1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2021 Intel Corporation
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/kcov.h>
21 #include <linux/bitops.h>
22 #include <net/mac80211.h>
23 #include <net/ieee80211_radiotap.h>
24 #include <asm/unaligned.h>
25
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "tkip.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 /*
37 * monitor mode reception
38 *
39 * This function cleans up the SKB, i.e. it removes all the stuff
40 * only useful for monitoring.
41 */
ieee80211_clean_skb(struct sk_buff * skb,unsigned int present_fcs_len,unsigned int rtap_space)42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
43 unsigned int present_fcs_len,
44 unsigned int rtap_space)
45 {
46 struct ieee80211_hdr *hdr;
47 unsigned int hdrlen;
48 __le16 fc;
49
50 if (present_fcs_len)
51 __pskb_trim(skb, skb->len - present_fcs_len);
52 __pskb_pull(skb, rtap_space);
53
54 hdr = (void *)skb->data;
55 fc = hdr->frame_control;
56
57 /*
58 * Remove the HT-Control field (if present) on management
59 * frames after we've sent the frame to monitoring. We
60 * (currently) don't need it, and don't properly parse
61 * frames with it present, due to the assumption of a
62 * fixed management header length.
63 */
64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
65 return skb;
66
67 hdrlen = ieee80211_hdrlen(fc);
68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
69
70 if (!pskb_may_pull(skb, hdrlen)) {
71 dev_kfree_skb(skb);
72 return NULL;
73 }
74
75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
76 hdrlen - IEEE80211_HT_CTL_LEN);
77 __pskb_pull(skb, IEEE80211_HT_CTL_LEN);
78
79 return skb;
80 }
81
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_space)82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
83 unsigned int rtap_space)
84 {
85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
86 struct ieee80211_hdr *hdr;
87
88 hdr = (void *)(skb->data + rtap_space);
89
90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
91 RX_FLAG_FAILED_PLCP_CRC |
92 RX_FLAG_ONLY_MONITOR |
93 RX_FLAG_NO_PSDU))
94 return true;
95
96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
97 return true;
98
99 if (ieee80211_is_ctl(hdr->frame_control) &&
100 !ieee80211_is_pspoll(hdr->frame_control) &&
101 !ieee80211_is_back_req(hdr->frame_control))
102 return true;
103
104 return false;
105 }
106
107 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
109 struct ieee80211_rx_status *status,
110 struct sk_buff *skb)
111 {
112 int len;
113
114 /* always present fields */
115 len = sizeof(struct ieee80211_radiotap_header) + 8;
116
117 /* allocate extra bitmaps */
118 if (status->chains)
119 len += 4 * hweight8(status->chains);
120 /* vendor presence bitmap */
121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
122 len += 4;
123
124 if (ieee80211_have_rx_timestamp(status)) {
125 len = ALIGN(len, 8);
126 len += 8;
127 }
128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
129 len += 1;
130
131 /* antenna field, if we don't have per-chain info */
132 if (!status->chains)
133 len += 1;
134
135 /* padding for RX_FLAGS if necessary */
136 len = ALIGN(len, 2);
137
138 if (status->encoding == RX_ENC_HT) /* HT info */
139 len += 3;
140
141 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
142 len = ALIGN(len, 4);
143 len += 8;
144 }
145
146 if (status->encoding == RX_ENC_VHT) {
147 len = ALIGN(len, 2);
148 len += 12;
149 }
150
151 if (local->hw.radiotap_timestamp.units_pos >= 0) {
152 len = ALIGN(len, 8);
153 len += 12;
154 }
155
156 if (status->encoding == RX_ENC_HE &&
157 status->flag & RX_FLAG_RADIOTAP_HE) {
158 len = ALIGN(len, 2);
159 len += 12;
160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
161 }
162
163 if (status->encoding == RX_ENC_HE &&
164 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
165 len = ALIGN(len, 2);
166 len += 12;
167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
168 }
169
170 if (status->flag & RX_FLAG_NO_PSDU)
171 len += 1;
172
173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
174 len = ALIGN(len, 2);
175 len += 4;
176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
177 }
178
179 if (status->chains) {
180 /* antenna and antenna signal fields */
181 len += 2 * hweight8(status->chains);
182 }
183
184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
185 struct ieee80211_vendor_radiotap *rtap;
186 int vendor_data_offset = 0;
187
188 /*
189 * The position to look at depends on the existence (or non-
190 * existence) of other elements, so take that into account...
191 */
192 if (status->flag & RX_FLAG_RADIOTAP_HE)
193 vendor_data_offset +=
194 sizeof(struct ieee80211_radiotap_he);
195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
196 vendor_data_offset +=
197 sizeof(struct ieee80211_radiotap_he_mu);
198 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
199 vendor_data_offset +=
200 sizeof(struct ieee80211_radiotap_lsig);
201
202 rtap = (void *)&skb->data[vendor_data_offset];
203
204 /* alignment for fixed 6-byte vendor data header */
205 len = ALIGN(len, 2);
206 /* vendor data header */
207 len += 6;
208 if (WARN_ON(rtap->align == 0))
209 rtap->align = 1;
210 len = ALIGN(len, rtap->align);
211 len += rtap->len + rtap->pad;
212 }
213
214 return len;
215 }
216
__ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data * sdata,struct sta_info * sta,struct sk_buff * skb)217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
218 struct sta_info *sta,
219 struct sk_buff *skb)
220 {
221 skb_queue_tail(&sdata->skb_queue, skb);
222 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
223 if (sta)
224 sta->deflink.rx_stats.packets++;
225 }
226
ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data * sdata,struct sta_info * sta,struct sk_buff * skb)227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
228 struct sta_info *sta,
229 struct sk_buff *skb)
230 {
231 skb->protocol = 0;
232 __ieee80211_queue_skb_to_iface(sdata, sta, skb);
233 }
234
ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data * sdata,struct sk_buff * skb,int rtap_space)235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
236 struct sk_buff *skb,
237 int rtap_space)
238 {
239 struct {
240 struct ieee80211_hdr_3addr hdr;
241 u8 category;
242 u8 action_code;
243 } __packed __aligned(2) action;
244
245 if (!sdata)
246 return;
247
248 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
249
250 if (skb->len < rtap_space + sizeof(action) +
251 VHT_MUMIMO_GROUPS_DATA_LEN)
252 return;
253
254 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
255 return;
256
257 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
258
259 if (!ieee80211_is_action(action.hdr.frame_control))
260 return;
261
262 if (action.category != WLAN_CATEGORY_VHT)
263 return;
264
265 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
266 return;
267
268 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
269 return;
270
271 skb = skb_copy(skb, GFP_ATOMIC);
272 if (!skb)
273 return;
274
275 ieee80211_queue_skb_to_iface(sdata, NULL, skb);
276 }
277
278 /*
279 * ieee80211_add_rx_radiotap_header - add radiotap header
280 *
281 * add a radiotap header containing all the fields which the hardware provided.
282 */
283 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
285 struct sk_buff *skb,
286 struct ieee80211_rate *rate,
287 int rtap_len, bool has_fcs)
288 {
289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
290 struct ieee80211_radiotap_header *rthdr;
291 unsigned char *pos;
292 __le32 *it_present;
293 u32 it_present_val;
294 u16 rx_flags = 0;
295 u16 channel_flags = 0;
296 int mpdulen, chain;
297 unsigned long chains = status->chains;
298 struct ieee80211_vendor_radiotap rtap = {};
299 struct ieee80211_radiotap_he he = {};
300 struct ieee80211_radiotap_he_mu he_mu = {};
301 struct ieee80211_radiotap_lsig lsig = {};
302
303 if (status->flag & RX_FLAG_RADIOTAP_HE) {
304 he = *(struct ieee80211_radiotap_he *)skb->data;
305 skb_pull(skb, sizeof(he));
306 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
307 }
308
309 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
310 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
311 skb_pull(skb, sizeof(he_mu));
312 }
313
314 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
315 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
316 skb_pull(skb, sizeof(lsig));
317 }
318
319 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
320 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
321 /* rtap.len and rtap.pad are undone immediately */
322 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
323 }
324
325 mpdulen = skb->len;
326 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
327 mpdulen += FCS_LEN;
328
329 rthdr = skb_push(skb, rtap_len);
330 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
331 it_present = &rthdr->it_present;
332
333 /* radiotap header, set always present flags */
334 rthdr->it_len = cpu_to_le16(rtap_len);
335 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
336 BIT(IEEE80211_RADIOTAP_CHANNEL) |
337 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
338
339 if (!status->chains)
340 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
341
342 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
343 it_present_val |=
344 BIT(IEEE80211_RADIOTAP_EXT) |
345 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
346 put_unaligned_le32(it_present_val, it_present);
347 it_present++;
348 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
349 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
350 }
351
352 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
353 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
354 BIT(IEEE80211_RADIOTAP_EXT);
355 put_unaligned_le32(it_present_val, it_present);
356 it_present++;
357 it_present_val = rtap.present;
358 }
359
360 put_unaligned_le32(it_present_val, it_present);
361
362 /* This references through an offset into it_optional[] rather
363 * than via it_present otherwise later uses of pos will cause
364 * the compiler to think we have walked past the end of the
365 * struct member.
366 */
367 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional];
368
369 /* the order of the following fields is important */
370
371 /* IEEE80211_RADIOTAP_TSFT */
372 if (ieee80211_have_rx_timestamp(status)) {
373 /* padding */
374 while ((pos - (u8 *)rthdr) & 7)
375 *pos++ = 0;
376 put_unaligned_le64(
377 ieee80211_calculate_rx_timestamp(local, status,
378 mpdulen, 0),
379 pos);
380 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT));
381 pos += 8;
382 }
383
384 /* IEEE80211_RADIOTAP_FLAGS */
385 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
386 *pos |= IEEE80211_RADIOTAP_F_FCS;
387 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
388 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
389 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
390 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
391 pos++;
392
393 /* IEEE80211_RADIOTAP_RATE */
394 if (!rate || status->encoding != RX_ENC_LEGACY) {
395 /*
396 * Without rate information don't add it. If we have,
397 * MCS information is a separate field in radiotap,
398 * added below. The byte here is needed as padding
399 * for the channel though, so initialise it to 0.
400 */
401 *pos = 0;
402 } else {
403 int shift = 0;
404 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE));
405 if (status->bw == RATE_INFO_BW_10)
406 shift = 1;
407 else if (status->bw == RATE_INFO_BW_5)
408 shift = 2;
409 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
410 }
411 pos++;
412
413 /* IEEE80211_RADIOTAP_CHANNEL */
414 /* TODO: frequency offset in KHz */
415 put_unaligned_le16(status->freq, pos);
416 pos += 2;
417 if (status->bw == RATE_INFO_BW_10)
418 channel_flags |= IEEE80211_CHAN_HALF;
419 else if (status->bw == RATE_INFO_BW_5)
420 channel_flags |= IEEE80211_CHAN_QUARTER;
421
422 if (status->band == NL80211_BAND_5GHZ ||
423 status->band == NL80211_BAND_6GHZ)
424 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
425 else if (status->encoding != RX_ENC_LEGACY)
426 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
427 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
428 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
429 else if (rate)
430 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
431 else
432 channel_flags |= IEEE80211_CHAN_2GHZ;
433 put_unaligned_le16(channel_flags, pos);
434 pos += 2;
435
436 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
437 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
438 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
439 *pos = status->signal;
440 rthdr->it_present |=
441 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL));
442 pos++;
443 }
444
445 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
446
447 if (!status->chains) {
448 /* IEEE80211_RADIOTAP_ANTENNA */
449 *pos = status->antenna;
450 pos++;
451 }
452
453 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
454
455 /* IEEE80211_RADIOTAP_RX_FLAGS */
456 /* ensure 2 byte alignment for the 2 byte field as required */
457 if ((pos - (u8 *)rthdr) & 1)
458 *pos++ = 0;
459 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
460 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
461 put_unaligned_le16(rx_flags, pos);
462 pos += 2;
463
464 if (status->encoding == RX_ENC_HT) {
465 unsigned int stbc;
466
467 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS));
468 *pos = local->hw.radiotap_mcs_details;
469 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
470 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT;
471 if (status->enc_flags & RX_ENC_FLAG_LDPC)
472 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC;
473 pos++;
474 *pos = 0;
475 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
476 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
477 if (status->bw == RATE_INFO_BW_40)
478 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
479 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
480 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
481 if (status->enc_flags & RX_ENC_FLAG_LDPC)
482 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
483 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
484 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
485 pos++;
486 *pos++ = status->rate_idx;
487 }
488
489 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
490 u16 flags = 0;
491
492 /* ensure 4 byte alignment */
493 while ((pos - (u8 *)rthdr) & 3)
494 pos++;
495 rthdr->it_present |=
496 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS));
497 put_unaligned_le32(status->ampdu_reference, pos);
498 pos += 4;
499 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
500 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
501 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
502 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
503 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
504 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
505 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
506 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
507 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
508 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
509 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
510 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
511 put_unaligned_le16(flags, pos);
512 pos += 2;
513 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
514 *pos++ = status->ampdu_delimiter_crc;
515 else
516 *pos++ = 0;
517 *pos++ = 0;
518 }
519
520 if (status->encoding == RX_ENC_VHT) {
521 u16 known = local->hw.radiotap_vht_details;
522
523 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT));
524 put_unaligned_le16(known, pos);
525 pos += 2;
526 /* flags */
527 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
528 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
529 /* in VHT, STBC is binary */
530 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
531 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
532 if (status->enc_flags & RX_ENC_FLAG_BF)
533 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
534 pos++;
535 /* bandwidth */
536 switch (status->bw) {
537 case RATE_INFO_BW_80:
538 *pos++ = 4;
539 break;
540 case RATE_INFO_BW_160:
541 *pos++ = 11;
542 break;
543 case RATE_INFO_BW_40:
544 *pos++ = 1;
545 break;
546 default:
547 *pos++ = 0;
548 }
549 /* MCS/NSS */
550 *pos = (status->rate_idx << 4) | status->nss;
551 pos += 4;
552 /* coding field */
553 if (status->enc_flags & RX_ENC_FLAG_LDPC)
554 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
555 pos++;
556 /* group ID */
557 pos++;
558 /* partial_aid */
559 pos += 2;
560 }
561
562 if (local->hw.radiotap_timestamp.units_pos >= 0) {
563 u16 accuracy = 0;
564 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
565
566 rthdr->it_present |=
567 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP));
568
569 /* ensure 8 byte alignment */
570 while ((pos - (u8 *)rthdr) & 7)
571 pos++;
572
573 put_unaligned_le64(status->device_timestamp, pos);
574 pos += sizeof(u64);
575
576 if (local->hw.radiotap_timestamp.accuracy >= 0) {
577 accuracy = local->hw.radiotap_timestamp.accuracy;
578 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
579 }
580 put_unaligned_le16(accuracy, pos);
581 pos += sizeof(u16);
582
583 *pos++ = local->hw.radiotap_timestamp.units_pos;
584 *pos++ = flags;
585 }
586
587 if (status->encoding == RX_ENC_HE &&
588 status->flag & RX_FLAG_RADIOTAP_HE) {
589 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
590
591 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
592 he.data6 |= HE_PREP(DATA6_NSTS,
593 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
594 status->enc_flags));
595 he.data3 |= HE_PREP(DATA3_STBC, 1);
596 } else {
597 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
598 }
599
600 #define CHECK_GI(s) \
601 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
602 (int)NL80211_RATE_INFO_HE_GI_##s)
603
604 CHECK_GI(0_8);
605 CHECK_GI(1_6);
606 CHECK_GI(3_2);
607
608 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
609 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
610 he.data3 |= HE_PREP(DATA3_CODING,
611 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
612
613 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
614
615 switch (status->bw) {
616 case RATE_INFO_BW_20:
617 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
618 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
619 break;
620 case RATE_INFO_BW_40:
621 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
622 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
623 break;
624 case RATE_INFO_BW_80:
625 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
626 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
627 break;
628 case RATE_INFO_BW_160:
629 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
630 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
631 break;
632 case RATE_INFO_BW_HE_RU:
633 #define CHECK_RU_ALLOC(s) \
634 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
635 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
636
637 CHECK_RU_ALLOC(26);
638 CHECK_RU_ALLOC(52);
639 CHECK_RU_ALLOC(106);
640 CHECK_RU_ALLOC(242);
641 CHECK_RU_ALLOC(484);
642 CHECK_RU_ALLOC(996);
643 CHECK_RU_ALLOC(2x996);
644
645 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
646 status->he_ru + 4);
647 break;
648 default:
649 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
650 }
651
652 /* ensure 2 byte alignment */
653 while ((pos - (u8 *)rthdr) & 1)
654 pos++;
655 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE));
656 memcpy(pos, &he, sizeof(he));
657 pos += sizeof(he);
658 }
659
660 if (status->encoding == RX_ENC_HE &&
661 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
662 /* ensure 2 byte alignment */
663 while ((pos - (u8 *)rthdr) & 1)
664 pos++;
665 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU));
666 memcpy(pos, &he_mu, sizeof(he_mu));
667 pos += sizeof(he_mu);
668 }
669
670 if (status->flag & RX_FLAG_NO_PSDU) {
671 rthdr->it_present |=
672 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU));
673 *pos++ = status->zero_length_psdu_type;
674 }
675
676 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
677 /* ensure 2 byte alignment */
678 while ((pos - (u8 *)rthdr) & 1)
679 pos++;
680 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG));
681 memcpy(pos, &lsig, sizeof(lsig));
682 pos += sizeof(lsig);
683 }
684
685 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
686 *pos++ = status->chain_signal[chain];
687 *pos++ = chain;
688 }
689
690 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
691 /* ensure 2 byte alignment for the vendor field as required */
692 if ((pos - (u8 *)rthdr) & 1)
693 *pos++ = 0;
694 *pos++ = rtap.oui[0];
695 *pos++ = rtap.oui[1];
696 *pos++ = rtap.oui[2];
697 *pos++ = rtap.subns;
698 put_unaligned_le16(rtap.len, pos);
699 pos += 2;
700 /* align the actual payload as requested */
701 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
702 *pos++ = 0;
703 /* data (and possible padding) already follows */
704 }
705 }
706
707 static struct sk_buff *
ieee80211_make_monitor_skb(struct ieee80211_local * local,struct sk_buff ** origskb,struct ieee80211_rate * rate,int rtap_space,bool use_origskb)708 ieee80211_make_monitor_skb(struct ieee80211_local *local,
709 struct sk_buff **origskb,
710 struct ieee80211_rate *rate,
711 int rtap_space, bool use_origskb)
712 {
713 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
714 int rt_hdrlen, needed_headroom;
715 struct sk_buff *skb;
716
717 /* room for the radiotap header based on driver features */
718 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
719 needed_headroom = rt_hdrlen - rtap_space;
720
721 if (use_origskb) {
722 /* only need to expand headroom if necessary */
723 skb = *origskb;
724 *origskb = NULL;
725
726 /*
727 * This shouldn't trigger often because most devices have an
728 * RX header they pull before we get here, and that should
729 * be big enough for our radiotap information. We should
730 * probably export the length to drivers so that we can have
731 * them allocate enough headroom to start with.
