1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44 QUEUE_MODE_STRICT_PRIORITY,
45 QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49 TX_QUEUE_PRIO_HIGH,
50 TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 /* required last entry */
100 {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 .notifier_call = igb_notify_dca,
199 .next = NULL,
200 .priority = 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213
214 static const struct pci_error_handlers igb_err_handler = {
215 .error_detected = igb_io_error_detected,
216 .slot_reset = igb_io_slot_reset,
217 .resume = igb_io_resume,
218 };
219
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222 static struct pci_driver igb_driver = {
223 .name = igb_driver_name,
224 .id_table = igb_pci_tbl,
225 .probe = igb_probe,
226 .remove = igb_remove,
227 #ifdef CONFIG_PM
228 .driver.pm = &igb_pm_ops,
229 #endif
230 .shutdown = igb_shutdown,
231 .sriov_configure = igb_pci_sriov_configure,
232 .err_handler = &igb_err_handler
233 };
234
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244 struct igb_reg_info {
245 u32 ofs;
246 char *name;
247 };
248
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251 /* General Registers */
252 {E1000_CTRL, "CTRL"},
253 {E1000_STATUS, "STATUS"},
254 {E1000_CTRL_EXT, "CTRL_EXT"},
255
256 /* Interrupt Registers */
257 {E1000_ICR, "ICR"},
258
259 /* RX Registers */
260 {E1000_RCTL, "RCTL"},
261 {E1000_RDLEN(0), "RDLEN"},
262 {E1000_RDH(0), "RDH"},
263 {E1000_RDT(0), "RDT"},
264 {E1000_RXDCTL(0), "RXDCTL"},
265 {E1000_RDBAL(0), "RDBAL"},
266 {E1000_RDBAH(0), "RDBAH"},
267
268 /* TX Registers */
269 {E1000_TCTL, "TCTL"},
270 {E1000_TDBAL(0), "TDBAL"},
271 {E1000_TDBAH(0), "TDBAH"},
272 {E1000_TDLEN(0), "TDLEN"},
273 {E1000_TDH(0), "TDH"},
274 {E1000_TDT(0), "TDT"},
275 {E1000_TXDCTL(0), "TXDCTL"},
276 {E1000_TDFH, "TDFH"},
277 {E1000_TDFT, "TDFT"},
278 {E1000_TDFHS, "TDFHS"},
279 {E1000_TDFPC, "TDFPC"},
280
281 /* List Terminator */
282 {}
283 };
284
285 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 int n = 0;
289 char rname[16];
290 u32 regs[8];
291
292 switch (reginfo->ofs) {
293 case E1000_RDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDLEN(n));
296 break;
297 case E1000_RDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_RDH(n));
300 break;
301 case E1000_RDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDT(n));
304 break;
305 case E1000_RXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RXDCTL(n));
308 break;
309 case E1000_RDBAL(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDBAL(n));
312 break;
313 case E1000_RDBAH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDBAH(n));
316 break;
317 case E1000_TDBAL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_TDBAL(n));
320 break;
321 case E1000_TDBAH(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_TDBAH(n));
324 break;
325 case E1000_TDLEN(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_TDLEN(n));
328 break;
329 case E1000_TDH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDH(n));
332 break;
333 case E1000_TDT(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDT(n));
336 break;
337 case E1000_TXDCTL(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TXDCTL(n));
340 break;
341 default:
342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 return;
344 }
345
346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 regs[2], regs[3]);
349 }
350
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 struct net_device *netdev = adapter->netdev;
355 struct e1000_hw *hw = &adapter->hw;
356 struct igb_reg_info *reginfo;
357 struct igb_ring *tx_ring;
358 union e1000_adv_tx_desc *tx_desc;
359 struct my_u0 { __le64 a; __le64 b; } *u0;
360 struct igb_ring *rx_ring;
361 union e1000_adv_rx_desc *rx_desc;
362 u32 staterr;
363 u16 i, n;
364
365 if (!netif_msg_hw(adapter))
366 return;
367
368 /* Print netdevice Info */
369 if (netdev) {
370 dev_info(&adapter->pdev->dev, "Net device Info\n");
371 pr_info("Device Name state trans_start\n");
372 pr_info("%-15s %016lX %016lX\n", netdev->name,
373 netdev->state, dev_trans_start(netdev));
374 }
375
376 /* Print Registers */
377 dev_info(&adapter->pdev->dev, "Register Dump\n");
378 pr_info(" Register Name Value\n");
379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 reginfo->name; reginfo++) {
381 igb_regdump(hw, reginfo);
382 }
383
384 /* Print TX Ring Summary */
385 if (!netdev || !netif_running(netdev))
386 goto exit;
387
388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
390 for (n = 0; n < adapter->num_tx_queues; n++) {
391 struct igb_tx_buffer *buffer_info;
392 tx_ring = adapter->tx_ring[n];
393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 (u64)dma_unmap_addr(buffer_info, dma),
397 dma_unmap_len(buffer_info, len),
398 buffer_info->next_to_watch,
399 (u64)buffer_info->time_stamp);
400 }
401
402 /* Print TX Rings */
403 if (!netif_msg_tx_done(adapter))
404 goto rx_ring_summary;
405
406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408 /* Transmit Descriptor Formats
409 *
410 * Advanced Transmit Descriptor
411 * +--------------------------------------------------------------+
412 * 0 | Buffer Address [63:0] |
413 * +--------------------------------------------------------------+
414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
415 * +--------------------------------------------------------------+
416 * 63 46 45 40 39 38 36 35 32 31 24 15 0
417 */
418
419 for (n = 0; n < adapter->num_tx_queues; n++) {
420 tx_ring = adapter->tx_ring[n];
421 pr_info("------------------------------------\n");
422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 pr_info("------------------------------------\n");
424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
425
426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 const char *next_desc;
428 struct igb_tx_buffer *buffer_info;
429 tx_desc = IGB_TX_DESC(tx_ring, i);
430 buffer_info = &tx_ring->tx_buffer_info[i];
431 u0 = (struct my_u0 *)tx_desc;
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 next_desc = " NTC/U";
435 else if (i == tx_ring->next_to_use)
436 next_desc = " NTU";
437 else if (i == tx_ring->next_to_clean)
438 next_desc = " NTC";
439 else
440 next_desc = "";
441
442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
443 i, le64_to_cpu(u0->a),
444 le64_to_cpu(u0->b),
445 (u64)dma_unmap_addr(buffer_info, dma),
446 dma_unmap_len(buffer_info, len),
447 buffer_info->next_to_watch,
448 (u64)buffer_info->time_stamp,
449 buffer_info->skb, next_desc);
450
451 if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 print_hex_dump(KERN_INFO, "",
453 DUMP_PREFIX_ADDRESS,
454 16, 1, buffer_info->skb->data,
455 dma_unmap_len(buffer_info, len),
456 true);
457 }
458 }
459
460 /* Print RX Rings Summary */
461 rx_ring_summary:
462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 pr_info("Queue [NTU] [NTC]\n");
464 for (n = 0; n < adapter->num_rx_queues; n++) {
465 rx_ring = adapter->rx_ring[n];
466 pr_info(" %5d %5X %5X\n",
467 n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 }
469
470 /* Print RX Rings */
471 if (!netif_msg_rx_status(adapter))
472 goto exit;
473
474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476 /* Advanced Receive Descriptor (Read) Format
477 * 63 1 0
478 * +-----------------------------------------------------+
479 * 0 | Packet Buffer Address [63:1] |A0/NSE|
480 * +----------------------------------------------+------+
481 * 8 | Header Buffer Address [63:1] | DD |
482 * +-----------------------------------------------------+
483 *
484 *
485 * Advanced Receive Descriptor (Write-Back) Format
486 *
487 * 63 48 47 32 31 30 21 20 17 16 4 3 0
488 * +------------------------------------------------------+
489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
490 * | Checksum Ident | | | | Type | Type |
491 * +------------------------------------------------------+
492 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 * +------------------------------------------------------+
494 * 63 48 47 32 31 20 19 0
495 */
496
497 for (n = 0; n < adapter->num_rx_queues; n++) {
498 rx_ring = adapter->rx_ring[n];
499 pr_info("------------------------------------\n");
500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 pr_info("------------------------------------\n");
502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505 for (i = 0; i < rx_ring->count; i++) {
506 const char *next_desc;
507 struct igb_rx_buffer *buffer_info;
508 buffer_info = &rx_ring->rx_buffer_info[i];
509 rx_desc = IGB_RX_DESC(rx_ring, i);
510 u0 = (struct my_u0 *)rx_desc;
511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513 if (i == rx_ring->next_to_use)
514 next_desc = " NTU";
515 else if (i == rx_ring->next_to_clean)
516 next_desc = " NTC";
517 else
518 next_desc = "";
519
520 if (staterr & E1000_RXD_STAT_DD) {
521 /* Descriptor Done */
522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
523 "RWB", i,
524 le64_to_cpu(u0->a),
525 le64_to_cpu(u0->b),
526 next_desc);
527 } else {
528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
529 "R ", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 (u64)buffer_info->dma,
533 next_desc);
534
535 if (netif_msg_pktdata(adapter) &&
536 buffer_info->dma && buffer_info->page) {
537 print_hex_dump(KERN_INFO, "",
538 DUMP_PREFIX_ADDRESS,
539 16, 1,
540 page_address(buffer_info->page) +
541 buffer_info->page_offset,
542 igb_rx_bufsz(rx_ring), true);
543 }
544 }
545 }
546 }
547
548 exit:
549 return;
550 }
551
552 /**
553 * igb_get_i2c_data - Reads the I2C SDA data bit
554 * @data: opaque pointer to adapter struct
555 *
556 * Returns the I2C data bit value
557 **/
igb_get_i2c_data(void * data)558 static int igb_get_i2c_data(void *data)
559 {
560 struct igb_adapter *adapter = (struct igb_adapter *)data;
561 struct e1000_hw *hw = &adapter->hw;
562 s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564 return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566
567 /**
568 * igb_set_i2c_data - Sets the I2C data bit
569 * @data: pointer to hardware structure
570 * @state: I2C data value (0 or 1) to set
571 *
572 * Sets the I2C data bit
573 **/
igb_set_i2c_data(void * data,int state)574 static void igb_set_i2c_data(void *data, int state)
575 {
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580 if (state) {
581 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
582 } else {
583 i2cctl &= ~E1000_I2C_DATA_OE_N;
584 i2cctl &= ~E1000_I2C_DATA_OUT;
585 }
586
587 wr32(E1000_I2CPARAMS, i2cctl);
588 wrfl();
589 }
590
591 /**
592 * igb_set_i2c_clk - Sets the I2C SCL clock
593 * @data: pointer to hardware structure
594 * @state: state to set clock
595 *
596 * Sets the I2C clock line to state
597 **/
igb_set_i2c_clk(void * data,int state)598 static void igb_set_i2c_clk(void *data, int state)
599 {
600 struct igb_adapter *adapter = (struct igb_adapter *)data;
601 struct e1000_hw *hw = &adapter->hw;
602 s32 i2cctl = rd32(E1000_I2CPARAMS);
603
604 if (state) {
605 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
606 } else {
607 i2cctl &= ~E1000_I2C_CLK_OUT;
608 i2cctl &= ~E1000_I2C_CLK_OE_N;
609 }
610 wr32(E1000_I2CPARAMS, i2cctl);
611 wrfl();
612 }
613
614 /**
615 * igb_get_i2c_clk - Gets the I2C SCL clock state
616 * @data: pointer to hardware structure
617 *
618 * Gets the I2C clock state
619 **/
igb_get_i2c_clk(void * data)620 static int igb_get_i2c_clk(void *data)
621 {
622 struct igb_adapter *adapter = (struct igb_adapter *)data;
623 struct e1000_hw *hw = &adapter->hw;
624 s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626 return !!(i2cctl & E1000_I2C_CLK_IN);
627 }
628
629 static const struct i2c_algo_bit_data igb_i2c_algo = {
630 .setsda = igb_set_i2c_data,
631 .setscl = igb_set_i2c_clk,
632 .getsda = igb_get_i2c_data,
633 .getscl = igb_get_i2c_clk,
634 .udelay = 5,
635 .timeout = 20,
636 };
637
638 /**
639 * igb_get_hw_dev - return device
640 * @hw: pointer to hardware structure
641 *
642 * used by hardware layer to print debugging information
643 **/
igb_get_hw_dev(struct e1000_hw * hw)644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
645 {
646 struct igb_adapter *adapter = hw->back;
647 return adapter->netdev;
648 }
649
650 /**
651 * igb_init_module - Driver Registration Routine
652 *
653 * igb_init_module is the first routine called when the driver is
654 * loaded. All it does is register with the PCI subsystem.
655 **/
igb_init_module(void)656 static int __init igb_init_module(void)
657 {
658 int ret;
659
660 pr_info("%s\n", igb_driver_string);
661 pr_info("%s\n", igb_copyright);
662
663 #ifdef CONFIG_IGB_DCA
664 dca_register_notify(&dca_notifier);
665 #endif
666 ret = pci_register_driver(&igb_driver);
667 return ret;
668 }
669
670 module_init(igb_init_module);
671
672 /**
673 * igb_exit_module - Driver Exit Cleanup Routine
674 *
675 * igb_exit_module is called just before the driver is removed
676 * from memory.
677 **/
igb_exit_module(void)678 static void __exit igb_exit_module(void)
679 {
680 #ifdef CONFIG_IGB_DCA
681 dca_unregister_notify(&dca_notifier);
682 #endif
683 pci_unregister_driver(&igb_driver);
684 }
685
686 module_exit(igb_exit_module);
687
688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
689 /**
690 * igb_cache_ring_register - Descriptor ring to register mapping
691 * @adapter: board private structure to initialize
692 *
693 * Once we know the feature-set enabled for the device, we'll cache
694 * the register offset the descriptor ring is assigned to.
695 **/
igb_cache_ring_register(struct igb_adapter * adapter)696 static void igb_cache_ring_register(struct igb_adapter *adapter)
697 {
698 int i = 0, j = 0;
699 u32 rbase_offset = adapter->vfs_allocated_count;
700
701 switch (adapter->hw.mac.type) {
702 case e1000_82576:
703 /* The queues are allocated for virtualization such that VF 0
704 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
705 * In order to avoid collision we start at the first free queue
706 * and continue consuming queues in the same sequence
707 */
708 if (adapter->vfs_allocated_count) {
709 for (; i < adapter->rss_queues; i++)
710 adapter->rx_ring[i]->reg_idx = rbase_offset +
711 Q_IDX_82576(i);
712 }
713 fallthrough;
714 case e1000_82575:
715 case e1000_82580:
716 case e1000_i350:
717 case e1000_i354:
718 case e1000_i210:
719 case e1000_i211:
720 default:
721 for (; i < adapter->num_rx_queues; i++)
722 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
723 for (; j < adapter->num_tx_queues; j++)
724 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
725 break;
726 }
727 }
728
igb_rd32(struct e1000_hw * hw,u32 reg)729 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
730 {
731 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
732 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
733 u32 value = 0;
734
735 if (E1000_REMOVED(hw_addr))
736 return ~value;
737
738 value = readl(&hw_addr[reg]);
739
740 /* reads should not return all F's */
741 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
742 struct net_device *netdev = igb->netdev;
743 hw->hw_addr = NULL;
744 netdev_err(netdev, "PCIe link lost\n");
745 WARN(pci_device_is_present(igb->pdev),
746 "igb: Failed to read reg 0x%x!\n", reg);
747 }
748
749 return value;
750 }
751
752 /**
753 * igb_write_ivar - configure ivar for given MSI-X vector
754 * @hw: pointer to the HW structure
755 * @msix_vector: vector number we are allocating to a given ring
756 * @index: row index of IVAR register to write within IVAR table
757 * @offset: column offset of in IVAR, should be multiple of 8
758 *
759 * This function is intended to handle the writing of the IVAR register
760 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
761 * each containing an cause allocation for an Rx and Tx ring, and a
762 * variable number of rows depending on the number of queues supported.
763 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 int index, int offset)
766 {
767 u32 ivar = array_rd32(E1000_IVAR0, index);
768
769 /* clear any bits that are currently set */
770 ivar &= ~((u32)0xFF << offset);
771
772 /* write vector and valid bit */
773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775 array_wr32(E1000_IVAR0, index, ivar);
776 }
777
778 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 struct igb_adapter *adapter = q_vector->adapter;
782 struct e1000_hw *hw = &adapter->hw;
783 int rx_queue = IGB_N0_QUEUE;
784 int tx_queue = IGB_N0_QUEUE;
785 u32 msixbm = 0;
786
787 if (q_vector->rx.ring)
788 rx_queue = q_vector->rx.ring->reg_idx;
789 if (q_vector->tx.ring)
790 tx_queue = q_vector->tx.ring->reg_idx;
791
792 switch (hw->mac.type) {
793 case e1000_82575:
794 /* The 82575 assigns vectors using a bitmask, which matches the
795 * bitmask for the EICR/EIMS/EIMC registers. To assign one
796 * or more queues to a vector, we write the appropriate bits
797 * into the MSIXBM register for that vector.
798 */
799 if (rx_queue > IGB_N0_QUEUE)
800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 if (tx_queue > IGB_N0_QUEUE)
802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
804 msixbm |= E1000_EIMS_OTHER;
805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 q_vector->eims_value = msixbm;
807 break;
808 case e1000_82576:
809 /* 82576 uses a table that essentially consists of 2 columns
810 * with 8 rows. The ordering is column-major so we use the
811 * lower 3 bits as the row index, and the 4th bit as the
812 * column offset.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 rx_queue & 0x7,
817 (rx_queue & 0x8) << 1);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 tx_queue & 0x7,
821 ((tx_queue & 0x8) << 1) + 8);
822 q_vector->eims_value = BIT(msix_vector);
823 break;
824 case e1000_82580:
825 case e1000_i350:
826 case e1000_i354:
827 case e1000_i210:
828 case e1000_i211:
829 /* On 82580 and newer adapters the scheme is similar to 82576
830 * however instead of ordering column-major we have things
831 * ordered row-major. So we traverse the table by using
832 * bit 0 as the column offset, and the remaining bits as the
833 * row index.
834 */
835 if (rx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 rx_queue >> 1,
838 (rx_queue & 0x1) << 4);
839 if (tx_queue > IGB_N0_QUEUE)
840 igb_write_ivar(hw, msix_vector,
841 tx_queue >> 1,
842 ((tx_queue & 0x1) << 4) + 8);
843 q_vector->eims_value = BIT(msix_vector);
844 break;
845 default:
846 BUG();
847 break;
848 }
849
850 /* add q_vector eims value to global eims_enable_mask */
851 adapter->eims_enable_mask |= q_vector->eims_value;
852
853 /* configure q_vector to set itr on first interrupt */
854 q_vector->set_itr = 1;
855 }
856
857 /**
858 * igb_configure_msix - Configure MSI-X hardware
859 * @adapter: board private structure to initialize
860 *
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
863 **/
igb_configure_msix(struct igb_adapter * adapter)864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 u32 tmp;
867 int i, vector = 0;
868 struct e1000_hw *hw = &adapter->hw;
869
870 adapter->eims_enable_mask = 0;
871
872 /* set vector for other causes, i.e. link changes */
873 switch (hw->mac.type) {
874 case e1000_82575:
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
882
883 wr32(E1000_CTRL_EXT, tmp);
884
885 /* enable msix_other interrupt */
886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 adapter->eims_other = E1000_EIMS_OTHER;
888
889 break;
890
891 case e1000_82576:
892 case e1000_82580:
893 case e1000_i350:
894 case e1000_i354:
895 case e1000_i210:
896 case e1000_i211:
897 /* Turn on MSI-X capability first, or our settings
898 * won't stick. And it will take days to debug.
899 */
900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 E1000_GPIE_NSICR);
903
904 /* enable msix_other interrupt */
905 adapter->eims_other = BIT(vector);
906 tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908 wr32(E1000_IVAR_MISC, tmp);
909 break;
910 default:
911 /* do nothing, since nothing else supports MSI-X */
912 break;
913 } /* switch (hw->mac.type) */
914
915 adapter->eims_enable_mask |= adapter->eims_other;
916
917 for (i = 0; i < adapter->num_q_vectors; i++)
918 igb_assign_vector(adapter->q_vector[i], vector++);
919
920 wrfl();
921 }
922
923 /**
924 * igb_request_msix - Initialize MSI-X interrupts
925 * @adapter: board private structure to initialize
926 *
927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
928 * kernel.
929 **/
igb_request_msix(struct igb_adapter * adapter)930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 unsigned int num_q_vectors = adapter->num_q_vectors;
933 struct net_device *netdev = adapter->netdev;
934 int i, err = 0, vector = 0, free_vector = 0;
935
936 err = request_irq(adapter->msix_entries[vector].vector,
937 igb_msix_other, 0, netdev->name, adapter);
938 if (err)
939 goto err_out;
940
941 if (num_q_vectors > MAX_Q_VECTORS) {
942 num_q_vectors = MAX_Q_VECTORS;
943 dev_warn(&adapter->pdev->dev,
944 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
945 adapter->num_q_vectors, MAX_Q_VECTORS);
946 }
947 for (i = 0; i < num_q_vectors; i++) {
948 struct igb_q_vector *q_vector = adapter->q_vector[i];
949
950 vector++;
951
952 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
953
954 if (q_vector->rx.ring && q_vector->tx.ring)
955 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
956 q_vector->rx.ring->queue_index);
957 else if (q_vector->tx.ring)
958 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
959 q_vector->tx.ring->queue_index);
960 else if (q_vector->rx.ring)
961 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
962 q_vector->rx.ring->queue_index);
963 else
964 sprintf(q_vector->name, "%s-unused", netdev->name);
965
966 err = request_irq(adapter->msix_entries[vector].vector,
967 igb_msix_ring, 0, q_vector->name,
968 q_vector);
969 if (err)
970 goto err_free;
971 }
972
973 igb_configure_msix(adapter);
974 return 0;
975
976 err_free:
977 /* free already assigned IRQs */
978 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
979
980 vector--;
981 for (i = 0; i < vector; i++) {
982 free_irq(adapter->msix_entries[free_vector++].vector,
983 adapter->q_vector[i]);
984 }
985 err_out:
986 return err;
987 }
988
989 /**
990 * igb_free_q_vector - Free memory allocated for specific interrupt vector
991 * @adapter: board private structure to initialize
992 * @v_idx: Index of vector to be freed
993 *
994 * This function frees the memory allocated to the q_vector.
995 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
997 {
998 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999
1000 adapter->q_vector[v_idx] = NULL;
1001
1002 /* igb_get_stats64() might access the rings on this vector,
1003 * we must wait a grace period before freeing it.
1004 */
1005 if (q_vector)
1006 kfree_rcu(q_vector, rcu);
1007 }
1008
1009 /**
1010 * igb_reset_q_vector - Reset config for interrupt vector
1011 * @adapter: board private structure to initialize
1012 * @v_idx: Index of vector to be reset
1013 *
1014 * If NAPI is enabled it will delete any references to the
1015 * NAPI struct. This is preparation for igb_free_q_vector.
1016 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1018 {
1019 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1020
1021 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1022 * allocated. So, q_vector is NULL so we should stop here.
1023 */
1024 if (!q_vector)
1025 return;
1026
1027 if (q_vector->tx.ring)
1028 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1029
1030 if (q_vector->rx.ring)
1031 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1032
1033 netif_napi_del(&q_vector->napi);
1034
1035 }
1036
igb_reset_interrupt_capability(struct igb_adapter * adapter)1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1038 {
1039 int v_idx = adapter->num_q_vectors;
1040
1041 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042 pci_disable_msix(adapter->pdev);
1043 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044 pci_disable_msi(adapter->pdev);
1045
1046 while (v_idx--)
1047 igb_reset_q_vector(adapter, v_idx);
1048 }
1049
1050 /**
1051 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1052 * @adapter: board private structure to initialize
1053 *
1054 * This function frees the memory allocated to the q_vectors. In addition if
1055 * NAPI is enabled it will delete any references to the NAPI struct prior
1056 * to freeing the q_vector.
1057 **/
igb_free_q_vectors(struct igb_adapter * adapter)1058 static void igb_free_q_vectors(struct igb_adapter *adapter)
1059 {
1060 int v_idx = adapter->num_q_vectors;
1061
1062 adapter->num_tx_queues = 0;
1063 adapter->num_rx_queues = 0;
1064 adapter->num_q_vectors = 0;
1065
1066 while (v_idx--) {
1067 igb_reset_q_vector(adapter, v_idx);
1068 igb_free_q_vector(adapter, v_idx);
1069 }
1070 }
1071
1072 /**
1073 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074 * @adapter: board private structure to initialize
1075 *
1076 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1077 * MSI-X interrupts allocated.
1078 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1080 {
1081 igb_free_q_vectors(adapter);
1082 igb_reset_interrupt_capability(adapter);
1083 }
1084
1085 /**
1086 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1087 * @adapter: board private structure to initialize
1088 * @msix: boolean value of MSIX capability
1089 *
1090 * Attempt to configure interrupts using the best available
1091 * capabilities of the hardware and kernel.
1092 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1094 {
1095 int err;
1096 int numvecs, i;
1097
1098 if (!msix)
1099 goto msi_only;
1100 adapter->flags |= IGB_FLAG_HAS_MSIX;
1101
1102 /* Number of supported queues. */
1103 adapter->num_rx_queues = adapter->rss_queues;
1104 if (adapter->vfs_allocated_count)
1105 adapter->num_tx_queues = 1;
1106 else
1107 adapter->num_tx_queues = adapter->rss_queues;
1108
1109 /* start with one vector for every Rx queue */
1110 numvecs = adapter->num_rx_queues;
1111
1112 /* if Tx handler is separate add 1 for every Tx queue */
1113 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114 numvecs += adapter->num_tx_queues;
1115
1116 /* store the number of vectors reserved for queues */
1117 adapter->num_q_vectors = numvecs;
1118
1119 /* add 1 vector for link status interrupts */
1120 numvecs++;
1121 for (i = 0; i < numvecs; i++)
1122 adapter->msix_entries[i].entry = i;
1123
1124 err = pci_enable_msix_range(adapter->pdev,
1125 adapter->msix_entries,
1126 numvecs,
1127 numvecs);
1128 if (err > 0)
1129 return;
1130
1131 igb_reset_interrupt_capability(adapter);
1132
1133 /* If we can't do MSI-X, try MSI */
1134 msi_only:
1135 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136 #ifdef CONFIG_PCI_IOV
1137 /* disable SR-IOV for non MSI-X configurations */
1138 if (adapter->vf_data) {
1139 struct e1000_hw *hw = &adapter->hw;
1140 /* disable iov and allow time for transactions to clear */
1141 pci_disable_sriov(adapter->pdev);
1142 msleep(500);
1143
1144 kfree(adapter->vf_mac_list);
1145 adapter->vf_mac_list = NULL;
1146 kfree(adapter->vf_data);
1147 adapter->vf_data = NULL;
1148 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1149 wrfl();
1150 msleep(100);
1151 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1152 }
1153 #endif
1154 adapter->vfs_allocated_count = 0;
1155 adapter->rss_queues = 1;
1156 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157 adapter->num_rx_queues = 1;
1158 adapter->num_tx_queues = 1;
1159 adapter->num_q_vectors = 1;
1160 if (!pci_enable_msi(adapter->pdev))
1161 adapter->flags |= IGB_FLAG_HAS_MSI;
1162 }
1163
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1164 static void igb_add_ring(struct igb_ring *ring,
1165 struct igb_ring_container *head)
1166 {
1167 head->ring = ring;
1168 head->count++;
1169 }
1170
1171 /**
1172 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173 * @adapter: board private structure to initialize
1174 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1175 * @v_idx: index of vector in adapter struct
1176 * @txr_count: total number of Tx rings to allocate
1177 * @txr_idx: index of first Tx ring to allocate
1178 * @rxr_count: total number of Rx rings to allocate
1179 * @rxr_idx: index of first Rx ring to allocate
1180 *
1181 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1182 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1183 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184 int v_count, int v_idx,
1185 int txr_count, int txr_idx,
1186 int rxr_count, int rxr_idx)
1187 {
1188 struct igb_q_vector *q_vector;
1189 struct igb_ring *ring;
1190 int ring_count;
1191 size_t size;
1192
1193 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194 if (txr_count > 1 || rxr_count > 1)
1195 return -ENOMEM;
1196
1197 ring_count = txr_count + rxr_count;
1198 size = struct_size(q_vector, ring, ring_count);
1199
1200 /* allocate q_vector and rings */
1201 q_vector = adapter->q_vector[v_idx];
1202 if (!q_vector) {
1203 q_vector = kzalloc(size, GFP_KERNEL);
1204 } else if (size > ksize(q_vector)) {
1205 struct igb_q_vector *new_q_vector;
1206
1207 new_q_vector = kzalloc(size, GFP_KERNEL);
1208 if (new_q_vector)
1209 kfree_rcu(q_vector, rcu);
1210 q_vector = new_q_vector;
1211 } else {
1212 memset(q_vector, 0, size);
1213 }
1214 if (!q_vector)
1215 return -ENOMEM;
1216
1217 /* initialize NAPI */
1218 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1219
1220 /* tie q_vector and adapter together */
1221 adapter->q_vector[v_idx] = q_vector;
1222 q_vector->adapter = adapter;
1223
1224 /* initialize work limits */
1225 q_vector->tx.work_limit = adapter->tx_work_limit;
1226
1227 /* initialize ITR configuration */
1228 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1229 q_vector->itr_val = IGB_START_ITR;
1230
1231 /* initialize pointer to rings */
1232 ring = q_vector->ring;
1233
1234 /* intialize ITR */
1235 if (rxr_count) {
1236 /* rx or rx/tx vector */
1237 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1238 q_vector->itr_val = adapter->rx_itr_setting;
1239 } else {
1240 /* tx only vector */
1241 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1242 q_vector->itr_val = adapter->tx_itr_setting;
1243 }
1244
1245 if (txr_count) {
1246 /* assign generic ring traits */
1247 ring->dev = &adapter->pdev->dev;
1248 ring->netdev = adapter->netdev;
1249
1250 /* configure backlink on ring */
1251 ring->q_vector = q_vector;
1252
1253 /* update q_vector Tx values */
1254 igb_add_ring(ring, &q_vector->tx);
1255
1256 /* For 82575, context index must be unique per ring. */
1257 if (adapter->hw.mac.type == e1000_82575)
1258 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1259
1260 /* apply Tx specific ring traits */
1261 ring->count = adapter->tx_ring_count;
1262 ring->queue_index = txr_idx;
1263
1264 ring->cbs_enable = false;
1265 ring->idleslope = 0;
1266 ring->sendslope = 0;
1267 ring->hicredit = 0;
1268 ring->locredit = 0;
1269
1270 u64_stats_init(&ring->tx_syncp);
1271 u64_stats_init(&ring->tx_syncp2);
1272
1273 /* assign ring to adapter */
1274 adapter->tx_ring[txr_idx] = ring;
1275
1276 /* push pointer to next ring */
1277 ring++;
1278 }
1279
1280 if (rxr_count) {
1281 /* assign generic ring traits */
1282 ring->dev = &adapter->pdev->dev;
1283 ring->netdev = adapter->netdev;
1284
1285 /* configure backlink on ring */
1286 ring->q_vector = q_vector;
1287
1288 /* update q_vector Rx values */
1289 igb_add_ring(ring, &q_vector->rx);
1290
1291 /* set flag indicating ring supports SCTP checksum offload */
1292 if (adapter->hw.mac.type >= e1000_82576)
1293 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294
1295 /* On i350, i354, i210, and i211, loopback VLAN packets
1296 * have the tag byte-swapped.
1297 */
1298 if (adapter->hw.mac.type >= e1000_i350)
1299 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1300
1301 /* apply Rx specific ring traits */
1302 ring->count = adapter->rx_ring_count;
1303 ring->queue_index = rxr_idx;
1304
1305 u64_stats_init(&ring->rx_syncp);
1306
1307 /* assign ring to adapter */
1308 adapter->rx_ring[rxr_idx] = ring;
1309 }
1310
1311 return 0;
1312 }
1313
1314
1315 /**
1316 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1317 * @adapter: board private structure to initialize
1318 *
1319 * We allocate one q_vector per queue interrupt. If allocation fails we
1320 * return -ENOMEM.
1321 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1322 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1323 {
1324 int q_vectors = adapter->num_q_vectors;
1325 int rxr_remaining = adapter->num_rx_queues;
1326 int txr_remaining = adapter->num_tx_queues;
1327 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1328 int err;
1329
1330 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1331 for (; rxr_remaining; v_idx++) {
1332 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1333 0, 0, 1, rxr_idx);
1334
1335 if (err)
1336 goto err_out;
1337
1338 /* update counts and index */
1339 rxr_remaining--;
1340 rxr_idx++;
1341 }
1342 }
1343
1344 for (; v_idx < q_vectors; v_idx++) {
1345 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1346 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1347
1348 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349 tqpv, txr_idx, rqpv, rxr_idx);
1350
1351 if (err)
1352 goto err_out;
1353
1354 /* update counts and index */
1355 rxr_remaining -= rqpv;
1356 txr_remaining -= tqpv;
1357 rxr_idx++;
1358 txr_idx++;
1359 }
1360
1361 return 0;
1362
1363 err_out:
1364 adapter->num_tx_queues = 0;
1365 adapter->num_rx_queues = 0;
1366 adapter->num_q_vectors = 0;
1367
1368 while (v_idx--)
1369 igb_free_q_vector(adapter, v_idx);
1370
1371 return -ENOMEM;
1372 }
1373
1374 /**
1375 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376 * @adapter: board private structure to initialize
1377 * @msix: boolean value of MSIX capability
1378 *
1379 * This function initializes the interrupts and allocates all of the queues.
1380 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382 {
1383 struct pci_dev *pdev = adapter->pdev;
1384 int err;
1385
1386 igb_set_interrupt_capability(adapter, msix);
1387
1388 err = igb_alloc_q_vectors(adapter);
1389 if (err) {
1390 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 goto err_alloc_q_vectors;
1392 }
1393
1394 igb_cache_ring_register(adapter);
1395
1396 return 0;
1397
1398 err_alloc_q_vectors:
1399 igb_reset_interrupt_capability(adapter);
1400 return err;
1401 }
1402
1403 /**
1404 * igb_request_irq - initialize interrupts
1405 * @adapter: board private structure to initialize
1406 *
1407 * Attempts to configure interrupts using the best available
1408 * capabilities of the hardware and kernel.
1409 **/
igb_request_irq(struct igb_adapter * adapter)1410 static int igb_request_irq(struct igb_adapter *adapter)
1411 {
1412 struct net_device *netdev = adapter->netdev;
1413 struct pci_dev *pdev = adapter->pdev;
1414 int err = 0;
1415
1416 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 err = igb_request_msix(adapter);
1418 if (!err)
1419 goto request_done;
1420 /* fall back to MSI */
1421 igb_free_all_tx_resources(adapter);
1422 igb_free_all_rx_resources(adapter);
1423
1424 igb_clear_interrupt_scheme(adapter);
1425 err = igb_init_interrupt_scheme(adapter, false);
1426 if (err)
1427 goto request_done;
1428
1429 igb_setup_all_tx_resources(adapter);
1430 igb_setup_all_rx_resources(adapter);
1431 igb_configure(adapter);
1432 }
1433
1434 igb_assign_vector(adapter->q_vector[0], 0);
1435
1436 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437 err = request_irq(pdev->irq, igb_intr_msi, 0,
1438 netdev->name, adapter);
1439 if (!err)
1440 goto request_done;
1441
1442 /* fall back to legacy interrupts */
1443 igb_reset_interrupt_capability(adapter);
1444 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445 }
1446
1447 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448 netdev->name, adapter);
1449
1450 if (err)
1451 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452 err);
1453
1454 request_done:
1455 return err;
1456 }
1457
igb_free_irq(struct igb_adapter * adapter)1458 static void igb_free_irq(struct igb_adapter *adapter)
1459 {
1460 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461 int vector = 0, i;
1462
1463 free_irq(adapter->msix_entries[vector++].vector, adapter);
1464
1465 for (i = 0; i < adapter->num_q_vectors; i++)
1466 free_irq(adapter->msix_entries[vector++].vector,
1467 adapter->q_vector[i]);
1468 } else {
1469 free_irq(adapter->pdev->irq, adapter);
1470 }
1471 }
1472
1473 /**
1474 * igb_irq_disable - Mask off interrupt generation on the NIC
1475 * @adapter: board private structure
1476 **/
igb_irq_disable(struct igb_adapter * adapter)1477 static void igb_irq_disable(struct igb_adapter *adapter)
1478 {
1479 struct e1000_hw *hw = &adapter->hw;
1480
1481 /* we need to be careful when disabling interrupts. The VFs are also
1482 * mapped into these registers and so clearing the bits can cause
1483 * issues on the VF drivers so we only need to clear what we set
1484 */
1485 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486 u32 regval = rd32(E1000_EIAM);
1487
1488 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1489 wr32(E1000_EIMC, adapter->eims_enable_mask);
1490 regval = rd32(E1000_EIAC);
1491 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1492 }
1493
1494 wr32(E1000_IAM, 0);
1495 wr32(E1000_IMC, ~0);
1496 wrfl();
1497 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1498 int i;
1499
1500 for (i = 0; i < adapter->num_q_vectors; i++)
1501 synchronize_irq(adapter->msix_entries[i].vector);
1502 } else {
1503 synchronize_irq(adapter->pdev->irq);
1504 }
1505 }
1506
1507 /**
1508 * igb_irq_enable - Enable default interrupt generation settings
1509 * @adapter: board private structure
1510 **/
igb_irq_enable(struct igb_adapter * adapter)1511 static void igb_irq_enable(struct igb_adapter *adapter)
1512 {
1513 struct e1000_hw *hw = &adapter->hw;
1514
1515 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1516 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1517 u32 regval = rd32(E1000_EIAC);
1518
1519 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1520 regval = rd32(E1000_EIAM);
1521 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1522 wr32(E1000_EIMS, adapter->eims_enable_mask);
1523 if (adapter->vfs_allocated_count) {
1524 wr32(E1000_MBVFIMR, 0xFF);
1525 ims |= E1000_IMS_VMMB;
1526 }
1527 wr32(E1000_IMS, ims);
1528 } else {
1529 wr32(E1000_IMS, IMS_ENABLE_MASK |
1530 E1000_IMS_DRSTA);
1531 wr32(E1000_IAM, IMS_ENABLE_MASK |
1532 E1000_IMS_DRSTA);
1533 }
1534 }
1535
igb_update_mng_vlan(struct igb_adapter * adapter)1536 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1537 {
1538 struct e1000_hw *hw = &adapter->hw;
1539 u16 pf_id = adapter->vfs_allocated_count;
1540 u16 vid = adapter->hw.mng_cookie.vlan_id;
1541 u16 old_vid = adapter->mng_vlan_id;
1542
1543 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1544 /* add VID to filter table */
1545 igb_vfta_set(hw, vid, pf_id, true, true);
1546 adapter->mng_vlan_id = vid;
1547 } else {
1548 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1549 }
1550
1551 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1552 (vid != old_vid) &&
1553 !test_bit(old_vid, adapter->active_vlans)) {
1554 /* remove VID from filter table */
1555 igb_vfta_set(hw, vid, pf_id, false, true);
1556 }
1557 }
1558
1559 /**
1560 * igb_release_hw_control - release control of the h/w to f/w
1561 * @adapter: address of board private structure
1562 *
1563 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1564 * For ASF and Pass Through versions of f/w this means that the
1565 * driver is no longer loaded.
