1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7 * Copyright (C) 2018-2021 Intel Corporation
8 */
9
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30
31 /**
32 * DOC: STA information lifetime rules
33 *
34 * STA info structures (&struct sta_info) are managed in a hash table
35 * for faster lookup and a list for iteration. They are managed using
36 * RCU, i.e. access to the list and hash table is protected by RCU.
37 *
38 * Upon allocating a STA info structure with sta_info_alloc(), the caller
39 * owns that structure. It must then insert it into the hash table using
40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41 * case (which acquires an rcu read section but must not be called from
42 * within one) will the pointer still be valid after the call. Note that
43 * the caller may not do much with the STA info before inserting it, in
44 * particular, it may not start any mesh peer link management or add
45 * encryption keys.
46 *
47 * When the insertion fails (sta_info_insert()) returns non-zero), the
48 * structure will have been freed by sta_info_insert()!
49 *
50 * Station entries are added by mac80211 when you establish a link with a
51 * peer. This means different things for the different type of interfaces
52 * we support. For a regular station this mean we add the AP sta when we
53 * receive an association response from the AP. For IBSS this occurs when
54 * get to know about a peer on the same IBSS. For WDS we add the sta for
55 * the peer immediately upon device open. When using AP mode we add stations
56 * for each respective station upon request from userspace through nl80211.
57 *
58 * In order to remove a STA info structure, various sta_info_destroy_*()
59 * calls are available.
60 *
61 * There is no concept of ownership on a STA entry, each structure is
62 * owned by the global hash table/list until it is removed. All users of
63 * the structure need to be RCU protected so that the structure won't be
64 * freed before they are done using it.
65 */
66
67 static const struct rhashtable_params sta_rht_params = {
68 .nelem_hint = 3, /* start small */
69 .automatic_shrinking = true,
70 .head_offset = offsetof(struct sta_info, hash_node),
71 .key_offset = offsetof(struct sta_info, addr),
72 .key_len = ETH_ALEN,
73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75
76 /* Caller must hold local->sta_mtx */
sta_info_hash_del(struct ieee80211_local * local,struct sta_info * sta)77 static int sta_info_hash_del(struct ieee80211_local *local,
78 struct sta_info *sta)
79 {
80 return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 sta_rht_params);
82 }
83
__cleanup_single_sta(struct sta_info * sta)84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 int ac, i;
87 struct tid_ampdu_tx *tid_tx;
88 struct ieee80211_sub_if_data *sdata = sta->sdata;
89 struct ieee80211_local *local = sdata->local;
90 struct ps_data *ps;
91
92 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 ps = &sdata->bss->ps;
98 else if (ieee80211_vif_is_mesh(&sdata->vif))
99 ps = &sdata->u.mesh.ps;
100 else
101 return;
102
103 clear_sta_flag(sta, WLAN_STA_PS_STA);
104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106
107 atomic_dec(&ps->num_sta_ps);
108 }
109
110 if (sta->sta.txq[0]) {
111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 struct txq_info *txqi;
113
114 if (!sta->sta.txq[i])
115 continue;
116
117 txqi = to_txq_info(sta->sta.txq[i]);
118
119 ieee80211_txq_purge(local, txqi);
120 }
121 }
122
123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 }
128
129 if (ieee80211_vif_is_mesh(&sdata->vif))
130 mesh_sta_cleanup(sta);
131
132 cancel_work_sync(&sta->drv_deliver_wk);
133
134 /*
135 * Destroy aggregation state here. It would be nice to wait for the
136 * driver to finish aggregation stop and then clean up, but for now
137 * drivers have to handle aggregation stop being requested, followed
138 * directly by station destruction.
139 */
140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 if (!tid_tx)
144 continue;
145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 kfree(tid_tx);
147 }
148 }
149
cleanup_single_sta(struct sta_info * sta)150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 struct ieee80211_sub_if_data *sdata = sta->sdata;
153 struct ieee80211_local *local = sdata->local;
154
155 __cleanup_single_sta(sta);
156 sta_info_free(local, sta);
157 }
158
sta_info_hash_lookup(struct ieee80211_local * local,const u8 * addr)159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 const u8 *addr)
161 {
162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164
165 /* protected by RCU */
sta_info_get(struct ieee80211_sub_if_data * sdata,const u8 * addr)166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 const u8 *addr)
168 {
169 struct ieee80211_local *local = sdata->local;
170 struct rhlist_head *tmp;
171 struct sta_info *sta;
172
173 rcu_read_lock();
174 for_each_sta_info(local, addr, sta, tmp) {
175 if (sta->sdata == sdata) {
176 rcu_read_unlock();
177 /* this is safe as the caller must already hold
178 * another rcu read section or the mutex
179 */
180 return sta;
181 }
182 }
183 rcu_read_unlock();
184 return NULL;
185 }
186
187 /*
188 * Get sta info either from the specified interface
189 * or from one of its vlans
190 */
sta_info_get_bss(struct ieee80211_sub_if_data * sdata,const u8 * addr)191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 const u8 *addr)
193 {
194 struct ieee80211_local *local = sdata->local;
195 struct rhlist_head *tmp;
196 struct sta_info *sta;
197
198 rcu_read_lock();
199 for_each_sta_info(local, addr, sta, tmp) {
200 if (sta->sdata == sdata ||
201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 rcu_read_unlock();
203 /* this is safe as the caller must already hold
204 * another rcu read section or the mutex
205 */
206 return sta;
207 }
208 }
209 rcu_read_unlock();
210 return NULL;
211 }
212
sta_info_get_by_addrs(struct ieee80211_local * local,const u8 * sta_addr,const u8 * vif_addr)213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 const u8 *sta_addr, const u8 *vif_addr)
215 {
216 struct rhlist_head *tmp;
217 struct sta_info *sta;
218
219 for_each_sta_info(local, sta_addr, sta, tmp) {
220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 return sta;
222 }
223
224 return NULL;
225 }
226
sta_info_get_by_idx(struct ieee80211_sub_if_data * sdata,int idx)227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 int idx)
229 {
230 struct ieee80211_local *local = sdata->local;
231 struct sta_info *sta;
232 int i = 0;
233
234 list_for_each_entry_rcu(sta, &local->sta_list, list,
235 lockdep_is_held(&local->sta_mtx)) {
236 if (sdata != sta->sdata)
237 continue;
238 if (i < idx) {
239 ++i;
240 continue;
241 }
242 return sta;
243 }
244
245 return NULL;
246 }
247
248 /**
249 * sta_info_free - free STA
250 *
251 * @local: pointer to the global information
252 * @sta: STA info to free
253 *
254 * This function must undo everything done by sta_info_alloc()
255 * that may happen before sta_info_insert(). It may only be
256 * called when sta_info_insert() has not been attempted (and
257 * if that fails, the station is freed anyway.)
258 */
sta_info_free(struct ieee80211_local * local,struct sta_info * sta)259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
260 {
261 /*
262 * If we had used sta_info_pre_move_state() then we might not
263 * have gone through the state transitions down again, so do
264 * it here now (and warn if it's inserted).
265 *
266 * This will clear state such as fast TX/RX that may have been
267 * allocated during state transitions.
