	/*
581 	 * SFP documentation requires the following to configure the SPF module
582 	 * to work on SGMII.  No further documentation is given.
583 	 */
584 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
585 	if (ret_val)
586 		goto out;
587 
588 	ret_val = igb_phy_sw_reset(hw);
589 
590 out:
591 	return ret_val;
592 }
593 
594 /**
595  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
596  *  @hw: pointer to the HW structure
597  *  @active: true to enable LPLU, false to disable
598  *
599  *  Sets the LPLU D0 state according to the active flag.  When
600  *  activating LPLU this function also disables smart speed
601  *  and vice versa.  LPLU will not be activated unless the
602  *  device autonegotiation advertisement meets standards of
603  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
604  *  This is a function pointer entry point only called by
605  *  PHY setup routines.
606  **/
igb_set_d0_lplu_state_82575(struct e1000_hw * hw,bool active)607 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
608 {
609 	struct e1000_phy_info *phy = &hw->phy;
610 	s32 ret_val;
611 	u16 data;
612 
613 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
614 	if (ret_val)
615 		goto out;
616 
617 	if (active) {
618 		data |= IGP02E1000_PM_D0_LPLU;
619 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
620 						 data);
621 		if (ret_val)
622 			goto out;
623 
624 		/* When LPLU is enabled, we should disable SmartSpeed */
625 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
626 						&data);
627 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
628 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
629 						 data);
630 		if (ret_val)
631 			goto out;
632 	} else {
633 		data &= ~IGP02E1000_PM_D0_LPLU;
634 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
635 						 data);
636 		/*
637 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
638 		 * during Dx states where the power conservation is most
639 		 * important.  During driver activity we should enable
640 		 * SmartSpeed, so performance is maintained.
641 		 */
642 		if (phy->smart_speed == e1000_smart_speed_on) {
643 			ret_val = phy->ops.read_reg(hw,
644 					IGP01E1000_PHY_PORT_CONFIG, &data);
645 			if (ret_val)
646 				goto out;
647 
648 			data |= IGP01E1000_PSCFR_SMART_SPEED;
649 			ret_val = phy->ops.write_reg(hw,
650 					IGP01E1000_PHY_PORT_CONFIG, data);
651 			if (ret_val)
652 				goto out;
653 		} else if (phy->smart_speed == e1000_smart_speed_off) {
654 			ret_val = phy->ops.read_reg(hw,
655 					IGP01E1000_PHY_PORT_CONFIG, &data);
656 			if (ret_val)
657 				goto out;
658 
659 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
660 			ret_val = phy->ops.write_reg(hw,
661 					IGP01E1000_PHY_PORT_CONFIG, data);
662 			if (ret_val)
663 				goto out;
664 		}
665 	}
666 
667 out:
668 	return ret_val;
669 }
670 
671 /**
672  *  igb_acquire_nvm_82575 - Request for access to EEPROM
673  *  @hw: pointer to the HW structure
674  *
675  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
676  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
677  *  Return successful if access grant bit set, else clear the request for
678  *  EEPROM access and return -E1000_ERR_NVM (-1).
679  **/
igb_acquire_nvm_82575(struct e1000_hw * hw)680 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
681 {
682 	s32 ret_val;
683 
684 	ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
685 	if (ret_val)
686 		goto out;
687 
688 	ret_val = igb_acquire_nvm(hw);
689 
690 	if (ret_val)
691 		igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
692 
693 out:
694 	return ret_val;
695 }
696 
697 /**
698  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
699  *  @hw: pointer to the HW structure
700  *
701  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
702  *  then release the semaphores acquired.
703  **/
igb_release_nvm_82575(struct e1000_hw * hw)704 static void igb_release_nvm_82575(struct e1000_hw *hw)
705 {
706 	igb_release_nvm(hw);
707 	igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
708 }
709 
710 /**
711  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
712  *  @hw: pointer to the HW structure
713  *  @mask: specifies which semaphore to acquire
714  *
715  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
716  *  will also specify which port we're acquiring the lock for.
717  **/
igb_acquire_swfw_sync_82575(struct e1000_hw * hw,u16 mask)718 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
719 {
720 	u32 swfw_sync;
721 	u32 swmask = mask;
722 	u32 fwmask = mask << 16;
723 	s32 ret_val = 0;
724 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
725 
726 	while (i < timeout) {
727 		if (igb_get_hw_semaphore(hw)) {
728 			ret_val = -E1000_ERR_SWFW_SYNC;
729 			goto out;
730 		}
731 
732 		swfw_sync = rd32(E1000_SW_FW_SYNC);
733 		if (!(swfw_sync & (fwmask | swmask)))
734 			break;
735 
736 		/*
737 		 * Firmware currently using resource (fwmask)
738 		 * or other software thread using resource (swmask)
739 		 */
740 		igb_put_hw_semaphore(hw);
741 		mdelay(5);
742 		i++;
743 	}
744 
745 	if (i == timeout) {
746 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
747 		ret_val = -E1000_ERR_SWFW_SYNC;
748 		goto out;
749 	}
750 
751 	swfw_sync |= swmask;
752 	wr32(E1000_SW_FW_SYNC, swfw_sync);
753 
754 	igb_put_hw_semaphore(hw);
755 
756 out:
757 	return ret_val;
758 }
759 
760 /**
761  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
762  *  @hw: pointer to the HW structure
763  *  @mask: specifies which semaphore to acquire
764  *
765  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
766  *  will also specify which port we're releasing the lock for.