1566 **/
igb_release_hw_control(struct igb_adapter * adapter)1567 static void igb_release_hw_control(struct igb_adapter *adapter)
1568 {
1569 struct e1000_hw *hw = &adapter->hw;
1570 u32 ctrl_ext;
1571
1572 /* Let firmware take over control of h/w */
1573 ctrl_ext = rd32(E1000_CTRL_EXT);
1574 wr32(E1000_CTRL_EXT,
1575 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1576 }
1577
1578 /**
1579 * igb_get_hw_control - get control of the h/w from f/w
1580 * @adapter: address of board private structure
1581 *
1582 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1583 * For ASF and Pass Through versions of f/w this means that
1584 * the driver is loaded.
1585 **/
igb_get_hw_control(struct igb_adapter * adapter)1586 static void igb_get_hw_control(struct igb_adapter *adapter)
1587 {
1588 struct e1000_hw *hw = &adapter->hw;
1589 u32 ctrl_ext;
1590
1591 /* Let firmware know the driver has taken over */
1592 ctrl_ext = rd32(E1000_CTRL_EXT);
1593 wr32(E1000_CTRL_EXT,
1594 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1595 }
1596
enable_fqtss(struct igb_adapter * adapter,bool enable)1597 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1598 {
1599 struct net_device *netdev = adapter->netdev;
1600 struct e1000_hw *hw = &adapter->hw;
1601
1602 WARN_ON(hw->mac.type != e1000_i210);
1603
1604 if (enable)
1605 adapter->flags |= IGB_FLAG_FQTSS;
1606 else
1607 adapter->flags &= ~IGB_FLAG_FQTSS;
1608
1609 if (netif_running(netdev))
1610 schedule_work(&adapter->reset_task);
1611 }
1612
is_fqtss_enabled(struct igb_adapter * adapter)1613 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1614 {
1615 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1616 }
1617
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1618 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1619 enum tx_queue_prio prio)
1620 {
1621 u32 val;
1622
1623 WARN_ON(hw->mac.type != e1000_i210);
1624 WARN_ON(queue < 0 || queue > 4);
1625
1626 val = rd32(E1000_I210_TXDCTL(queue));
1627
1628 if (prio == TX_QUEUE_PRIO_HIGH)
1629 val |= E1000_TXDCTL_PRIORITY;
1630 else
1631 val &= ~E1000_TXDCTL_PRIORITY;
1632
1633 wr32(E1000_I210_TXDCTL(queue), val);
1634 }
1635
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1636 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1637 {
1638 u32 val;
1639
1640 WARN_ON(hw->mac.type != e1000_i210);
1641 WARN_ON(queue < 0 || queue > 1);
1642
1643 val = rd32(E1000_I210_TQAVCC(queue));
1644
1645 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1646 val |= E1000_TQAVCC_QUEUEMODE;
1647 else
1648 val &= ~E1000_TQAVCC_QUEUEMODE;
1649
1650 wr32(E1000_I210_TQAVCC(queue), val);
1651 }
1652
is_any_cbs_enabled(struct igb_adapter * adapter)1653 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1654 {
1655 int i;
1656
1657 for (i = 0; i < adapter->num_tx_queues; i++) {
1658 if (adapter->tx_ring[i]->cbs_enable)
1659 return true;
1660 }
1661
1662 return false;
1663 }
1664
is_any_txtime_enabled(struct igb_adapter * adapter)1665 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1666 {
1667 int i;
1668
1669 for (i = 0; i < adapter->num_tx_queues; i++) {
1670 if (adapter->tx_ring[i]->launchtime_enable)
1671 return true;
1672 }
1673
1674 return false;
1675 }
1676
1677 /**
1678 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1679 * @adapter: pointer to adapter struct
1680 * @queue: queue number
1681 *
1682 * Configure CBS and Launchtime for a given hardware queue.
1683 * Parameters are retrieved from the correct Tx ring, so
1684 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1685 * for setting those correctly prior to this function being called.
1686 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1687 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1688 {
1689 struct net_device *netdev = adapter->netdev;
1690 struct e1000_hw *hw = &adapter->hw;
1691 struct igb_ring *ring;
1692 u32 tqavcc, tqavctrl;
1693 u16 value;
1694
1695 WARN_ON(hw->mac.type != e1000_i210);
1696 WARN_ON(queue < 0 || queue > 1);
1697 ring = adapter->tx_ring[queue];
1698
1699 /* If any of the Qav features is enabled, configure queues as SR and
1700 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701 * as SP.
1702 */
1703 if (ring->cbs_enable || ring->launchtime_enable) {
1704 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1706 } else {
1707 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709 }
1710
1711 /* If CBS is enabled, set DataTranARB and config its parameters. */
1712 if (ring->cbs_enable || queue == 0) {
1713 /* i210 does not allow the queue 0 to be in the Strict
1714 * Priority mode while the Qav mode is enabled, so,
1715 * instead of disabling strict priority mode, we give
1716 * queue 0 the maximum of credits possible.
1717 *
1718 * See section 8.12.19 of the i210 datasheet, "Note:
1719 * Queue0 QueueMode must be set to 1b when
1720 * TransmitMode is set to Qav."
1721 */
1722 if (queue == 0 && !ring->cbs_enable) {
1723 /* max "linkspeed" idleslope in kbps */
1724 ring->idleslope = 1000000;
1725 ring->hicredit = ETH_FRAME_LEN;
1726 }
1727
1728 /* Always set data transfer arbitration to credit-based
1729 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730 * the queues.
1731 */
1732 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735
1736 /* According to i210 datasheet section 7.2.7.7, we should set
1737 * the 'idleSlope' field from TQAVCC register following the
1738 * equation:
1739 *
1740 * For 100 Mbps link speed:
1741 *
1742 * value = BW * 0x7735 * 0.2 (E1)
1743 *
1744 * For 1000Mbps link speed:
1745 *
1746 * value = BW * 0x7735 * 2 (E2)
1747 *
1748 * E1 and E2 can be merged into one equation as shown below.
1749 * Note that 'link-speed' is in Mbps.
1750 *
1751 * value = BW * 0x7735 * 2 * link-speed
1752 * -------------- (E3)
1753 * 1000
1754 *
1755 * 'BW' is the percentage bandwidth out of full link speed
1756 * which can be found with the following equation. Note that
1757 * idleSlope here is the parameter from this function which
1758 * is in kbps.
1759 *
1760 * BW = idleSlope
1761 * ----------------- (E4)
1762 * link-speed * 1000
1763 *
1764 * That said, we can come up with a generic equation to
1765 * calculate the value we should set it TQAVCC register by
1766 * replacing 'BW' in E3 by E4. The resulting equation is:
1767 *
1768 * value = idleSlope * 0x7735 * 2 * link-speed
1769 * ----------------- -------------- (E5)
1770 * link-speed * 1000 1000
1771 *
1772 * 'link-speed' is present in both sides of the fraction so
1773 * it is canceled out. The final equation is the following:
1774 *
1775 * value = idleSlope * 61034
1776 * ----------------- (E6)
1777 * 1000000
1778 *
1779 * NOTE: For i210, given the above, we can see that idleslope
1780 * is represented in 16.38431 kbps units by the value at
1781 * the TQAVCC register (1Gbps / 61034), which reduces
1782 * the granularity for idleslope increments.
1783 * For instance, if you want to configure a 2576kbps
1784 * idleslope, the value to be written on the register
1785 * would have to be 157.23. If rounded down, you end
1786 * up with less bandwidth available than originally
1787 * required (~2572 kbps). If rounded up, you end up
1788 * with a higher bandwidth (~2589 kbps). Below the
1789 * approach we take is to always round up the
1790 * calculated value, so the resulting bandwidth might
1791 * be slightly higher for some configurations.
1792 */
1793 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794
1795 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797 tqavcc |= value;
1798 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799
1800 wr32(E1000_I210_TQAVHC(queue),
1801 0x80000000 + ring->hicredit * 0x7735);
1802 } else {
1803
1804 /* Set idleSlope to zero. */
1805 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808
1809 /* Set hiCredit to zero. */
1810 wr32(E1000_I210_TQAVHC(queue), 0);
1811
1812 /* If CBS is not enabled for any queues anymore, then return to
1813 * the default state of Data Transmission Arbitration on
1814 * TQAVCTRL.
1815 */
1816 if (!is_any_cbs_enabled(adapter)) {
1817 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 }
1821 }
1822
1823 /* If LaunchTime is enabled, set DataTranTIM. */
1824 if (ring->launchtime_enable) {
1825 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826 * for any of the SR queues, and configure fetchtime delta.
1827 * XXX NOTE:
1828 * - LaunchTime will be enabled for all SR queues.
1829 * - A fixed offset can be added relative to the launch
1830 * time of all packets if configured at reg LAUNCH_OS0.
1831 * We are keeping it as 0 for now (default value).
1832 */
1833 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835 E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837 } else {
1838 /* If Launchtime is not enabled for any SR queues anymore,
1839 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840 * effectively disabling Launchtime.
1841 */
1842 if (!is_any_txtime_enabled(adapter)) {
1843 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847 }
1848 }
1849
1850 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1851 * CBS are not configurable by software so we don't do any 'controller
1852 * configuration' in respect to these parameters.
1853 */
1854
1855 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856 ring->cbs_enable ? "enabled" : "disabled",
1857 ring->launchtime_enable ? "enabled" : "disabled",
1858 queue,
1859 ring->idleslope, ring->sendslope,
1860 ring->hicredit, ring->locredit);
1861 }
1862
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1863 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864 bool enable)
1865 {
1866 struct igb_ring *ring;
1867
1868 if (queue < 0 || queue > adapter->num_tx_queues)
1869 return -EINVAL;
1870
1871 ring = adapter->tx_ring[queue];
1872 ring->launchtime_enable = enable;
1873
1874 return 0;
1875 }
1876
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1877 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878 bool enable, int idleslope, int sendslope,
1879 int hicredit, int locredit)
1880 {
1881 struct igb_ring *ring;
1882
1883 if (queue < 0 || queue > adapter->num_tx_queues)
1884 return -EINVAL;
1885
1886 ring = adapter->tx_ring[queue];
1887
1888 ring->cbs_enable = enable;
1889 ring->idleslope = idleslope;
1890 ring->sendslope = sendslope;
1891 ring->hicredit = hicredit;
1892 ring->locredit = locredit;
1893
1894 return 0;
1895 }
1896
1897 /**
1898 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899 * @adapter: pointer to adapter struct
1900 *
1901 * Configure TQAVCTRL register switching the controller's Tx mode
1902 * if FQTSS mode is enabled or disabled. Additionally, will issue
1903 * a call to igb_config_tx_modes() per queue so any previously saved
1904 * Tx parameters are applied.
1905 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1906 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907 {
1908 struct net_device *netdev = adapter->netdev;
1909 struct e1000_hw *hw = &adapter->hw;
1910 u32 val;
1911
1912 /* Only i210 controller supports changing the transmission mode. */
1913 if (hw->mac.type != e1000_i210)
1914 return;
1915
1916 if (is_fqtss_enabled(adapter)) {
1917 int i, max_queue;
1918
1919 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921 * so SP queues wait for SR ones.
1922 */
1923 val = rd32(E1000_I210_TQAVCTRL);
1924 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926 wr32(E1000_I210_TQAVCTRL, val);
1927
1928 /* Configure Tx and Rx packet buffers sizes as described in
1929 * i210 datasheet section 7.2.7.7.
1930 */
1931 val = rd32(E1000_TXPBS);
1932 val &= ~I210_TXPBSIZE_MASK;
1933 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1934 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1935 wr32(E1000_TXPBS, val);
1936
1937 val = rd32(E1000_RXPBS);
1938 val &= ~I210_RXPBSIZE_MASK;
1939 val |= I210_RXPBSIZE_PB_30KB;
1940 wr32(E1000_RXPBS, val);
1941
1942 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943 * register should not exceed the buffer size programmed in
1944 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946 * 4kB / 64.
1947 *
1948 * However, when we do so, no frame from queue 2 and 3 are
1949 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1950 * or _equal_ to the buffer size programmed in TXPBS. For this
1951 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952 */
1953 val = (4096 - 1) / 64;
1954 wr32(E1000_I210_DTXMXPKTSZ, val);
1955
1956 /* Since FQTSS mode is enabled, apply any CBS configuration
1957 * previously set. If no previous CBS configuration has been
1958 * done, then the initial configuration is applied, which means
1959 * CBS is disabled.
1960 */
1961 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963
1964 for (i = 0; i < max_queue; i++) {
1965 igb_config_tx_modes(adapter, i);
1966 }
1967 } else {
1968 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971
1972 val = rd32(E1000_I210_TQAVCTRL);
1973 /* According to Section 8.12.21, the other flags we've set when
1974 * enabling FQTSS are not relevant when disabling FQTSS so we
1975 * don't set they here.
1976 */
1977 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978 wr32(E1000_I210_TQAVCTRL, val);
1979 }
1980
1981 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982 "enabled" : "disabled");
1983 }
1984
1985 /**
1986 * igb_configure - configure the hardware for RX and TX
1987 * @adapter: private board structure
1988 **/
igb_configure(struct igb_adapter * adapter)1989 static void igb_configure(struct igb_adapter *adapter)
1990 {
1991 struct net_device *netdev = adapter->netdev;
1992 int i;
1993
1994 igb_get_hw_control(adapter);
1995 igb_set_rx_mode(netdev);
1996 igb_setup_tx_mode(adapter);
1997
1998 igb_restore_vlan(adapter);
1999
2000 igb_setup_tctl(adapter);
2001 igb_setup_mrqc(adapter);
2002 igb_setup_rctl(adapter);
2003
2004 igb_nfc_filter_restore(adapter);
2005 igb_configure_tx(adapter);
2006 igb_configure_rx(adapter);
2007
2008 igb_rx_fifo_flush_82575(&adapter->hw);
2009
2010 /* call igb_desc_unused which always leaves
2011 * at least 1 descriptor unused to make sure
2012 * next_to_use != next_to_clean
2013 */
2014 for (i = 0; i < adapter->num_rx_queues; i++) {
2015 struct igb_ring *ring = adapter->rx_ring[i];
2016 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017 }
2018 }
2019
2020 /**
2021 * igb_power_up_link - Power up the phy/serdes link
2022 * @adapter: address of board private structure
2023 **/
igb_power_up_link(struct igb_adapter * adapter)2024 void igb_power_up_link(struct igb_adapter *adapter)
2025 {
2026 igb_reset_phy(&adapter->hw);
2027
2028 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 igb_power_up_phy_copper(&adapter->hw);
2030 else
2031 igb_power_up_serdes_link_82575(&adapter->hw);
2032
2033 igb_setup_link(&adapter->hw);
2034 }
2035
2036 /**
2037 * igb_power_down_link - Power down the phy/serdes link
2038 * @adapter: address of board private structure
2039 */
igb_power_down_link(struct igb_adapter * adapter)2040 static void igb_power_down_link(struct igb_adapter *adapter)
2041 {
2042 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043 igb_power_down_phy_copper_82575(&adapter->hw);
2044 else
2045 igb_shutdown_serdes_link_82575(&adapter->hw);
2046 }
2047
2048 /**
2049 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2050 * @adapter: address of the board private structure
2051 **/
igb_check_swap_media(struct igb_adapter * adapter)2052 static void igb_check_swap_media(struct igb_adapter *adapter)
2053 {
2054 struct e1000_hw *hw = &adapter->hw;
2055 u32 ctrl_ext, connsw;
2056 bool swap_now = false;
2057
2058 ctrl_ext = rd32(E1000_CTRL_EXT);
2059 connsw = rd32(E1000_CONNSW);
2060
2061 /* need to live swap if current media is copper and we have fiber/serdes
2062 * to go to.
2063 */
2064
2065 if ((hw->phy.media_type == e1000_media_type_copper) &&
2066 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067 swap_now = true;
2068 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069 !(connsw & E1000_CONNSW_SERDESD)) {
2070 /* copper signal takes time to appear */
2071 if (adapter->copper_tries < 4) {
2072 adapter->copper_tries++;
2073 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074 wr32(E1000_CONNSW, connsw);
2075 return;
2076 } else {
2077 adapter->copper_tries = 0;
2078 if ((connsw & E1000_CONNSW_PHYSD) &&
2079 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2080 swap_now = true;
2081 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082 wr32(E1000_CONNSW, connsw);
2083 }
2084 }
2085 }
2086
2087 if (!swap_now)
2088 return;
2089
2090 switch (hw->phy.media_type) {
2091 case e1000_media_type_copper:
2092 netdev_info(adapter->netdev,
2093 "MAS: changing media to fiber/serdes\n");
2094 ctrl_ext |=
2095 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 adapter->copper_tries = 0;
2098 break;
2099 case e1000_media_type_internal_serdes:
2100 case e1000_media_type_fiber:
2101 netdev_info(adapter->netdev,
2102 "MAS: changing media to copper\n");
2103 ctrl_ext &=
2104 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2106 break;
2107 default:
2108 /* shouldn't get here during regular operation */
2109 netdev_err(adapter->netdev,
2110 "AMS: Invalid media type found, returning\n");
2111 break;
2112 }
2113 wr32(E1000_CTRL_EXT, ctrl_ext);
2114 }
2115
2116 /**
2117 * igb_up - Open the interface and prepare it to handle traffic
2118 * @adapter: board private structure
2119 **/
igb_up(struct igb_adapter * adapter)2120 int igb_up(struct igb_adapter *adapter)
2121 {
2122 struct e1000_hw *hw = &adapter->hw;
2123 int i;
2124
2125 /* hardware has been reset, we need to reload some things */
2126 igb_configure(adapter);
2127
2128 clear_bit(__IGB_DOWN, &adapter->state);
2129
2130 for (i = 0; i < adapter->num_q_vectors; i++)
2131 napi_enable(&(adapter->q_vector[i]->napi));
2132
2133 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134 igb_configure_msix(adapter);
2135 else
2136 igb_assign_vector(adapter->q_vector[0], 0);
2137
2138 /* Clear any pending interrupts. */
2139 rd32(E1000_TSICR);
2140 rd32(E1000_ICR);
2141 igb_irq_enable(adapter);
2142
2143 /* notify VFs that reset has been completed */
2144 if (adapter->vfs_allocated_count) {
2145 u32 reg_data = rd32(E1000_CTRL_EXT);
2146
2147 reg_data |= E1000_CTRL_EXT_PFRSTD;
2148 wr32(E1000_CTRL_EXT, reg_data);
2149 }
2150
2151 netif_tx_start_all_queues(adapter->netdev);
2152
2153 /* start the watchdog. */
2154 hw->mac.get_link_status = 1;
2155 schedule_work(&adapter->watchdog_task);
2156
2157 if ((adapter->flags & IGB_FLAG_EEE) &&
2158 (!hw->dev_spec._82575.eee_disable))
2159 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2160
2161 return 0;
2162 }
2163
igb_down(struct igb_adapter * adapter)2164 void igb_down(struct igb_adapter *adapter)
2165 {
2166 struct net_device *netdev = adapter->netdev;
2167 struct e1000_hw *hw = &adapter->hw;
2168 u32 tctl, rctl;
2169 int i;
2170
2171 /* signal that we're down so the interrupt handler does not
2172 * reschedule our watchdog timer
2173 */
2174 set_bit(__IGB_DOWN, &adapter->state);
2175
2176 /* disable receives in the hardware */
2177 rctl = rd32(E1000_RCTL);
2178 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179 /* flush and sleep below */
2180
2181 igb_nfc_filter_exit(adapter);
2182
2183 netif_carrier_off(netdev);
2184 netif_tx_stop_all_queues(netdev);
2185
2186 /* disable transmits in the hardware */
2187 tctl = rd32(E1000_TCTL);
2188 tctl &= ~E1000_TCTL_EN;
2189 wr32(E1000_TCTL, tctl);
2190 /* flush both disables and wait for them to finish */
2191 wrfl();
2192 usleep_range(10000, 11000);
2193
2194 igb_irq_disable(adapter);
2195
2196 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2197
2198 for (i = 0; i < adapter->num_q_vectors; i++) {
2199 if (adapter->q_vector[i]) {
2200 napi_synchronize(&adapter->q_vector[i]->napi);
2201 napi_disable(&adapter->q_vector[i]->napi);
2202 }
2203 }
2204
2205 del_timer_sync(&adapter->watchdog_timer);
2206 del_timer_sync(&adapter->phy_info_timer);
2207
2208 /* record the stats before reset*/
2209 spin_lock(&adapter->stats64_lock);
2210 igb_update_stats(adapter);
2211 spin_unlock(&adapter->stats64_lock);
2212
2213 adapter->link_speed = 0;
2214 adapter->link_duplex = 0;
2215
2216 if (!pci_channel_offline(adapter->pdev))
2217 igb_reset(adapter);
2218
2219 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2220 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2221
2222 igb_clean_all_tx_rings(adapter);
2223 igb_clean_all_rx_rings(adapter);
2224 #ifdef CONFIG_IGB_DCA
2225
2226 /* since we reset the hardware DCA settings were cleared */
2227 igb_setup_dca(adapter);
2228 #endif
2229 }
2230
igb_reinit_locked(struct igb_adapter * adapter)2231 void igb_reinit_locked(struct igb_adapter *adapter)
2232 {
2233 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2234 usleep_range(1000, 2000);
2235 igb_down(adapter);
2236 igb_up(adapter);
2237 clear_bit(__IGB_RESETTING, &adapter->state);
2238 }
2239
2240 /** igb_enable_mas - Media Autosense re-enable after swap
2241 *
2242 * @adapter: adapter struct
2243 **/
igb_enable_mas(struct igb_adapter * adapter)2244 static void igb_enable_mas(struct igb_adapter *adapter)
2245 {
2246 struct e1000_hw *hw = &adapter->hw;
2247 u32 connsw = rd32(E1000_CONNSW);
2248
2249 /* configure for SerDes media detect */
2250 if ((hw->phy.media_type == e1000_media_type_copper) &&
2251 (!(connsw & E1000_CONNSW_SERDESD))) {
2252 connsw |= E1000_CONNSW_ENRGSRC;
2253 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2254 wr32(E1000_CONNSW, connsw);
2255 wrfl();
2256 }
2257 }
2258
igb_reset(struct igb_adapter * adapter)2259 void igb_reset(struct igb_adapter *adapter)
2260 {
2261 struct pci_dev *pdev = adapter->pdev;
2262 struct e1000_hw *hw = &adapter->hw;
2263 struct e1000_mac_info *mac = &hw->mac;
2264 struct e1000_fc_info *fc = &hw->fc;
2265 u32 pba, hwm;
2266
2267 /* Repartition Pba for greater than 9k mtu
2268 * To take effect CTRL.RST is required.
2269 */
2270 switch (mac->type) {
2271 case e1000_i350:
2272 case e1000_i354:
2273 case e1000_82580:
2274 pba = rd32(E1000_RXPBS);
2275 pba = igb_rxpbs_adjust_82580(pba);
2276 break;
2277 case e1000_82576:
2278 pba = rd32(E1000_RXPBS);
2279 pba &= E1000_RXPBS_SIZE_MASK_82576;
2280 break;
2281 case e1000_82575:
2282 case e1000_i210:
2283 case e1000_i211:
2284 default:
2285 pba = E1000_PBA_34K;
2286 break;
2287 }
2288
2289 if (mac->type == e1000_82575) {
2290 u32 min_rx_space, min_tx_space, needed_tx_space;
2291
2292 /* write Rx PBA so that hardware can report correct Tx PBA */
2293 wr32(E1000_PBA, pba);
2294
2295 /* To maintain wire speed transmits, the Tx FIFO should be
2296 * large enough to accommodate two full transmit packets,
2297 * rounded up to the next 1KB and expressed in KB. Likewise,
2298 * the Rx FIFO should be large enough to accommodate at least
2299 * one full receive packet and is similarly rounded up and
2300 * expressed in KB.
2301 */
2302 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2303
2304 /* The Tx FIFO also stores 16 bytes of information about the Tx
2305 * but don't include Ethernet FCS because hardware appends it.
2306 * We only need to round down to the nearest 512 byte block
2307 * count since the value we care about is 2 frames, not 1.
2308 */
2309 min_tx_space = adapter->max_frame_size;
2310 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2311 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2312
2313 /* upper 16 bits has Tx packet buffer allocation size in KB */
2314 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2315
2316 /* If current Tx allocation is less than the min Tx FIFO size,
2317 * and the min Tx FIFO size is less than the current Rx FIFO
2318 * allocation, take space away from current Rx allocation.
2319 */
2320 if (needed_tx_space < pba) {
2321 pba -= needed_tx_space;
2322
2323 /* if short on Rx space, Rx wins and must trump Tx
2324 * adjustment
2325 */
2326 if (pba < min_rx_space)
2327 pba = min_rx_space;
2328 }
2329
2330 /* adjust PBA for jumbo frames */
2331 wr32(E1000_PBA, pba);
2332 }
2333
2334 /* flow control settings
2335 * The high water mark must be low enough to fit one full frame
2336 * after transmitting the pause frame. As such we must have enough
2337 * space to allow for us to complete our current transmit and then
2338 * receive the frame that is in progress from the link partner.
2339 * Set it to:
2340 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2341 */
2342 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2343
2344 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2345 fc->low_water = fc->high_water - 16;
2346 fc->pause_time = 0xFFFF;
2347 fc->send_xon = 1;
2348 fc->current_mode = fc->requested_mode;
2349
2350 /* disable receive for all VFs and wait one second */
2351 if (adapter->vfs_allocated_count) {
2352 int i;
2353
2354 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2355 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2356
2357 /* ping all the active vfs to let them know we are going down */
2358 igb_ping_all_vfs(adapter);
2359
2360 /* disable transmits and receives */
2361 wr32(E1000_VFRE, 0);
2362 wr32(E1000_VFTE, 0);
2363 }
2364
2365 /* Allow time for pending master requests to run */
2366 hw->mac.ops.reset_hw(hw);
2367 wr32(E1000_WUC, 0);
2368
2369 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2370 /* need to resetup here after media swap */
2371 adapter->ei.get_invariants(hw);
2372 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2373 }
2374 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2375 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2376 igb_enable_mas(adapter);
2377 }
2378 if (hw->mac.ops.init_hw(hw))
2379 dev_err(&pdev->dev, "Hardware Error\n");
2380
2381 /* RAR registers were cleared during init_hw, clear mac table */
2382 igb_flush_mac_table(adapter);
2383 __dev_uc_unsync(adapter->netdev, NULL);
2384
2385 /* Recover default RAR entry */
2386 igb_set_default_mac_filter(adapter);
2387
2388 /* Flow control settings reset on hardware reset, so guarantee flow
2389 * control is off when forcing speed.
2390 */
2391 if (!hw->mac.autoneg)
2392 igb_force_mac_fc(hw);
2393
2394 igb_init_dmac(adapter, pba);
2395 #ifdef CONFIG_IGB_HWMON
2396 /* Re-initialize the thermal sensor on i350 devices. */
2397 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2398 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2399 /* If present, re-initialize the external thermal sensor
2400 * interface.
2401 */
2402 if (adapter->ets)
2403 mac->ops.init_thermal_sensor_thresh(hw);
2404 }
2405 }
2406 #endif
2407 /* Re-establish EEE setting */
2408 if (hw->phy.media_type == e1000_media_type_copper) {
2409 switch (mac->type) {
2410 case e1000_i350:
2411 case e1000_i210:
2412 case e1000_i211:
2413 igb_set_eee_i350(hw, true, true);
2414 break;
2415 case e1000_i354:
2416 igb_set_eee_i354(hw, true, true);
2417 break;
2418 default:
2419 break;
2420 }
2421 }
2422 if (!netif_running(adapter->netdev))
2423 igb_power_down_link(adapter);
2424
2425 igb_update_mng_vlan(adapter);
2426
2427 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2428 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2429
2430 /* Re-enable PTP, where applicable. */
2431 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2432 igb_ptp_reset(adapter);
2433
2434 igb_get_phy_info(hw);
2435 }
2436
igb_fix_features(struct net_device * netdev,netdev_features_t features)2437 static netdev_features_t igb_fix_features(struct net_device *netdev,
2438 netdev_features_t features)
2439 {
2440 /* Since there is no support for separate Rx/Tx vlan accel
2441 * enable/disable make sure Tx flag is always in same state as Rx.
2442 */
2443 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2444 features |= NETIF_F_HW_VLAN_CTAG_TX;
2445 else
2446 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2447
2448 return features;
2449 }
2450
igb_set_features(struct net_device * netdev,netdev_features_t features)2451 static int igb_set_features(struct net_device *netdev,
2452 netdev_features_t features)
2453 {
2454 netdev_features_t changed = netdev->features ^ features;
2455 struct igb_adapter *adapter = netdev_priv(netdev);
2456
2457 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2458 igb_vlan_mode(netdev, features);
2459
2460 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2461 return 0;
2462
2463 if (!(features & NETIF_F_NTUPLE)) {
2464 struct hlist_node *node2;
2465 struct igb_nfc_filter *rule;
2466
2467 spin_lock(&adapter->nfc_lock);
2468 hlist_for_each_entry_safe(rule, node2,
2469 &adapter->nfc_filter_list, nfc_node) {
2470 igb_erase_filter(adapter, rule);
2471 hlist_del(&rule->nfc_node);
2472 kfree(rule);
2473 }
2474 spin_unlock(&adapter->nfc_lock);
2475 adapter->nfc_filter_count = 0;
2476 }
2477
2478 netdev->features = features;
2479
2480 if (netif_running(netdev))
2481 igb_reinit_locked(adapter);
2482 else
2483 igb_reset(adapter);
2484
2485 return 1;
2486 }
2487
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack * extack)2488 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2489 struct net_device *dev,
2490 const unsigned char *addr, u16 vid,
2491 u16 flags,
2492 struct netlink_ext_ack *extack)
2493 {
2494 /* guarantee we can provide a unique filter for the unicast address */
2495 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2496 struct igb_adapter *adapter = netdev_priv(dev);
2497 int vfn = adapter->vfs_allocated_count;
2498
2499 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2500 return -ENOMEM;
2501 }
2502
2503 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2504 }
2505
2506 #define IGB_MAX_MAC_HDR_LEN 127
2507 #define IGB_MAX_NETWORK_HDR_LEN 511
2508
2509 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2510 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2511 netdev_features_t features)
2512 {
2513 unsigned int network_hdr_len, mac_hdr_len;
2514
2515 /* Make certain the headers can be described by a context descriptor */
2516 mac_hdr_len = skb_network_header(skb) - skb->data;
2517 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2518 return features & ~(NETIF_F_HW_CSUM |
2519 NETIF_F_SCTP_CRC |
2520 NETIF_F_GSO_UDP_L4 |
2521 NETIF_F_HW_VLAN_CTAG_TX |
2522 NETIF_F_TSO |
2523 NETIF_F_TSO6);
2524
2525 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2526 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2527 return features & ~(NETIF_F_HW_CSUM |
2528 NETIF_F_SCTP_CRC |
2529 NETIF_F_GSO_UDP_L4 |
2530 NETIF_F_TSO |
2531 NETIF_F_TSO6);
2532
2533 /* We can only support IPV4 TSO in tunnels if we can mangle the
2534 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2535 */
2536 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2537 features &= ~NETIF_F_TSO;
2538
2539 return features;
2540 }
2541
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2542 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2543 {
2544 if (!is_fqtss_enabled(adapter)) {
2545 enable_fqtss(adapter, true);
2546 return;
2547 }
2548
2549 igb_config_tx_modes(adapter, queue);
2550
2551 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2552 enable_fqtss(adapter, false);
2553 }
2554
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2555 static int igb_offload_cbs(struct igb_adapter *adapter,
2556 struct tc_cbs_qopt_offload *qopt)
2557 {
2558 struct e1000_hw *hw = &adapter->hw;
2559 int err;
2560
2561 /* CBS offloading is only supported by i210 controller. */
2562 if (hw->mac.type != e1000_i210)
2563 return -EOPNOTSUPP;
2564
2565 /* CBS offloading is only supported by queue 0 and queue 1. */
2566 if (qopt->queue < 0 || qopt->queue > 1)
2567 return -EINVAL;
2568
2569 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2570 qopt->idleslope, qopt->sendslope,
2571 qopt->hicredit, qopt->locredit);
2572 if (err)
2573 return err;
2574
2575 igb_offload_apply(adapter, qopt->queue);
2576
2577 return 0;
2578 }
2579
2580 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2581 #define VLAN_PRIO_FULL_MASK (0x07)
2582
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2583 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2584 struct flow_cls_offload *f,
2585 int traffic_class,
2586 struct igb_nfc_filter *input)
2587 {
2588 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2589 struct flow_dissector *dissector = rule->match.dissector;
2590 struct netlink_ext_ack *extack = f->common.extack;
2591
2592 if (dissector->used_keys &
2593 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2594 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2595 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2596 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2597 NL_SET_ERR_MSG_MOD(extack,
2598 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2599 return -EOPNOTSUPP;
2600 }
2601
2602 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2603 struct flow_match_eth_addrs match;
2604
2605 flow_rule_match_eth_addrs(rule, &match);
2606 if (!is_zero_ether_addr(match.mask->dst)) {
2607 if (!is_broadcast_ether_addr(match.mask->dst)) {
2608 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2609 return -EINVAL;
2610 }
2611
2612 input->filter.match_flags |=
2613 IGB_FILTER_FLAG_DST_MAC_ADDR;
2614 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2615 }
2616
2617 if (!is_zero_ether_addr(match.mask->src)) {
2618 if (!is_broadcast_ether_addr(match.mask->src)) {
2619 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2620 return -EINVAL;
2621 }
2622
2623 input->filter.match_flags |=
2624 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2625 ether_addr_copy(input->filter.src_addr, match.key->src);
2626 }
2627 }
2628
2629 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2630 struct flow_match_basic match;
2631
2632 flow_rule_match_basic(rule, &match);
2633 if (match.mask->n_proto) {
2634 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2635 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2636 return -EINVAL;
2637 }
2638
2639 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2640 input->filter.etype = match.key->n_proto;
2641 }
2642 }
2643
2644 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2645 struct flow_match_vlan match;
2646
2647 flow_rule_match_vlan(rule, &match);
2648 if (match.mask->vlan_priority) {
2649 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2650 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2651 return -EINVAL;
2652 }
2653
2654 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2655 input->filter.vlan_tci =
2656 (__force __be16)match.key->vlan_priority;
2657 }
2658 }
2659
2660 input->action = traffic_class;
2661 input->cookie = f->cookie;
2662
2663 return 0;
2664 }
2665
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2666 static int igb_configure_clsflower(struct igb_adapter *adapter,
2667 struct flow_cls_offload *cls_flower)
2668 {
2669 struct netlink_ext_ack *extack = cls_flower->common.extack;
2670 struct igb_nfc_filter *filter, *f;
2671 int err, tc;
2672
2673 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2674 if (tc < 0) {
2675 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2676 return -EINVAL;
2677 }
2678
2679 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2680 if (!filter)
2681 return -ENOMEM;
2682
2683 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2684 if (err < 0)
2685 goto err_parse;
2686
2687 spin_lock(&adapter->nfc_lock);
2688
2689 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2690 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2691 err = -EEXIST;
2692 NL_SET_ERR_MSG_MOD(extack,
2693 "This filter is already set in ethtool");
2694 goto err_locked;
2695 }
2696 }
2697
2698 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2699 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2700 err = -EEXIST;
2701 NL_SET_ERR_MSG_MOD(extack,
2702 "This filter is already set in cls_flower");
2703 goto err_locked;
2704 }
2705 }
2706
2707 err = igb_add_filter(adapter, filter);
2708 if (err < 0) {
2709 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2710 goto err_locked;
2711 }
2712
2713 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2714
2715 spin_unlock(&adapter->nfc_lock);
2716
2717 return 0;
2718
2719 err_locked:
2720 spin_unlock(&adapter->nfc_lock);
2721
2722 err_parse:
2723 kfree(filter);
2724
2725 return err;
2726 }
2727
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2728 static int igb_delete_clsflower(struct igb_adapter *adapter,
2729 struct flow_cls_offload *cls_flower)
2730 {
2731 struct igb_nfc_filter *filter;
2732 int err;
2733
2734 spin_lock(&adapter->nfc_lock);
2735
2736 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2737 if (filter->cookie == cls_flower->cookie)
2738 break;
2739
2740 if (!filter) {
2741 err = -ENOENT;
2742 goto out;
2743 }
2744
2745 err = igb_erase_filter(adapter, filter);
2746 if (err < 0)
2747 goto out;
2748
2749 hlist_del(&filter->nfc_node);
2750 kfree(filter);
2751
2752 out:
2753 spin_unlock(&adapter->nfc_lock);
2754
2755 return err;
2756 }
2757
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2758 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2759 struct flow_cls_offload *cls_flower)
2760 {
2761 switch (cls_flower->command) {
2762 case FLOW_CLS_REPLACE:
2763 return igb_configure_clsflower(adapter, cls_flower);
2764 case FLOW_CLS_DESTROY:
2765 return igb_delete_clsflower(adapter, cls_flower);
2766 case FLOW_CLS_STATS:
2767 return -EOPNOTSUPP;
2768 default:
2769 return -EOPNOTSUPP;
2770 }
2771 }
2772
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2773 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2774 void *cb_priv)
2775 {
2776 struct igb_adapter *adapter = cb_priv;
2777
2778 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2779 return -EOPNOTSUPP;
2780
2781 switch (type) {
2782 case TC_SETUP_CLSFLOWER:
2783 return igb_setup_tc_cls_flower(adapter, type_data);
2784
2785 default:
2786 return -EOPNOTSUPP;
2787 }
2788 }
2789
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2790 static int igb_offload_txtime(struct igb_adapter *adapter,
2791 struct tc_etf_qopt_offload *qopt)
2792 {
2793 struct e1000_hw *hw = &adapter->hw;
2794 int err;
2795
2796 /* Launchtime offloading is only supported by i210 controller. */
2797 if (hw->mac.type != e1000_i210)
2798 return -EOPNOTSUPP;
2799
2800 /* Launchtime offloading is only supported by queues 0 and 1. */
2801 if (qopt->queue < 0 || qopt->queue > 1)
2802 return -EINVAL;
2803
2804 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2805 if (err)
2806 return err;
2807
2808 igb_offload_apply(adapter, qopt->queue);
2809
2810 return 0;
2811 }
2812
2813 static LIST_HEAD(igb_block_cb_list);
2814
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2815 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2816 void *type_data)
2817 {
2818 struct igb_adapter *adapter = netdev_priv(dev);
2819
2820 switch (type) {
2821 case TC_SETUP_QDISC_CBS:
2822 return igb_offload_cbs(adapter, type_data);
2823 case TC_SETUP_BLOCK:
2824 return flow_block_cb_setup_simple(type_data,
2825 &igb_block_cb_list,
2826 igb_setup_tc_block_cb,
2827 adapter, adapter, true);
2828
2829 case TC_SETUP_QDISC_ETF:
2830 return igb_offload_txtime(adapter, type_data);
2831
2832 default:
2833 return -EOPNOTSUPP;
2834 }
2835 }
2836
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2837 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2838 {
2839 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2840 struct igb_adapter *adapter = netdev_priv(dev);
2841 struct bpf_prog *prog = bpf->prog, *old_prog;
2842 bool running = netif_running(dev);
2843 bool need_reset;
2844
2845 /* verify igb ring attributes are sufficient for XDP */
2846 for (i = 0; i < adapter->num_rx_queues; i++) {
2847 struct igb_ring *ring = adapter->rx_ring[i];
2848
2849 if (frame_size > igb_rx_bufsz(ring)) {
2850 NL_SET_ERR_MSG_MOD(bpf->extack,
2851 "The RX buffer size is too small for the frame size");
2852 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2853 igb_rx_bufsz(ring), frame_size);
2854 return -EINVAL;
2855 }
2856 }
2857
2858 old_prog = xchg(&adapter->xdp_prog, prog);
2859 need_reset = (!!prog != !!old_prog);
2860
2861 /* device is up and bpf is added/removed, must setup the RX queues */
2862 if (need_reset && running) {
2863 igb_close(dev);
2864 } else {
2865 for (i = 0; i < adapter->num_rx_queues; i++)
2866 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2867 adapter->xdp_prog);
2868 }
2869
2870 if (old_prog)
2871 bpf_prog_put(old_prog);
2872
2873 /* bpf is just replaced, RXQ and MTU are already setup */
2874 if (!need_reset)
2875 return 0;
2876
2877 if (running)
2878 igb_open(dev);
2879
2880 return 0;
2881 }
2882
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2883 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2884 {
2885 switch (xdp->command) {
2886 case XDP_SETUP_PROG:
2887 return igb_xdp_setup(dev, xdp);
2888 default:
2889 return -EINVAL;
2890 }
2891 }
2892
igb_xdp_ring_update_tail(struct igb_ring * ring)2893 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2894 {
2895 /* Force memory writes to complete before letting h/w know there
2896 * are new descriptors to fetch.