268 */
269 while (sta->sta_state > IEEE80211_STA_NONE) {
270 int ret;
271
272 WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED));
273
274 ret = sta_info_move_state(sta, sta->sta_state - 1);
275 if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret))
276 break;
277 }
278
279 if (sta->rate_ctrl)
280 rate_control_free_sta(sta);
281
282 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
283
284 if (sta->sta.txq[0])
285 kfree(to_txq_info(sta->sta.txq[0]));
286 kfree(rcu_dereference_raw(sta->sta.rates));
287 #ifdef CONFIG_MAC80211_MESH
288 kfree(sta->mesh);
289 #endif
290 free_percpu(sta->deflink.pcpu_rx_stats);
291 kfree(sta);
292 }
293
294 /* Caller must hold local->sta_mtx */
sta_info_hash_add(struct ieee80211_local * local,struct sta_info * sta)295 static int sta_info_hash_add(struct ieee80211_local *local,
296 struct sta_info *sta)
297 {
298 return rhltable_insert(&local->sta_hash, &sta->hash_node,
299 sta_rht_params);
300 }
301
sta_deliver_ps_frames(struct work_struct * wk)302 static void sta_deliver_ps_frames(struct work_struct *wk)
303 {
304 struct sta_info *sta;
305
306 sta = container_of(wk, struct sta_info, drv_deliver_wk);
307
308 if (sta->dead)
309 return;
310
311 local_bh_disable();
312 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
313 ieee80211_sta_ps_deliver_wakeup(sta);
314 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
315 ieee80211_sta_ps_deliver_poll_response(sta);
316 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
317 ieee80211_sta_ps_deliver_uapsd(sta);
318 local_bh_enable();
319 }
320
sta_prepare_rate_control(struct ieee80211_local * local,struct sta_info * sta,gfp_t gfp)321 static int sta_prepare_rate_control(struct ieee80211_local *local,
322 struct sta_info *sta, gfp_t gfp)
323 {
324 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
325 return 0;
326
327 sta->rate_ctrl = local->rate_ctrl;
328 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
329 sta, gfp);
330 if (!sta->rate_ctrl_priv)
331 return -ENOMEM;
332
333 return 0;
334 }
335
sta_info_alloc(struct ieee80211_sub_if_data * sdata,const u8 * addr,gfp_t gfp)336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
337 const u8 *addr, gfp_t gfp)
338 {
339 struct ieee80211_local *local = sdata->local;
340 struct ieee80211_hw *hw = &local->hw;
341 struct sta_info *sta;
342 int i;
343
344 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
345 if (!sta)
346 return NULL;
347
348 if (ieee80211_hw_check(hw, USES_RSS)) {
349 sta->deflink.pcpu_rx_stats =
350 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
351 if (!sta->deflink.pcpu_rx_stats)
352 goto free;
353 }
354
355 spin_lock_init(&sta->lock);
356 spin_lock_init(&sta->ps_lock);
357 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
358 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
359 mutex_init(&sta->ampdu_mlme.mtx);
360 #ifdef CONFIG_MAC80211_MESH
361 if (ieee80211_vif_is_mesh(&sdata->vif)) {
362 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
363 if (!sta->mesh)
364 goto free;
365 sta->mesh->plink_sta = sta;
366 spin_lock_init(&sta->mesh->plink_lock);
367 if (!sdata->u.mesh.user_mpm)
368 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
369 0);
370 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
371 }
372 #endif
373
374 memcpy(sta->addr, addr, ETH_ALEN);
375 memcpy(sta->sta.addr, addr, ETH_ALEN);
376 memcpy(sta->deflink.addr, addr, ETH_ALEN);
377 memcpy(sta->sta.deflink.addr, addr, ETH_ALEN);
378 sta->sta.max_rx_aggregation_subframes =
379 local->hw.max_rx_aggregation_subframes;
380
381 /* TODO link specific alloc and assignments for MLO Link STA */
382
383 /* For non MLO STA, link info can be accessed either via deflink
384 * or link[0]
385 */
386 sta->link[0] = &sta->deflink;
387 sta->sta.link[0] = &sta->sta.deflink;
388
389 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
390 * The Tx path starts to use a key as soon as the key slot ptk_idx
391 * references to is not NULL. To not use the initial Rx-only key
392 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
393 * which always will refer to a NULL key.
394 */
395 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
396 sta->ptk_idx = INVALID_PTK_KEYIDX;
397
398 sta->local = local;
399 sta->sdata = sdata;
400 sta->deflink.rx_stats.last_rx = jiffies;
401
402 u64_stats_init(&sta->deflink.rx_stats.syncp);
403
404 ieee80211_init_frag_cache(&sta->frags);
405
406 sta->sta_state = IEEE80211_STA_NONE;
407
408 /* Mark TID as unreserved */
409 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
410
411 sta->last_connected = ktime_get_seconds();
412 ewma_signal_init(&sta->deflink.rx_stats_avg.signal);
413 ewma_avg_signal_init(&sta->deflink.status_stats.avg_ack_signal);
414 for (i = 0; i < ARRAY_SIZE(sta->deflink.rx_stats_avg.chain_signal); i++)
415 ewma_signal_init(&sta->deflink.rx_stats_avg.chain_signal[i]);
416
417 if (local->ops->wake_tx_queue) {
418 void *txq_data;
419 int size = sizeof(struct txq_info) +
420 ALIGN(hw->txq_data_size, sizeof(void *));
421
422 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
423 if (!txq_data)
424 goto free;
425
426 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
427 struct txq_info *txq = txq_data + i * size;
428
429 /* might not do anything for the bufferable MMPDU TXQ */
430 ieee80211_txq_init(sdata, sta, txq, i);
431 }
432 }
433
434 if (sta_prepare_rate_control(local, sta, gfp))
435 goto free_txq;
436
437
438 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
439 skb_queue_head_init(&sta->ps_tx_buf[i]);
440 skb_queue_head_init(&sta->tx_filtered[i]);
441 init_airtime_info(&sta->airtime[i], &local->airtime[i]);
442 }
443
444 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
445 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
446
447 for (i = 0; i < NUM_NL80211_BANDS; i++) {
448 u32 mandatory = 0;
449 int r;
450
451 if (!hw->wiphy->bands[i])
452 continue;
453
454 switch (i) {
455 case NL80211_BAND_2GHZ:
456 case NL80211_BAND_LC:
457 /*
458 * We use both here, even if we cannot really know for
459 * sure the station will support both, but the only use
460 * for this is when we don't know anything yet and send
461 * management frames, and then we'll pick the lowest
462 * possible rate anyway.
463 * If we don't include _G here, we cannot find a rate
464 * in P2P, and thus trigger the WARN_ONCE() in rate.c
465 */
466 mandatory = IEEE80211_RATE_MANDATORY_B |
467 IEEE80211_RATE_MANDATORY_G;
468 break;
469 case NL80211_BAND_5GHZ:
470 mandatory = IEEE80211_RATE_MANDATORY_A;
471 break;
472 case NL80211_BAND_60GHZ:
473 WARN_ON(1);
474 mandatory = 0;
475 break;
476 }
477
478 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
479 struct ieee80211_rate *rate;
480
481 rate = &hw->wiphy->bands[i]->bitrates[r];
482
483 if (!(rate->flags & mandatory))
484 continue;
485 sta->sta.deflink.supp_rates[i] |= BIT(r);
486 }
487 }
488
489 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
490 if (sdata->vif.type == NL80211_IFTYPE_AP ||
491 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
492 struct ieee80211_supported_band *sband;
493 u8 smps;
494
495 sband = ieee80211_get_sband(sdata);
496 if (!sband)
497 goto free_txq;
498
499 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
500 IEEE80211_HT_CAP_SM_PS_SHIFT;
501 /*
502 * Assume that hostapd advertises our caps in the beacon and
503 * this is the known_smps_mode for a station that just assciated
504 */
505 switch (smps) {
506 case WLAN_HT_SMPS_CONTROL_DISABLED:
507 sta->known_smps_mode = IEEE80211_SMPS_OFF;
508 break;
509 case WLAN_HT_SMPS_CONTROL_STATIC:
510 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
511 break;
512 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
513 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
514 break;
515 default:
516 WARN_ON(1);
517 }
518 }
519
520 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
521
522 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
523 sta->cparams.target = MS2TIME(20);
524 sta->cparams.interval = MS2TIME(100);
525 sta->cparams.ecn = true;
526 sta->cparams.ce_threshold_selector = 0;
527 sta->cparams.ce_threshold_mask = 0;
528
529 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
530
531 return sta;
532
533 free_txq:
534 if (sta->sta.txq[0])
535 kfree(to_txq_info(sta->sta.txq[0]));
536 free:
537 free_percpu(sta->deflink.pcpu_rx_stats);
538 #ifdef CONFIG_MAC80211_MESH
539 kfree(sta->mesh);
540 #endif
541 kfree(sta);
542 return NULL;
543 }
544
sta_info_insert_check(struct sta_info * sta)545 static int sta_info_insert_check(struct sta_info *sta)
546 {
547 struct ieee80211_sub_if_data *sdata = sta->sdata;
548
549 /*
550 * Can't be a WARN_ON because it can be triggered through a race:
551 * something inserts a STA (on one CPU) without holding the RTNL
552 * and another CPU turns off the net device.
