1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8
9 #include "igb.h"
10
11 #define INCVALUE_MASK 0x7fffffff
12 #define ISGN 0x80000000
13
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
16 *
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
21 * register, TIMINCA.
22 *
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
27 *
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits. As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
34 * TIMINCA register.
35 *
36 *
37 * SYSTIMH SYSTIML
38 * +--------------+ +---+---+------+
39 * 82576 | 32 | | 8 | 5 | 19 |
40 * +--------------+ +---+---+------+
41 * \________ 45 bits _______/ fract
42 *
43 * +----------+---+ +--------------+
44 * 82580 | 24 | 8 | | 32 |
45 * +----------+---+ +--------------+
46 * reserved \______ 40 bits _____/
47 *
48 *
49 * The 45 bit 82576 SYSTIM overflows every
50 * 2^45 * 10^-9 / 3600 = 9.77 hours.
51 *
52 * The 40 bit 82580 SYSTIM overflows every
53 * 2^40 * 10^-9 / 60 = 18.3 minutes.
54 *
55 * SYSTIM is converted to real time using a timecounter. As
56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
57 * to be updated at least once per half of the SYSTIM interval.
58 * Scheduling of delayed work is not very accurate, and also the NIC
59 * clock can be adjusted to run up to 6% faster and the system clock
60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
61 * interval in the NIC time is shorter than 9.16 minutes.
62 */
63
64 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
66 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580 40
70
71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72 static void igb_ptp_sdp_init(struct igb_adapter *adapter);
73
74 /* SYSTIM read access for the 82576 */
igb_ptp_read_82576(const struct cyclecounter * cc)75 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
76 {
77 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
78 struct e1000_hw *hw = &igb->hw;
79 u64 val;
80 u32 lo, hi;
81
82 lo = rd32(E1000_SYSTIML);
83 hi = rd32(E1000_SYSTIMH);
84
85 val = ((u64) hi) << 32;
86 val |= lo;
87
88 return val;
89 }
90
91 /* SYSTIM read access for the 82580 */
igb_ptp_read_82580(const struct cyclecounter * cc)92 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
93 {
94 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
95 struct e1000_hw *hw = &igb->hw;
96 u32 lo, hi;
97 u64 val;
98
99 /* The timestamp latches on lowest register read. For the 82580
100 * the lowest register is SYSTIMR instead of SYSTIML. However we only
101 * need to provide nanosecond resolution, so we just ignore it.
102 */
103 rd32(E1000_SYSTIMR);
104 lo = rd32(E1000_SYSTIML);
105 hi = rd32(E1000_SYSTIMH);
106
107 val = ((u64) hi) << 32;
108 val |= lo;
109
110 return val;
111 }
112
113 /* SYSTIM read access for I210/I211 */
igb_ptp_read_i210(struct igb_adapter * adapter,struct timespec64 * ts)114 static void igb_ptp_read_i210(struct igb_adapter *adapter,
115 struct timespec64 *ts)
116 {
117 struct e1000_hw *hw = &adapter->hw;
118 u32 sec, nsec;
119
120 /* The timestamp latches on lowest register read. For I210/I211, the
121 * lowest register is SYSTIMR. Since we only need to provide nanosecond
122 * resolution, we can ignore it.
123 */
124 rd32(E1000_SYSTIMR);
125 nsec = rd32(E1000_SYSTIML);
126 sec = rd32(E1000_SYSTIMH);
127
128 ts->tv_sec = sec;
129 ts->tv_nsec = nsec;
130 }
131
igb_ptp_write_i210(struct igb_adapter * adapter,const struct timespec64 * ts)132 static void igb_ptp_write_i210(struct igb_adapter *adapter,
133 const struct timespec64 *ts)
134 {
135 struct e1000_hw *hw = &adapter->hw;
136
137 /* Writing the SYSTIMR register is not necessary as it only provides
138 * sub-nanosecond resolution.
139 */
140 wr32(E1000_SYSTIML, ts->tv_nsec);
141 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
142 }
143
144 /**
145 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
146 * @adapter: board private structure
147 * @hwtstamps: timestamp structure to update
148 * @systim: unsigned 64bit system time value.
149 *
150 * We need to convert the system time value stored in the RX/TXSTMP registers
151 * into a hwtstamp which can be used by the upper level timestamping functions.
152 *
153 * The 'tmreg_lock' spinlock is used to protect the consistency of the
154 * system time value. This is needed because reading the 64 bit time
155 * value involves reading two (or three) 32 bit registers. The first
156 * read latches the value. Ditto for writing.
157 *
158 * In addition, here have extended the system time with an overflow
159 * counter in software.
