1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
33
34 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 u16 *phy_ctrl);
37 static s32 igb_wait_autoneg(struct e1000_hw *hw);
38
39 /* Cable length tables */
40 static const u16 e1000_m88_cable_length_table[] =
41 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
42 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
43 (sizeof(e1000_m88_cable_length_table) / \
44 sizeof(e1000_m88_cable_length_table[0]))
45
46 static const u16 e1000_igp_2_cable_length_table[] =
47 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
48 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
49 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
50 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
51 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
52 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
53 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
54 104, 109, 114, 118, 121, 124};
55 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
56 (sizeof(e1000_igp_2_cable_length_table) / \
57 sizeof(e1000_igp_2_cable_length_table[0]))
58
59 /**
60 * igb_check_reset_block - Check if PHY reset is blocked
61 * @hw: pointer to the HW structure
62 *
63 * Read the PHY management control register and check whether a PHY reset
64 * is blocked. If a reset is not blocked return 0, otherwise
65 * return E1000_BLK_PHY_RESET (12).
66 **/
igb_check_reset_block(struct e1000_hw * hw)67 s32 igb_check_reset_block(struct e1000_hw *hw)
68 {
69 u32 manc;
70
71 manc = rd32(E1000_MANC);
72
73 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
74 E1000_BLK_PHY_RESET : 0;
75 }
76
77 /**
78 * igb_get_phy_id - Retrieve the PHY ID and revision
79 * @hw: pointer to the HW structure
80 *
81 * Reads the PHY registers and stores the PHY ID and possibly the PHY
82 * revision in the hardware structure.
83 **/
igb_get_phy_id(struct e1000_hw * hw)84 s32 igb_get_phy_id(struct e1000_hw *hw)
85 {
86 struct e1000_phy_info *phy = &hw->phy;
87 s32 ret_val = 0;
88 u16 phy_id;
89
90 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
91 if (ret_val)
92 goto out;
93
94 phy->id = (u32)(phy_id << 16);
95 udelay(20);
96 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
97 if (ret_val)
98 goto out;
99
100 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
102
103 out:
104 return ret_val;
105 }
106
107 /**
108 * igb_phy_reset_dsp - Reset PHY DSP
109 * @hw: pointer to the HW structure
110 *
111 * Reset the digital signal processor.
112 **/
igb_phy_reset_dsp(struct e1000_hw * hw)113 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
114 {
115 s32 ret_val = 0;
116
117 if (!(hw->phy.ops.write_reg))
118 goto out;
119
120 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 if (ret_val)
122 goto out;
123
124 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
125
126 out:
127 return ret_val;
128 }
129
130 /**
131 * igb_read_phy_reg_mdic - Read MDI control register
132 * @hw: pointer to the HW structure
133 * @offset: register offset to be read
134 * @data: pointer to the read data
135 *
136 * Reads the MDI control regsiter in the PHY at offset and stores the
137 * information read to data.
138 **/
igb_read_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 * data)139 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
140 {
141 struct e1000_phy_info *phy = &hw->phy;
142 u32 i, mdic = 0;
143 s32 ret_val = 0;
144
145 if (offset > MAX_PHY_REG_ADDRESS) {
146 hw_dbg("PHY Address %d is out of range\n", offset);
147 ret_val = -E1000_ERR_PARAM;
148 goto out;
149 }
150
151 /*
152 * Set up Op-code, Phy Address, and register offset in the MDI
153 * Control register. The MAC will take care of interfacing with the
154 * PHY to retrieve the desired data.
155 */
156 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
157 (phy->addr << E1000_MDIC_PHY_SHIFT) |
158 (E1000_MDIC_OP_READ));
159
160 wr32(E1000_MDIC, mdic);
161
162 /*
163 * Poll the ready bit to see if the MDI read completed
164 * Increasing the time out as testing showed failures with
165 * the lower time out
166 */
167 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
168 udelay(50);
169 mdic = rd32(E1000_MDIC);
170 if (mdic & E1000_MDIC_READY)
171 break;
172 }
173 if (!(mdic & E1000_MDIC_READY)) {
174 hw_dbg("MDI Read did not complete\n");
175 ret_val = -E1000_ERR_PHY;
176 goto out;
177 }
178 if (mdic & E1000_MDIC_ERROR) {
179 hw_dbg("MDI Error\n");
180 ret_val = -E1000_ERR_PHY;
181 goto out;
182 }
183 *data = (u16) mdic;
184
185 out:
186 return ret_val;
187 }
188
189 /**
190 * igb_write_phy_reg_mdic - Write MDI control register
191 * @hw: pointer to the HW structure
192 * @offset: register offset to write to
193 * @data: data to write to register at offset
194 *
195 * Writes data to MDI control register in the PHY at offset.
196 **/
igb_write_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 data)197 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
198 {
199 struct e1000_phy_info *phy = &hw->phy;
200 u32 i, mdic = 0;
201 s32 ret_val = 0;
202
203 if (offset > MAX_PHY_REG_ADDRESS) {
204 hw_dbg("PHY Address %d is out of range\n", offset);
205 ret_val = -E1000_ERR_PARAM;
206 goto out;
207 }
208
209 /*
210 * Set up Op-code, Phy Address, and register offset in the MDI
211 * Control register. The MAC will take care of interfacing with the
212 * PHY to retrieve the desired data.
213 */
214 mdic = (((u32)data) |
215 (offset << E1000_MDIC_REG_SHIFT) |
216 (phy->addr << E1000_MDIC_PHY_SHIFT) |
217 (E1000_MDIC_OP_WRITE));
218
219 wr32(E1000_MDIC, mdic);
220
221 /*
222 * Poll the ready bit to see if the MDI read completed
223 * Increasing the time out as testing showed failures with
224 * the lower time out
225 */
226 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
227 udelay(50);
228 mdic = rd32(E1000_MDIC);
229 if (mdic & E1000_MDIC_READY)
230 break;
231 }
232 if (!(mdic & E1000_MDIC_READY)) {
233 hw_dbg("MDI Write did not complete\n");
234 ret_val = -E1000_ERR_PHY;
235 goto out;
236 }
237 if (mdic & E1000_MDIC_ERROR) {
238 hw_dbg("MDI Error\n");
239 ret_val = -E1000_ERR_PHY;
240 goto out;
241 }
242
243 out:
244 return ret_val;
245 }
246
247 /**
248 * igb_read_phy_reg_i2c - Read PHY register using i2c
249 * @hw: pointer to the HW structure
250 * @offset: register offset to be read
251 * @data: pointer to the read data
252 *
253 * Reads the PHY register at offset using the i2c interface and stores the
254 * retrieved information in data.
255 **/
igb_read_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 * data)256 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
257 {
258 struct e1000_phy_info *phy = &hw->phy;
259 u32 i, i2ccmd = 0;
260
261
262 /*
263 * Set up Op-code, Phy Address, and register address in the I2CCMD
264 * register. The MAC will take care of interfacing with the
265 * PHY to retrieve the desired data.
266 */
267 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
268 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
269 (E1000_I2CCMD_OPCODE_READ));
270
271 wr32(E1000_I2CCMD, i2ccmd);
272
273 /* Poll the ready bit to see if the I2C read completed */
274 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
275 udelay(50);
276 i2ccmd = rd32(E1000_I2CCMD);
277 if (i2ccmd & E1000_I2CCMD_READY)
278 break;
279 }
280 if (!(i2ccmd & E1000_I2CCMD_READY)) {
281 hw_dbg("I2CCMD Read did not complete\n");
282 return -E1000_ERR_PHY;
283 }
284 if (i2ccmd & E1000_I2CCMD_ERROR) {
285 hw_dbg("I2CCMD Error bit set\n");
286 return -E1000_ERR_PHY;
287 }
288
289 /* Need to byte-swap the 16-bit value. */
290 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
291
292 return 0;
293 }
294
295 /**
296 * igb_write_phy_reg_i2c - Write PHY register using i2c
297 * @hw: pointer to the HW structure
298 * @offset: register offset to write to
299 * @data: data to write at register offset
300 *
301 * Writes the data to PHY register at the offset using the i2c interface.