767  **/
igb_release_swfw_sync_82575(struct e1000_hw * hw,u16 mask)768 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
769 {
770 	u32 swfw_sync;
771 
772 	while (igb_get_hw_semaphore(hw) != 0);
773 	/* Empty */
774 
775 	swfw_sync = rd32(E1000_SW_FW_SYNC);
776 	swfw_sync &= ~mask;
777 	wr32(E1000_SW_FW_SYNC, swfw_sync);
778 
779 	igb_put_hw_semaphore(hw);
780 }
781 
782 /**
783  *  igb_get_cfg_done_82575 - Read config done bit
784  *  @hw: pointer to the HW structure
785  *
786  *  Read the management control register for the config done bit for
787  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
788  *  to read the config done bit, so an error is *ONLY* logged and returns
789  *  0.  If we were to return with error, EEPROM-less silicon
790  *  would not be able to be reset or change link.
791  **/
igb_get_cfg_done_82575(struct e1000_hw * hw)792 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
793 {
794 	s32 timeout = PHY_CFG_TIMEOUT;
795 	s32 ret_val = 0;
796 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
797 
798 	if (hw->bus.func == 1)
799 		mask = E1000_NVM_CFG_DONE_PORT_1;
800 	else if (hw->bus.func == E1000_FUNC_2)
801 		mask = E1000_NVM_CFG_DONE_PORT_2;
802 	else if (hw->bus.func == E1000_FUNC_3)
803 		mask = E1000_NVM_CFG_DONE_PORT_3;
804 
805 	while (timeout) {
806 		if (rd32(E1000_EEMNGCTL) & mask)
807 			break;
808 		msleep(1);
809 		timeout--;
810 	}
811 	if (!timeout)
812 		hw_dbg("MNG configuration cycle has not completed.\n");
813 
814 	/* If EEPROM is not marked present, init the PHY manually */
815 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
816 	    (hw->phy.type == e1000_phy_igp_3))
817 		igb_phy_init_script_igp3(hw);
818 
819 	return ret_val;
820 }
821 
822 /**
823  *  igb_check_for_link_82575 - Check for link
824  *  @hw: pointer to the HW structure
825  *
826  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
827  *  use the generic interface for determining link.
828  **/
igb_check_for_link_82575(struct e1000_hw * hw)829 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
830 {
831 	s32 ret_val;
832 	u16 speed, duplex;
833 
834 	if (hw->phy.media_type != e1000_media_type_copper) {
835 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
836 		                                             &duplex);
837 		/*
838 		 * Use this flag to determine if link needs to be checked or
839 		 * not.  If  we have link clear the flag so that we do not
840 		 * continue to check for link.
841 		 */
842 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
843 	} else {
844 		ret_val = igb_check_for_copper_link(hw);
845 	}
846 
847 	return ret_val;
848 }
849 
850 /**
851  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
852  *  @hw: pointer to the HW structure
853  **/
igb_power_up_serdes_link_82575(struct e1000_hw * hw)854 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
855 {
856 	u32 reg;
857 
858 
859 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
860 	    !igb_sgmii_active_82575(hw))
861 		return;
862 
863 	/* Enable PCS to turn on link */
864 	reg = rd32(E1000_PCS_CFG0);
865 	reg |= E1000_PCS_CFG_PCS_EN;
866 	wr32(E1000_PCS_CFG0, reg);
867 
868 	/* Power up the laser */
869 	reg = rd32(E1000_CTRL_EXT);
870 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
871 	wr32(E1000_CTRL_EXT, reg);
872 
873 	/* flush the write to verify completion */
874 	wrfl();
875 	msleep(1);
876 }
877 
878 /**
879  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
880  *  @hw: pointer to the HW structure
881  *  @speed: stores the current speed
882  *  @duplex: stores the current duplex
883  *
884  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
885  *  duplex, then store the values in the pointers provided.
886  **/
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw * hw,u16 * speed,u16 * duplex)887 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
888 						u16 *duplex)
889 {
890 	struct e1000_mac_info *mac = &hw->mac;
891 	u32 pcs;
892 
893 	/* Set up defaults for the return values of this function */
894 	mac->serdes_has_link = false;
895 	*speed = 0;
896 	*duplex = 0;
897 
898 	/*
899 	 * Read the PCS Status register for link state. For non-copper mode,
900 	 * the status register is not accurate. The PCS status register is
901 	 * used instead.
902 	 */
903 	pcs = rd32(E1000_PCS_LSTAT);
904 
905 	/*
906 	 * The link up bit determines when link is up on autoneg. The sync ok
907 	 * gets set once both sides sync up and agree upon link. Stable link
908 	 * can be determined by checking for both link up and link sync ok
909 	 */
910 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
911 		mac->serdes_has_link = true;
912 
913 		/* Detect and store PCS speed */
914 		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
915 			*speed = SPEED_1000;
916 		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
917 			*speed = SPEED_100;
918 		} else {
919 			*speed = SPEED_10;
920 		}
921 
922 		/* Detect and store PCS duplex */
923 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
924 			*duplex = FULL_DUPLEX;
925 		} else {
926 			*duplex = HALF_DUPLEX;
927 		}
928 	}
929 
930 	return 0;
931 }
932 
933 /**
934  *  igb_shutdown_serdes_link_82575 - Remove link during power down
935  *  @hw: pointer to the HW structure
936  *
937  *  In the case of fiber serdes, shut down optics and PCS on driver unload
938  *  when management pass thru is not enabled.
939  **/
igb_shutdown_serdes_link_82575(struct e1000_hw * hw)940 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
941 {
942 	u32 reg;
943 
944 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
945 	    igb_sgmii_active_82575(hw))
946 		return;
947 
948 	if (!igb_enable_mng_pass_thru(hw)) {
949 		/* Disable PCS to turn off link */
950 		reg = rd32(E1000_PCS_CFG0);
951 		reg &= ~E1000_PCS_CFG_PCS_EN;
952 		wr32(E1000_PCS_CFG0, reg);
953 
954 		/* shutdown the laser */
955 		reg = rd32(E1000_CTRL_EXT);
956 		reg |= E1000_CTRL_EXT_SDP3_DATA;
957 		wr32(E1000_CTRL_EXT, reg);
958 
959 		/* flush the write to verify completion */
960 		wrfl();
961 		msleep(1);
962 	}
963 }
964 
965 /**
966  *  igb_reset_hw_82575 - Reset hardware
967  *  @hw: pointer to the HW structure
968  *
969  *  This resets the hardware into a known state.  This is a
970  *  function pointer entry point called by the api module.