160 **/
igb_ptp_systim_to_hwtstamp(struct igb_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)161 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
162 struct skb_shared_hwtstamps *hwtstamps,
163 u64 systim)
164 {
165 unsigned long flags;
166 u64 ns;
167
168 memset(hwtstamps, 0, sizeof(*hwtstamps));
169
170 switch (adapter->hw.mac.type) {
171 case e1000_82576:
172 case e1000_82580:
173 case e1000_i354:
174 case e1000_i350:
175 spin_lock_irqsave(&adapter->tmreg_lock, flags);
176 ns = timecounter_cyc2time(&adapter->tc, systim);
177 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
178
179 hwtstamps->hwtstamp = ns_to_ktime(ns);
180 break;
181 case e1000_i210:
182 case e1000_i211:
183 /* Upper 32 bits contain s, lower 32 bits contain ns. */
184 hwtstamps->hwtstamp = ktime_set(systim >> 32,
185 systim & 0xFFFFFFFF);
186 break;
187 default:
188 break;
189 }
190 }
191
192 /* PTP clock operations */
igb_ptp_adjfine_82576(struct ptp_clock_info * ptp,long scaled_ppm)193 static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
194 {
195 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
196 ptp_caps);
197 struct e1000_hw *hw = &igb->hw;
198 int neg_adj = 0;
199 u64 rate;
200 u32 incvalue;
201
202 if (scaled_ppm < 0) {
203 neg_adj = 1;
204 scaled_ppm = -scaled_ppm;
205 }
206
207 incvalue = INCVALUE_82576;
208 rate = mul_u64_u64_div_u64(incvalue, (u64)scaled_ppm,
209 1000000ULL << 16);
210
211 if (neg_adj)
212 incvalue -= rate;
213 else
214 incvalue += rate;
215
216 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
217
218 return 0;
219 }
220
igb_ptp_adjfine_82580(struct ptp_clock_info * ptp,long scaled_ppm)221 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
222 {
223 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
224 ptp_caps);
225 struct e1000_hw *hw = &igb->hw;
226 int neg_adj = 0;
227 u64 rate;
228 u32 inca;
229
230 if (scaled_ppm < 0) {
231 neg_adj = 1;
232 scaled_ppm = -scaled_ppm;
233 }
234 rate = scaled_ppm;
235 rate <<= 13;
236 rate = div_u64(rate, 15625);
237
238 inca = rate & INCVALUE_MASK;
239 if (neg_adj)
240 inca |= ISGN;
241
242 wr32(E1000_TIMINCA, inca);
243
244 return 0;
245 }
246
igb_ptp_adjtime_82576(struct ptp_clock_info * ptp,s64 delta)247 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
248 {
249 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
250 ptp_caps);
251 unsigned long flags;
252
253 spin_lock_irqsave(&igb->tmreg_lock, flags);
254 timecounter_adjtime(&igb->tc, delta);
255 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
256
257 return 0;
258 }
259
igb_ptp_adjtime_i210(struct ptp_clock_info * ptp,s64 delta)260 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
261 {
262 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
263 ptp_caps);
264 unsigned long flags;
265 struct timespec64 now, then = ns_to_timespec64(delta);
266
267 spin_lock_irqsave(&igb->tmreg_lock, flags);
268
269 igb_ptp_read_i210(igb, &now);
270 now = timespec64_add(now, then);
271 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
272
273 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
274
275 return 0;
276 }
277
igb_ptp_gettimex_82576(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)278 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
279 struct timespec64 *ts,
280 struct ptp_system_timestamp *sts)
281 {
282 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
283 ptp_caps);
284 struct e1000_hw *hw = &igb->hw;
285 unsigned long flags;
286 u32 lo, hi;
287 u64 ns;
288
289 spin_lock_irqsave(&igb->tmreg_lock, flags);
290
291 ptp_read_system_prets(sts);
292 lo = rd32(E1000_SYSTIML);
293 ptp_read_system_postts(sts);
294 hi = rd32(E1000_SYSTIMH);
295
296 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
297
298 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299
300 *ts = ns_to_timespec64(ns);
301
302 return 0;
303 }
304
igb_ptp_gettimex_82580(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)305 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
306 struct timespec64 *ts,
307 struct ptp_system_timestamp *sts)
308 {
309 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
310 ptp_caps);
311 struct e1000_hw *hw = &igb->hw;
312 unsigned long flags;
313 u32 lo, hi;
314 u64 ns;
315
316 spin_lock_irqsave(&igb->tmreg_lock, flags);
317
318 ptp_read_system_prets(sts);
319 rd32(E1000_SYSTIMR);
320 ptp_read_system_postts(sts);
321 lo = rd32(E1000_SYSTIML);
322 hi = rd32(E1000_SYSTIMH);
323
324 ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
325
326 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
327
328 *ts = ns_to_timespec64(ns);
329
330 return 0;
331 }
332
igb_ptp_gettimex_i210(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)333 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
334 struct timespec64 *ts,
335 struct ptp_system_timestamp *sts)
336 {
337 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
338 ptp_caps);
339 struct e1000_hw *hw = &igb->hw;
340 unsigned long flags;
341
342 spin_lock_irqsave(&igb->tmreg_lock, flags);
343
344 ptp_read_system_prets(sts);
345 rd32(E1000_SYSTIMR);
346 ptp_read_system_postts(sts);
347 ts->tv_nsec = rd32(E1000_SYSTIML);
348 ts->tv_sec = rd32(E1000_SYSTIMH);
349
350 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
351
352 return 0;
353 }
354
igb_ptp_settime_82576(struct ptp_clock_info * ptp,const struct timespec64 * ts)355 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
356 const struct timespec64 *ts)
357 {
358 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
359 ptp_caps);
360 unsigned long flags;
361 u64 ns;
362
363 ns = timespec64_to_ns(ts);
364
365 spin_lock_irqsave(&igb->tmreg_lock, flags);
366
367 timecounter_init(&igb->tc, &igb->cc, ns);
368
369 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
370
371 return 0;
372 }
373
igb_ptp_settime_i210(struct ptp_clock_info * ptp,const struct timespec64 * ts)374 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
375 const struct timespec64 *ts)
376 {
377 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
378 ptp_caps);
379 unsigned long flags;
380
381 spin_lock_irqsave(&igb->tmreg_lock, flags);
382
383 igb_ptp_write_i210(igb, ts);
384
385 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
386
387 return 0;
388 }
389
igb_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)390 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
391 {
392 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