732 */
733 if (skb_headroom(skb) < needed_headroom &&
734 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
735 dev_kfree_skb(skb);
736 return NULL;
737 }
738 } else {
739 /*
740 * Need to make a copy and possibly remove radiotap header
741 * and FCS from the original.
742 */
743 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD,
744 0, GFP_ATOMIC);
745
746 if (!skb)
747 return NULL;
748 }
749
750 /* prepend radiotap information */
751 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
752
753 skb_reset_mac_header(skb);
754 skb->ip_summed = CHECKSUM_UNNECESSARY;
755 skb->pkt_type = PACKET_OTHERHOST;
756 skb->protocol = htons(ETH_P_802_2);
757
758 return skb;
759 }
760
761 /*
762 * This function copies a received frame to all monitor interfaces and
763 * returns a cleaned-up SKB that no longer includes the FCS nor the
764 * radiotap header the driver might have added.
765 */
766 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)767 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
768 struct ieee80211_rate *rate)
769 {
770 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
771 struct ieee80211_sub_if_data *sdata;
772 struct sk_buff *monskb = NULL;
773 int present_fcs_len = 0;
774 unsigned int rtap_space = 0;
775 struct ieee80211_sub_if_data *monitor_sdata =
776 rcu_dereference(local->monitor_sdata);
777 bool only_monitor = false;
778 unsigned int min_head_len;
779
780 if (status->flag & RX_FLAG_RADIOTAP_HE)
781 rtap_space += sizeof(struct ieee80211_radiotap_he);
782
783 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
784 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
785
786 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
787 rtap_space += sizeof(struct ieee80211_radiotap_lsig);
788
789 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
790 struct ieee80211_vendor_radiotap *rtap =
791 (void *)(origskb->data + rtap_space);
792
793 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
794 }
795
796 min_head_len = rtap_space;
797
798 /*
799 * First, we may need to make a copy of the skb because
800 * (1) we need to modify it for radiotap (if not present), and
801 * (2) the other RX handlers will modify the skb we got.
802 *
803 * We don't need to, of course, if we aren't going to return
804 * the SKB because it has a bad FCS/PLCP checksum.
805 */
806
807 if (!(status->flag & RX_FLAG_NO_PSDU)) {
808 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
809 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
810 /* driver bug */
811 WARN_ON(1);
812 dev_kfree_skb(origskb);
813 return NULL;
814 }
815 present_fcs_len = FCS_LEN;
816 }
817
818 /* also consider the hdr->frame_control */
819 min_head_len += 2;
820 }
821
822 /* ensure that the expected data elements are in skb head */
823 if (!pskb_may_pull(origskb, min_head_len)) {
824 dev_kfree_skb(origskb);
825 return NULL;
826 }
827
828 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
829
830 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
831 if (only_monitor) {
832 dev_kfree_skb(origskb);
833 return NULL;
834 }
835
836 return ieee80211_clean_skb(origskb, present_fcs_len,
837 rtap_space);
838 }
839
840 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
841
842 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
843 bool last_monitor = list_is_last(&sdata->u.mntr.list,
844 &local->mon_list);
845
846 if (!monskb)
847 monskb = ieee80211_make_monitor_skb(local, &origskb,
848 rate, rtap_space,
849 only_monitor &&
850 last_monitor);
851
852 if (monskb) {
853 struct sk_buff *skb;
854
855 if (last_monitor) {
856 skb = monskb;
857 monskb = NULL;
858 } else {
859 skb = skb_clone(monskb, GFP_ATOMIC);
860 }
861
862 if (skb) {
863 skb->dev = sdata->dev;
864 dev_sw_netstats_rx_add(skb->dev, skb->len);
865 netif_receive_skb(skb);
866 }
867 }
868
869 if (last_monitor)
870 break;
871 }
872
873 /* this happens if last_monitor was erroneously false */
874 dev_kfree_skb(monskb);
875
876 /* ditto */
877 if (!origskb)
878 return NULL;
879
880 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
881 }
882
ieee80211_parse_qos(struct ieee80211_rx_data * rx)883 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
884 {
885 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
886 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
887 int tid, seqno_idx, security_idx;
888
889 /* does the frame have a qos control field? */
890 if (ieee80211_is_data_qos(hdr->frame_control)) {
891 u8 *qc = ieee80211_get_qos_ctl(hdr);
892 /* frame has qos control */
893 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
894 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
895 status->rx_flags |= IEEE80211_RX_AMSDU;
896
897 seqno_idx = tid;
898 security_idx = tid;
899 } else {
900 /*
901 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
902 *
903 * Sequence numbers for management frames, QoS data
904 * frames with a broadcast/multicast address in the
905 * Address 1 field, and all non-QoS data frames sent
906 * by QoS STAs are assigned using an additional single
907 * modulo-4096 counter, [...]
908 *
909 * We also use that counter for non-QoS STAs.
910 */
911 seqno_idx = IEEE80211_NUM_TIDS;
912 security_idx = 0;
913 if (ieee80211_is_mgmt(hdr->frame_control))
914 security_idx = IEEE80211_NUM_TIDS;
915 tid = 0;
916 }
917
918 rx->seqno_idx = seqno_idx;
919 rx->security_idx = security_idx;
920 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
921 * For now, set skb->priority to 0 for other cases. */
922 rx->skb->priority = (tid > 7) ? 0 : tid;
923 }
924
925 /**
926 * DOC: Packet alignment
927 *
928 * Drivers always need to pass packets that are aligned to two-byte boundaries
929 * to the stack.
930 *
931 * Additionally, should, if possible, align the payload data in a way that
932 * guarantees that the contained IP header is aligned to a four-byte
933 * boundary. In the case of regular frames, this simply means aligning the
934 * payload to a four-byte boundary (because either the IP header is directly
935 * contained, or IV/RFC1042 headers that have a length divisible by four are
936 * in front of it). If the payload data is not properly aligned and the
937 * architecture doesn't support efficient unaligned operations, mac80211
938 * will align the data.
939 *
940 * With A-MSDU frames, however, the payload data address must yield two modulo
941 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
942 * push the IP header further back to a multiple of four again. Thankfully, the
943 * specs were sane enough this time around to require padding each A-MSDU
944 * subframe to a length that is a multiple of four.
945 *
946 * Padding like Atheros hardware adds which is between the 802.11 header and
947 * the payload is not supported, the driver is required to move the 802.11
948 * header to be directly in front of the payload in that case.
949 */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)950 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
951 {
952 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
953 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
954 #endif
955 }
956
957
958 /* rx handlers */
959
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)960 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
961 {
962 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
963
964 if (is_multicast_ether_addr(hdr->addr1))
965 return 0;
966
967 return ieee80211_is_robust_mgmt_frame(skb);
968 }
969
970
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)971 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
972 {
973 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
974
975 if (!is_multicast_ether_addr(hdr->addr1))
976 return 0;
977
978 return ieee80211_is_robust_mgmt_frame(skb);
979 }
980
981
982 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)983 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
984 {
985 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
986 struct ieee80211_mmie *mmie;
987 struct ieee80211_mmie_16 *mmie16;
988
989 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
990 return -1;
991
992 if (!ieee80211_is_robust_mgmt_frame(skb) &&
993 !ieee80211_is_beacon(hdr->frame_control))
994 return -1; /* not a robust management frame */
995
996 mmie = (struct ieee80211_mmie *)
997 (skb->data + skb->len - sizeof(*mmie));
998 if (mmie->element_id == WLAN_EID_MMIE &&
999 mmie->length == sizeof(*mmie) - 2)
1000 return le16_to_cpu(mmie->key_id);
1001
1002 mmie16 = (struct ieee80211_mmie_16 *)
1003 (skb->data + skb->len - sizeof(*mmie16));
1004 if (skb->len >= 24 + sizeof(*mmie16) &&
1005 mmie16->element_id == WLAN_EID_MMIE &&
1006 mmie16->length == sizeof(*mmie16) - 2)
1007 return le16_to_cpu(mmie16->key_id);
1008
1009 return -1;
1010 }
1011
ieee80211_get_keyid(struct sk_buff * skb,const struct ieee80211_cipher_scheme * cs)1012 static int ieee80211_get_keyid(struct sk_buff *skb,
1013 const struct ieee80211_cipher_scheme *cs)
1014 {
1015 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1016 __le16 fc;
1017 int hdrlen;
1018 int minlen;
1019 u8 key_idx_off;
1020 u8 key_idx_shift;
1021 u8 keyid;
1022
1023 fc = hdr->frame_control;
1024 hdrlen = ieee80211_hdrlen(fc);
1025
1026 if (cs) {
1027 minlen = hdrlen + cs->hdr_len;
1028 key_idx_off = hdrlen + cs->key_idx_off;
1029 key_idx_shift = cs->key_idx_shift;
1030 } else {
1031 /* WEP, TKIP, CCMP and GCMP */
1032 minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1033 key_idx_off = hdrlen + 3;
1034 key_idx_shift = 6;
1035 }
1036
1037 if (unlikely(skb->len < minlen))
1038 return -EINVAL;
1039
1040 skb_copy_bits(skb, key_idx_off, &keyid, 1);
1041
1042 if (cs)
1043 keyid &= cs->key_idx_mask;
1044 keyid >>= key_idx_shift;
1045
1046 /* cs could use more than the usual two bits for the keyid */
1047 if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1048 return -EINVAL;
1049
1050 return keyid;
1051 }
1052
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)1053 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1054 {
1055 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1056 char *dev_addr = rx->sdata->vif.addr;
1057
1058 if (ieee80211_is_data(hdr->frame_control)) {
1059 if (is_multicast_ether_addr(hdr->addr1)) {
1060 if (ieee80211_has_tods(hdr->frame_control) ||
1061 !ieee80211_has_fromds(hdr->frame_control))
1062 return RX_DROP_MONITOR;
1063 if (ether_addr_equal(hdr->addr3, dev_addr))
1064 return RX_DROP_MONITOR;
1065 } else {
1066 if (!ieee80211_has_a4(hdr->frame_control))
1067 return RX_DROP_MONITOR;
1068 if (ether_addr_equal(hdr->addr4, dev_addr))
1069 return RX_DROP_MONITOR;
1070 }
1071 }
1072
1073 /* If there is not an established peer link and this is not a peer link
1074 * establisment frame, beacon or probe, drop the frame.
1075 */
1076
1077 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1078 struct ieee80211_mgmt *mgmt;
1079
1080 if (!ieee80211_is_mgmt(hdr->frame_control))
1081 return RX_DROP_MONITOR;
1082
1083 if (ieee80211_is_action(hdr->frame_control)) {
1084 u8 category;
1085
1086 /* make sure category field is present */
1087 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1088 return RX_DROP_MONITOR;
1089
1090 mgmt = (struct ieee80211_mgmt *)hdr;
1091 category = mgmt->u.action.category;
1092 if (category != WLAN_CATEGORY_MESH_ACTION &&
1093 category != WLAN_CATEGORY_SELF_PROTECTED)
1094 return RX_DROP_MONITOR;
1095 return RX_CONTINUE;
1096 }
1097
1098 if (ieee80211_is_probe_req(hdr->frame_control) ||
1099 ieee80211_is_probe_resp(hdr->frame_control) ||
1100 ieee80211_is_beacon(hdr->frame_control) ||
1101 ieee80211_is_auth(hdr->frame_control))
1102 return RX_CONTINUE;
1103
1104 return RX_DROP_MONITOR;
1105 }
1106
1107 return RX_CONTINUE;
1108 }
1109
ieee80211_rx_reorder_ready(struct tid_ampdu_rx * tid_agg_rx,int index)1110 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1111 int index)
1112 {
1113 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1114 struct sk_buff *tail = skb_peek_tail(frames);
1115 struct ieee80211_rx_status *status;
1116
1117 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1118 return true;
1119
1120 if (!tail)
1121 return false;
1122
1123 status = IEEE80211_SKB_RXCB(tail);
1124 if (status->flag & RX_FLAG_AMSDU_MORE)
1125 return false;
1126
1127 return true;
1128 }
1129
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)1130 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1131 struct tid_ampdu_rx *tid_agg_rx,
1132 int index,
1133 struct sk_buff_head *frames)
1134 {
1135 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1136 struct sk_buff *skb;
1137 struct ieee80211_rx_status *status;
1138
1139 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1140
1141 if (skb_queue_empty(skb_list))
1142 goto no_frame;
1143
1144 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1145 __skb_queue_purge(skb_list);
1146 goto no_frame;
1147 }
1148
1149 /* release frames from the reorder ring buffer */
1150 tid_agg_rx->stored_mpdu_num--;
1151 while ((skb = __skb_dequeue(skb_list))) {
1152 status = IEEE80211_SKB_RXCB(skb);
1153 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1154 __skb_queue_tail(frames, skb);
1155 }
1156
1157 no_frame:
1158 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1159 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1160 }
1161
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)1162 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1163 struct tid_ampdu_rx *tid_agg_rx,
1164 u16 head_seq_num,
1165 struct sk_buff_head *frames)
1166 {
1167 int index;
1168
1169 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1170
1171 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1172 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1173 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1174 frames);
1175 }
1176 }
1177
1178 /*
1179 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1180 * the skb was added to the buffer longer than this time ago, the earlier
1181 * frames that have not yet been received are assumed to be lost and the skb
1182 * can be released for processing. This may also release other skb's from the
1183 * reorder buffer if there are no additional gaps between the frames.
1184 *
1185 * Callers must hold tid_agg_rx->reorder_lock.
1186 */
1187 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1188
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)1189 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1190 struct tid_ampdu_rx *tid_agg_rx,
1191 struct sk_buff_head *frames)
1192 {
1193 int index, i, j;
1194
1195 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1196
1197 /* release the buffer until next missing frame */
1198 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1199 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1200 tid_agg_rx->stored_mpdu_num) {
1201 /*
1202 * No buffers ready to be released, but check whether any
1203 * frames in the reorder buffer have timed out.
1204 */
1205 int skipped = 1;
1206 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1207 j = (j + 1) % tid_agg_rx->buf_size) {
1208 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1209 skipped++;
1210 continue;
1211 }
1212 if (skipped &&
1213 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1214 HT_RX_REORDER_BUF_TIMEOUT))
1215 goto set_release_timer;
1216
1217 /* don't leave incomplete A-MSDUs around */
1218 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1219 i = (i + 1) % tid_agg_rx->buf_size)
1220 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1221
1222 ht_dbg_ratelimited(sdata,
1223 "release an RX reorder frame due to timeout on earlier frames\n");
1224 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1225 frames);
1226
1227 /*
1228 * Increment the head seq# also for the skipped slots.
1229 */
1230 tid_agg_rx->head_seq_num =
1231 (tid_agg_rx->head_seq_num +
1232 skipped) & IEEE80211_SN_MASK;
1233 skipped = 0;
1234 }
1235 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1236 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1237 frames);
1238 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1239 }
1240
1241 if (tid_agg_rx->stored_mpdu_num) {
1242 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1243
1244 for (; j != (index - 1) % tid_agg_rx->buf_size;
1245 j = (j + 1) % tid_agg_rx->buf_size) {
1246 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1247 break;
1248 }
1249
1250 set_release_timer:
1251
1252 if (!tid_agg_rx->removed)
1253 mod_timer(&tid_agg_rx->reorder_timer,
1254 tid_agg_rx->reorder_time[j] + 1 +
1255 HT_RX_REORDER_BUF_TIMEOUT);
1256 } else {
1257 del_timer(&tid_agg_rx->reorder_timer);
1258 }
1259 }
1260
1261 /*
1262 * As this function belongs to the RX path it must be under
1263 * rcu_read_lock protection. It returns false if the frame
1264 * can be processed immediately, true if it was consumed.
1265 */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)1266 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1267 struct tid_ampdu_rx *tid_agg_rx,
1268 struct sk_buff *skb,
1269 struct sk_buff_head *frames)
1270 {
1271 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1272 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1273 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1274 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1275 u16 head_seq_num, buf_size;
1276 int index;
1277 bool ret = true;
1278
1279 spin_lock(&tid_agg_rx->reorder_lock);
1280
1281 /*
1282 * Offloaded BA sessions have no known starting sequence number so pick
1283 * one from first Rxed frame for this tid after BA was started.
1284 */
1285 if (unlikely(tid_agg_rx->auto_seq)) {
1286 tid_agg_rx->auto_seq = false;
1287 tid_agg_rx->ssn = mpdu_seq_num;
1288 tid_agg_rx->head_seq_num = mpdu_seq_num;
1289 }
1290
1291 buf_size = tid_agg_rx->buf_size;
1292 head_seq_num = tid_agg_rx->head_seq_num;
1293
1294 /*
1295 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1296 * be reordered.
1297 */
1298 if (unlikely(!tid_agg_rx->started)) {
1299 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1300 ret = false;
1301 goto out;
1302 }
1303 tid_agg_rx->started = true;
1304 }
1305
1306 /* frame with out of date sequence number */
1307 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1308 dev_kfree_skb(skb);
1309 goto out;
1310 }
1311
1312 /*
1313 * If frame the sequence number exceeds our buffering window
1314 * size release some previous frames to make room for this one.
1315 */
1316 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1317 head_seq_num = ieee80211_sn_inc(
1318 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1319 /* release stored frames up to new head to stack */
1320 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1321 head_seq_num, frames);
1322 }
1323
1324 /* Now the new frame is always in the range of the reordering buffer */
1325
1326 index = mpdu_seq_num % tid_agg_rx->buf_size;
1327
1328 /* check if we already stored this frame */
1329 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1330 dev_kfree_skb(skb);
1331 goto out;
1332 }
1333
1334 /*
1335 * If the current MPDU is in the right order and nothing else
1336 * is stored we can process it directly, no need to buffer it.
1337 * If it is first but there's something stored, we may be able
1338 * to release frames after this one.