2897 */
2898 wmb();
2899 writel(ring->next_to_use, ring->tail);
2900 }
2901
igb_xdp_tx_queue_mapping(struct igb_adapter * adapter)2902 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2903 {
2904 unsigned int r_idx = smp_processor_id();
2905
2906 if (r_idx >= adapter->num_tx_queues)
2907 r_idx = r_idx % adapter->num_tx_queues;
2908
2909 return adapter->tx_ring[r_idx];
2910 }
2911
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2912 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2913 {
2914 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2915 int cpu = smp_processor_id();
2916 struct igb_ring *tx_ring;
2917 struct netdev_queue *nq;
2918 u32 ret;
2919
2920 if (unlikely(!xdpf))
2921 return IGB_XDP_CONSUMED;
2922
2923 /* During program transitions its possible adapter->xdp_prog is assigned
2924 * but ring has not been configured yet. In this case simply abort xmit.
2925 */
2926 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2927 if (unlikely(!tx_ring))
2928 return IGB_XDP_CONSUMED;
2929
2930 nq = txring_txq(tx_ring);
2931 __netif_tx_lock(nq, cpu);
2932 /* Avoid transmit queue timeout since we share it with the slow path */
2933 txq_trans_cond_update(nq);
2934 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2935 __netif_tx_unlock(nq);
2936
2937 return ret;
2938 }
2939
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2940 static int igb_xdp_xmit(struct net_device *dev, int n,
2941 struct xdp_frame **frames, u32 flags)
2942 {
2943 struct igb_adapter *adapter = netdev_priv(dev);
2944 int cpu = smp_processor_id();
2945 struct igb_ring *tx_ring;
2946 struct netdev_queue *nq;
2947 int nxmit = 0;
2948 int i;
2949
2950 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2951 return -ENETDOWN;
2952
2953 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2954 return -EINVAL;
2955
2956 /* During program transitions its possible adapter->xdp_prog is assigned
2957 * but ring has not been configured yet. In this case simply abort xmit.
2958 */
2959 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2960 if (unlikely(!tx_ring))
2961 return -ENXIO;
2962
2963 nq = txring_txq(tx_ring);
2964 __netif_tx_lock(nq, cpu);
2965
2966 /* Avoid transmit queue timeout since we share it with the slow path */
2967 txq_trans_cond_update(nq);
2968
2969 for (i = 0; i < n; i++) {
2970 struct xdp_frame *xdpf = frames[i];
2971 int err;
2972
2973 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2974 if (err != IGB_XDP_TX)
2975 break;
2976 nxmit++;
2977 }
2978
2979 __netif_tx_unlock(nq);
2980
2981 if (unlikely(flags & XDP_XMIT_FLUSH))
2982 igb_xdp_ring_update_tail(tx_ring);
2983
2984 return nxmit;
2985 }
2986
2987 static const struct net_device_ops igb_netdev_ops = {
2988 .ndo_open = igb_open,
2989 .ndo_stop = igb_close,
2990 .ndo_start_xmit = igb_xmit_frame,
2991 .ndo_get_stats64 = igb_get_stats64,
2992 .ndo_set_rx_mode = igb_set_rx_mode,
2993 .ndo_set_mac_address = igb_set_mac,
2994 .ndo_change_mtu = igb_change_mtu,
2995 .ndo_eth_ioctl = igb_ioctl,
2996 .ndo_tx_timeout = igb_tx_timeout,
2997 .ndo_validate_addr = eth_validate_addr,
2998 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2999 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3000 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3001 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3002 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3003 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3004 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3005 .ndo_get_vf_config = igb_ndo_get_vf_config,
3006 .ndo_fix_features = igb_fix_features,
3007 .ndo_set_features = igb_set_features,
3008 .ndo_fdb_add = igb_ndo_fdb_add,
3009 .ndo_features_check = igb_features_check,
3010 .ndo_setup_tc = igb_setup_tc,
3011 .ndo_bpf = igb_xdp,
3012 .ndo_xdp_xmit = igb_xdp_xmit,
3013 };
3014
3015 /**
3016 * igb_set_fw_version - Configure version string for ethtool
3017 * @adapter: adapter struct
3018 **/
igb_set_fw_version(struct igb_adapter * adapter)3019 void igb_set_fw_version(struct igb_adapter *adapter)
3020 {
3021 struct e1000_hw *hw = &adapter->hw;
3022 struct e1000_fw_version fw;
3023
3024 igb_get_fw_version(hw, &fw);
3025
3026 switch (hw->mac.type) {
3027 case e1000_i210:
3028 case e1000_i211:
3029 if (!(igb_get_flash_presence_i210(hw))) {
3030 snprintf(adapter->fw_version,
3031 sizeof(adapter->fw_version),
3032 "%2d.%2d-%d",
3033 fw.invm_major, fw.invm_minor,
3034 fw.invm_img_type);
3035 break;
3036 }
3037 fallthrough;
3038 default:
3039 /* if option is rom valid, display its version too */
3040 if (fw.or_valid) {
3041 snprintf(adapter->fw_version,
3042 sizeof(adapter->fw_version),
3043 "%d.%d, 0x%08x, %d.%d.%d",
3044 fw.eep_major, fw.eep_minor, fw.etrack_id,
3045 fw.or_major, fw.or_build, fw.or_patch);
3046 /* no option rom */
3047 } else if (fw.etrack_id != 0X0000) {
3048 snprintf(adapter->fw_version,
3049 sizeof(adapter->fw_version),
3050 "%d.%d, 0x%08x",
3051 fw.eep_major, fw.eep_minor, fw.etrack_id);
3052 } else {
3053 snprintf(adapter->fw_version,
3054 sizeof(adapter->fw_version),
3055 "%d.%d.%d",
3056 fw.eep_major, fw.eep_minor, fw.eep_build);
3057 }
3058 break;
3059 }
3060 }
3061
3062 /**
3063 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3064 *
3065 * @adapter: adapter struct
3066 **/
igb_init_mas(struct igb_adapter * adapter)3067 static void igb_init_mas(struct igb_adapter *adapter)
3068 {
3069 struct e1000_hw *hw = &adapter->hw;
3070 u16 eeprom_data;
3071
3072 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3073 switch (hw->bus.func) {
3074 case E1000_FUNC_0:
3075 if (eeprom_data & IGB_MAS_ENABLE_0) {
3076 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3077 netdev_info(adapter->netdev,
3078 "MAS: Enabling Media Autosense for port %d\n",
3079 hw->bus.func);
3080 }
3081 break;
3082 case E1000_FUNC_1:
3083 if (eeprom_data & IGB_MAS_ENABLE_1) {
3084 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3085 netdev_info(adapter->netdev,
3086 "MAS: Enabling Media Autosense for port %d\n",
3087 hw->bus.func);
3088 }
3089 break;
3090 case E1000_FUNC_2:
3091 if (eeprom_data & IGB_MAS_ENABLE_2) {
3092 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3093 netdev_info(adapter->netdev,
3094 "MAS: Enabling Media Autosense for port %d\n",
3095 hw->bus.func);
3096 }
3097 break;
3098 case E1000_FUNC_3:
3099 if (eeprom_data & IGB_MAS_ENABLE_3) {
3100 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3101 netdev_info(adapter->netdev,
3102 "MAS: Enabling Media Autosense for port %d\n",
3103 hw->bus.func);
3104 }
3105 break;
3106 default:
3107 /* Shouldn't get here */
3108 netdev_err(adapter->netdev,
3109 "MAS: Invalid port configuration, returning\n");
3110 break;
3111 }
3112 }
3113
3114 /**
3115 * igb_init_i2c - Init I2C interface
3116 * @adapter: pointer to adapter structure
3117 **/
igb_init_i2c(struct igb_adapter * adapter)3118 static s32 igb_init_i2c(struct igb_adapter *adapter)
3119 {
3120 struct e1000_hw *hw = &adapter->hw;
3121 s32 status = 0;
3122 s32 i2cctl;
3123
3124 /* I2C interface supported on i350 devices */
3125 if (adapter->hw.mac.type != e1000_i350)
3126 return 0;
3127
3128 i2cctl = rd32(E1000_I2CPARAMS);
3129 i2cctl |= E1000_I2CBB_EN
3130 | E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N
3131 | E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
3132 wr32(E1000_I2CPARAMS, i2cctl);
3133 wrfl();
3134
3135 /* Initialize the i2c bus which is controlled by the registers.
3136 * This bus will use the i2c_algo_bit structure that implements
3137 * the protocol through toggling of the 4 bits in the register.
3138 */
3139 adapter->i2c_adap.owner = THIS_MODULE;
3140 adapter->i2c_algo = igb_i2c_algo;
3141 adapter->i2c_algo.data = adapter;
3142 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3143 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3144 strscpy(adapter->i2c_adap.name, "igb BB",
3145 sizeof(adapter->i2c_adap.name));
3146 status = i2c_bit_add_bus(&adapter->i2c_adap);
3147 return status;
3148 }
3149
3150 /**
3151 * igb_probe - Device Initialization Routine
3152 * @pdev: PCI device information struct
3153 * @ent: entry in igb_pci_tbl
3154 *
3155 * Returns 0 on success, negative on failure
3156 *
3157 * igb_probe initializes an adapter identified by a pci_dev structure.
3158 * The OS initialization, configuring of the adapter private structure,
3159 * and a hardware reset occur.
3160 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3161 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3162 {
3163 struct net_device *netdev;
3164 struct igb_adapter *adapter;
3165 struct e1000_hw *hw;
3166 u16 eeprom_data = 0;
3167 s32 ret_val;
3168 static int global_quad_port_a; /* global quad port a indication */
3169 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3170 u8 part_str[E1000_PBANUM_LENGTH];
3171 int err;
3172
3173 /* Catch broken hardware that put the wrong VF device ID in
3174 * the PCIe SR-IOV capability.
3175 */
3176 if (pdev->is_virtfn) {
3177 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3178 pci_name(pdev), pdev->vendor, pdev->device);
3179 return -EINVAL;
3180 }
3181
3182 err = pci_enable_device_mem(pdev);
3183 if (err)
3184 return err;
3185
3186 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3187 if (err) {
3188 dev_err(&pdev->dev,
3189 "No usable DMA configuration, aborting\n");
3190 goto err_dma;
3191 }
3192
3193 err = pci_request_mem_regions(pdev, igb_driver_name);
3194 if (err)
3195 goto err_pci_reg;
3196
3197 pci_enable_pcie_error_reporting(pdev);
3198
3199 pci_set_master(pdev);
3200 pci_save_state(pdev);
3201
3202 err = -ENOMEM;
3203 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3204 IGB_MAX_TX_QUEUES);
3205 if (!netdev)
3206 goto err_alloc_etherdev;
3207
3208 SET_NETDEV_DEV(netdev, &pdev->dev);
3209
3210 pci_set_drvdata(pdev, netdev);
3211 adapter = netdev_priv(netdev);
3212 adapter->netdev = netdev;
3213 adapter->pdev = pdev;
3214 hw = &adapter->hw;
3215 hw->back = adapter;
3216 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3217
3218 err = -EIO;
3219 adapter->io_addr = pci_iomap(pdev, 0, 0);
3220 if (!adapter->io_addr)
3221 goto err_ioremap;
3222 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3223 hw->hw_addr = adapter->io_addr;
3224
3225 netdev->netdev_ops = &igb_netdev_ops;
3226 igb_set_ethtool_ops(netdev);
3227 netdev->watchdog_timeo = 5 * HZ;
3228
3229 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3230
3231 netdev->mem_start = pci_resource_start(pdev, 0);
3232 netdev->mem_end = pci_resource_end(pdev, 0);
3233
3234 /* PCI config space info */
3235 hw->vendor_id = pdev->vendor;
3236 hw->device_id = pdev->device;
3237 hw->revision_id = pdev->revision;
3238 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3239 hw->subsystem_device_id = pdev->subsystem_device;
3240
3241 /* Copy the default MAC, PHY and NVM function pointers */
3242 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3243 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3244 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3245 /* Initialize skew-specific constants */
3246 err = ei->get_invariants(hw);
3247 if (err)
3248 goto err_sw_init;
3249
3250 /* setup the private structure */
3251 err = igb_sw_init(adapter);
3252 if (err)
3253 goto err_sw_init;
3254
3255 igb_get_bus_info_pcie(hw);
3256
3257 hw->phy.autoneg_wait_to_complete = false;
3258
3259 /* Copper options */
3260 if (hw->phy.media_type == e1000_media_type_copper) {
3261 hw->phy.mdix = AUTO_ALL_MODES;
3262 hw->phy.disable_polarity_correction = false;
3263 hw->phy.ms_type = e1000_ms_hw_default;
3264 }
3265
3266 if (igb_check_reset_block(hw))
3267 dev_info(&pdev->dev,
3268 "PHY reset is blocked due to SOL/IDER session.\n");
3269
3270 /* features is initialized to 0 in allocation, it might have bits
3271 * set by igb_sw_init so we should use an or instead of an
3272 * assignment.
3273 */
3274 netdev->features |= NETIF_F_SG |
3275 NETIF_F_TSO |
3276 NETIF_F_TSO6 |
3277 NETIF_F_RXHASH |
3278 NETIF_F_RXCSUM |
3279 NETIF_F_HW_CSUM;
3280
3281 if (hw->mac.type >= e1000_82576)
3282 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3283
3284 if (hw->mac.type >= e1000_i350)
3285 netdev->features |= NETIF_F_HW_TC;
3286
3287 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3288 NETIF_F_GSO_GRE_CSUM | \
3289 NETIF_F_GSO_IPXIP4 | \
3290 NETIF_F_GSO_IPXIP6 | \
3291 NETIF_F_GSO_UDP_TUNNEL | \
3292 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3293
3294 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3295 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3296
3297 /* copy netdev features into list of user selectable features */
3298 netdev->hw_features |= netdev->features |
3299 NETIF_F_HW_VLAN_CTAG_RX |
3300 NETIF_F_HW_VLAN_CTAG_TX |
3301 NETIF_F_RXALL;
3302
3303 if (hw->mac.type >= e1000_i350)
3304 netdev->hw_features |= NETIF_F_NTUPLE;
3305
3306 netdev->features |= NETIF_F_HIGHDMA;
3307
3308 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3309 netdev->mpls_features |= NETIF_F_HW_CSUM;
3310 netdev->hw_enc_features |= netdev->vlan_features;
3311
3312 /* set this bit last since it cannot be part of vlan_features */
3313 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3314 NETIF_F_HW_VLAN_CTAG_RX |
3315 NETIF_F_HW_VLAN_CTAG_TX;
3316
3317 netdev->priv_flags |= IFF_SUPP_NOFCS;
3318
3319 netdev->priv_flags |= IFF_UNICAST_FLT;
3320
3321 /* MTU range: 68 - 9216 */
3322 netdev->min_mtu = ETH_MIN_MTU;
3323 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3324
3325 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3326
3327 /* before reading the NVM, reset the controller to put the device in a
3328 * known good starting state
3329 */
3330 hw->mac.ops.reset_hw(hw);
3331
3332 /* make sure the NVM is good , i211/i210 parts can have special NVM
3333 * that doesn't contain a checksum
3334 */
3335 switch (hw->mac.type) {
3336 case e1000_i210:
3337 case e1000_i211:
3338 if (igb_get_flash_presence_i210(hw)) {
3339 if (hw->nvm.ops.validate(hw) < 0) {
3340 dev_err(&pdev->dev,
3341 "The NVM Checksum Is Not Valid\n");
3342 err = -EIO;
3343 goto err_eeprom;
3344 }
3345 }
3346 break;
3347 default:
3348 if (hw->nvm.ops.validate(hw) < 0) {
3349 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3350 err = -EIO;
3351 goto err_eeprom;
3352 }
3353 break;
3354 }
3355
3356 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3357 /* copy the MAC address out of the NVM */
3358 if (hw->mac.ops.read_mac_addr(hw))
3359 dev_err(&pdev->dev, "NVM Read Error\n");
3360 }
3361
3362 eth_hw_addr_set(netdev, hw->mac.addr);
3363
3364 if (!is_valid_ether_addr(netdev->dev_addr)) {
3365 dev_err(&pdev->dev, "Invalid MAC Address\n");
3366 err = -EIO;
3367 goto err_eeprom;
3368 }
3369
3370 igb_set_default_mac_filter(adapter);
3371
3372 /* get firmware version for ethtool -i */
3373 igb_set_fw_version(adapter);
3374
3375 /* configure RXPBSIZE and TXPBSIZE */
3376 if (hw->mac.type == e1000_i210) {
3377 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3378 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3379 }
3380
3381 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3382 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3383
3384 INIT_WORK(&adapter->reset_task, igb_reset_task);
3385 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3386
3387 /* Initialize link properties that are user-changeable */
3388 adapter->fc_autoneg = true;
3389 hw->mac.autoneg = true;
3390 hw->phy.autoneg_advertised = 0x2f;
3391
3392 hw->fc.requested_mode = e1000_fc_default;
3393 hw->fc.current_mode = e1000_fc_default;
3394
3395 igb_validate_mdi_setting(hw);
3396
3397 /* By default, support wake on port A */
3398 if (hw->bus.func == 0)
3399 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3400
3401 /* Check the NVM for wake support on non-port A ports */
3402 if (hw->mac.type >= e1000_82580)
3403 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3404 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3405 &eeprom_data);
3406 else if (hw->bus.func == 1)
3407 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3408
3409 if (eeprom_data & IGB_EEPROM_APME)
3410 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3411
3412 /* now that we have the eeprom settings, apply the special cases where
3413 * the eeprom may be wrong or the board simply won't support wake on
3414 * lan on a particular port
3415 */
3416 switch (pdev->device) {
3417 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3418 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3419 break;
3420 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3421 case E1000_DEV_ID_82576_FIBER:
3422 case E1000_DEV_ID_82576_SERDES:
3423 /* Wake events only supported on port A for dual fiber
3424 * regardless of eeprom setting
3425 */
3426 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3427 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3428 break;
3429 case E1000_DEV_ID_82576_QUAD_COPPER:
3430 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3431 /* if quad port adapter, disable WoL on all but port A */
3432 if (global_quad_port_a != 0)
3433 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3434 else
3435 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3436 /* Reset for multiple quad port adapters */
3437 if (++global_quad_port_a == 4)
3438 global_quad_port_a = 0;
3439 break;
3440 default:
3441 /* If the device can't wake, don't set software support */
3442 if (!device_can_wakeup(&adapter->pdev->dev))
3443 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3444 }
3445
3446 /* initialize the wol settings based on the eeprom settings */
3447 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3448 adapter->wol |= E1000_WUFC_MAG;
3449
3450 /* Some vendors want WoL disabled by default, but still supported */
3451 if ((hw->mac.type == e1000_i350) &&
3452 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3453 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3454 adapter->wol = 0;
3455 }
3456
3457 /* Some vendors want the ability to Use the EEPROM setting as
3458 * enable/disable only, and not for capability
3459 */
3460 if (((hw->mac.type == e1000_i350) ||
3461 (hw->mac.type == e1000_i354)) &&
3462 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3463 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3464 adapter->wol = 0;
3465 }
3466 if (hw->mac.type == e1000_i350) {
3467 if (((pdev->subsystem_device == 0x5001) ||
3468 (pdev->subsystem_device == 0x5002)) &&
3469 (hw->bus.func == 0)) {
3470 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3471 adapter->wol = 0;
3472 }
3473 if (pdev->subsystem_device == 0x1F52)
3474 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3475 }
3476
3477 device_set_wakeup_enable(&adapter->pdev->dev,
3478 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3479
3480 /* reset the hardware with the new settings */
3481 igb_reset(adapter);
3482
3483 /* Init the I2C interface */
3484 err = igb_init_i2c(adapter);
3485 if (err) {
3486 dev_err(&pdev->dev, "failed to init i2c interface\n");
3487 goto err_eeprom;
3488 }
3489
3490 /* let the f/w know that the h/w is now under the control of the
3491 * driver.
3492 */
3493 igb_get_hw_control(adapter);
3494
3495 strcpy(netdev->name, "eth%d");
3496 err = register_netdev(netdev);
3497 if (err)
3498 goto err_register;
3499
3500 /* carrier off reporting is important to ethtool even BEFORE open */
3501 netif_carrier_off(netdev);
3502
3503 #ifdef CONFIG_IGB_DCA
3504 if (dca_add_requester(&pdev->dev) == 0) {
3505 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3506 dev_info(&pdev->dev, "DCA enabled\n");
3507 igb_setup_dca(adapter);
3508 }
3509
3510 #endif
3511 #ifdef CONFIG_IGB_HWMON
3512 /* Initialize the thermal sensor on i350 devices. */
3513 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3514 u16 ets_word;
3515
3516 /* Read the NVM to determine if this i350 device supports an
3517 * external thermal sensor.
3518 */
3519 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3520 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3521 adapter->ets = true;
3522 else
3523 adapter->ets = false;
3524 if (igb_sysfs_init(adapter))
3525 dev_err(&pdev->dev,
3526 "failed to allocate sysfs resources\n");
3527 } else {
3528 adapter->ets = false;
3529 }
3530 #endif
3531 /* Check if Media Autosense is enabled */
3532 adapter->ei = *ei;
3533 if (hw->dev_spec._82575.mas_capable)
3534 igb_init_mas(adapter);
3535
3536 /* do hw tstamp init after resetting */
3537 igb_ptp_init(adapter);
3538
3539 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3540 /* print bus type/speed/width info, not applicable to i354 */
3541 if (hw->mac.type != e1000_i354) {
3542 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3543 netdev->name,
3544 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3545 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3546 "unknown"),
3547 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3548 "Width x4" :
3549 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3550 "Width x2" :
3551 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3552 "Width x1" : "unknown"), netdev->dev_addr);
3553 }
3554
3555 if ((hw->mac.type == e1000_82576 &&
3556 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3557 (hw->mac.type >= e1000_i210 ||
3558 igb_get_flash_presence_i210(hw))) {
3559 ret_val = igb_read_part_string(hw, part_str,
3560 E1000_PBANUM_LENGTH);
3561 } else {
3562 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3563 }
3564
3565 if (ret_val)
3566 strcpy(part_str, "Unknown");
3567 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3568 dev_info(&pdev->dev,
3569 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3570 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3571 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3572 adapter->num_rx_queues, adapter->num_tx_queues);
3573 if (hw->phy.media_type == e1000_media_type_copper) {
3574 switch (hw->mac.type) {
3575 case e1000_i350:
3576 case e1000_i210:
3577 case e1000_i211:
3578 /* Enable EEE for internal copper PHY devices */
3579 err = igb_set_eee_i350(hw, true, true);
3580 if ((!err) &&
3581 (!hw->dev_spec._82575.eee_disable)) {
3582 adapter->eee_advert =
3583 MDIO_EEE_100TX | MDIO_EEE_1000T;
3584 adapter->flags |= IGB_FLAG_EEE;
3585 }
3586 break;
3587 case e1000_i354:
3588 if ((rd32(E1000_CTRL_EXT) &
3589 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3590 err = igb_set_eee_i354(hw, true, true);
3591 if ((!err) &&
3592 (!hw->dev_spec._82575.eee_disable)) {
3593 adapter->eee_advert =
3594 MDIO_EEE_100TX | MDIO_EEE_1000T;
3595 adapter->flags |= IGB_FLAG_EEE;
3596 }
3597 }
3598 break;
3599 default:
3600 break;
3601 }
3602 }
3603
3604 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3605
3606 pm_runtime_put_noidle(&pdev->dev);
3607 return 0;
3608
3609 err_register:
3610 igb_release_hw_control(adapter);
3611 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3612 err_eeprom:
3613 if (!igb_check_reset_block(hw))
3614 igb_reset_phy(hw);
3615
3616 if (hw->flash_address)
3617 iounmap(hw->flash_address);
3618 err_sw_init:
3619 kfree(adapter->mac_table);
3620 kfree(adapter->shadow_vfta);
3621 igb_clear_interrupt_scheme(adapter);
3622 #ifdef CONFIG_PCI_IOV
3623 igb_disable_sriov(pdev);
3624 #endif
3625 pci_iounmap(pdev, adapter->io_addr);
3626 err_ioremap:
3627 free_netdev(netdev);
3628 err_alloc_etherdev:
3629 pci_disable_pcie_error_reporting(pdev);
3630 pci_release_mem_regions(pdev);
3631 err_pci_reg:
3632 err_dma:
3633 pci_disable_device(pdev);
3634 return err;
3635 }
3636
3637 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3638 static int igb_disable_sriov(struct pci_dev *pdev)
3639 {
3640 struct net_device *netdev = pci_get_drvdata(pdev);
3641 struct igb_adapter *adapter = netdev_priv(netdev);
3642 struct e1000_hw *hw = &adapter->hw;
3643 unsigned long flags;
3644
3645 /* reclaim resources allocated to VFs */
3646 if (adapter->vf_data) {
3647 /* disable iov and allow time for transactions to clear */
3648 if (pci_vfs_assigned(pdev)) {
3649 dev_warn(&pdev->dev,
3650 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3651 return -EPERM;
3652 } else {
3653 pci_disable_sriov(pdev);
3654 msleep(500);
3655 }
3656 spin_lock_irqsave(&adapter->vfs_lock, flags);
3657 kfree(adapter->vf_mac_list);
3658 adapter->vf_mac_list = NULL;
3659 kfree(adapter->vf_data);
3660 adapter->vf_data = NULL;
3661 adapter->vfs_allocated_count = 0;
3662 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3663 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3664 wrfl();
3665 msleep(100);
3666 dev_info(&pdev->dev, "IOV Disabled\n");
3667
3668 /* Re-enable DMA Coalescing flag since IOV is turned off */
3669 adapter->flags |= IGB_FLAG_DMAC;
3670 }
3671
3672 return 0;
3673 }
3674
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3675 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3676 {
3677 struct net_device *netdev = pci_get_drvdata(pdev);
3678 struct igb_adapter *adapter = netdev_priv(netdev);
3679 int old_vfs = pci_num_vf(pdev);
3680 struct vf_mac_filter *mac_list;
3681 int err = 0;
3682 int num_vf_mac_filters, i;
3683
3684 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3685 err = -EPERM;
3686 goto out;
3687 }
3688 if (!num_vfs)
3689 goto out;
3690
3691 if (old_vfs) {
3692 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3693 old_vfs, max_vfs);
3694 adapter->vfs_allocated_count = old_vfs;
3695 } else
3696 adapter->vfs_allocated_count = num_vfs;
3697
3698 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3699 sizeof(struct vf_data_storage), GFP_KERNEL);
3700
3701 /* if allocation failed then we do not support SR-IOV */
3702 if (!adapter->vf_data) {
3703 adapter->vfs_allocated_count = 0;
3704 err = -ENOMEM;
3705 goto out;
3706 }
3707
3708 /* Due to the limited number of RAR entries calculate potential
3709 * number of MAC filters available for the VFs. Reserve entries
3710 * for PF default MAC, PF MAC filters and at least one RAR entry
3711 * for each VF for VF MAC.
3712 */
3713 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3714 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3715 adapter->vfs_allocated_count);
3716
3717 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3718 sizeof(struct vf_mac_filter),
3719 GFP_KERNEL);
3720
3721 mac_list = adapter->vf_mac_list;
3722 INIT_LIST_HEAD(&adapter->vf_macs.l);
3723
3724 if (adapter->vf_mac_list) {
3725 /* Initialize list of VF MAC filters */
3726 for (i = 0; i < num_vf_mac_filters; i++) {
3727 mac_list->vf = -1;
3728 mac_list->free = true;
3729 list_add(&mac_list->l, &adapter->vf_macs.l);
3730 mac_list++;
3731 }
3732 } else {
3733 /* If we could not allocate memory for the VF MAC filters
3734 * we can continue without this feature but warn user.
3735 */
3736 dev_err(&pdev->dev,
3737 "Unable to allocate memory for VF MAC filter list\n");
3738 }
3739
3740 /* only call pci_enable_sriov() if no VFs are allocated already */
3741 if (!old_vfs) {
3742 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3743 if (err)
3744 goto err_out;
3745 }
3746 dev_info(&pdev->dev, "%d VFs allocated\n",
3747 adapter->vfs_allocated_count);
3748 for (i = 0; i < adapter->vfs_allocated_count; i++)
3749 igb_vf_configure(adapter, i);
3750
3751 /* DMA Coalescing is not supported in IOV mode. */
3752 adapter->flags &= ~IGB_FLAG_DMAC;
3753 goto out;
3754
3755 err_out:
3756 kfree(adapter->vf_mac_list);
3757 adapter->vf_mac_list = NULL;
3758 kfree(adapter->vf_data);
3759 adapter->vf_data = NULL;
3760 adapter->vfs_allocated_count = 0;
3761 out:
3762 return err;
3763 }
3764
3765 #endif
3766 /**
3767 * igb_remove_i2c - Cleanup I2C interface
3768 * @adapter: pointer to adapter structure
3769 **/
igb_remove_i2c(struct igb_adapter * adapter)3770 static void igb_remove_i2c(struct igb_adapter *adapter)
3771 {
3772 /* free the adapter bus structure */
3773 i2c_del_adapter(&adapter->i2c_adap);
3774 }
3775
3776 /**
3777 * igb_remove - Device Removal Routine
3778 * @pdev: PCI device information struct
3779 *
3780 * igb_remove is called by the PCI subsystem to alert the driver
3781 * that it should release a PCI device. The could be caused by a
3782 * Hot-Plug event, or because the driver is going to be removed from
3783 * memory.
3784 **/
igb_remove(struct pci_dev * pdev)3785 static void igb_remove(struct pci_dev *pdev)
3786 {
3787 struct net_device *netdev = pci_get_drvdata(pdev);
3788 struct igb_adapter *adapter = netdev_priv(netdev);
3789 struct e1000_hw *hw = &adapter->hw;
3790
3791 pm_runtime_get_noresume(&pdev->dev);
3792 #ifdef CONFIG_IGB_HWMON
3793 igb_sysfs_exit(adapter);
3794 #endif
3795 igb_remove_i2c(adapter);
3796 igb_ptp_stop(adapter);
3797 /* The watchdog timer may be rescheduled, so explicitly
3798 * disable watchdog from being rescheduled.
3799 */
3800 set_bit(__IGB_DOWN, &adapter->state);
3801 del_timer_sync(&adapter->watchdog_timer);
3802 del_timer_sync(&adapter->phy_info_timer);
3803
3804 cancel_work_sync(&adapter->reset_task);
3805 cancel_work_sync(&adapter->watchdog_task);
3806
3807 #ifdef CONFIG_IGB_DCA
3808 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3809 dev_info(&pdev->dev, "DCA disabled\n");
3810 dca_remove_requester(&pdev->dev);
3811 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3812 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3813 }
3814 #endif
3815
3816 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3817 * would have already happened in close and is redundant.
3818 */
3819 igb_release_hw_control(adapter);
3820
3821 #ifdef CONFIG_PCI_IOV
3822 rtnl_lock();
3823 igb_disable_sriov(pdev);
3824 rtnl_unlock();
3825 #endif
3826
3827 unregister_netdev(netdev);
3828
3829 igb_clear_interrupt_scheme(adapter);
3830
3831 pci_iounmap(pdev, adapter->io_addr);
3832 if (hw->flash_address)
3833 iounmap(hw->flash_address);
3834 pci_release_mem_regions(pdev);
3835
3836 kfree(adapter->mac_table);
3837 kfree(adapter->shadow_vfta);
3838 free_netdev(netdev);
3839
3840 pci_disable_pcie_error_reporting(pdev);
3841
3842 pci_disable_device(pdev);
3843 }
3844
3845 /**
3846 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3847 * @adapter: board private structure to initialize
3848 *
3849 * This function initializes the vf specific data storage and then attempts to
3850 * allocate the VFs. The reason for ordering it this way is because it is much
3851 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3852 * the memory for the VFs.
3853 **/
igb_probe_vfs(struct igb_adapter * adapter)3854 static void igb_probe_vfs(struct igb_adapter *adapter)
3855 {
3856 #ifdef CONFIG_PCI_IOV
3857 struct pci_dev *pdev = adapter->pdev;
3858 struct e1000_hw *hw = &adapter->hw;
3859
3860 /* Virtualization features not supported on i210 family. */
3861 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3862 return;
3863
3864 /* Of the below we really only want the effect of getting
3865 * IGB_FLAG_HAS_MSIX set (if available), without which
3866 * igb_enable_sriov() has no effect.
3867 */
3868 igb_set_interrupt_capability(adapter, true);
3869 igb_reset_interrupt_capability(adapter);
3870
3871 pci_sriov_set_totalvfs(pdev, 7);
3872 igb_enable_sriov(pdev, max_vfs);
3873
3874 #endif /* CONFIG_PCI_IOV */
3875 }
3876
igb_get_max_rss_queues(struct igb_adapter * adapter)3877 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3878 {
3879 struct e1000_hw *hw = &adapter->hw;
3880 unsigned int max_rss_queues;
3881
3882 /* Determine the maximum number of RSS queues supported. */
3883 switch (hw->mac.type) {
3884 case e1000_i211:
3885 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3886 break;
3887 case e1000_82575:
3888 case e1000_i210:
3889 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3890 break;
3891 case e1000_i350:
3892 /* I350 cannot do RSS and SR-IOV at the same time */
3893 if (!!adapter->vfs_allocated_count) {
3894 max_rss_queues = 1;
3895 break;
3896 }
3897 fallthrough;
3898 case e1000_82576:
3899 if (!!adapter->vfs_allocated_count) {
3900 max_rss_queues = 2;
3901 break;
3902 }
3903 fallthrough;
3904 case e1000_82580:
3905 case e1000_i354:
3906 default:
3907 max_rss_queues = IGB_MAX_RX_QUEUES;
3908 break;
3909 }
3910
3911 return max_rss_queues;
3912 }
3913
igb_init_queue_configuration(struct igb_adapter * adapter)3914 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3915 {
3916 u32 max_rss_queues;
3917
3918 max_rss_queues = igb_get_max_rss_queues(adapter);
3919 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3920
3921 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3922 }
3923
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3924 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3925 const u32 max_rss_queues)
3926 {
3927 struct e1000_hw *hw = &adapter->hw;
3928
3929 /* Determine if we need to pair queues. */
3930 switch (hw->mac.type) {
3931 case e1000_82575:
3932 case e1000_i211:
3933 /* Device supports enough interrupts without queue pairing. */
3934 break;
3935 case e1000_82576:
3936 case e1000_82580:
3937 case e1000_i350:
3938 case e1000_i354:
3939 case e1000_i210:
3940 default:
3941 /* If rss_queues > half of max_rss_queues, pair the queues in
3942 * order to conserve interrupts due to limited supply.