393 static const u32 mask[IGB_N_SDP] = {
394 E1000_CTRL_SDP0_DIR,
395 E1000_CTRL_SDP1_DIR,
396 E1000_CTRL_EXT_SDP2_DIR,
397 E1000_CTRL_EXT_SDP3_DIR,
398 };
399
400 if (input)
401 *ptr &= ~mask[pin];
402 else
403 *ptr |= mask[pin];
404 }
405
igb_pin_extts(struct igb_adapter * igb,int chan,int pin)406 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
407 {
408 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
409 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
410 };
411 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
412 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
413 };
414 static const u32 ts_sdp_en[IGB_N_SDP] = {
415 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
416 };
417 struct e1000_hw *hw = &igb->hw;
418 u32 ctrl, ctrl_ext, tssdp = 0;
419
420 ctrl = rd32(E1000_CTRL);
421 ctrl_ext = rd32(E1000_CTRL_EXT);
422 tssdp = rd32(E1000_TSSDP);
423
424 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
425
426 /* Make sure this pin is not enabled as an output. */
427 tssdp &= ~ts_sdp_en[pin];
428
429 if (chan == 1) {
430 tssdp &= ~AUX1_SEL_SDP3;
431 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
432 } else {
433 tssdp &= ~AUX0_SEL_SDP3;
434 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
435 }
436
437 wr32(E1000_TSSDP, tssdp);
438 wr32(E1000_CTRL, ctrl);
439 wr32(E1000_CTRL_EXT, ctrl_ext);
440 }
441
igb_pin_perout(struct igb_adapter * igb,int chan,int pin,int freq)442 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
443 {
444 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
445 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
446 };
447 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
448 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
449 };
450 static const u32 ts_sdp_en[IGB_N_SDP] = {
451 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
452 };
453 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
454 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
455 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
456 };
457 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
458 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
459 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
460 };
461 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
462 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
463 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
464 };
465 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
466 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
467 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
468 };
469 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
470 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
471 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
472 };
473 struct e1000_hw *hw = &igb->hw;
474 u32 ctrl, ctrl_ext, tssdp = 0;
475
476 ctrl = rd32(E1000_CTRL);
477 ctrl_ext = rd32(E1000_CTRL_EXT);
478 tssdp = rd32(E1000_TSSDP);
479
480 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
481
482 /* Make sure this pin is not enabled as an input. */
483 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
484 tssdp &= ~AUX0_TS_SDP_EN;
485
486 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
487 tssdp &= ~AUX1_TS_SDP_EN;
488
489 tssdp &= ~ts_sdp_sel_clr[pin];
490 if (freq) {
491 if (chan == 1)
492 tssdp |= ts_sdp_sel_fc1[pin];
493 else
494 tssdp |= ts_sdp_sel_fc0[pin];
495 } else {
496 if (chan == 1)
497 tssdp |= ts_sdp_sel_tt1[pin];
498 else
499 tssdp |= ts_sdp_sel_tt0[pin];
500 }
501 tssdp |= ts_sdp_en[pin];
502
503 wr32(E1000_TSSDP, tssdp);
504 wr32(E1000_CTRL, ctrl);
505 wr32(E1000_CTRL_EXT, ctrl_ext);
506 }
507
igb_ptp_feature_enable_82580(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)508 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
509 struct ptp_clock_request *rq, int on)
510 {
511 struct igb_adapter *igb =
512 container_of(ptp, struct igb_adapter, ptp_caps);
513 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
514 systimh, level_mask, level, rem;
515 struct e1000_hw *hw = &igb->hw;
516 struct timespec64 ts, start;
517 unsigned long flags;
518 u64 systim, now;
519 int pin = -1;
520 s64 ns;
521
522 switch (rq->type) {
523 case PTP_CLK_REQ_EXTTS:
524 /* Reject requests with unsupported flags */
525 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
526 PTP_RISING_EDGE |
527 PTP_FALLING_EDGE |
528 PTP_STRICT_FLAGS))
529 return -EOPNOTSUPP;
530
531 if (on) {
532 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
533 rq->extts.index);
534 if (pin < 0)
535 return -EBUSY;
536 }
537 if (rq->extts.index == 1) {
538 tsauxc_mask = TSAUXC_EN_TS1;
539 tsim_mask = TSINTR_AUTT1;
540 } else {
541 tsauxc_mask = TSAUXC_EN_TS0;
542 tsim_mask = TSINTR_AUTT0;
543 }
544 spin_lock_irqsave(&igb->tmreg_lock, flags);
545 tsauxc = rd32(E1000_TSAUXC);
546 tsim = rd32(E1000_TSIM);
547 if (on) {
548 igb_pin_extts(igb, rq->extts.index, pin);
549 tsauxc |= tsauxc_mask;
550 tsim |= tsim_mask;
551 } else {
552 tsauxc &= ~tsauxc_mask;
553 tsim &= ~tsim_mask;
554 }
555 wr32(E1000_TSAUXC, tsauxc);
556 wr32(E1000_TSIM, tsim);
557 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
558 return 0;
559
560 case PTP_CLK_REQ_PEROUT:
561 /* Reject requests with unsupported flags */
562 if (rq->perout.flags)
563 return -EOPNOTSUPP;
564
565 if (on) {
566 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
567 rq->perout.index);
568 if (pin < 0)
569 return -EBUSY;
570 }
571 ts.tv_sec = rq->perout.period.sec;
572 ts.tv_nsec = rq->perout.period.nsec;
573 ns = timespec64_to_ns(&ts);
574 ns = ns >> 1;
575 if (on && ns < 8LL)
576 return -EINVAL;
577 ts = ns_to_timespec64(ns);
578 if (rq->perout.index == 1) {
579 tsauxc_mask = TSAUXC_EN_TT1;
580 tsim_mask = TSINTR_TT1;
581 trgttiml = E1000_TRGTTIML1;
582 trgttimh = E1000_TRGTTIMH1;
583 } else {
584 tsauxc_mask = TSAUXC_EN_TT0;
585 tsim_mask = TSINTR_TT0;
586 trgttiml = E1000_TRGTTIML0;
587 trgttimh = E1000_TRGTTIMH0;
588 }
589 spin_lock_irqsave(&igb->tmreg_lock, flags);
590 tsauxc = rd32(E1000_TSAUXC);
591 tsim = rd32(E1000_TSIM);
592 if (rq->perout.index == 1) {
593 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
594 tsim &= ~TSINTR_TT1;
595 } else {
596 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
597 tsim &= ~TSINTR_TT0;
598 }
599 if (on) {
600 int i = rq->perout.index;
601
602 /* read systim registers in sequence */
603 rd32(E1000_SYSTIMR);
604 systiml = rd32(E1000_SYSTIML);
605 systimh = rd32(E1000_SYSTIMH);