302 **/
igb_write_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 data)303 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
304 {
305 struct e1000_phy_info *phy = &hw->phy;
306 u32 i, i2ccmd = 0;
307 u16 phy_data_swapped;
308
309
310 /* Swap the data bytes for the I2C interface */
311 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
312
313 /*
314 * Set up Op-code, Phy Address, and register address in the I2CCMD
315 * register. The MAC will take care of interfacing with the
316 * PHY to retrieve the desired data.
317 */
318 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
319 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
320 E1000_I2CCMD_OPCODE_WRITE |
321 phy_data_swapped);
322
323 wr32(E1000_I2CCMD, i2ccmd);
324
325 /* Poll the ready bit to see if the I2C read completed */
326 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
327 udelay(50);
328 i2ccmd = rd32(E1000_I2CCMD);
329 if (i2ccmd & E1000_I2CCMD_READY)
330 break;
331 }
332 if (!(i2ccmd & E1000_I2CCMD_READY)) {
333 hw_dbg("I2CCMD Write did not complete\n");
334 return -E1000_ERR_PHY;
335 }
336 if (i2ccmd & E1000_I2CCMD_ERROR) {
337 hw_dbg("I2CCMD Error bit set\n");
338 return -E1000_ERR_PHY;
339 }
340
341 return 0;
342 }
343
344 /**
345 * igb_read_phy_reg_igp - Read igp PHY register
346 * @hw: pointer to the HW structure
347 * @offset: register offset to be read
348 * @data: pointer to the read data
349 *
350 * Acquires semaphore, if necessary, then reads the PHY register at offset
351 * and storing the retrieved information in data. Release any acquired
352 * semaphores before exiting.
353 **/
igb_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data)354 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
355 {
356 s32 ret_val = 0;
357
358 if (!(hw->phy.ops.acquire))
359 goto out;
360
361 ret_val = hw->phy.ops.acquire(hw);
362 if (ret_val)
363 goto out;
364
365 if (offset > MAX_PHY_MULTI_PAGE_REG) {
366 ret_val = igb_write_phy_reg_mdic(hw,
367 IGP01E1000_PHY_PAGE_SELECT,
368 (u16)offset);
369 if (ret_val) {
370 hw->phy.ops.release(hw);
371 goto out;
372 }
373 }
374
375 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
376 data);
377
378 hw->phy.ops.release(hw);
379
380 out:
381 return ret_val;
382 }
383
384 /**
385 * igb_write_phy_reg_igp - Write igp PHY register
386 * @hw: pointer to the HW structure
387 * @offset: register offset to write to
388 * @data: data to write at register offset
389 *
390 * Acquires semaphore, if necessary, then writes the data to PHY register
391 * at the offset. Release any acquired semaphores before exiting.
392 **/
igb_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data)393 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
394 {
395 s32 ret_val = 0;
396
397 if (!(hw->phy.ops.acquire))
398 goto out;
399
400 ret_val = hw->phy.ops.acquire(hw);
401 if (ret_val)
402 goto out;
403
404 if (offset > MAX_PHY_MULTI_PAGE_REG) {
405 ret_val = igb_write_phy_reg_mdic(hw,
406 IGP01E1000_PHY_PAGE_SELECT,
407 (u16)offset);
408 if (ret_val) {
409 hw->phy.ops.release(hw);
410 goto out;
411 }
412 }
413
414 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
415 data);
416
417 hw->phy.ops.release(hw);
418
419 out:
420 return ret_val;
421 }
422
423 /**
424 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
425 * @hw: pointer to the HW structure
426 *
427 * Sets up Carrier-sense on Transmit and downshift values.
428 **/
igb_copper_link_setup_82580(struct e1000_hw * hw)429 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
430 {
431 struct e1000_phy_info *phy = &hw->phy;
432 s32 ret_val;
433 u16 phy_data;
434
435
436 if (phy->reset_disable) {
437 ret_val = 0;
438 goto out;
439 }
440
441 if (phy->type == e1000_phy_82580) {
442 ret_val = hw->phy.ops.reset(hw);
443 if (ret_val) {
444 hw_dbg("Error resetting the PHY.\n");
445 goto out;
446 }
447 }
448
449 /* Enable CRS on TX. This must be set for half-duplex operation. */
450 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
451 if (ret_val)
452 goto out;
453
454 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
455
456 /* Enable downshift */
457 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
458
459 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
460
461 out:
462 return ret_val;
463 }
464
465 /**
466 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
467 * @hw: pointer to the HW structure
468 *
469 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
470 * and downshift values are set also.
471 **/
igb_copper_link_setup_m88(struct e1000_hw * hw)472 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
473 {
474 struct e1000_phy_info *phy = &hw->phy;
475 s32 ret_val;
476 u16 phy_data;
477
478 if (phy->reset_disable) {
479 ret_val = 0;
480 goto out;
481 }
482
483 /* Enable CRS on TX. This must be set for half-duplex operation. */
484 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
485 if (ret_val)
486 goto out;
487
488 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
489
490 /*
491 * Options:
492 * MDI/MDI-X = 0 (default)
493 * 0 - Auto for all speeds
494 * 1 - MDI mode
495 * 2 - MDI-X mode
496 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
497 */
498 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
499
500 switch (phy->mdix) {
501 case 1:
502 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
503 break;
504 case 2:
505 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
506 break;
507 case 3:
508 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
509 break;
510 case 0:
511 default:
512 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
513 break;
514 }
515
516 /*
517 * Options:
518 * disable_polarity_correction = 0 (default)
519 * Automatic Correction for Reversed Cable Polarity
520 * 0 - Disabled
521 * 1 - Enabled
522 */
523 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
524 if (phy->disable_polarity_correction == 1)
525 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
526
527 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
528 if (ret_val)
529 goto out;
530
531 if (phy->revision < E1000_REVISION_4) {
532 /*
533 * Force TX_CLK in the Extended PHY Specific Control Register
534 * to 25MHz clock.
535 */
536 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
537 &phy_data);
538 if (ret_val)
539 goto out;
540
541 phy_data |= M88E1000_EPSCR_TX_CLK_25;
542
543 if ((phy->revision == E1000_REVISION_2) &&
544 (phy->id == M88E1111_I_PHY_ID)) {
545 /* 82573L PHY - set the downshift counter to 5x. */
546 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
547 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
548 } else {
549 /* Configure Master and Slave downshift values */
550 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
551 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
552 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
553 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
554 }
555 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
556 phy_data);
557 if (ret_val)
558 goto out;
559 }
560
561 /* Commit the changes. */
562 ret_val = igb_phy_sw_reset(hw);
563 if (ret_val) {
564 hw_dbg("Error committing the PHY changes\n");
565 goto out;
566 }
567
568 out:
569 return ret_val;
570 }
571
572 /**
573 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
574 * @hw: pointer to the HW structure
575 *
576 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
577 * Also enables and sets the downshift parameters.
578 **/
igb_copper_link_setup_m88_gen2(struct e1000_hw * hw)579 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
580 {
581 struct e1000_phy_info *phy = &hw->phy;
582 s32 ret_val;
583 u16 phy_data;
584
585 if (phy->reset_disable) {
586 ret_val = 0;
587 goto out;
588 }
589
590 /* Enable CRS on Tx. This must be set for half-duplex operation. */
591 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
592 if (ret_val)
593 goto out;
594
595 /*
596 * Options:
597 * MDI/MDI-X = 0 (default)
598 * 0 - Auto for all speeds
599 * 1 - MDI mode
600 * 2 - MDI-X mode
601 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
602 */
603 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
604
605 switch (phy->mdix) {
606 case 1:
607 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
608 break;
609 case 2:
610 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
611 break;
612 case 3:
613 /* M88E1112 does not support this mode) */
614 if (phy->id != M88E1112_E_PHY_ID) {
615 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
616 break;
617 }
618 case 0:
619 default:
620 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
621 break;
622 }
623
624 /*
625 * Options:
626 * disable_polarity_correction = 0 (default)
627 * Automatic Correction for Reversed Cable Polarity
628 * 0 - Disabled
629 * 1 - Enabled
630 */
631 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
632 if (phy->disable_polarity_correction == 1)
633 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
634
635 /* Enable downshift and setting it to X6 */
636 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
637 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
638 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
639
640 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
641 if (ret_val)
642 goto out;
643
644 /* Commit the changes. */
645 ret_val = igb_phy_sw_reset(hw);
646 if (ret_val) {
647 hw_dbg("Error committing the PHY changes\n");
648 goto out;
649 }
650
651 out:
652 return ret_val;
653 }
654
655 /**
656 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
657 * @hw: pointer to the HW structure
658 *
659 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
660 * igp PHY's.