3943 */
3944 if (adapter->rss_queues > (max_rss_queues / 2))
3945 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3946 else
3947 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3948 break;
3949 }
3950 }
3951
3952 /**
3953 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3954 * @adapter: board private structure to initialize
3955 *
3956 * igb_sw_init initializes the Adapter private data structure.
3957 * Fields are initialized based on PCI device information and
3958 * OS network device settings (MTU size).
3959 **/
igb_sw_init(struct igb_adapter * adapter)3960 static int igb_sw_init(struct igb_adapter *adapter)
3961 {
3962 struct e1000_hw *hw = &adapter->hw;
3963 struct net_device *netdev = adapter->netdev;
3964 struct pci_dev *pdev = adapter->pdev;
3965
3966 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3967
3968 /* set default ring sizes */
3969 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3970 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3971
3972 /* set default ITR values */
3973 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3974 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3975
3976 /* set default work limits */
3977 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3978
3979 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3980 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3981
3982 spin_lock_init(&adapter->nfc_lock);
3983 spin_lock_init(&adapter->stats64_lock);
3984
3985 /* init spinlock to avoid concurrency of VF resources */
3986 spin_lock_init(&adapter->vfs_lock);
3987 #ifdef CONFIG_PCI_IOV
3988 switch (hw->mac.type) {
3989 case e1000_82576:
3990 case e1000_i350:
3991 if (max_vfs > 7) {
3992 dev_warn(&pdev->dev,
3993 "Maximum of 7 VFs per PF, using max\n");
3994 max_vfs = adapter->vfs_allocated_count = 7;
3995 } else
3996 adapter->vfs_allocated_count = max_vfs;
3997 if (adapter->vfs_allocated_count)
3998 dev_warn(&pdev->dev,
3999 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4000 break;
4001 default:
4002 break;
4003 }
4004 #endif /* CONFIG_PCI_IOV */
4005
4006 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4007 adapter->flags |= IGB_FLAG_HAS_MSIX;
4008
4009 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4010 sizeof(struct igb_mac_addr),
4011 GFP_KERNEL);
4012 if (!adapter->mac_table)
4013 return -ENOMEM;
4014
4015 igb_probe_vfs(adapter);
4016
4017 igb_init_queue_configuration(adapter);
4018
4019 /* Setup and initialize a copy of the hw vlan table array */
4020 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4021 GFP_KERNEL);
4022 if (!adapter->shadow_vfta)
4023 return -ENOMEM;
4024
4025 /* This call may decrease the number of queues */
4026 if (igb_init_interrupt_scheme(adapter, true)) {
4027 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4028 return -ENOMEM;
4029 }
4030
4031 /* Explicitly disable IRQ since the NIC can be in any state. */
4032 igb_irq_disable(adapter);
4033
4034 if (hw->mac.type >= e1000_i350)
4035 adapter->flags &= ~IGB_FLAG_DMAC;
4036
4037 set_bit(__IGB_DOWN, &adapter->state);
4038 return 0;
4039 }
4040
4041 /**
4042 * __igb_open - Called when a network interface is made active
4043 * @netdev: network interface device structure
4044 * @resuming: indicates whether we are in a resume call
4045 *
4046 * Returns 0 on success, negative value on failure
4047 *
4048 * The open entry point is called when a network interface is made
4049 * active by the system (IFF_UP). At this point all resources needed
4050 * for transmit and receive operations are allocated, the interrupt
4051 * handler is registered with the OS, the watchdog timer is started,
4052 * and the stack is notified that the interface is ready.
4053 **/
__igb_open(struct net_device * netdev,bool resuming)4054 static int __igb_open(struct net_device *netdev, bool resuming)
4055 {
4056 struct igb_adapter *adapter = netdev_priv(netdev);
4057 struct e1000_hw *hw = &adapter->hw;
4058 struct pci_dev *pdev = adapter->pdev;
4059 int err;
4060 int i;
4061
4062 /* disallow open during test */
4063 if (test_bit(__IGB_TESTING, &adapter->state)) {
4064 WARN_ON(resuming);
4065 return -EBUSY;
4066 }
4067
4068 if (!resuming)
4069 pm_runtime_get_sync(&pdev->dev);
4070
4071 netif_carrier_off(netdev);
4072
4073 /* allocate transmit descriptors */
4074 err = igb_setup_all_tx_resources(adapter);
4075 if (err)
4076 goto err_setup_tx;
4077
4078 /* allocate receive descriptors */
4079 err = igb_setup_all_rx_resources(adapter);
4080 if (err)
4081 goto err_setup_rx;
4082
4083 igb_power_up_link(adapter);
4084
4085 /* before we allocate an interrupt, we must be ready to handle it.
4086 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4087 * as soon as we call pci_request_irq, so we have to setup our
4088 * clean_rx handler before we do so.
4089 */
4090 igb_configure(adapter);
4091
4092 err = igb_request_irq(adapter);
4093 if (err)
4094 goto err_req_irq;
4095
4096 /* Notify the stack of the actual queue counts. */
4097 err = netif_set_real_num_tx_queues(adapter->netdev,
4098 adapter->num_tx_queues);
4099 if (err)
4100 goto err_set_queues;
4101
4102 err = netif_set_real_num_rx_queues(adapter->netdev,
4103 adapter->num_rx_queues);
4104 if (err)
4105 goto err_set_queues;
4106
4107 /* From here on the code is the same as igb_up() */
4108 clear_bit(__IGB_DOWN, &adapter->state);
4109
4110 for (i = 0; i < adapter->num_q_vectors; i++)
4111 napi_enable(&(adapter->q_vector[i]->napi));
4112
4113 /* Clear any pending interrupts. */
4114 rd32(E1000_TSICR);
4115 rd32(E1000_ICR);
4116
4117 igb_irq_enable(adapter);
4118
4119 /* notify VFs that reset has been completed */
4120 if (adapter->vfs_allocated_count) {
4121 u32 reg_data = rd32(E1000_CTRL_EXT);
4122
4123 reg_data |= E1000_CTRL_EXT_PFRSTD;
4124 wr32(E1000_CTRL_EXT, reg_data);
4125 }
4126
4127 netif_tx_start_all_queues(netdev);
4128
4129 if (!resuming)
4130 pm_runtime_put(&pdev->dev);
4131
4132 /* start the watchdog. */
4133 hw->mac.get_link_status = 1;
4134 schedule_work(&adapter->watchdog_task);
4135
4136 return 0;
4137
4138 err_set_queues:
4139 igb_free_irq(adapter);
4140 err_req_irq:
4141 igb_release_hw_control(adapter);
4142 igb_power_down_link(adapter);
4143 igb_free_all_rx_resources(adapter);
4144 err_setup_rx:
4145 igb_free_all_tx_resources(adapter);
4146 err_setup_tx:
4147 igb_reset(adapter);
4148 if (!resuming)
4149 pm_runtime_put(&pdev->dev);
4150
4151 return err;
4152 }
4153
igb_open(struct net_device * netdev)4154 int igb_open(struct net_device *netdev)
4155 {
4156 return __igb_open(netdev, false);
4157 }
4158
4159 /**
4160 * __igb_close - Disables a network interface
4161 * @netdev: network interface device structure
4162 * @suspending: indicates we are in a suspend call
4163 *
4164 * Returns 0, this is not allowed to fail
4165 *
4166 * The close entry point is called when an interface is de-activated
4167 * by the OS. The hardware is still under the driver's control, but
4168 * needs to be disabled. A global MAC reset is issued to stop the
4169 * hardware, and all transmit and receive resources are freed.
4170 **/
__igb_close(struct net_device * netdev,bool suspending)4171 static int __igb_close(struct net_device *netdev, bool suspending)
4172 {
4173 struct igb_adapter *adapter = netdev_priv(netdev);
4174 struct pci_dev *pdev = adapter->pdev;
4175
4176 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4177
4178 if (!suspending)
4179 pm_runtime_get_sync(&pdev->dev);
4180
4181 igb_down(adapter);
4182 igb_free_irq(adapter);
4183
4184 igb_free_all_tx_resources(adapter);
4185 igb_free_all_rx_resources(adapter);
4186
4187 if (!suspending)
4188 pm_runtime_put_sync(&pdev->dev);
4189 return 0;
4190 }
4191
igb_close(struct net_device * netdev)4192 int igb_close(struct net_device *netdev)
4193 {
4194 if (netif_device_present(netdev) || netdev->dismantle)
4195 return __igb_close(netdev, false);
4196 return 0;
4197 }
4198
4199 /**
4200 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4201 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4202 *
4203 * Return 0 on success, negative on failure
4204 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4205 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4206 {
4207 struct device *dev = tx_ring->dev;
4208 int size;
4209
4210 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4211
4212 tx_ring->tx_buffer_info = vmalloc(size);
4213 if (!tx_ring->tx_buffer_info)
4214 goto err;
4215
4216 /* round up to nearest 4K */
4217 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4218 tx_ring->size = ALIGN(tx_ring->size, 4096);
4219
4220 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4221 &tx_ring->dma, GFP_KERNEL);
4222 if (!tx_ring->desc)
4223 goto err;
4224
4225 tx_ring->next_to_use = 0;
4226 tx_ring->next_to_clean = 0;
4227
4228 return 0;
4229
4230 err:
4231 vfree(tx_ring->tx_buffer_info);
4232 tx_ring->tx_buffer_info = NULL;
4233 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4234 return -ENOMEM;
4235 }
4236
4237 /**
4238 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4239 * (Descriptors) for all queues
4240 * @adapter: board private structure
4241 *
4242 * Return 0 on success, negative on failure
4243 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4244 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4245 {
4246 struct pci_dev *pdev = adapter->pdev;
4247 int i, err = 0;
4248
4249 for (i = 0; i < adapter->num_tx_queues; i++) {
4250 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4251 if (err) {
4252 dev_err(&pdev->dev,
4253 "Allocation for Tx Queue %u failed\n", i);
4254 for (i--; i >= 0; i--)
4255 igb_free_tx_resources(adapter->tx_ring[i]);
4256 break;
4257 }
4258 }
4259
4260 return err;
4261 }
4262
4263 /**
4264 * igb_setup_tctl - configure the transmit control registers
4265 * @adapter: Board private structure
4266 **/
igb_setup_tctl(struct igb_adapter * adapter)4267 void igb_setup_tctl(struct igb_adapter *adapter)
4268 {
4269 struct e1000_hw *hw = &adapter->hw;
4270 u32 tctl;
4271
4272 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4273 wr32(E1000_TXDCTL(0), 0);
4274
4275 /* Program the Transmit Control Register */
4276 tctl = rd32(E1000_TCTL);
4277 tctl &= ~E1000_TCTL_CT;
4278 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4279 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4280
4281 igb_config_collision_dist(hw);
4282
4283 /* Enable transmits */
4284 tctl |= E1000_TCTL_EN;
4285
4286 wr32(E1000_TCTL, tctl);
4287 }
4288
4289 /**
4290 * igb_configure_tx_ring - Configure transmit ring after Reset
4291 * @adapter: board private structure
4292 * @ring: tx ring to configure
4293 *
4294 * Configure a transmit ring after a reset.
4295 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4296 void igb_configure_tx_ring(struct igb_adapter *adapter,
4297 struct igb_ring *ring)
4298 {
4299 struct e1000_hw *hw = &adapter->hw;
4300 u32 txdctl = 0;
4301 u64 tdba = ring->dma;
4302 int reg_idx = ring->reg_idx;
4303
4304 wr32(E1000_TDLEN(reg_idx),
4305 ring->count * sizeof(union e1000_adv_tx_desc));
4306 wr32(E1000_TDBAL(reg_idx),
4307 tdba & 0x00000000ffffffffULL);
4308 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4309
4310 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4311 wr32(E1000_TDH(reg_idx), 0);
4312 writel(0, ring->tail);
4313
4314 txdctl |= IGB_TX_PTHRESH;
4315 txdctl |= IGB_TX_HTHRESH << 8;
4316 txdctl |= IGB_TX_WTHRESH << 16;
4317
4318 /* reinitialize tx_buffer_info */
4319 memset(ring->tx_buffer_info, 0,
4320 sizeof(struct igb_tx_buffer) * ring->count);
4321
4322 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4323 wr32(E1000_TXDCTL(reg_idx), txdctl);
4324 }
4325
4326 /**
4327 * igb_configure_tx - Configure transmit Unit after Reset
4328 * @adapter: board private structure
4329 *
4330 * Configure the Tx unit of the MAC after a reset.
4331 **/
igb_configure_tx(struct igb_adapter * adapter)4332 static void igb_configure_tx(struct igb_adapter *adapter)
4333 {
4334 struct e1000_hw *hw = &adapter->hw;
4335 int i;
4336
4337 /* disable the queues */
4338 for (i = 0; i < adapter->num_tx_queues; i++)
4339 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4340
4341 wrfl();
4342 usleep_range(10000, 20000);
4343
4344 for (i = 0; i < adapter->num_tx_queues; i++)
4345 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4346 }
4347
4348 /**
4349 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4350 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4351 *
4352 * Returns 0 on success, negative on failure
4353 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4354 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4355 {
4356 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4357 struct device *dev = rx_ring->dev;
4358 int size, res;
4359
4360 /* XDP RX-queue info */
4361 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4362 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4363 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4364 rx_ring->queue_index, 0);
4365 if (res < 0) {
4366 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4367 rx_ring->queue_index);
4368 return res;
4369 }
4370
4371 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4372
4373 rx_ring->rx_buffer_info = vmalloc(size);
4374 if (!rx_ring->rx_buffer_info)
4375 goto err;
4376
4377 /* Round up to nearest 4K */
4378 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4379 rx_ring->size = ALIGN(rx_ring->size, 4096);
4380
4381 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4382 &rx_ring->dma, GFP_KERNEL);
4383 if (!rx_ring->desc)
4384 goto err;
4385
4386 rx_ring->next_to_alloc = 0;
4387 rx_ring->next_to_clean = 0;
4388 rx_ring->next_to_use = 0;
4389
4390 rx_ring->xdp_prog = adapter->xdp_prog;
4391
4392 return 0;
4393
4394 err:
4395 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4396 vfree(rx_ring->rx_buffer_info);
4397 rx_ring->rx_buffer_info = NULL;
4398 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4399 return -ENOMEM;
4400 }
4401
4402 /**
4403 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4404 * (Descriptors) for all queues
4405 * @adapter: board private structure
4406 *
4407 * Return 0 on success, negative on failure
4408 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4409 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4410 {
4411 struct pci_dev *pdev = adapter->pdev;
4412 int i, err = 0;
4413
4414 for (i = 0; i < adapter->num_rx_queues; i++) {
4415 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4416 if (err) {
4417 dev_err(&pdev->dev,
4418 "Allocation for Rx Queue %u failed\n", i);
4419 for (i--; i >= 0; i--)
4420 igb_free_rx_resources(adapter->rx_ring[i]);
4421 break;
4422 }
4423 }
4424
4425 return err;
4426 }
4427
4428 /**
4429 * igb_setup_mrqc - configure the multiple receive queue control registers
4430 * @adapter: Board private structure
4431 **/
igb_setup_mrqc(struct igb_adapter * adapter)4432 static void igb_setup_mrqc(struct igb_adapter *adapter)
4433 {
4434 struct e1000_hw *hw = &adapter->hw;
4435 u32 mrqc, rxcsum;
4436 u32 j, num_rx_queues;
4437 u32 rss_key[10];
4438
4439 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4440 for (j = 0; j < 10; j++)
4441 wr32(E1000_RSSRK(j), rss_key[j]);
4442
4443 num_rx_queues = adapter->rss_queues;
4444
4445 switch (hw->mac.type) {
4446 case e1000_82576:
4447 /* 82576 supports 2 RSS queues for SR-IOV */
4448 if (adapter->vfs_allocated_count)
4449 num_rx_queues = 2;
4450 break;
4451 default:
4452 break;
4453 }
4454
4455 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4456 for (j = 0; j < IGB_RETA_SIZE; j++)
4457 adapter->rss_indir_tbl[j] =
4458 (j * num_rx_queues) / IGB_RETA_SIZE;
4459 adapter->rss_indir_tbl_init = num_rx_queues;
4460 }
4461 igb_write_rss_indir_tbl(adapter);
4462
4463 /* Disable raw packet checksumming so that RSS hash is placed in
4464 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4465 * offloads as they are enabled by default
4466 */
4467 rxcsum = rd32(E1000_RXCSUM);
4468 rxcsum |= E1000_RXCSUM_PCSD;
4469
4470 if (adapter->hw.mac.type >= e1000_82576)
4471 /* Enable Receive Checksum Offload for SCTP */
4472 rxcsum |= E1000_RXCSUM_CRCOFL;
4473
4474 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4475 wr32(E1000_RXCSUM, rxcsum);
4476
4477 /* Generate RSS hash based on packet types, TCP/UDP
4478 * port numbers and/or IPv4/v6 src and dst addresses
4479 */
4480 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4481 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4482 E1000_MRQC_RSS_FIELD_IPV6 |
4483 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4484 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4485
4486 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4487 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4488 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4489 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4490
4491 /* If VMDq is enabled then we set the appropriate mode for that, else
4492 * we default to RSS so that an RSS hash is calculated per packet even
4493 * if we are only using one queue
4494 */
4495 if (adapter->vfs_allocated_count) {
4496 if (hw->mac.type > e1000_82575) {
4497 /* Set the default pool for the PF's first queue */
4498 u32 vtctl = rd32(E1000_VT_CTL);
4499
4500 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4501 E1000_VT_CTL_DISABLE_DEF_POOL);
4502 vtctl |= adapter->vfs_allocated_count <<
4503 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4504 wr32(E1000_VT_CTL, vtctl);
4505 }
4506 if (adapter->rss_queues > 1)
4507 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4508 else
4509 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4510 } else {
4511 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4512 }
4513 igb_vmm_control(adapter);
4514
4515 wr32(E1000_MRQC, mrqc);
4516 }
4517
4518 /**
4519 * igb_setup_rctl - configure the receive control registers
4520 * @adapter: Board private structure
4521 **/
igb_setup_rctl(struct igb_adapter * adapter)4522 void igb_setup_rctl(struct igb_adapter *adapter)
4523 {
4524 struct e1000_hw *hw = &adapter->hw;
4525 u32 rctl;
4526
4527 rctl = rd32(E1000_RCTL);
4528
4529 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4530 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4531
4532 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4533 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4534
4535 /* enable stripping of CRC. It's unlikely this will break BMC
4536 * redirection as it did with e1000. Newer features require
4537 * that the HW strips the CRC.
4538 */
4539 rctl |= E1000_RCTL_SECRC;
4540
4541 /* disable store bad packets and clear size bits. */
4542 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4543
4544 /* enable LPE to allow for reception of jumbo frames */
4545 rctl |= E1000_RCTL_LPE;
4546
4547 /* disable queue 0 to prevent tail write w/o re-config */
4548 wr32(E1000_RXDCTL(0), 0);
4549
4550 /* Attention!!! For SR-IOV PF driver operations you must enable
4551 * queue drop for all VF and PF queues to prevent head of line blocking
4552 * if an un-trusted VF does not provide descriptors to hardware.
4553 */
4554 if (adapter->vfs_allocated_count) {
4555 /* set all queue drop enable bits */
4556 wr32(E1000_QDE, ALL_QUEUES);
4557 }
4558
4559 /* This is useful for sniffing bad packets. */
4560 if (adapter->netdev->features & NETIF_F_RXALL) {
4561 /* UPE and MPE will be handled by normal PROMISC logic
4562 * in e1000e_set_rx_mode
4563 */
4564 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4565 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4566 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4567
4568 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4569 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4570 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4571 * and that breaks VLANs.
4572 */
4573 }
4574
4575 wr32(E1000_RCTL, rctl);
4576 }
4577
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4578 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4579 int vfn)
4580 {
4581 struct e1000_hw *hw = &adapter->hw;
4582 u32 vmolr;
4583
4584 if (size > MAX_JUMBO_FRAME_SIZE)
4585 size = MAX_JUMBO_FRAME_SIZE;
4586
4587 vmolr = rd32(E1000_VMOLR(vfn));
4588 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4589 vmolr |= size | E1000_VMOLR_LPE;
4590 wr32(E1000_VMOLR(vfn), vmolr);
4591
4592 return 0;
4593 }
4594
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4595 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4596 int vfn, bool enable)
4597 {
4598 struct e1000_hw *hw = &adapter->hw;
4599 u32 val, reg;
4600
4601 if (hw->mac.type < e1000_82576)
4602 return;
4603
4604 if (hw->mac.type == e1000_i350)
4605 reg = E1000_DVMOLR(vfn);
4606 else
4607 reg = E1000_VMOLR(vfn);
4608
4609 val = rd32(reg);
4610 if (enable)
4611 val |= E1000_VMOLR_STRVLAN;
4612 else
4613 val &= ~(E1000_VMOLR_STRVLAN);
4614 wr32(reg, val);
4615 }
4616
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4617 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4618 int vfn, bool aupe)
4619 {
4620 struct e1000_hw *hw = &adapter->hw;
4621 u32 vmolr;
4622
4623 /* This register exists only on 82576 and newer so if we are older then
4624 * we should exit and do nothing
4625 */
4626 if (hw->mac.type < e1000_82576)
4627 return;
4628
4629 vmolr = rd32(E1000_VMOLR(vfn));
4630 if (aupe)
4631 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4632 else
4633 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4634
4635 /* clear all bits that might not be set */
4636 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4637
4638 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4639 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4640 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4641 * multicast packets
4642 */
4643 if (vfn <= adapter->vfs_allocated_count)
4644 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4645
4646 wr32(E1000_VMOLR(vfn), vmolr);
4647 }
4648
4649 /**
4650 * igb_setup_srrctl - configure the split and replication receive control
4651 * registers
4652 * @adapter: Board private structure
4653 * @ring: receive ring to be configured
4654 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4655 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4656 {
4657 struct e1000_hw *hw = &adapter->hw;
4658 int reg_idx = ring->reg_idx;
4659 u32 srrctl = 0;
4660
4661 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4662 if (ring_uses_large_buffer(ring))
4663 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4664 else
4665 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4666 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4667 if (hw->mac.type >= e1000_82580)
4668 srrctl |= E1000_SRRCTL_TIMESTAMP;
4669 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4670 * queues and rx flow control is disabled
4671 */
4672 if (adapter->vfs_allocated_count ||
4673 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4674 adapter->num_rx_queues > 1))
4675 srrctl |= E1000_SRRCTL_DROP_EN;
4676
4677 wr32(E1000_SRRCTL(reg_idx), srrctl);
4678 }
4679
4680 /**
4681 * igb_configure_rx_ring - Configure a receive ring after Reset
4682 * @adapter: board private structure
4683 * @ring: receive ring to be configured
4684 *
4685 * Configure the Rx unit of the MAC after a reset.
4686 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4687 void igb_configure_rx_ring(struct igb_adapter *adapter,
4688 struct igb_ring *ring)
4689 {
4690 struct e1000_hw *hw = &adapter->hw;
4691 union e1000_adv_rx_desc *rx_desc;
4692 u64 rdba = ring->dma;
4693 int reg_idx = ring->reg_idx;
4694 u32 rxdctl = 0;
4695
4696 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4697 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4698 MEM_TYPE_PAGE_SHARED, NULL));
4699
4700 /* disable the queue */
4701 wr32(E1000_RXDCTL(reg_idx), 0);
4702
4703 /* Set DMA base address registers */
4704 wr32(E1000_RDBAL(reg_idx),
4705 rdba & 0x00000000ffffffffULL);
4706 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4707 wr32(E1000_RDLEN(reg_idx),
4708 ring->count * sizeof(union e1000_adv_rx_desc));
4709
4710 /* initialize head and tail */
4711 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4712 wr32(E1000_RDH(reg_idx), 0);
4713 writel(0, ring->tail);
4714
4715 /* set descriptor configuration */
4716 igb_setup_srrctl(adapter, ring);
4717
4718 /* set filtering for VMDQ pools */
4719 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4720
4721 rxdctl |= IGB_RX_PTHRESH;
4722 rxdctl |= IGB_RX_HTHRESH << 8;
4723 rxdctl |= IGB_RX_WTHRESH << 16;
4724
4725 /* initialize rx_buffer_info */
4726 memset(ring->rx_buffer_info, 0,
4727 sizeof(struct igb_rx_buffer) * ring->count);
4728
4729 /* initialize Rx descriptor 0 */
4730 rx_desc = IGB_RX_DESC(ring, 0);
4731 rx_desc->wb.upper.length = 0;
4732
4733 /* enable receive descriptor fetching */
4734 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4735 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4736 }
4737
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4738 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4739 struct igb_ring *rx_ring)
4740 {
4741 /* set build_skb and buffer size flags */
4742 clear_ring_build_skb_enabled(rx_ring);
4743 clear_ring_uses_large_buffer(rx_ring);
4744
4745 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4746 return;
4747
4748 set_ring_build_skb_enabled(rx_ring);
4749
4750 #if (PAGE_SIZE < 8192)
4751 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4752 return;
4753
4754 set_ring_uses_large_buffer(rx_ring);
4755 #endif
4756 }
4757
4758 /**
4759 * igb_configure_rx - Configure receive Unit after Reset
4760 * @adapter: board private structure
4761 *
4762 * Configure the Rx unit of the MAC after a reset.
4763 **/
igb_configure_rx(struct igb_adapter * adapter)4764 static void igb_configure_rx(struct igb_adapter *adapter)
4765 {
4766 int i;
4767
4768 /* set the correct pool for the PF default MAC address in entry 0 */
4769 igb_set_default_mac_filter(adapter);
4770
4771 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4772 * the Base and Length of the Rx Descriptor Ring
4773 */
4774 for (i = 0; i < adapter->num_rx_queues; i++) {
4775 struct igb_ring *rx_ring = adapter->rx_ring[i];
4776
4777 igb_set_rx_buffer_len(adapter, rx_ring);
4778 igb_configure_rx_ring(adapter, rx_ring);
4779 }
4780 }
4781
4782 /**
4783 * igb_free_tx_resources - Free Tx Resources per Queue
4784 * @tx_ring: Tx descriptor ring for a specific queue
4785 *
4786 * Free all transmit software resources
4787 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4788 void igb_free_tx_resources(struct igb_ring *tx_ring)
4789 {
4790 igb_clean_tx_ring(tx_ring);
4791
4792 vfree(tx_ring->tx_buffer_info);
4793 tx_ring->tx_buffer_info = NULL;
4794
4795 /* if not set, then don't free */
4796 if (!tx_ring->desc)
4797 return;
4798
4799 dma_free_coherent(tx_ring->dev, tx_ring->size,
4800 tx_ring->desc, tx_ring->dma);
4801
4802 tx_ring->desc = NULL;
4803 }
4804
4805 /**
4806 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4807 * @adapter: board private structure
4808 *
4809 * Free all transmit software resources
4810 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4811 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4812 {
4813 int i;
4814
4815 for (i = 0; i < adapter->num_tx_queues; i++)
4816 if (adapter->tx_ring[i])
4817 igb_free_tx_resources(adapter->tx_ring[i]);
4818 }
4819
4820 /**
4821 * igb_clean_tx_ring - Free Tx Buffers
4822 * @tx_ring: ring to be cleaned
4823 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4824 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4825 {
4826 u16 i = tx_ring->next_to_clean;
4827 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4828
4829 while (i != tx_ring->next_to_use) {
4830 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4831
4832 /* Free all the Tx ring sk_buffs or xdp frames */
4833 if (tx_buffer->type == IGB_TYPE_SKB)
4834 dev_kfree_skb_any(tx_buffer->skb);
4835 else
4836 xdp_return_frame(tx_buffer->xdpf);
4837
4838 /* unmap skb header data */
4839 dma_unmap_single(tx_ring->dev,
4840 dma_unmap_addr(tx_buffer, dma),
4841 dma_unmap_len(tx_buffer, len),
4842 DMA_TO_DEVICE);
4843
4844 /* check for eop_desc to determine the end of the packet */
4845 eop_desc = tx_buffer->next_to_watch;
4846 tx_desc = IGB_TX_DESC(tx_ring, i);
4847
4848 /* unmap remaining buffers */
4849 while (tx_desc != eop_desc) {
4850 tx_buffer++;
4851 tx_desc++;
4852 i++;
4853 if (unlikely(i == tx_ring->count)) {
4854 i = 0;
4855 tx_buffer = tx_ring->tx_buffer_info;
4856 tx_desc = IGB_TX_DESC(tx_ring, 0);
4857 }
4858
4859 /* unmap any remaining paged data */
4860 if (dma_unmap_len(tx_buffer, len))
4861 dma_unmap_page(tx_ring->dev,
4862 dma_unmap_addr(tx_buffer, dma),
4863 dma_unmap_len(tx_buffer, len),
4864 DMA_TO_DEVICE);
4865 }
4866
4867 tx_buffer->next_to_watch = NULL;
4868
4869 /* move us one more past the eop_desc for start of next pkt */
4870 tx_buffer++;
4871 i++;
4872 if (unlikely(i == tx_ring->count)) {
4873 i = 0;
4874 tx_buffer = tx_ring->tx_buffer_info;
4875 }
4876 }
4877
4878 /* reset BQL for queue */
4879 netdev_tx_reset_queue(txring_txq(tx_ring));
4880
4881 /* reset next_to_use and next_to_clean */
4882 tx_ring->next_to_use = 0;
4883 tx_ring->next_to_clean = 0;
4884 }
4885
4886 /**
4887 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4888 * @adapter: board private structure
4889 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4890 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4891 {
4892 int i;
4893
4894 for (i = 0; i < adapter->num_tx_queues; i++)
4895 if (adapter->tx_ring[i])
4896 igb_clean_tx_ring(adapter->tx_ring[i]);
4897 }
4898
4899 /**
4900 * igb_free_rx_resources - Free Rx Resources
4901 * @rx_ring: ring to clean the resources from
4902 *
4903 * Free all receive software resources
4904 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4905 void igb_free_rx_resources(struct igb_ring *rx_ring)
4906 {
4907 igb_clean_rx_ring(rx_ring);
4908
4909 rx_ring->xdp_prog = NULL;
4910 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4911 vfree(rx_ring->rx_buffer_info);
4912 rx_ring->rx_buffer_info = NULL;
4913
4914 /* if not set, then don't free */
4915 if (!rx_ring->desc)
4916 return;
4917
4918 dma_free_coherent(rx_ring->dev, rx_ring->size,
4919 rx_ring->desc, rx_ring->dma);
4920
4921 rx_ring->desc = NULL;
4922 }
4923
4924 /**
4925 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4926 * @adapter: board private structure
4927 *
4928 * Free all receive software resources
4929 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4930 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4931 {
4932 int i;
4933
4934 for (i = 0; i < adapter->num_rx_queues; i++)
4935 if (adapter->rx_ring[i])
4936 igb_free_rx_resources(adapter->rx_ring[i]);
4937 }
4938
4939 /**
4940 * igb_clean_rx_ring - Free Rx Buffers per Queue
4941 * @rx_ring: ring to free buffers from
4942 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4943 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4944 {
4945 u16 i = rx_ring->next_to_clean;
4946
4947 dev_kfree_skb(rx_ring->skb);
4948 rx_ring->skb = NULL;
4949
4950 /* Free all the Rx ring sk_buffs */
4951 while (i != rx_ring->next_to_alloc) {
4952 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4953
4954 /* Invalidate cache lines that may have been written to by
4955 * device so that we avoid corrupting memory.
4956 */
4957 dma_sync_single_range_for_cpu(rx_ring->dev,
4958 buffer_info->dma,
4959 buffer_info->page_offset,
4960 igb_rx_bufsz(rx_ring),
4961 DMA_FROM_DEVICE);
4962
4963 /* free resources associated with mapping */
4964 dma_unmap_page_attrs(rx_ring->dev,
4965 buffer_info->dma,
4966 igb_rx_pg_size(rx_ring),
4967 DMA_FROM_DEVICE,
4968 IGB_RX_DMA_ATTR);
4969 __page_frag_cache_drain(buffer_info->page,
4970 buffer_info->pagecnt_bias);
4971
4972 i++;
4973 if (i == rx_ring->count)
4974 i = 0;
4975 }
4976
4977 rx_ring->next_to_alloc = 0;
4978 rx_ring->next_to_clean = 0;
4979 rx_ring->next_to_use = 0;
4980 }
4981
4982 /**
4983 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4984 * @adapter: board private structure
4985 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4986 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4987 {
4988 int i;
4989
4990 for (i = 0; i < adapter->num_rx_queues; i++)
4991 if (adapter->rx_ring[i])
4992 igb_clean_rx_ring(adapter->rx_ring[i]);
4993 }
4994
4995 /**
4996 * igb_set_mac - Change the Ethernet Address of the NIC
4997 * @netdev: network interface device structure
4998 * @p: pointer to an address structure
4999 *
5000 * Returns 0 on success, negative on failure
5001 **/
igb_set_mac(struct net_device * netdev,void * p)5002 static int igb_set_mac(struct net_device *netdev, void *p)
5003 {
5004 struct igb_adapter *adapter = netdev_priv(netdev);
5005 struct e1000_hw *hw = &adapter->hw;
5006 struct sockaddr *addr = p;
5007
5008 if (!is_valid_ether_addr(addr->sa_data))
5009 return -EADDRNOTAVAIL;
5010
5011 eth_hw_addr_set(netdev, addr->sa_data);
5012 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5013
5014 /* set the correct pool for the new PF MAC address in entry 0 */
5015 igb_set_default_mac_filter(adapter);
5016
5017 return 0;
5018 }
5019
5020 /**
5021 * igb_write_mc_addr_list - write multicast addresses to MTA
5022 * @netdev: network interface device structure
5023 *
5024 * Writes multicast address list to the MTA hash table.
5025 * Returns: -ENOMEM on failure
5026 * 0 on no addresses written
5027 * X on writing X addresses to MTA
5028 **/
igb_write_mc_addr_list(struct net_device * netdev)5029 static int igb_write_mc_addr_list(struct net_device *netdev)
5030 {
5031 struct igb_adapter *adapter = netdev_priv(netdev);
5032 struct e1000_hw *hw = &adapter->hw;
5033 struct netdev_hw_addr *ha;
5034 u8 *mta_list;
5035 int i;
5036
5037 if (netdev_mc_empty(netdev)) {
5038 /* nothing to program, so clear mc list */
5039 igb_update_mc_addr_list(hw, NULL, 0);
5040 igb_restore_vf_multicasts(adapter);
5041 return 0;
5042 }
5043
5044 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5045 if (!mta_list)
5046 return -ENOMEM;
5047
5048 /* The shared function expects a packed array of only addresses. */
5049 i = 0;
5050 netdev_for_each_mc_addr(ha, netdev)
5051 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5052
5053 igb_update_mc_addr_list(hw, mta_list, i);
5054 kfree(mta_list);
5055
5056 return netdev_mc_count(netdev);
5057 }
5058
igb_vlan_promisc_enable(struct igb_adapter * adapter)5059 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5060 {
5061 struct e1000_hw *hw = &adapter->hw;
5062 u32 i, pf_id;
5063
5064 switch (hw->mac.type) {
5065 case e1000_i210:
5066 case e1000_i211:
5067 case e1000_i350:
5068 /* VLAN filtering needed for VLAN prio filter */
5069 if (adapter->netdev->features & NETIF_F_NTUPLE)
5070 break;
5071 fallthrough;
5072 case e1000_82576:
5073 case e1000_82580:
5074 case e1000_i354:
5075 /* VLAN filtering needed for pool filtering */
5076 if (adapter->vfs_allocated_count)
5077 break;
5078 fallthrough;
5079 default:
5080 return 1;
5081 }
5082
5083 /* We are already in VLAN promisc, nothing to do */
5084 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5085 return 0;
5086
5087 if (!adapter->vfs_allocated_count)
5088 goto set_vfta;
5089
5090 /* Add PF to all active pools */
5091 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5092
5093 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5094 u32 vlvf = rd32(E1000_VLVF(i));
5095
5096 vlvf |= BIT(pf_id);
5097 wr32(E1000_VLVF(i), vlvf);
5098 }
5099
5100 set_vfta:
5101 /* Set all bits in the VLAN filter table array */
5102 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5103 hw->mac.ops.write_vfta(hw, i, ~0U);
5104
5105 /* Set flag so we don't redo unnecessary work */
5106 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5107
5108 return 0;
5109 }
5110
5111 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5112 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5113 {
5114 struct e1000_hw *hw = &adapter->hw;
5115 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5116 u32 vid_start = vfta_offset * 32;
5117 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5118 u32 i, vid, word, bits, pf_id;
5119
5120 /* guarantee that we don't scrub out management VLAN */
5121 vid = adapter->mng_vlan_id;
5122 if (vid >= vid_start && vid < vid_end)
5123 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5124
5125 if (!adapter->vfs_allocated_count)
5126 goto set_vfta;
5127
5128 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5129
5130 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5131 u32 vlvf = rd32(E1000_VLVF(i));
5132
5133 /* pull VLAN ID from VLVF */
5134 vid = vlvf & VLAN_VID_MASK;
5135
5136 /* only concern ourselves with a certain range */
5137 if (vid < vid_start || vid >= vid_end)
5138 continue;
5139
5140 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5141 /* record VLAN ID in VFTA */
5142 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5143
5144 /* if PF is part of this then continue */
5145 if (test_bit(vid, adapter->active_vlans))
5146 continue;
5147 }
5148
5149 /* remove PF from the pool */
5150 bits = ~BIT(pf_id);
5151 bits &= rd32(E1000_VLVF(i));
5152 wr32(E1000_VLVF(i), bits);
5153 }
5154
5155 set_vfta:
5156 /* extract values from active_vlans and write back to VFTA */
5157 for (i = VFTA_BLOCK_SIZE; i--;) {
5158 vid = (vfta_offset + i) * 32;
5159 word = vid / BITS_PER_LONG;
5160 bits = vid % BITS_PER_LONG;
5161
5162 vfta[i] |= adapter->active_vlans[word] >> bits;
5163
5164 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5165 }
5166 }
5167
igb_vlan_promisc_disable(struct igb_adapter * adapter)5168 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5169 {
5170 u32 i;
5171
5172 /* We are not in VLAN promisc, nothing to do */
5173 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5174 return;
5175
5176 /* Set flag so we don't redo unnecessary work */
5177 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5178
5179 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5180 igb_scrub_vfta(adapter, i);
5181 }
5182
5183 /**
5184 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5185 * @netdev: network interface device structure
5186 *
5187 * The set_rx_mode entry point is called whenever the unicast or multicast
5188 * address lists or the network interface flags are updated. This routine is
5189 * responsible for configuring the hardware for proper unicast, multicast,
5190 * promiscuous mode, and all-multi behavior.