553 */
554 if (unlikely(!ieee80211_sdata_running(sdata)))
555 return -ENETDOWN;
556
557 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
558 !is_valid_ether_addr(sta->sta.addr)))
559 return -EINVAL;
560
561 /* The RCU read lock is required by rhashtable due to
562 * asynchronous resize/rehash. We also require the mutex
563 * for correctness.
564 */
565 rcu_read_lock();
566 lockdep_assert_held(&sdata->local->sta_mtx);
567 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
568 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
569 rcu_read_unlock();
570 return -ENOTUNIQ;
571 }
572 rcu_read_unlock();
573
574 return 0;
575 }
576
sta_info_insert_drv_state(struct ieee80211_local * local,struct ieee80211_sub_if_data * sdata,struct sta_info * sta)577 static int sta_info_insert_drv_state(struct ieee80211_local *local,
578 struct ieee80211_sub_if_data *sdata,
579 struct sta_info *sta)
580 {
581 enum ieee80211_sta_state state;
582 int err = 0;
583
584 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
585 err = drv_sta_state(local, sdata, sta, state, state + 1);
586 if (err)
587 break;
588 }
589
590 if (!err) {
591 /*
592 * Drivers using legacy sta_add/sta_remove callbacks only
593 * get uploaded set to true after sta_add is called.
594 */
595 if (!local->ops->sta_add)
596 sta->uploaded = true;
597 return 0;
598 }
599
600 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
601 sdata_info(sdata,
602 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
603 sta->sta.addr, state + 1, err);
604 err = 0;
605 }
606
607 /* unwind on error */
608 for (; state > IEEE80211_STA_NOTEXIST; state--)
609 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
610
611 return err;
612 }
613
614 static void
ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data * sdata)615 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
616 {
617 struct ieee80211_local *local = sdata->local;
618 bool allow_p2p_go_ps = sdata->vif.p2p;
619 struct sta_info *sta;
620
621 rcu_read_lock();
622 list_for_each_entry_rcu(sta, &local->sta_list, list) {
623 if (sdata != sta->sdata ||
624 !test_sta_flag(sta, WLAN_STA_ASSOC))
625 continue;
626 if (!sta->sta.support_p2p_ps) {
627 allow_p2p_go_ps = false;
628 break;
629 }
630 }
631 rcu_read_unlock();
632
633 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
634 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
635 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
636 }
637 }
638
639 /*
640 * should be called with sta_mtx locked
641 * this function replaces the mutex lock
642 * with a RCU lock
643 */
sta_info_insert_finish(struct sta_info * sta)644 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
645 {
646 struct ieee80211_local *local = sta->local;
647 struct ieee80211_sub_if_data *sdata = sta->sdata;
648 struct station_info *sinfo = NULL;
649 int err = 0;
650
651 lockdep_assert_held(&local->sta_mtx);
652
653 /* check if STA exists already */
654 if (sta_info_get_bss(sdata, sta->sta.addr)) {
655 err = -EEXIST;
656 goto out_cleanup;
657 }
658
659 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
660 if (!sinfo) {
661 err = -ENOMEM;
662 goto out_cleanup;
663 }
664
665 local->num_sta++;
666 local->sta_generation++;
667 smp_mb();
668
669 /* simplify things and don't accept BA sessions yet */
670 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
671
672 /* make the station visible */
673 err = sta_info_hash_add(local, sta);
674 if (err)
675 goto out_drop_sta;
676
677 list_add_tail_rcu(&sta->list, &local->sta_list);
678
679 /* update channel context before notifying the driver about state
680 * change, this enables driver using the updated channel context right away.
681 */
682 if (sta->sta_state >= IEEE80211_STA_ASSOC) {
683 ieee80211_recalc_min_chandef(sta->sdata);
684 if (!sta->sta.support_p2p_ps)
685 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
686 }
687
688 /* notify driver */
689 err = sta_info_insert_drv_state(local, sdata, sta);
690 if (err)
691 goto out_remove;
692
693 set_sta_flag(sta, WLAN_STA_INSERTED);
694
695 /* accept BA sessions now */
696 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
697
698 ieee80211_sta_debugfs_add(sta);
699 rate_control_add_sta_debugfs(sta);
700
701 sinfo->generation = local->sta_generation;
702 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
703 kfree(sinfo);
704
705 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
706
707 /* move reference to rcu-protected */
708 rcu_read_lock();
709 mutex_unlock(&local->sta_mtx);
710
711 if (ieee80211_vif_is_mesh(&sdata->vif))
712 mesh_accept_plinks_update(sdata);
713
714 return 0;
715 out_remove:
716 sta_info_hash_del(local, sta);
717 list_del_rcu(&sta->list);
718 out_drop_sta:
719 local->num_sta--;
720 synchronize_net();
721 out_cleanup:
722 cleanup_single_sta(sta);
723 mutex_unlock(&local->sta_mtx);
724 kfree(sinfo);
725 rcu_read_lock();
726 return err;
727 }
728
sta_info_insert_rcu(struct sta_info * sta)729 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
730 {
731 struct ieee80211_local *local = sta->local;
732 int err;
733
734 might_sleep();
735
736 mutex_lock(&local->sta_mtx);
737
738 err = sta_info_insert_check(sta);
739 if (err) {
740 sta_info_free(local, sta);
741 mutex_unlock(&local->sta_mtx);
742 rcu_read_lock();
743 return err;
744 }
745
746 return sta_info_insert_finish(sta);
747 }
748
sta_info_insert(struct sta_info * sta)749 int sta_info_insert(struct sta_info *sta)
750 {
751 int err = sta_info_insert_rcu(sta);
752
753 rcu_read_unlock();
754
755 return err;
756 }
757
__bss_tim_set(u8 * tim,u16 id)758 static inline void __bss_tim_set(u8 *tim, u16 id)
759 {
760 /*
761 * This format has been mandated by the IEEE specifications,
762 * so this line may not be changed to use the __set_bit() format.
763 */
764 tim[id / 8] |= (1 << (id % 8));
765 }
766
__bss_tim_clear(u8 * tim,u16 id)767 static inline void __bss_tim_clear(u8 *tim, u16 id)
768 {
769 /*
770 * This format has been mandated by the IEEE specifications,
771 * so this line may not be changed to use the __clear_bit() format.
772 */
773 tim[id / 8] &= ~(1 << (id % 8));
774 }
775
__bss_tim_get(u8 * tim,u16 id)776 static inline bool __bss_tim_get(u8 *tim, u16 id)
777 {
778 /*
779 * This format has been mandated by the IEEE specifications,
780 * so this line may not be changed to use the test_bit() format.