606 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
607 now = timecounter_cyc2time(&igb->tc, systim);
608
609 if (pin < 2) {
610 level_mask = (i == 1) ? 0x80000 : 0x40000;
611 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
612 } else {
613 level_mask = (i == 1) ? 0x80 : 0x40;
614 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
615 }
616
617 div_u64_rem(now, ns, &rem);
618 systim = systim + (ns - rem);
619
620 /* synchronize pin level with rising/falling edges */
621 div_u64_rem(now, ns << 1, &rem);
622 if (rem < ns) {
623 /* first half of period */
624 if (level == 0) {
625 /* output is already low, skip this period */
626 systim += ns;
627 }
628 } else {
629 /* second half of period */
630 if (level == 1) {
631 /* output is already high, skip this period */
632 systim += ns;
633 }
634 }
635
636 start = ns_to_timespec64(systim + (ns - rem));
637 igb_pin_perout(igb, i, pin, 0);
638 igb->perout[i].start.tv_sec = start.tv_sec;
639 igb->perout[i].start.tv_nsec = start.tv_nsec;
640 igb->perout[i].period.tv_sec = ts.tv_sec;
641 igb->perout[i].period.tv_nsec = ts.tv_nsec;
642
643 wr32(trgttiml, (u32)systim);
644 wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
645 tsauxc |= tsauxc_mask;
646 tsim |= tsim_mask;
647 }
648 wr32(E1000_TSAUXC, tsauxc);
649 wr32(E1000_TSIM, tsim);
650 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
651 return 0;
652
653 case PTP_CLK_REQ_PPS:
654 return -EOPNOTSUPP;
655 }
656
657 return -EOPNOTSUPP;
658 }
659
igb_ptp_feature_enable_i210(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)660 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
661 struct ptp_clock_request *rq, int on)
662 {
663 struct igb_adapter *igb =
664 container_of(ptp, struct igb_adapter, ptp_caps);
665 struct e1000_hw *hw = &igb->hw;
666 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
667 unsigned long flags;
668 struct timespec64 ts;
669 int use_freq = 0, pin = -1;
670 s64 ns;
671
672 switch (rq->type) {
673 case PTP_CLK_REQ_EXTTS:
674 /* Reject requests with unsupported flags */
675 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
676 PTP_RISING_EDGE |
677 PTP_FALLING_EDGE |
678 PTP_STRICT_FLAGS))
679 return -EOPNOTSUPP;
680
681 /* Reject requests failing to enable both edges. */
682 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
683 (rq->extts.flags & PTP_ENABLE_FEATURE) &&
684 (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
685 return -EOPNOTSUPP;
686
687 if (on) {
688 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
689 rq->extts.index);
690 if (pin < 0)
691 return -EBUSY;
692 }
693 if (rq->extts.index == 1) {
694 tsauxc_mask = TSAUXC_EN_TS1;
695 tsim_mask = TSINTR_AUTT1;
696 } else {
697 tsauxc_mask = TSAUXC_EN_TS0;
698 tsim_mask = TSINTR_AUTT0;
699 }
700 spin_lock_irqsave(&igb->tmreg_lock, flags);
701 tsauxc = rd32(E1000_TSAUXC);
702 tsim = rd32(E1000_TSIM);
703 if (on) {
704 igb_pin_extts(igb, rq->extts.index, pin);
705 tsauxc |= tsauxc_mask;
706 tsim |= tsim_mask;
707 } else {
708 tsauxc &= ~tsauxc_mask;
709 tsim &= ~tsim_mask;
710 }
711 wr32(E1000_TSAUXC, tsauxc);
712 wr32(E1000_TSIM, tsim);
713 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
714 return 0;
715
716 case PTP_CLK_REQ_PEROUT:
717 /* Reject requests with unsupported flags */
718 if (rq->perout.flags)
719 return -EOPNOTSUPP;
720
721 if (on) {
722 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
723 rq->perout.index);
724 if (pin < 0)
725 return -EBUSY;
726 }
727 ts.tv_sec = rq->perout.period.sec;
728 ts.tv_nsec = rq->perout.period.nsec;
729 ns = timespec64_to_ns(&ts);
730 ns = ns >> 1;
731 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
732 (ns == 250000000LL) || (ns == 500000000LL))) {
733 if (ns < 8LL)
734 return -EINVAL;
735 use_freq = 1;
736 }
737 ts = ns_to_timespec64(ns);
738 if (rq->perout.index == 1) {
739 if (use_freq) {
740 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
741 tsim_mask = 0;
742 } else {
743 tsauxc_mask = TSAUXC_EN_TT1;
744 tsim_mask = TSINTR_TT1;
745 }
746 trgttiml = E1000_TRGTTIML1;
747 trgttimh = E1000_TRGTTIMH1;
748 freqout = E1000_FREQOUT1;
749 } else {
750 if (use_freq) {
751 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
752 tsim_mask = 0;
753 } else {
754 tsauxc_mask = TSAUXC_EN_TT0;
755 tsim_mask = TSINTR_TT0;
756 }
757 trgttiml = E1000_TRGTTIML0;
758 trgttimh = E1000_TRGTTIMH0;
759 freqout = E1000_FREQOUT0;
760 }
761 spin_lock_irqsave(&igb->tmreg_lock, flags);
762 tsauxc = rd32(E1000_TSAUXC);
763 tsim = rd32(E1000_TSIM);
764 if (rq->perout.index == 1) {
765 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
766 tsim &= ~TSINTR_TT1;
767 } else {
768 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
769 tsim &= ~TSINTR_TT0;
770 }
771 if (on) {
772 int i = rq->perout.index;
773 igb_pin_perout(igb, i, pin, use_freq);
774 igb->perout[i].start.tv_sec = rq->perout.start.sec;
775 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
776 igb->perout[i].period.tv_sec = ts.tv_sec;
777 igb->perout[i].period.tv_nsec = ts.tv_nsec;
778 wr32(trgttimh, rq->perout.start.sec);
779 wr32(trgttiml, rq->perout.start.nsec);
780 if (use_freq)
781 wr32(freqout, ns);
782 tsauxc |= tsauxc_mask;
783 tsim |= tsim_mask;
784 }
785 wr32(E1000_TSAUXC, tsauxc);
786 wr32(E1000_TSIM, tsim);
787 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
788 return 0;
789
790 case PTP_CLK_REQ_PPS:
791 spin_lock_irqsave(&igb->tmreg_lock, flags);
792 tsim = rd32(E1000_TSIM);
793 if (on)
794 tsim |= TSINTR_SYS_WRAP;
795 else
796 tsim &= ~TSINTR_SYS_WRAP;
797 igb->pps_sys_wrap_on = !!on;
798 wr32(E1000_TSIM, tsim);
799 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
800 return 0;
801 }
802
803 return -EOPNOTSUPP;
804 }
805
igb_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)806 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
807 struct ptp_clock_request *rq, int on)
808 {
809 return -EOPNOTSUPP;
810 }
811
igb_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)812 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
813 enum ptp_pin_function func, unsigned int chan)
814 {
815 switch (func) {
816 case PTP_PF_NONE:
817 case PTP_PF_EXTTS:
818 case PTP_PF_PEROUT:
819 break;
820 case PTP_PF_PHYSYNC:
821 return -1;
822 }
823 return 0;
824 }
825
826 /**
827 * igb_ptp_tx_work
828 * @work: pointer to work struct
829 *
830 * This work function polls the TSYNCTXCTL valid bit to determine when a
831 * timestamp has been taken for the current stored skb.