5191 **/
igb_set_rx_mode(struct net_device * netdev)5192 static void igb_set_rx_mode(struct net_device *netdev)
5193 {
5194 struct igb_adapter *adapter = netdev_priv(netdev);
5195 struct e1000_hw *hw = &adapter->hw;
5196 unsigned int vfn = adapter->vfs_allocated_count;
5197 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5198 int count;
5199
5200 /* Check for Promiscuous and All Multicast modes */
5201 if (netdev->flags & IFF_PROMISC) {
5202 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5203 vmolr |= E1000_VMOLR_MPME;
5204
5205 /* enable use of UTA filter to force packets to default pool */
5206 if (hw->mac.type == e1000_82576)
5207 vmolr |= E1000_VMOLR_ROPE;
5208 } else {
5209 if (netdev->flags & IFF_ALLMULTI) {
5210 rctl |= E1000_RCTL_MPE;
5211 vmolr |= E1000_VMOLR_MPME;
5212 } else {
5213 /* Write addresses to the MTA, if the attempt fails
5214 * then we should just turn on promiscuous mode so
5215 * that we can at least receive multicast traffic
5216 */
5217 count = igb_write_mc_addr_list(netdev);
5218 if (count < 0) {
5219 rctl |= E1000_RCTL_MPE;
5220 vmolr |= E1000_VMOLR_MPME;
5221 } else if (count) {
5222 vmolr |= E1000_VMOLR_ROMPE;
5223 }
5224 }
5225 }
5226
5227 /* Write addresses to available RAR registers, if there is not
5228 * sufficient space to store all the addresses then enable
5229 * unicast promiscuous mode
5230 */
5231 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5232 rctl |= E1000_RCTL_UPE;
5233 vmolr |= E1000_VMOLR_ROPE;
5234 }
5235
5236 /* enable VLAN filtering by default */
5237 rctl |= E1000_RCTL_VFE;
5238
5239 /* disable VLAN filtering for modes that require it */
5240 if ((netdev->flags & IFF_PROMISC) ||
5241 (netdev->features & NETIF_F_RXALL)) {
5242 /* if we fail to set all rules then just clear VFE */
5243 if (igb_vlan_promisc_enable(adapter))
5244 rctl &= ~E1000_RCTL_VFE;
5245 } else {
5246 igb_vlan_promisc_disable(adapter);
5247 }
5248
5249 /* update state of unicast, multicast, and VLAN filtering modes */
5250 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5251 E1000_RCTL_VFE);
5252 wr32(E1000_RCTL, rctl);
5253
5254 #if (PAGE_SIZE < 8192)
5255 if (!adapter->vfs_allocated_count) {
5256 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5257 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5258 }
5259 #endif
5260 wr32(E1000_RLPML, rlpml);
5261
5262 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5263 * the VMOLR to enable the appropriate modes. Without this workaround
5264 * we will have issues with VLAN tag stripping not being done for frames
5265 * that are only arriving because we are the default pool
5266 */
5267 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5268 return;
5269
5270 /* set UTA to appropriate mode */
5271 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5272
5273 vmolr |= rd32(E1000_VMOLR(vfn)) &
5274 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5275
5276 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5277 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5278 #if (PAGE_SIZE < 8192)
5279 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5280 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5281 else
5282 #endif
5283 vmolr |= MAX_JUMBO_FRAME_SIZE;
5284 vmolr |= E1000_VMOLR_LPE;
5285
5286 wr32(E1000_VMOLR(vfn), vmolr);
5287
5288 igb_restore_vf_multicasts(adapter);
5289 }
5290
igb_check_wvbr(struct igb_adapter * adapter)5291 static void igb_check_wvbr(struct igb_adapter *adapter)
5292 {
5293 struct e1000_hw *hw = &adapter->hw;
5294 u32 wvbr = 0;
5295
5296 switch (hw->mac.type) {
5297 case e1000_82576:
5298 case e1000_i350:
5299 wvbr = rd32(E1000_WVBR);
5300 if (!wvbr)
5301 return;
5302 break;
5303 default:
5304 break;
5305 }
5306
5307 adapter->wvbr |= wvbr;
5308 }
5309
5310 #define IGB_STAGGERED_QUEUE_OFFSET 8
5311
igb_spoof_check(struct igb_adapter * adapter)5312 static void igb_spoof_check(struct igb_adapter *adapter)
5313 {
5314 int j;
5315
5316 if (!adapter->wvbr)
5317 return;
5318
5319 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5320 if (adapter->wvbr & BIT(j) ||
5321 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5322 dev_warn(&adapter->pdev->dev,
5323 "Spoof event(s) detected on VF %d\n", j);
5324 adapter->wvbr &=
5325 ~(BIT(j) |
5326 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5327 }
5328 }
5329 }
5330
5331 /* Need to wait a few seconds after link up to get diagnostic information from
5332 * the phy
5333 */
igb_update_phy_info(struct timer_list * t)5334 static void igb_update_phy_info(struct timer_list *t)
5335 {
5336 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5337 igb_get_phy_info(&adapter->hw);
5338 }
5339
5340 /**
5341 * igb_has_link - check shared code for link and determine up/down
5342 * @adapter: pointer to driver private info
5343 **/
igb_has_link(struct igb_adapter * adapter)5344 bool igb_has_link(struct igb_adapter *adapter)
5345 {
5346 struct e1000_hw *hw = &adapter->hw;
5347 bool link_active = false;
5348
5349 /* get_link_status is set on LSC (link status) interrupt or
5350 * rx sequence error interrupt. get_link_status will stay
5351 * false until the e1000_check_for_link establishes link
5352 * for copper adapters ONLY
5353 */
5354 switch (hw->phy.media_type) {
5355 case e1000_media_type_copper:
5356 if (!hw->mac.get_link_status)
5357 return true;
5358 fallthrough;
5359 case e1000_media_type_internal_serdes:
5360 hw->mac.ops.check_for_link(hw);
5361 link_active = !hw->mac.get_link_status;
5362 break;
5363 default:
5364 case e1000_media_type_unknown:
5365 break;
5366 }
5367
5368 if (((hw->mac.type == e1000_i210) ||
5369 (hw->mac.type == e1000_i211)) &&
5370 (hw->phy.id == I210_I_PHY_ID)) {
5371 if (!netif_carrier_ok(adapter->netdev)) {
5372 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5373 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5374 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5375 adapter->link_check_timeout = jiffies;
5376 }
5377 }
5378
5379 return link_active;
5380 }
5381
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5382 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5383 {
5384 bool ret = false;
5385 u32 ctrl_ext, thstat;
5386
5387 /* check for thermal sensor event on i350 copper only */
5388 if (hw->mac.type == e1000_i350) {
5389 thstat = rd32(E1000_THSTAT);
5390 ctrl_ext = rd32(E1000_CTRL_EXT);
5391
5392 if ((hw->phy.media_type == e1000_media_type_copper) &&
5393 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5394 ret = !!(thstat & event);
5395 }
5396
5397 return ret;
5398 }
5399
5400 /**
5401 * igb_check_lvmmc - check for malformed packets received
5402 * and indicated in LVMMC register
5403 * @adapter: pointer to adapter
5404 **/
igb_check_lvmmc(struct igb_adapter * adapter)5405 static void igb_check_lvmmc(struct igb_adapter *adapter)
5406 {
5407 struct e1000_hw *hw = &adapter->hw;
5408 u32 lvmmc;
5409
5410 lvmmc = rd32(E1000_LVMMC);
5411 if (lvmmc) {
5412 if (unlikely(net_ratelimit())) {
5413 netdev_warn(adapter->netdev,
5414 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5415 lvmmc);
5416 }
5417 }
5418 }
5419
5420 /**
5421 * igb_watchdog - Timer Call-back
5422 * @t: pointer to timer_list containing our private info pointer
5423 **/
igb_watchdog(struct timer_list * t)5424 static void igb_watchdog(struct timer_list *t)
5425 {
5426 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5427 /* Do the rest outside of interrupt context */
5428 schedule_work(&adapter->watchdog_task);
5429 }
5430
igb_watchdog_task(struct work_struct * work)5431 static void igb_watchdog_task(struct work_struct *work)
5432 {
5433 struct igb_adapter *adapter = container_of(work,
5434 struct igb_adapter,
5435 watchdog_task);
5436 struct e1000_hw *hw = &adapter->hw;
5437 struct e1000_phy_info *phy = &hw->phy;
5438 struct net_device *netdev = adapter->netdev;
5439 u32 link;
5440 int i;
5441 u32 connsw;
5442 u16 phy_data, retry_count = 20;
5443
5444 link = igb_has_link(adapter);
5445
5446 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5447 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5448 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5449 else
5450 link = false;
5451 }
5452
5453 /* Force link down if we have fiber to swap to */
5454 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5455 if (hw->phy.media_type == e1000_media_type_copper) {
5456 connsw = rd32(E1000_CONNSW);
5457 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5458 link = 0;
5459 }
5460 }
5461 if (link) {
5462 /* Perform a reset if the media type changed. */
5463 if (hw->dev_spec._82575.media_changed) {
5464 hw->dev_spec._82575.media_changed = false;
5465 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5466 igb_reset(adapter);
5467 }
5468 /* Cancel scheduled suspend requests. */
5469 pm_runtime_resume(netdev->dev.parent);
5470
5471 if (!netif_carrier_ok(netdev)) {
5472 u32 ctrl;
5473
5474 hw->mac.ops.get_speed_and_duplex(hw,
5475 &adapter->link_speed,
5476 &adapter->link_duplex);
5477
5478 ctrl = rd32(E1000_CTRL);
5479 /* Links status message must follow this format */
5480 netdev_info(netdev,
5481 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5482 netdev->name,
5483 adapter->link_speed,
5484 adapter->link_duplex == FULL_DUPLEX ?
5485 "Full" : "Half",
5486 (ctrl & E1000_CTRL_TFCE) &&
5487 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5488 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5489 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5490
5491 /* disable EEE if enabled */
5492 if ((adapter->flags & IGB_FLAG_EEE) &&
5493 (adapter->link_duplex == HALF_DUPLEX)) {
5494 dev_info(&adapter->pdev->dev,
5495 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5496 adapter->hw.dev_spec._82575.eee_disable = true;
5497 adapter->flags &= ~IGB_FLAG_EEE;
5498 }
5499
5500 /* check if SmartSpeed worked */
5501 igb_check_downshift(hw);
5502 if (phy->speed_downgraded)
5503 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5504
5505 /* check for thermal sensor event */
5506 if (igb_thermal_sensor_event(hw,
5507 E1000_THSTAT_LINK_THROTTLE))
5508 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5509
5510 /* adjust timeout factor according to speed/duplex */
5511 adapter->tx_timeout_factor = 1;
5512 switch (adapter->link_speed) {
5513 case SPEED_10:
5514 adapter->tx_timeout_factor = 14;
5515 break;
5516 case SPEED_100:
5517 /* maybe add some timeout factor ? */
5518 break;
5519 }
5520
5521 if (adapter->link_speed != SPEED_1000 ||
5522 !hw->phy.ops.read_reg)
5523 goto no_wait;
5524
5525 /* wait for Remote receiver status OK */
5526 retry_read_status:
5527 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5528 &phy_data)) {
5529 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5530 retry_count) {
5531 msleep(100);
5532 retry_count--;
5533 goto retry_read_status;
5534 } else if (!retry_count) {
5535 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5536 }
5537 } else {
5538 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5539 }
5540 no_wait:
5541 netif_carrier_on(netdev);
5542
5543 igb_ping_all_vfs(adapter);
5544 igb_check_vf_rate_limit(adapter);
5545
5546 /* link state has changed, schedule phy info update */
5547 if (!test_bit(__IGB_DOWN, &adapter->state))
5548 mod_timer(&adapter->phy_info_timer,
5549 round_jiffies(jiffies + 2 * HZ));
5550 }
5551 } else {
5552 if (netif_carrier_ok(netdev)) {
5553 adapter->link_speed = 0;
5554 adapter->link_duplex = 0;
5555
5556 /* check for thermal sensor event */
5557 if (igb_thermal_sensor_event(hw,
5558 E1000_THSTAT_PWR_DOWN)) {
5559 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5560 }
5561
5562 /* Links status message must follow this format */
5563 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5564 netdev->name);
5565 netif_carrier_off(netdev);
5566
5567 igb_ping_all_vfs(adapter);
5568
5569 /* link state has changed, schedule phy info update */
5570 if (!test_bit(__IGB_DOWN, &adapter->state))
5571 mod_timer(&adapter->phy_info_timer,
5572 round_jiffies(jiffies + 2 * HZ));
5573
5574 /* link is down, time to check for alternate media */
5575 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5576 igb_check_swap_media(adapter);
5577 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5578 schedule_work(&adapter->reset_task);
5579 /* return immediately */
5580 return;
5581 }
5582 }
5583 pm_schedule_suspend(netdev->dev.parent,
5584 MSEC_PER_SEC * 5);
5585
5586 /* also check for alternate media here */
5587 } else if (!netif_carrier_ok(netdev) &&
5588 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5589 igb_check_swap_media(adapter);
5590 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5591 schedule_work(&adapter->reset_task);
5592 /* return immediately */
5593 return;
5594 }
5595 }
5596 }
5597
5598 spin_lock(&adapter->stats64_lock);
5599 igb_update_stats(adapter);
5600 spin_unlock(&adapter->stats64_lock);
5601
5602 for (i = 0; i < adapter->num_tx_queues; i++) {
5603 struct igb_ring *tx_ring = adapter->tx_ring[i];
5604 if (!netif_carrier_ok(netdev)) {
5605 /* We've lost link, so the controller stops DMA,
5606 * but we've got queued Tx work that's never going
5607 * to get done, so reset controller to flush Tx.
5608 * (Do the reset outside of interrupt context).
5609 */
5610 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5611 adapter->tx_timeout_count++;
5612 schedule_work(&adapter->reset_task);
5613 /* return immediately since reset is imminent */
5614 return;
5615 }
5616 }
5617
5618 /* Force detection of hung controller every watchdog period */
5619 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5620 }
5621
5622 /* Cause software interrupt to ensure Rx ring is cleaned */
5623 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5624 u32 eics = 0;
5625
5626 for (i = 0; i < adapter->num_q_vectors; i++)
5627 eics |= adapter->q_vector[i]->eims_value;
5628 wr32(E1000_EICS, eics);
5629 } else {
5630 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5631 }
5632
5633 igb_spoof_check(adapter);
5634 igb_ptp_rx_hang(adapter);
5635 igb_ptp_tx_hang(adapter);
5636
5637 /* Check LVMMC register on i350/i354 only */
5638 if ((adapter->hw.mac.type == e1000_i350) ||
5639 (adapter->hw.mac.type == e1000_i354))
5640 igb_check_lvmmc(adapter);
5641
5642 /* Reset the timer */
5643 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5644 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5645 mod_timer(&adapter->watchdog_timer,
5646 round_jiffies(jiffies + HZ));
5647 else
5648 mod_timer(&adapter->watchdog_timer,
5649 round_jiffies(jiffies + 2 * HZ));
5650 }
5651 }
5652
5653 enum latency_range {
5654 lowest_latency = 0,
5655 low_latency = 1,
5656 bulk_latency = 2,
5657 latency_invalid = 255
5658 };
5659
5660 /**
5661 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5662 * @q_vector: pointer to q_vector
5663 *
5664 * Stores a new ITR value based on strictly on packet size. This
5665 * algorithm is less sophisticated than that used in igb_update_itr,
5666 * due to the difficulty of synchronizing statistics across multiple
5667 * receive rings. The divisors and thresholds used by this function
5668 * were determined based on theoretical maximum wire speed and testing
5669 * data, in order to minimize response time while increasing bulk
5670 * throughput.
5671 * This functionality is controlled by ethtool's coalescing settings.
5672 * NOTE: This function is called only when operating in a multiqueue
5673 * receive environment.
5674 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5675 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5676 {
5677 int new_val = q_vector->itr_val;
5678 int avg_wire_size = 0;
5679 struct igb_adapter *adapter = q_vector->adapter;
5680 unsigned int packets;
5681
5682 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5683 * ints/sec - ITR timer value of 120 ticks.
5684 */
5685 if (adapter->link_speed != SPEED_1000) {
5686 new_val = IGB_4K_ITR;
5687 goto set_itr_val;
5688 }
5689
5690 packets = q_vector->rx.total_packets;
5691 if (packets)
5692 avg_wire_size = q_vector->rx.total_bytes / packets;
5693
5694 packets = q_vector->tx.total_packets;
5695 if (packets)
5696 avg_wire_size = max_t(u32, avg_wire_size,
5697 q_vector->tx.total_bytes / packets);
5698
5699 /* if avg_wire_size isn't set no work was done */
5700 if (!avg_wire_size)
5701 goto clear_counts;
5702
5703 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5704 avg_wire_size += 24;
5705
5706 /* Don't starve jumbo frames */
5707 avg_wire_size = min(avg_wire_size, 3000);
5708
5709 /* Give a little boost to mid-size frames */
5710 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5711 new_val = avg_wire_size / 3;
5712 else
5713 new_val = avg_wire_size / 2;
5714
5715 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5716 if (new_val < IGB_20K_ITR &&
5717 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5718 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5719 new_val = IGB_20K_ITR;
5720
5721 set_itr_val:
5722 if (new_val != q_vector->itr_val) {
5723 q_vector->itr_val = new_val;
5724 q_vector->set_itr = 1;
5725 }
5726 clear_counts:
5727 q_vector->rx.total_bytes = 0;
5728 q_vector->rx.total_packets = 0;
5729 q_vector->tx.total_bytes = 0;
5730 q_vector->tx.total_packets = 0;
5731 }
5732
5733 /**
5734 * igb_update_itr - update the dynamic ITR value based on statistics
5735 * @q_vector: pointer to q_vector
5736 * @ring_container: ring info to update the itr for
5737 *
5738 * Stores a new ITR value based on packets and byte
5739 * counts during the last interrupt. The advantage of per interrupt
5740 * computation is faster updates and more accurate ITR for the current
5741 * traffic pattern. Constants in this function were computed
5742 * based on theoretical maximum wire speed and thresholds were set based
5743 * on testing data as well as attempting to minimize response time
5744 * while increasing bulk throughput.
5745 * This functionality is controlled by ethtool's coalescing settings.
5746 * NOTE: These calculations are only valid when operating in a single-
5747 * queue environment.
5748 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5749 static void igb_update_itr(struct igb_q_vector *q_vector,
5750 struct igb_ring_container *ring_container)
5751 {
5752 unsigned int packets = ring_container->total_packets;
5753 unsigned int bytes = ring_container->total_bytes;
5754 u8 itrval = ring_container->itr;
5755
5756 /* no packets, exit with status unchanged */
5757 if (packets == 0)
5758 return;
5759
5760 switch (itrval) {
5761 case lowest_latency:
5762 /* handle TSO and jumbo frames */
5763 if (bytes/packets > 8000)
5764 itrval = bulk_latency;
5765 else if ((packets < 5) && (bytes > 512))
5766 itrval = low_latency;
5767 break;
5768 case low_latency: /* 50 usec aka 20000 ints/s */
5769 if (bytes > 10000) {
5770 /* this if handles the TSO accounting */
5771 if (bytes/packets > 8000)
5772 itrval = bulk_latency;
5773 else if ((packets < 10) || ((bytes/packets) > 1200))
5774 itrval = bulk_latency;
5775 else if ((packets > 35))
5776 itrval = lowest_latency;
5777 } else if (bytes/packets > 2000) {
5778 itrval = bulk_latency;
5779 } else if (packets <= 2 && bytes < 512) {
5780 itrval = lowest_latency;
5781 }
5782 break;
5783 case bulk_latency: /* 250 usec aka 4000 ints/s */
5784 if (bytes > 25000) {
5785 if (packets > 35)
5786 itrval = low_latency;
5787 } else if (bytes < 1500) {
5788 itrval = low_latency;
5789 }
5790 break;
5791 }
5792
5793 /* clear work counters since we have the values we need */
5794 ring_container->total_bytes = 0;
5795 ring_container->total_packets = 0;
5796
5797 /* write updated itr to ring container */
5798 ring_container->itr = itrval;
5799 }
5800
igb_set_itr(struct igb_q_vector * q_vector)5801 static void igb_set_itr(struct igb_q_vector *q_vector)
5802 {
5803 struct igb_adapter *adapter = q_vector->adapter;
5804 u32 new_itr = q_vector->itr_val;
5805 u8 current_itr = 0;
5806
5807 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5808 if (adapter->link_speed != SPEED_1000) {
5809 current_itr = 0;
5810 new_itr = IGB_4K_ITR;
5811 goto set_itr_now;
5812 }
5813
5814 igb_update_itr(q_vector, &q_vector->tx);
5815 igb_update_itr(q_vector, &q_vector->rx);
5816
5817 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5818
5819 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5820 if (current_itr == lowest_latency &&
5821 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5822 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5823 current_itr = low_latency;
5824
5825 switch (current_itr) {
5826 /* counts and packets in update_itr are dependent on these numbers */
5827 case lowest_latency:
5828 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5829 break;
5830 case low_latency:
5831 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5832 break;
5833 case bulk_latency:
5834 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5835 break;
5836 default:
5837 break;
5838 }
5839
5840 set_itr_now:
5841 if (new_itr != q_vector->itr_val) {
5842 /* this attempts to bias the interrupt rate towards Bulk
5843 * by adding intermediate steps when interrupt rate is
5844 * increasing
5845 */
5846 new_itr = new_itr > q_vector->itr_val ?
5847 max((new_itr * q_vector->itr_val) /
5848 (new_itr + (q_vector->itr_val >> 2)),
5849 new_itr) : new_itr;
5850 /* Don't write the value here; it resets the adapter's
5851 * internal timer, and causes us to delay far longer than
5852 * we should between interrupts. Instead, we write the ITR
5853 * value at the beginning of the next interrupt so the timing
5854 * ends up being correct.
5855 */
5856 q_vector->itr_val = new_itr;
5857 q_vector->set_itr = 1;
5858 }
5859 }
5860
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5861 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5862 struct igb_tx_buffer *first,
5863 u32 vlan_macip_lens, u32 type_tucmd,
5864 u32 mss_l4len_idx)
5865 {
5866 struct e1000_adv_tx_context_desc *context_desc;
5867 u16 i = tx_ring->next_to_use;
5868 struct timespec64 ts;
5869
5870 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5871
5872 i++;
5873 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5874
5875 /* set bits to identify this as an advanced context descriptor */
5876 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5877
5878 /* For 82575, context index must be unique per ring. */
5879 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5880 mss_l4len_idx |= tx_ring->reg_idx << 4;
5881
5882 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5883 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5884 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5885
5886 /* We assume there is always a valid tx time available. Invalid times
5887 * should have been handled by the upper layers.
5888 */
5889 if (tx_ring->launchtime_enable) {
5890 ts = ktime_to_timespec64(first->skb->tstamp);
5891 skb_txtime_consumed(first->skb);
5892 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5893 } else {
5894 context_desc->seqnum_seed = 0;
5895 }
5896 }
5897
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5898 static int igb_tso(struct igb_ring *tx_ring,
5899 struct igb_tx_buffer *first,
5900 u8 *hdr_len)
5901 {
5902 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5903 struct sk_buff *skb = first->skb;
5904 union {
5905 struct iphdr *v4;
5906 struct ipv6hdr *v6;
5907 unsigned char *hdr;
5908 } ip;
5909 union {
5910 struct tcphdr *tcp;
5911 struct udphdr *udp;
5912 unsigned char *hdr;
5913 } l4;
5914 u32 paylen, l4_offset;
5915 int err;
5916
5917 if (skb->ip_summed != CHECKSUM_PARTIAL)
5918 return 0;
5919
5920 if (!skb_is_gso(skb))
5921 return 0;
5922
5923 err = skb_cow_head(skb, 0);
5924 if (err < 0)
5925 return err;
5926
5927 ip.hdr = skb_network_header(skb);
5928 l4.hdr = skb_checksum_start(skb);
5929
5930 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5931 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5932 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5933
5934 /* initialize outer IP header fields */
5935 if (ip.v4->version == 4) {
5936 unsigned char *csum_start = skb_checksum_start(skb);
5937 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5938
5939 /* IP header will have to cancel out any data that
5940 * is not a part of the outer IP header
5941 */
5942 ip.v4->check = csum_fold(csum_partial(trans_start,
5943 csum_start - trans_start,
5944 0));
5945 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5946
5947 ip.v4->tot_len = 0;
5948 first->tx_flags |= IGB_TX_FLAGS_TSO |
5949 IGB_TX_FLAGS_CSUM |
5950 IGB_TX_FLAGS_IPV4;
5951 } else {
5952 ip.v6->payload_len = 0;
5953 first->tx_flags |= IGB_TX_FLAGS_TSO |
5954 IGB_TX_FLAGS_CSUM;
5955 }
5956
5957 /* determine offset of inner transport header */
5958 l4_offset = l4.hdr - skb->data;
5959
5960 /* remove payload length from inner checksum */
5961 paylen = skb->len - l4_offset;
5962 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5963 /* compute length of segmentation header */
5964 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5965 csum_replace_by_diff(&l4.tcp->check,
5966 (__force __wsum)htonl(paylen));
5967 } else {
5968 /* compute length of segmentation header */
5969 *hdr_len = sizeof(*l4.udp) + l4_offset;
5970 csum_replace_by_diff(&l4.udp->check,
5971 (__force __wsum)htonl(paylen));
5972 }
5973
5974 /* update gso size and bytecount with header size */
5975 first->gso_segs = skb_shinfo(skb)->gso_segs;
5976 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5977
5978 /* MSS L4LEN IDX */
5979 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5980 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5981
5982 /* VLAN MACLEN IPLEN */
5983 vlan_macip_lens = l4.hdr - ip.hdr;
5984 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5985 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5986
5987 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5988 type_tucmd, mss_l4len_idx);
5989
5990 return 1;
5991 }
5992
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5993 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5994 {
5995 struct sk_buff *skb = first->skb;
5996 u32 vlan_macip_lens = 0;
5997 u32 type_tucmd = 0;
5998
5999 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6000 csum_failed:
6001 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6002 !tx_ring->launchtime_enable)
6003 return;
6004 goto no_csum;
6005 }
6006
6007 switch (skb->csum_offset) {
6008 case offsetof(struct tcphdr, check):
6009 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6010 fallthrough;
6011 case offsetof(struct udphdr, check):
6012 break;
6013 case offsetof(struct sctphdr, checksum):
6014 /* validate that this is actually an SCTP request */
6015 if (skb_csum_is_sctp(skb)) {
6016 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6017 break;
6018 }
6019 fallthrough;
6020 default:
6021 skb_checksum_help(skb);
6022 goto csum_failed;
6023 }
6024
6025 /* update TX checksum flag */
6026 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6027 vlan_macip_lens = skb_checksum_start_offset(skb) -
6028 skb_network_offset(skb);
6029 no_csum:
6030 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6031 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6032
6033 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6034 }
6035
6036 #define IGB_SET_FLAG(_input, _flag, _result) \
6037 ((_flag <= _result) ? \
6038 ((u32)(_input & _flag) * (_result / _flag)) : \
6039 ((u32)(_input & _flag) / (_flag / _result)))
6040
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6041 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6042 {
6043 /* set type for advanced descriptor with frame checksum insertion */
6044 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6045 E1000_ADVTXD_DCMD_DEXT |
6046 E1000_ADVTXD_DCMD_IFCS;
6047
6048 /* set HW vlan bit if vlan is present */
6049 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6050 (E1000_ADVTXD_DCMD_VLE));
6051
6052 /* set segmentation bits for TSO */
6053 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6054 (E1000_ADVTXD_DCMD_TSE));
6055
6056 /* set timestamp bit if present */
6057 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6058 (E1000_ADVTXD_MAC_TSTAMP));
6059
6060 /* insert frame checksum */
6061 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6062
6063 return cmd_type;
6064 }
6065
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6066 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6067 union e1000_adv_tx_desc *tx_desc,
6068 u32 tx_flags, unsigned int paylen)
6069 {
6070 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6071
6072 /* 82575 requires a unique index per ring */
6073 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6074 olinfo_status |= tx_ring->reg_idx << 4;
6075
6076 /* insert L4 checksum */
6077 olinfo_status |= IGB_SET_FLAG(tx_flags,
6078 IGB_TX_FLAGS_CSUM,
6079 (E1000_TXD_POPTS_TXSM << 8));
6080
6081 /* insert IPv4 checksum */
6082 olinfo_status |= IGB_SET_FLAG(tx_flags,
6083 IGB_TX_FLAGS_IPV4,
6084 (E1000_TXD_POPTS_IXSM << 8));
6085
6086 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6087 }
6088
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6089 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6090 {
6091 struct net_device *netdev = tx_ring->netdev;
6092
6093 netif_stop_subqueue(netdev, tx_ring->queue_index);
6094
6095 /* Herbert's original patch had:
6096 * smp_mb__after_netif_stop_queue();
6097 * but since that doesn't exist yet, just open code it.
6098 */
6099 smp_mb();
6100
6101 /* We need to check again in a case another CPU has just
6102 * made room available.
6103 */
6104 if (igb_desc_unused(tx_ring) < size)
6105 return -EBUSY;
6106
6107 /* A reprieve! */
6108 netif_wake_subqueue(netdev, tx_ring->queue_index);
6109
6110 u64_stats_update_begin(&tx_ring->tx_syncp2);
6111 tx_ring->tx_stats.restart_queue2++;
6112 u64_stats_update_end(&tx_ring->tx_syncp2);
6113
6114 return 0;
6115 }
6116
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6117 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6118 {
6119 if (igb_desc_unused(tx_ring) >= size)
6120 return 0;
6121 return __igb_maybe_stop_tx(tx_ring, size);
6122 }
6123
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6124 static int igb_tx_map(struct igb_ring *tx_ring,
6125 struct igb_tx_buffer *first,
6126 const u8 hdr_len)
6127 {
6128 struct sk_buff *skb = first->skb;
6129 struct igb_tx_buffer *tx_buffer;
6130 union e1000_adv_tx_desc *tx_desc;
6131 skb_frag_t *frag;
6132 dma_addr_t dma;
6133 unsigned int data_len, size;
6134 u32 tx_flags = first->tx_flags;
6135 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6136 u16 i = tx_ring->next_to_use;
6137
6138 tx_desc = IGB_TX_DESC(tx_ring, i);
6139
6140 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6141
6142 size = skb_headlen(skb);
6143 data_len = skb->data_len;
6144
6145 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6146
6147 tx_buffer = first;
6148
6149 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6150 if (dma_mapping_error(tx_ring->dev, dma))
6151 goto dma_error;
6152
6153 /* record length, and DMA address */
6154 dma_unmap_len_set(tx_buffer, len, size);
6155 dma_unmap_addr_set(tx_buffer, dma, dma);
6156
6157 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6158
6159 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6160 tx_desc->read.cmd_type_len =
6161 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6162
6163 i++;
6164 tx_desc++;
6165 if (i == tx_ring->count) {
6166 tx_desc = IGB_TX_DESC(tx_ring, 0);
6167 i = 0;
6168 }
6169 tx_desc->read.olinfo_status = 0;
6170
6171 dma += IGB_MAX_DATA_PER_TXD;
6172 size -= IGB_MAX_DATA_PER_TXD;
6173
6174 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6175 }
6176
6177 if (likely(!data_len))
6178 break;
6179
6180 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6181
6182 i++;
6183 tx_desc++;
6184 if (i == tx_ring->count) {
6185 tx_desc = IGB_TX_DESC(tx_ring, 0);
6186 i = 0;
6187 }
6188 tx_desc->read.olinfo_status = 0;
6189
6190 size = skb_frag_size(frag);
6191 data_len -= size;
6192
6193 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6194 size, DMA_TO_DEVICE);
6195
6196 tx_buffer = &tx_ring->tx_buffer_info[i];
6197 }
6198
6199 /* write last descriptor with RS and EOP bits */
6200 cmd_type |= size | IGB_TXD_DCMD;
6201 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6202
6203 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6204
6205 /* set the timestamp */
6206 first->time_stamp = jiffies;
6207
6208 skb_tx_timestamp(skb);
6209
6210 /* Force memory writes to complete before letting h/w know there
6211 * are new descriptors to fetch. (Only applicable for weak-ordered
6212 * memory model archs, such as IA-64).
6213 *
6214 * We also need this memory barrier to make certain all of the
6215 * status bits have been updated before next_to_watch is written.
6216 */
6217 dma_wmb();
6218
6219 /* set next_to_watch value indicating a packet is present */
6220 first->next_to_watch = tx_desc;
6221
6222 i++;
6223 if (i == tx_ring->count)
6224 i = 0;
6225
6226 tx_ring->next_to_use = i;
6227
6228 /* Make sure there is space in the ring for the next send. */
6229 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6230
6231 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6232 writel(i, tx_ring->tail);
6233 }
6234 return 0;
6235
6236 dma_error:
6237 dev_err(tx_ring->dev, "TX DMA map failed\n");
6238 tx_buffer = &tx_ring->tx_buffer_info[i];
6239
6240 /* clear dma mappings for failed tx_buffer_info map */
6241 while (tx_buffer != first) {
6242 if (dma_unmap_len(tx_buffer, len))
6243 dma_unmap_page(tx_ring->dev,
6244 dma_unmap_addr(tx_buffer, dma),
6245 dma_unmap_len(tx_buffer, len),
6246 DMA_TO_DEVICE);
6247 dma_unmap_len_set(tx_buffer, len, 0);
6248
6249 if (i-- == 0)
6250 i += tx_ring->count;
6251 tx_buffer = &tx_ring->tx_buffer_info[i];
6252 }
6253
6254 if (dma_unmap_len(tx_buffer, len))
6255 dma_unmap_single(tx_ring->dev,
6256 dma_unmap_addr(tx_buffer, dma),
6257 dma_unmap_len(tx_buffer, len),
6258 DMA_TO_DEVICE);
6259 dma_unmap_len_set(tx_buffer, len, 0);
6260
6261 dev_kfree_skb_any(tx_buffer->skb);
6262 tx_buffer->skb = NULL;
6263
6264 tx_ring->next_to_use = i;
6265
6266 return -1;
6267 }
6268
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6269 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6270 struct igb_ring *tx_ring,
6271 struct xdp_frame *xdpf)
6272 {
6273 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6274 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6275 u16 count, i, index = tx_ring->next_to_use;
6276 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6277 struct igb_tx_buffer *tx_buffer = tx_head;
6278 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6279 u32 len = xdpf->len, cmd_type, olinfo_status;
6280 void *data = xdpf->data;
6281
6282 count = TXD_USE_COUNT(len);
6283 for (i = 0; i < nr_frags; i++)
6284 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6285
6286 if (igb_maybe_stop_tx(tx_ring, count + 3))
6287 return IGB_XDP_CONSUMED;
6288
6289 i = 0;
6290 /* record the location of the first descriptor for this packet */
6291 tx_head->bytecount = xdp_get_frame_len(xdpf);
6292 tx_head->type = IGB_TYPE_XDP;
6293 tx_head->gso_segs = 1;
6294 tx_head->xdpf = xdpf;
6295
6296 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6297 /* 82575 requires a unique index per ring */
6298 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6299 olinfo_status |= tx_ring->reg_idx << 4;
6300 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6301
6302 for (;;) {
6303 dma_addr_t dma;
6304
6305 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6306 if (dma_mapping_error(tx_ring->dev, dma))
6307 goto unmap;
6308
6309 /* record length, and DMA address */
6310 dma_unmap_len_set(tx_buffer, len, len);
6311 dma_unmap_addr_set(tx_buffer, dma, dma);
6312
6313 /* put descriptor type bits */
6314 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6315 E1000_ADVTXD_DCMD_IFCS | len;
6316
6317 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6318 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6319
6320 tx_buffer->protocol = 0;
6321
6322 if (++index == tx_ring->count)
6323 index = 0;
6324
6325 if (i == nr_frags)
6326 break;
6327
6328 tx_buffer = &tx_ring->tx_buffer_info[index];
6329 tx_desc = IGB_TX_DESC(tx_ring, index);
6330 tx_desc->read.olinfo_status = 0;
6331
6332 data = skb_frag_address(&sinfo->frags[i]);
6333 len = skb_frag_size(&sinfo->frags[i]);
6334 i++;
6335 }
6336 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6337
6338 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6339 /* set the timestamp */
6340 tx_head->time_stamp = jiffies;
6341
6342 /* Avoid any potential race with xdp_xmit and cleanup */
6343 smp_wmb();
6344
6345 /* set next_to_watch value indicating a packet is present */
6346 tx_head->next_to_watch = tx_desc;
6347 tx_ring->next_to_use = index;
6348
6349 /* Make sure there is space in the ring for the next send. */
6350 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6351
6352 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6353 writel(index, tx_ring->tail);
6354
6355 return IGB_XDP_TX;
6356
6357 unmap:
6358 for (;;) {
6359 tx_buffer = &tx_ring->tx_buffer_info[index];
6360 if (dma_unmap_len(tx_buffer, len))
6361 dma_unmap_page(tx_ring->dev,
6362 dma_unmap_addr(tx_buffer, dma),
6363 dma_unmap_len(tx_buffer, len),
6364 DMA_TO_DEVICE);
6365 dma_unmap_len_set(tx_buffer, len, 0);
6366 if (tx_buffer == tx_head)
6367 break;
6368
6369 if (!index)
6370 index += tx_ring->count;
6371 index--;
6372 }
6373
6374 return IGB_XDP_CONSUMED;
6375 }
6376
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6377 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6378 struct igb_ring *tx_ring)
6379 {
6380 struct igb_tx_buffer *first;
6381 int tso;
6382 u32 tx_flags = 0;
6383 unsigned short f;
6384 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6385 __be16 protocol = vlan_get_protocol(skb);
6386 u8 hdr_len = 0;
6387
6388 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6389 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6390 * + 2 desc gap to keep tail from touching head,
6391 * + 1 desc for context descriptor,
6392 * otherwise try next time
6393 */
6394 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6395 count += TXD_USE_COUNT(skb_frag_size(
6396 &skb_shinfo(skb)->frags[f]));
6397
6398 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6399 /* this is a hard error */
6400 return NETDEV_TX_BUSY;
6401 }
6402
6403 /* record the location of the first descriptor for this packet */
6404 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6405 first->type = IGB_TYPE_SKB;
6406 first->skb = skb;
6407 first->bytecount = skb->len;
6408 first->gso_segs = 1;
6409
6410 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6411 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6412
6413 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6414 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6415 &adapter->state)) {
6416 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6417 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6418
6419 adapter->ptp_tx_skb = skb_get(skb);
6420 adapter->ptp_tx_start = jiffies;
6421 if (adapter->hw.mac.type == e1000_82576)
6422 schedule_work(&adapter->ptp_tx_work);
6423 } else {
6424 adapter->tx_hwtstamp_skipped++;
6425 }
6426 }
6427
6428 if (skb_vlan_tag_present(skb)) {
6429 tx_flags |= IGB_TX_FLAGS_VLAN;
6430 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6431 }
6432
6433 /* record initial flags and protocol */
6434 first->tx_flags = tx_flags;
6435 first->protocol = protocol;
6436
6437 tso = igb_tso(tx_ring, first, &hdr_len);
6438 if (tso < 0)
6439 goto out_drop;
6440 else if (!tso)
6441 igb_tx_csum(tx_ring, first);
6442
6443 if (igb_tx_map(tx_ring, first, hdr_len))
6444 goto cleanup_tx_tstamp;
6445
6446 return NETDEV_TX_OK;
6447
6448 out_drop:
6449 dev_kfree_skb_any(first->skb);
6450 first->skb = NULL;
6451 cleanup_tx_tstamp:
6452 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6453 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6454
6455 dev_kfree_skb_any(adapter->ptp_tx_skb);
6456 adapter->ptp_tx_skb = NULL;
6457 if (adapter->hw.mac.type == e1000_82576)
6458 cancel_work_sync(&adapter->ptp_tx_work);
6459 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6460 }
6461
6462 return NETDEV_TX_OK;
6463 }
6464
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6465 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6466 struct sk_buff *skb)
6467 {
6468 unsigned int r_idx = skb->queue_mapping;
6469
6470 if (r_idx >= adapter->num_tx_queues)
6471 r_idx = r_idx % adapter->num_tx_queues;
6472
6473 return adapter->tx_ring[r_idx];
6474 }
6475
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6476 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6477 struct net_device *netdev)
6478 {
6479 struct igb_adapter *adapter = netdev_priv(netdev);
6480
6481 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6482 * in order to meet this minimum size requirement.