781 */
782 return tim[id / 8] & (1 << (id % 8));
783 }
784
ieee80211_tids_for_ac(int ac)785 static unsigned long ieee80211_tids_for_ac(int ac)
786 {
787 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
788 switch (ac) {
789 case IEEE80211_AC_VO:
790 return BIT(6) | BIT(7);
791 case IEEE80211_AC_VI:
792 return BIT(4) | BIT(5);
793 case IEEE80211_AC_BE:
794 return BIT(0) | BIT(3);
795 case IEEE80211_AC_BK:
796 return BIT(1) | BIT(2);
797 default:
798 WARN_ON(1);
799 return 0;
800 }
801 }
802
__sta_info_recalc_tim(struct sta_info * sta,bool ignore_pending)803 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
804 {
805 struct ieee80211_local *local = sta->local;
806 struct ps_data *ps;
807 bool indicate_tim = false;
808 u8 ignore_for_tim = sta->sta.uapsd_queues;
809 int ac;
810 u16 id = sta->sta.aid;
811
812 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
813 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
814 if (WARN_ON_ONCE(!sta->sdata->bss))
815 return;
816
817 ps = &sta->sdata->bss->ps;
818 #ifdef CONFIG_MAC80211_MESH
819 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
820 ps = &sta->sdata->u.mesh.ps;
821 #endif
822 } else {
823 return;
824 }
825
826 /* No need to do anything if the driver does all */
827 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
828 return;
829
830 if (sta->dead)
831 goto done;
832
833 /*
834 * If all ACs are delivery-enabled then we should build
835 * the TIM bit for all ACs anyway; if only some are then
836 * we ignore those and build the TIM bit using only the
837 * non-enabled ones.
838 */
839 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
840 ignore_for_tim = 0;
841
842 if (ignore_pending)
843 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
844
845 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
846 unsigned long tids;
847
848 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
849 continue;
850
851 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
852 !skb_queue_empty(&sta->ps_tx_buf[ac]);
853 if (indicate_tim)
854 break;
855
856 tids = ieee80211_tids_for_ac(ac);
857
858 indicate_tim |=
859 sta->driver_buffered_tids & tids;
860 indicate_tim |=
861 sta->txq_buffered_tids & tids;
862 }
863
864 done:
865 spin_lock_bh(&local->tim_lock);
866
867 if (indicate_tim == __bss_tim_get(ps->tim, id))
868 goto out_unlock;
869
870 if (indicate_tim)
871 __bss_tim_set(ps->tim, id);
872 else
873 __bss_tim_clear(ps->tim, id);
874
875 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
876 local->tim_in_locked_section = true;
877 drv_set_tim(local, &sta->sta, indicate_tim);
878 local->tim_in_locked_section = false;
879 }
880
881 out_unlock:
882 spin_unlock_bh(&local->tim_lock);
883 }
884
sta_info_recalc_tim(struct sta_info * sta)885 void sta_info_recalc_tim(struct sta_info *sta)
886 {
887 __sta_info_recalc_tim(sta, false);
888 }
889
sta_info_buffer_expired(struct sta_info * sta,struct sk_buff * skb)890 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
891 {
892 struct ieee80211_tx_info *info;
893 int timeout;
894
895 if (!skb)
896 return false;
897
898 info = IEEE80211_SKB_CB(skb);
899
900 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
901 timeout = (sta->listen_interval *
902 sta->sdata->vif.bss_conf.beacon_int *
903 32 / 15625) * HZ;
904 if (timeout < STA_TX_BUFFER_EXPIRE)
905 timeout = STA_TX_BUFFER_EXPIRE;
906 return time_after(jiffies, info->control.jiffies + timeout);
907 }
908
909
sta_info_cleanup_expire_buffered_ac(struct ieee80211_local * local,struct sta_info * sta,int ac)910 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
911 struct sta_info *sta, int ac)
912 {
913 unsigned long flags;
914 struct sk_buff *skb;
915
916 /*
917 * First check for frames that should expire on the filtered
918 * queue. Frames here were rejected by the driver and are on
919 * a separate queue to avoid reordering with normal PS-buffered
920 * frames. They also aren't accounted for right now in the
921 * total_ps_buffered counter.
922 */
923 for (;;) {
924 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
925 skb = skb_peek(&sta->tx_filtered[ac]);
926 if (sta_info_buffer_expired(sta, skb))
927 skb = __skb_dequeue(&sta->tx_filtered[ac]);
928 else
929 skb = NULL;
930 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
931
932 /*
933 * Frames are queued in order, so if this one
934 * hasn't expired yet we can stop testing. If
935 * we actually reached the end of the queue we
936 * also need to stop, of course.
937 */
938 if (!skb)
939 break;
940 ieee80211_free_txskb(&local->hw, skb);
941 }
942
943 /*
944 * Now also check the normal PS-buffered queue, this will
945 * only find something if the filtered queue was emptied
946 * since the filtered frames are all before the normal PS
947 * buffered frames.
948 */
949 for (;;) {
950 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
951 skb = skb_peek(&sta->ps_tx_buf[ac]);
952 if (sta_info_buffer_expired(sta, skb))
953 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
954 else
955 skb = NULL;
956 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
957
958 /*
959 * frames are queued in order, so if this one
960 * hasn't expired yet (or we reached the end of
961 * the queue) we can stop testing
962 */
963 if (!skb)
964 break;
965
966 local->total_ps_buffered--;
967 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
968 sta->sta.addr);
969 ieee80211_free_txskb(&local->hw, skb);
970 }
971
972 /*
973 * Finally, recalculate the TIM bit for this station -- it might
974 * now be clear because the station was too slow to retrieve its
975 * frames.
976 */
977 sta_info_recalc_tim(sta);
978
979 /*
980 * Return whether there are any frames still buffered, this is
981 * used to check whether the cleanup timer still needs to run,
982 * if there are no frames we don't need to rearm the timer.
983 */
984 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
985 skb_queue_empty(&sta->tx_filtered[ac]));
986 }
987
sta_info_cleanup_expire_buffered(struct ieee80211_local * local,struct sta_info * sta)988 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
989 struct sta_info *sta)
990 {
991 bool have_buffered = false;
992 int ac;
993
994 /* This is only necessary for stations on BSS/MBSS interfaces */
995 if (!sta->sdata->bss &&
996 !ieee80211_vif_is_mesh(&sta->sdata->vif))
997 return false;
998
999 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
1000 have_buffered |=
1001 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
1002
1003 return have_buffered;
1004 }
1005
__sta_info_destroy_part1(struct sta_info * sta)1006 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
1007 {
1008 struct ieee80211_local *local;
1009 struct ieee80211_sub_if_data *sdata;
1010 int ret;
1011
1012 might_sleep();
1013
1014 if (!sta)
1015 return -ENOENT;
1016
1017 local = sta->local;
1018 sdata = sta->sdata;
1019
1020 lockdep_assert_held(&local->sta_mtx);
1021
1022 /*
1023 * Before removing the station from the driver and
1024 * rate control, it might still start new aggregation
1025 * sessions -- block that to make sure the tear-down
1026 * will be sufficient.
1027 */
1028 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1029 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1030
1031 /*
1032 * Before removing the station from the driver there might be pending
1033 * rx frames on RSS queues sent prior to the disassociation - wait for
1034 * all such frames to be processed.
1035 */
1036 drv_sync_rx_queues(local, sta);
1037
1038 ret = sta_info_hash_del(local, sta);
1039 if (WARN_ON(ret))
1040 return ret;
1041
1042 /*
1043 * for TDLS peers, make sure to return to the base channel before
1044 * removal.
1045 */
1046 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1047 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1048 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1049 }
1050
1051 list_del_rcu(&sta->list);
1052 sta->removed = true;
1053
1054 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1055
1056 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1057 rcu_access_pointer(sdata->u.vlan.sta) == sta)
1058 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1059
1060 return 0;
1061 }
1062
__sta_info_destroy_part2(struct sta_info * sta)1063 static void __sta_info_destroy_part2(struct sta_info *sta)
1064 {
1065 struct ieee80211_local *local = sta->local;
1066 struct ieee80211_sub_if_data *sdata = sta->sdata;
1067 struct station_info *sinfo;
1068 int ret;
1069
1070 /*
1071 * NOTE: This assumes at least synchronize_net() was done
1072 * after _part1 and before _part2!