832 **/
igb_ptp_tx_work(struct work_struct * work)833 static void igb_ptp_tx_work(struct work_struct *work)
834 {
835 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
836 ptp_tx_work);
837 struct e1000_hw *hw = &adapter->hw;
838 u32 tsynctxctl;
839
840 if (!adapter->ptp_tx_skb)
841 return;
842
843 if (time_is_before_jiffies(adapter->ptp_tx_start +
844 IGB_PTP_TX_TIMEOUT)) {
845 dev_kfree_skb_any(adapter->ptp_tx_skb);
846 adapter->ptp_tx_skb = NULL;
847 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
848 adapter->tx_hwtstamp_timeouts++;
849 /* Clear the tx valid bit in TSYNCTXCTL register to enable
850 * interrupt
851 */
852 rd32(E1000_TXSTMPH);
853 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
854 return;
855 }
856
857 tsynctxctl = rd32(E1000_TSYNCTXCTL);
858 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
859 igb_ptp_tx_hwtstamp(adapter);
860 else
861 /* reschedule to check later */
862 schedule_work(&adapter->ptp_tx_work);
863 }
864
igb_ptp_overflow_check(struct work_struct * work)865 static void igb_ptp_overflow_check(struct work_struct *work)
866 {
867 struct igb_adapter *igb =
868 container_of(work, struct igb_adapter, ptp_overflow_work.work);
869 struct timespec64 ts;
870 u64 ns;
871
872 /* Update the timecounter */
873 ns = timecounter_read(&igb->tc);
874
875 ts = ns_to_timespec64(ns);
876 pr_debug("igb overflow check at %lld.%09lu\n",
877 (long long) ts.tv_sec, ts.tv_nsec);
878
879 schedule_delayed_work(&igb->ptp_overflow_work,
880 IGB_SYSTIM_OVERFLOW_PERIOD);
881 }
882
883 /**
884 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
885 * @adapter: private network adapter structure
886 *
887 * This watchdog task is scheduled to detect error case where hardware has
888 * dropped an Rx packet that was timestamped when the ring is full. The
889 * particular error is rare but leaves the device in a state unable to timestamp
890 * any future packets.
891 **/
igb_ptp_rx_hang(struct igb_adapter * adapter)892 void igb_ptp_rx_hang(struct igb_adapter *adapter)
893 {
894 struct e1000_hw *hw = &adapter->hw;
895 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
896 unsigned long rx_event;
897
898 /* Other hardware uses per-packet timestamps */
899 if (hw->mac.type != e1000_82576)
900 return;
901
902 /* If we don't have a valid timestamp in the registers, just update the
903 * timeout counter and exit
904 */
905 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
906 adapter->last_rx_ptp_check = jiffies;
907 return;
908 }
909
910 /* Determine the most recent watchdog or rx_timestamp event */
911 rx_event = adapter->last_rx_ptp_check;
912 if (time_after(adapter->last_rx_timestamp, rx_event))
913 rx_event = adapter->last_rx_timestamp;
914
915 /* Only need to read the high RXSTMP register to clear the lock */
916 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
917 rd32(E1000_RXSTMPH);
918 adapter->last_rx_ptp_check = jiffies;
919 adapter->rx_hwtstamp_cleared++;
920 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
921 }
922 }
923
924 /**
925 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
926 * @adapter: private network adapter structure
927 */
igb_ptp_tx_hang(struct igb_adapter * adapter)928 void igb_ptp_tx_hang(struct igb_adapter *adapter)
929 {
930 struct e1000_hw *hw = &adapter->hw;
931 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
932 IGB_PTP_TX_TIMEOUT);
933
934 if (!adapter->ptp_tx_skb)
935 return;
936
937 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
938 return;
939
940 /* If we haven't received a timestamp within the timeout, it is
941 * reasonable to assume that it will never occur, so we can unlock the
942 * timestamp bit when this occurs.
943 */
944 if (timeout) {
945 cancel_work_sync(&adapter->ptp_tx_work);
946 dev_kfree_skb_any(adapter->ptp_tx_skb);
947 adapter->ptp_tx_skb = NULL;
948 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
949 adapter->tx_hwtstamp_timeouts++;
950 /* Clear the tx valid bit in TSYNCTXCTL register to enable
951 * interrupt
952 */
953 rd32(E1000_TXSTMPH);
954 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
955 }
956 }
957
958 /**
959 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
960 * @adapter: Board private structure.
961 *
962 * If we were asked to do hardware stamping and such a time stamp is
963 * available, then it must have been for this skb here because we only
964 * allow only one such packet into the queue.