6483 */
6484 if (skb_put_padto(skb, 17))
6485 return NETDEV_TX_OK;
6486
6487 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6488 }
6489
6490 /**
6491 * igb_tx_timeout - Respond to a Tx Hang
6492 * @netdev: network interface device structure
6493 * @txqueue: number of the Tx queue that hung (unused)
6494 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6495 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6496 {
6497 struct igb_adapter *adapter = netdev_priv(netdev);
6498 struct e1000_hw *hw = &adapter->hw;
6499
6500 /* Do the reset outside of interrupt context */
6501 adapter->tx_timeout_count++;
6502
6503 if (hw->mac.type >= e1000_82580)
6504 hw->dev_spec._82575.global_device_reset = true;
6505
6506 schedule_work(&adapter->reset_task);
6507 wr32(E1000_EICS,
6508 (adapter->eims_enable_mask & ~adapter->eims_other));
6509 }
6510
igb_reset_task(struct work_struct * work)6511 static void igb_reset_task(struct work_struct *work)
6512 {
6513 struct igb_adapter *adapter;
6514 adapter = container_of(work, struct igb_adapter, reset_task);
6515
6516 rtnl_lock();
6517 /* If we're already down or resetting, just bail */
6518 if (test_bit(__IGB_DOWN, &adapter->state) ||
6519 test_bit(__IGB_RESETTING, &adapter->state)) {
6520 rtnl_unlock();
6521 return;
6522 }
6523
6524 igb_dump(adapter);
6525 netdev_err(adapter->netdev, "Reset adapter\n");
6526 igb_reinit_locked(adapter);
6527 rtnl_unlock();
6528 }
6529
6530 /**
6531 * igb_get_stats64 - Get System Network Statistics
6532 * @netdev: network interface device structure
6533 * @stats: rtnl_link_stats64 pointer
6534 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6535 static void igb_get_stats64(struct net_device *netdev,
6536 struct rtnl_link_stats64 *stats)
6537 {
6538 struct igb_adapter *adapter = netdev_priv(netdev);
6539
6540 spin_lock(&adapter->stats64_lock);
6541 igb_update_stats(adapter);
6542 memcpy(stats, &adapter->stats64, sizeof(*stats));
6543 spin_unlock(&adapter->stats64_lock);
6544 }
6545
6546 /**
6547 * igb_change_mtu - Change the Maximum Transfer Unit
6548 * @netdev: network interface device structure
6549 * @new_mtu: new value for maximum frame size
6550 *
6551 * Returns 0 on success, negative on failure
6552 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6553 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6554 {
6555 struct igb_adapter *adapter = netdev_priv(netdev);
6556 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6557
6558 if (adapter->xdp_prog) {
6559 int i;
6560
6561 for (i = 0; i < adapter->num_rx_queues; i++) {
6562 struct igb_ring *ring = adapter->rx_ring[i];
6563
6564 if (max_frame > igb_rx_bufsz(ring)) {
6565 netdev_warn(adapter->netdev,
6566 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6567 max_frame);
6568 return -EINVAL;
6569 }
6570 }
6571 }
6572
6573 /* adjust max frame to be at least the size of a standard frame */
6574 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6575 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6576
6577 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6578 usleep_range(1000, 2000);
6579
6580 /* igb_down has a dependency on max_frame_size */
6581 adapter->max_frame_size = max_frame;
6582
6583 if (netif_running(netdev))
6584 igb_down(adapter);
6585
6586 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6587 netdev->mtu, new_mtu);
6588 netdev->mtu = new_mtu;
6589
6590 if (netif_running(netdev))
6591 igb_up(adapter);
6592 else
6593 igb_reset(adapter);
6594
6595 clear_bit(__IGB_RESETTING, &adapter->state);
6596
6597 return 0;
6598 }
6599
6600 /**
6601 * igb_update_stats - Update the board statistics counters
6602 * @adapter: board private structure
6603 **/
igb_update_stats(struct igb_adapter * adapter)6604 void igb_update_stats(struct igb_adapter *adapter)
6605 {
6606 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6607 struct e1000_hw *hw = &adapter->hw;
6608 struct pci_dev *pdev = adapter->pdev;
6609 u32 reg, mpc;
6610 int i;
6611 u64 bytes, packets;
6612 unsigned int start;
6613 u64 _bytes, _packets;
6614
6615 /* Prevent stats update while adapter is being reset, or if the pci
6616 * connection is down.
6617 */
6618 if (adapter->link_speed == 0)
6619 return;
6620 if (pci_channel_offline(pdev))
6621 return;
6622
6623 bytes = 0;
6624 packets = 0;
6625
6626 rcu_read_lock();
6627 for (i = 0; i < adapter->num_rx_queues; i++) {
6628 struct igb_ring *ring = adapter->rx_ring[i];
6629 u32 rqdpc = rd32(E1000_RQDPC(i));
6630 if (hw->mac.type >= e1000_i210)
6631 wr32(E1000_RQDPC(i), 0);
6632
6633 if (rqdpc) {
6634 ring->rx_stats.drops += rqdpc;
6635 net_stats->rx_fifo_errors += rqdpc;
6636 }
6637
6638 do {
6639 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6640 _bytes = ring->rx_stats.bytes;
6641 _packets = ring->rx_stats.packets;
6642 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6643 bytes += _bytes;
6644 packets += _packets;
6645 }
6646
6647 net_stats->rx_bytes = bytes;
6648 net_stats->rx_packets = packets;
6649
6650 bytes = 0;
6651 packets = 0;
6652 for (i = 0; i < adapter->num_tx_queues; i++) {
6653 struct igb_ring *ring = adapter->tx_ring[i];
6654 do {
6655 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6656 _bytes = ring->tx_stats.bytes;
6657 _packets = ring->tx_stats.packets;
6658 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6659 bytes += _bytes;
6660 packets += _packets;
6661 }
6662 net_stats->tx_bytes = bytes;
6663 net_stats->tx_packets = packets;
6664 rcu_read_unlock();
6665
6666 /* read stats registers */
6667 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6668 adapter->stats.gprc += rd32(E1000_GPRC);
6669 adapter->stats.gorc += rd32(E1000_GORCL);
6670 rd32(E1000_GORCH); /* clear GORCL */
6671 adapter->stats.bprc += rd32(E1000_BPRC);
6672 adapter->stats.mprc += rd32(E1000_MPRC);
6673 adapter->stats.roc += rd32(E1000_ROC);
6674
6675 adapter->stats.prc64 += rd32(E1000_PRC64);
6676 adapter->stats.prc127 += rd32(E1000_PRC127);
6677 adapter->stats.prc255 += rd32(E1000_PRC255);
6678 adapter->stats.prc511 += rd32(E1000_PRC511);
6679 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6680 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6681 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6682 adapter->stats.sec += rd32(E1000_SEC);
6683
6684 mpc = rd32(E1000_MPC);
6685 adapter->stats.mpc += mpc;
6686 net_stats->rx_fifo_errors += mpc;
6687 adapter->stats.scc += rd32(E1000_SCC);
6688 adapter->stats.ecol += rd32(E1000_ECOL);
6689 adapter->stats.mcc += rd32(E1000_MCC);
6690 adapter->stats.latecol += rd32(E1000_LATECOL);
6691 adapter->stats.dc += rd32(E1000_DC);
6692 adapter->stats.rlec += rd32(E1000_RLEC);
6693 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6694 adapter->stats.xontxc += rd32(E1000_XONTXC);
6695 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6696 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6697 adapter->stats.fcruc += rd32(E1000_FCRUC);
6698 adapter->stats.gptc += rd32(E1000_GPTC);
6699 adapter->stats.gotc += rd32(E1000_GOTCL);
6700 rd32(E1000_GOTCH); /* clear GOTCL */
6701 adapter->stats.rnbc += rd32(E1000_RNBC);
6702 adapter->stats.ruc += rd32(E1000_RUC);
6703 adapter->stats.rfc += rd32(E1000_RFC);
6704 adapter->stats.rjc += rd32(E1000_RJC);
6705 adapter->stats.tor += rd32(E1000_TORH);
6706 adapter->stats.tot += rd32(E1000_TOTH);
6707 adapter->stats.tpr += rd32(E1000_TPR);
6708
6709 adapter->stats.ptc64 += rd32(E1000_PTC64);
6710 adapter->stats.ptc127 += rd32(E1000_PTC127);
6711 adapter->stats.ptc255 += rd32(E1000_PTC255);
6712 adapter->stats.ptc511 += rd32(E1000_PTC511);
6713 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6714 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6715
6716 adapter->stats.mptc += rd32(E1000_MPTC);
6717 adapter->stats.bptc += rd32(E1000_BPTC);
6718
6719 adapter->stats.tpt += rd32(E1000_TPT);
6720 adapter->stats.colc += rd32(E1000_COLC);
6721
6722 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6723 /* read internal phy specific stats */
6724 reg = rd32(E1000_CTRL_EXT);
6725 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6726 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6727
6728 /* this stat has invalid values on i210/i211 */
6729 if ((hw->mac.type != e1000_i210) &&
6730 (hw->mac.type != e1000_i211))
6731 adapter->stats.tncrs += rd32(E1000_TNCRS);
6732 }
6733
6734 adapter->stats.tsctc += rd32(E1000_TSCTC);
6735 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6736
6737 adapter->stats.iac += rd32(E1000_IAC);
6738 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6739 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6740 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6741 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6742 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6743 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6744 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6745 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6746
6747 /* Fill out the OS statistics structure */
6748 net_stats->multicast = adapter->stats.mprc;
6749 net_stats->collisions = adapter->stats.colc;
6750
6751 /* Rx Errors */
6752
6753 /* RLEC on some newer hardware can be incorrect so build
6754 * our own version based on RUC and ROC
6755 */
6756 net_stats->rx_errors = adapter->stats.rxerrc +
6757 adapter->stats.crcerrs + adapter->stats.algnerrc +
6758 adapter->stats.ruc + adapter->stats.roc +
6759 adapter->stats.cexterr;
6760 net_stats->rx_length_errors = adapter->stats.ruc +
6761 adapter->stats.roc;
6762 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6763 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6764 net_stats->rx_missed_errors = adapter->stats.mpc;
6765
6766 /* Tx Errors */
6767 net_stats->tx_errors = adapter->stats.ecol +
6768 adapter->stats.latecol;
6769 net_stats->tx_aborted_errors = adapter->stats.ecol;
6770 net_stats->tx_window_errors = adapter->stats.latecol;
6771 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6772
6773 /* Tx Dropped needs to be maintained elsewhere */
6774
6775 /* Management Stats */
6776 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6777 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6778 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6779
6780 /* OS2BMC Stats */
6781 reg = rd32(E1000_MANC);
6782 if (reg & E1000_MANC_EN_BMC2OS) {
6783 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6784 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6785 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6786 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6787 }
6788 }
6789
igb_perout(struct igb_adapter * adapter,int tsintr_tt)6790 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6791 {
6792 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6793 struct e1000_hw *hw = &adapter->hw;
6794 struct timespec64 ts;
6795 u32 tsauxc;
6796
6797 if (pin < 0 || pin >= IGB_N_PEROUT)
6798 return;
6799
6800 spin_lock(&adapter->tmreg_lock);
6801
6802 if (hw->mac.type == e1000_82580 ||
6803 hw->mac.type == e1000_i354 ||
6804 hw->mac.type == e1000_i350) {
6805 s64 ns = timespec64_to_ns(&adapter->perout[pin].period);
6806 u32 systiml, systimh, level_mask, level, rem;
6807 u64 systim, now;
6808
6809 /* read systim registers in sequence */
6810 rd32(E1000_SYSTIMR);
6811 systiml = rd32(E1000_SYSTIML);
6812 systimh = rd32(E1000_SYSTIMH);
6813 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6814 now = timecounter_cyc2time(&adapter->tc, systim);
6815
6816 if (pin < 2) {
6817 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6818 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6819 } else {
6820 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6821 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6822 }
6823
6824 div_u64_rem(now, ns, &rem);
6825 systim = systim + (ns - rem);
6826
6827 /* synchronize pin level with rising/falling edges */
6828 div_u64_rem(now, ns << 1, &rem);
6829 if (rem < ns) {
6830 /* first half of period */
6831 if (level == 0) {
6832 /* output is already low, skip this period */
6833 systim += ns;
6834 pr_notice("igb: periodic output on %s missed falling edge\n",
6835 adapter->sdp_config[pin].name);
6836 }
6837 } else {
6838 /* second half of period */
6839 if (level == 1) {
6840 /* output is already high, skip this period */
6841 systim += ns;
6842 pr_notice("igb: periodic output on %s missed rising edge\n",
6843 adapter->sdp_config[pin].name);
6844 }
6845 }
6846
6847 /* for this chip family tv_sec is the upper part of the binary value,
6848 * so not seconds
6849 */
6850 ts.tv_nsec = (u32)systim;
6851 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
6852 } else {
6853 ts = timespec64_add(adapter->perout[pin].start,
6854 adapter->perout[pin].period);
6855 }
6856
6857 /* u32 conversion of tv_sec is safe until y2106 */
6858 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6859 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6860 tsauxc = rd32(E1000_TSAUXC);
6861 tsauxc |= TSAUXC_EN_TT0;
6862 wr32(E1000_TSAUXC, tsauxc);
6863 adapter->perout[pin].start = ts;
6864
6865 spin_unlock(&adapter->tmreg_lock);
6866 }
6867
igb_extts(struct igb_adapter * adapter,int tsintr_tt)6868 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6869 {
6870 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6871 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6872 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6873 struct e1000_hw *hw = &adapter->hw;
6874 struct ptp_clock_event event;
6875 struct timespec64 ts;
6876
6877 if (pin < 0 || pin >= IGB_N_EXTTS)
6878 return;
6879
6880 if (hw->mac.type == e1000_82580 ||
6881 hw->mac.type == e1000_i354 ||
6882 hw->mac.type == e1000_i350) {
6883 s64 ns = rd32(auxstmpl);
6884
6885 ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
6886 ts = ns_to_timespec64(ns);
6887 } else {
6888 ts.tv_nsec = rd32(auxstmpl);
6889 ts.tv_sec = rd32(auxstmph);
6890 }
6891
6892 event.type = PTP_CLOCK_EXTTS;
6893 event.index = tsintr_tt;
6894 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6895 ptp_clock_event(adapter->ptp_clock, &event);
6896 }
6897
igb_tsync_interrupt(struct igb_adapter * adapter)6898 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6899 {
6900 struct e1000_hw *hw = &adapter->hw;
6901 u32 ack = 0, tsicr = rd32(E1000_TSICR);
6902 struct ptp_clock_event event;
6903
6904 if (tsicr & TSINTR_SYS_WRAP) {
6905 event.type = PTP_CLOCK_PPS;
6906 if (adapter->ptp_caps.pps)
6907 ptp_clock_event(adapter->ptp_clock, &event);
6908 ack |= TSINTR_SYS_WRAP;
6909 }
6910
6911 if (tsicr & E1000_TSICR_TXTS) {
6912 /* retrieve hardware timestamp */
6913 schedule_work(&adapter->ptp_tx_work);
6914 ack |= E1000_TSICR_TXTS;
6915 }
6916
6917 if (tsicr & TSINTR_TT0) {
6918 igb_perout(adapter, 0);
6919 ack |= TSINTR_TT0;
6920 }
6921
6922 if (tsicr & TSINTR_TT1) {
6923 igb_perout(adapter, 1);
6924 ack |= TSINTR_TT1;
6925 }
6926
6927 if (tsicr & TSINTR_AUTT0) {
6928 igb_extts(adapter, 0);
6929 ack |= TSINTR_AUTT0;
6930 }
6931
6932 if (tsicr & TSINTR_AUTT1) {
6933 igb_extts(adapter, 1);
6934 ack |= TSINTR_AUTT1;
6935 }
6936
6937 /* acknowledge the interrupts */
6938 wr32(E1000_TSICR, ack);
6939 }
6940
igb_msix_other(int irq,void * data)6941 static irqreturn_t igb_msix_other(int irq, void *data)
6942 {
6943 struct igb_adapter *adapter = data;
6944 struct e1000_hw *hw = &adapter->hw;
6945 u32 icr = rd32(E1000_ICR);
6946 /* reading ICR causes bit 31 of EICR to be cleared */
6947
6948 if (icr & E1000_ICR_DRSTA)
6949 schedule_work(&adapter->reset_task);
6950
6951 if (icr & E1000_ICR_DOUTSYNC) {
6952 /* HW is reporting DMA is out of sync */
6953 adapter->stats.doosync++;
6954 /* The DMA Out of Sync is also indication of a spoof event
6955 * in IOV mode. Check the Wrong VM Behavior register to
6956 * see if it is really a spoof event.
6957 */
6958 igb_check_wvbr(adapter);
6959 }
6960
6961 /* Check for a mailbox event */
6962 if (icr & E1000_ICR_VMMB)
6963 igb_msg_task(adapter);
6964
6965 if (icr & E1000_ICR_LSC) {
6966 hw->mac.get_link_status = 1;
6967 /* guard against interrupt when we're going down */
6968 if (!test_bit(__IGB_DOWN, &adapter->state))
6969 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6970 }
6971
6972 if (icr & E1000_ICR_TS)
6973 igb_tsync_interrupt(adapter);
6974
6975 wr32(E1000_EIMS, adapter->eims_other);
6976
6977 return IRQ_HANDLED;
6978 }
6979
igb_write_itr(struct igb_q_vector * q_vector)6980 static void igb_write_itr(struct igb_q_vector *q_vector)
6981 {
6982 struct igb_adapter *adapter = q_vector->adapter;
6983 u32 itr_val = q_vector->itr_val & 0x7FFC;
6984
6985 if (!q_vector->set_itr)
6986 return;
6987
6988 if (!itr_val)
6989 itr_val = 0x4;
6990
6991 if (adapter->hw.mac.type == e1000_82575)
6992 itr_val |= itr_val << 16;
6993 else
6994 itr_val |= E1000_EITR_CNT_IGNR;
6995
6996 writel(itr_val, q_vector->itr_register);
6997 q_vector->set_itr = 0;
6998 }
6999
igb_msix_ring(int irq,void * data)7000 static irqreturn_t igb_msix_ring(int irq, void *data)
7001 {
7002 struct igb_q_vector *q_vector = data;
7003
7004 /* Write the ITR value calculated from the previous interrupt. */
7005 igb_write_itr(q_vector);
7006
7007 napi_schedule(&q_vector->napi);
7008
7009 return IRQ_HANDLED;
7010 }
7011
7012 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)7013 static void igb_update_tx_dca(struct igb_adapter *adapter,
7014 struct igb_ring *tx_ring,
7015 int cpu)
7016 {
7017 struct e1000_hw *hw = &adapter->hw;
7018 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7019
7020 if (hw->mac.type != e1000_82575)
7021 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7022
7023 /* We can enable relaxed ordering for reads, but not writes when
7024 * DCA is enabled. This is due to a known issue in some chipsets
7025 * which will cause the DCA tag to be cleared.
7026 */
7027 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7028 E1000_DCA_TXCTRL_DATA_RRO_EN |
7029 E1000_DCA_TXCTRL_DESC_DCA_EN;
7030
7031 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7032 }
7033
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)7034 static void igb_update_rx_dca(struct igb_adapter *adapter,
7035 struct igb_ring *rx_ring,
7036 int cpu)
7037 {
7038 struct e1000_hw *hw = &adapter->hw;
7039 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7040
7041 if (hw->mac.type != e1000_82575)
7042 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7043
7044 /* We can enable relaxed ordering for reads, but not writes when
7045 * DCA is enabled. This is due to a known issue in some chipsets
7046 * which will cause the DCA tag to be cleared.
7047 */
7048 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7049 E1000_DCA_RXCTRL_DESC_DCA_EN;
7050
7051 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7052 }
7053
igb_update_dca(struct igb_q_vector * q_vector)7054 static void igb_update_dca(struct igb_q_vector *q_vector)
7055 {
7056 struct igb_adapter *adapter = q_vector->adapter;
7057 int cpu = get_cpu();
7058
7059 if (q_vector->cpu == cpu)
7060 goto out_no_update;
7061
7062 if (q_vector->tx.ring)
7063 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7064
7065 if (q_vector->rx.ring)
7066 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7067
7068 q_vector->cpu = cpu;
7069 out_no_update:
7070 put_cpu();
7071 }
7072
igb_setup_dca(struct igb_adapter * adapter)7073 static void igb_setup_dca(struct igb_adapter *adapter)
7074 {
7075 struct e1000_hw *hw = &adapter->hw;
7076 int i;
7077
7078 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7079 return;
7080
7081 /* Always use CB2 mode, difference is masked in the CB driver. */
7082 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7083
7084 for (i = 0; i < adapter->num_q_vectors; i++) {
7085 adapter->q_vector[i]->cpu = -1;
7086 igb_update_dca(adapter->q_vector[i]);
7087 }
7088 }
7089
__igb_notify_dca(struct device * dev,void * data)7090 static int __igb_notify_dca(struct device *dev, void *data)
7091 {
7092 struct net_device *netdev = dev_get_drvdata(dev);
7093 struct igb_adapter *adapter = netdev_priv(netdev);
7094 struct pci_dev *pdev = adapter->pdev;
7095 struct e1000_hw *hw = &adapter->hw;
7096 unsigned long event = *(unsigned long *)data;
7097
7098 switch (event) {
7099 case DCA_PROVIDER_ADD:
7100 /* if already enabled, don't do it again */
7101 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7102 break;
7103 if (dca_add_requester(dev) == 0) {
7104 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7105 dev_info(&pdev->dev, "DCA enabled\n");
7106 igb_setup_dca(adapter);
7107 break;
7108 }
7109 fallthrough; /* since DCA is disabled. */
7110 case DCA_PROVIDER_REMOVE:
7111 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7112 /* without this a class_device is left
7113 * hanging around in the sysfs model
7114 */
7115 dca_remove_requester(dev);
7116 dev_info(&pdev->dev, "DCA disabled\n");
7117 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7118 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7119 }
7120 break;
7121 }
7122
7123 return 0;
7124 }
7125
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7126 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7127 void *p)
7128 {
7129 int ret_val;
7130
7131 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7132 __igb_notify_dca);
7133
7134 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7135 }
7136 #endif /* CONFIG_IGB_DCA */
7137
7138 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7139 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7140 {
7141 unsigned char mac_addr[ETH_ALEN];
7142
7143 eth_zero_addr(mac_addr);
7144 igb_set_vf_mac(adapter, vf, mac_addr);
7145
7146 /* By default spoof check is enabled for all VFs */
7147 adapter->vf_data[vf].spoofchk_enabled = true;
7148
7149 /* By default VFs are not trusted */
7150 adapter->vf_data[vf].trusted = false;
7151
7152 return 0;
7153 }
7154
7155 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7156 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7157 {
7158 struct e1000_hw *hw = &adapter->hw;
7159 u32 ping;
7160 int i;
7161
7162 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7163 ping = E1000_PF_CONTROL_MSG;
7164 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7165 ping |= E1000_VT_MSGTYPE_CTS;
7166 igb_write_mbx(hw, &ping, 1, i);
7167 }
7168 }
7169
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7170 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7171 {
7172 struct e1000_hw *hw = &adapter->hw;
7173 u32 vmolr = rd32(E1000_VMOLR(vf));
7174 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7175
7176 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7177 IGB_VF_FLAG_MULTI_PROMISC);
7178 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7179
7180 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7181 vmolr |= E1000_VMOLR_MPME;
7182 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7183 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7184 } else {
7185 /* if we have hashes and we are clearing a multicast promisc
7186 * flag we need to write the hashes to the MTA as this step
7187 * was previously skipped
7188 */
7189 if (vf_data->num_vf_mc_hashes > 30) {
7190 vmolr |= E1000_VMOLR_MPME;
7191 } else if (vf_data->num_vf_mc_hashes) {
7192 int j;
7193
7194 vmolr |= E1000_VMOLR_ROMPE;
7195 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7196 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7197 }
7198 }
7199
7200 wr32(E1000_VMOLR(vf), vmolr);
7201
7202 /* there are flags left unprocessed, likely not supported */
7203 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7204 return -EINVAL;
7205
7206 return 0;
7207 }
7208
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7209 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7210 u32 *msgbuf, u32 vf)
7211 {
7212 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7213 u16 *hash_list = (u16 *)&msgbuf[1];
7214 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7215 int i;
7216
7217 /* salt away the number of multicast addresses assigned
7218 * to this VF for later use to restore when the PF multi cast
7219 * list changes
7220 */
7221 vf_data->num_vf_mc_hashes = n;
7222
7223 /* only up to 30 hash values supported */
7224 if (n > 30)
7225 n = 30;
7226
7227 /* store the hashes for later use */
7228 for (i = 0; i < n; i++)
7229 vf_data->vf_mc_hashes[i] = hash_list[i];
7230
7231 /* Flush and reset the mta with the new values */
7232 igb_set_rx_mode(adapter->netdev);
7233
7234 return 0;
7235 }
7236
igb_restore_vf_multicasts(struct igb_adapter * adapter)7237 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7238 {
7239 struct e1000_hw *hw = &adapter->hw;
7240 struct vf_data_storage *vf_data;
7241 int i, j;
7242
7243 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7244 u32 vmolr = rd32(E1000_VMOLR(i));
7245
7246 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7247
7248 vf_data = &adapter->vf_data[i];
7249
7250 if ((vf_data->num_vf_mc_hashes > 30) ||
7251 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7252 vmolr |= E1000_VMOLR_MPME;
7253 } else if (vf_data->num_vf_mc_hashes) {
7254 vmolr |= E1000_VMOLR_ROMPE;
7255 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7256 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7257 }
7258 wr32(E1000_VMOLR(i), vmolr);
7259 }
7260 }
7261
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7262 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7263 {
7264 struct e1000_hw *hw = &adapter->hw;
7265 u32 pool_mask, vlvf_mask, i;
7266
7267 /* create mask for VF and other pools */
7268 pool_mask = E1000_VLVF_POOLSEL_MASK;
7269 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7270
7271 /* drop PF from pool bits */
7272 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7273 adapter->vfs_allocated_count);
7274
7275 /* Find the vlan filter for this id */
7276 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7277 u32 vlvf = rd32(E1000_VLVF(i));
7278 u32 vfta_mask, vid, vfta;
7279
7280 /* remove the vf from the pool */
7281 if (!(vlvf & vlvf_mask))
7282 continue;
7283
7284 /* clear out bit from VLVF */
7285 vlvf ^= vlvf_mask;
7286
7287 /* if other pools are present, just remove ourselves */
7288 if (vlvf & pool_mask)
7289 goto update_vlvfb;
7290
7291 /* if PF is present, leave VFTA */
7292 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7293 goto update_vlvf;
7294
7295 vid = vlvf & E1000_VLVF_VLANID_MASK;
7296 vfta_mask = BIT(vid % 32);
7297
7298 /* clear bit from VFTA */
7299 vfta = adapter->shadow_vfta[vid / 32];
7300 if (vfta & vfta_mask)
7301 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7302 update_vlvf:
7303 /* clear pool selection enable */
7304 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7305 vlvf &= E1000_VLVF_POOLSEL_MASK;
7306 else
7307 vlvf = 0;
7308 update_vlvfb:
7309 /* clear pool bits */
7310 wr32(E1000_VLVF(i), vlvf);
7311 }
7312 }
7313
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7314 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7315 {
7316 u32 vlvf;
7317 int idx;
7318
7319 /* short cut the special case */
7320 if (vlan == 0)
7321 return 0;
7322
7323 /* Search for the VLAN id in the VLVF entries */
7324 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7325 vlvf = rd32(E1000_VLVF(idx));
7326 if ((vlvf & VLAN_VID_MASK) == vlan)
7327 break;
7328 }
7329
7330 return idx;
7331 }
7332
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7333 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7334 {
7335 struct e1000_hw *hw = &adapter->hw;
7336 u32 bits, pf_id;
7337 int idx;
7338
7339 idx = igb_find_vlvf_entry(hw, vid);
7340 if (!idx)
7341 return;
7342
7343 /* See if any other pools are set for this VLAN filter
7344 * entry other than the PF.
7345 */
7346 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7347 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7348 bits &= rd32(E1000_VLVF(idx));
7349
7350 /* Disable the filter so this falls into the default pool. */
7351 if (!bits) {
7352 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7353 wr32(E1000_VLVF(idx), BIT(pf_id));
7354 else
7355 wr32(E1000_VLVF(idx), 0);
7356 }
7357 }
7358
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7359 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7360 bool add, u32 vf)
7361 {
7362 int pf_id = adapter->vfs_allocated_count;
7363 struct e1000_hw *hw = &adapter->hw;
7364 int err;
7365
7366 /* If VLAN overlaps with one the PF is currently monitoring make
7367 * sure that we are able to allocate a VLVF entry. This may be
7368 * redundant but it guarantees PF will maintain visibility to
7369 * the VLAN.
7370 */
7371 if (add && test_bit(vid, adapter->active_vlans)) {
7372 err = igb_vfta_set(hw, vid, pf_id, true, false);
7373 if (err)
7374 return err;
7375 }
7376
7377 err = igb_vfta_set(hw, vid, vf, add, false);
7378
7379 if (add && !err)
7380 return err;
7381
7382 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7383 * we may need to drop the PF pool bit in order to allow us to free
7384 * up the VLVF resources.
7385 */
7386 if (test_bit(vid, adapter->active_vlans) ||
7387 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7388 igb_update_pf_vlvf(adapter, vid);
7389
7390 return err;
7391 }
7392
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7393 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7394 {
7395 struct e1000_hw *hw = &adapter->hw;
7396
7397 if (vid)
7398 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7399 else
7400 wr32(E1000_VMVIR(vf), 0);
7401 }
7402
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7403 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7404 u16 vlan, u8 qos)
7405 {
7406 int err;
7407
7408 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7409 if (err)
7410 return err;
7411
7412 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7413 igb_set_vmolr(adapter, vf, !vlan);
7414
7415 /* revoke access to previous VLAN */
7416 if (vlan != adapter->vf_data[vf].pf_vlan)
7417 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7418 false, vf);
7419
7420 adapter->vf_data[vf].pf_vlan = vlan;
7421 adapter->vf_data[vf].pf_qos = qos;
7422 igb_set_vf_vlan_strip(adapter, vf, true);
7423 dev_info(&adapter->pdev->dev,
7424 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7425 if (test_bit(__IGB_DOWN, &adapter->state)) {
7426 dev_warn(&adapter->pdev->dev,
7427 "The VF VLAN has been set, but the PF device is not up.\n");
7428 dev_warn(&adapter->pdev->dev,
7429 "Bring the PF device up before attempting to use the VF device.\n");
7430 }
7431
7432 return err;
7433 }
7434
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7435 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7436 {
7437 /* Restore tagless access via VLAN 0 */
7438 igb_set_vf_vlan(adapter, 0, true, vf);
7439
7440 igb_set_vmvir(adapter, 0, vf);
7441 igb_set_vmolr(adapter, vf, true);
7442
7443 /* Remove any PF assigned VLAN */
7444 if (adapter->vf_data[vf].pf_vlan)
7445 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7446 false, vf);
7447
7448 adapter->vf_data[vf].pf_vlan = 0;
7449 adapter->vf_data[vf].pf_qos = 0;
7450 igb_set_vf_vlan_strip(adapter, vf, false);
7451
7452 return 0;
7453 }
7454
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7455 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7456 u16 vlan, u8 qos, __be16 vlan_proto)
7457 {
7458 struct igb_adapter *adapter = netdev_priv(netdev);
7459
7460 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7461 return -EINVAL;
7462
7463 if (vlan_proto != htons(ETH_P_8021Q))
7464 return -EPROTONOSUPPORT;
7465
7466 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7467 igb_disable_port_vlan(adapter, vf);
7468 }
7469
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7470 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7471 {
7472 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7473 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7474 int ret;
7475
7476 if (adapter->vf_data[vf].pf_vlan)
7477 return -1;
7478
7479 /* VLAN 0 is a special case, don't allow it to be removed */
7480 if (!vid && !add)
7481 return 0;
7482
7483 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7484 if (!ret)
7485 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7486 return ret;
7487 }
7488
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7489 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7490 {
7491 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7492
7493 /* clear flags - except flag that indicates PF has set the MAC */
7494 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7495 vf_data->last_nack = jiffies;
7496
7497 /* reset vlans for device */
7498 igb_clear_vf_vfta(adapter, vf);
7499 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7500 igb_set_vmvir(adapter, vf_data->pf_vlan |
7501 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7502 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7503 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7504
7505 /* reset multicast table array for vf */
7506 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7507
7508 /* Flush and reset the mta with the new values */
7509 igb_set_rx_mode(adapter->netdev);
7510 }
7511
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7512 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7513 {
7514 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7515
7516 /* clear mac address as we were hotplug removed/added */
7517 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7518 eth_zero_addr(vf_mac);
7519
7520 /* process remaining reset events */
7521 igb_vf_reset(adapter, vf);
7522 }
7523
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7524 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7525 {
7526 struct e1000_hw *hw = &adapter->hw;
7527 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7528 u32 reg, msgbuf[3] = {};
7529 u8 *addr = (u8 *)(&msgbuf[1]);
7530
7531 /* process all the same items cleared in a function level reset */
7532 igb_vf_reset(adapter, vf);
7533
7534 /* set vf mac address */
7535 igb_set_vf_mac(adapter, vf, vf_mac);
7536
7537 /* enable transmit and receive for vf */
7538 reg = rd32(E1000_VFTE);
7539 wr32(E1000_VFTE, reg | BIT(vf));
7540 reg = rd32(E1000_VFRE);
7541 wr32(E1000_VFRE, reg | BIT(vf));
7542
7543 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7544
7545 /* reply to reset with ack and vf mac address */
7546 if (!is_zero_ether_addr(vf_mac)) {
7547 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7548 memcpy(addr, vf_mac, ETH_ALEN);
7549 } else {
7550 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7551 }
7552 igb_write_mbx(hw, msgbuf, 3, vf);
7553 }
7554
igb_flush_mac_table(struct igb_adapter * adapter)7555 static void igb_flush_mac_table(struct igb_adapter *adapter)
7556 {
7557 struct e1000_hw *hw = &adapter->hw;
7558 int i;
7559
7560 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7561 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7562 eth_zero_addr(adapter->mac_table[i].addr);
7563 adapter->mac_table[i].queue = 0;
7564 igb_rar_set_index(adapter, i);
7565 }
7566 }
7567
igb_available_rars(struct igb_adapter * adapter,u8 queue)7568 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7569 {
7570 struct e1000_hw *hw = &adapter->hw;
7571 /* do not count rar entries reserved for VFs MAC addresses */
7572 int rar_entries = hw->mac.rar_entry_count -
7573 adapter->vfs_allocated_count;
7574 int i, count = 0;
7575
7576 for (i = 0; i < rar_entries; i++) {
7577 /* do not count default entries */
7578 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7579 continue;
7580
7581 /* do not count "in use" entries for different queues */
7582 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7583 (adapter->mac_table[i].queue != queue))
7584 continue;
7585
7586 count++;
7587 }
7588
7589 return count;
7590 }
7591
7592 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7593 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7594 {
7595 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7596
7597 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7598 mac_table->queue = adapter->vfs_allocated_count;
7599 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7600
7601 igb_rar_set_index(adapter, 0);
7602 }
7603
7604 /* If the filter to be added and an already existing filter express
7605 * the same address and address type, it should be possible to only
7606 * override the other configurations, for example the queue to steer
7607 * traffic.