1339 */
1340 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1341 tid_agg_rx->stored_mpdu_num == 0) {
1342 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1343 tid_agg_rx->head_seq_num =
1344 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1345 ret = false;
1346 goto out;
1347 }
1348
1349 /* put the frame in the reordering buffer */
1350 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1351 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1352 tid_agg_rx->reorder_time[index] = jiffies;
1353 tid_agg_rx->stored_mpdu_num++;
1354 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1355 }
1356
1357 out:
1358 spin_unlock(&tid_agg_rx->reorder_lock);
1359 return ret;
1360 }
1361
1362 /*
1363 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1364 * true if the MPDU was buffered, false if it should be processed.
1365 */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1366 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1367 struct sk_buff_head *frames)
1368 {
1369 struct sk_buff *skb = rx->skb;
1370 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1371 struct sta_info *sta = rx->sta;
1372 struct tid_ampdu_rx *tid_agg_rx;
1373 u16 sc;
1374 u8 tid, ack_policy;
1375
1376 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1377 is_multicast_ether_addr(hdr->addr1))
1378 goto dont_reorder;
1379
1380 /*
1381 * filter the QoS data rx stream according to
1382 * STA/TID and check if this STA/TID is on aggregation
1383 */
1384
1385 if (!sta)
1386 goto dont_reorder;
1387
1388 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1389 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1390 tid = ieee80211_get_tid(hdr);
1391
1392 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1393 if (!tid_agg_rx) {
1394 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1395 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1396 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1397 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1398 WLAN_BACK_RECIPIENT,
1399 WLAN_REASON_QSTA_REQUIRE_SETUP);
1400 goto dont_reorder;
1401 }
1402
1403 /* qos null data frames are excluded */
1404 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1405 goto dont_reorder;
1406
1407 /* not part of a BA session */
1408 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
1409 goto dont_reorder;
1410
1411 /* new, potentially un-ordered, ampdu frame - process it */
1412
1413 /* reset session timer */
1414 if (tid_agg_rx->timeout)
1415 tid_agg_rx->last_rx = jiffies;
1416
1417 /* if this mpdu is fragmented - terminate rx aggregation session */
1418 sc = le16_to_cpu(hdr->seq_ctrl);
1419 if (sc & IEEE80211_SCTL_FRAG) {
1420 ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb);
1421 return;
1422 }
1423
1424 /*
1425 * No locking needed -- we will only ever process one
1426 * RX packet at a time, and thus own tid_agg_rx. All
1427 * other code manipulating it needs to (and does) make
1428 * sure that we cannot get to it any more before doing
1429 * anything with it.
1430 */
1431 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1432 frames))
1433 return;
1434
1435 dont_reorder:
1436 __skb_queue_tail(frames, skb);
1437 }
1438
1439 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1440 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1441 {
1442 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1443 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1444
1445 if (status->flag & RX_FLAG_DUP_VALIDATED)
1446 return RX_CONTINUE;
1447
1448 /*
1449 * Drop duplicate 802.11 retransmissions
1450 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1451 */
1452
1453 if (rx->skb->len < 24)
1454 return RX_CONTINUE;
1455
1456 if (ieee80211_is_ctl(hdr->frame_control) ||
1457 ieee80211_is_any_nullfunc(hdr->frame_control) ||
1458 is_multicast_ether_addr(hdr->addr1))
1459 return RX_CONTINUE;
1460
1461 if (!rx->sta)
1462 return RX_CONTINUE;
1463
1464 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1465 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1466 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1467 rx->sta->deflink.rx_stats.num_duplicates++;
1468 return RX_DROP_UNUSABLE;
1469 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1470 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1471 }
1472
1473 return RX_CONTINUE;
1474 }
1475
1476 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1477 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1478 {
1479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1480
1481 /* Drop disallowed frame classes based on STA auth/assoc state;
1482 * IEEE 802.11, Chap 5.5.
1483 *
1484 * mac80211 filters only based on association state, i.e. it drops
1485 * Class 3 frames from not associated stations. hostapd sends
1486 * deauth/disassoc frames when needed. In addition, hostapd is
1487 * responsible for filtering on both auth and assoc states.
1488 */
1489
1490 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1491 return ieee80211_rx_mesh_check(rx);
1492
1493 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1494 ieee80211_is_pspoll(hdr->frame_control)) &&
1495 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1496 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1497 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1498 /*
1499 * accept port control frames from the AP even when it's not
1500 * yet marked ASSOC to prevent a race where we don't set the
1501 * assoc bit quickly enough before it sends the first frame
1502 */
1503 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1504 ieee80211_is_data_present(hdr->frame_control)) {
1505 unsigned int hdrlen;
1506 __be16 ethertype;
1507
1508 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1509
1510 if (rx->skb->len < hdrlen + 8)
1511 return RX_DROP_MONITOR;
1512
1513 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2);
1514 if (ethertype == rx->sdata->control_port_protocol)
1515 return RX_CONTINUE;
1516 }
1517
1518 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1519 cfg80211_rx_spurious_frame(rx->sdata->dev,
1520 hdr->addr2,
1521 GFP_ATOMIC))
1522 return RX_DROP_UNUSABLE;
1523
1524 return RX_DROP_MONITOR;
1525 }
1526
1527 return RX_CONTINUE;
1528 }
1529
1530
1531 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1532 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1533 {
1534 struct ieee80211_local *local;
1535 struct ieee80211_hdr *hdr;
1536 struct sk_buff *skb;
1537
1538 local = rx->local;
1539 skb = rx->skb;
1540 hdr = (struct ieee80211_hdr *) skb->data;
1541
1542 if (!local->pspolling)
1543 return RX_CONTINUE;
1544
1545 if (!ieee80211_has_fromds(hdr->frame_control))
1546 /* this is not from AP */
1547 return RX_CONTINUE;
1548
1549 if (!ieee80211_is_data(hdr->frame_control))
1550 return RX_CONTINUE;
1551
1552 if (!ieee80211_has_moredata(hdr->frame_control)) {
1553 /* AP has no more frames buffered for us */
1554 local->pspolling = false;
1555 return RX_CONTINUE;
1556 }
1557
1558 /* more data bit is set, let's request a new frame from the AP */
1559 ieee80211_send_pspoll(local, rx->sdata);
1560
1561 return RX_CONTINUE;
1562 }
1563
sta_ps_start(struct sta_info * sta)1564 static void sta_ps_start(struct sta_info *sta)
1565 {
1566 struct ieee80211_sub_if_data *sdata = sta->sdata;
1567 struct ieee80211_local *local = sdata->local;
1568 struct ps_data *ps;
1569 int tid;
1570
1571 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1572 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1573 ps = &sdata->bss->ps;
1574 else
1575 return;
1576
1577 atomic_inc(&ps->num_sta_ps);
1578 set_sta_flag(sta, WLAN_STA_PS_STA);
1579 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1580 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1581 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1582 sta->sta.addr, sta->sta.aid);
1583
1584 ieee80211_clear_fast_xmit(sta);
1585
1586 if (!sta->sta.txq[0])
1587 return;
1588
1589 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1590 struct ieee80211_txq *txq = sta->sta.txq[tid];
1591
1592 ieee80211_unschedule_txq(&local->hw, txq, false);
1593
1594 if (txq_has_queue(txq))
1595 set_bit(tid, &sta->txq_buffered_tids);
1596 else
1597 clear_bit(tid, &sta->txq_buffered_tids);
1598 }
1599 }
1600
sta_ps_end(struct sta_info * sta)1601 static void sta_ps_end(struct sta_info *sta)
1602 {
1603 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1604 sta->sta.addr, sta->sta.aid);
1605
1606 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1607 /*
1608 * Clear the flag only if the other one is still set
1609 * so that the TX path won't start TX'ing new frames
1610 * directly ... In the case that the driver flag isn't
1611 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1612 */
1613 clear_sta_flag(sta, WLAN_STA_PS_STA);
1614 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1615 sta->sta.addr, sta->sta.aid);
1616 return;
1617 }
1618
1619 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1620 clear_sta_flag(sta, WLAN_STA_PS_STA);
1621 ieee80211_sta_ps_deliver_wakeup(sta);
1622 }
1623
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1624 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1625 {
1626 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1627 bool in_ps;
1628
1629 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1630
1631 /* Don't let the same PS state be set twice */
1632 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1633 if ((start && in_ps) || (!start && !in_ps))
1634 return -EINVAL;
1635
1636 if (start)
1637 sta_ps_start(sta);
1638 else
1639 sta_ps_end(sta);
1640
1641 return 0;
1642 }
1643 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1644
ieee80211_sta_pspoll(struct ieee80211_sta * pubsta)1645 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1646 {
1647 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1648
1649 if (test_sta_flag(sta, WLAN_STA_SP))
1650 return;
1651
1652 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1653 ieee80211_sta_ps_deliver_poll_response(sta);
1654 else
1655 set_sta_flag(sta, WLAN_STA_PSPOLL);
1656 }
1657 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1658
ieee80211_sta_uapsd_trigger(struct ieee80211_sta * pubsta,u8 tid)1659 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1660 {
1661 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1662 int ac = ieee80211_ac_from_tid(tid);
1663
1664 /*
1665 * If this AC is not trigger-enabled do nothing unless the
1666 * driver is calling us after it already checked.
1667 *
1668 * NB: This could/should check a separate bitmap of trigger-
1669 * enabled queues, but for now we only implement uAPSD w/o
1670 * TSPEC changes to the ACs, so they're always the same.
1671 */
1672 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1673 tid != IEEE80211_NUM_TIDS)
1674 return;
1675
1676 /* if we are in a service period, do nothing */
1677 if (test_sta_flag(sta, WLAN_STA_SP))
1678 return;
1679
1680 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1681 ieee80211_sta_ps_deliver_uapsd(sta);
1682 else
1683 set_sta_flag(sta, WLAN_STA_UAPSD);
1684 }
1685 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1686
1687 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1688 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1689 {
1690 struct ieee80211_sub_if_data *sdata = rx->sdata;
1691 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1692 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1693
1694 if (!rx->sta)
1695 return RX_CONTINUE;
1696
1697 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1698 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1699 return RX_CONTINUE;
1700
1701 /*
1702 * The device handles station powersave, so don't do anything about
1703 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1704 * it to mac80211 since they're handled.)
1705 */
1706 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1707 return RX_CONTINUE;
1708
1709 /*
1710 * Don't do anything if the station isn't already asleep. In
1711 * the uAPSD case, the station will probably be marked asleep,
1712 * in the PS-Poll case the station must be confused ...
1713 */
1714 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1715 return RX_CONTINUE;
1716
1717 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1718 ieee80211_sta_pspoll(&rx->sta->sta);
1719
1720 /* Free PS Poll skb here instead of returning RX_DROP that would
1721 * count as an dropped frame. */
1722 dev_kfree_skb(rx->skb);
1723
1724 return RX_QUEUED;
1725 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1726 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1727 ieee80211_has_pm(hdr->frame_control) &&
1728 (ieee80211_is_data_qos(hdr->frame_control) ||
1729 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1730 u8 tid = ieee80211_get_tid(hdr);
1731
1732 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1733 }
1734
1735 return RX_CONTINUE;
1736 }
1737
1738 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1739 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1740 {
1741 struct sta_info *sta = rx->sta;
1742 struct sk_buff *skb = rx->skb;
1743 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1744 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1745 int i;
1746
1747 if (!sta)
1748 return RX_CONTINUE;
1749
1750 /*
1751 * Update last_rx only for IBSS packets which are for the current
1752 * BSSID and for station already AUTHORIZED to avoid keeping the
1753 * current IBSS network alive in cases where other STAs start
1754 * using different BSSID. This will also give the station another
1755 * chance to restart the authentication/authorization in case
1756 * something went wrong the first time.
1757 */
1758 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1759 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1760 NL80211_IFTYPE_ADHOC);
1761 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1762 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1763 sta->deflink.rx_stats.last_rx = jiffies;
1764 if (ieee80211_is_data(hdr->frame_control) &&
1765 !is_multicast_ether_addr(hdr->addr1))
1766 sta->deflink.rx_stats.last_rate =
1767 sta_stats_encode_rate(status);
1768 }
1769 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1770 sta->deflink.rx_stats.last_rx = jiffies;
1771 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1772 !is_multicast_ether_addr(hdr->addr1)) {
1773 /*
1774 * Mesh beacons will update last_rx when if they are found to
1775 * match the current local configuration when processed.
1776 */
1777 sta->deflink.rx_stats.last_rx = jiffies;
1778 if (ieee80211_is_data(hdr->frame_control))
1779 sta->deflink.rx_stats.last_rate = sta_stats_encode_rate(status);
1780 }
1781
1782 sta->deflink.rx_stats.fragments++;
1783
1784 u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp);
1785 sta->deflink.rx_stats.bytes += rx->skb->len;
1786 u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp);
1787
1788 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1789 sta->deflink.rx_stats.last_signal = status->signal;
1790 ewma_signal_add(&sta->deflink.rx_stats_avg.signal,
1791 -status->signal);
1792 }
1793
1794 if (status->chains) {
1795 sta->deflink.rx_stats.chains = status->chains;
1796 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1797 int signal = status->chain_signal[i];
1798
1799 if (!(status->chains & BIT(i)))
1800 continue;
1801
1802 sta->deflink.rx_stats.chain_signal_last[i] = signal;
1803 ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i],
1804 -signal);
1805 }
1806 }
1807
1808 if (ieee80211_is_s1g_beacon(hdr->frame_control))
1809 return RX_CONTINUE;
1810
1811 /*
1812 * Change STA power saving mode only at the end of a frame
1813 * exchange sequence, and only for a data or management
1814 * frame as specified in IEEE 802.11-2016 11.2.3.2
1815 */
1816 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1817 !ieee80211_has_morefrags(hdr->frame_control) &&
1818 !is_multicast_ether_addr(hdr->addr1) &&
1819 (ieee80211_is_mgmt(hdr->frame_control) ||
1820 ieee80211_is_data(hdr->frame_control)) &&
1821 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1822 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1823 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1824 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1825 if (!ieee80211_has_pm(hdr->frame_control))
1826 sta_ps_end(sta);
1827 } else {
1828 if (ieee80211_has_pm(hdr->frame_control))
1829 sta_ps_start(sta);
1830 }
1831 }
1832
1833 /* mesh power save support */
1834 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1835 ieee80211_mps_rx_h_sta_process(sta, hdr);
1836
1837 /*
1838 * Drop (qos-)data::nullfunc frames silently, since they
1839 * are used only to control station power saving mode.
1840 */
1841 if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1842 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1843
1844 /*
1845 * If we receive a 4-addr nullfunc frame from a STA
1846 * that was not moved to a 4-addr STA vlan yet send
1847 * the event to userspace and for older hostapd drop
1848 * the frame to the monitor interface.
1849 */
1850 if (ieee80211_has_a4(hdr->frame_control) &&
1851 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1852 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1853 !rx->sdata->u.vlan.sta))) {
1854 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1855 cfg80211_rx_unexpected_4addr_frame(
1856 rx->sdata->dev, sta->sta.addr,
1857 GFP_ATOMIC);
1858 return RX_DROP_MONITOR;
1859 }
1860 /*
1861 * Update counter and free packet here to avoid
1862 * counting this as a dropped packed.
1863 */
1864 sta->deflink.rx_stats.packets++;
1865 dev_kfree_skb(rx->skb);
1866 return RX_QUEUED;
1867 }
1868
1869 return RX_CONTINUE;
1870 } /* ieee80211_rx_h_sta_process */
1871
1872 static struct ieee80211_key *
ieee80211_rx_get_bigtk(struct ieee80211_rx_data * rx,int idx)1873 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1874 {
1875 struct ieee80211_key *key = NULL;
1876 struct ieee80211_sub_if_data *sdata = rx->sdata;
1877 int idx2;
1878
1879 /* Make sure key gets set if either BIGTK key index is set so that
1880 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1881 * Beacon frames and Beacon frames that claim to use another BIGTK key
1882 * index (i.e., a key that we do not have).
1883 */
1884
1885 if (idx < 0) {
1886 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1887 idx2 = idx + 1;
1888 } else {
1889 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1890 idx2 = idx + 1;
1891 else
1892 idx2 = idx - 1;
1893 }
1894
1895 if (rx->sta)
1896 key = rcu_dereference(rx->sta->deflink.gtk[idx]);
1897 if (!key)
1898 key = rcu_dereference(sdata->keys[idx]);
1899 if (!key && rx->sta)
1900 key = rcu_dereference(rx->sta->deflink.gtk[idx2]);
1901 if (!key)
1902 key = rcu_dereference(sdata->keys[idx2]);
1903
1904 return key;
1905 }
1906
1907 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1908 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1909 {
1910 struct sk_buff *skb = rx->skb;
1911 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1912 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1913 int keyidx;
1914 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1915 struct ieee80211_key *sta_ptk = NULL;
1916 struct ieee80211_key *ptk_idx = NULL;
1917 int mmie_keyidx = -1;
1918 __le16 fc;
1919 const struct ieee80211_cipher_scheme *cs = NULL;
1920
1921 if (ieee80211_is_ext(hdr->frame_control))
1922 return RX_CONTINUE;
1923
1924 /*
1925 * Key selection 101
1926 *
1927 * There are five types of keys:
1928 * - GTK (group keys)
1929 * - IGTK (group keys for management frames)
1930 * - BIGTK (group keys for Beacon frames)
1931 * - PTK (pairwise keys)
1932 * - STK (station-to-station pairwise keys)
1933 *
1934 * When selecting a key, we have to distinguish between multicast
1935 * (including broadcast) and unicast frames, the latter can only
1936 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1937 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1938 * then unicast frames can also use key indices like GTKs. Hence, if we
1939 * don't have a PTK/STK we check the key index for a WEP key.
1940 *
1941 * Note that in a regular BSS, multicast frames are sent by the
1942 * AP only, associated stations unicast the frame to the AP first
1943 * which then multicasts it on their behalf.
1944 *
1945 * There is also a slight problem in IBSS mode: GTKs are negotiated
1946 * with each station, that is something we don't currently handle.
1947 * The spec seems to expect that one negotiates the same key with
1948 * every station but there's no such requirement; VLANs could be
1949 * possible.