965 **/
igb_ptp_tx_hwtstamp(struct igb_adapter * adapter)966 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
967 {
968 struct sk_buff *skb = adapter->ptp_tx_skb;
969 struct e1000_hw *hw = &adapter->hw;
970 struct skb_shared_hwtstamps shhwtstamps;
971 u64 regval;
972 int adjust = 0;
973
974 regval = rd32(E1000_TXSTMPL);
975 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
976
977 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
978 /* adjust timestamp for the TX latency based on link speed */
979 if (adapter->hw.mac.type == e1000_i210) {
980 switch (adapter->link_speed) {
981 case SPEED_10:
982 adjust = IGB_I210_TX_LATENCY_10;
983 break;
984 case SPEED_100:
985 adjust = IGB_I210_TX_LATENCY_100;
986 break;
987 case SPEED_1000:
988 adjust = IGB_I210_TX_LATENCY_1000;
989 break;
990 }
991 }
992
993 shhwtstamps.hwtstamp =
994 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
995
996 /* Clear the lock early before calling skb_tstamp_tx so that
997 * applications are not woken up before the lock bit is clear. We use
998 * a copy of the skb pointer to ensure other threads can't change it
999 * while we're notifying the stack.
1000 */
1001 adapter->ptp_tx_skb = NULL;
1002 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1003
1004 /* Notify the stack and free the skb after we've unlocked */
1005 skb_tstamp_tx(skb, &shhwtstamps);
1006 dev_kfree_skb_any(skb);
1007 }
1008
1009 /**
1010 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
1011 * @q_vector: Pointer to interrupt specific structure
1012 * @va: Pointer to address containing Rx buffer
1013 * @timestamp: Pointer where timestamp will be stored
1014 *
1015 * This function is meant to retrieve a timestamp from the first buffer of an
1016 * incoming frame. The value is stored in little endian format starting on
1017 * byte 8
1018 *
1019 * Returns: The timestamp header length or 0 if not available
1020 **/
igb_ptp_rx_pktstamp(struct igb_q_vector * q_vector,void * va,ktime_t * timestamp)1021 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1022 ktime_t *timestamp)
1023 {
1024 struct igb_adapter *adapter = q_vector->adapter;
1025 struct skb_shared_hwtstamps ts;
1026 __le64 *regval = (__le64 *)va;
1027 int adjust = 0;
1028
1029 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1030 return 0;
1031
1032 /* The timestamp is recorded in little endian format.
1033 * DWORD: 0 1 2 3
1034 * Field: Reserved Reserved SYSTIML SYSTIMH
1035 */
1036
1037 /* check reserved dwords are zero, be/le doesn't matter for zero */
1038 if (regval[0])
1039 return 0;
1040
1041 igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1042
1043 /* adjust timestamp for the RX latency based on link speed */
1044 if (adapter->hw.mac.type == e1000_i210) {
1045 switch (adapter->link_speed) {
1046 case SPEED_10:
1047 adjust = IGB_I210_RX_LATENCY_10;
1048 break;
1049 case SPEED_100:
1050 adjust = IGB_I210_RX_LATENCY_100;
1051 break;
1052 case SPEED_1000:
1053 adjust = IGB_I210_RX_LATENCY_1000;
1054 break;
1055 }
1056 }
1057
1058 *timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1059
1060 return IGB_TS_HDR_LEN;
1061 }
1062
1063 /**
1064 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1065 * @q_vector: Pointer to interrupt specific structure
1066 * @skb: Buffer containing timestamp and packet
1067 *
1068 * This function is meant to retrieve a timestamp from the internal registers
1069 * of the adapter and store it in the skb.
1070 **/
igb_ptp_rx_rgtstamp(struct igb_q_vector * q_vector,struct sk_buff * skb)1071 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1072 {
1073 struct igb_adapter *adapter = q_vector->adapter;
1074 struct e1000_hw *hw = &adapter->hw;
1075 int adjust = 0;
1076 u64 regval;
1077
1078 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1079 return;
1080
1081 /* If this bit is set, then the RX registers contain the time stamp. No
1082 * other packet will be time stamped until we read these registers, so
1083 * read the registers to make them available again. Because only one
1084 * packet can be time stamped at a time, we know that the register
1085 * values must belong to this one here and therefore we don't need to
1086 * compare any of the additional attributes stored for it.
1087 *
1088 * If nothing went wrong, then it should have a shared tx_flags that we
1089 * can turn into a skb_shared_hwtstamps.
1090 */
1091 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1092 return;
1093
1094 regval = rd32(E1000_RXSTMPL);
1095 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1096
1097 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1098
1099 /* adjust timestamp for the RX latency based on link speed */
1100 if (adapter->hw.mac.type == e1000_i210) {
1101 switch (adapter->link_speed) {
1102 case SPEED_10:
1103 adjust = IGB_I210_RX_LATENCY_10;
1104 break;
1105 case SPEED_100:
1106 adjust = IGB_I210_RX_LATENCY_100;
1107 break;
1108 case SPEED_1000:
1109 adjust = IGB_I210_RX_LATENCY_1000;
1110 break;
1111 }
1112 }
1113 skb_hwtstamps(skb)->hwtstamp =
1114 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1115
1116 /* Update the last_rx_timestamp timer in order to enable watchdog check
1117 * for error case of latched timestamp on a dropped packet.
1118 */
1119 adapter->last_rx_timestamp = jiffies;
1120 }
1121
1122 /**
1123 * igb_ptp_get_ts_config - get hardware time stamping config
1124 * @netdev: netdev struct
1125 * @ifr: interface struct
1126 *
1127 * Get the hwtstamp_config settings to return to the user. Rather than attempt
1128 * to deconstruct the settings from the registers, just return a shadow copy
1129 * of the last known settings.
1130 **/
igb_ptp_get_ts_config(struct net_device * netdev,struct ifreq * ifr)1131 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1132 {
1133 struct igb_adapter *adapter = netdev_priv(netdev);
1134 struct hwtstamp_config *config = &adapter->tstamp_config;
1135
1136 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1137 -EFAULT : 0;
1138 }
1139
1140 /**
1141 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1142 * @adapter: networking device structure
1143 * @config: hwtstamp configuration
1144 *
1145 * Outgoing time stamping can be enabled and disabled. Play nice and
1146 * disable it when requested, although it shouldn't case any overhead
1147 * when no packet needs it. At most one packet in the queue may be
1148 * marked for time stamping, otherwise it would be impossible to tell
1149 * for sure to which packet the hardware time stamp belongs.