1073 */
1074
1075 might_sleep();
1076 lockdep_assert_held(&local->sta_mtx);
1077
1078 if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1079 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1080 WARN_ON_ONCE(ret);
1081 }
1082
1083 /* now keys can no longer be reached */
1084 ieee80211_free_sta_keys(local, sta);
1085
1086 /* disable TIM bit - last chance to tell driver */
1087 __sta_info_recalc_tim(sta, true);
1088
1089 sta->dead = true;
1090
1091 local->num_sta--;
1092 local->sta_generation++;
1093
1094 while (sta->sta_state > IEEE80211_STA_NONE) {
1095 ret = sta_info_move_state(sta, sta->sta_state - 1);
1096 if (ret) {
1097 WARN_ON_ONCE(1);
1098 break;
1099 }
1100 }
1101
1102 if (sta->uploaded) {
1103 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1104 IEEE80211_STA_NOTEXIST);
1105 WARN_ON_ONCE(ret != 0);
1106 }
1107
1108 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1109
1110 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1111 if (sinfo)
1112 sta_set_sinfo(sta, sinfo, true);
1113 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1114 kfree(sinfo);
1115
1116 ieee80211_sta_debugfs_remove(sta);
1117
1118 ieee80211_destroy_frag_cache(&sta->frags);
1119
1120 cleanup_single_sta(sta);
1121 }
1122
__sta_info_destroy(struct sta_info * sta)1123 int __must_check __sta_info_destroy(struct sta_info *sta)
1124 {
1125 int err = __sta_info_destroy_part1(sta);
1126
1127 if (err)
1128 return err;
1129
1130 synchronize_net();
1131
1132 __sta_info_destroy_part2(sta);
1133
1134 return 0;
1135 }
1136
sta_info_destroy_addr(struct ieee80211_sub_if_data * sdata,const u8 * addr)1137 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1138 {
1139 struct sta_info *sta;
1140 int ret;
1141
1142 mutex_lock(&sdata->local->sta_mtx);
1143 sta = sta_info_get(sdata, addr);
1144 ret = __sta_info_destroy(sta);
1145 mutex_unlock(&sdata->local->sta_mtx);
1146
1147 return ret;
1148 }
1149
sta_info_destroy_addr_bss(struct ieee80211_sub_if_data * sdata,const u8 * addr)1150 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1151 const u8 *addr)
1152 {
1153 struct sta_info *sta;
1154 int ret;
1155
1156 mutex_lock(&sdata->local->sta_mtx);
1157 sta = sta_info_get_bss(sdata, addr);
1158 ret = __sta_info_destroy(sta);
1159 mutex_unlock(&sdata->local->sta_mtx);
1160
1161 return ret;
1162 }
1163
sta_info_cleanup(struct timer_list * t)1164 static void sta_info_cleanup(struct timer_list *t)
1165 {
1166 struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1167 struct sta_info *sta;
1168 bool timer_needed = false;
1169
1170 rcu_read_lock();
1171 list_for_each_entry_rcu(sta, &local->sta_list, list)
1172 if (sta_info_cleanup_expire_buffered(local, sta))
1173 timer_needed = true;
1174 rcu_read_unlock();
1175
1176 if (local->quiescing)
1177 return;
1178
1179 if (!timer_needed)
1180 return;
1181
1182 mod_timer(&local->sta_cleanup,
1183 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1184 }
1185
sta_info_init(struct ieee80211_local * local)1186 int sta_info_init(struct ieee80211_local *local)
1187 {
1188 int err;
1189
1190 err = rhltable_init(&local->sta_hash, &sta_rht_params);
1191 if (err)
1192 return err;
1193
1194 spin_lock_init(&local->tim_lock);
1195 mutex_init(&local->sta_mtx);
1196 INIT_LIST_HEAD(&local->sta_list);
1197
1198 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1199 return 0;
1200 }
1201
sta_info_stop(struct ieee80211_local * local)1202 void sta_info_stop(struct ieee80211_local *local)
1203 {
1204 del_timer_sync(&local->sta_cleanup);
1205 rhltable_destroy(&local->sta_hash);
1206 }
1207
1208
__sta_info_flush(struct ieee80211_sub_if_data * sdata,bool vlans)1209 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1210 {
1211 struct ieee80211_local *local = sdata->local;
1212 struct sta_info *sta, *tmp;
1213 LIST_HEAD(free_list);
1214 int ret = 0;
1215
1216 might_sleep();
1217
1218 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1219 WARN_ON(vlans && !sdata->bss);
1220
1221 mutex_lock(&local->sta_mtx);
1222 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1223 if (sdata == sta->sdata ||
1224 (vlans && sdata->bss == sta->sdata->bss)) {
1225 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1226 list_add(&sta->free_list, &free_list);
1227 ret++;
1228 }
1229 }
1230
1231 if (!list_empty(&free_list)) {
1232 synchronize_net();
1233 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1234 __sta_info_destroy_part2(sta);
1235 }
1236 mutex_unlock(&local->sta_mtx);
1237
1238 return ret;
1239 }
1240
ieee80211_sta_expire(struct ieee80211_sub_if_data * sdata,unsigned long exp_time)1241 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1242 unsigned long exp_time)
1243 {
1244 struct ieee80211_local *local = sdata->local;
1245 struct sta_info *sta, *tmp;
1246
1247 mutex_lock(&local->sta_mtx);
1248
1249 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1250 unsigned long last_active = ieee80211_sta_last_active(sta);
1251
1252 if (sdata != sta->sdata)
1253 continue;
1254
1255 if (time_is_before_jiffies(last_active + exp_time)) {
1256 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1257 sta->sta.addr);
1258
1259 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1260 test_sta_flag(sta, WLAN_STA_PS_STA))
1261 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1262
1263 WARN_ON(__sta_info_destroy(sta));
1264 }
1265 }
1266
1267 mutex_unlock(&local->sta_mtx);
1268 }
1269
ieee80211_find_sta_by_ifaddr(struct ieee80211_hw * hw,const u8 * addr,const u8 * localaddr)1270 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1271 const u8 *addr,
1272 const u8 *localaddr)
1273 {
1274 struct ieee80211_local *local = hw_to_local(hw);
1275 struct rhlist_head *tmp;
1276 struct sta_info *sta;
1277
1278 /*
1279 * Just return a random station if localaddr is NULL
1280 * ... first in list.
1281 */
1282 for_each_sta_info(local, addr, sta, tmp) {
1283 if (localaddr &&
1284 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1285 continue;
1286 if (!sta->uploaded)
1287 return NULL;
1288 return &sta->sta;
1289 }
1290
1291 return NULL;
1292 }
1293 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1294
ieee80211_find_sta(struct ieee80211_vif * vif,const u8 * addr)1295 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1296 const u8 *addr)
1297 {
1298 struct sta_info *sta;
1299
1300 if (!vif)
1301 return NULL;
1302
1303 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1304 if (!sta)
1305 return NULL;
1306
1307 if (!sta->uploaded)
1308 return NULL;
1309
1310 return &sta->sta;
1311 }
1312 EXPORT_SYMBOL(ieee80211_find_sta);
1313
1314 /* powersave support code */
ieee80211_sta_ps_deliver_wakeup(struct sta_info * sta)1315 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1316 {
1317 struct ieee80211_sub_if_data *sdata = sta->sdata;
1318 struct ieee80211_local *local = sdata->local;
1319 struct sk_buff_head pending;
1320 int filtered = 0, buffered = 0, ac, i;
1321 unsigned long flags;
1322 struct ps_data *ps;
1323
1324 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1325 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1326 u.ap);
1327
1328 if (sdata->vif.type == NL80211_IFTYPE_AP)
1329 ps = &sdata->bss->ps;
1330 else if (ieee80211_vif_is_mesh(&sdata->vif))
1331 ps = &sdata->u.mesh.ps;
1332 else
1333 return;
1334
1335 clear_sta_flag(sta, WLAN_STA_SP);
1336
1337 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1338 sta->driver_buffered_tids = 0;
1339 sta->txq_buffered_tids = 0;
1340
1341 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1342 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1343
1344 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1345 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1346 continue;
1347
1348 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1349 }
1350
1351 skb_queue_head_init(&pending);
1352
1353 /* sync with ieee80211_tx_h_unicast_ps_buf */
1354 spin_lock(&sta->ps_lock);
1355 /* Send all buffered frames to the station */
1356 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1357 int count = skb_queue_len(&pending), tmp;
1358
1359 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1360 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1361 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1362 tmp = skb_queue_len(&pending);
1363 filtered += tmp - count;
1364 count = tmp;
1365
1366 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1367 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1368 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1369 tmp = skb_queue_len(&pending);
1370 buffered += tmp - count;
1371 }
1372
1373 ieee80211_add_pending_skbs(local, &pending);
1374
1375 /* now we're no longer in the deliver code */
1376 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1377
1378 /* The station might have polled and then woken up before we responded,
1379 * so clear these flags now to avoid them sticking around.