971  **/
igb_reset_hw_82575(struct e1000_hw * hw)972 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
973 {
974 	u32 ctrl, icr;
975 	s32 ret_val;
976 
977 	/*
978 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
979 	 * on the last TLP read/write transaction when MAC is reset.
980 	 */
981 	ret_val = igb_disable_pcie_master(hw);
982 	if (ret_val)
983 		hw_dbg("PCI-E Master disable polling has failed.\n");
984 
985 	/* set the completion timeout for interface */
986 	ret_val = igb_set_pcie_completion_timeout(hw);
987 	if (ret_val) {
988 		hw_dbg("PCI-E Set completion timeout has failed.\n");
989 	}
990 
991 	hw_dbg("Masking off all interrupts\n");
992 	wr32(E1000_IMC, 0xffffffff);
993 
994 	wr32(E1000_RCTL, 0);
995 	wr32(E1000_TCTL, E1000_TCTL_PSP);
996 	wrfl();
997 
998 	msleep(10);
999 
1000 	ctrl = rd32(E1000_CTRL);
1001 
1002 	hw_dbg("Issuing a global reset to MAC\n");
1003 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1004 
1005 	ret_val = igb_get_auto_rd_done(hw);
1006 	if (ret_val) {
1007 		/*
1008 		 * When auto config read does not complete, do not
1009 		 * return with an error. This can happen in situations
1010 		 * where there is no eeprom and prevents getting link.
1011 		 */
1012 		hw_dbg("Auto Read Done did not complete\n");
1013 	}
1014 
1015 	/* If EEPROM is not present, run manual init scripts */
1016 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1017 		igb_reset_init_script_82575(hw);
1018 
1019 	/* Clear any pending interrupt events. */
1020 	wr32(E1000_IMC, 0xffffffff);
1021 	icr = rd32(E1000_ICR);
1022 
1023 	/* Install any alternate MAC address into RAR0 */
1024 	ret_val = igb_check_alt_mac_addr(hw);
1025 
1026 	return ret_val;
1027 }
1028 
1029 /**
1030  *  igb_init_hw_82575 - Initialize hardware
1031  *  @hw: pointer to the HW structure
1032  *
1033  *  This inits the hardware readying it for operation.
1034  **/
igb_init_hw_82575(struct e1000_hw * hw)1035 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1036 {
1037 	struct e1000_mac_info *mac = &hw->mac;
1038 	s32 ret_val;
1039 	u16 i, rar_count = mac->rar_entry_count;
1040 
1041 	/* Initialize identification LED */
1042 	ret_val = igb_id_led_init(hw);
1043 	if (ret_val) {
1044 		hw_dbg("Error initializing identification LED\n");
1045 		/* This is not fatal and we should not stop init due to this */
1046 	}
1047 
1048 	/* Disabling VLAN filtering */
1049 	hw_dbg("Initializing the IEEE VLAN\n");
1050 	igb_clear_vfta(hw);
1051 
1052 	/* Setup the receive address */
1053 	igb_init_rx_addrs(hw, rar_count);
1054 
1055 	/* Zero out the Multicast HASH table */
1056 	hw_dbg("Zeroing the MTA\n");
1057 	for (i = 0; i < mac->mta_reg_count; i++)
1058 		array_wr32(E1000_MTA, i, 0);
1059 
1060 	/* Zero out the Unicast HASH table */
1061 	hw_dbg("Zeroing the UTA\n");
1062 	for (i = 0; i < mac->uta_reg_count; i++)
1063 		array_wr32(E1000_UTA, i, 0);
1064 
1065 	/* Setup link and flow control */
1066 	ret_val = igb_setup_link(hw);
1067 
1068 	/*
1069 	 * Clear all of the statistics registers (clear on read).  It is
1070 	 * important that we do this after we have tried to establish link
1071 	 * because the symbol error count will increment wildly if there
1072 	 * is no link.
1073 	 */
1074 	igb_clear_hw_cntrs_82575(hw);
1075 
1076 	return ret_val;
1077 }
1078 
1079 /**
1080  *  igb_setup_copper_link_82575 - Configure copper link settings
1081  *  @hw: pointer to the HW structure
1082  *
1083  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1084  *  for link, once link is established calls to configure collision distance
1085  *  and flow control are called.
1086  **/
igb_setup_copper_link_82575(struct e1000_hw * hw)1087 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1088 {
1089 	u32 ctrl;
1090 	s32  ret_val;
1091 
1092 	ctrl = rd32(E1000_CTRL);
1093 	ctrl |= E1000_CTRL_SLU;
1094 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1095 	wr32(E1000_CTRL, ctrl);
1096 
1097 	ret_val = igb_setup_serdes_link_82575(hw);
1098 	if (ret_val)
1099 		goto out;
1100 
1101 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1102 		/* allow time for SFP cage time to power up phy */
1103 		msleep(300);
1104 
1105 		ret_val = hw->phy.ops.reset(hw);
1106 		if (ret_val) {
1107 			hw_dbg("Error resetting the PHY.\n");
1108 			goto out;
1109 		}
1110 	}
1111 	switch (hw->phy.type) {
1112 	case e1000_phy_m88:
1113 		if (hw->phy.id == I347AT4_E_PHY_ID ||
1114 		    hw->phy.id == M88E1112_E_PHY_ID)
1115 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1116 		else
1117 			ret_val = igb_copper_link_setup_m88(hw);
1118 		break;
1119 	case e1000_phy_igp_3:
1120 		ret_val = igb_copper_link_setup_igp(hw);
1121 		break;
1122 	case e1000_phy_82580:
1123 		ret_val = igb_copper_link_setup_82580(hw);
1124 		break;
1125 	default:
1126 		ret_val = -E1000_ERR_PHY;
1127 		break;
1128 	}
1129 
1130 	if (ret_val)
1131 		goto out;
1132 
1133 	ret_val = igb_setup_copper_link(hw);
1134 out:
1135 	return ret_val;
1136 }
1137 
1138 /**
1139  *  igb_setup_serdes_link_82575 - Setup link for serdes
1140  *  @hw: pointer to the HW structure
1141  *
1142  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1143  *  used on copper connections where the serialized gigabit media independent
1144  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1145  *  for auto-negotiation or forces speed/duplex.