1950 */
1951
1952 /* start without a key */
1953 rx->key = NULL;
1954 fc = hdr->frame_control;
1955
1956 if (rx->sta) {
1957 int keyid = rx->sta->ptk_idx;
1958 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1959
1960 if (ieee80211_has_protected(fc) &&
1961 !(status->flag & RX_FLAG_IV_STRIPPED)) {
1962 cs = rx->sta->cipher_scheme;
1963 keyid = ieee80211_get_keyid(rx->skb, cs);
1964
1965 if (unlikely(keyid < 0))
1966 return RX_DROP_UNUSABLE;
1967
1968 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1969 }
1970 }
1971
1972 if (!ieee80211_has_protected(fc))
1973 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1974
1975 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1976 rx->key = ptk_idx ? ptk_idx : sta_ptk;
1977 if ((status->flag & RX_FLAG_DECRYPTED) &&
1978 (status->flag & RX_FLAG_IV_STRIPPED))
1979 return RX_CONTINUE;
1980 /* Skip decryption if the frame is not protected. */
1981 if (!ieee80211_has_protected(fc))
1982 return RX_CONTINUE;
1983 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1984 /* Broadcast/multicast robust management frame / BIP */
1985 if ((status->flag & RX_FLAG_DECRYPTED) &&
1986 (status->flag & RX_FLAG_IV_STRIPPED))
1987 return RX_CONTINUE;
1988
1989 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1990 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1991 NUM_DEFAULT_BEACON_KEYS) {
1992 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1993 skb->data,
1994 skb->len);
1995 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1996 }
1997
1998 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1999 if (!rx->key)
2000 return RX_CONTINUE; /* Beacon protection not in use */
2001 } else if (mmie_keyidx >= 0) {
2002 /* Broadcast/multicast robust management frame / BIP */
2003 if ((status->flag & RX_FLAG_DECRYPTED) &&
2004 (status->flag & RX_FLAG_IV_STRIPPED))
2005 return RX_CONTINUE;
2006
2007 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
2008 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
2009 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
2010 if (rx->sta) {
2011 if (ieee80211_is_group_privacy_action(skb) &&
2012 test_sta_flag(rx->sta, WLAN_STA_MFP))
2013 return RX_DROP_MONITOR;
2014
2015 rx->key = rcu_dereference(rx->sta->deflink.gtk[mmie_keyidx]);
2016 }
2017 if (!rx->key)
2018 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
2019 } else if (!ieee80211_has_protected(fc)) {
2020 /*
2021 * The frame was not protected, so skip decryption. However, we
2022 * need to set rx->key if there is a key that could have been
2023 * used so that the frame may be dropped if encryption would
2024 * have been expected.
2025 */
2026 struct ieee80211_key *key = NULL;
2027 struct ieee80211_sub_if_data *sdata = rx->sdata;
2028 int i;
2029
2030 if (ieee80211_is_beacon(fc)) {
2031 key = ieee80211_rx_get_bigtk(rx, -1);
2032 } else if (ieee80211_is_mgmt(fc) &&
2033 is_multicast_ether_addr(hdr->addr1)) {
2034 key = rcu_dereference(rx->sdata->default_mgmt_key);
2035 } else {
2036 if (rx->sta) {
2037 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2038 key = rcu_dereference(rx->sta->deflink.gtk[i]);
2039 if (key)
2040 break;
2041 }
2042 }
2043 if (!key) {
2044 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2045 key = rcu_dereference(sdata->keys[i]);
2046 if (key)
2047 break;
2048 }
2049 }
2050 }
2051 if (key)
2052 rx->key = key;
2053 return RX_CONTINUE;
2054 } else {
2055 /*
2056 * The device doesn't give us the IV so we won't be
2057 * able to look up the key. That's ok though, we
2058 * don't need to decrypt the frame, we just won't
2059 * be able to keep statistics accurate.
2060 * Except for key threshold notifications, should
2061 * we somehow allow the driver to tell us which key
2062 * the hardware used if this flag is set?
2063 */
2064 if ((status->flag & RX_FLAG_DECRYPTED) &&
2065 (status->flag & RX_FLAG_IV_STRIPPED))
2066 return RX_CONTINUE;
2067
2068 keyidx = ieee80211_get_keyid(rx->skb, cs);
2069
2070 if (unlikely(keyidx < 0))
2071 return RX_DROP_UNUSABLE;
2072
2073 /* check per-station GTK first, if multicast packet */
2074 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2075 rx->key = rcu_dereference(rx->sta->deflink.gtk[keyidx]);
2076
2077 /* if not found, try default key */
2078 if (!rx->key) {
2079 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2080
2081 /*
2082 * RSNA-protected unicast frames should always be
2083 * sent with pairwise or station-to-station keys,
2084 * but for WEP we allow using a key index as well.
2085 */
2086 if (rx->key &&
2087 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2088 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2089 !is_multicast_ether_addr(hdr->addr1))
2090 rx->key = NULL;
2091 }
2092 }
2093
2094 if (rx->key) {
2095 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2096 return RX_DROP_MONITOR;
2097
2098 /* TODO: add threshold stuff again */
2099 } else {
2100 return RX_DROP_MONITOR;
2101 }
2102
2103 switch (rx->key->conf.cipher) {
2104 case WLAN_CIPHER_SUITE_WEP40:
2105 case WLAN_CIPHER_SUITE_WEP104:
2106 result = ieee80211_crypto_wep_decrypt(rx);
2107 break;
2108 case WLAN_CIPHER_SUITE_TKIP:
2109 result = ieee80211_crypto_tkip_decrypt(rx);
2110 break;
2111 case WLAN_CIPHER_SUITE_CCMP:
2112 result = ieee80211_crypto_ccmp_decrypt(
2113 rx, IEEE80211_CCMP_MIC_LEN);
2114 break;
2115 case WLAN_CIPHER_SUITE_CCMP_256:
2116 result = ieee80211_crypto_ccmp_decrypt(
2117 rx, IEEE80211_CCMP_256_MIC_LEN);
2118 break;
2119 case WLAN_CIPHER_SUITE_AES_CMAC:
2120 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2121 break;
2122 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2123 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2124 break;
2125 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2126 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2127 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2128 break;
2129 case WLAN_CIPHER_SUITE_GCMP:
2130 case WLAN_CIPHER_SUITE_GCMP_256:
2131 result = ieee80211_crypto_gcmp_decrypt(rx);
2132 break;
2133 default:
2134 result = ieee80211_crypto_hw_decrypt(rx);
2135 }
2136
2137 /* the hdr variable is invalid after the decrypt handlers */
2138
2139 /* either the frame has been decrypted or will be dropped */
2140 status->flag |= RX_FLAG_DECRYPTED;
2141
2142 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE))
2143 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2144 skb->data, skb->len);
2145
2146 return result;
2147 }
2148
ieee80211_init_frag_cache(struct ieee80211_fragment_cache * cache)2149 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2150 {
2151 int i;
2152
2153 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2154 skb_queue_head_init(&cache->entries[i].skb_list);
2155 }
2156
ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache * cache)2157 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2158 {
2159 int i;
2160
2161 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2162 __skb_queue_purge(&cache->entries[i].skb_list);
2163 }
2164
2165 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)2166 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2167 unsigned int frag, unsigned int seq, int rx_queue,
2168 struct sk_buff **skb)
2169 {
2170 struct ieee80211_fragment_entry *entry;
2171
2172 entry = &cache->entries[cache->next++];
2173 if (cache->next >= IEEE80211_FRAGMENT_MAX)
2174 cache->next = 0;
2175
2176 __skb_queue_purge(&entry->skb_list);
2177
2178 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2179 *skb = NULL;
2180 entry->first_frag_time = jiffies;
2181 entry->seq = seq;
2182 entry->rx_queue = rx_queue;
2183 entry->last_frag = frag;
2184 entry->check_sequential_pn = false;
2185 entry->extra_len = 0;
2186
2187 return entry;
2188 }
2189
2190 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)2191 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2192 unsigned int frag, unsigned int seq,
2193 int rx_queue, struct ieee80211_hdr *hdr)
2194 {
2195 struct ieee80211_fragment_entry *entry;
2196 int i, idx;
2197
2198 idx = cache->next;
2199 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2200 struct ieee80211_hdr *f_hdr;
2201 struct sk_buff *f_skb;
2202
2203 idx--;
2204 if (idx < 0)
2205 idx = IEEE80211_FRAGMENT_MAX - 1;
2206
2207 entry = &cache->entries[idx];
2208 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2209 entry->rx_queue != rx_queue ||
2210 entry->last_frag + 1 != frag)
2211 continue;
2212
2213 f_skb = __skb_peek(&entry->skb_list);
2214 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2215
2216 /*
2217 * Check ftype and addresses are equal, else check next fragment
2218 */
2219 if (((hdr->frame_control ^ f_hdr->frame_control) &
2220 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2221 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2222 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2223 continue;
2224
2225 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2226 __skb_queue_purge(&entry->skb_list);
2227 continue;
2228 }
2229 return entry;
2230 }
2231
2232 return NULL;
2233 }
2234
requires_sequential_pn(struct ieee80211_rx_data * rx,__le16 fc)2235 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2236 {
2237 return rx->key &&
2238 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2239 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2240 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2241 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2242 ieee80211_has_protected(fc);
2243 }
2244
2245 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)2246 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2247 {
2248 struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2249 struct ieee80211_hdr *hdr;
2250 u16 sc;
2251 __le16 fc;
2252 unsigned int frag, seq;
2253 struct ieee80211_fragment_entry *entry;
2254 struct sk_buff *skb;
2255 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2256
2257 hdr = (struct ieee80211_hdr *)rx->skb->data;
2258 fc = hdr->frame_control;
2259
2260 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2261 return RX_CONTINUE;
2262
2263 sc = le16_to_cpu(hdr->seq_ctrl);
2264 frag = sc & IEEE80211_SCTL_FRAG;
2265
2266 if (rx->sta)
2267 cache = &rx->sta->frags;
2268
2269 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2270 goto out;
2271
2272 if (is_multicast_ether_addr(hdr->addr1))
2273 return RX_DROP_MONITOR;
2274
2275 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2276
2277 if (skb_linearize(rx->skb))
2278 return RX_DROP_UNUSABLE;
2279
2280 /*
2281 * skb_linearize() might change the skb->data and
2282 * previously cached variables (in this case, hdr) need to
2283 * be refreshed with the new data.
2284 */
2285 hdr = (struct ieee80211_hdr *)rx->skb->data;
2286 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2287
2288 if (frag == 0) {
2289 /* This is the first fragment of a new frame. */
2290 entry = ieee80211_reassemble_add(cache, frag, seq,
2291 rx->seqno_idx, &(rx->skb));
2292 if (requires_sequential_pn(rx, fc)) {
2293 int queue = rx->security_idx;
2294
2295 /* Store CCMP/GCMP PN so that we can verify that the
2296 * next fragment has a sequential PN value.
2297 */
2298 entry->check_sequential_pn = true;
2299 entry->is_protected = true;
2300 entry->key_color = rx->key->color;
2301 memcpy(entry->last_pn,
2302 rx->key->u.ccmp.rx_pn[queue],
2303 IEEE80211_CCMP_PN_LEN);
2304 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2305 u.ccmp.rx_pn) !=
2306 offsetof(struct ieee80211_key,
2307 u.gcmp.rx_pn));
2308 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2309 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2310 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2311 IEEE80211_GCMP_PN_LEN);
2312 } else if (rx->key &&
2313 (ieee80211_has_protected(fc) ||
2314 (status->flag & RX_FLAG_DECRYPTED))) {
2315 entry->is_protected = true;
2316 entry->key_color = rx->key->color;
2317 }
2318 return RX_QUEUED;
2319 }
2320
2321 /* This is a fragment for a frame that should already be pending in
2322 * fragment cache. Add this fragment to the end of the pending entry.
2323 */
2324 entry = ieee80211_reassemble_find(cache, frag, seq,
2325 rx->seqno_idx, hdr);
2326 if (!entry) {
2327 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2328 return RX_DROP_MONITOR;
2329 }
2330
2331 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2332 * MPDU PN values are not incrementing in steps of 1."
2333 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2334 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2335 */
2336 if (entry->check_sequential_pn) {
2337 int i;
2338 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2339
2340 if (!requires_sequential_pn(rx, fc))
2341 return RX_DROP_UNUSABLE;
2342
2343 /* Prevent mixed key and fragment cache attacks */
2344 if (entry->key_color != rx->key->color)
2345 return RX_DROP_UNUSABLE;
2346
2347 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2348 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2349 pn[i]++;
2350 if (pn[i])
2351 break;
2352 }
2353
2354 rpn = rx->ccm_gcm.pn;
2355 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2356 return RX_DROP_UNUSABLE;
2357 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2358 } else if (entry->is_protected &&
2359 (!rx->key ||
2360 (!ieee80211_has_protected(fc) &&
2361 !(status->flag & RX_FLAG_DECRYPTED)) ||
2362 rx->key->color != entry->key_color)) {
2363 /* Drop this as a mixed key or fragment cache attack, even
2364 * if for TKIP Michael MIC should protect us, and WEP is a
2365 * lost cause anyway.
2366 */
2367 return RX_DROP_UNUSABLE;
2368 } else if (entry->is_protected && rx->key &&
2369 entry->key_color != rx->key->color &&
2370 (status->flag & RX_FLAG_DECRYPTED)) {
2371 return RX_DROP_UNUSABLE;
2372 }
2373
2374 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2375 __skb_queue_tail(&entry->skb_list, rx->skb);
2376 entry->last_frag = frag;
2377 entry->extra_len += rx->skb->len;
2378 if (ieee80211_has_morefrags(fc)) {
2379 rx->skb = NULL;
2380 return RX_QUEUED;
2381 }
2382
2383 rx->skb = __skb_dequeue(&entry->skb_list);
2384 if (skb_tailroom(rx->skb) < entry->extra_len) {
2385 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2386 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2387 GFP_ATOMIC))) {
2388 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2389 __skb_queue_purge(&entry->skb_list);
2390 return RX_DROP_UNUSABLE;
2391 }
2392 }
2393 while ((skb = __skb_dequeue(&entry->skb_list))) {
2394 skb_put_data(rx->skb, skb->data, skb->len);
2395 dev_kfree_skb(skb);
2396 }
2397
2398 out:
2399 ieee80211_led_rx(rx->local);
2400 if (rx->sta)
2401 rx->sta->deflink.rx_stats.packets++;
2402 return RX_CONTINUE;
2403 }
2404
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)2405 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2406 {
2407 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2408 return -EACCES;
2409
2410 return 0;
2411 }
2412
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)2413 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2414 {
2415 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2416 struct sk_buff *skb = rx->skb;
2417 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2418
2419 /*
2420 * Pass through unencrypted frames if the hardware has
2421 * decrypted them already.
2422 */
2423 if (status->flag & RX_FLAG_DECRYPTED)
2424 return 0;
2425
2426 /* check mesh EAPOL frames first */
2427 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2428 ieee80211_is_data(fc))) {
2429 struct ieee80211s_hdr *mesh_hdr;
2430 u16 hdr_len = ieee80211_hdrlen(fc);
2431 u16 ethertype_offset;
2432 __be16 ethertype;
2433
2434 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2435 goto drop_check;
2436
2437 /* make sure fixed part of mesh header is there, also checks skb len */
2438 if (!pskb_may_pull(rx->skb, hdr_len + 6))
2439 goto drop_check;
2440
2441 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2442 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2443 sizeof(rfc1042_header);
2444
2445 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 &&
2446 ethertype == rx->sdata->control_port_protocol)
2447 return 0;
2448 }
2449
2450 drop_check:
2451 /* Drop unencrypted frames if key is set. */
2452 if (unlikely(!ieee80211_has_protected(fc) &&
2453 !ieee80211_is_any_nullfunc(fc) &&
2454 ieee80211_is_data(fc) && rx->key))
2455 return -EACCES;
2456
2457 return 0;
2458 }
2459
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)2460 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2461 {
2462 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2463 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2464 __le16 fc = hdr->frame_control;
2465
2466 /*
2467 * Pass through unencrypted frames if the hardware has
2468 * decrypted them already.
2469 */
2470 if (status->flag & RX_FLAG_DECRYPTED)
2471 return 0;
2472
2473 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2474 if (unlikely(!ieee80211_has_protected(fc) &&
2475 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2476 rx->key)) {
2477 if (ieee80211_is_deauth(fc) ||
2478 ieee80211_is_disassoc(fc))
2479 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2480 rx->skb->data,
2481 rx->skb->len);
2482 return -EACCES;
2483 }
2484 /* BIP does not use Protected field, so need to check MMIE */
2485 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2486 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2487 if (ieee80211_is_deauth(fc) ||
2488 ieee80211_is_disassoc(fc))
2489 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2490 rx->skb->data,
2491 rx->skb->len);
2492 return -EACCES;
2493 }
2494 if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2495 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2496 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2497 rx->skb->data,
2498 rx->skb->len);
2499 return -EACCES;
2500 }
2501 /*
2502 * When using MFP, Action frames are not allowed prior to
2503 * having configured keys.
2504 */
2505 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2506 ieee80211_is_robust_mgmt_frame(rx->skb)))
2507 return -EACCES;
2508 }
2509
2510 return 0;
2511 }
2512
2513 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2514 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2515 {
2516 struct ieee80211_sub_if_data *sdata = rx->sdata;
2517 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2518 bool check_port_control = false;
2519 struct ethhdr *ehdr;
2520 int ret;
2521
2522 *port_control = false;
2523 if (ieee80211_has_a4(hdr->frame_control) &&
2524 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2525 return -1;
2526
2527 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2528 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2529
2530 if (!sdata->u.mgd.use_4addr)
2531 return -1;
2532 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2533 check_port_control = true;
2534 }
2535
2536 if (is_multicast_ether_addr(hdr->addr1) &&
2537 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2538 return -1;
2539
2540 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2541 if (ret < 0)
2542 return ret;
2543
2544 ehdr = (struct ethhdr *) rx->skb->data;
2545 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2546 *port_control = true;
2547 else if (check_port_control)
2548 return -1;
2549
2550 return 0;
2551 }
2552
2553 /*
2554 * requires that rx->skb is a frame with ethernet header
2555 */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2556 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2557 {
2558 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2559 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2560 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2561
2562 /*
2563 * Allow EAPOL frames to us/the PAE group address regardless of
2564 * whether the frame was encrypted or not, and always disallow
2565 * all other destination addresses for them.
2566 */
2567 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2568 return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2569 ether_addr_equal(ehdr->h_dest, pae_group_addr);
2570
2571 if (ieee80211_802_1x_port_control(rx) ||
2572 ieee80211_drop_unencrypted(rx, fc))
2573 return false;
2574
2575 return true;
2576 }
2577
ieee80211_deliver_skb_to_local_stack(struct sk_buff * skb,struct ieee80211_rx_data * rx)2578 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2579 struct ieee80211_rx_data *rx)
2580 {
2581 struct ieee80211_sub_if_data *sdata = rx->sdata;
2582 struct net_device *dev = sdata->dev;
2583
2584 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2585 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2586 !sdata->control_port_no_preauth)) &&
2587 sdata->control_port_over_nl80211)) {
2588 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2589 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2590
2591 cfg80211_rx_control_port(dev, skb, noencrypt);
2592 dev_kfree_skb(skb);
2593 } else {
2594 struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2595
2596 memset(skb->cb, 0, sizeof(skb->cb));
2597
2598 /*
2599 * 802.1X over 802.11 requires that the authenticator address
2600 * be used for EAPOL frames. However, 802.1X allows the use of
2601 * the PAE group address instead. If the interface is part of
2602 * a bridge and we pass the frame with the PAE group address,
2603 * then the bridge will forward it to the network (even if the
2604 * client was not associated yet), which isn't supposed to
2605 * happen.