7608 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7609 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7610 const u8 *addr, const u8 flags)
7611 {
7612 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7613 return true;
7614
7615 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7616 (flags & IGB_MAC_STATE_SRC_ADDR))
7617 return false;
7618
7619 if (!ether_addr_equal(addr, entry->addr))
7620 return false;
7621
7622 return true;
7623 }
7624
7625 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7626 * 'flags' is used to indicate what kind of match is made, match is by
7627 * default for the destination address, if matching by source address
7628 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7629 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7630 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7631 const u8 *addr, const u8 queue,
7632 const u8 flags)
7633 {
7634 struct e1000_hw *hw = &adapter->hw;
7635 int rar_entries = hw->mac.rar_entry_count -
7636 adapter->vfs_allocated_count;
7637 int i;
7638
7639 if (is_zero_ether_addr(addr))
7640 return -EINVAL;
7641
7642 /* Search for the first empty entry in the MAC table.
7643 * Do not touch entries at the end of the table reserved for the VF MAC
7644 * addresses.
7645 */
7646 for (i = 0; i < rar_entries; i++) {
7647 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7648 addr, flags))
7649 continue;
7650
7651 ether_addr_copy(adapter->mac_table[i].addr, addr);
7652 adapter->mac_table[i].queue = queue;
7653 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7654
7655 igb_rar_set_index(adapter, i);
7656 return i;
7657 }
7658
7659 return -ENOSPC;
7660 }
7661
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7662 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7663 const u8 queue)
7664 {
7665 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7666 }
7667
7668 /* Remove a MAC filter for 'addr' directing matching traffic to
7669 * 'queue', 'flags' is used to indicate what kind of match need to be
7670 * removed, match is by default for the destination address, if
7671 * matching by source address is to be removed the flag
7672 * IGB_MAC_STATE_SRC_ADDR can be used.
7673 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7674 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7675 const u8 *addr, const u8 queue,
7676 const u8 flags)
7677 {
7678 struct e1000_hw *hw = &adapter->hw;
7679 int rar_entries = hw->mac.rar_entry_count -
7680 adapter->vfs_allocated_count;
7681 int i;
7682
7683 if (is_zero_ether_addr(addr))
7684 return -EINVAL;
7685
7686 /* Search for matching entry in the MAC table based on given address
7687 * and queue. Do not touch entries at the end of the table reserved
7688 * for the VF MAC addresses.
7689 */
7690 for (i = 0; i < rar_entries; i++) {
7691 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7692 continue;
7693 if ((adapter->mac_table[i].state & flags) != flags)
7694 continue;
7695 if (adapter->mac_table[i].queue != queue)
7696 continue;
7697 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7698 continue;
7699
7700 /* When a filter for the default address is "deleted",
7701 * we return it to its initial configuration
7702 */
7703 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7704 adapter->mac_table[i].state =
7705 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7706 adapter->mac_table[i].queue =
7707 adapter->vfs_allocated_count;
7708 } else {
7709 adapter->mac_table[i].state = 0;
7710 adapter->mac_table[i].queue = 0;
7711 eth_zero_addr(adapter->mac_table[i].addr);
7712 }
7713
7714 igb_rar_set_index(adapter, i);
7715 return 0;
7716 }
7717
7718 return -ENOENT;
7719 }
7720
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7721 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7722 const u8 queue)
7723 {
7724 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7725 }
7726
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7727 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7728 const u8 *addr, u8 queue, u8 flags)
7729 {
7730 struct e1000_hw *hw = &adapter->hw;
7731
7732 /* In theory, this should be supported on 82575 as well, but
7733 * that part wasn't easily accessible during development.
7734 */
7735 if (hw->mac.type != e1000_i210)
7736 return -EOPNOTSUPP;
7737
7738 return igb_add_mac_filter_flags(adapter, addr, queue,
7739 IGB_MAC_STATE_QUEUE_STEERING | flags);
7740 }
7741
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7742 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7743 const u8 *addr, u8 queue, u8 flags)
7744 {
7745 return igb_del_mac_filter_flags(adapter, addr, queue,
7746 IGB_MAC_STATE_QUEUE_STEERING | flags);
7747 }
7748
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7749 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7750 {
7751 struct igb_adapter *adapter = netdev_priv(netdev);
7752 int ret;
7753
7754 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7755
7756 return min_t(int, ret, 0);
7757 }
7758
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7759 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7760 {
7761 struct igb_adapter *adapter = netdev_priv(netdev);
7762
7763 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7764
7765 return 0;
7766 }
7767
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7768 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7769 const u32 info, const u8 *addr)
7770 {
7771 struct pci_dev *pdev = adapter->pdev;
7772 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7773 struct list_head *pos;
7774 struct vf_mac_filter *entry = NULL;
7775 int ret = 0;
7776
7777 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7778 !vf_data->trusted) {
7779 dev_warn(&pdev->dev,
7780 "VF %d requested MAC filter but is administratively denied\n",
7781 vf);
7782 return -EINVAL;
7783 }
7784 if (!is_valid_ether_addr(addr)) {
7785 dev_warn(&pdev->dev,
7786 "VF %d attempted to set invalid MAC filter\n",
7787 vf);
7788 return -EINVAL;
7789 }
7790
7791 switch (info) {
7792 case E1000_VF_MAC_FILTER_CLR:
7793 /* remove all unicast MAC filters related to the current VF */
7794 list_for_each(pos, &adapter->vf_macs.l) {
7795 entry = list_entry(pos, struct vf_mac_filter, l);
7796 if (entry->vf == vf) {
7797 entry->vf = -1;
7798 entry->free = true;
7799 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7800 }
7801 }
7802 break;
7803 case E1000_VF_MAC_FILTER_ADD:
7804 /* try to find empty slot in the list */
7805 list_for_each(pos, &adapter->vf_macs.l) {
7806 entry = list_entry(pos, struct vf_mac_filter, l);
7807 if (entry->free)
7808 break;
7809 }
7810
7811 if (entry && entry->free) {
7812 entry->free = false;
7813 entry->vf = vf;
7814 ether_addr_copy(entry->vf_mac, addr);
7815
7816 ret = igb_add_mac_filter(adapter, addr, vf);
7817 ret = min_t(int, ret, 0);
7818 } else {
7819 ret = -ENOSPC;
7820 }
7821
7822 if (ret == -ENOSPC)
7823 dev_warn(&pdev->dev,
7824 "VF %d has requested MAC filter but there is no space for it\n",
7825 vf);
7826 break;
7827 default:
7828 ret = -EINVAL;
7829 break;
7830 }
7831
7832 return ret;
7833 }
7834
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7835 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7836 {
7837 struct pci_dev *pdev = adapter->pdev;
7838 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7839 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7840
7841 /* The VF MAC Address is stored in a packed array of bytes
7842 * starting at the second 32 bit word of the msg array
7843 */
7844 unsigned char *addr = (unsigned char *)&msg[1];
7845 int ret = 0;
7846
7847 if (!info) {
7848 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7849 !vf_data->trusted) {
7850 dev_warn(&pdev->dev,
7851 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7852 vf);
7853 return -EINVAL;
7854 }
7855
7856 if (!is_valid_ether_addr(addr)) {
7857 dev_warn(&pdev->dev,
7858 "VF %d attempted to set invalid MAC\n",
7859 vf);
7860 return -EINVAL;
7861 }
7862
7863 ret = igb_set_vf_mac(adapter, vf, addr);
7864 } else {
7865 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7866 }
7867
7868 return ret;
7869 }
7870
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7871 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7872 {
7873 struct e1000_hw *hw = &adapter->hw;
7874 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7875 u32 msg = E1000_VT_MSGTYPE_NACK;
7876
7877 /* if device isn't clear to send it shouldn't be reading either */
7878 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7879 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7880 igb_write_mbx(hw, &msg, 1, vf);
7881 vf_data->last_nack = jiffies;
7882 }
7883 }
7884
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7885 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7886 {
7887 struct pci_dev *pdev = adapter->pdev;
7888 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7889 struct e1000_hw *hw = &adapter->hw;
7890 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7891 s32 retval;
7892
7893 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7894
7895 if (retval) {
7896 /* if receive failed revoke VF CTS stats and restart init */
7897 dev_err(&pdev->dev, "Error receiving message from VF\n");
7898 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7899 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7900 goto unlock;
7901 goto out;
7902 }
7903
7904 /* this is a message we already processed, do nothing */
7905 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7906 goto unlock;
7907
7908 /* until the vf completes a reset it should not be
7909 * allowed to start any configuration.
7910 */
7911 if (msgbuf[0] == E1000_VF_RESET) {
7912 /* unlocks mailbox */
7913 igb_vf_reset_msg(adapter, vf);
7914 return;
7915 }
7916
7917 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7918 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7919 goto unlock;
7920 retval = -1;
7921 goto out;
7922 }
7923
7924 switch ((msgbuf[0] & 0xFFFF)) {
7925 case E1000_VF_SET_MAC_ADDR:
7926 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7927 break;
7928 case E1000_VF_SET_PROMISC:
7929 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7930 break;
7931 case E1000_VF_SET_MULTICAST:
7932 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7933 break;
7934 case E1000_VF_SET_LPE:
7935 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7936 break;
7937 case E1000_VF_SET_VLAN:
7938 retval = -1;
7939 if (vf_data->pf_vlan)
7940 dev_warn(&pdev->dev,
7941 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7942 vf);
7943 else
7944 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7945 break;
7946 default:
7947 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7948 retval = -1;
7949 break;
7950 }
7951
7952 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7953 out:
7954 /* notify the VF of the results of what it sent us */
7955 if (retval)
7956 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7957 else
7958 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7959
7960 /* unlocks mailbox */
7961 igb_write_mbx(hw, msgbuf, 1, vf);
7962 return;
7963
7964 unlock:
7965 igb_unlock_mbx(hw, vf);
7966 }
7967
igb_msg_task(struct igb_adapter * adapter)7968 static void igb_msg_task(struct igb_adapter *adapter)
7969 {
7970 struct e1000_hw *hw = &adapter->hw;
7971 unsigned long flags;
7972 u32 vf;
7973
7974 spin_lock_irqsave(&adapter->vfs_lock, flags);
7975 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7976 /* process any reset requests */
7977 if (!igb_check_for_rst(hw, vf))
7978 igb_vf_reset_event(adapter, vf);
7979
7980 /* process any messages pending */
7981 if (!igb_check_for_msg(hw, vf))
7982 igb_rcv_msg_from_vf(adapter, vf);
7983
7984 /* process any acks */
7985 if (!igb_check_for_ack(hw, vf))
7986 igb_rcv_ack_from_vf(adapter, vf);
7987 }
7988 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
7989 }
7990
7991 /**
7992 * igb_set_uta - Set unicast filter table address
7993 * @adapter: board private structure
7994 * @set: boolean indicating if we are setting or clearing bits
7995 *
7996 * The unicast table address is a register array of 32-bit registers.
7997 * The table is meant to be used in a way similar to how the MTA is used
7998 * however due to certain limitations in the hardware it is necessary to
7999 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8000 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
8001 **/
igb_set_uta(struct igb_adapter * adapter,bool set)8002 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8003 {
8004 struct e1000_hw *hw = &adapter->hw;
8005 u32 uta = set ? ~0 : 0;
8006 int i;
8007
8008 /* we only need to do this if VMDq is enabled */
8009 if (!adapter->vfs_allocated_count)
8010 return;
8011
8012 for (i = hw->mac.uta_reg_count; i--;)
8013 array_wr32(E1000_UTA, i, uta);
8014 }
8015
8016 /**
8017 * igb_intr_msi - Interrupt Handler
8018 * @irq: interrupt number
8019 * @data: pointer to a network interface device structure
8020 **/
igb_intr_msi(int irq,void * data)8021 static irqreturn_t igb_intr_msi(int irq, void *data)
8022 {
8023 struct igb_adapter *adapter = data;
8024 struct igb_q_vector *q_vector = adapter->q_vector[0];
8025 struct e1000_hw *hw = &adapter->hw;
8026 /* read ICR disables interrupts using IAM */
8027 u32 icr = rd32(E1000_ICR);
8028
8029 igb_write_itr(q_vector);
8030
8031 if (icr & E1000_ICR_DRSTA)
8032 schedule_work(&adapter->reset_task);
8033
8034 if (icr & E1000_ICR_DOUTSYNC) {
8035 /* HW is reporting DMA is out of sync */
8036 adapter->stats.doosync++;
8037 }
8038
8039 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8040 hw->mac.get_link_status = 1;
8041 if (!test_bit(__IGB_DOWN, &adapter->state))
8042 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8043 }
8044
8045 if (icr & E1000_ICR_TS)
8046 igb_tsync_interrupt(adapter);
8047
8048 napi_schedule(&q_vector->napi);
8049
8050 return IRQ_HANDLED;
8051 }
8052
8053 /**
8054 * igb_intr - Legacy Interrupt Handler
8055 * @irq: interrupt number
8056 * @data: pointer to a network interface device structure
8057 **/
igb_intr(int irq,void * data)8058 static irqreturn_t igb_intr(int irq, void *data)
8059 {
8060 struct igb_adapter *adapter = data;
8061 struct igb_q_vector *q_vector = adapter->q_vector[0];
8062 struct e1000_hw *hw = &adapter->hw;
8063 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8064 * need for the IMC write
8065 */
8066 u32 icr = rd32(E1000_ICR);
8067
8068 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8069 * not set, then the adapter didn't send an interrupt
8070 */
8071 if (!(icr & E1000_ICR_INT_ASSERTED))
8072 return IRQ_NONE;
8073
8074 igb_write_itr(q_vector);
8075
8076 if (icr & E1000_ICR_DRSTA)
8077 schedule_work(&adapter->reset_task);
8078
8079 if (icr & E1000_ICR_DOUTSYNC) {
8080 /* HW is reporting DMA is out of sync */
8081 adapter->stats.doosync++;
8082 }
8083
8084 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8085 hw->mac.get_link_status = 1;
8086 /* guard against interrupt when we're going down */
8087 if (!test_bit(__IGB_DOWN, &adapter->state))
8088 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8089 }
8090
8091 if (icr & E1000_ICR_TS)
8092 igb_tsync_interrupt(adapter);
8093
8094 napi_schedule(&q_vector->napi);
8095
8096 return IRQ_HANDLED;
8097 }
8098
igb_ring_irq_enable(struct igb_q_vector * q_vector)8099 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8100 {
8101 struct igb_adapter *adapter = q_vector->adapter;
8102 struct e1000_hw *hw = &adapter->hw;
8103
8104 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8105 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8106 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8107 igb_set_itr(q_vector);
8108 else
8109 igb_update_ring_itr(q_vector);
8110 }
8111
8112 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8113 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8114 wr32(E1000_EIMS, q_vector->eims_value);
8115 else
8116 igb_irq_enable(adapter);
8117 }
8118 }
8119
8120 /**
8121 * igb_poll - NAPI Rx polling callback
8122 * @napi: napi polling structure
8123 * @budget: count of how many packets we should handle
8124 **/
igb_poll(struct napi_struct * napi,int budget)8125 static int igb_poll(struct napi_struct *napi, int budget)
8126 {
8127 struct igb_q_vector *q_vector = container_of(napi,
8128 struct igb_q_vector,
8129 napi);
8130 bool clean_complete = true;
8131 int work_done = 0;
8132
8133 #ifdef CONFIG_IGB_DCA
8134 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8135 igb_update_dca(q_vector);
8136 #endif
8137 if (q_vector->tx.ring)
8138 clean_complete = igb_clean_tx_irq(q_vector, budget);
8139
8140 if (q_vector->rx.ring) {
8141 int cleaned = igb_clean_rx_irq(q_vector, budget);
8142
8143 work_done += cleaned;
8144 if (cleaned >= budget)
8145 clean_complete = false;
8146 }
8147
8148 /* If all work not completed, return budget and keep polling */
8149 if (!clean_complete)
8150 return budget;
8151
8152 /* Exit the polling mode, but don't re-enable interrupts if stack might
8153 * poll us due to busy-polling
8154 */
8155 if (likely(napi_complete_done(napi, work_done)))
8156 igb_ring_irq_enable(q_vector);
8157
8158 return work_done;
8159 }
8160
8161 /**
8162 * igb_clean_tx_irq - Reclaim resources after transmit completes
8163 * @q_vector: pointer to q_vector containing needed info
8164 * @napi_budget: Used to determine if we are in netpoll
8165 *
8166 * returns true if ring is completely cleaned
8167 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8168 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8169 {
8170 struct igb_adapter *adapter = q_vector->adapter;
8171 struct igb_ring *tx_ring = q_vector->tx.ring;
8172 struct igb_tx_buffer *tx_buffer;
8173 union e1000_adv_tx_desc *tx_desc;
8174 unsigned int total_bytes = 0, total_packets = 0;
8175 unsigned int budget = q_vector->tx.work_limit;
8176 unsigned int i = tx_ring->next_to_clean;
8177
8178 if (test_bit(__IGB_DOWN, &adapter->state))
8179 return true;
8180
8181 tx_buffer = &tx_ring->tx_buffer_info[i];
8182 tx_desc = IGB_TX_DESC(tx_ring, i);
8183 i -= tx_ring->count;
8184
8185 do {
8186 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8187
8188 /* if next_to_watch is not set then there is no work pending */
8189 if (!eop_desc)
8190 break;
8191
8192 /* prevent any other reads prior to eop_desc */
8193 smp_rmb();
8194
8195 /* if DD is not set pending work has not been completed */
8196 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8197 break;
8198
8199 /* clear next_to_watch to prevent false hangs */
8200 tx_buffer->next_to_watch = NULL;
8201
8202 /* update the statistics for this packet */
8203 total_bytes += tx_buffer->bytecount;
8204 total_packets += tx_buffer->gso_segs;
8205
8206 /* free the skb */
8207 if (tx_buffer->type == IGB_TYPE_SKB)
8208 napi_consume_skb(tx_buffer->skb, napi_budget);
8209 else
8210 xdp_return_frame(tx_buffer->xdpf);
8211
8212 /* unmap skb header data */
8213 dma_unmap_single(tx_ring->dev,
8214 dma_unmap_addr(tx_buffer, dma),
8215 dma_unmap_len(tx_buffer, len),
8216 DMA_TO_DEVICE);
8217
8218 /* clear tx_buffer data */
8219 dma_unmap_len_set(tx_buffer, len, 0);
8220
8221 /* clear last DMA location and unmap remaining buffers */
8222 while (tx_desc != eop_desc) {
8223 tx_buffer++;
8224 tx_desc++;
8225 i++;
8226 if (unlikely(!i)) {
8227 i -= tx_ring->count;
8228 tx_buffer = tx_ring->tx_buffer_info;
8229 tx_desc = IGB_TX_DESC(tx_ring, 0);
8230 }
8231
8232 /* unmap any remaining paged data */
8233 if (dma_unmap_len(tx_buffer, len)) {
8234 dma_unmap_page(tx_ring->dev,
8235 dma_unmap_addr(tx_buffer, dma),
8236 dma_unmap_len(tx_buffer, len),
8237 DMA_TO_DEVICE);
8238 dma_unmap_len_set(tx_buffer, len, 0);
8239 }
8240 }
8241
8242 /* move us one more past the eop_desc for start of next pkt */
8243 tx_buffer++;
8244 tx_desc++;
8245 i++;
8246 if (unlikely(!i)) {
8247 i -= tx_ring->count;
8248 tx_buffer = tx_ring->tx_buffer_info;
8249 tx_desc = IGB_TX_DESC(tx_ring, 0);
8250 }
8251
8252 /* issue prefetch for next Tx descriptor */
8253 prefetch(tx_desc);
8254
8255 /* update budget accounting */
8256 budget--;
8257 } while (likely(budget));
8258
8259 netdev_tx_completed_queue(txring_txq(tx_ring),
8260 total_packets, total_bytes);
8261 i += tx_ring->count;
8262 tx_ring->next_to_clean = i;
8263 u64_stats_update_begin(&tx_ring->tx_syncp);
8264 tx_ring->tx_stats.bytes += total_bytes;
8265 tx_ring->tx_stats.packets += total_packets;
8266 u64_stats_update_end(&tx_ring->tx_syncp);
8267 q_vector->tx.total_bytes += total_bytes;
8268 q_vector->tx.total_packets += total_packets;
8269
8270 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8271 struct e1000_hw *hw = &adapter->hw;
8272
8273 /* Detect a transmit hang in hardware, this serializes the
8274 * check with the clearing of time_stamp and movement of i
8275 */
8276 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8277 if (tx_buffer->next_to_watch &&
8278 time_after(jiffies, tx_buffer->time_stamp +
8279 (adapter->tx_timeout_factor * HZ)) &&
8280 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8281
8282 /* detected Tx unit hang */
8283 dev_err(tx_ring->dev,
8284 "Detected Tx Unit Hang\n"
8285 " Tx Queue <%d>\n"
8286 " TDH <%x>\n"
8287 " TDT <%x>\n"
8288 " next_to_use <%x>\n"
8289 " next_to_clean <%x>\n"
8290 "buffer_info[next_to_clean]\n"
8291 " time_stamp <%lx>\n"
8292 " next_to_watch <%p>\n"
8293 " jiffies <%lx>\n"
8294 " desc.status <%x>\n",
8295 tx_ring->queue_index,
8296 rd32(E1000_TDH(tx_ring->reg_idx)),
8297 readl(tx_ring->tail),
8298 tx_ring->next_to_use,
8299 tx_ring->next_to_clean,
8300 tx_buffer->time_stamp,
8301 tx_buffer->next_to_watch,
8302 jiffies,
8303 tx_buffer->next_to_watch->wb.status);
8304 netif_stop_subqueue(tx_ring->netdev,
8305 tx_ring->queue_index);
8306
8307 /* we are about to reset, no point in enabling stuff */
8308 return true;
8309 }
8310 }
8311
8312 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8313 if (unlikely(total_packets &&
8314 netif_carrier_ok(tx_ring->netdev) &&
8315 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8316 /* Make sure that anybody stopping the queue after this
8317 * sees the new next_to_clean.
8318 */
8319 smp_mb();
8320 if (__netif_subqueue_stopped(tx_ring->netdev,
8321 tx_ring->queue_index) &&
8322 !(test_bit(__IGB_DOWN, &adapter->state))) {
8323 netif_wake_subqueue(tx_ring->netdev,
8324 tx_ring->queue_index);
8325
8326 u64_stats_update_begin(&tx_ring->tx_syncp);
8327 tx_ring->tx_stats.restart_queue++;
8328 u64_stats_update_end(&tx_ring->tx_syncp);
8329 }
8330 }
8331
8332 return !!budget;
8333 }
8334
8335 /**
8336 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8337 * @rx_ring: rx descriptor ring to store buffers on
8338 * @old_buff: donor buffer to have page reused
8339 *
8340 * Synchronizes page for reuse by the adapter
8341 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8342 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8343 struct igb_rx_buffer *old_buff)
8344 {
8345 struct igb_rx_buffer *new_buff;
8346 u16 nta = rx_ring->next_to_alloc;
8347
8348 new_buff = &rx_ring->rx_buffer_info[nta];
8349
8350 /* update, and store next to alloc */
8351 nta++;
8352 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8353
8354 /* Transfer page from old buffer to new buffer.
8355 * Move each member individually to avoid possible store
8356 * forwarding stalls.
8357 */
8358 new_buff->dma = old_buff->dma;
8359 new_buff->page = old_buff->page;
8360 new_buff->page_offset = old_buff->page_offset;
8361 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8362 }
8363
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8364 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8365 int rx_buf_pgcnt)
8366 {
8367 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8368 struct page *page = rx_buffer->page;
8369
8370 /* avoid re-using remote and pfmemalloc pages */
8371 if (!dev_page_is_reusable(page))
8372 return false;
8373
8374 #if (PAGE_SIZE < 8192)
8375 /* if we are only owner of page we can reuse it */
8376 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8377 return false;
8378 #else
8379 #define IGB_LAST_OFFSET \
8380 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8381
8382 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8383 return false;
8384 #endif
8385
8386 /* If we have drained the page fragment pool we need to update
8387 * the pagecnt_bias and page count so that we fully restock the
8388 * number of references the driver holds.
8389 */
8390 if (unlikely(pagecnt_bias == 1)) {
8391 page_ref_add(page, USHRT_MAX - 1);
8392 rx_buffer->pagecnt_bias = USHRT_MAX;
8393 }
8394
8395 return true;
8396 }
8397
8398 /**
8399 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8400 * @rx_ring: rx descriptor ring to transact packets on
8401 * @rx_buffer: buffer containing page to add
8402 * @skb: sk_buff to place the data into
8403 * @size: size of buffer to be added
8404 *
8405 * This function will add the data contained in rx_buffer->page to the skb.
8406 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8407 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8408 struct igb_rx_buffer *rx_buffer,
8409 struct sk_buff *skb,
8410 unsigned int size)
8411 {
8412 #if (PAGE_SIZE < 8192)
8413 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8414 #else
8415 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8416 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8417 SKB_DATA_ALIGN(size);
8418 #endif
8419 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8420 rx_buffer->page_offset, size, truesize);
8421 #if (PAGE_SIZE < 8192)
8422 rx_buffer->page_offset ^= truesize;
8423 #else
8424 rx_buffer->page_offset += truesize;
8425 #endif
8426 }
8427
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8428 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8429 struct igb_rx_buffer *rx_buffer,
8430 struct xdp_buff *xdp,
8431 ktime_t timestamp)
8432 {
8433 #if (PAGE_SIZE < 8192)
8434 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8435 #else
8436 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8437 xdp->data_hard_start);
8438 #endif
8439 unsigned int size = xdp->data_end - xdp->data;
8440 unsigned int headlen;
8441 struct sk_buff *skb;
8442
8443 /* prefetch first cache line of first page */
8444 net_prefetch(xdp->data);
8445
8446 /* allocate a skb to store the frags */
8447 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8448 if (unlikely(!skb))
8449 return NULL;
8450
8451 if (timestamp)
8452 skb_hwtstamps(skb)->hwtstamp = timestamp;
8453
8454 /* Determine available headroom for copy */
8455 headlen = size;
8456 if (headlen > IGB_RX_HDR_LEN)
8457 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8458
8459 /* align pull length to size of long to optimize memcpy performance */
8460 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8461
8462 /* update all of the pointers */
8463 size -= headlen;
8464 if (size) {
8465 skb_add_rx_frag(skb, 0, rx_buffer->page,
8466 (xdp->data + headlen) - page_address(rx_buffer->page),
8467 size, truesize);
8468 #if (PAGE_SIZE < 8192)
8469 rx_buffer->page_offset ^= truesize;
8470 #else
8471 rx_buffer->page_offset += truesize;
8472 #endif
8473 } else {
8474 rx_buffer->pagecnt_bias++;
8475 }
8476
8477 return skb;
8478 }
8479
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8480 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8481 struct igb_rx_buffer *rx_buffer,
8482 struct xdp_buff *xdp,
8483 ktime_t timestamp)
8484 {
8485 #if (PAGE_SIZE < 8192)
8486 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8487 #else
8488 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8489 SKB_DATA_ALIGN(xdp->data_end -
8490 xdp->data_hard_start);
8491 #endif
8492 unsigned int metasize = xdp->data - xdp->data_meta;
8493 struct sk_buff *skb;
8494
8495 /* prefetch first cache line of first page */
8496 net_prefetch(xdp->data_meta);
8497
8498 /* build an skb around the page buffer */
8499 skb = napi_build_skb(xdp->data_hard_start, truesize);
8500 if (unlikely(!skb))
8501 return NULL;
8502
8503 /* update pointers within the skb to store the data */
8504 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8505 __skb_put(skb, xdp->data_end - xdp->data);
8506
8507 if (metasize)
8508 skb_metadata_set(skb, metasize);
8509
8510 if (timestamp)
8511 skb_hwtstamps(skb)->hwtstamp = timestamp;
8512
8513 /* update buffer offset */
8514 #if (PAGE_SIZE < 8192)
8515 rx_buffer->page_offset ^= truesize;
8516 #else
8517 rx_buffer->page_offset += truesize;
8518 #endif
8519
8520 return skb;
8521 }
8522
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8523 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8524 struct igb_ring *rx_ring,
8525 struct xdp_buff *xdp)
8526 {
8527 int err, result = IGB_XDP_PASS;
8528 struct bpf_prog *xdp_prog;
8529 u32 act;
8530
8531 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8532
8533 if (!xdp_prog)
8534 goto xdp_out;
8535
8536 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8537
8538 act = bpf_prog_run_xdp(xdp_prog, xdp);
8539 switch (act) {
8540 case XDP_PASS:
8541 break;
8542 case XDP_TX:
8543 result = igb_xdp_xmit_back(adapter, xdp);
8544 if (result == IGB_XDP_CONSUMED)
8545 goto out_failure;
8546 break;
8547 case XDP_REDIRECT:
8548 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8549 if (err)
8550 goto out_failure;
8551 result = IGB_XDP_REDIR;
8552 break;
8553 default:
8554 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8555 fallthrough;
8556 case XDP_ABORTED:
8557 out_failure:
8558 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8559 fallthrough;
8560 case XDP_DROP:
8561 result = IGB_XDP_CONSUMED;
8562 break;
8563 }
8564 xdp_out:
8565 return ERR_PTR(-result);
8566 }
8567
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8568 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8569 unsigned int size)
8570 {
8571 unsigned int truesize;
8572
8573 #if (PAGE_SIZE < 8192)
8574 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8575 #else
8576 truesize = ring_uses_build_skb(rx_ring) ?
8577 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8578 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8579 SKB_DATA_ALIGN(size);
8580 #endif
8581 return truesize;
8582 }
8583
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8584 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8585 struct igb_rx_buffer *rx_buffer,
8586 unsigned int size)
8587 {
8588 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8589 #if (PAGE_SIZE < 8192)
8590 rx_buffer->page_offset ^= truesize;
8591 #else
8592 rx_buffer->page_offset += truesize;
8593 #endif
8594 }
8595
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8596 static inline void igb_rx_checksum(struct igb_ring *ring,
8597 union e1000_adv_rx_desc *rx_desc,
8598 struct sk_buff *skb)
8599 {
8600 skb_checksum_none_assert(skb);
8601
8602 /* Ignore Checksum bit is set */
8603 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8604 return;
8605
8606 /* Rx checksum disabled via ethtool */
8607 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8608 return;
8609
8610 /* TCP/UDP checksum error bit is set */
8611 if (igb_test_staterr(rx_desc,
8612 E1000_RXDEXT_STATERR_TCPE |
8613 E1000_RXDEXT_STATERR_IPE)) {
8614 /* work around errata with sctp packets where the TCPE aka
8615 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8616 * packets, (aka let the stack check the crc32c)
8617 */
8618 if (!((skb->len == 60) &&
8619 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8620 u64_stats_update_begin(&ring->rx_syncp);
8621 ring->rx_stats.csum_err++;
8622 u64_stats_update_end(&ring->rx_syncp);
8623 }
8624 /* let the stack verify checksum errors */
8625 return;
8626 }
8627 /* It must be a TCP or UDP packet with a valid checksum */
8628 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8629 E1000_RXD_STAT_UDPCS))
8630 skb->ip_summed = CHECKSUM_UNNECESSARY;
8631
8632 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8633 le32_to_cpu(rx_desc->wb.upper.status_error));
8634 }
8635
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8636 static inline void igb_rx_hash(struct igb_ring *ring,
8637 union e1000_adv_rx_desc *rx_desc,
8638 struct sk_buff *skb)
8639 {
8640 if (ring->netdev->features & NETIF_F_RXHASH)
8641 skb_set_hash(skb,
8642 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8643 PKT_HASH_TYPE_L3);
8644 }
8645
8646 /**
8647 * igb_is_non_eop - process handling of non-EOP buffers
8648 * @rx_ring: Rx ring being processed
8649 * @rx_desc: Rx descriptor for current buffer
8650 *
8651 * This function updates next to clean. If the buffer is an EOP buffer
8652 * this function exits returning false, otherwise it will place the
8653 * sk_buff in the next buffer to be chained and return true indicating
8654 * that this is in fact a non-EOP buffer.
8655 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8656 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8657 union e1000_adv_rx_desc *rx_desc)
8658 {
8659 u32 ntc = rx_ring->next_to_clean + 1;
8660
8661 /* fetch, update, and store next to clean */
8662 ntc = (ntc < rx_ring->count) ? ntc : 0;
8663 rx_ring->next_to_clean = ntc;
8664
8665 prefetch(IGB_RX_DESC(rx_ring, ntc));
8666
8667 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8668 return false;
8669
8670 return true;
8671 }
8672
8673 /**
8674 * igb_cleanup_headers - Correct corrupted or empty headers
8675 * @rx_ring: rx descriptor ring packet is being transacted on
8676 * @rx_desc: pointer to the EOP Rx descriptor
8677 * @skb: pointer to current skb being fixed
8678 *
8679 * Address the case where we are pulling data in on pages only
8680 * and as such no data is present in the skb header.
8681 *
8682 * In addition if skb is not at least 60 bytes we need to pad it so that
8683 * it is large enough to qualify as a valid Ethernet frame.
8684 *
8685 * Returns true if an error was encountered and skb was freed.
8686 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8687 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8688 union e1000_adv_rx_desc *rx_desc,
8689 struct sk_buff *skb)
8690 {
8691 /* XDP packets use error pointer so abort at this point */
8692 if (IS_ERR(skb))
8693 return true;
8694
8695 if (unlikely((igb_test_staterr(rx_desc,
8696 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8697 struct net_device *netdev = rx_ring->netdev;
8698 if (!(netdev->features & NETIF_F_RXALL)) {
8699 dev_kfree_skb_any(skb);
8700 return true;
8701 }
8702 }
8703
8704 /* if eth_skb_pad returns an error the skb was freed */
8705 if (eth_skb_pad(skb))
8706 return true;
8707
8708 return false;
8709 }
8710
8711 /**
8712 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8713 * @rx_ring: rx descriptor ring packet is being transacted on
8714 * @rx_desc: pointer to the EOP Rx descriptor
8715 * @skb: pointer to current skb being populated
8716 *
8717 * This function checks the ring, descriptor, and packet information in
8718 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8719 * other fields within the skb.