661 **/
igb_copper_link_setup_igp(struct e1000_hw * hw)662 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
663 {
664 struct e1000_phy_info *phy = &hw->phy;
665 s32 ret_val;
666 u16 data;
667
668 if (phy->reset_disable) {
669 ret_val = 0;
670 goto out;
671 }
672
673 ret_val = phy->ops.reset(hw);
674 if (ret_val) {
675 hw_dbg("Error resetting the PHY.\n");
676 goto out;
677 }
678
679 /*
680 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
681 * timeout issues when LFS is enabled.
682 */
683 msleep(100);
684
685 /*
686 * The NVM settings will configure LPLU in D3 for
687 * non-IGP1 PHYs.
688 */
689 if (phy->type == e1000_phy_igp) {
690 /* disable lplu d3 during driver init */
691 if (phy->ops.set_d3_lplu_state)
692 ret_val = phy->ops.set_d3_lplu_state(hw, false);
693 if (ret_val) {
694 hw_dbg("Error Disabling LPLU D3\n");
695 goto out;
696 }
697 }
698
699 /* disable lplu d0 during driver init */
700 ret_val = phy->ops.set_d0_lplu_state(hw, false);
701 if (ret_val) {
702 hw_dbg("Error Disabling LPLU D0\n");
703 goto out;
704 }
705 /* Configure mdi-mdix settings */
706 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
707 if (ret_val)
708 goto out;
709
710 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
711
712 switch (phy->mdix) {
713 case 1:
714 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
715 break;
716 case 2:
717 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
718 break;
719 case 0:
720 default:
721 data |= IGP01E1000_PSCR_AUTO_MDIX;
722 break;
723 }
724 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
725 if (ret_val)
726 goto out;
727
728 /* set auto-master slave resolution settings */
729 if (hw->mac.autoneg) {
730 /*
731 * when autonegotiation advertisement is only 1000Mbps then we
732 * should disable SmartSpeed and enable Auto MasterSlave
733 * resolution as hardware default.
734 */
735 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
736 /* Disable SmartSpeed */
737 ret_val = phy->ops.read_reg(hw,
738 IGP01E1000_PHY_PORT_CONFIG,
739 &data);
740 if (ret_val)
741 goto out;
742
743 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
744 ret_val = phy->ops.write_reg(hw,
745 IGP01E1000_PHY_PORT_CONFIG,
746 data);
747 if (ret_val)
748 goto out;
749
750 /* Set auto Master/Slave resolution process */
751 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
752 if (ret_val)
753 goto out;
754
755 data &= ~CR_1000T_MS_ENABLE;
756 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
757 if (ret_val)
758 goto out;
759 }
760
761 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
762 if (ret_val)
763 goto out;
764
765 /* load defaults for future use */
766 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
767 ((data & CR_1000T_MS_VALUE) ?
768 e1000_ms_force_master :
769 e1000_ms_force_slave) :
770 e1000_ms_auto;
771
772 switch (phy->ms_type) {
773 case e1000_ms_force_master:
774 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
775 break;
776 case e1000_ms_force_slave:
777 data |= CR_1000T_MS_ENABLE;
778 data &= ~(CR_1000T_MS_VALUE);
779 break;
780 case e1000_ms_auto:
781 data &= ~CR_1000T_MS_ENABLE;
782 default:
783 break;
784 }
785 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
786 if (ret_val)
787 goto out;
788 }
789
790 out:
791 return ret_val;
792 }
793
794 /**
795 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
796 * @hw: pointer to the HW structure
797 *
798 * Performs initial bounds checking on autoneg advertisement parameter, then
799 * configure to advertise the full capability. Setup the PHY to autoneg
800 * and restart the negotiation process between the link partner. If
801 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
802 **/
igb_copper_link_autoneg(struct e1000_hw * hw)803 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
804 {
805 struct e1000_phy_info *phy = &hw->phy;
806 s32 ret_val;
807 u16 phy_ctrl;
808
809 /*
810 * Perform some bounds checking on the autoneg advertisement
811 * parameter.
812 */
813 phy->autoneg_advertised &= phy->autoneg_mask;
814
815 /*
816 * If autoneg_advertised is zero, we assume it was not defaulted
817 * by the calling code so we set to advertise full capability.
818 */
819 if (phy->autoneg_advertised == 0)
820 phy->autoneg_advertised = phy->autoneg_mask;
821
822 hw_dbg("Reconfiguring auto-neg advertisement params\n");
823 ret_val = igb_phy_setup_autoneg(hw);
824 if (ret_val) {
825 hw_dbg("Error Setting up Auto-Negotiation\n");
826 goto out;
827 }
828 hw_dbg("Restarting Auto-Neg\n");
829
830 /*
831 * Restart auto-negotiation by setting the Auto Neg Enable bit and
832 * the Auto Neg Restart bit in the PHY control register.
833 */
834 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
835 if (ret_val)
836 goto out;
837
838 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
839 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
840 if (ret_val)
841 goto out;
842
843 /*
844 * Does the user want to wait for Auto-Neg to complete here, or
845 * check at a later time (for example, callback routine).
846 */
847 if (phy->autoneg_wait_to_complete) {
848 ret_val = igb_wait_autoneg(hw);
849 if (ret_val) {
850 hw_dbg("Error while waiting for "
851 "autoneg to complete\n");
852 goto out;
853 }
854 }
855
856 hw->mac.get_link_status = true;
857
858 out:
859 return ret_val;
860 }
861
862 /**
863 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
864 * @hw: pointer to the HW structure
865 *
866 * Reads the MII auto-neg advertisement register and/or the 1000T control
867 * register and if the PHY is already setup for auto-negotiation, then
868 * return successful. Otherwise, setup advertisement and flow control to
869 * the appropriate values for the wanted auto-negotiation.
870 **/
igb_phy_setup_autoneg(struct e1000_hw * hw)871 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
872 {
873 struct e1000_phy_info *phy = &hw->phy;
874 s32 ret_val;
875 u16 mii_autoneg_adv_reg;
876 u16 mii_1000t_ctrl_reg = 0;
877
878 phy->autoneg_advertised &= phy->autoneg_mask;
879
880 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
881 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
882 if (ret_val)
883 goto out;
884
885 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
886 /* Read the MII 1000Base-T Control Register (Address 9). */
887 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
888 &mii_1000t_ctrl_reg);
889 if (ret_val)
890 goto out;
891 }
892
893 /*
894 * Need to parse both autoneg_advertised and fc and set up
895 * the appropriate PHY registers. First we will parse for
896 * autoneg_advertised software override. Since we can advertise
897 * a plethora of combinations, we need to check each bit
898 * individually.
899 */
900
901 /*
902 * First we clear all the 10/100 mb speed bits in the Auto-Neg
903 * Advertisement Register (Address 4) and the 1000 mb speed bits in
904 * the 1000Base-T Control Register (Address 9).
905 */
906 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
907 NWAY_AR_100TX_HD_CAPS |
908 NWAY_AR_10T_FD_CAPS |
909 NWAY_AR_10T_HD_CAPS);
910 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
911
912 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
913
914 /* Do we want to advertise 10 Mb Half Duplex? */
915 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
916 hw_dbg("Advertise 10mb Half duplex\n");
917 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
918 }
919
920 /* Do we want to advertise 10 Mb Full Duplex? */
921 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
922 hw_dbg("Advertise 10mb Full duplex\n");
923 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
924 }
925
926 /* Do we want to advertise 100 Mb Half Duplex? */
927 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
928 hw_dbg("Advertise 100mb Half duplex\n");
929 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
930 }
931
932 /* Do we want to advertise 100 Mb Full Duplex? */
933 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
934 hw_dbg("Advertise 100mb Full duplex\n");
935 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
936 }
937
938 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
939 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
940 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
941
942 /* Do we want to advertise 1000 Mb Full Duplex? */
943 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
944 hw_dbg("Advertise 1000mb Full duplex\n");
945 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
946 }
947
948 /*
949 * Check for a software override of the flow control settings, and
950 * setup the PHY advertisement registers accordingly. If
951 * auto-negotiation is enabled, then software will have to set the
952 * "PAUSE" bits to the correct value in the Auto-Negotiation
953 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
954 * negotiation.