2606 * To avoid that, rewrite the destination address to our own
2607 * address, so that the authenticator (e.g. hostapd) will see
2608 * the frame, but bridge won't forward it anywhere else. Note
2609 * that due to earlier filtering, the only other address can
2610 * be the PAE group address, unless the hardware allowed them
2611 * through in 802.3 offloaded mode.
2612 */
2613 if (unlikely(skb->protocol == sdata->control_port_protocol &&
2614 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2615 ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2616
2617 /* deliver to local stack */
2618 if (rx->list)
2619 list_add_tail(&skb->list, rx->list);
2620 else
2621 netif_receive_skb(skb);
2622 }
2623 }
2624
2625 /*
2626 * requires that rx->skb is a frame with ethernet header
2627 */
2628 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2629 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2630 {
2631 struct ieee80211_sub_if_data *sdata = rx->sdata;
2632 struct net_device *dev = sdata->dev;
2633 struct sk_buff *skb, *xmit_skb;
2634 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2635 struct sta_info *dsta;
2636
2637 skb = rx->skb;
2638 xmit_skb = NULL;
2639
2640 dev_sw_netstats_rx_add(dev, skb->len);
2641
2642 if (rx->sta) {
2643 /* The seqno index has the same property as needed
2644 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2645 * for non-QoS-data frames. Here we know it's a data
2646 * frame, so count MSDUs.
2647 */
2648 u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp);
2649 rx->sta->deflink.rx_stats.msdu[rx->seqno_idx]++;
2650 u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp);
2651 }
2652
2653 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2654 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2655 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2656 ehdr->h_proto != rx->sdata->control_port_protocol &&
2657 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2658 if (is_multicast_ether_addr(ehdr->h_dest) &&
2659 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2660 /*
2661 * send multicast frames both to higher layers in
2662 * local net stack and back to the wireless medium
2663 */
2664 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2665 if (!xmit_skb)
2666 net_info_ratelimited("%s: failed to clone multicast frame\n",
2667 dev->name);
2668 } else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2669 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2670 dsta = sta_info_get(sdata, ehdr->h_dest);
2671 if (dsta) {
2672 /*
2673 * The destination station is associated to
2674 * this AP (in this VLAN), so send the frame
2675 * directly to it and do not pass it to local
2676 * net stack.
2677 */
2678 xmit_skb = skb;
2679 skb = NULL;
2680 }
2681 }
2682 }
2683
2684 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2685 if (skb) {
2686 /* 'align' will only take the values 0 or 2 here since all
2687 * frames are required to be aligned to 2-byte boundaries
2688 * when being passed to mac80211; the code here works just
2689 * as well if that isn't true, but mac80211 assumes it can
2690 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2691 */
2692 int align;
2693
2694 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2695 if (align) {
2696 if (WARN_ON(skb_headroom(skb) < 3)) {
2697 dev_kfree_skb(skb);
2698 skb = NULL;
2699 } else {
2700 u8 *data = skb->data;
2701 size_t len = skb_headlen(skb);
2702 skb->data -= align;
2703 memmove(skb->data, data, len);
2704 skb_set_tail_pointer(skb, len);
2705 }
2706 }
2707 }
2708 #endif
2709
2710 if (skb) {
2711 skb->protocol = eth_type_trans(skb, dev);
2712 ieee80211_deliver_skb_to_local_stack(skb, rx);
2713 }
2714
2715 if (xmit_skb) {
2716 /*
2717 * Send to wireless media and increase priority by 256 to
2718 * keep the received priority instead of reclassifying
2719 * the frame (see cfg80211_classify8021d).
2720 */
2721 xmit_skb->priority += 256;
2722 xmit_skb->protocol = htons(ETH_P_802_3);
2723 skb_reset_network_header(xmit_skb);
2724 skb_reset_mac_header(xmit_skb);
2725 dev_queue_xmit(xmit_skb);
2726 }
2727 }
2728
2729 static ieee80211_rx_result debug_noinline
__ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx,u8 data_offset)2730 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2731 {
2732 struct net_device *dev = rx->sdata->dev;
2733 struct sk_buff *skb = rx->skb;
2734 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2735 __le16 fc = hdr->frame_control;
2736 struct sk_buff_head frame_list;
2737 struct ethhdr ethhdr;
2738 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2739
2740 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2741 check_da = NULL;
2742 check_sa = NULL;
2743 } else switch (rx->sdata->vif.type) {
2744 case NL80211_IFTYPE_AP:
2745 case NL80211_IFTYPE_AP_VLAN:
2746 check_da = NULL;
2747 break;
2748 case NL80211_IFTYPE_STATION:
2749 if (!rx->sta ||
2750 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2751 check_sa = NULL;
2752 break;
2753 case NL80211_IFTYPE_MESH_POINT:
2754 check_sa = NULL;
2755 break;
2756 default:
2757 break;
2758 }
2759
2760 skb->dev = dev;
2761 __skb_queue_head_init(&frame_list);
2762
2763 if (ieee80211_data_to_8023_exthdr(skb, ðhdr,
2764 rx->sdata->vif.addr,
2765 rx->sdata->vif.type,
2766 data_offset, true))
2767 return RX_DROP_UNUSABLE;
2768
2769 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2770 rx->sdata->vif.type,
2771 rx->local->hw.extra_tx_headroom,
2772 check_da, check_sa);
2773
2774 while (!skb_queue_empty(&frame_list)) {
2775 rx->skb = __skb_dequeue(&frame_list);
2776
2777 if (!ieee80211_frame_allowed(rx, fc)) {
2778 dev_kfree_skb(rx->skb);
2779 continue;
2780 }
2781
2782 ieee80211_deliver_skb(rx);
2783 }
2784
2785 return RX_QUEUED;
2786 }
2787
2788 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)2789 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2790 {
2791 struct sk_buff *skb = rx->skb;
2792 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2793 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2794 __le16 fc = hdr->frame_control;
2795
2796 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2797 return RX_CONTINUE;
2798
2799 if (unlikely(!ieee80211_is_data(fc)))
2800 return RX_CONTINUE;
2801
2802 if (unlikely(!ieee80211_is_data_present(fc)))
2803 return RX_DROP_MONITOR;
2804
2805 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2806 switch (rx->sdata->vif.type) {
2807 case NL80211_IFTYPE_AP_VLAN:
2808 if (!rx->sdata->u.vlan.sta)
2809 return RX_DROP_UNUSABLE;
2810 break;
2811 case NL80211_IFTYPE_STATION:
2812 if (!rx->sdata->u.mgd.use_4addr)
2813 return RX_DROP_UNUSABLE;
2814 break;
2815 default:
2816 return RX_DROP_UNUSABLE;
2817 }
2818 }
2819
2820 if (is_multicast_ether_addr(hdr->addr1))
2821 return RX_DROP_UNUSABLE;
2822
2823 if (rx->key) {
2824 /*
2825 * We should not receive A-MSDUs on pre-HT connections,
2826 * and HT connections cannot use old ciphers. Thus drop
2827 * them, as in those cases we couldn't even have SPP
2828 * A-MSDUs or such.
2829 */
2830 switch (rx->key->conf.cipher) {
2831 case WLAN_CIPHER_SUITE_WEP40:
2832 case WLAN_CIPHER_SUITE_WEP104:
2833 case WLAN_CIPHER_SUITE_TKIP:
2834 return RX_DROP_UNUSABLE;
2835 default:
2836 break;
2837 }
2838 }
2839
2840 return __ieee80211_rx_h_amsdu(rx, 0);
2841 }
2842
2843 #ifdef CONFIG_MAC80211_MESH
2844 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)2845 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2846 {
2847 struct ieee80211_hdr *fwd_hdr, *hdr;
2848 struct ieee80211_tx_info *info;
2849 struct ieee80211s_hdr *mesh_hdr;
2850 struct sk_buff *skb = rx->skb, *fwd_skb;
2851 struct ieee80211_local *local = rx->local;
2852 struct ieee80211_sub_if_data *sdata = rx->sdata;
2853 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2854 u16 ac, q, hdrlen;
2855 int tailroom = 0;
2856
2857 hdr = (struct ieee80211_hdr *) skb->data;
2858 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2859
2860 /* make sure fixed part of mesh header is there, also checks skb len */
2861 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2862 return RX_DROP_MONITOR;
2863
2864 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2865
2866 /* make sure full mesh header is there, also checks skb len */
2867 if (!pskb_may_pull(rx->skb,
2868 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2869 return RX_DROP_MONITOR;
2870
2871 /* reload pointers */
2872 hdr = (struct ieee80211_hdr *) skb->data;
2873 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2874
2875 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2876 return RX_DROP_MONITOR;
2877
2878 /* frame is in RMC, don't forward */
2879 if (ieee80211_is_data(hdr->frame_control) &&
2880 is_multicast_ether_addr(hdr->addr1) &&
2881 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2882 return RX_DROP_MONITOR;
2883
2884 if (!ieee80211_is_data(hdr->frame_control))
2885 return RX_CONTINUE;
2886
2887 if (!mesh_hdr->ttl)
2888 return RX_DROP_MONITOR;
2889
2890 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2891 struct mesh_path *mppath;
2892 char *proxied_addr;
2893 char *mpp_addr;
2894
2895 if (is_multicast_ether_addr(hdr->addr1)) {
2896 mpp_addr = hdr->addr3;
2897 proxied_addr = mesh_hdr->eaddr1;
2898 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2899 MESH_FLAGS_AE_A5_A6) {
2900 /* has_a4 already checked in ieee80211_rx_mesh_check */
2901 mpp_addr = hdr->addr4;
2902 proxied_addr = mesh_hdr->eaddr2;
2903 } else {
2904 return RX_DROP_MONITOR;
2905 }
2906
2907 rcu_read_lock();
2908 mppath = mpp_path_lookup(sdata, proxied_addr);
2909 if (!mppath) {
2910 mpp_path_add(sdata, proxied_addr, mpp_addr);
2911 } else {
2912 spin_lock_bh(&mppath->state_lock);
2913 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2914 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2915 mppath->exp_time = jiffies;
2916 spin_unlock_bh(&mppath->state_lock);
2917 }
2918 rcu_read_unlock();
2919 }
2920
2921 /* Frame has reached destination. Don't forward */
2922 if (!is_multicast_ether_addr(hdr->addr1) &&
2923 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2924 return RX_CONTINUE;
2925
2926 ac = ieee802_1d_to_ac[skb->priority];
2927 q = sdata->vif.hw_queue[ac];
2928 if (ieee80211_queue_stopped(&local->hw, q)) {
2929 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2930 return RX_DROP_MONITOR;
2931 }
2932 skb_set_queue_mapping(skb, ac);
2933
2934 if (!--mesh_hdr->ttl) {
2935 if (!is_multicast_ether_addr(hdr->addr1))
2936 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2937 dropped_frames_ttl);
2938 goto out;
2939 }
2940
2941 if (!ifmsh->mshcfg.dot11MeshForwarding)
2942 goto out;
2943
2944 if (sdata->crypto_tx_tailroom_needed_cnt)
2945 tailroom = IEEE80211_ENCRYPT_TAILROOM;
2946
2947 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2948 sdata->encrypt_headroom,
2949 tailroom, GFP_ATOMIC);
2950 if (!fwd_skb)
2951 goto out;
2952
2953 fwd_skb->dev = sdata->dev;
2954 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2955 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2956 info = IEEE80211_SKB_CB(fwd_skb);
2957 memset(info, 0, sizeof(*info));
2958 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2959 info->control.vif = &rx->sdata->vif;
2960 info->control.jiffies = jiffies;
2961 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2962 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2963 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2964 /* update power mode indication when forwarding */
2965 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2966 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2967 /* mesh power mode flags updated in mesh_nexthop_lookup */
2968 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2969 } else {
2970 /* unable to resolve next hop */
2971 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2972 fwd_hdr->addr3, 0,
2973 WLAN_REASON_MESH_PATH_NOFORWARD,
2974 fwd_hdr->addr2);
2975 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2976 kfree_skb(fwd_skb);
2977 return RX_DROP_MONITOR;
2978 }
2979
2980 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2981 ieee80211_add_pending_skb(local, fwd_skb);
2982 out:
2983 if (is_multicast_ether_addr(hdr->addr1))
2984 return RX_CONTINUE;
2985 return RX_DROP_MONITOR;
2986 }
2987 #endif
2988
2989 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2990 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2991 {
2992 struct ieee80211_sub_if_data *sdata = rx->sdata;
2993 struct ieee80211_local *local = rx->local;
2994 struct net_device *dev = sdata->dev;
2995 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2996 __le16 fc = hdr->frame_control;
2997 bool port_control;
2998 int err;
2999
3000 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
3001 return RX_CONTINUE;
3002
3003 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3004 return RX_DROP_MONITOR;
3005
3006 /*
3007 * Send unexpected-4addr-frame event to hostapd. For older versions,
3008 * also drop the frame to cooked monitor interfaces.
3009 */
3010 if (ieee80211_has_a4(hdr->frame_control) &&
3011 sdata->vif.type == NL80211_IFTYPE_AP) {
3012 if (rx->sta &&
3013 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
3014 cfg80211_rx_unexpected_4addr_frame(
3015 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
3016 return RX_DROP_MONITOR;
3017 }
3018
3019 err = __ieee80211_data_to_8023(rx, &port_control);
3020 if (unlikely(err))
3021 return RX_DROP_UNUSABLE;
3022
3023 if (!ieee80211_frame_allowed(rx, fc))
3024 return RX_DROP_MONITOR;
3025
3026 /* directly handle TDLS channel switch requests/responses */
3027 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3028 cpu_to_be16(ETH_P_TDLS))) {
3029 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3030
3031 if (pskb_may_pull(rx->skb,
3032 offsetof(struct ieee80211_tdls_data, u)) &&
3033 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3034 tf->category == WLAN_CATEGORY_TDLS &&
3035 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3036 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3037 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS);
3038 __ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3039 return RX_QUEUED;
3040 }
3041 }
3042
3043 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3044 unlikely(port_control) && sdata->bss) {
3045 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3046 u.ap);
3047 dev = sdata->dev;
3048 rx->sdata = sdata;
3049 }
3050
3051 rx->skb->dev = dev;
3052
3053 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3054 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3055 !is_multicast_ether_addr(
3056 ((struct ethhdr *)rx->skb->data)->h_dest) &&
3057 (!local->scanning &&
3058 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3059 mod_timer(&local->dynamic_ps_timer, jiffies +
3060 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3061
3062 ieee80211_deliver_skb(rx);
3063
3064 return RX_QUEUED;
3065 }
3066
3067 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3068 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3069 {
3070 struct sk_buff *skb = rx->skb;
3071 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3072 struct tid_ampdu_rx *tid_agg_rx;
3073 u16 start_seq_num;
3074 u16 tid;
3075
3076 if (likely(!ieee80211_is_ctl(bar->frame_control)))
3077 return RX_CONTINUE;
3078
3079 if (ieee80211_is_back_req(bar->frame_control)) {
3080 struct {
3081 __le16 control, start_seq_num;
3082 } __packed bar_data;
3083 struct ieee80211_event event = {
3084 .type = BAR_RX_EVENT,
3085 };
3086
3087 if (!rx->sta)
3088 return RX_DROP_MONITOR;
3089
3090 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3091 &bar_data, sizeof(bar_data)))
3092 return RX_DROP_MONITOR;
3093
3094 tid = le16_to_cpu(bar_data.control) >> 12;
3095
3096 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3097 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3098 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3099 WLAN_BACK_RECIPIENT,
3100 WLAN_REASON_QSTA_REQUIRE_SETUP);
3101
3102 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3103 if (!tid_agg_rx)
3104 return RX_DROP_MONITOR;
3105
3106 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3107 event.u.ba.tid = tid;
3108 event.u.ba.ssn = start_seq_num;
3109 event.u.ba.sta = &rx->sta->sta;
3110
3111 /* reset session timer */
3112 if (tid_agg_rx->timeout)
3113 mod_timer(&tid_agg_rx->session_timer,
3114 TU_TO_EXP_TIME(tid_agg_rx->timeout));
3115
3116 spin_lock(&tid_agg_rx->reorder_lock);
3117 /* release stored frames up to start of BAR */
3118 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3119 start_seq_num, frames);
3120 spin_unlock(&tid_agg_rx->reorder_lock);
3121
3122 drv_event_callback(rx->local, rx->sdata, &event);
3123
3124 kfree_skb(skb);
3125 return RX_QUEUED;
3126 }
3127
3128 /*
3129 * After this point, we only want management frames,
3130 * so we can drop all remaining control frames to
3131 * cooked monitor interfaces.
3132 */
3133 return RX_DROP_MONITOR;
3134 }
3135
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)3136 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3137 struct ieee80211_mgmt *mgmt,
3138 size_t len)
3139 {
3140 struct ieee80211_local *local = sdata->local;
3141 struct sk_buff *skb;
3142 struct ieee80211_mgmt *resp;
3143
3144 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3145 /* Not to own unicast address */
3146 return;
3147 }
3148
3149 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3150 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3151 /* Not from the current AP or not associated yet. */
3152 return;
3153 }
3154
3155 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3156 /* Too short SA Query request frame */
3157 return;
3158 }
3159
3160 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3161 if (skb == NULL)
3162 return;
3163
3164 skb_reserve(skb, local->hw.extra_tx_headroom);
3165 resp = skb_put_zero(skb, 24);
3166 memcpy(resp->da, mgmt->sa, ETH_ALEN);
3167 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3168 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3169 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3170 IEEE80211_STYPE_ACTION);
3171 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3172 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3173 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3174 memcpy(resp->u.action.u.sa_query.trans_id,
3175 mgmt->u.action.u.sa_query.trans_id,
3176 WLAN_SA_QUERY_TR_ID_LEN);
3177
3178 ieee80211_tx_skb(sdata, skb);
3179 }
3180
3181 static void
ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data * rx)3182 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx)
3183 {
3184 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3185 const struct element *ie;
3186 size_t baselen;
3187
3188 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy,
3189 NL80211_EXT_FEATURE_BSS_COLOR))
3190 return;
3191
3192 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION))
3193 return;
3194
3195 if (rx->sdata->vif.bss_conf.csa_active)
3196 return;
3197
3198 baselen = mgmt->u.beacon.variable - rx->skb->data;
3199 if (baselen > rx->skb->len)
3200 return;
3201
3202 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
3203 mgmt->u.beacon.variable,
3204 rx->skb->len - baselen);
3205 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) &&
3206 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) {
3207 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf;
3208 const struct ieee80211_he_operation *he_oper;
3209 u8 color;
3210
3211 he_oper = (void *)(ie->data + 1);
3212 if (le32_get_bits(he_oper->he_oper_params,
3213 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED))
3214 return;
3215
3216 color = le32_get_bits(he_oper->he_oper_params,
3217 IEEE80211_HE_OPERATION_BSS_COLOR_MASK);
3218 if (color == bss_conf->he_bss_color.color)
3219 ieeee80211_obss_color_collision_notify(&rx->sdata->vif,
3220 BIT_ULL(color),
3221 GFP_ATOMIC);
3222 }
3223 }
3224
3225 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)3226 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3227 {
3228 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3229 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3230
3231 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3232 return RX_CONTINUE;
3233
3234 /*
3235 * From here on, look only at management frames.