8720 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8721 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8722 union e1000_adv_rx_desc *rx_desc,
8723 struct sk_buff *skb)
8724 {
8725 struct net_device *dev = rx_ring->netdev;
8726
8727 igb_rx_hash(rx_ring, rx_desc, skb);
8728
8729 igb_rx_checksum(rx_ring, rx_desc, skb);
8730
8731 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8732 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8733 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8734
8735 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8736 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8737 u16 vid;
8738
8739 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8740 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8741 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8742 else
8743 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8744
8745 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8746 }
8747
8748 skb_record_rx_queue(skb, rx_ring->queue_index);
8749
8750 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8751 }
8752
igb_rx_offset(struct igb_ring * rx_ring)8753 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8754 {
8755 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8756 }
8757
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8758 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8759 const unsigned int size, int *rx_buf_pgcnt)
8760 {
8761 struct igb_rx_buffer *rx_buffer;
8762
8763 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8764 *rx_buf_pgcnt =
8765 #if (PAGE_SIZE < 8192)
8766 page_count(rx_buffer->page);
8767 #else
8768 0;
8769 #endif
8770 prefetchw(rx_buffer->page);
8771
8772 /* we are reusing so sync this buffer for CPU use */
8773 dma_sync_single_range_for_cpu(rx_ring->dev,
8774 rx_buffer->dma,
8775 rx_buffer->page_offset,
8776 size,
8777 DMA_FROM_DEVICE);
8778
8779 rx_buffer->pagecnt_bias--;
8780
8781 return rx_buffer;
8782 }
8783
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8784 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8785 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8786 {
8787 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8788 /* hand second half of page back to the ring */
8789 igb_reuse_rx_page(rx_ring, rx_buffer);
8790 } else {
8791 /* We are not reusing the buffer so unmap it and free
8792 * any references we are holding to it
8793 */
8794 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8795 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8796 IGB_RX_DMA_ATTR);
8797 __page_frag_cache_drain(rx_buffer->page,
8798 rx_buffer->pagecnt_bias);
8799 }
8800
8801 /* clear contents of rx_buffer */
8802 rx_buffer->page = NULL;
8803 }
8804
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8805 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8806 {
8807 struct igb_adapter *adapter = q_vector->adapter;
8808 struct igb_ring *rx_ring = q_vector->rx.ring;
8809 struct sk_buff *skb = rx_ring->skb;
8810 unsigned int total_bytes = 0, total_packets = 0;
8811 u16 cleaned_count = igb_desc_unused(rx_ring);
8812 unsigned int xdp_xmit = 0;
8813 struct xdp_buff xdp;
8814 u32 frame_sz = 0;
8815 int rx_buf_pgcnt;
8816
8817 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8818 #if (PAGE_SIZE < 8192)
8819 frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8820 #endif
8821 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8822
8823 while (likely(total_packets < budget)) {
8824 union e1000_adv_rx_desc *rx_desc;
8825 struct igb_rx_buffer *rx_buffer;
8826 ktime_t timestamp = 0;
8827 int pkt_offset = 0;
8828 unsigned int size;
8829 void *pktbuf;
8830
8831 /* return some buffers to hardware, one at a time is too slow */
8832 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8833 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8834 cleaned_count = 0;
8835 }
8836
8837 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8838 size = le16_to_cpu(rx_desc->wb.upper.length);
8839 if (!size)
8840 break;
8841
8842 /* This memory barrier is needed to keep us from reading
8843 * any other fields out of the rx_desc until we know the
8844 * descriptor has been written back
8845 */
8846 dma_rmb();
8847
8848 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8849 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8850
8851 /* pull rx packet timestamp if available and valid */
8852 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8853 int ts_hdr_len;
8854
8855 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8856 pktbuf, ×tamp);
8857
8858 pkt_offset += ts_hdr_len;
8859 size -= ts_hdr_len;
8860 }
8861
8862 /* retrieve a buffer from the ring */
8863 if (!skb) {
8864 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8865 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8866
8867 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8868 xdp_buff_clear_frags_flag(&xdp);
8869 #if (PAGE_SIZE > 4096)
8870 /* At larger PAGE_SIZE, frame_sz depend on len size */
8871 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8872 #endif
8873 skb = igb_run_xdp(adapter, rx_ring, &xdp);
8874 }
8875
8876 if (IS_ERR(skb)) {
8877 unsigned int xdp_res = -PTR_ERR(skb);
8878
8879 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8880 xdp_xmit |= xdp_res;
8881 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8882 } else {
8883 rx_buffer->pagecnt_bias++;
8884 }
8885 total_packets++;
8886 total_bytes += size;
8887 } else if (skb)
8888 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8889 else if (ring_uses_build_skb(rx_ring))
8890 skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8891 timestamp);
8892 else
8893 skb = igb_construct_skb(rx_ring, rx_buffer,
8894 &xdp, timestamp);
8895
8896 /* exit if we failed to retrieve a buffer */
8897 if (!skb) {
8898 rx_ring->rx_stats.alloc_failed++;
8899 rx_buffer->pagecnt_bias++;
8900 break;
8901 }
8902
8903 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8904 cleaned_count++;
8905
8906 /* fetch next buffer in frame if non-eop */
8907 if (igb_is_non_eop(rx_ring, rx_desc))
8908 continue;
8909
8910 /* verify the packet layout is correct */
8911 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8912 skb = NULL;
8913 continue;
8914 }
8915
8916 /* probably a little skewed due to removing CRC */
8917 total_bytes += skb->len;
8918
8919 /* populate checksum, timestamp, VLAN, and protocol */
8920 igb_process_skb_fields(rx_ring, rx_desc, skb);
8921
8922 napi_gro_receive(&q_vector->napi, skb);
8923
8924 /* reset skb pointer */
8925 skb = NULL;
8926
8927 /* update budget accounting */
8928 total_packets++;
8929 }
8930
8931 /* place incomplete frames back on ring for completion */
8932 rx_ring->skb = skb;
8933
8934 if (xdp_xmit & IGB_XDP_REDIR)
8935 xdp_do_flush();
8936
8937 if (xdp_xmit & IGB_XDP_TX) {
8938 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8939
8940 igb_xdp_ring_update_tail(tx_ring);
8941 }
8942
8943 u64_stats_update_begin(&rx_ring->rx_syncp);
8944 rx_ring->rx_stats.packets += total_packets;
8945 rx_ring->rx_stats.bytes += total_bytes;
8946 u64_stats_update_end(&rx_ring->rx_syncp);
8947 q_vector->rx.total_packets += total_packets;
8948 q_vector->rx.total_bytes += total_bytes;
8949
8950 if (cleaned_count)
8951 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8952
8953 return total_packets;
8954 }
8955
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8956 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8957 struct igb_rx_buffer *bi)
8958 {
8959 struct page *page = bi->page;
8960 dma_addr_t dma;
8961
8962 /* since we are recycling buffers we should seldom need to alloc */
8963 if (likely(page))
8964 return true;
8965
8966 /* alloc new page for storage */
8967 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8968 if (unlikely(!page)) {
8969 rx_ring->rx_stats.alloc_failed++;
8970 return false;
8971 }
8972
8973 /* map page for use */
8974 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8975 igb_rx_pg_size(rx_ring),
8976 DMA_FROM_DEVICE,
8977 IGB_RX_DMA_ATTR);
8978
8979 /* if mapping failed free memory back to system since
8980 * there isn't much point in holding memory we can't use
8981 */
8982 if (dma_mapping_error(rx_ring->dev, dma)) {
8983 __free_pages(page, igb_rx_pg_order(rx_ring));
8984
8985 rx_ring->rx_stats.alloc_failed++;
8986 return false;
8987 }
8988
8989 bi->dma = dma;
8990 bi->page = page;
8991 bi->page_offset = igb_rx_offset(rx_ring);
8992 page_ref_add(page, USHRT_MAX - 1);
8993 bi->pagecnt_bias = USHRT_MAX;
8994
8995 return true;
8996 }
8997
8998 /**
8999 * igb_alloc_rx_buffers - Replace used receive buffers
9000 * @rx_ring: rx descriptor ring to allocate new receive buffers
9001 * @cleaned_count: count of buffers to allocate
9002 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)9003 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9004 {
9005 union e1000_adv_rx_desc *rx_desc;
9006 struct igb_rx_buffer *bi;
9007 u16 i = rx_ring->next_to_use;
9008 u16 bufsz;
9009
9010 /* nothing to do */
9011 if (!cleaned_count)
9012 return;
9013
9014 rx_desc = IGB_RX_DESC(rx_ring, i);
9015 bi = &rx_ring->rx_buffer_info[i];
9016 i -= rx_ring->count;
9017
9018 bufsz = igb_rx_bufsz(rx_ring);
9019
9020 do {
9021 if (!igb_alloc_mapped_page(rx_ring, bi))
9022 break;
9023
9024 /* sync the buffer for use by the device */
9025 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9026 bi->page_offset, bufsz,
9027 DMA_FROM_DEVICE);
9028
9029 /* Refresh the desc even if buffer_addrs didn't change
9030 * because each write-back erases this info.
9031 */
9032 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9033
9034 rx_desc++;
9035 bi++;
9036 i++;
9037 if (unlikely(!i)) {
9038 rx_desc = IGB_RX_DESC(rx_ring, 0);
9039 bi = rx_ring->rx_buffer_info;
9040 i -= rx_ring->count;
9041 }
9042
9043 /* clear the length for the next_to_use descriptor */
9044 rx_desc->wb.upper.length = 0;
9045
9046 cleaned_count--;
9047 } while (cleaned_count);
9048
9049 i += rx_ring->count;
9050
9051 if (rx_ring->next_to_use != i) {
9052 /* record the next descriptor to use */
9053 rx_ring->next_to_use = i;
9054
9055 /* update next to alloc since we have filled the ring */
9056 rx_ring->next_to_alloc = i;
9057
9058 /* Force memory writes to complete before letting h/w
9059 * know there are new descriptors to fetch. (Only
9060 * applicable for weak-ordered memory model archs,
9061 * such as IA-64).
9062 */
9063 dma_wmb();
9064 writel(i, rx_ring->tail);
9065 }
9066 }
9067
9068 /**
9069 * igb_mii_ioctl -
9070 * @netdev: pointer to netdev struct
9071 * @ifr: interface structure
9072 * @cmd: ioctl command to execute
9073 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9074 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9075 {
9076 struct igb_adapter *adapter = netdev_priv(netdev);
9077 struct mii_ioctl_data *data = if_mii(ifr);
9078
9079 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9080 return -EOPNOTSUPP;
9081
9082 switch (cmd) {
9083 case SIOCGMIIPHY:
9084 data->phy_id = adapter->hw.phy.addr;
9085 break;
9086 case SIOCGMIIREG:
9087 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9088 &data->val_out))
9089 return -EIO;
9090 break;
9091 case SIOCSMIIREG:
9092 default:
9093 return -EOPNOTSUPP;
9094 }
9095 return 0;
9096 }
9097
9098 /**
9099 * igb_ioctl -
9100 * @netdev: pointer to netdev struct
9101 * @ifr: interface structure
9102 * @cmd: ioctl command to execute
9103 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9104 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9105 {
9106 switch (cmd) {
9107 case SIOCGMIIPHY:
9108 case SIOCGMIIREG:
9109 case SIOCSMIIREG:
9110 return igb_mii_ioctl(netdev, ifr, cmd);
9111 case SIOCGHWTSTAMP:
9112 return igb_ptp_get_ts_config(netdev, ifr);
9113 case SIOCSHWTSTAMP:
9114 return igb_ptp_set_ts_config(netdev, ifr);
9115 default:
9116 return -EOPNOTSUPP;
9117 }
9118 }
9119
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9120 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9121 {
9122 struct igb_adapter *adapter = hw->back;
9123
9124 pci_read_config_word(adapter->pdev, reg, value);
9125 }
9126
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9127 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9128 {
9129 struct igb_adapter *adapter = hw->back;
9130
9131 pci_write_config_word(adapter->pdev, reg, *value);
9132 }
9133
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9134 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9135 {
9136 struct igb_adapter *adapter = hw->back;
9137
9138 if (pcie_capability_read_word(adapter->pdev, reg, value))
9139 return -E1000_ERR_CONFIG;
9140
9141 return 0;
9142 }
9143
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9144 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9145 {
9146 struct igb_adapter *adapter = hw->back;
9147
9148 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9149 return -E1000_ERR_CONFIG;
9150
9151 return 0;
9152 }
9153
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9154 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9155 {
9156 struct igb_adapter *adapter = netdev_priv(netdev);
9157 struct e1000_hw *hw = &adapter->hw;
9158 u32 ctrl, rctl;
9159 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9160
9161 if (enable) {
9162 /* enable VLAN tag insert/strip */
9163 ctrl = rd32(E1000_CTRL);
9164 ctrl |= E1000_CTRL_VME;
9165 wr32(E1000_CTRL, ctrl);
9166
9167 /* Disable CFI check */
9168 rctl = rd32(E1000_RCTL);
9169 rctl &= ~E1000_RCTL_CFIEN;
9170 wr32(E1000_RCTL, rctl);
9171 } else {
9172 /* disable VLAN tag insert/strip */
9173 ctrl = rd32(E1000_CTRL);
9174 ctrl &= ~E1000_CTRL_VME;
9175 wr32(E1000_CTRL, ctrl);
9176 }
9177
9178 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9179 }
9180
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9181 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9182 __be16 proto, u16 vid)
9183 {
9184 struct igb_adapter *adapter = netdev_priv(netdev);
9185 struct e1000_hw *hw = &adapter->hw;
9186 int pf_id = adapter->vfs_allocated_count;
9187
9188 /* add the filter since PF can receive vlans w/o entry in vlvf */
9189 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9190 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9191
9192 set_bit(vid, adapter->active_vlans);
9193
9194 return 0;
9195 }
9196
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9197 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9198 __be16 proto, u16 vid)
9199 {
9200 struct igb_adapter *adapter = netdev_priv(netdev);
9201 int pf_id = adapter->vfs_allocated_count;
9202 struct e1000_hw *hw = &adapter->hw;
9203
9204 /* remove VID from filter table */
9205 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9206 igb_vfta_set(hw, vid, pf_id, false, true);
9207
9208 clear_bit(vid, adapter->active_vlans);
9209
9210 return 0;
9211 }
9212
igb_restore_vlan(struct igb_adapter * adapter)9213 static void igb_restore_vlan(struct igb_adapter *adapter)
9214 {
9215 u16 vid = 1;
9216
9217 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9218 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9219
9220 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9221 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9222 }
9223
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9224 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9225 {
9226 struct pci_dev *pdev = adapter->pdev;
9227 struct e1000_mac_info *mac = &adapter->hw.mac;
9228
9229 mac->autoneg = 0;
9230
9231 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9232 * for the switch() below to work
9233 */
9234 if ((spd & 1) || (dplx & ~1))
9235 goto err_inval;
9236
9237 /* Fiber NIC's only allow 1000 gbps Full duplex
9238 * and 100Mbps Full duplex for 100baseFx sfp
9239 */
9240 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9241 switch (spd + dplx) {
9242 case SPEED_10 + DUPLEX_HALF:
9243 case SPEED_10 + DUPLEX_FULL:
9244 case SPEED_100 + DUPLEX_HALF:
9245 goto err_inval;
9246 default:
9247 break;
9248 }
9249 }
9250
9251 switch (spd + dplx) {
9252 case SPEED_10 + DUPLEX_HALF:
9253 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9254 break;
9255 case SPEED_10 + DUPLEX_FULL:
9256 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9257 break;
9258 case SPEED_100 + DUPLEX_HALF:
9259 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9260 break;
9261 case SPEED_100 + DUPLEX_FULL:
9262 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9263 break;
9264 case SPEED_1000 + DUPLEX_FULL:
9265 mac->autoneg = 1;
9266 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9267 break;
9268 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9269 default:
9270 goto err_inval;
9271 }
9272
9273 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9274 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9275
9276 return 0;
9277
9278 err_inval:
9279 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9280 return -EINVAL;
9281 }
9282
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9283 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9284 bool runtime)
9285 {
9286 struct net_device *netdev = pci_get_drvdata(pdev);
9287 struct igb_adapter *adapter = netdev_priv(netdev);
9288 struct e1000_hw *hw = &adapter->hw;
9289 u32 ctrl, rctl, status;
9290 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9291 bool wake;
9292
9293 rtnl_lock();
9294 netif_device_detach(netdev);
9295
9296 if (netif_running(netdev))
9297 __igb_close(netdev, true);
9298
9299 igb_ptp_suspend(adapter);
9300
9301 igb_clear_interrupt_scheme(adapter);
9302 rtnl_unlock();
9303
9304 status = rd32(E1000_STATUS);
9305 if (status & E1000_STATUS_LU)
9306 wufc &= ~E1000_WUFC_LNKC;
9307
9308 if (wufc) {
9309 igb_setup_rctl(adapter);
9310 igb_set_rx_mode(netdev);
9311
9312 /* turn on all-multi mode if wake on multicast is enabled */
9313 if (wufc & E1000_WUFC_MC) {
9314 rctl = rd32(E1000_RCTL);
9315 rctl |= E1000_RCTL_MPE;
9316 wr32(E1000_RCTL, rctl);
9317 }
9318
9319 ctrl = rd32(E1000_CTRL);
9320 ctrl |= E1000_CTRL_ADVD3WUC;
9321 wr32(E1000_CTRL, ctrl);
9322
9323 /* Allow time for pending master requests to run */
9324 igb_disable_pcie_master(hw);
9325
9326 wr32(E1000_WUC, E1000_WUC_PME_EN);
9327 wr32(E1000_WUFC, wufc);
9328 } else {
9329 wr32(E1000_WUC, 0);
9330 wr32(E1000_WUFC, 0);
9331 }
9332
9333 wake = wufc || adapter->en_mng_pt;
9334 if (!wake)
9335 igb_power_down_link(adapter);
9336 else
9337 igb_power_up_link(adapter);
9338
9339 if (enable_wake)
9340 *enable_wake = wake;
9341
9342 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9343 * would have already happened in close and is redundant.
9344 */
9345 igb_release_hw_control(adapter);
9346
9347 pci_disable_device(pdev);
9348
9349 return 0;
9350 }
9351
igb_deliver_wake_packet(struct net_device * netdev)9352 static void igb_deliver_wake_packet(struct net_device *netdev)
9353 {
9354 struct igb_adapter *adapter = netdev_priv(netdev);
9355 struct e1000_hw *hw = &adapter->hw;
9356 struct sk_buff *skb;
9357 u32 wupl;
9358
9359 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9360
9361 /* WUPM stores only the first 128 bytes of the wake packet.
9362 * Read the packet only if we have the whole thing.
9363 */
9364 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9365 return;
9366
9367 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9368 if (!skb)
9369 return;
9370
9371 skb_put(skb, wupl);
9372
9373 /* Ensure reads are 32-bit aligned */
9374 wupl = roundup(wupl, 4);
9375
9376 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9377
9378 skb->protocol = eth_type_trans(skb, netdev);
9379 netif_rx(skb);
9380 }
9381
igb_suspend(struct device * dev)9382 static int __maybe_unused igb_suspend(struct device *dev)
9383 {
9384 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9385 }
9386
__igb_resume(struct device * dev,bool rpm)9387 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9388 {
9389 struct pci_dev *pdev = to_pci_dev(dev);
9390 struct net_device *netdev = pci_get_drvdata(pdev);
9391 struct igb_adapter *adapter = netdev_priv(netdev);
9392 struct e1000_hw *hw = &adapter->hw;
9393 u32 err, val;
9394
9395 pci_set_power_state(pdev, PCI_D0);
9396 pci_restore_state(pdev);
9397 pci_save_state(pdev);
9398
9399 if (!pci_device_is_present(pdev))
9400 return -ENODEV;
9401 err = pci_enable_device_mem(pdev);
9402 if (err) {
9403 dev_err(&pdev->dev,
9404 "igb: Cannot enable PCI device from suspend\n");
9405 return err;
9406 }
9407 pci_set_master(pdev);
9408
9409 pci_enable_wake(pdev, PCI_D3hot, 0);
9410 pci_enable_wake(pdev, PCI_D3cold, 0);
9411
9412 if (igb_init_interrupt_scheme(adapter, true)) {
9413 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9414 return -ENOMEM;
9415 }
9416
9417 igb_reset(adapter);
9418
9419 /* let the f/w know that the h/w is now under the control of the
9420 * driver.
9421 */
9422 igb_get_hw_control(adapter);
9423
9424 val = rd32(E1000_WUS);
9425 if (val & WAKE_PKT_WUS)
9426 igb_deliver_wake_packet(netdev);
9427
9428 wr32(E1000_WUS, ~0);
9429
9430 if (!rpm)
9431 rtnl_lock();
9432 if (!err && netif_running(netdev))
9433 err = __igb_open(netdev, true);
9434
9435 if (!err)
9436 netif_device_attach(netdev);
9437 if (!rpm)
9438 rtnl_unlock();
9439
9440 return err;
9441 }
9442
igb_resume(struct device * dev)9443 static int __maybe_unused igb_resume(struct device *dev)
9444 {
9445 return __igb_resume(dev, false);
9446 }
9447
igb_runtime_idle(struct device * dev)9448 static int __maybe_unused igb_runtime_idle(struct device *dev)
9449 {
9450 struct net_device *netdev = dev_get_drvdata(dev);
9451 struct igb_adapter *adapter = netdev_priv(netdev);
9452
9453 if (!igb_has_link(adapter))
9454 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9455
9456 return -EBUSY;
9457 }
9458
igb_runtime_suspend(struct device * dev)9459 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9460 {
9461 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9462 }
9463
igb_runtime_resume(struct device * dev)9464 static int __maybe_unused igb_runtime_resume(struct device *dev)
9465 {
9466 return __igb_resume(dev, true);
9467 }
9468
igb_shutdown(struct pci_dev * pdev)9469 static void igb_shutdown(struct pci_dev *pdev)
9470 {
9471 bool wake;
9472
9473 __igb_shutdown(pdev, &wake, 0);
9474
9475 if (system_state == SYSTEM_POWER_OFF) {
9476 pci_wake_from_d3(pdev, wake);
9477 pci_set_power_state(pdev, PCI_D3hot);
9478 }
9479 }
9480
9481 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)9482 static int igb_sriov_reinit(struct pci_dev *dev)
9483 {
9484 struct net_device *netdev = pci_get_drvdata(dev);
9485 struct igb_adapter *adapter = netdev_priv(netdev);
9486 struct pci_dev *pdev = adapter->pdev;
9487
9488 rtnl_lock();
9489
9490 if (netif_running(netdev))
9491 igb_close(netdev);
9492 else
9493 igb_reset(adapter);
9494
9495 igb_clear_interrupt_scheme(adapter);
9496
9497 igb_init_queue_configuration(adapter);
9498
9499 if (igb_init_interrupt_scheme(adapter, true)) {
9500 rtnl_unlock();
9501 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9502 return -ENOMEM;
9503 }
9504
9505 if (netif_running(netdev))
9506 igb_open(netdev);
9507
9508 rtnl_unlock();
9509
9510 return 0;
9511 }
9512
igb_pci_disable_sriov(struct pci_dev * dev)9513 static int igb_pci_disable_sriov(struct pci_dev *dev)
9514 {
9515 int err = igb_disable_sriov(dev);
9516
9517 if (!err)
9518 err = igb_sriov_reinit(dev);
9519
9520 return err;
9521 }
9522
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)9523 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9524 {
9525 int err = igb_enable_sriov(dev, num_vfs);
9526
9527 if (err)
9528 goto out;
9529
9530 err = igb_sriov_reinit(dev);
9531 if (!err)
9532 return num_vfs;
9533
9534 out:
9535 return err;
9536 }
9537
9538 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9539 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9540 {
9541 #ifdef CONFIG_PCI_IOV
9542 if (num_vfs == 0)
9543 return igb_pci_disable_sriov(dev);
9544 else
9545 return igb_pci_enable_sriov(dev, num_vfs);
9546 #endif
9547 return 0;
9548 }
9549
9550 /**
9551 * igb_io_error_detected - called when PCI error is detected
9552 * @pdev: Pointer to PCI device
9553 * @state: The current pci connection state
9554 *
9555 * This function is called after a PCI bus error affecting
9556 * this device has been detected.
9557 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9558 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9559 pci_channel_state_t state)
9560 {
9561 struct net_device *netdev = pci_get_drvdata(pdev);
9562 struct igb_adapter *adapter = netdev_priv(netdev);
9563
9564 netif_device_detach(netdev);
9565
9566 if (state == pci_channel_io_perm_failure)
9567 return PCI_ERS_RESULT_DISCONNECT;
9568
9569 if (netif_running(netdev))
9570 igb_down(adapter);
9571 pci_disable_device(pdev);
9572
9573 /* Request a slot reset. */
9574 return PCI_ERS_RESULT_NEED_RESET;
9575 }
9576
9577 /**
9578 * igb_io_slot_reset - called after the pci bus has been reset.
9579 * @pdev: Pointer to PCI device
9580 *
9581 * Restart the card from scratch, as if from a cold-boot. Implementation
9582 * resembles the first-half of the __igb_resume routine.
9583 **/
igb_io_slot_reset(struct pci_dev * pdev)9584 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9585 {
9586 struct net_device *netdev = pci_get_drvdata(pdev);
9587 struct igb_adapter *adapter = netdev_priv(netdev);
9588 struct e1000_hw *hw = &adapter->hw;
9589 pci_ers_result_t result;
9590
9591 if (pci_enable_device_mem(pdev)) {
9592 dev_err(&pdev->dev,
9593 "Cannot re-enable PCI device after reset.\n");
9594 result = PCI_ERS_RESULT_DISCONNECT;
9595 } else {
9596 pci_set_master(pdev);
9597 pci_restore_state(pdev);
9598 pci_save_state(pdev);
9599
9600 pci_enable_wake(pdev, PCI_D3hot, 0);
9601 pci_enable_wake(pdev, PCI_D3cold, 0);
9602
9603 /* In case of PCI error, adapter lose its HW address
9604 * so we should re-assign it here.
9605 */
9606 hw->hw_addr = adapter->io_addr;
9607
9608 igb_reset(adapter);
9609 wr32(E1000_WUS, ~0);
9610 result = PCI_ERS_RESULT_RECOVERED;
9611 }
9612
9613 return result;
9614 }
9615
9616 /**
9617 * igb_io_resume - called when traffic can start flowing again.
9618 * @pdev: Pointer to PCI device
9619 *
9620 * This callback is called when the error recovery driver tells us that
9621 * its OK to resume normal operation. Implementation resembles the
9622 * second-half of the __igb_resume routine.
9623 */
igb_io_resume(struct pci_dev * pdev)9624 static void igb_io_resume(struct pci_dev *pdev)
9625 {
9626 struct net_device *netdev = pci_get_drvdata(pdev);
9627 struct igb_adapter *adapter = netdev_priv(netdev);
9628
9629 if (netif_running(netdev)) {
9630 if (igb_up(adapter)) {
9631 dev_err(&pdev->dev, "igb_up failed after reset\n");
9632 return;
9633 }
9634 }
9635
9636 netif_device_attach(netdev);
9637
9638 /* let the f/w know that the h/w is now under the control of the
9639 * driver.
9640 */
9641 igb_get_hw_control(adapter);
9642 }
9643
9644 /**
9645 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9646 * @adapter: Pointer to adapter structure
9647 * @index: Index of the RAR entry which need to be synced with MAC table
9648 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9649 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9650 {
9651 struct e1000_hw *hw = &adapter->hw;
9652 u32 rar_low, rar_high;
9653 u8 *addr = adapter->mac_table[index].addr;
9654
9655 /* HW expects these to be in network order when they are plugged
9656 * into the registers which are little endian. In order to guarantee
9657 * that ordering we need to do an leXX_to_cpup here in order to be
9658 * ready for the byteswap that occurs with writel
9659 */
9660 rar_low = le32_to_cpup((__le32 *)(addr));
9661 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9662
9663 /* Indicate to hardware the Address is Valid. */
9664 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9665 if (is_valid_ether_addr(addr))
9666 rar_high |= E1000_RAH_AV;
9667
9668 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9669 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9670
9671 switch (hw->mac.type) {
9672 case e1000_82575:
9673 case e1000_i210:
9674 if (adapter->mac_table[index].state &
9675 IGB_MAC_STATE_QUEUE_STEERING)
9676 rar_high |= E1000_RAH_QSEL_ENABLE;
9677
9678 rar_high |= E1000_RAH_POOL_1 *
9679 adapter->mac_table[index].queue;
9680 break;
9681 default:
9682 rar_high |= E1000_RAH_POOL_1 <<
9683 adapter->mac_table[index].queue;
9684 break;
9685 }
9686 }
9687
9688 wr32(E1000_RAL(index), rar_low);
9689 wrfl();
9690 wr32(E1000_RAH(index), rar_high);
9691 wrfl();
9692 }
9693
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9694 static int igb_set_vf_mac(struct igb_adapter *adapter,
9695 int vf, unsigned char *mac_addr)
9696 {
9697 struct e1000_hw *hw = &adapter->hw;
9698 /* VF MAC addresses start at end of receive addresses and moves
9699 * towards the first, as a result a collision should not be possible
9700 */
9701 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9702 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9703
9704 ether_addr_copy(vf_mac_addr, mac_addr);
9705 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9706 adapter->mac_table[rar_entry].queue = vf;
9707 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9708 igb_rar_set_index(adapter, rar_entry);
9709
9710 return 0;
9711 }
9712
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9713 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9714 {
9715 struct igb_adapter *adapter = netdev_priv(netdev);
9716
9717 if (vf >= adapter->vfs_allocated_count)
9718 return -EINVAL;
9719
9720 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9721 * flag and allows to overwrite the MAC via VF netdev. This
9722 * is necessary to allow libvirt a way to restore the original
9723 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9724 * down a VM.
9725 */
9726 if (is_zero_ether_addr(mac)) {
9727 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9728 dev_info(&adapter->pdev->dev,
9729 "remove administratively set MAC on VF %d\n",
9730 vf);
9731 } else if (is_valid_ether_addr(mac)) {
9732 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9733 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9734 mac, vf);
9735 dev_info(&adapter->pdev->dev,
9736 "Reload the VF driver to make this change effective.");
9737 /* Generate additional warning if PF is down */
9738 if (test_bit(__IGB_DOWN, &adapter->state)) {
9739 dev_warn(&adapter->pdev->dev,
9740 "The VF MAC address has been set, but the PF device is not up.\n");
9741 dev_warn(&adapter->pdev->dev,
9742 "Bring the PF device up before attempting to use the VF device.\n");
9743 }
9744 } else {
9745 return -EINVAL;
9746 }
9747 return igb_set_vf_mac(adapter, vf, mac);
9748 }
9749
igb_link_mbps(int internal_link_speed)9750 static int igb_link_mbps(int internal_link_speed)
9751 {
9752 switch (internal_link_speed) {
9753 case SPEED_100:
9754 return 100;
9755 case SPEED_1000:
9756 return 1000;
9757 default:
9758 return 0;
9759 }
9760 }
9761
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9762 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9763 int link_speed)
9764 {
9765 int rf_dec, rf_int;
9766 u32 bcnrc_val;
9767
9768 if (tx_rate != 0) {
9769 /* Calculate the rate factor values to set */
9770 rf_int = link_speed / tx_rate;
9771 rf_dec = (link_speed - (rf_int * tx_rate));
9772 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9773 tx_rate;
9774
9775 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9776 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9777 E1000_RTTBCNRC_RF_INT_MASK);
9778 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9779 } else {
9780 bcnrc_val = 0;
9781 }
9782
9783 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9784 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9785 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9786 */
9787 wr32(E1000_RTTBCNRM, 0x14);
9788 wr32(E1000_RTTBCNRC, bcnrc_val);
9789 }
9790
igb_check_vf_rate_limit(struct igb_adapter * adapter)9791 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9792 {
9793 int actual_link_speed, i;
9794 bool reset_rate = false;
9795
9796 /* VF TX rate limit was not set or not supported */
9797 if ((adapter->vf_rate_link_speed == 0) ||
9798 (adapter->hw.mac.type != e1000_82576))
9799 return;
9800
9801 actual_link_speed = igb_link_mbps(adapter->link_speed);
9802 if (actual_link_speed != adapter->vf_rate_link_speed) {
9803 reset_rate = true;
9804 adapter->vf_rate_link_speed = 0;
9805 dev_info(&adapter->pdev->dev,
9806 "Link speed has been changed. VF Transmit rate is disabled\n");
9807 }
9808
9809 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9810 if (reset_rate)
9811 adapter->vf_data[i].tx_rate = 0;
9812
9813 igb_set_vf_rate_limit(&adapter->hw, i,
9814 adapter->vf_data[i].tx_rate,
9815 actual_link_speed);
9816 }
9817 }
9818
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9819 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9820 int min_tx_rate, int max_tx_rate)
9821 {
9822 struct igb_adapter *adapter = netdev_priv(netdev);
9823 struct e1000_hw *hw = &adapter->hw;
9824 int actual_link_speed;
9825
9826 if (hw->mac.type != e1000_82576)
9827 return -EOPNOTSUPP;
9828
9829 if (min_tx_rate)
9830 return -EINVAL;
9831
9832 actual_link_speed = igb_link_mbps(adapter->link_speed);
9833 if ((vf >= adapter->vfs_allocated_count) ||
9834 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9835 (max_tx_rate < 0) ||
9836 (max_tx_rate > actual_link_speed))
9837 return -EINVAL;
9838
9839 adapter->vf_rate_link_speed = actual_link_speed;
9840 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9841 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9842
9843 return 0;
9844 }
9845
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9846 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9847 bool setting)
9848 {
9849 struct igb_adapter *adapter = netdev_priv(netdev);
9850 struct e1000_hw *hw = &adapter->hw;
9851 u32 reg_val, reg_offset;
9852
9853 if (!adapter->vfs_allocated_count)
9854 return -EOPNOTSUPP;
9855
9856 if (vf >= adapter->vfs_allocated_count)
9857 return -EINVAL;
9858
9859 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9860 reg_val = rd32(reg_offset);
9861 if (setting)
9862 reg_val |= (BIT(vf) |
9863 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9864 else
9865 reg_val &= ~(BIT(vf) |
9866 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9867 wr32(reg_offset, reg_val);
9868
9869 adapter->vf_data[vf].spoofchk_enabled = setting;
9870 return 0;
9871 }
9872
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9873 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9874 {
9875 struct igb_adapter *adapter = netdev_priv(netdev);
9876
9877 if (vf >= adapter->vfs_allocated_count)
9878 return -EINVAL;
9879 if (adapter->vf_data[vf].trusted == setting)
9880 return 0;
9881
9882 adapter->vf_data[vf].trusted = setting;
9883
9884 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9885 vf, setting ? "" : "not ");
9886 return 0;
9887 }
9888
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9889 static int igb_ndo_get_vf_config(struct net_device *netdev,
9890 int vf, struct ifla_vf_info *ivi)
9891 {
9892 struct igb_adapter *adapter = netdev_priv(netdev);
9893 if (vf >= adapter->vfs_allocated_count)
9894 return -EINVAL;
9895 ivi->vf = vf;
9896 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9897 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9898 ivi->min_tx_rate = 0;
9899 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9900 ivi->qos = adapter->vf_data[vf].pf_qos;
9901 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9902 ivi->trusted = adapter->vf_data[vf].trusted;
9903 return 0;
9904 }
9905
igb_vmm_control(struct igb_adapter * adapter)9906 static void igb_vmm_control(struct igb_adapter *adapter)
9907 {
9908 struct e1000_hw *hw = &adapter->hw;
9909 u32 reg;
9910
9911 switch (hw->mac.type) {
9912 case e1000_82575:
9913 case e1000_i210:
9914 case e1000_i211:
9915 case e1000_i354:
9916 default:
9917 /* replication is not supported for 82575 */
9918 return;
9919 case e1000_82576:
9920 /* notify HW that the MAC is adding vlan tags */
9921 reg = rd32(E1000_DTXCTL);
9922 reg |= E1000_DTXCTL_VLAN_ADDED;
9923 wr32(E1000_DTXCTL, reg);
9924 fallthrough;
9925 case e1000_82580:
9926 /* enable replication vlan tag stripping */
9927 reg = rd32(E1000_RPLOLR);
9928 reg |= E1000_RPLOLR_STRVLAN;
9929 wr32(E1000_RPLOLR, reg);
9930 fallthrough;
9931 case e1000_i350:
9932 /* none of the above registers are supported by i350 */
9933 break;
9934 }
9935
9936 if (adapter->vfs_allocated_count) {
9937 igb_vmdq_set_loopback_pf(hw, true);
9938 igb_vmdq_set_replication_pf(hw, true);
9939 igb_vmdq_set_anti_spoofing_pf(hw, true,
9940 adapter->vfs_allocated_count);
9941 } else {
9942 igb_vmdq_set_loopback_pf(hw, false);
9943 igb_vmdq_set_replication_pf(hw, false);
9944 }
9945 }
9946
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9947 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9948 {
9949 struct e1000_hw *hw = &adapter->hw;
9950 u32 dmac_thr;
9951 u16 hwm;
9952 u32 reg;
9953
9954 if (hw->mac.type > e1000_82580) {
9955 if (adapter->flags & IGB_FLAG_DMAC) {
9956 /* force threshold to 0. */
9957 wr32(E1000_DMCTXTH, 0);
9958
9959 /* DMA Coalescing high water mark needs to be greater
9960 * than the Rx threshold. Set hwm to PBA - max frame
9961 * size in 16B units, capping it at PBA - 6KB.
9962 */
9963 hwm = 64 * (pba - 6);
9964 reg = rd32(E1000_FCRTC);
9965 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9966 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9967 & E1000_FCRTC_RTH_COAL_MASK);
9968 wr32(E1000_FCRTC, reg);
9969
9970 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9971 * frame size, capping it at PBA - 10KB.
9972 */
9973 dmac_thr = pba - 10;
9974 reg = rd32(E1000_DMACR);
9975 reg &= ~E1000_DMACR_DMACTHR_MASK;
9976 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9977 & E1000_DMACR_DMACTHR_MASK);
9978
9979 /* transition to L0x or L1 if available..*/
9980 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9981
9982 /* watchdog timer= +-1000 usec in 32usec intervals */
9983 reg |= (1000 >> 5);
9984
9985 /* Disable BMC-to-OS Watchdog Enable */
9986 if (hw->mac.type != e1000_i354)
9987 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9988 wr32(E1000_DMACR, reg);
9989
9990 /* no lower threshold to disable
9991 * coalescing(smart fifb)-UTRESH=0
9992 */
9993 wr32(E1000_DMCRTRH, 0);
9994
9995 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9996
9997 wr32(E1000_DMCTLX, reg);
9998
9999 /* free space in tx packet buffer to wake from
10000 * DMA coal
10001 */
10002 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10003 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10004 }
10005
10006 if (hw->mac.type >= e1000_i210 ||
10007 (adapter->flags & IGB_FLAG_DMAC)) {
10008 reg = rd32(E1000_PCIEMISC);
10009 reg |= E1000_PCIEMISC_LX_DECISION;
10010 wr32(E1000_PCIEMISC, reg);
10011 } /* endif adapter->dmac is not disabled */
10012 } else if (hw->mac.type == e1000_82580) {
10013 u32 reg = rd32(E1000_PCIEMISC);
10014
10015 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10016 wr32(E1000_DMACR, 0);
10017 }
10018 }
10019
10020 /**
10021 * igb_read_i2c_byte - Reads 8 bit word over I2C
10022 * @hw: pointer to hardware structure
10023 * @byte_offset: byte offset to read
10024 * @dev_addr: device address
10025 * @data: value read
10026 *
10027 * Performs byte read operation over I2C interface at
10028 * a specified device address.
10029 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)10030 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10031 u8 dev_addr, u8 *data)
10032 {
10033 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10034 struct i2c_client *this_client = adapter->i2c_client;
10035 s32 status;
10036 u16 swfw_mask = 0;
10037
10038 if (!this_client)
10039 return E1000_ERR_I2C;
10040
10041 swfw_mask = E1000_SWFW_PHY0_SM;
10042
10043 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10044 return E1000_ERR_SWFW_SYNC;
10045
10046 status = i2c_smbus_read_byte_data(this_client, byte_offset);
10047 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10048
10049 if (status < 0)
10050 return E1000_ERR_I2C;
10051 else {
10052 *data = status;
10053 return 0;
10054 }
10055 }
10056
10057 /**
10058 * igb_write_i2c_byte - Writes 8 bit word over I2C
10059 * @hw: pointer to hardware structure
10060 * @byte_offset: byte offset to write
10061 * @dev_addr: device address
10062 * @data: value to write
10063 *
10064 * Performs byte write operation over I2C interface at
10065 * a specified device address.
10066 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)10067 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10068 u8 dev_addr, u8 data)
10069 {
10070 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10071 struct i2c_client *this_client = adapter->i2c_client;
10072 s32 status;
10073 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10074
10075 if (!this_client)
10076 return E1000_ERR_I2C;
10077
10078 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10079 return E1000_ERR_SWFW_SYNC;
10080 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10081 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10082
10083 if (status)
10084 return E1000_ERR_I2C;
10085 else
10086 return 0;
10087
10088 }
10089
igb_reinit_queues(struct igb_adapter * adapter)10090 int igb_reinit_queues(struct igb_adapter *adapter)
10091 {
10092 struct net_device *netdev = adapter->netdev;
10093 struct pci_dev *pdev = adapter->pdev;
10094 int err = 0;
10095
10096 if (netif_running(netdev))
10097 igb_close(netdev);
10098
10099 igb_reset_interrupt_capability(adapter);
10100
10101 if (igb_init_interrupt_scheme(adapter, true)) {
10102 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10103 return -ENOMEM;
10104 }
10105
10106 if (netif_running(netdev))
10107 err = igb_open(netdev);
10108
10109 return err;
10110 }
10111
igb_nfc_filter_exit(struct igb_adapter * adapter)10112 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10113 {
10114 struct igb_nfc_filter *rule;
10115
10116 spin_lock(&adapter->nfc_lock);
10117
10118 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10119 igb_erase_filter(adapter, rule);
10120
10121 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10122 igb_erase_filter(adapter, rule);
10123
10124 spin_unlock(&adapter->nfc_lock);
10125 }
10126
igb_nfc_filter_restore(struct igb_adapter * adapter)10127 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10128 {
10129 struct igb_nfc_filter *rule;
10130
10131 spin_lock(&adapter->nfc_lock);
10132
10133 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10134 igb_add_filter(adapter, rule);
10135
10136 spin_unlock(&adapter->nfc_lock);
10137 }
10138 /* igb_main.c */
10139