1150 *
1151 * Incoming time stamping has to be configured via the hardware
1152 * filters. Not all combinations are supported, in particular event
1153 * type has to be specified. Matching the kind of event packet is
1154 * not supported, with the exception of "all V2 events regardless of
1155 * level 2 or 4".
1156 */
igb_ptp_set_timestamp_mode(struct igb_adapter * adapter,struct hwtstamp_config * config)1157 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1158 struct hwtstamp_config *config)
1159 {
1160 struct e1000_hw *hw = &adapter->hw;
1161 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1162 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1163 u32 tsync_rx_cfg = 0;
1164 bool is_l4 = false;
1165 bool is_l2 = false;
1166 u32 regval;
1167
1168 switch (config->tx_type) {
1169 case HWTSTAMP_TX_OFF:
1170 tsync_tx_ctl = 0;
1171 break;
1172 case HWTSTAMP_TX_ON:
1173 break;
1174 default:
1175 return -ERANGE;
1176 }
1177
1178 switch (config->rx_filter) {
1179 case HWTSTAMP_FILTER_NONE:
1180 tsync_rx_ctl = 0;
1181 break;
1182 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1183 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1184 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1185 is_l4 = true;
1186 break;
1187 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1188 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1189 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1190 is_l4 = true;
1191 break;
1192 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1193 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1194 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1195 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1196 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1197 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1198 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1199 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1200 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1201 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1202 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1203 is_l2 = true;
1204 is_l4 = true;
1205 break;
1206 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1207 case HWTSTAMP_FILTER_NTP_ALL:
1208 case HWTSTAMP_FILTER_ALL:
1209 /* 82576 cannot timestamp all packets, which it needs to do to
1210 * support both V1 Sync and Delay_Req messages
1211 */
1212 if (hw->mac.type != e1000_82576) {
1213 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1214 config->rx_filter = HWTSTAMP_FILTER_ALL;
1215 break;
1216 }
1217 fallthrough;
1218 default:
1219 config->rx_filter = HWTSTAMP_FILTER_NONE;
1220 return -ERANGE;
1221 }
1222
1223 if (hw->mac.type == e1000_82575) {
1224 if (tsync_rx_ctl | tsync_tx_ctl)
1225 return -EINVAL;
1226 return 0;
1227 }
1228
1229 /* Per-packet timestamping only works if all packets are
1230 * timestamped, so enable timestamping in all packets as
1231 * long as one Rx filter was configured.
1232 */
1233 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1234 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1235 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1236 config->rx_filter = HWTSTAMP_FILTER_ALL;
1237 is_l2 = true;
1238 is_l4 = true;
1239
1240 if ((hw->mac.type == e1000_i210) ||
1241 (hw->mac.type == e1000_i211)) {
1242 regval = rd32(E1000_RXPBS);
1243 regval |= E1000_RXPBS_CFG_TS_EN;
1244 wr32(E1000_RXPBS, regval);
1245 }
1246 }
1247
1248 /* enable/disable TX */
1249 regval = rd32(E1000_TSYNCTXCTL);
1250 regval &= ~E1000_TSYNCTXCTL_ENABLED;
1251 regval |= tsync_tx_ctl;
1252 wr32(E1000_TSYNCTXCTL, regval);
1253
1254 /* enable/disable RX */
1255 regval = rd32(E1000_TSYNCRXCTL);
1256 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1257 regval |= tsync_rx_ctl;
1258 wr32(E1000_TSYNCRXCTL, regval);
1259
1260 /* define which PTP packets are time stamped */
1261 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1262
1263 /* define ethertype filter for timestamped packets */
1264 if (is_l2)
1265 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1266 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1267 E1000_ETQF_1588 | /* enable timestamping */
1268 ETH_P_1588)); /* 1588 eth protocol type */
1269 else
1270 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1271
1272 /* L4 Queue Filter[3]: filter by destination port and protocol */
1273 if (is_l4) {
1274 u32 ftqf = (IPPROTO_UDP /* UDP */
1275 | E1000_FTQF_VF_BP /* VF not compared */
1276 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1277 | E1000_FTQF_MASK); /* mask all inputs */
1278 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1279
1280 wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1281 wr32(E1000_IMIREXT(3),
1282 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1283 if (hw->mac.type == e1000_82576) {
1284 /* enable source port check */
1285 wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1286 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1287 }
1288 wr32(E1000_FTQF(3), ftqf);
1289 } else {
1290 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1291 }
1292 wrfl();
1293
1294 /* clear TX/RX time stamp registers, just to be sure */
1295 regval = rd32(E1000_TXSTMPL);
1296 regval = rd32(E1000_TXSTMPH);
1297 regval = rd32(E1000_RXSTMPL);
1298 regval = rd32(E1000_RXSTMPH);
1299
1300 return 0;
1301 }
1302
1303 /**
1304 * igb_ptp_set_ts_config - set hardware time stamping config
1305 * @netdev: netdev struct
1306 * @ifr: interface struct
1307 *
1308 **/
igb_ptp_set_ts_config(struct net_device * netdev,struct ifreq * ifr)1309 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1310 {
1311 struct igb_adapter *adapter = netdev_priv(netdev);
1312 struct hwtstamp_config config;
1313 int err;
1314
1315 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1316 return -EFAULT;
1317
1318 err = igb_ptp_set_timestamp_mode(adapter, &config);
1319 if (err)
1320 return err;
1321
1322 /* save these settings for future reference */
1323 memcpy(&adapter->tstamp_config, &config,
1324 sizeof(adapter->tstamp_config));
1325
1326 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1327 -EFAULT : 0;
1328 }
1329
1330 /**
1331 * igb_ptp_init - Initialize PTP functionality
1332 * @adapter: Board private structure
1333 *
1334 * This function is called at device probe to initialize the PTP
1335 * functionality.