3236 * Data and control frames are already handled,
3237 * and unknown (reserved) frames are useless.
3238 */
3239 if (rx->skb->len < 24)
3240 return RX_DROP_MONITOR;
3241
3242 if (!ieee80211_is_mgmt(mgmt->frame_control))
3243 return RX_DROP_MONITOR;
3244
3245 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3246 ieee80211_is_beacon(mgmt->frame_control) &&
3247 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3248 int sig = 0;
3249
3250 /* sw bss color collision detection */
3251 ieee80211_rx_check_bss_color_collision(rx);
3252
3253 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3254 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3255 sig = status->signal;
3256
3257 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3258 rx->skb->data, rx->skb->len,
3259 ieee80211_rx_status_to_khz(status),
3260 sig);
3261 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3262 }
3263
3264 if (ieee80211_drop_unencrypted_mgmt(rx))
3265 return RX_DROP_UNUSABLE;
3266
3267 return RX_CONTINUE;
3268 }
3269
3270 static bool
ieee80211_process_rx_twt_action(struct ieee80211_rx_data * rx)3271 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx)
3272 {
3273 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data;
3274 struct ieee80211_sub_if_data *sdata = rx->sdata;
3275
3276 /* TWT actions are only supported in AP for the moment */
3277 if (sdata->vif.type != NL80211_IFTYPE_AP)
3278 return false;
3279
3280 if (!rx->local->ops->add_twt_setup)
3281 return false;
3282
3283 if (!sdata->vif.bss_conf.twt_responder)
3284 return false;
3285
3286 if (!rx->sta)
3287 return false;
3288
3289 switch (mgmt->u.action.u.s1g.action_code) {
3290 case WLAN_S1G_TWT_SETUP: {
3291 struct ieee80211_twt_setup *twt;
3292
3293 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3294 1 + /* action code */
3295 sizeof(struct ieee80211_twt_setup) +
3296 2 /* TWT req_type agrt */)
3297 break;
3298
3299 twt = (void *)mgmt->u.action.u.s1g.variable;
3300 if (twt->element_id != WLAN_EID_S1G_TWT)
3301 break;
3302
3303 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3304 4 + /* action code + token + tlv */
3305 twt->length)
3306 break;
3307
3308 return true; /* queue the frame */
3309 }
3310 case WLAN_S1G_TWT_TEARDOWN:
3311 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2)
3312 break;
3313
3314 return true; /* queue the frame */
3315 default:
3316 break;
3317 }
3318
3319 return false;
3320 }
3321
3322 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)3323 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3324 {
3325 struct ieee80211_local *local = rx->local;
3326 struct ieee80211_sub_if_data *sdata = rx->sdata;
3327 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3328 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3329 int len = rx->skb->len;
3330
3331 if (!ieee80211_is_action(mgmt->frame_control))
3332 return RX_CONTINUE;
3333
3334 /* drop too small frames */
3335 if (len < IEEE80211_MIN_ACTION_SIZE)
3336 return RX_DROP_UNUSABLE;
3337
3338 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3339 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3340 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3341 return RX_DROP_UNUSABLE;
3342
3343 switch (mgmt->u.action.category) {
3344 case WLAN_CATEGORY_HT:
3345 /* reject HT action frames from stations not supporting HT */
3346 if (!rx->sta->sta.deflink.ht_cap.ht_supported)
3347 goto invalid;
3348
3349 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3350 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3351 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3352 sdata->vif.type != NL80211_IFTYPE_AP &&
3353 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3354 break;
3355
3356 /* verify action & smps_control/chanwidth are present */
3357 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3358 goto invalid;
3359
3360 switch (mgmt->u.action.u.ht_smps.action) {
3361 case WLAN_HT_ACTION_SMPS: {
3362 struct ieee80211_supported_band *sband;
3363 enum ieee80211_smps_mode smps_mode;
3364 struct sta_opmode_info sta_opmode = {};
3365
3366 if (sdata->vif.type != NL80211_IFTYPE_AP &&
3367 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3368 goto handled;
3369
3370 /* convert to HT capability */
3371 switch (mgmt->u.action.u.ht_smps.smps_control) {
3372 case WLAN_HT_SMPS_CONTROL_DISABLED:
3373 smps_mode = IEEE80211_SMPS_OFF;
3374 break;
3375 case WLAN_HT_SMPS_CONTROL_STATIC:
3376 smps_mode = IEEE80211_SMPS_STATIC;
3377 break;
3378 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3379 smps_mode = IEEE80211_SMPS_DYNAMIC;
3380 break;
3381 default:
3382 goto invalid;
3383 }
3384
3385 /* if no change do nothing */
3386 if (rx->sta->sta.smps_mode == smps_mode)
3387 goto handled;
3388 rx->sta->sta.smps_mode = smps_mode;
3389 sta_opmode.smps_mode =
3390 ieee80211_smps_mode_to_smps_mode(smps_mode);
3391 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3392
3393 sband = rx->local->hw.wiphy->bands[status->band];
3394
3395 rate_control_rate_update(local, sband, rx->sta,
3396 IEEE80211_RC_SMPS_CHANGED);
3397 cfg80211_sta_opmode_change_notify(sdata->dev,
3398 rx->sta->addr,
3399 &sta_opmode,
3400 GFP_ATOMIC);
3401 goto handled;
3402 }
3403 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3404 struct ieee80211_supported_band *sband;
3405 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3406 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3407 struct sta_opmode_info sta_opmode = {};
3408
3409 /* If it doesn't support 40 MHz it can't change ... */
3410 if (!(rx->sta->sta.deflink.ht_cap.cap &
3411 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3412 goto handled;
3413
3414 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3415 max_bw = IEEE80211_STA_RX_BW_20;
3416 else
3417 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3418
3419 /* set cur_max_bandwidth and recalc sta bw */
3420 rx->sta->deflink.cur_max_bandwidth = max_bw;
3421 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3422
3423 if (rx->sta->sta.deflink.bandwidth == new_bw)
3424 goto handled;
3425
3426 rx->sta->sta.deflink.bandwidth = new_bw;
3427 sband = rx->local->hw.wiphy->bands[status->band];
3428 sta_opmode.bw =
3429 ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3430 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3431
3432 rate_control_rate_update(local, sband, rx->sta,
3433 IEEE80211_RC_BW_CHANGED);
3434 cfg80211_sta_opmode_change_notify(sdata->dev,
3435 rx->sta->addr,
3436 &sta_opmode,
3437 GFP_ATOMIC);
3438 goto handled;
3439 }
3440 default:
3441 goto invalid;
3442 }
3443
3444 break;
3445 case WLAN_CATEGORY_PUBLIC:
3446 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3447 goto invalid;
3448 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3449 break;
3450 if (!rx->sta)
3451 break;
3452 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3453 break;
3454 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3455 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3456 break;
3457 if (len < offsetof(struct ieee80211_mgmt,
3458 u.action.u.ext_chan_switch.variable))
3459 goto invalid;
3460 goto queue;
3461 case WLAN_CATEGORY_VHT:
3462 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3463 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3464 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3465 sdata->vif.type != NL80211_IFTYPE_AP &&
3466 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3467 break;
3468
3469 /* verify action code is present */
3470 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3471 goto invalid;
3472
3473 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3474 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3475 /* verify opmode is present */
3476 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3477 goto invalid;
3478 goto queue;
3479 }
3480 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3481 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3482 goto invalid;
3483 goto queue;
3484 }
3485 default:
3486 break;
3487 }
3488 break;
3489 case WLAN_CATEGORY_BACK:
3490 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3491 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3492 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3493 sdata->vif.type != NL80211_IFTYPE_AP &&
3494 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3495 break;
3496
3497 /* verify action_code is present */
3498 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3499 break;
3500
3501 switch (mgmt->u.action.u.addba_req.action_code) {
3502 case WLAN_ACTION_ADDBA_REQ:
3503 if (len < (IEEE80211_MIN_ACTION_SIZE +
3504 sizeof(mgmt->u.action.u.addba_req)))
3505 goto invalid;
3506 break;
3507 case WLAN_ACTION_ADDBA_RESP:
3508 if (len < (IEEE80211_MIN_ACTION_SIZE +
3509 sizeof(mgmt->u.action.u.addba_resp)))
3510 goto invalid;
3511 break;
3512 case WLAN_ACTION_DELBA:
3513 if (len < (IEEE80211_MIN_ACTION_SIZE +
3514 sizeof(mgmt->u.action.u.delba)))
3515 goto invalid;
3516 break;
3517 default:
3518 goto invalid;
3519 }
3520
3521 goto queue;
3522 case WLAN_CATEGORY_SPECTRUM_MGMT:
3523 /* verify action_code is present */
3524 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3525 break;
3526
3527 switch (mgmt->u.action.u.measurement.action_code) {
3528 case WLAN_ACTION_SPCT_MSR_REQ:
3529 if (status->band != NL80211_BAND_5GHZ)
3530 break;
3531
3532 if (len < (IEEE80211_MIN_ACTION_SIZE +
3533 sizeof(mgmt->u.action.u.measurement)))
3534 break;
3535
3536 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3537 break;
3538
3539 ieee80211_process_measurement_req(sdata, mgmt, len);
3540 goto handled;
3541 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3542 u8 *bssid;
3543 if (len < (IEEE80211_MIN_ACTION_SIZE +
3544 sizeof(mgmt->u.action.u.chan_switch)))
3545 break;
3546
3547 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3548 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3549 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3550 break;
3551
3552 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3553 bssid = sdata->u.mgd.bssid;
3554 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3555 bssid = sdata->u.ibss.bssid;
3556 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3557 bssid = mgmt->sa;
3558 else
3559 break;
3560
3561 if (!ether_addr_equal(mgmt->bssid, bssid))
3562 break;
3563
3564 goto queue;
3565 }
3566 }
3567 break;
3568 case WLAN_CATEGORY_SELF_PROTECTED:
3569 if (len < (IEEE80211_MIN_ACTION_SIZE +
3570 sizeof(mgmt->u.action.u.self_prot.action_code)))
3571 break;
3572
3573 switch (mgmt->u.action.u.self_prot.action_code) {
3574 case WLAN_SP_MESH_PEERING_OPEN:
3575 case WLAN_SP_MESH_PEERING_CLOSE:
3576 case WLAN_SP_MESH_PEERING_CONFIRM:
3577 if (!ieee80211_vif_is_mesh(&sdata->vif))
3578 goto invalid;
3579 if (sdata->u.mesh.user_mpm)
3580 /* userspace handles this frame */
3581 break;
3582 goto queue;
3583 case WLAN_SP_MGK_INFORM:
3584 case WLAN_SP_MGK_ACK:
3585 if (!ieee80211_vif_is_mesh(&sdata->vif))
3586 goto invalid;
3587 break;
3588 }
3589 break;
3590 case WLAN_CATEGORY_MESH_ACTION:
3591 if (len < (IEEE80211_MIN_ACTION_SIZE +
3592 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3593 break;
3594
3595 if (!ieee80211_vif_is_mesh(&sdata->vif))
3596 break;
3597 if (mesh_action_is_path_sel(mgmt) &&
3598 !mesh_path_sel_is_hwmp(sdata))
3599 break;
3600 goto queue;
3601 case WLAN_CATEGORY_S1G:
3602 switch (mgmt->u.action.u.s1g.action_code) {
3603 case WLAN_S1G_TWT_SETUP:
3604 case WLAN_S1G_TWT_TEARDOWN:
3605 if (ieee80211_process_rx_twt_action(rx))
3606 goto queue;
3607 break;
3608 default:
3609 break;
3610 }
3611 break;
3612 }
3613
3614 return RX_CONTINUE;
3615
3616 invalid:
3617 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3618 /* will return in the next handlers */
3619 return RX_CONTINUE;
3620
3621 handled:
3622 if (rx->sta)
3623 rx->sta->deflink.rx_stats.packets++;
3624 dev_kfree_skb(rx->skb);
3625 return RX_QUEUED;
3626
3627 queue:
3628 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3629 return RX_QUEUED;
3630 }
3631
3632 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)3633 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3634 {
3635 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3636 int sig = 0;
3637
3638 /* skip known-bad action frames and return them in the next handler */
3639 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3640 return RX_CONTINUE;
3641
3642 /*
3643 * Getting here means the kernel doesn't know how to handle
3644 * it, but maybe userspace does ... include returned frames
3645 * so userspace can register for those to know whether ones
3646 * it transmitted were processed or returned.
3647 */
3648
3649 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3650 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3651 sig = status->signal;
3652
3653 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3654 ieee80211_rx_status_to_khz(status), sig,
3655 rx->skb->data, rx->skb->len, 0)) {
3656 if (rx->sta)
3657 rx->sta->deflink.rx_stats.packets++;
3658 dev_kfree_skb(rx->skb);
3659 return RX_QUEUED;
3660 }
3661
3662 return RX_CONTINUE;
3663 }
3664
3665 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data * rx)3666 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3667 {
3668 struct ieee80211_sub_if_data *sdata = rx->sdata;
3669 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3670 int len = rx->skb->len;
3671
3672 if (!ieee80211_is_action(mgmt->frame_control))
3673 return RX_CONTINUE;
3674
3675 switch (mgmt->u.action.category) {
3676 case WLAN_CATEGORY_SA_QUERY:
3677 if (len < (IEEE80211_MIN_ACTION_SIZE +
3678 sizeof(mgmt->u.action.u.sa_query)))
3679 break;
3680
3681 switch (mgmt->u.action.u.sa_query.action) {
3682 case WLAN_ACTION_SA_QUERY_REQUEST:
3683 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3684 break;
3685 ieee80211_process_sa_query_req(sdata, mgmt, len);
3686 goto handled;
3687 }
3688 break;
3689 }
3690
3691 return RX_CONTINUE;
3692
3693 handled:
3694 if (rx->sta)
3695 rx->sta->deflink.rx_stats.packets++;
3696 dev_kfree_skb(rx->skb);
3697 return RX_QUEUED;
3698 }
3699
3700 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)3701 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3702 {
3703 struct ieee80211_local *local = rx->local;
3704 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3705 struct sk_buff *nskb;
3706 struct ieee80211_sub_if_data *sdata = rx->sdata;
3707 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3708
3709 if (!ieee80211_is_action(mgmt->frame_control))
3710 return RX_CONTINUE;
3711
3712 /*
3713 * For AP mode, hostapd is responsible for handling any action
3714 * frames that we didn't handle, including returning unknown
3715 * ones. For all other modes we will return them to the sender,
3716 * setting the 0x80 bit in the action category, as required by
3717 * 802.11-2012 9.24.4.
3718 * Newer versions of hostapd shall also use the management frame
3719 * registration mechanisms, but older ones still use cooked
3720 * monitor interfaces so push all frames there.
3721 */
3722 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3723 (sdata->vif.type == NL80211_IFTYPE_AP ||
3724 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3725 return RX_DROP_MONITOR;
3726
3727 if (is_multicast_ether_addr(mgmt->da))
3728 return RX_DROP_MONITOR;
3729
3730 /* do not return rejected action frames */
3731 if (mgmt->u.action.category & 0x80)
3732 return RX_DROP_UNUSABLE;
3733
3734 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3735 GFP_ATOMIC);
3736 if (nskb) {
3737 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3738
3739 nmgmt->u.action.category |= 0x80;
3740 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3741 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3742
3743 memset(nskb->cb, 0, sizeof(nskb->cb));
3744
3745 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3746 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3747
3748 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3749 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3750 IEEE80211_TX_CTL_NO_CCK_RATE;
3751 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3752 info->hw_queue =
3753 local->hw.offchannel_tx_hw_queue;
3754 }
3755
3756 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3757 status->band);
3758 }
3759 dev_kfree_skb(rx->skb);
3760 return RX_QUEUED;
3761 }
3762
3763 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ext(struct ieee80211_rx_data * rx)3764 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3765 {
3766 struct ieee80211_sub_if_data *sdata = rx->sdata;
3767 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3768
3769 if (!ieee80211_is_ext(hdr->frame_control))
3770 return RX_CONTINUE;
3771
3772 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3773 return RX_DROP_MONITOR;
3774
3775 /* for now only beacons are ext, so queue them */
3776 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3777
3778 return RX_QUEUED;
3779 }
3780
3781 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3782 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3783 {
3784 struct ieee80211_sub_if_data *sdata = rx->sdata;
3785 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3786 __le16 stype;
3787
3788 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3789
3790 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3791 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3792 sdata->vif.type != NL80211_IFTYPE_OCB &&
3793 sdata->vif.type != NL80211_IFTYPE_STATION)
3794 return RX_DROP_MONITOR;
3795
3796 switch (stype) {
3797 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3798 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3799 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3800 /* process for all: mesh, mlme, ibss */
3801 break;
3802 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3803 if (is_multicast_ether_addr(mgmt->da) &&
3804 !is_broadcast_ether_addr(mgmt->da))
3805 return RX_DROP_MONITOR;
3806
3807 /* process only for station/IBSS */
3808 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3809 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3810 return RX_DROP_MONITOR;
3811 break;
3812 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3813 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3814 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3815 if (is_multicast_ether_addr(mgmt->da) &&
3816 !is_broadcast_ether_addr(mgmt->da))
3817 return RX_DROP_MONITOR;
3818
3819 /* process only for station */
3820 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3821 return RX_DROP_MONITOR;
3822 break;
3823 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3824 /* process only for ibss and mesh */
3825 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3826 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3827 return RX_DROP_MONITOR;
3828 break;
3829 default:
3830 return RX_DROP_MONITOR;
3831 }
3832
3833 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3834
3835 return RX_QUEUED;
3836 }
3837
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)3838 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3839 struct ieee80211_rate *rate)
3840 {
3841 struct ieee80211_sub_if_data *sdata;
3842 struct ieee80211_local *local = rx->local;
3843 struct sk_buff *skb = rx->skb, *skb2;
3844 struct net_device *prev_dev = NULL;
3845 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3846 int needed_headroom;
3847
3848 /*
3849 * If cooked monitor has been processed already, then
3850 * don't do it again. If not, set the flag.