955 *
956 * The possible values of the "fc" parameter are:
957 * 0: Flow control is completely disabled
958 * 1: Rx flow control is enabled (we can receive pause frames
959 * but not send pause frames).
960 * 2: Tx flow control is enabled (we can send pause frames
961 * but we do not support receiving pause frames).
962 * 3: Both Rx and TX flow control (symmetric) are enabled.
963 * other: No software override. The flow control configuration
964 * in the EEPROM is used.
965 */
966 switch (hw->fc.current_mode) {
967 case e1000_fc_none:
968 /*
969 * Flow control (RX & TX) is completely disabled by a
970 * software over-ride.
971 */
972 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
973 break;
974 case e1000_fc_rx_pause:
975 /*
976 * RX Flow control is enabled, and TX Flow control is
977 * disabled, by a software over-ride.
978 *
979 * Since there really isn't a way to advertise that we are
980 * capable of RX Pause ONLY, we will advertise that we
981 * support both symmetric and asymmetric RX PAUSE. Later
982 * (in e1000_config_fc_after_link_up) we will disable the
983 * hw's ability to send PAUSE frames.
984 */
985 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
986 break;
987 case e1000_fc_tx_pause:
988 /*
989 * TX Flow control is enabled, and RX Flow control is
990 * disabled, by a software over-ride.
991 */
992 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
993 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
994 break;
995 case e1000_fc_full:
996 /*
997 * Flow control (both RX and TX) is enabled by a software
998 * over-ride.
999 */
1000 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1001 break;
1002 default:
1003 hw_dbg("Flow control param set incorrectly\n");
1004 ret_val = -E1000_ERR_CONFIG;
1005 goto out;
1006 }
1007
1008 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1009 if (ret_val)
1010 goto out;
1011
1012 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1013
1014 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1015 ret_val = phy->ops.write_reg(hw,
1016 PHY_1000T_CTRL,
1017 mii_1000t_ctrl_reg);
1018 if (ret_val)
1019 goto out;
1020 }
1021
1022 out:
1023 return ret_val;
1024 }
1025
1026 /**
1027 * igb_setup_copper_link - Configure copper link settings
1028 * @hw: pointer to the HW structure
1029 *
1030 * Calls the appropriate function to configure the link for auto-neg or forced
1031 * speed and duplex. Then we check for link, once link is established calls
1032 * to configure collision distance and flow control are called. If link is
1033 * not established, we return -E1000_ERR_PHY (-2).
1034 **/
igb_setup_copper_link(struct e1000_hw * hw)1035 s32 igb_setup_copper_link(struct e1000_hw *hw)
1036 {
1037 s32 ret_val;
1038 bool link;
1039
1040
1041 if (hw->mac.autoneg) {
1042 /*
1043 * Setup autoneg and flow control advertisement and perform
1044 * autonegotiation.
1045 */
1046 ret_val = igb_copper_link_autoneg(hw);
1047 if (ret_val)
1048 goto out;
1049 } else {
1050 /*
1051 * PHY will be set to 10H, 10F, 100H or 100F
1052 * depending on user settings.
1053 */
1054 hw_dbg("Forcing Speed and Duplex\n");
1055 ret_val = hw->phy.ops.force_speed_duplex(hw);
1056 if (ret_val) {
1057 hw_dbg("Error Forcing Speed and Duplex\n");
1058 goto out;
1059 }
1060 }
1061
1062 /*
1063 * Check link status. Wait up to 100 microseconds for link to become
1064 * valid.
1065 */
1066 ret_val = igb_phy_has_link(hw,
1067 COPPER_LINK_UP_LIMIT,
1068 10,
1069 &link);
1070 if (ret_val)
1071 goto out;
1072
1073 if (link) {
1074 hw_dbg("Valid link established!!!\n");
1075 igb_config_collision_dist(hw);
1076 ret_val = igb_config_fc_after_link_up(hw);
1077 } else {
1078 hw_dbg("Unable to establish link!!!\n");
1079 }
1080
1081 out:
1082 return ret_val;
1083 }
1084
1085 /**
1086 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1087 * @hw: pointer to the HW structure
1088 *
1089 * Calls the PHY setup function to force speed and duplex. Clears the
1090 * auto-crossover to force MDI manually. Waits for link and returns
1091 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1092 **/
igb_phy_force_speed_duplex_igp(struct e1000_hw * hw)1093 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1094 {
1095 struct e1000_phy_info *phy = &hw->phy;
1096 s32 ret_val;
1097 u16 phy_data;
1098 bool link;
1099
1100 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1101 if (ret_val)
1102 goto out;
1103
1104 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1105
1106 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1107 if (ret_val)
1108 goto out;
1109
1110 /*
1111 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1112 * forced whenever speed and duplex are forced.
1113 */
1114 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1115 if (ret_val)
1116 goto out;
1117
1118 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1119 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1120
1121 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1122 if (ret_val)
1123 goto out;
1124
1125 hw_dbg("IGP PSCR: %X\n", phy_data);
1126
1127 udelay(1);
1128
1129 if (phy->autoneg_wait_to_complete) {
1130 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1131
1132 ret_val = igb_phy_has_link(hw,
1133 PHY_FORCE_LIMIT,
1134 100000,
1135 &link);
1136 if (ret_val)
1137 goto out;
1138
1139 if (!link)
1140 hw_dbg("Link taking longer than expected.\n");
1141
1142 /* Try once more */
1143 ret_val = igb_phy_has_link(hw,
1144 PHY_FORCE_LIMIT,
1145 100000,
1146 &link);
1147 if (ret_val)
1148 goto out;
1149 }
1150
1151 out:
1152 return ret_val;
1153 }
1154
1155 /**
1156 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1157 * @hw: pointer to the HW structure
1158 *
1159 * Calls the PHY setup function to force speed and duplex. Clears the
1160 * auto-crossover to force MDI manually. Resets the PHY to commit the
1161 * changes. If time expires while waiting for link up, we reset the DSP.
1162 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1163 * successful completion, else return corresponding error code.
1164 **/
igb_phy_force_speed_duplex_m88(struct e1000_hw * hw)1165 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1166 {
1167 struct e1000_phy_info *phy = &hw->phy;
1168 s32 ret_val;
1169 u16 phy_data;
1170 bool link;
1171
1172 /*
1173 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1174 * forced whenever speed and duplex are forced.
1175 */
1176 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1177 if (ret_val)
1178 goto out;
1179
1180 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1181 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1182 if (ret_val)
1183 goto out;
1184
1185 hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1186
1187 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1188 if (ret_val)
1189 goto out;
1190
1191 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1192
1193 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1194 if (ret_val)
1195 goto out;
1196
1197 /* Reset the phy to commit changes. */
1198 ret_val = igb_phy_sw_reset(hw);
1199 if (ret_val)
1200 goto out;
1201
1202 if (phy->autoneg_wait_to_complete) {
1203 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1204
1205 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1206 if (ret_val)
1207 goto out;
1208
1209 if (!link) {
1210 if (hw->phy.type != e1000_phy_m88 ||
1211 hw->phy.id == I347AT4_E_PHY_ID ||
1212 hw->phy.id == M88E1112_E_PHY_ID) {
1213 hw_dbg("Link taking longer than expected.\n");
1214 } else {
1215
1216 /*
1217 * We didn't get link.
1218 * Reset the DSP and cross our fingers.