1336 */
igb_ptp_init(struct igb_adapter * adapter)1337 void igb_ptp_init(struct igb_adapter *adapter)
1338 {
1339 struct e1000_hw *hw = &adapter->hw;
1340 struct net_device *netdev = adapter->netdev;
1341
1342 switch (hw->mac.type) {
1343 case e1000_82576:
1344 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1345 adapter->ptp_caps.owner = THIS_MODULE;
1346 adapter->ptp_caps.max_adj = 999999881;
1347 adapter->ptp_caps.n_ext_ts = 0;
1348 adapter->ptp_caps.pps = 0;
1349 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1350 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1351 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1352 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1353 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1354 adapter->cc.read = igb_ptp_read_82576;
1355 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1356 adapter->cc.mult = 1;
1357 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1358 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1359 break;
1360 case e1000_82580:
1361 case e1000_i354:
1362 case e1000_i350:
1363 igb_ptp_sdp_init(adapter);
1364 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1365 adapter->ptp_caps.owner = THIS_MODULE;
1366 adapter->ptp_caps.max_adj = 62499999;
1367 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1368 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1369 adapter->ptp_caps.n_pins = IGB_N_SDP;
1370 adapter->ptp_caps.pps = 0;
1371 adapter->ptp_caps.pin_config = adapter->sdp_config;
1372 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1373 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1374 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1375 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1376 adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1377 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1378 adapter->cc.read = igb_ptp_read_82580;
1379 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1380 adapter->cc.mult = 1;
1381 adapter->cc.shift = 0;
1382 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1383 break;
1384 case e1000_i210:
1385 case e1000_i211:
1386 igb_ptp_sdp_init(adapter);
1387 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1388 adapter->ptp_caps.owner = THIS_MODULE;
1389 adapter->ptp_caps.max_adj = 62499999;
1390 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1391 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1392 adapter->ptp_caps.n_pins = IGB_N_SDP;
1393 adapter->ptp_caps.pps = 1;
1394 adapter->ptp_caps.pin_config = adapter->sdp_config;
1395 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1396 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1397 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1398 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1399 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1400 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1401 break;
1402 default:
1403 adapter->ptp_clock = NULL;
1404 return;
1405 }
1406
1407 spin_lock_init(&adapter->tmreg_lock);
1408 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1409
1410 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1411 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1412 igb_ptp_overflow_check);
1413
1414 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1415 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1416
1417 igb_ptp_reset(adapter);
1418
1419 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1420 &adapter->pdev->dev);
1421 if (IS_ERR(adapter->ptp_clock)) {
1422 adapter->ptp_clock = NULL;
1423 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1424 } else if (adapter->ptp_clock) {
1425 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1426 adapter->netdev->name);
1427 adapter->ptp_flags |= IGB_PTP_ENABLED;
1428 }
1429 }
1430
1431 /**
1432 * igb_ptp_sdp_init - utility function which inits the SDP config structs
1433 * @adapter: Board private structure.
1434 **/
igb_ptp_sdp_init(struct igb_adapter * adapter)1435 void igb_ptp_sdp_init(struct igb_adapter *adapter)
1436 {
1437 int i;
1438
1439 for (i = 0; i < IGB_N_SDP; i++) {
1440 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1441
1442 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1443 ppd->index = i;
1444 ppd->func = PTP_PF_NONE;
1445 }
1446 }
1447
1448 /**
1449 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1450 * @adapter: Board private structure
1451 *
1452 * This function stops the overflow check work and PTP Tx timestamp work, and
1453 * will prepare the device for OS suspend.
1454 */
igb_ptp_suspend(struct igb_adapter * adapter)1455 void igb_ptp_suspend(struct igb_adapter *adapter)
1456 {
1457 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1458 return;
1459
1460 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1461 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1462
1463 cancel_work_sync(&adapter->ptp_tx_work);
1464 if (adapter->ptp_tx_skb) {
1465 dev_kfree_skb_any(adapter->ptp_tx_skb);
1466 adapter->ptp_tx_skb = NULL;
1467 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1468 }
1469 }
1470
1471 /**
1472 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1473 * @adapter: Board private structure.
1474 *
1475 * This function stops the PTP support and cancels the delayed work.
1476 **/
igb_ptp_stop(struct igb_adapter * adapter)1477 void igb_ptp_stop(struct igb_adapter *adapter)
1478 {
1479 igb_ptp_suspend(adapter);
1480
1481 if (adapter->ptp_clock) {
1482 ptp_clock_unregister(adapter->ptp_clock);
1483 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1484 adapter->netdev->name);
1485 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1486 }
1487 }
1488
1489 /**
1490 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1491 * @adapter: Board private structure.
1492 *
1493 * This function handles the reset work required to re-enable the PTP device.
1494 **/
igb_ptp_reset(struct igb_adapter * adapter)1495 void igb_ptp_reset(struct igb_adapter *adapter)
1496 {
1497 struct e1000_hw *hw = &adapter->hw;
1498 unsigned long flags;
1499
1500 /* reset the tstamp_config */
1501 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1502
1503 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1504
1505 switch (adapter->hw.mac.type) {
1506 case e1000_82576:
1507 /* Dial the nominal frequency. */
1508 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1509 break;
1510 case e1000_82580:
1511 case e1000_i354:
1512 case e1000_i350:
1513 case e1000_i210:
1514 case e1000_i211:
1515 wr32(E1000_TSAUXC, 0x0);
1516 wr32(E1000_TSSDP, 0x0);
1517 wr32(E1000_TSIM,
1518 TSYNC_INTERRUPTS |
1519 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1520 wr32(E1000_IMS, E1000_IMS_TS);
1521 break;
1522 default:
1523 /* No work to do. */
1524 goto out;
1525 }
1526
1527 /* Re-initialize the timer. */
1528 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1529 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1530
1531 igb_ptp_write_i210(adapter, &ts);
1532 } else {
1533 timecounter_init(&adapter->tc, &adapter->cc,
1534 ktime_to_ns(ktime_get_real()));
1535 }
1536 out:
1537 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1538
1539 wrfl();
1540
1541 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1542 schedule_delayed_work(&adapter->ptp_overflow_work,
1543 IGB_SYSTIM_OVERFLOW_PERIOD);
1544 }
1545