1146  **/
igb_setup_serdes_link_82575(struct e1000_hw * hw)1147 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1148 {
1149 	u32 ctrl_ext, ctrl_reg, reg;
1150 	bool pcs_autoneg;
1151 
1152 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1153 	    !igb_sgmii_active_82575(hw))
1154 		return 0;
1155 
1156 	/*
1157 	 * On the 82575, SerDes loopback mode persists until it is
1158 	 * explicitly turned off or a power cycle is performed.  A read to
1159 	 * the register does not indicate its status.  Therefore, we ensure
1160 	 * loopback mode is disabled during initialization.
1161 	 */
1162 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1163 
1164 	/* power on the sfp cage if present */
1165 	ctrl_ext = rd32(E1000_CTRL_EXT);
1166 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1167 	wr32(E1000_CTRL_EXT, ctrl_ext);
1168 
1169 	ctrl_reg = rd32(E1000_CTRL);
1170 	ctrl_reg |= E1000_CTRL_SLU;
1171 
1172 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1173 		/* set both sw defined pins */
1174 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1175 
1176 		/* Set switch control to serdes energy detect */
1177 		reg = rd32(E1000_CONNSW);
1178 		reg |= E1000_CONNSW_ENRGSRC;
1179 		wr32(E1000_CONNSW, reg);
1180 	}
1181 
1182 	reg = rd32(E1000_PCS_LCTL);
1183 
1184 	/* default pcs_autoneg to the same setting as mac autoneg */
1185 	pcs_autoneg = hw->mac.autoneg;
1186 
1187 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1188 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1189 		/* sgmii mode lets the phy handle forcing speed/duplex */
1190 		pcs_autoneg = true;
1191 		/* autoneg time out should be disabled for SGMII mode */
1192 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1193 		break;
1194 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1195 		/* disable PCS autoneg and support parallel detect only */
1196 		pcs_autoneg = false;
1197 	default:
1198 		/*
1199 		 * non-SGMII modes only supports a speed of 1000/Full for the
1200 		 * link so it is best to just force the MAC and let the pcs
1201 		 * link either autoneg or be forced to 1000/Full
1202 		 */
1203 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1204 		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1205 
1206 		/* set speed of 1000/Full if speed/duplex is forced */
1207 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1208 		break;
1209 	}
1210 
1211 	wr32(E1000_CTRL, ctrl_reg);
1212 
1213 	/*
1214 	 * New SerDes mode allows for forcing speed or autonegotiating speed
1215 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1216 	 * mode that will be compatible with older link partners and switches.
1217 	 * However, both are supported by the hardware and some drivers/tools.
1218 	 */
1219 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1220 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1221 
1222 	/*
1223 	 * We force flow control to prevent the CTRL register values from being
1224 	 * overwritten by the autonegotiated flow control values
1225 	 */
1226 	reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1227 
1228 	if (pcs_autoneg) {
1229 		/* Set PCS register for autoneg */
1230 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1231 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1232 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1233 	} else {
1234 		/* Set PCS register for forced link */
1235 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1236 
1237 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1238 	}
1239 
1240 	wr32(E1000_PCS_LCTL, reg);
1241 
1242 	if (!igb_sgmii_active_82575(hw))
1243 		igb_force_mac_fc(hw);
1244 
1245 	return 0;
1246 }
1247 
1248 /**
1249  *  igb_sgmii_active_82575 - Return sgmii state
1250  *  @hw: pointer to the HW structure
1251  *
1252  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1253  *  which can be enabled for use in the embedded applications.  Simply
1254  *  return the current state of the sgmii interface.
1255  **/
igb_sgmii_active_82575(struct e1000_hw * hw)1256 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1257 {
1258 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1259 	return dev_spec->sgmii_active;
1260 }
1261 
1262 /**
1263  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1264  *  @hw: pointer to the HW structure
1265  *
1266  *  Inits recommended HW defaults after a reset when there is no EEPROM
1267  *  detected. This is only for the 82575.
1268  **/
igb_reset_init_script_82575(struct e1000_hw * hw)1269 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1270 {
1271 	if (hw->mac.type == e1000_82575) {
1272 		hw_dbg("Running reset init script for 82575\n");
1273 		/* SerDes configuration via SERDESCTRL */
1274 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1275 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1276 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1277 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1278 
1279 		/* CCM configuration via CCMCTL register */
1280 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1281 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1282 
1283 		/* PCIe lanes configuration */
1284 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1285 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1286 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1287 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1288 
1289 		/* PCIe PLL Configuration */
1290 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1291 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1292 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 /**
1299  *  igb_read_mac_addr_82575 - Read device MAC address
1300  *  @hw: pointer to the HW structure
1301  **/
igb_read_mac_addr_82575(struct e1000_hw * hw)1302 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1303 {
1304 	s32 ret_val = 0;
1305 
1306 	/*
1307 	 * If there's an alternate MAC address place it in RAR0
1308 	 * so that it will override the Si installed default perm
1309 	 * address.
1310 	 */
1311 	ret_val = igb_check_alt_mac_addr(hw);
1312 	if (ret_val)
1313 		goto out;
1314 
1315 	ret_val = igb_read_mac_addr(hw);
1316 
1317 out:
1318 	return ret_val;
1319 }
1320 
1321 /**
1322  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1323  * @hw: pointer to the HW structure
1324  *
1325  * In the case of a PHY power down to save power, or to turn off link during a
1326  * driver unload, or wake on lan is not enabled, remove the link.