1219 */
1220 ret_val = phy->ops.write_reg(hw,
1221 M88E1000_PHY_PAGE_SELECT,
1222 0x001d);
1223 if (ret_val)
1224 goto out;
1225 ret_val = igb_phy_reset_dsp(hw);
1226 if (ret_val)
1227 goto out;
1228 }
1229 }
1230
1231 /* Try once more */
1232 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1233 100000, &link);
1234 if (ret_val)
1235 goto out;
1236 }
1237
1238 if (hw->phy.type != e1000_phy_m88 ||
1239 hw->phy.id == I347AT4_E_PHY_ID ||
1240 hw->phy.id == M88E1112_E_PHY_ID)
1241 goto out;
1242
1243 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1244 if (ret_val)
1245 goto out;
1246
1247 /*
1248 * Resetting the phy means we need to re-force TX_CLK in the
1249 * Extended PHY Specific Control Register to 25MHz clock from
1250 * the reset value of 2.5MHz.
1251 */
1252 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1253 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1254 if (ret_val)
1255 goto out;
1256
1257 /*
1258 * In addition, we must re-enable CRS on Tx for both half and full
1259 * duplex.
1260 */
1261 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1262 if (ret_val)
1263 goto out;
1264
1265 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1266 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1267
1268 out:
1269 return ret_val;
1270 }
1271
1272 /**
1273 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1274 * @hw: pointer to the HW structure
1275 * @phy_ctrl: pointer to current value of PHY_CONTROL
1276 *
1277 * Forces speed and duplex on the PHY by doing the following: disable flow
1278 * control, force speed/duplex on the MAC, disable auto speed detection,
1279 * disable auto-negotiation, configure duplex, configure speed, configure
1280 * the collision distance, write configuration to CTRL register. The
1281 * caller must write to the PHY_CONTROL register for these settings to
1282 * take affect.
1283 **/
igb_phy_force_speed_duplex_setup(struct e1000_hw * hw,u16 * phy_ctrl)1284 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1285 u16 *phy_ctrl)
1286 {
1287 struct e1000_mac_info *mac = &hw->mac;
1288 u32 ctrl;
1289
1290 /* Turn off flow control when forcing speed/duplex */
1291 hw->fc.current_mode = e1000_fc_none;
1292
1293 /* Force speed/duplex on the mac */
1294 ctrl = rd32(E1000_CTRL);
1295 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1296 ctrl &= ~E1000_CTRL_SPD_SEL;
1297
1298 /* Disable Auto Speed Detection */
1299 ctrl &= ~E1000_CTRL_ASDE;
1300
1301 /* Disable autoneg on the phy */
1302 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1303
1304 /* Forcing Full or Half Duplex? */
1305 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1306 ctrl &= ~E1000_CTRL_FD;
1307 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1308 hw_dbg("Half Duplex\n");
1309 } else {
1310 ctrl |= E1000_CTRL_FD;
1311 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1312 hw_dbg("Full Duplex\n");
1313 }
1314
1315 /* Forcing 10mb or 100mb? */
1316 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1317 ctrl |= E1000_CTRL_SPD_100;
1318 *phy_ctrl |= MII_CR_SPEED_100;
1319 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1320 hw_dbg("Forcing 100mb\n");
1321 } else {
1322 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1323 *phy_ctrl |= MII_CR_SPEED_10;
1324 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1325 hw_dbg("Forcing 10mb\n");
1326 }
1327
1328 igb_config_collision_dist(hw);
1329
1330 wr32(E1000_CTRL, ctrl);
1331 }
1332
1333 /**
1334 * igb_set_d3_lplu_state - Sets low power link up state for D3
1335 * @hw: pointer to the HW structure
1336 * @active: boolean used to enable/disable lplu
1337 *
1338 * Success returns 0, Failure returns 1
1339 *
1340 * The low power link up (lplu) state is set to the power management level D3
1341 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1342 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1343 * is used during Dx states where the power conservation is most important.
1344 * During driver activity, SmartSpeed should be enabled so performance is
1345 * maintained.
1346 **/
igb_set_d3_lplu_state(struct e1000_hw * hw,bool active)1347 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1348 {
1349 struct e1000_phy_info *phy = &hw->phy;
1350 s32 ret_val = 0;
1351 u16 data;
1352
1353 if (!(hw->phy.ops.read_reg))
1354 goto out;
1355
1356 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1357 if (ret_val)
1358 goto out;
1359
1360 if (!active) {
1361 data &= ~IGP02E1000_PM_D3_LPLU;
1362 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1363 data);
1364 if (ret_val)
1365 goto out;
1366 /*
1367 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1368 * during Dx states where the power conservation is most
1369 * important. During driver activity we should enable
1370 * SmartSpeed, so performance is maintained.
1371 */
1372 if (phy->smart_speed == e1000_smart_speed_on) {
1373 ret_val = phy->ops.read_reg(hw,
1374 IGP01E1000_PHY_PORT_CONFIG,
1375 &data);
1376 if (ret_val)
1377 goto out;
1378
1379 data |= IGP01E1000_PSCFR_SMART_SPEED;
1380 ret_val = phy->ops.write_reg(hw,
1381 IGP01E1000_PHY_PORT_CONFIG,
1382 data);
1383 if (ret_val)
1384 goto out;
1385 } else if (phy->smart_speed == e1000_smart_speed_off) {
1386 ret_val = phy->ops.read_reg(hw,
1387 IGP01E1000_PHY_PORT_CONFIG,
1388 &data);
1389 if (ret_val)
1390 goto out;
1391
1392 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1393 ret_val = phy->ops.write_reg(hw,
1394 IGP01E1000_PHY_PORT_CONFIG,
1395 data);
1396 if (ret_val)
1397 goto out;
1398 }
1399 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1400 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1401 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1402 data |= IGP02E1000_PM_D3_LPLU;
1403 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1404 data);
1405 if (ret_val)
1406 goto out;
1407
1408 /* When LPLU is enabled, we should disable SmartSpeed */
1409 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1410 &data);
1411 if (ret_val)
1412 goto out;
1413
1414 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1415 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1416 data);
1417 }
1418
1419 out:
1420 return ret_val;
1421 }
1422
1423 /**
1424 * igb_check_downshift - Checks whether a downshift in speed occurred
1425 * @hw: pointer to the HW structure
1426 *
1427 * Success returns 0, Failure returns 1
1428 *
1429 * A downshift is detected by querying the PHY link health.
1430 **/
igb_check_downshift(struct e1000_hw * hw)1431 s32 igb_check_downshift(struct e1000_hw *hw)
1432 {
1433 struct e1000_phy_info *phy = &hw->phy;
1434 s32 ret_val;
1435 u16 phy_data, offset, mask;
1436
1437 switch (phy->type) {
1438 case e1000_phy_m88:
1439 case e1000_phy_gg82563:
1440 offset = M88E1000_PHY_SPEC_STATUS;
1441 mask = M88E1000_PSSR_DOWNSHIFT;
1442 break;
1443 case e1000_phy_igp_2:
1444 case e1000_phy_igp:
1445 case e1000_phy_igp_3:
1446 offset = IGP01E1000_PHY_LINK_HEALTH;
1447 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1448 break;
1449 default:
1450 /* speed downshift not supported */
1451 phy->speed_downgraded = false;
1452 ret_val = 0;
1453 goto out;
1454 }
1455
1456 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1457
1458 if (!ret_val)
1459 phy->speed_downgraded = (phy_data & mask) ? true : false;
1460
1461 out:
1462 return ret_val;
1463 }
1464
1465 /**
1466 * igb_check_polarity_m88 - Checks the polarity.
1467 * @hw: pointer to the HW structure
1468 *
1469 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1470 *
1471 * Polarity is determined based on the PHY specific status register.
1472 **/
igb_check_polarity_m88(struct e1000_hw * hw)1473 static s32 igb_check_polarity_m88(struct e1000_hw *hw)
1474 {
1475 struct e1000_phy_info *phy = &hw->phy;
1476 s32 ret_val;
1477 u16 data;
1478
1479 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1480
1481 if (!ret_val)
1482 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1483 ? e1000_rev_polarity_reversed
1484 : e1000_rev_polarity_normal;
1485
1486 return ret_val;
1487 }
1488
1489 /**
1490 * igb_check_polarity_igp - Checks the polarity.