3851 */
3852 if (rx->flags & IEEE80211_RX_CMNTR)
3853 goto out_free_skb;
3854 rx->flags |= IEEE80211_RX_CMNTR;
3855
3856 /* If there are no cooked monitor interfaces, just free the SKB */
3857 if (!local->cooked_mntrs)
3858 goto out_free_skb;
3859
3860 /* vendor data is long removed here */
3861 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3862 /* room for the radiotap header based on driver features */
3863 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3864
3865 if (skb_headroom(skb) < needed_headroom &&
3866 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3867 goto out_free_skb;
3868
3869 /* prepend radiotap information */
3870 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3871 false);
3872
3873 skb_reset_mac_header(skb);
3874 skb->ip_summed = CHECKSUM_UNNECESSARY;
3875 skb->pkt_type = PACKET_OTHERHOST;
3876 skb->protocol = htons(ETH_P_802_2);
3877
3878 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3879 if (!ieee80211_sdata_running(sdata))
3880 continue;
3881
3882 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3883 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3884 continue;
3885
3886 if (prev_dev) {
3887 skb2 = skb_clone(skb, GFP_ATOMIC);
3888 if (skb2) {
3889 skb2->dev = prev_dev;
3890 netif_receive_skb(skb2);
3891 }
3892 }
3893
3894 prev_dev = sdata->dev;
3895 dev_sw_netstats_rx_add(sdata->dev, skb->len);
3896 }
3897
3898 if (prev_dev) {
3899 skb->dev = prev_dev;
3900 netif_receive_skb(skb);
3901 return;
3902 }
3903
3904 out_free_skb:
3905 dev_kfree_skb(skb);
3906 }
3907
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)3908 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3909 ieee80211_rx_result res)
3910 {
3911 switch (res) {
3912 case RX_DROP_MONITOR:
3913 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3914 if (rx->sta)
3915 rx->sta->deflink.rx_stats.dropped++;
3916 fallthrough;
3917 case RX_CONTINUE: {
3918 struct ieee80211_rate *rate = NULL;
3919 struct ieee80211_supported_band *sband;
3920 struct ieee80211_rx_status *status;
3921
3922 status = IEEE80211_SKB_RXCB((rx->skb));
3923
3924 sband = rx->local->hw.wiphy->bands[status->band];
3925 if (status->encoding == RX_ENC_LEGACY)
3926 rate = &sband->bitrates[status->rate_idx];
3927
3928 ieee80211_rx_cooked_monitor(rx, rate);
3929 break;
3930 }
3931 case RX_DROP_UNUSABLE:
3932 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3933 if (rx->sta)
3934 rx->sta->deflink.rx_stats.dropped++;
3935 dev_kfree_skb(rx->skb);
3936 break;
3937 case RX_QUEUED:
3938 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3939 break;
3940 }
3941 }
3942
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3943 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3944 struct sk_buff_head *frames)
3945 {
3946 ieee80211_rx_result res = RX_DROP_MONITOR;
3947 struct sk_buff *skb;
3948
3949 #define CALL_RXH(rxh) \
3950 do { \
3951 res = rxh(rx); \
3952 if (res != RX_CONTINUE) \
3953 goto rxh_next; \
3954 } while (0)
3955
3956 /* Lock here to avoid hitting all of the data used in the RX
3957 * path (e.g. key data, station data, ...) concurrently when
3958 * a frame is released from the reorder buffer due to timeout
3959 * from the timer, potentially concurrently with RX from the
3960 * driver.
3961 */
3962 spin_lock_bh(&rx->local->rx_path_lock);
3963
3964 while ((skb = __skb_dequeue(frames))) {
3965 /*
3966 * all the other fields are valid across frames
3967 * that belong to an aMPDU since they are on the
3968 * same TID from the same station
3969 */
3970 rx->skb = skb;
3971
3972 CALL_RXH(ieee80211_rx_h_check_more_data);
3973 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3974 CALL_RXH(ieee80211_rx_h_sta_process);
3975 CALL_RXH(ieee80211_rx_h_decrypt);
3976 CALL_RXH(ieee80211_rx_h_defragment);
3977 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3978 /* must be after MMIC verify so header is counted in MPDU mic */
3979 #ifdef CONFIG_MAC80211_MESH
3980 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3981 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3982 #endif
3983 CALL_RXH(ieee80211_rx_h_amsdu);
3984 CALL_RXH(ieee80211_rx_h_data);
3985
3986 /* special treatment -- needs the queue */
3987 res = ieee80211_rx_h_ctrl(rx, frames);
3988 if (res != RX_CONTINUE)
3989 goto rxh_next;
3990
3991 CALL_RXH(ieee80211_rx_h_mgmt_check);
3992 CALL_RXH(ieee80211_rx_h_action);
3993 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3994 CALL_RXH(ieee80211_rx_h_action_post_userspace);
3995 CALL_RXH(ieee80211_rx_h_action_return);
3996 CALL_RXH(ieee80211_rx_h_ext);
3997 CALL_RXH(ieee80211_rx_h_mgmt);
3998
3999 rxh_next:
4000 ieee80211_rx_handlers_result(rx, res);
4001
4002 #undef CALL_RXH
4003 }
4004
4005 spin_unlock_bh(&rx->local->rx_path_lock);
4006 }
4007
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)4008 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
4009 {
4010 struct sk_buff_head reorder_release;
4011 ieee80211_rx_result res = RX_DROP_MONITOR;
4012
4013 __skb_queue_head_init(&reorder_release);
4014
4015 #define CALL_RXH(rxh) \
4016 do { \
4017 res = rxh(rx); \
4018 if (res != RX_CONTINUE) \
4019 goto rxh_next; \
4020 } while (0)
4021
4022 CALL_RXH(ieee80211_rx_h_check_dup);
4023 CALL_RXH(ieee80211_rx_h_check);
4024
4025 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
4026
4027 ieee80211_rx_handlers(rx, &reorder_release);
4028 return;
4029
4030 rxh_next:
4031 ieee80211_rx_handlers_result(rx, res);
4032
4033 #undef CALL_RXH
4034 }
4035
4036 /*
4037 * This function makes calls into the RX path, therefore
4038 * it has to be invoked under RCU read lock.
4039 */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)4040 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
4041 {
4042 struct sk_buff_head frames;
4043 struct ieee80211_rx_data rx = {
4044 .sta = sta,
4045 .sdata = sta->sdata,
4046 .local = sta->local,
4047 /* This is OK -- must be QoS data frame */
4048 .security_idx = tid,
4049 .seqno_idx = tid,
4050 };
4051 struct tid_ampdu_rx *tid_agg_rx;
4052
4053 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4054 if (!tid_agg_rx)
4055 return;
4056
4057 __skb_queue_head_init(&frames);
4058
4059 spin_lock(&tid_agg_rx->reorder_lock);
4060 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4061 spin_unlock(&tid_agg_rx->reorder_lock);
4062
4063 if (!skb_queue_empty(&frames)) {
4064 struct ieee80211_event event = {
4065 .type = BA_FRAME_TIMEOUT,
4066 .u.ba.tid = tid,
4067 .u.ba.sta = &sta->sta,
4068 };
4069 drv_event_callback(rx.local, rx.sdata, &event);
4070 }
4071
4072 ieee80211_rx_handlers(&rx, &frames);
4073 }
4074
ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta * pubsta,u8 tid,u16 ssn,u64 filtered,u16 received_mpdus)4075 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
4076 u16 ssn, u64 filtered,
4077 u16 received_mpdus)
4078 {
4079 struct sta_info *sta;
4080 struct tid_ampdu_rx *tid_agg_rx;
4081 struct sk_buff_head frames;
4082 struct ieee80211_rx_data rx = {
4083 /* This is OK -- must be QoS data frame */
4084 .security_idx = tid,
4085 .seqno_idx = tid,
4086 };
4087 int i, diff;
4088
4089 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
4090 return;
4091
4092 __skb_queue_head_init(&frames);
4093
4094 sta = container_of(pubsta, struct sta_info, sta);
4095
4096 rx.sta = sta;
4097 rx.sdata = sta->sdata;
4098 rx.local = sta->local;
4099
4100 rcu_read_lock();
4101 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4102 if (!tid_agg_rx)
4103 goto out;
4104
4105 spin_lock_bh(&tid_agg_rx->reorder_lock);
4106
4107 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
4108 int release;
4109
4110 /* release all frames in the reorder buffer */
4111 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4112 IEEE80211_SN_MODULO;
4113 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
4114 release, &frames);
4115 /* update ssn to match received ssn */
4116 tid_agg_rx->head_seq_num = ssn;
4117 } else {
4118 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4119 &frames);
4120 }
4121
4122 /* handle the case that received ssn is behind the mac ssn.
4123 * it can be tid_agg_rx->buf_size behind and still be valid */
4124 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4125 if (diff >= tid_agg_rx->buf_size) {
4126 tid_agg_rx->reorder_buf_filtered = 0;
4127 goto release;
4128 }
4129 filtered = filtered >> diff;
4130 ssn += diff;
4131
4132 /* update bitmap */
4133 for (i = 0; i < tid_agg_rx->buf_size; i++) {
4134 int index = (ssn + i) % tid_agg_rx->buf_size;
4135
4136 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4137 if (filtered & BIT_ULL(i))
4138 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4139 }
4140
4141 /* now process also frames that the filter marking released */
4142 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4143
4144 release:
4145 spin_unlock_bh(&tid_agg_rx->reorder_lock);
4146
4147 ieee80211_rx_handlers(&rx, &frames);
4148
4149 out:
4150 rcu_read_unlock();
4151 }
4152 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4153
4154 /* main receive path */
4155
ieee80211_accept_frame(struct ieee80211_rx_data * rx)4156 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4157 {
4158 struct ieee80211_sub_if_data *sdata = rx->sdata;
4159 struct sk_buff *skb = rx->skb;
4160 struct ieee80211_hdr *hdr = (void *)skb->data;
4161 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4162 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4163 bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4164 ieee80211_is_s1g_beacon(hdr->frame_control);
4165
4166 switch (sdata->vif.type) {
4167 case NL80211_IFTYPE_STATION:
4168 if (!bssid && !sdata->u.mgd.use_4addr)
4169 return false;
4170 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4171 return false;
4172 if (multicast)
4173 return true;
4174 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4175 case NL80211_IFTYPE_ADHOC:
4176 if (!bssid)
4177 return false;
4178 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4179 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
4180 !is_valid_ether_addr(hdr->addr2))
4181 return false;
4182 if (ieee80211_is_beacon(hdr->frame_control))
4183 return true;
4184 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4185 return false;
4186 if (!multicast &&
4187 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4188 return false;
4189 if (!rx->sta) {
4190 int rate_idx;
4191 if (status->encoding != RX_ENC_LEGACY)
4192 rate_idx = 0; /* TODO: HT/VHT rates */
4193 else
4194 rate_idx = status->rate_idx;
4195 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4196 BIT(rate_idx));
4197 }
4198 return true;
4199 case NL80211_IFTYPE_OCB:
4200 if (!bssid)
4201 return false;
4202 if (!ieee80211_is_data_present(hdr->frame_control))
4203 return false;
4204 if (!is_broadcast_ether_addr(bssid))
4205 return false;
4206 if (!multicast &&
4207 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4208 return false;
4209 if (!rx->sta) {
4210 int rate_idx;
4211 if (status->encoding != RX_ENC_LEGACY)
4212 rate_idx = 0; /* TODO: HT rates */
4213 else
4214 rate_idx = status->rate_idx;
4215 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4216 BIT(rate_idx));
4217 }
4218 return true;
4219 case NL80211_IFTYPE_MESH_POINT:
4220 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4221 return false;
4222 if (multicast)
4223 return true;
4224 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4225 case NL80211_IFTYPE_AP_VLAN:
4226 case NL80211_IFTYPE_AP:
4227 if (!bssid)
4228 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4229
4230 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4231 /*
4232 * Accept public action frames even when the
4233 * BSSID doesn't match, this is used for P2P
4234 * and location updates. Note that mac80211
4235 * itself never looks at these frames.
4236 */
4237 if (!multicast &&
4238 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4239 return false;
4240 if (ieee80211_is_public_action(hdr, skb->len))
4241 return true;
4242 return ieee80211_is_beacon(hdr->frame_control);
4243 }
4244
4245 if (!ieee80211_has_tods(hdr->frame_control)) {
4246 /* ignore data frames to TDLS-peers */
4247 if (ieee80211_is_data(hdr->frame_control))
4248 return false;
4249 /* ignore action frames to TDLS-peers */
4250 if (ieee80211_is_action(hdr->frame_control) &&
4251 !is_broadcast_ether_addr(bssid) &&
4252 !ether_addr_equal(bssid, hdr->addr1))
4253 return false;
4254 }
4255
4256 /*
4257 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4258 * the BSSID - we've checked that already but may have accepted
4259 * the wildcard (ff:ff:ff:ff:ff:ff).
4260 *
4261 * It also says:
4262 * The BSSID of the Data frame is determined as follows:
4263 * a) If the STA is contained within an AP or is associated
4264 * with an AP, the BSSID is the address currently in use
4265 * by the STA contained in the AP.
4266 *
4267 * So we should not accept data frames with an address that's
4268 * multicast.
4269 *
4270 * Accepting it also opens a security problem because stations
4271 * could encrypt it with the GTK and inject traffic that way.
4272 */
4273 if (ieee80211_is_data(hdr->frame_control) && multicast)
4274 return false;
4275
4276 return true;
4277 case NL80211_IFTYPE_P2P_DEVICE:
4278 return ieee80211_is_public_action(hdr, skb->len) ||
4279 ieee80211_is_probe_req(hdr->frame_control) ||
4280 ieee80211_is_probe_resp(hdr->frame_control) ||
4281 ieee80211_is_beacon(hdr->frame_control);
4282 case NL80211_IFTYPE_NAN:
4283 /* Currently no frames on NAN interface are allowed */
4284 return false;
4285 default:
4286 break;
4287 }
4288
4289 WARN_ON_ONCE(1);
4290 return false;
4291 }
4292
ieee80211_check_fast_rx(struct sta_info * sta)4293 void ieee80211_check_fast_rx(struct sta_info *sta)
4294 {
4295 struct ieee80211_sub_if_data *sdata = sta->sdata;
4296 struct ieee80211_local *local = sdata->local;
4297 struct ieee80211_key *key;
4298 struct ieee80211_fast_rx fastrx = {
4299 .dev = sdata->dev,
4300 .vif_type = sdata->vif.type,
4301 .control_port_protocol = sdata->control_port_protocol,
4302 }, *old, *new = NULL;
4303 bool set_offload = false;
4304 bool assign = false;
4305 bool offload;
4306
4307 /* use sparse to check that we don't return without updating */
4308 __acquire(check_fast_rx);
4309
4310 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4311 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4312 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4313 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4314
4315 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4316
4317 /* fast-rx doesn't do reordering */
4318 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4319 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4320 goto clear;
4321
4322 switch (sdata->vif.type) {
4323 case NL80211_IFTYPE_STATION:
4324 if (sta->sta.tdls) {
4325 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4326 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4327 fastrx.expected_ds_bits = 0;
4328 } else {
4329 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4330 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4331 fastrx.expected_ds_bits =
4332 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4333 }
4334
4335 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4336 fastrx.expected_ds_bits |=
4337 cpu_to_le16(IEEE80211_FCTL_TODS);
4338 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4339 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4340 }
4341
4342 if (!sdata->u.mgd.powersave)
4343 break;
4344
4345 /* software powersave is a huge mess, avoid all of it */
4346 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4347 goto clear;
4348 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4349 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4350 goto clear;
4351 break;
4352 case NL80211_IFTYPE_AP_VLAN:
4353 case NL80211_IFTYPE_AP:
4354 /* parallel-rx requires this, at least with calls to
4355 * ieee80211_sta_ps_transition()
4356 */
4357 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4358 goto clear;
4359 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4360 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4361 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4362
4363 fastrx.internal_forward =
4364 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4365 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4366 !sdata->u.vlan.sta);
4367
4368 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4369 sdata->u.vlan.sta) {
4370 fastrx.expected_ds_bits |=
4371 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4372 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4373 fastrx.internal_forward = 0;
4374 }
4375
4376 break;
4377 default:
4378 goto clear;
4379 }
4380
4381 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4382 goto clear;
4383
4384 rcu_read_lock();
4385 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4386 if (!key)
4387 key = rcu_dereference(sdata->default_unicast_key);
4388 if (key) {
4389 switch (key->conf.cipher) {
4390 case WLAN_CIPHER_SUITE_TKIP:
4391 /* we don't want to deal with MMIC in fast-rx */
4392 goto clear_rcu;
4393 case WLAN_CIPHER_SUITE_CCMP:
4394 case WLAN_CIPHER_SUITE_CCMP_256:
4395 case WLAN_CIPHER_SUITE_GCMP:
4396 case WLAN_CIPHER_SUITE_GCMP_256:
4397 break;
4398 default:
4399 /* We also don't want to deal with
4400 * WEP or cipher scheme.