1327  **/
igb_power_down_phy_copper_82575(struct e1000_hw * hw)1328 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1329 {
1330 	/* If the management interface is not enabled, then power down */
1331 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1332 		igb_power_down_phy_copper(hw);
1333 }
1334 
1335 /**
1336  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1337  *  @hw: pointer to the HW structure
1338  *
1339  *  Clears the hardware counters by reading the counter registers.
1340  **/
igb_clear_hw_cntrs_82575(struct e1000_hw * hw)1341 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1342 {
1343 	igb_clear_hw_cntrs_base(hw);
1344 
1345 	rd32(E1000_PRC64);
1346 	rd32(E1000_PRC127);
1347 	rd32(E1000_PRC255);
1348 	rd32(E1000_PRC511);
1349 	rd32(E1000_PRC1023);
1350 	rd32(E1000_PRC1522);
1351 	rd32(E1000_PTC64);
1352 	rd32(E1000_PTC127);
1353 	rd32(E1000_PTC255);
1354 	rd32(E1000_PTC511);
1355 	rd32(E1000_PTC1023);
1356 	rd32(E1000_PTC1522);
1357 
1358 	rd32(E1000_ALGNERRC);
1359 	rd32(E1000_RXERRC);
1360 	rd32(E1000_TNCRS);
1361 	rd32(E1000_CEXTERR);
1362 	rd32(E1000_TSCTC);
1363 	rd32(E1000_TSCTFC);
1364 
1365 	rd32(E1000_MGTPRC);
1366 	rd32(E1000_MGTPDC);
1367 	rd32(E1000_MGTPTC);
1368 
1369 	rd32(E1000_IAC);
1370 	rd32(E1000_ICRXOC);
1371 
1372 	rd32(E1000_ICRXPTC);
1373 	rd32(E1000_ICRXATC);
1374 	rd32(E1000_ICTXPTC);
1375 	rd32(E1000_ICTXATC);
1376 	rd32(E1000_ICTXQEC);
1377 	rd32(E1000_ICTXQMTC);
1378 	rd32(E1000_ICRXDMTC);
1379 
1380 	rd32(E1000_CBTMPC);
1381 	rd32(E1000_HTDPMC);
1382 	rd32(E1000_CBRMPC);
1383 	rd32(E1000_RPTHC);
1384 	rd32(E1000_HGPTC);
1385 	rd32(E1000_HTCBDPC);
1386 	rd32(E1000_HGORCL);
1387 	rd32(E1000_HGORCH);
1388 	rd32(E1000_HGOTCL);
1389 	rd32(E1000_HGOTCH);
1390 	rd32(E1000_LENERRS);
1391 
1392 	/* This register should not be read in copper configurations */
1393 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1394 	    igb_sgmii_active_82575(hw))
1395 		rd32(E1000_SCVPC);
1396 }
1397 
1398 /**
1399  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1400  *  @hw: pointer to the HW structure
1401  *
1402  *  After rx enable if managability is enabled then there is likely some
1403  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1404  *  function clears the fifos and flushes any packets that came in as rx was
1405  *  being enabled.
1406  **/
igb_rx_fifo_flush_82575(struct e1000_hw * hw)1407 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1408 {
1409 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1410 	int i, ms_wait;
1411 
1412 	if (hw->mac.type != e1000_82575 ||
1413 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1414 		return;
1415 
1416 	/* Disable all RX queues */
1417 	for (i = 0; i < 4; i++) {
1418 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1419 		wr32(E1000_RXDCTL(i),
1420 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1421 	}
1422 	/* Poll all queues to verify they have shut down */
1423 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1424 		msleep(1);
1425 		rx_enabled = 0;
1426 		for (i = 0; i < 4; i++)
1427 			rx_enabled |= rd32(E1000_RXDCTL(i));
1428 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1429 			break;
1430 	}
1431 
1432 	if (ms_wait == 10)
1433 		hw_dbg("Queue disable timed out after 10ms\n");
1434 
1435 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1436 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1437 	 * any packet that was coming in as RCTL.EN was set is flushed
1438 	 */
1439 	rfctl = rd32(E1000_RFCTL);
1440 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1441 
1442 	rlpml = rd32(E1000_RLPML);
1443 	wr32(E1000_RLPML, 0);
1444 
1445 	rctl = rd32(E1000_RCTL);
1446 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1447 	temp_rctl |= E1000_RCTL_LPE;
1448 
1449 	wr32(E1000_RCTL, temp_rctl);
1450 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1451 	wrfl();
1452 	msleep(2);
1453 
1454 	/* Enable RX queues that were previously enabled and restore our
1455 	 * previous state
1456 	 */
1457 	for (i = 0; i < 4; i++)
1458 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1459 	wr32(E1000_RCTL, rctl);
1460 	wrfl();
1461 
1462 	wr32(E1000_RLPML, rlpml);
1463 	wr32(E1000_RFCTL, rfctl);
1464 
1465 	/* Flush receive errors generated by workaround */
1466 	rd32(E1000_ROC);
1467 	rd32(E1000_RNBC);
1468 	rd32(E1000_MPC);
1469 }
1470 
1471 /**
1472  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1473  *  @hw: pointer to the HW structure
1474  *
1475  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1476  *  however the hardware default for these parts is 500us to 1ms which is less
1477  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1478  *  increase the value to either 10ms to 200ms for capability version 1 config,
1479  *  or 16ms to 55ms for version 2.