1491 * @hw: pointer to the HW structure
1492 *
1493 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1494 *
1495 * Polarity is determined based on the PHY port status register, and the
1496 * current speed (since there is no polarity at 100Mbps).
1497 **/
igb_check_polarity_igp(struct e1000_hw * hw)1498 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1499 {
1500 struct e1000_phy_info *phy = &hw->phy;
1501 s32 ret_val;
1502 u16 data, offset, mask;
1503
1504 /*
1505 * Polarity is determined based on the speed of
1506 * our connection.
1507 */
1508 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1509 if (ret_val)
1510 goto out;
1511
1512 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1513 IGP01E1000_PSSR_SPEED_1000MBPS) {
1514 offset = IGP01E1000_PHY_PCS_INIT_REG;
1515 mask = IGP01E1000_PHY_POLARITY_MASK;
1516 } else {
1517 /*
1518 * This really only applies to 10Mbps since
1519 * there is no polarity for 100Mbps (always 0).
1520 */
1521 offset = IGP01E1000_PHY_PORT_STATUS;
1522 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1523 }
1524
1525 ret_val = phy->ops.read_reg(hw, offset, &data);
1526
1527 if (!ret_val)
1528 phy->cable_polarity = (data & mask)
1529 ? e1000_rev_polarity_reversed
1530 : e1000_rev_polarity_normal;
1531
1532 out:
1533 return ret_val;
1534 }
1535
1536 /**
1537 * igb_wait_autoneg - Wait for auto-neg compeletion
1538 * @hw: pointer to the HW structure
1539 *
1540 * Waits for auto-negotiation to complete or for the auto-negotiation time
1541 * limit to expire, which ever happens first.
1542 **/
igb_wait_autoneg(struct e1000_hw * hw)1543 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1544 {
1545 s32 ret_val = 0;
1546 u16 i, phy_status;
1547
1548 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1549 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1550 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1551 if (ret_val)
1552 break;
1553 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1554 if (ret_val)
1555 break;
1556 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1557 break;
1558 msleep(100);
1559 }
1560
1561 /*
1562 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1563 * has completed.
1564 */
1565 return ret_val;
1566 }
1567
1568 /**
1569 * igb_phy_has_link - Polls PHY for link
1570 * @hw: pointer to the HW structure
1571 * @iterations: number of times to poll for link
1572 * @usec_interval: delay between polling attempts
1573 * @success: pointer to whether polling was successful or not
1574 *
1575 * Polls the PHY status register for link, 'iterations' number of times.
1576 **/
igb_phy_has_link(struct e1000_hw * hw,u32 iterations,u32 usec_interval,bool * success)1577 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1578 u32 usec_interval, bool *success)
1579 {
1580 s32 ret_val = 0;
1581 u16 i, phy_status;
1582
1583 for (i = 0; i < iterations; i++) {
1584 /*
1585 * Some PHYs require the PHY_STATUS register to be read
1586 * twice due to the link bit being sticky. No harm doing
1587 * it across the board.
1588 */
1589 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1590 if (ret_val) {
1591 /*
1592 * If the first read fails, another entity may have
1593 * ownership of the resources, wait and try again to
1594 * see if they have relinquished the resources yet.
1595 */
1596 udelay(usec_interval);
1597 }
1598 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1599 if (ret_val)
1600 break;
1601 if (phy_status & MII_SR_LINK_STATUS)
1602 break;
1603 if (usec_interval >= 1000)
1604 mdelay(usec_interval/1000);
1605 else
1606 udelay(usec_interval);
1607 }
1608
1609 *success = (i < iterations) ? true : false;
1610
1611 return ret_val;
1612 }
1613
1614 /**
1615 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1616 * @hw: pointer to the HW structure
1617 *
1618 * Reads the PHY specific status register to retrieve the cable length
1619 * information. The cable length is determined by averaging the minimum and
1620 * maximum values to get the "average" cable length. The m88 PHY has four
1621 * possible cable length values, which are:
1622 * Register Value Cable Length
1623 * 0 < 50 meters
1624 * 1 50 - 80 meters
1625 * 2 80 - 110 meters
1626 * 3 110 - 140 meters
1627 * 4 > 140 meters
1628 **/
igb_get_cable_length_m88(struct e1000_hw * hw)1629 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1630 {
1631 struct e1000_phy_info *phy = &hw->phy;
1632 s32 ret_val;
1633 u16 phy_data, index;
1634
1635 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1636 if (ret_val)
1637 goto out;
1638
1639 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1640 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1641 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1642 ret_val = -E1000_ERR_PHY;
1643 goto out;
1644 }
1645
1646 phy->min_cable_length = e1000_m88_cable_length_table[index];
1647 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1648
1649 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1650
1651 out:
1652 return ret_val;
1653 }
1654
igb_get_cable_length_m88_gen2(struct e1000_hw * hw)1655 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1656 {
1657 struct e1000_phy_info *phy = &hw->phy;
1658 s32 ret_val;
1659 u16 phy_data, phy_data2, index, default_page, is_cm;
1660
1661 switch (hw->phy.id) {
1662 case I347AT4_E_PHY_ID:
1663 /* Remember the original page select and set it to 7 */
1664 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1665 &default_page);
1666 if (ret_val)
1667 goto out;
1668
1669 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1670 if (ret_val)
1671 goto out;
1672
1673 /* Get cable length from PHY Cable Diagnostics Control Reg */
1674 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1675 &phy_data);
1676 if (ret_val)
1677 goto out;
1678
1679 /* Check if the unit of cable length is meters or cm */
1680 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1681 if (ret_val)
1682 goto out;
1683
1684 is_cm = !(phy_data & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1685
1686 /* Populate the phy structure with cable length in meters */
1687 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1688 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1689 phy->cable_length = phy_data / (is_cm ? 100 : 1);
1690
1691 /* Reset the page selec to its original value */
1692 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1693 default_page);
1694 if (ret_val)
1695 goto out;
1696 break;
1697 case M88E1112_E_PHY_ID:
1698 /* Remember the original page select and set it to 5 */
1699 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1700 &default_page);
1701 if (ret_val)
1702 goto out;
1703
1704 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1705 if (ret_val)
1706 goto out;
1707
1708 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1709 &phy_data);
1710 if (ret_val)
1711 goto out;
1712
1713 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1714 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1715 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1716 ret_val = -E1000_ERR_PHY;
1717 goto out;
1718 }
1719
1720 phy->min_cable_length = e1000_m88_cable_length_table[index];
1721 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1722
1723 phy->cable_length = (phy->min_cable_length +
1724 phy->max_cable_length) / 2;
1725
1726 /* Reset the page select to its original value */
1727 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1728 default_page);
1729 if (ret_val)
1730 goto out;
1731
1732 break;
1733 default:
1734 ret_val = -E1000_ERR_PHY;
1735 goto out;
1736 }
1737
1738 out:
1739 return ret_val;
1740 }
1741
1742 /**
1743 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1744 * @hw: pointer to the HW structure
1745 *
1746 * The automatic gain control (agc) normalizes the amplitude of the
1747 * received signal, adjusting for the attenuation produced by the
1748 * cable. By reading the AGC registers, which represent the
1749 * combination of coarse and fine gain value, the value can be put
1750 * into a lookup table to obtain the approximate cable length
1751 * for each channel.
1752 **/
igb_get_cable_length_igp_2(struct e1000_hw * hw)1753 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1754 {
1755 struct e1000_phy_info *phy = &hw->phy;
1756 s32 ret_val = 0;
1757 u16 phy_data, i, agc_value = 0;
1758 u16 cur_agc_index, max_agc_index = 0;
1759 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1760 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1761 IGP02E1000_PHY_AGC_A,
1762 IGP02E1000_PHY_AGC_B,
1763 IGP02E1000_PHY_AGC_C,
1764 IGP02E1000_PHY_AGC_D
1765 };
1766
1767 /* Read the AGC registers for all channels */
1768 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1769 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1770 if (ret_val)
1771 goto out;
1772
1773 /*
1774 * Getting bits 15:9, which represent the combination of
1775 * coarse and fine gain values. The result is a number
1776 * that can be put into the lookup table to obtain the
1777 * approximate cable length.