1380 */
1381 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1382 clear_sta_flag(sta, WLAN_STA_UAPSD);
1383 spin_unlock(&sta->ps_lock);
1384
1385 atomic_dec(&ps->num_sta_ps);
1386
1387 local->total_ps_buffered -= buffered;
1388
1389 sta_info_recalc_tim(sta);
1390
1391 ps_dbg(sdata,
1392 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1393 sta->sta.addr, sta->sta.aid, filtered, buffered);
1394
1395 ieee80211_check_fast_xmit(sta);
1396 }
1397
ieee80211_send_null_response(struct sta_info * sta,int tid,enum ieee80211_frame_release_type reason,bool call_driver,bool more_data)1398 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1399 enum ieee80211_frame_release_type reason,
1400 bool call_driver, bool more_data)
1401 {
1402 struct ieee80211_sub_if_data *sdata = sta->sdata;
1403 struct ieee80211_local *local = sdata->local;
1404 struct ieee80211_qos_hdr *nullfunc;
1405 struct sk_buff *skb;
1406 int size = sizeof(*nullfunc);
1407 __le16 fc;
1408 bool qos = sta->sta.wme;
1409 struct ieee80211_tx_info *info;
1410 struct ieee80211_chanctx_conf *chanctx_conf;
1411
1412 if (qos) {
1413 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1414 IEEE80211_STYPE_QOS_NULLFUNC |
1415 IEEE80211_FCTL_FROMDS);
1416 } else {
1417 size -= 2;
1418 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1419 IEEE80211_STYPE_NULLFUNC |
1420 IEEE80211_FCTL_FROMDS);
1421 }
1422
1423 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1424 if (!skb)
1425 return;
1426
1427 skb_reserve(skb, local->hw.extra_tx_headroom);
1428
1429 nullfunc = skb_put(skb, size);
1430 nullfunc->frame_control = fc;
1431 nullfunc->duration_id = 0;
1432 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1433 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1434 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1435 nullfunc->seq_ctrl = 0;
1436
1437 skb->priority = tid;
1438 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1439 if (qos) {
1440 nullfunc->qos_ctrl = cpu_to_le16(tid);
1441
1442 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1443 nullfunc->qos_ctrl |=
1444 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1445 if (more_data)
1446 nullfunc->frame_control |=
1447 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1448 }
1449 }
1450
1451 info = IEEE80211_SKB_CB(skb);
1452
1453 /*
1454 * Tell TX path to send this frame even though the
1455 * STA may still remain is PS mode after this frame
1456 * exchange. Also set EOSP to indicate this packet
1457 * ends the poll/service period.
1458 */
1459 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1460 IEEE80211_TX_STATUS_EOSP |
1461 IEEE80211_TX_CTL_REQ_TX_STATUS;
1462
1463 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1464
1465 if (call_driver)
1466 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1467 reason, false);
1468
1469 skb->dev = sdata->dev;
1470
1471 rcu_read_lock();
1472 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf);
1473 if (WARN_ON(!chanctx_conf)) {
1474 rcu_read_unlock();
1475 kfree_skb(skb);
1476 return;
1477 }
1478
1479 info->band = chanctx_conf->def.chan->band;
1480 ieee80211_xmit(sdata, sta, skb);
1481 rcu_read_unlock();
1482 }
1483
find_highest_prio_tid(unsigned long tids)1484 static int find_highest_prio_tid(unsigned long tids)
1485 {
1486 /* lower 3 TIDs aren't ordered perfectly */
1487 if (tids & 0xF8)
1488 return fls(tids) - 1;
1489 /* TID 0 is BE just like TID 3 */
1490 if (tids & BIT(0))
1491 return 0;
1492 return fls(tids) - 1;
1493 }
1494
1495 /* Indicates if the MORE_DATA bit should be set in the last
1496 * frame obtained by ieee80211_sta_ps_get_frames.
1497 * Note that driver_release_tids is relevant only if
1498 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1499 */
1500 static bool
ieee80211_sta_ps_more_data(struct sta_info * sta,u8 ignored_acs,enum ieee80211_frame_release_type reason,unsigned long driver_release_tids)1501 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1502 enum ieee80211_frame_release_type reason,
1503 unsigned long driver_release_tids)
1504 {
1505 int ac;
1506
1507 /* If the driver has data on more than one TID then
1508 * certainly there's more data if we release just a
1509 * single frame now (from a single TID). This will
1510 * only happen for PS-Poll.
1511 */
1512 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1513 hweight16(driver_release_tids) > 1)
1514 return true;
1515
1516 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1517 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1518 continue;
1519
1520 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1521 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1522 return true;
1523 }
1524
1525 return false;
1526 }
1527
1528 static void
ieee80211_sta_ps_get_frames(struct sta_info * sta,int n_frames,u8 ignored_acs,enum ieee80211_frame_release_type reason,struct sk_buff_head * frames,unsigned long * driver_release_tids)1529 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1530 enum ieee80211_frame_release_type reason,
1531 struct sk_buff_head *frames,
1532 unsigned long *driver_release_tids)
1533 {
1534 struct ieee80211_sub_if_data *sdata = sta->sdata;
1535 struct ieee80211_local *local = sdata->local;
1536 int ac;
1537
1538 /* Get response frame(s) and more data bit for the last one. */
1539 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1540 unsigned long tids;
1541
1542 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1543 continue;
1544
1545 tids = ieee80211_tids_for_ac(ac);
1546
1547 /* if we already have frames from software, then we can't also
1548 * release from hardware queues
1549 */
1550 if (skb_queue_empty(frames)) {
1551 *driver_release_tids |=
1552 sta->driver_buffered_tids & tids;
1553 *driver_release_tids |= sta->txq_buffered_tids & tids;
1554 }
1555
1556 if (!*driver_release_tids) {
1557 struct sk_buff *skb;
1558
1559 while (n_frames > 0) {
1560 skb = skb_dequeue(&sta->tx_filtered[ac]);
1561 if (!skb) {
1562 skb = skb_dequeue(
1563 &sta->ps_tx_buf[ac]);
1564 if (skb)
1565 local->total_ps_buffered--;
1566 }
1567 if (!skb)
1568 break;
1569 n_frames--;
1570 __skb_queue_tail(frames, skb);
1571 }
1572 }
1573
1574 /* If we have more frames buffered on this AC, then abort the
1575 * loop since we can't send more data from other ACs before
1576 * the buffered frames from this.