1480  **/
igb_set_pcie_completion_timeout(struct e1000_hw * hw)1481 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1482 {
1483 	u32 gcr = rd32(E1000_GCR);
1484 	s32 ret_val = 0;
1485 	u16 pcie_devctl2;
1486 
1487 	/* only take action if timeout value is defaulted to 0 */
1488 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1489 		goto out;
1490 
1491 	/*
1492 	 * if capababilities version is type 1 we can write the
1493 	 * timeout of 10ms to 200ms through the GCR register
1494 	 */
1495 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1496 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1497 		goto out;
1498 	}
1499 
1500 	/*
1501 	 * for version 2 capabilities we need to write the config space
1502 	 * directly in order to set the completion timeout value for
1503 	 * 16ms to 55ms
1504 	 */
1505 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1506 	                                &pcie_devctl2);
1507 	if (ret_val)
1508 		goto out;
1509 
1510 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1511 
1512 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1513 	                                 &pcie_devctl2);
1514 out:
1515 	/* disable completion timeout resend */
1516 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1517 
1518 	wr32(E1000_GCR, gcr);
1519 	return ret_val;
1520 }
1521 
1522 /**
1523  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1524  *  @hw: pointer to the hardware struct
1525  *  @enable: state to enter, either enabled or disabled
1526  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1527  *
1528  *  enables/disables L2 switch anti-spoofing functionality.
1529  **/
igb_vmdq_set_anti_spoofing_pf(struct e1000_hw * hw,bool enable,int pf)1530 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1531 {
1532 	u32 dtxswc;
1533 
1534 	switch (hw->mac.type) {
1535 	case e1000_82576:
1536 	case e1000_i350:
1537 		dtxswc = rd32(E1000_DTXSWC);
1538 		if (enable) {
1539 			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1540 				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1541 			/* The PF can spoof - it has to in order to
1542 			 * support emulation mode NICs */
1543 			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1544 		} else {
1545 			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1546 				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1547 		}
1548 		wr32(E1000_DTXSWC, dtxswc);
1549 		break;
1550 	default:
1551 		break;
1552 	}
1553 }
1554 
1555 /**
1556  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1557  *  @hw: pointer to the hardware struct
1558  *  @enable: state to enter, either enabled or disabled
1559  *
1560  *  enables/disables L2 switch loopback functionality.
1561  **/
igb_vmdq_set_loopback_pf(struct e1000_hw * hw,bool enable)1562 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1563 {
1564 	u32 dtxswc = rd32(E1000_DTXSWC);
1565 
1566 	if (enable)
1567 		dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1568 	else
1569 		dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1570 
1571 	wr32(E1000_DTXSWC, dtxswc);
1572 }
1573 
1574 /**
1575  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1576  *  @hw: pointer to the hardware struct
1577  *  @enable: state to enter, either enabled or disabled
1578  *
1579  *  enables/disables replication of packets across multiple pools.
1580  **/
igb_vmdq_set_replication_pf(struct e1000_hw * hw,bool enable)1581 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1582 {
1583 	u32 vt_ctl = rd32(E1000_VT_CTL);
1584 
1585 	if (enable)
1586 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1587 	else
1588 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1589 
1590 	wr32(E1000_VT_CTL, vt_ctl);
1591 }
1592 
1593 /**
1594  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1595  *  @hw: pointer to the HW structure
1596  *  @offset: register offset to be read
1597  *  @data: pointer to the read data
1598  *
1599  *  Reads the MDI control register in the PHY at offset and stores the
1600  *  information read to data.
1601  **/
igb_read_phy_reg_82580(struct e1000_hw * hw,u32 offset,u16 * data)1602 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1603 {
1604 	s32 ret_val;
1605 
1606 
1607 	ret_val = hw->phy.ops.acquire(hw);
1608 	if (ret_val)
1609 		goto out;
1610 
1611 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1612 
1613 	hw->phy.ops.release(hw);
1614 
1615 out:
1616 	return ret_val;
1617 }
1618 
1619 /**
1620  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1621  *  @hw: pointer to the HW structure
1622  *  @offset: register offset to write to
1623  *  @data: data to write to register at offset
1624  *
1625  *  Writes data to MDI control register in the PHY at offset.
1626  **/
igb_write_phy_reg_82580(struct e1000_hw * hw,u32 offset,u16 data)1627 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1628 {
1629 	s32 ret_val;
1630 
1631 
1632 	ret_val = hw->phy.ops.acquire(hw);
1633 	if (ret_val)
1634 		goto out;
1635 
1636 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1637 
1638 	hw->phy.ops.release(hw);
1639 
1640 out:
1641 	return ret_val;
1642 }
1643 
1644 /**
1645  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1646  *  @hw: pointer to the HW structure
1647  *
1648  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1649  *  the values found in the EEPROM.  This addresses an issue in which these
1650  *  bits are not restored from EEPROM after reset.
1651  **/
igb_reset_mdicnfg_82580(struct e1000_hw * hw)1652 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1653 {
1654 	s32 ret_val = 0;
1655 	u32 mdicnfg;
1656 	u16 nvm_data = 0;
1657 
1658 	if (hw->mac.type != e1000_82580)
1659 		goto out;
1660 	if (!igb_sgmii_active_82575(hw))
1661 		goto out;
1662 
1663 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1664 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1665 				   &nvm_data);
1666 	if (ret_val) {
1667 		hw_dbg("NVM Read Error\n");
1668 		goto out;
1669 	}
1670 
1671 	mdicnfg = rd32(E1000_MDICNFG);
1672 	if (nvm_data & NVM_WORD24_EXT_MDIO)
1673 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1674 	if (nvm_data & NVM_WORD24_COM_MDIO)
1675 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1676 	wr32(E1000_MDICNFG, mdicnfg);
1677 out:
1678 	return ret_val;
1679 }
1680 
1681 /**
1682  *  igb_reset_hw_82580 - Reset hardware
1683  *  @hw: pointer to the HW structure
1684  *
1685  *  This resets function or entire device (all ports, etc.)
1686  *  to a known state.