1778 */
1779 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1780 IGP02E1000_AGC_LENGTH_MASK;
1781
1782 /* Array index bound check. */
1783 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1784 (cur_agc_index == 0)) {
1785 ret_val = -E1000_ERR_PHY;
1786 goto out;
1787 }
1788
1789 /* Remove min & max AGC values from calculation. */
1790 if (e1000_igp_2_cable_length_table[min_agc_index] >
1791 e1000_igp_2_cable_length_table[cur_agc_index])
1792 min_agc_index = cur_agc_index;
1793 if (e1000_igp_2_cable_length_table[max_agc_index] <
1794 e1000_igp_2_cable_length_table[cur_agc_index])
1795 max_agc_index = cur_agc_index;
1796
1797 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1798 }
1799
1800 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1801 e1000_igp_2_cable_length_table[max_agc_index]);
1802 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1803
1804 /* Calculate cable length with the error range of +/- 10 meters. */
1805 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1806 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1807 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1808
1809 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1810
1811 out:
1812 return ret_val;
1813 }
1814
1815 /**
1816 * igb_get_phy_info_m88 - Retrieve PHY information
1817 * @hw: pointer to the HW structure
1818 *
1819 * Valid for only copper links. Read the PHY status register (sticky read)
1820 * to verify that link is up. Read the PHY special control register to
1821 * determine the polarity and 10base-T extended distance. Read the PHY
1822 * special status register to determine MDI/MDIx and current speed. If
1823 * speed is 1000, then determine cable length, local and remote receiver.
1824 **/
igb_get_phy_info_m88(struct e1000_hw * hw)1825 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1826 {
1827 struct e1000_phy_info *phy = &hw->phy;
1828 s32 ret_val;
1829 u16 phy_data;
1830 bool link;
1831
1832 if (phy->media_type != e1000_media_type_copper) {
1833 hw_dbg("Phy info is only valid for copper media\n");
1834 ret_val = -E1000_ERR_CONFIG;
1835 goto out;
1836 }
1837
1838 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1839 if (ret_val)
1840 goto out;
1841
1842 if (!link) {
1843 hw_dbg("Phy info is only valid if link is up\n");
1844 ret_val = -E1000_ERR_CONFIG;
1845 goto out;
1846 }
1847
1848 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1849 if (ret_val)
1850 goto out;
1851
1852 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1853 ? true : false;
1854
1855 ret_val = igb_check_polarity_m88(hw);
1856 if (ret_val)
1857 goto out;
1858
1859 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1860 if (ret_val)
1861 goto out;
1862
1863 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1864
1865 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1866 ret_val = phy->ops.get_cable_length(hw);
1867 if (ret_val)
1868 goto out;
1869
1870 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1871 if (ret_val)
1872 goto out;
1873
1874 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1875 ? e1000_1000t_rx_status_ok
1876 : e1000_1000t_rx_status_not_ok;
1877
1878 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1879 ? e1000_1000t_rx_status_ok
1880 : e1000_1000t_rx_status_not_ok;
1881 } else {
1882 /* Set values to "undefined" */
1883 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1884 phy->local_rx = e1000_1000t_rx_status_undefined;
1885 phy->remote_rx = e1000_1000t_rx_status_undefined;
1886 }
1887
1888 out:
1889 return ret_val;
1890 }
1891
1892 /**
1893 * igb_get_phy_info_igp - Retrieve igp PHY information
1894 * @hw: pointer to the HW structure
1895 *
1896 * Read PHY status to determine if link is up. If link is up, then
1897 * set/determine 10base-T extended distance and polarity correction. Read
1898 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1899 * determine on the cable length, local and remote receiver.
1900 **/
igb_get_phy_info_igp(struct e1000_hw * hw)1901 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1902 {
1903 struct e1000_phy_info *phy = &hw->phy;
1904 s32 ret_val;
1905 u16 data;
1906 bool link;
1907
1908 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1909 if (ret_val)
1910 goto out;
1911
1912 if (!link) {
1913 hw_dbg("Phy info is only valid if link is up\n");
1914 ret_val = -E1000_ERR_CONFIG;
1915 goto out;
1916 }
1917
1918 phy->polarity_correction = true;
1919
1920 ret_val = igb_check_polarity_igp(hw);
1921 if (ret_val)
1922 goto out;
1923
1924 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1925 if (ret_val)
1926 goto out;
1927
1928 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1929
1930 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1931 IGP01E1000_PSSR_SPEED_1000MBPS) {
1932 ret_val = phy->ops.get_cable_length(hw);
1933 if (ret_val)
1934 goto out;
1935
1936 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1937 if (ret_val)
1938 goto out;
1939
1940 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1941 ? e1000_1000t_rx_status_ok
1942 : e1000_1000t_rx_status_not_ok;
1943
1944 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1945 ? e1000_1000t_rx_status_ok
1946 : e1000_1000t_rx_status_not_ok;
1947 } else {
1948 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1949 phy->local_rx = e1000_1000t_rx_status_undefined;
1950 phy->remote_rx = e1000_1000t_rx_status_undefined;
1951 }
1952
1953 out:
1954 return ret_val;
1955 }
1956
1957 /**
1958 * igb_phy_sw_reset - PHY software reset
1959 * @hw: pointer to the HW structure
1960 *
1961 * Does a software reset of the PHY by reading the PHY control register and
1962 * setting/write the control register reset bit to the PHY.
1963 **/
igb_phy_sw_reset(struct e1000_hw * hw)1964 s32 igb_phy_sw_reset(struct e1000_hw *hw)
1965 {
1966 s32 ret_val = 0;
1967 u16 phy_ctrl;
1968
1969 if (!(hw->phy.ops.read_reg))
1970 goto out;
1971
1972 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1973 if (ret_val)
1974 goto out;
1975
1976 phy_ctrl |= MII_CR_RESET;
1977 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1978 if (ret_val)
1979 goto out;
1980
1981 udelay(1);
1982
1983 out:
1984 return ret_val;
1985 }
1986
1987 /**
1988 * igb_phy_hw_reset - PHY hardware reset
1989 * @hw: pointer to the HW structure
1990 *
1991 * Verify the reset block is not blocking us from resetting. Acquire
1992 * semaphore (if necessary) and read/set/write the device control reset
1993 * bit in the PHY. Wait the appropriate delay time for the device to
1994 * reset and relase the semaphore (if necessary).