4401 */
4402 goto clear_rcu;
4403 }
4404
4405 fastrx.key = true;
4406 fastrx.icv_len = key->conf.icv_len;
4407 }
4408
4409 assign = true;
4410 clear_rcu:
4411 rcu_read_unlock();
4412 clear:
4413 __release(check_fast_rx);
4414
4415 if (assign)
4416 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4417
4418 offload = assign &&
4419 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED);
4420
4421 if (offload)
4422 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4423 else
4424 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4425
4426 if (set_offload)
4427 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4428
4429 spin_lock_bh(&sta->lock);
4430 old = rcu_dereference_protected(sta->fast_rx, true);
4431 rcu_assign_pointer(sta->fast_rx, new);
4432 spin_unlock_bh(&sta->lock);
4433
4434 if (old)
4435 kfree_rcu(old, rcu_head);
4436 }
4437
ieee80211_clear_fast_rx(struct sta_info * sta)4438 void ieee80211_clear_fast_rx(struct sta_info *sta)
4439 {
4440 struct ieee80211_fast_rx *old;
4441
4442 spin_lock_bh(&sta->lock);
4443 old = rcu_dereference_protected(sta->fast_rx, true);
4444 RCU_INIT_POINTER(sta->fast_rx, NULL);
4445 spin_unlock_bh(&sta->lock);
4446
4447 if (old)
4448 kfree_rcu(old, rcu_head);
4449 }
4450
__ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4451 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4452 {
4453 struct ieee80211_local *local = sdata->local;
4454 struct sta_info *sta;
4455
4456 lockdep_assert_held(&local->sta_mtx);
4457
4458 list_for_each_entry(sta, &local->sta_list, list) {
4459 if (sdata != sta->sdata &&
4460 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4461 continue;
4462 ieee80211_check_fast_rx(sta);
4463 }
4464 }
4465
ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4466 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4467 {
4468 struct ieee80211_local *local = sdata->local;
4469
4470 mutex_lock(&local->sta_mtx);
4471 __ieee80211_check_fast_rx_iface(sdata);
4472 mutex_unlock(&local->sta_mtx);
4473 }
4474
ieee80211_rx_8023(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx,int orig_len)4475 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4476 struct ieee80211_fast_rx *fast_rx,
4477 int orig_len)
4478 {
4479 struct ieee80211_sta_rx_stats *stats;
4480 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4481 struct sta_info *sta = rx->sta;
4482 struct sk_buff *skb = rx->skb;
4483 void *sa = skb->data + ETH_ALEN;
4484 void *da = skb->data;
4485
4486 stats = &sta->deflink.rx_stats;
4487 if (fast_rx->uses_rss)
4488 stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats);
4489
4490 /* statistics part of ieee80211_rx_h_sta_process() */
4491 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4492 stats->last_signal = status->signal;
4493 if (!fast_rx->uses_rss)
4494 ewma_signal_add(&sta->deflink.rx_stats_avg.signal,
4495 -status->signal);
4496 }
4497
4498 if (status->chains) {
4499 int i;
4500
4501 stats->chains = status->chains;
4502 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4503 int signal = status->chain_signal[i];
4504
4505 if (!(status->chains & BIT(i)))
4506 continue;
4507
4508 stats->chain_signal_last[i] = signal;
4509 if (!fast_rx->uses_rss)
4510 ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i],
4511 -signal);
4512 }
4513 }
4514 /* end of statistics */
4515
4516 stats->last_rx = jiffies;
4517 stats->last_rate = sta_stats_encode_rate(status);
4518
4519 stats->fragments++;
4520 stats->packets++;
4521
4522 skb->dev = fast_rx->dev;
4523
4524 dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4525
4526 /* The seqno index has the same property as needed
4527 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4528 * for non-QoS-data frames. Here we know it's a data
4529 * frame, so count MSDUs.
4530 */
4531 u64_stats_update_begin(&stats->syncp);
4532 stats->msdu[rx->seqno_idx]++;
4533 stats->bytes += orig_len;
4534 u64_stats_update_end(&stats->syncp);
4535
4536 if (fast_rx->internal_forward) {
4537 struct sk_buff *xmit_skb = NULL;
4538 if (is_multicast_ether_addr(da)) {
4539 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4540 } else if (!ether_addr_equal(da, sa) &&
4541 sta_info_get(rx->sdata, da)) {
4542 xmit_skb = skb;
4543 skb = NULL;
4544 }
4545
4546 if (xmit_skb) {
4547 /*
4548 * Send to wireless media and increase priority by 256
4549 * to keep the received priority instead of
4550 * reclassifying the frame (see cfg80211_classify8021d).
4551 */
4552 xmit_skb->priority += 256;
4553 xmit_skb->protocol = htons(ETH_P_802_3);
4554 skb_reset_network_header(xmit_skb);
4555 skb_reset_mac_header(xmit_skb);
4556 dev_queue_xmit(xmit_skb);
4557 }
4558
4559 if (!skb)
4560 return;
4561 }
4562
4563 /* deliver to local stack */
4564 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4565 ieee80211_deliver_skb_to_local_stack(skb, rx);
4566 }
4567
ieee80211_invoke_fast_rx(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx)4568 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4569 struct ieee80211_fast_rx *fast_rx)
4570 {
4571 struct sk_buff *skb = rx->skb;
4572 struct ieee80211_hdr *hdr = (void *)skb->data;
4573 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4574 struct sta_info *sta = rx->sta;
4575 int orig_len = skb->len;
4576 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4577 int snap_offs = hdrlen;
4578 struct {
4579 u8 snap[sizeof(rfc1042_header)];
4580 __be16 proto;
4581 } *payload __aligned(2);
4582 struct {
4583 u8 da[ETH_ALEN];
4584 u8 sa[ETH_ALEN];
4585 } addrs __aligned(2);
4586 struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats;
4587
4588 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4589 * to a common data structure; drivers can implement that per queue
4590 * but we don't have that information in mac80211
4591 */
4592 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4593 return false;
4594
4595 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4596
4597 /* If using encryption, we also need to have:
4598 * - PN_VALIDATED: similar, but the implementation is tricky
4599 * - DECRYPTED: necessary for PN_VALIDATED
4600 */
4601 if (fast_rx->key &&
4602 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4603 return false;
4604
4605 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4606 return false;
4607
4608 if (unlikely(ieee80211_is_frag(hdr)))
4609 return false;
4610
4611 /* Since our interface address cannot be multicast, this
4612 * implicitly also rejects multicast frames without the
4613 * explicit check.
4614 *
4615 * We shouldn't get any *data* frames not addressed to us
4616 * (AP mode will accept multicast *management* frames), but
4617 * punting here will make it go through the full checks in
4618 * ieee80211_accept_frame().
4619 */
4620 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4621 return false;
4622
4623 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4624 IEEE80211_FCTL_TODS)) !=
4625 fast_rx->expected_ds_bits)
4626 return false;
4627
4628 /* assign the key to drop unencrypted frames (later)
4629 * and strip the IV/MIC if necessary
4630 */
4631 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4632 /* GCMP header length is the same */
4633 snap_offs += IEEE80211_CCMP_HDR_LEN;
4634 }
4635
4636 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4637 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4638 goto drop;
4639
4640 payload = (void *)(skb->data + snap_offs);
4641
4642 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4643 return false;
4644
4645 /* Don't handle these here since they require special code.
4646 * Accept AARP and IPX even though they should come with a
4647 * bridge-tunnel header - but if we get them this way then
4648 * there's little point in discarding them.
4649 */
4650 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4651 payload->proto == fast_rx->control_port_protocol))
4652 return false;
4653 }
4654
4655 /* after this point, don't punt to the slowpath! */
4656
4657 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4658 pskb_trim(skb, skb->len - fast_rx->icv_len))
4659 goto drop;
4660
4661 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4662 goto drop;
4663
4664 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4665 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4666 RX_QUEUED)
4667 goto drop;
4668
4669 return true;
4670 }
4671
4672 /* do the header conversion - first grab the addresses */
4673 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4674 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4675 skb_postpull_rcsum(skb, skb->data + snap_offs,
4676 sizeof(rfc1042_header) + 2);
4677 /* remove the SNAP but leave the ethertype */
4678 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4679 /* push the addresses in front */
4680 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4681
4682 ieee80211_rx_8023(rx, fast_rx, orig_len);
4683
4684 return true;
4685 drop:
4686 dev_kfree_skb(skb);
4687 if (fast_rx->uses_rss)
4688 stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats);
4689
4690 stats->dropped++;
4691 return true;
4692 }
4693
4694 /*
4695 * This function returns whether or not the SKB
4696 * was destined for RX processing or not, which,
4697 * if consume is true, is equivalent to whether
4698 * or not the skb was consumed.
4699 */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)4700 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4701 struct sk_buff *skb, bool consume)
4702 {
4703 struct ieee80211_local *local = rx->local;
4704 struct ieee80211_sub_if_data *sdata = rx->sdata;
4705
4706 rx->skb = skb;
4707
4708 /* See if we can do fast-rx; if we have to copy we already lost,
4709 * so punt in that case. We should never have to deliver a data
4710 * frame to multiple interfaces anyway.
4711 *
4712 * We skip the ieee80211_accept_frame() call and do the necessary
4713 * checking inside ieee80211_invoke_fast_rx().
4714 */
4715 if (consume && rx->sta) {
4716 struct ieee80211_fast_rx *fast_rx;
4717
4718 fast_rx = rcu_dereference(rx->sta->fast_rx);
4719 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4720 return true;
4721 }
4722
4723 if (!ieee80211_accept_frame(rx))
4724 return false;
4725
4726 if (!consume) {
4727 skb = skb_copy(skb, GFP_ATOMIC);
4728 if (!skb) {
4729 if (net_ratelimit())
4730 wiphy_debug(local->hw.wiphy,
4731 "failed to copy skb for %s\n",
4732 sdata->name);
4733 return true;
4734 }
4735
4736 rx->skb = skb;
4737 }
4738
4739 ieee80211_invoke_rx_handlers(rx);
4740 return true;
4741 }
4742
__ieee80211_rx_handle_8023(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4743 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
4744 struct ieee80211_sta *pubsta,
4745 struct sk_buff *skb,
4746 struct list_head *list)
4747 {
4748 struct ieee80211_local *local = hw_to_local(hw);
4749 struct ieee80211_fast_rx *fast_rx;
4750 struct ieee80211_rx_data rx;
4751
4752 memset(&rx, 0, sizeof(rx));
4753 rx.skb = skb;
4754 rx.local = local;
4755 rx.list = list;
4756
4757 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4758
4759 /* drop frame if too short for header */
4760 if (skb->len < sizeof(struct ethhdr))
4761 goto drop;
4762
4763 if (!pubsta)
4764 goto drop;
4765
4766 rx.sta = container_of(pubsta, struct sta_info, sta);
4767 rx.sdata = rx.sta->sdata;
4768
4769 fast_rx = rcu_dereference(rx.sta->fast_rx);
4770 if (!fast_rx)
4771 goto drop;
4772
4773 ieee80211_rx_8023(&rx, fast_rx, skb->len);
4774 return;
4775
4776 drop:
4777 dev_kfree_skb(skb);
4778 }
4779
4780 /*
4781 * This is the actual Rx frames handler. as it belongs to Rx path it must
4782 * be called with rcu_read_lock protection.
4783 */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4784 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4785 struct ieee80211_sta *pubsta,
4786 struct sk_buff *skb,
4787 struct list_head *list)
4788 {
4789 struct ieee80211_local *local = hw_to_local(hw);
4790 struct ieee80211_sub_if_data *sdata;
4791 struct ieee80211_hdr *hdr;
4792 __le16 fc;
4793 struct ieee80211_rx_data rx;
4794 struct ieee80211_sub_if_data *prev;
4795 struct rhlist_head *tmp;
4796 int err = 0;
4797
4798 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4799 memset(&rx, 0, sizeof(rx));
4800 rx.skb = skb;
4801 rx.local = local;
4802 rx.list = list;
4803
4804 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4805 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4806
4807 if (ieee80211_is_mgmt(fc)) {
4808 /* drop frame if too short for header */
4809 if (skb->len < ieee80211_hdrlen(fc))
4810 err = -ENOBUFS;
4811 else
4812 err = skb_linearize(skb);
4813 } else {
4814 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4815 }
4816
4817 if (err) {
4818 dev_kfree_skb(skb);
4819 return;
4820 }
4821
4822 hdr = (struct ieee80211_hdr *)skb->data;
4823 ieee80211_parse_qos(&rx);
4824 ieee80211_verify_alignment(&rx);
4825
4826 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4827 ieee80211_is_beacon(hdr->frame_control) ||
4828 ieee80211_is_s1g_beacon(hdr->frame_control)))
4829 ieee80211_scan_rx(local, skb);
4830
4831 if (ieee80211_is_data(fc)) {
4832 struct sta_info *sta, *prev_sta;
4833
4834 if (pubsta) {
4835 rx.sta = container_of(pubsta, struct sta_info, sta);
4836 rx.sdata = rx.sta->sdata;
4837 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4838 return;
4839 goto out;
4840 }
4841
4842 prev_sta = NULL;
4843
4844 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4845 if (!prev_sta) {
4846 prev_sta = sta;
4847 continue;
4848 }
4849
4850 rx.sta = prev_sta;
4851 rx.sdata = prev_sta->sdata;
4852 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4853
4854 prev_sta = sta;
4855 }
4856
4857 if (prev_sta) {
4858 rx.sta = prev_sta;
4859 rx.sdata = prev_sta->sdata;
4860
4861 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4862 return;
4863 goto out;
4864 }
4865 }
4866
4867 prev = NULL;
4868
4869 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4870 if (!ieee80211_sdata_running(sdata))
4871 continue;
4872
4873 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4874 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4875 continue;
4876
4877 /*
4878 * frame is destined for this interface, but if it's
4879 * not also for the previous one we handle that after
4880 * the loop to avoid copying the SKB once too much
4881 */
4882
4883 if (!prev) {
4884 prev = sdata;
4885 continue;
4886 }
4887
4888 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4889 rx.sdata = prev;
4890 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4891
4892 prev = sdata;
4893 }
4894
4895 if (prev) {
4896 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4897 rx.sdata = prev;
4898
4899 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4900 return;
4901 }
4902
4903 out:
4904 dev_kfree_skb(skb);
4905 }
4906
4907 /*
4908 * This is the receive path handler. It is called by a low level driver when an
4909 * 802.11 MPDU is received from the hardware.
4910 */
ieee80211_rx_list(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4911 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4912 struct sk_buff *skb, struct list_head *list)
4913 {
4914 struct ieee80211_local *local = hw_to_local(hw);
4915 struct ieee80211_rate *rate = NULL;
4916 struct ieee80211_supported_band *sband;
4917 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4918 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
4919
4920 WARN_ON_ONCE(softirq_count() == 0);
4921
4922 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4923 goto drop;
4924
4925 sband = local->hw.wiphy->bands[status->band];
4926 if (WARN_ON(!sband))
4927 goto drop;
4928
4929 /*
4930 * If we're suspending, it is possible although not too likely
4931 * that we'd be receiving frames after having already partially
4932 * quiesced the stack. We can't process such frames then since
4933 * that might, for example, cause stations to be added or other
4934 * driver callbacks be invoked.
4935 */
4936 if (unlikely(local->quiescing || local->suspended))
4937 goto drop;
4938
4939 /* We might be during a HW reconfig, prevent Rx for the same reason */
4940 if (unlikely(local->in_reconfig))
4941 goto drop;
4942
4943 /*
4944 * The same happens when we're not even started,
4945 * but that's worth a warning.
4946 */
4947 if (WARN_ON(!local->started))
4948 goto drop;
4949
4950 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4951 /*
4952 * Validate the rate, unless a PLCP error means that
4953 * we probably can't have a valid rate here anyway.
4954 */
4955
4956 switch (status->encoding) {
4957 case RX_ENC_HT:
4958 /*
4959 * rate_idx is MCS index, which can be [0-76]
4960 * as documented on:
4961 *
4962 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4963 *
4964 * Anything else would be some sort of driver or
4965 * hardware error. The driver should catch hardware
4966 * errors.
4967 */
4968 if (WARN(status->rate_idx > 76,
4969 "Rate marked as an HT rate but passed "
4970 "status->rate_idx is not "
4971 "an MCS index [0-76]: %d (0x%02x)\n",
4972 status->rate_idx,
4973 status->rate_idx))
4974 goto drop;
4975 break;
4976 case RX_ENC_VHT:
4977 if (WARN_ONCE(status->rate_idx > 11 ||
4978 !status->nss ||
4979 status->nss > 8,
4980 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4981 status->rate_idx, status->nss))
4982 goto drop;
4983 break;
4984 case RX_ENC_HE:
4985 if (WARN_ONCE(status->rate_idx > 11 ||
4986 !status->nss ||
4987 status->nss > 8,
4988 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4989 status->rate_idx, status->nss))
4990 goto drop;
4991 break;
4992 default:
4993 WARN_ON_ONCE(1);
4994 fallthrough;
4995 case RX_ENC_LEGACY:
4996 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4997 goto drop;
4998 rate = &sband->bitrates[status->rate_idx];
4999 }
5000 }
5001
5002 status->rx_flags = 0;
5003
5004 kcov_remote_start_common(skb_get_kcov_handle(skb));
5005
5006 /*
5007 * Frames with failed FCS/PLCP checksum are not returned,
5008 * all other frames are returned without radiotap header
5009 * if it was previously present.
5010 * Also, frames with less than 16 bytes are dropped.
5011 */
5012 if (!(status->flag & RX_FLAG_8023))
5013 skb = ieee80211_rx_monitor(local, skb, rate);
5014 if (skb) {
5015 if ((status->flag & RX_FLAG_8023) ||
5016 ieee80211_is_data_present(hdr->frame_control))
5017 ieee80211_tpt_led_trig_rx(local, skb->len);
5018
5019 if (status->flag & RX_FLAG_8023)
5020 __ieee80211_rx_handle_8023(hw, pubsta, skb, list);
5021 else
5022 __ieee80211_rx_handle_packet(hw, pubsta, skb, list);
5023 }
5024
5025 kcov_remote_stop();
5026 return;
5027 drop:
5028 kfree_skb(skb);
5029 }
5030 EXPORT_SYMBOL(ieee80211_rx_list);
5031
ieee80211_rx_napi(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct napi_struct * napi)5032 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
5033 struct sk_buff *skb, struct napi_struct *napi)
5034 {
5035 struct sk_buff *tmp;
5036 LIST_HEAD(list);
5037
5038
5039 /*
5040 * key references and virtual interfaces are protected using RCU
5041 * and this requires that we are in a read-side RCU section during
5042 * receive processing
5043 */
5044 rcu_read_lock();
5045 ieee80211_rx_list(hw, pubsta, skb, &list);
5046 rcu_read_unlock();
5047
5048 if (!napi) {
5049 netif_receive_skb_list(&list);
5050 return;
5051 }
5052
5053 list_for_each_entry_safe(skb, tmp, &list, list) {
5054 skb_list_del_init(skb);
5055 napi_gro_receive(napi, skb);
5056 }
5057 }
5058 EXPORT_SYMBOL(ieee80211_rx_napi);
5059
5060 /* This is a version of the rx handler that can be called from hard irq
5061 * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)5062 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
5063 {
5064 struct ieee80211_local *local = hw_to_local(hw);
5065
5066 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
5067
5068 skb->pkt_type = IEEE80211_RX_MSG;
5069 skb_queue_tail(&local->skb_queue, skb);
5070 tasklet_schedule(&local->tasklet);
5071 }
5072 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
5073