1577 */
1578 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1579 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1580 break;
1581 }
1582 }
1583
1584 static void
ieee80211_sta_ps_deliver_response(struct sta_info * sta,int n_frames,u8 ignored_acs,enum ieee80211_frame_release_type reason)1585 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1586 int n_frames, u8 ignored_acs,
1587 enum ieee80211_frame_release_type reason)
1588 {
1589 struct ieee80211_sub_if_data *sdata = sta->sdata;
1590 struct ieee80211_local *local = sdata->local;
1591 unsigned long driver_release_tids = 0;
1592 struct sk_buff_head frames;
1593 bool more_data;
1594
1595 /* Service or PS-Poll period starts */
1596 set_sta_flag(sta, WLAN_STA_SP);
1597
1598 __skb_queue_head_init(&frames);
1599
1600 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1601 &frames, &driver_release_tids);
1602
1603 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1604
1605 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1606 driver_release_tids =
1607 BIT(find_highest_prio_tid(driver_release_tids));
1608
1609 if (skb_queue_empty(&frames) && !driver_release_tids) {
1610 int tid, ac;
1611
1612 /*
1613 * For PS-Poll, this can only happen due to a race condition
1614 * when we set the TIM bit and the station notices it, but
1615 * before it can poll for the frame we expire it.
1616 *
1617 * For uAPSD, this is said in the standard (11.2.1.5 h):
1618 * At each unscheduled SP for a non-AP STA, the AP shall
1619 * attempt to transmit at least one MSDU or MMPDU, but no
1620 * more than the value specified in the Max SP Length field
1621 * in the QoS Capability element from delivery-enabled ACs,
1622 * that are destined for the non-AP STA.
1623 *
1624 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1625 */
1626
1627 /* This will evaluate to 1, 3, 5 or 7. */
1628 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1629 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1630 break;
1631 tid = 7 - 2 * ac;
1632
1633 ieee80211_send_null_response(sta, tid, reason, true, false);
1634 } else if (!driver_release_tids) {
1635 struct sk_buff_head pending;
1636 struct sk_buff *skb;
1637 int num = 0;
1638 u16 tids = 0;
1639 bool need_null = false;
1640
1641 skb_queue_head_init(&pending);
1642
1643 while ((skb = __skb_dequeue(&frames))) {
1644 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1645 struct ieee80211_hdr *hdr = (void *) skb->data;
1646 u8 *qoshdr = NULL;
1647
1648 num++;
1649
1650 /*
1651 * Tell TX path to send this frame even though the
1652 * STA may still remain is PS mode after this frame
1653 * exchange.
1654 */
1655 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1656 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1657
1658 /*
1659 * Use MoreData flag to indicate whether there are
1660 * more buffered frames for this STA
1661 */
1662 if (more_data || !skb_queue_empty(&frames))
1663 hdr->frame_control |=
1664 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1665 else
1666 hdr->frame_control &=
1667 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1668
1669 if (ieee80211_is_data_qos(hdr->frame_control) ||
1670 ieee80211_is_qos_nullfunc(hdr->frame_control))
1671 qoshdr = ieee80211_get_qos_ctl(hdr);
1672
1673 tids |= BIT(skb->priority);
1674
1675 __skb_queue_tail(&pending, skb);
1676
1677 /* end service period after last frame or add one */
1678 if (!skb_queue_empty(&frames))
1679 continue;
1680
1681 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1682 /* for PS-Poll, there's only one frame */
1683 info->flags |= IEEE80211_TX_STATUS_EOSP |
1684 IEEE80211_TX_CTL_REQ_TX_STATUS;
1685 break;
1686 }
1687
1688 /* For uAPSD, things are a bit more complicated. If the
1689 * last frame has a QoS header (i.e. is a QoS-data or
1690 * QoS-nulldata frame) then just set the EOSP bit there
1691 * and be done.
1692 * If the frame doesn't have a QoS header (which means
1693 * it should be a bufferable MMPDU) then we can't set
1694 * the EOSP bit in the QoS header; add a QoS-nulldata
1695 * frame to the list to send it after the MMPDU.
1696 *
1697 * Note that this code is only in the mac80211-release
1698 * code path, we assume that the driver will not buffer
1699 * anything but QoS-data frames, or if it does, will
1700 * create the QoS-nulldata frame by itself if needed.
1701 *
1702 * Cf. 802.11-2012 10.2.1.10 (c).
1703 */
1704 if (qoshdr) {
1705 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1706
1707 info->flags |= IEEE80211_TX_STATUS_EOSP |
1708 IEEE80211_TX_CTL_REQ_TX_STATUS;
1709 } else {
1710 /* The standard isn't completely clear on this
1711 * as it says the more-data bit should be set
1712 * if there are more BUs. The QoS-Null frame
1713 * we're about to send isn't buffered yet, we
1714 * only create it below, but let's pretend it
1715 * was buffered just in case some clients only
1716 * expect more-data=0 when eosp=1.
1717 */
1718 hdr->frame_control |=
1719 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1720 need_null = true;
1721 num++;
1722 }
1723 break;
1724 }
1725
1726 drv_allow_buffered_frames(local, sta, tids, num,
1727 reason, more_data);
1728
1729 ieee80211_add_pending_skbs(local, &pending);
1730
1731 if (need_null)
1732 ieee80211_send_null_response(
1733 sta, find_highest_prio_tid(tids),
1734 reason, false, false);
1735
1736 sta_info_recalc_tim(sta);
1737 } else {
1738 int tid;
1739
1740 /*
1741 * We need to release a frame that is buffered somewhere in the
1742 * driver ... it'll have to handle that.
1743 * Note that the driver also has to check the number of frames
1744 * on the TIDs we're releasing from - if there are more than
1745 * n_frames it has to set the more-data bit (if we didn't ask
1746 * it to set it anyway due to other buffered frames); if there
1747 * are fewer than n_frames it has to make sure to adjust that
1748 * to allow the service period to end properly.
1749 */
1750 drv_release_buffered_frames(local, sta, driver_release_tids,
1751 n_frames, reason, more_data);
1752
1753 /*
1754 * Note that we don't recalculate the TIM bit here as it would
1755 * most likely have no effect at all unless the driver told us
1756 * that the TID(s) became empty before returning here from the
1757 * release function.
1758 * Either way, however, when the driver tells us that the TID(s)
1759 * became empty or we find that a txq became empty, we'll do the
1760 * TIM recalculation.
1761 */
1762
1763 if (!sta->sta.txq[0])
1764 return;
1765
1766 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1767 if (!sta->sta.txq[tid] ||
1768 !(driver_release_tids & BIT(tid)) ||
1769 txq_has_queue(sta->sta.txq[tid]))
1770 continue;
1771
1772 sta_info_recalc_tim(sta);
1773 break;
1774 }
1775 }
1776 }
1777
ieee80211_sta_ps_deliver_poll_response(struct sta_info * sta)1778 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1779 {
1780 u8 ignore_for_response = sta->sta.uapsd_queues;
1781
1782 /*
1783 * If all ACs are delivery-enabled then we should reply
1784 * from any of them, if only some are enabled we reply
1785 * only from the non-enabled ones.
1786 */
1787 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1788 ignore_for_response = 0;
1789
1790 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1791 IEEE80211_FRAME_RELEASE_PSPOLL);
1792 }
1793
ieee80211_sta_ps_deliver_uapsd(struct sta_info * sta)1794 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1795 {
1796 int n_frames = sta->sta.max_sp;
1797 u8 delivery_enabled = sta->sta.uapsd_queues;
1798
1799 /*
1800 * If we ever grow support for TSPEC this might happen if
1801 * the TSPEC update from hostapd comes in between a trigger
1802 * frame setting WLAN_STA_UAPSD in the RX path and this
1803 * actually getting called.