1687  **/
igb_reset_hw_82580(struct e1000_hw * hw)1688 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1689 {
1690 	s32 ret_val = 0;
1691 	/* BH SW mailbox bit in SW_FW_SYNC */
1692 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1693 	u32 ctrl, icr;
1694 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1695 
1696 
1697 	hw->dev_spec._82575.global_device_reset = false;
1698 
1699 	/* Get current control state. */
1700 	ctrl = rd32(E1000_CTRL);
1701 
1702 	/*
1703 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1704 	 * on the last TLP read/write transaction when MAC is reset.
1705 	 */
1706 	ret_val = igb_disable_pcie_master(hw);
1707 	if (ret_val)
1708 		hw_dbg("PCI-E Master disable polling has failed.\n");
1709 
1710 	hw_dbg("Masking off all interrupts\n");
1711 	wr32(E1000_IMC, 0xffffffff);
1712 	wr32(E1000_RCTL, 0);
1713 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1714 	wrfl();
1715 
1716 	msleep(10);
1717 
1718 	/* Determine whether or not a global dev reset is requested */
1719 	if (global_device_reset &&
1720 		igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1721 			global_device_reset = false;
1722 
1723 	if (global_device_reset &&
1724 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1725 		ctrl |= E1000_CTRL_DEV_RST;
1726 	else
1727 		ctrl |= E1000_CTRL_RST;
1728 
1729 	wr32(E1000_CTRL, ctrl);
1730 
1731 	/* Add delay to insure DEV_RST has time to complete */
1732 	if (global_device_reset)
1733 		msleep(5);
1734 
1735 	ret_val = igb_get_auto_rd_done(hw);
1736 	if (ret_val) {
1737 		/*
1738 		 * When auto config read does not complete, do not
1739 		 * return with an error. This can happen in situations
1740 		 * where there is no eeprom and prevents getting link.
1741 		 */
1742 		hw_dbg("Auto Read Done did not complete\n");
1743 	}
1744 
1745 	/* If EEPROM is not present, run manual init scripts */
1746 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1747 		igb_reset_init_script_82575(hw);
1748 
1749 	/* clear global device reset status bit */
1750 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1751 
1752 	/* Clear any pending interrupt events. */
1753 	wr32(E1000_IMC, 0xffffffff);
1754 	icr = rd32(E1000_ICR);
1755 
1756 	ret_val = igb_reset_mdicnfg_82580(hw);
1757 	if (ret_val)
1758 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1759 
1760 	/* Install any alternate MAC address into RAR0 */
1761 	ret_val = igb_check_alt_mac_addr(hw);
1762 
1763 	/* Release semaphore */
1764 	if (global_device_reset)
1765 		igb_release_swfw_sync_82575(hw, swmbsw_mask);
1766 
1767 	return ret_val;
1768 }
1769 
1770 /**
1771  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1772  *  @data: data received by reading RXPBS register
1773  *
1774  *  The 82580 uses a table based approach for packet buffer allocation sizes.
1775  *  This function converts the retrieved value into the correct table value
1776  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1777  *  0x0 36  72 144   1   2   4   8  16
1778  *  0x8 35  70 140 rsv rsv rsv rsv rsv
1779  */
igb_rxpbs_adjust_82580(u32 data)1780 u16 igb_rxpbs_adjust_82580(u32 data)
1781 {
1782 	u16 ret_val = 0;
1783 
1784 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
1785 		ret_val = e1000_82580_rxpbs_table[data];
1786 
1787 	return ret_val;
1788 }
1789 
1790 /**
1791  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
1792  *  checksum
1793  *  @hw: pointer to the HW structure
1794  *  @offset: offset in words of the checksum protected region
1795  *
1796  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1797  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
1798  **/
igb_validate_nvm_checksum_with_offset(struct e1000_hw * hw,u16 offset)1799 s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
1800 {
1801 	s32 ret_val = 0;
1802 	u16 checksum = 0;
1803 	u16 i, nvm_data;
1804 
1805 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
1806 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1807 		if (ret_val) {
1808 			hw_dbg("NVM Read Error\n");
1809 			goto out;
1810 		}
1811 		checksum += nvm_data;
1812 	}
1813 
1814 	if (checksum != (u16) NVM_SUM) {
1815 		hw_dbg("NVM Checksum Invalid\n");
1816 		ret_val = -E1000_ERR_NVM;
1817 		goto out;
1818 	}
1819 
1820 out:
1821 	return ret_val;
1822 }
1823 
1824 /**
1825  *  igb_update_nvm_checksum_with_offset - Update EEPROM
1826  *  checksum
1827  *  @hw: pointer to the HW structure
1828  *  @offset: offset in words of the checksum protected region
1829  *
1830  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
1831  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
1832  *  value to the EEPROM.
1833  **/
igb_update_nvm_checksum_with_offset(struct e1000_hw * hw,u16 offset)1834 s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
1835 {
1836 	s32 ret_val;
1837 	u16 checksum = 0;
1838 	u16 i, nvm_data;
1839 
1840 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
1841 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1842 		if (ret_val) {
1843 			hw_dbg("NVM Read Error while updating checksum.\n");
1844 			goto out;
1845 		}
1846 		checksum += nvm_data;
1847 	}
1848 	checksum = (u16) NVM_SUM - checksum;
1849 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
1850 				&checksum);
1851 	if (ret_val)
1852 		hw_dbg("NVM Write Error while updating checksum.\n");
1853 
1854 out:
1855 	return ret_val;
1856 }
1857 
1858 /**
1859  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1860  *  @hw: pointer to the HW structure
1861  *
1862  *  Calculates the EEPROM section checksum by reading/adding each word of
1863  *  the EEPROM and then verifies that the sum of the EEPROM is
1864  *  equal to 0xBABA.