1995 **/
igb_phy_hw_reset(struct e1000_hw * hw)1996 s32 igb_phy_hw_reset(struct e1000_hw *hw)
1997 {
1998 struct e1000_phy_info *phy = &hw->phy;
1999 s32 ret_val;
2000 u32 ctrl;
2001
2002 ret_val = igb_check_reset_block(hw);
2003 if (ret_val) {
2004 ret_val = 0;
2005 goto out;
2006 }
2007
2008 ret_val = phy->ops.acquire(hw);
2009 if (ret_val)
2010 goto out;
2011
2012 ctrl = rd32(E1000_CTRL);
2013 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2014 wrfl();
2015
2016 udelay(phy->reset_delay_us);
2017
2018 wr32(E1000_CTRL, ctrl);
2019 wrfl();
2020
2021 udelay(150);
2022
2023 phy->ops.release(hw);
2024
2025 ret_val = phy->ops.get_cfg_done(hw);
2026
2027 out:
2028 return ret_val;
2029 }
2030
2031 /**
2032 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
2033 * @hw: pointer to the HW structure
2034 *
2035 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2036 **/
igb_phy_init_script_igp3(struct e1000_hw * hw)2037 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2038 {
2039 hw_dbg("Running IGP 3 PHY init script\n");
2040
2041 /* PHY init IGP 3 */
2042 /* Enable rise/fall, 10-mode work in class-A */
2043 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2044 /* Remove all caps from Replica path filter */
2045 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2046 /* Bias trimming for ADC, AFE and Driver (Default) */
2047 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2048 /* Increase Hybrid poly bias */
2049 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2050 /* Add 4% to TX amplitude in Giga mode */
2051 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2052 /* Disable trimming (TTT) */
2053 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2054 /* Poly DC correction to 94.6% + 2% for all channels */
2055 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2056 /* ABS DC correction to 95.9% */
2057 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2058 /* BG temp curve trim */
2059 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2060 /* Increasing ADC OPAMP stage 1 currents to max */
2061 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2062 /* Force 1000 ( required for enabling PHY regs configuration) */
2063 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2064 /* Set upd_freq to 6 */
2065 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2066 /* Disable NPDFE */
2067 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2068 /* Disable adaptive fixed FFE (Default) */
2069 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2070 /* Enable FFE hysteresis */
2071 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2072 /* Fixed FFE for short cable lengths */
2073 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2074 /* Fixed FFE for medium cable lengths */
2075 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2076 /* Fixed FFE for long cable lengths */
2077 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2078 /* Enable Adaptive Clip Threshold */
2079 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2080 /* AHT reset limit to 1 */
2081 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2082 /* Set AHT master delay to 127 msec */
2083 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2084 /* Set scan bits for AHT */
2085 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2086 /* Set AHT Preset bits */
2087 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2088 /* Change integ_factor of channel A to 3 */
2089 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2090 /* Change prop_factor of channels BCD to 8 */
2091 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2092 /* Change cg_icount + enable integbp for channels BCD */
2093 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2094 /*
2095 * Change cg_icount + enable integbp + change prop_factor_master
2096 * to 8 for channel A
2097 */
2098 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2099 /* Disable AHT in Slave mode on channel A */
2100 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2101 /*
2102 * Enable LPLU and disable AN to 1000 in non-D0a states,
2103 * Enable SPD+B2B
2104 */
2105 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2106 /* Enable restart AN on an1000_dis change */
2107 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2108 /* Enable wh_fifo read clock in 10/100 modes */
2109 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2110 /* Restart AN, Speed selection is 1000 */
2111 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2112
2113 return 0;
2114 }
2115
2116 /**
2117 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2118 * @hw: pointer to the HW structure
2119 *
2120 * In the case of a PHY power down to save power, or to turn off link during a
2121 * driver unload, restore the link to previous settings.
2122 **/
igb_power_up_phy_copper(struct e1000_hw * hw)2123 void igb_power_up_phy_copper(struct e1000_hw *hw)
2124 {
2125 u16 mii_reg = 0;
2126
2127 /* The PHY will retain its settings across a power down/up cycle */
2128 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2129 mii_reg &= ~MII_CR_POWER_DOWN;
2130 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2131 }
2132
2133 /**
2134 * igb_power_down_phy_copper - Power down copper PHY
2135 * @hw: pointer to the HW structure
2136 *
2137 * Power down PHY to save power when interface is down and wake on lan
2138 * is not enabled.
2139 **/
igb_power_down_phy_copper(struct e1000_hw * hw)2140 void igb_power_down_phy_copper(struct e1000_hw *hw)
2141 {
2142 u16 mii_reg = 0;
2143
2144 /* The PHY will retain its settings across a power down/up cycle */
2145 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2146 mii_reg |= MII_CR_POWER_DOWN;
2147 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2148 msleep(1);
2149 }
2150
2151 /**
2152 * igb_check_polarity_82580 - Checks the polarity.
2153 * @hw: pointer to the HW structure
2154 *
2155 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2156 *
2157 * Polarity is determined based on the PHY specific status register.
2158 **/
igb_check_polarity_82580(struct e1000_hw * hw)2159 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2160 {
2161 struct e1000_phy_info *phy = &hw->phy;
2162 s32 ret_val;
2163 u16 data;
2164
2165
2166 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2167
2168 if (!ret_val)
2169 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2170 ? e1000_rev_polarity_reversed
2171 : e1000_rev_polarity_normal;
2172
2173 return ret_val;
2174 }
2175
2176 /**
2177 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2178 * @hw: pointer to the HW structure
2179 *
2180 * Calls the PHY setup function to force speed and duplex. Clears the
2181 * auto-crossover to force MDI manually. Waits for link and returns
2182 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2183 **/
igb_phy_force_speed_duplex_82580(struct e1000_hw * hw)2184 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2185 {
2186 struct e1000_phy_info *phy = &hw->phy;
2187 s32 ret_val;
2188 u16 phy_data;
2189 bool link;
2190
2191
2192 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2193 if (ret_val)
2194 goto out;
2195
2196 igb_phy_force_speed_duplex_setup(hw, &phy_data);
2197
2198 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2199 if (ret_val)
2200 goto out;
2201
2202 /*
2203 * Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2204 * forced whenever speed and duplex are forced.
2205 */
2206 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2207 if (ret_val)
2208 goto out;
2209
2210 phy_data &= ~I82580_PHY_CTRL2_AUTO_MDIX;
2211 phy_data &= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX;
2212
2213 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2214 if (ret_val)
2215 goto out;
2216
2217 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2218
2219 udelay(1);
2220
2221 if (phy->autoneg_wait_to_complete) {
2222 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2223
2224 ret_val = igb_phy_has_link(hw,
2225 PHY_FORCE_LIMIT,
2226 100000,
2227 &link);
2228 if (ret_val)
2229 goto out;
2230
2231 if (!link)
2232 hw_dbg("Link taking longer than expected.\n");
2233
2234 /* Try once more */
2235 ret_val = igb_phy_has_link(hw,
2236 PHY_FORCE_LIMIT,
2237 100000,
2238 &link);
2239 if (ret_val)
2240 goto out;
2241 }
2242
2243 out:
2244 return ret_val;
2245 }
2246
2247 /**
2248 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2249 * @hw: pointer to the HW structure
2250 *
2251 * Read PHY status to determine if link is up. If link is up, then
2252 * set/determine 10base-T extended distance and polarity correction. Read
2253 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2254 * determine on the cable length, local and remote receiver.
2255 **/
igb_get_phy_info_82580(struct e1000_hw * hw)2256 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2257 {
2258 struct e1000_phy_info *phy = &hw->phy;
2259 s32 ret_val;
2260 u16 data;
2261 bool link;
2262
2263
2264 ret_val = igb_phy_has_link(hw, 1, 0, &link);
2265 if (ret_val)
2266 goto out;
2267
2268 if (!link) {
2269 hw_dbg("Phy info is only valid if link is up\n");
2270 ret_val = -E1000_ERR_CONFIG;
2271 goto out;
2272 }
2273
2274 phy->polarity_correction = true;
2275
2276 ret_val = igb_check_polarity_82580(hw);
2277 if (ret_val)
2278 goto out;
2279
2280 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2281 if (ret_val)
2282 goto out;
2283
2284 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2285
2286 if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2287 I82580_PHY_STATUS2_SPEED_1000MBPS) {
2288 ret_val = hw->phy.ops.get_cable_length(hw);
2289 if (ret_val)
2290 goto out;
2291
2292 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2293 if (ret_val)
2294 goto out;
2295
2296 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2297 ? e1000_1000t_rx_status_ok
2298 : e1000_1000t_rx_status_not_ok;
2299
2300 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2301 ? e1000_1000t_rx_status_ok
2302 : e1000_1000t_rx_status_not_ok;
2303 } else {
2304 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2305 phy->local_rx = e1000_1000t_rx_status_undefined;
2306 phy->remote_rx = e1000_1000t_rx_status_undefined;
2307 }
2308
2309 out:
2310 return ret_val;
2311 }
2312
2313 /**
2314 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2315 * @hw: pointer to the HW structure
2316 *
2317 * Reads the diagnostic status register and verifies result is valid before
2318 * placing it in the phy_cable_length field.
2319 **/
igb_get_cable_length_82580(struct e1000_hw * hw)2320 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2321 {
2322 struct e1000_phy_info *phy = &hw->phy;
2323 s32 ret_val;
2324 u16 phy_data, length;
2325
2326
2327 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2328 if (ret_val)
2329 goto out;
2330
2331 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2332 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2333
2334 if (length == E1000_CABLE_LENGTH_UNDEFINED)
2335 ret_val = -E1000_ERR_PHY;
2336
2337 phy->cable_length = length;
2338
2339 out:
2340 return ret_val;
2341 }
2342