1865  **/
igb_validate_nvm_checksum_82580(struct e1000_hw * hw)1866 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
1867 {
1868 	s32 ret_val = 0;
1869 	u16 eeprom_regions_count = 1;
1870 	u16 j, nvm_data;
1871 	u16 nvm_offset;
1872 
1873 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1874 	if (ret_val) {
1875 		hw_dbg("NVM Read Error\n");
1876 		goto out;
1877 	}
1878 
1879 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
1880 		/* if chekcsums compatibility bit is set validate checksums
1881 		 * for all 4 ports. */
1882 		eeprom_regions_count = 4;
1883 	}
1884 
1885 	for (j = 0; j < eeprom_regions_count; j++) {
1886 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1887 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
1888 								nvm_offset);
1889 		if (ret_val != 0)
1890 			goto out;
1891 	}
1892 
1893 out:
1894 	return ret_val;
1895 }
1896 
1897 /**
1898  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
1899  *  @hw: pointer to the HW structure
1900  *
1901  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
1902  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
1903  *  checksum and writes the value to the EEPROM.
1904  **/
igb_update_nvm_checksum_82580(struct e1000_hw * hw)1905 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
1906 {
1907 	s32 ret_val;
1908 	u16 j, nvm_data;
1909 	u16 nvm_offset;
1910 
1911 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1912 	if (ret_val) {
1913 		hw_dbg("NVM Read Error while updating checksum"
1914 			" compatibility bit.\n");
1915 		goto out;
1916 	}
1917 
1918 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
1919 		/* set compatibility bit to validate checksums appropriately */
1920 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
1921 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
1922 					&nvm_data);
1923 		if (ret_val) {
1924 			hw_dbg("NVM Write Error while updating checksum"
1925 				" compatibility bit.\n");
1926 			goto out;
1927 		}
1928 	}
1929 
1930 	for (j = 0; j < 4; j++) {
1931 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1932 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
1933 		if (ret_val)
1934 			goto out;
1935 	}
1936 
1937 out:
1938 	return ret_val;
1939 }
1940 
1941 /**
1942  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1943  *  @hw: pointer to the HW structure
1944  *
1945  *  Calculates the EEPROM section checksum by reading/adding each word of
1946  *  the EEPROM and then verifies that the sum of the EEPROM is
1947  *  equal to 0xBABA.
1948  **/
igb_validate_nvm_checksum_i350(struct e1000_hw * hw)1949 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
1950 {
1951 	s32 ret_val = 0;
1952 	u16 j;
1953 	u16 nvm_offset;
1954 
1955 	for (j = 0; j < 4; j++) {
1956 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1957 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
1958 								nvm_offset);
1959 		if (ret_val != 0)
1960 			goto out;
1961 	}
1962 
1963 out:
1964 	return ret_val;
1965 }
1966 
1967 /**
1968  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
1969  *  @hw: pointer to the HW structure
1970  *
1971  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
1972  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
1973  *  checksum and writes the value to the EEPROM.
1974  **/
igb_update_nvm_checksum_i350(struct e1000_hw * hw)1975 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
1976 {
1977 	s32 ret_val = 0;
1978 	u16 j;
1979 	u16 nvm_offset;
1980 
1981 	for (j = 0; j < 4; j++) {
1982 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1983 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
1984 		if (ret_val != 0)
1985 			goto out;
1986 	}
1987 
1988 out:
1989 	return ret_val;
1990 }
1991 /**
1992  *  igb_set_eee_i350 - Enable/disable EEE support
1993  *  @hw: pointer to the HW structure
1994  *
1995  *  Enable/disable EEE based on setting in dev_spec structure.
1996  *
1997  **/
igb_set_eee_i350(struct e1000_hw * hw)1998 s32 igb_set_eee_i350(struct e1000_hw *hw)
1999 {
2000 	s32 ret_val = 0;
2001 	u32 ipcnfg, eeer, ctrl_ext;
2002 
2003 	ctrl_ext = rd32(E1000_CTRL_EXT);
2004 	if ((hw->mac.type != e1000_i350) ||
2005 	    (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2006 		goto out;
2007 	ipcnfg = rd32(E1000_IPCNFG);
2008 	eeer = rd32(E1000_EEER);
2009 
2010 	/* enable or disable per user setting */
2011 	if (!(hw->dev_spec._82575.eee_disable)) {
2012 		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2013 			E1000_IPCNFG_EEE_100M_AN);
2014 		eeer |= (E1000_EEER_TX_LPI_EN |
2015 			E1000_EEER_RX_LPI_EN |
2016 			E1000_EEER_LPI_FC);
2017 
2018 	} else {
2019 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2020 			E1000_IPCNFG_EEE_100M_AN);
2021 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2022 			E1000_EEER_RX_LPI_EN |
2023 			E1000_EEER_LPI_FC);
2024 	}
2025 	wr32(E1000_IPCNFG, ipcnfg);
2026 	wr32(E1000_EEER, eeer);
2027 out:
2028 
2029 	return ret_val;
2030 }
2031 
2032 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2033 	.init_hw              = igb_init_hw_82575,
2034 	.check_for_link       = igb_check_for_link_82575,
2035 	.rar_set              = igb_rar_set,
2036 	.read_mac_addr        = igb_read_mac_addr_82575,
2037 	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2038 };
2039 
2040 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2041 	.acquire              = igb_acquire_phy_82575,
2042 	.get_cfg_done         = igb_get_cfg_done_82575,
2043 	.release              = igb_release_phy_82575,
2044 };
2045 
2046 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2047 	.acquire              = igb_acquire_nvm_82575,
2048 	.read                 = igb_read_nvm_eerd,
2049 	.release              = igb_release_nvm_82575,
2050 	.write                = igb_write_nvm_spi,
2051 };
2052 
2053 const struct e1000_info e1000_82575_info = {
2054 	.get_invariants = igb_get_invariants_82575,
2055 	.mac_ops = &e1000_mac_ops_82575,
2056 	.phy_ops = &e1000_phy_ops_82575,
2057 	.nvm_ops = &e1000_nvm_ops_82575,
2058 };
2059 
2060