1804 */
1805 if (!delivery_enabled)
1806 return;
1807
1808 switch (sta->sta.max_sp) {
1809 case 1:
1810 n_frames = 2;
1811 break;
1812 case 2:
1813 n_frames = 4;
1814 break;
1815 case 3:
1816 n_frames = 6;
1817 break;
1818 case 0:
1819 /* XXX: what is a good value? */
1820 n_frames = 128;
1821 break;
1822 }
1823
1824 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1825 IEEE80211_FRAME_RELEASE_UAPSD);
1826 }
1827
ieee80211_sta_block_awake(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,bool block)1828 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1829 struct ieee80211_sta *pubsta, bool block)
1830 {
1831 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1832
1833 trace_api_sta_block_awake(sta->local, pubsta, block);
1834
1835 if (block) {
1836 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1837 ieee80211_clear_fast_xmit(sta);
1838 return;
1839 }
1840
1841 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1842 return;
1843
1844 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1845 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1846 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1847 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1848 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1849 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1850 /* must be asleep in this case */
1851 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1852 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1853 } else {
1854 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1855 ieee80211_check_fast_xmit(sta);
1856 }
1857 }
1858 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1859
ieee80211_sta_eosp(struct ieee80211_sta * pubsta)1860 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1861 {
1862 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1863 struct ieee80211_local *local = sta->local;
1864
1865 trace_api_eosp(local, pubsta);
1866
1867 clear_sta_flag(sta, WLAN_STA_SP);
1868 }
1869 EXPORT_SYMBOL(ieee80211_sta_eosp);
1870
ieee80211_send_eosp_nullfunc(struct ieee80211_sta * pubsta,int tid)1871 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1872 {
1873 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1874 enum ieee80211_frame_release_type reason;
1875 bool more_data;
1876
1877 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1878
1879 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1880 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1881 reason, 0);
1882
1883 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1884 }
1885 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1886
ieee80211_sta_set_buffered(struct ieee80211_sta * pubsta,u8 tid,bool buffered)1887 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1888 u8 tid, bool buffered)
1889 {
1890 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1891
1892 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1893 return;
1894
1895 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1896
1897 if (buffered)
1898 set_bit(tid, &sta->driver_buffered_tids);
1899 else
1900 clear_bit(tid, &sta->driver_buffered_tids);
1901
1902 sta_info_recalc_tim(sta);
1903 }
1904 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1905
ieee80211_register_airtime(struct ieee80211_txq * txq,u32 tx_airtime,u32 rx_airtime)1906 void ieee80211_register_airtime(struct ieee80211_txq *txq,
1907 u32 tx_airtime, u32 rx_airtime)
1908 {
1909 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif);
1910 struct ieee80211_local *local = sdata->local;
1911 u64 weight_sum, weight_sum_reciprocal;
1912 struct airtime_sched_info *air_sched;
1913 struct airtime_info *air_info;
1914 u32 airtime = 0;
1915
1916 air_sched = &local->airtime[txq->ac];
1917 air_info = to_airtime_info(txq);
1918
1919 if (local->airtime_flags & AIRTIME_USE_TX)
1920 airtime += tx_airtime;
1921 if (local->airtime_flags & AIRTIME_USE_RX)
1922 airtime += rx_airtime;
1923
1924 /* Weights scale so the unit weight is 256 */
1925 airtime <<= 8;
1926
1927 spin_lock_bh(&air_sched->lock);
1928
1929 air_info->tx_airtime += tx_airtime;
1930 air_info->rx_airtime += rx_airtime;
1931
1932 if (air_sched->weight_sum) {
1933 weight_sum = air_sched->weight_sum;
1934 weight_sum_reciprocal = air_sched->weight_sum_reciprocal;
1935 } else {
1936 weight_sum = air_info->weight;
1937 weight_sum_reciprocal = air_info->weight_reciprocal;
1938 }
1939
1940 /* Round the calculation of global vt */
1941 air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) *
1942 weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64;
1943 air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) *
1944 air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32;
1945 ieee80211_resort_txq(&local->hw, txq);
1946
1947 spin_unlock_bh(&air_sched->lock);
1948 }
1949
ieee80211_sta_register_airtime(struct ieee80211_sta * pubsta,u8 tid,u32 tx_airtime,u32 rx_airtime)1950 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1951 u32 tx_airtime, u32 rx_airtime)
1952 {
1953 struct ieee80211_txq *txq = pubsta->txq[tid];
1954
1955 if (!txq)
1956 return;
1957
1958 ieee80211_register_airtime(txq, tx_airtime, rx_airtime);
1959 }
1960 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1961
ieee80211_sta_update_pending_airtime(struct ieee80211_local * local,struct sta_info * sta,u8 ac,u16 tx_airtime,bool tx_completed)1962 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1963 struct sta_info *sta, u8 ac,
1964 u16 tx_airtime, bool tx_completed)
1965 {
1966 int tx_pending;
1967
1968 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1969 return;
1970
1971 if (!tx_completed) {
1972 if (sta)
1973 atomic_add(tx_airtime,
1974 &sta->airtime[ac].aql_tx_pending);
1975
1976 atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1977 return;
1978 }
1979
1980 if (sta) {
1981 tx_pending = atomic_sub_return(tx_airtime,
1982 &sta->airtime[ac].aql_tx_pending);
1983 if (tx_pending < 0)
1984 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1985 tx_pending, 0);
1986 }
1987
1988 tx_pending = atomic_sub_return(tx_airtime,
1989 &local->aql_total_pending_airtime);
1990 if (WARN_ONCE(tx_pending < 0,
1991 "Device %s AC %d pending airtime underflow: %u, %u",
1992 wiphy_name(local->hw.wiphy), ac, tx_pending,
1993 tx_airtime))
1994 atomic_cmpxchg(&local->aql_total_pending_airtime,
1995 tx_pending, 0);
1996 }
1997
sta_info_move_state(struct sta_info * sta,enum ieee80211_sta_state new_state)1998 int sta_info_move_state(struct sta_info *sta,
1999 enum ieee80211_sta_state new_state)
2000 {
2001 might_sleep();
2002
2003 if (sta->sta_state == new_state)
2004 return 0;
2005
2006 /* check allowed transitions first */
2007
2008 switch (new_state) {
2009 case IEEE80211_STA_NONE:
2010 if (sta->sta_state != IEEE80211_STA_AUTH)
2011 return -EINVAL;
2012 break;
2013 case IEEE80211_STA_AUTH:
2014 if (sta->sta_state != IEEE80211_STA_NONE &&
2015 sta->sta_state != IEEE80211_STA_ASSOC)
2016 return -EINVAL;
2017 break;
2018 case IEEE80211_STA_ASSOC:
2019 if (sta->sta_state != IEEE80211_STA_AUTH &&
2020 sta->sta_state != IEEE80211_STA_AUTHORIZED)
2021 return -EINVAL;
2022 break;
2023 case IEEE80211_STA_AUTHORIZED:
2024 if (sta->sta_state != IEEE80211_STA_ASSOC)
2025 return -EINVAL;
2026 break;
2027 default:
2028 WARN(1, "invalid state %d", new_state);
2029 return -EINVAL;
2030 }
2031
2032 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
2033 sta->sta.addr, new_state);
2034
2035 /*
2036 * notify the driver before the actual changes so it can
2037 * fail the transition
2038 */
2039 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
2040 int err = drv_sta_state(sta->local, sta->sdata, sta,
2041 sta->sta_state, new_state);
2042 if (err)
2043 return err;
2044 }
2045
2046 /* reflect the change in all state variables */
2047
2048 switch (new_state) {
2049 case IEEE80211_STA_NONE:
2050 if (sta->sta_state == IEEE80211_STA_AUTH)
2051 clear_bit(WLAN_STA_AUTH, &sta->_flags);
2052 break;
2053 case IEEE80211_STA_AUTH:
2054 if (sta->sta_state == IEEE80211_STA_NONE) {
2055 set_bit(WLAN_STA_AUTH, &sta->_flags);
2056 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2057 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2058 ieee80211_recalc_min_chandef(sta->sdata);
2059 if (!sta->sta.support_p2p_ps)
2060 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2061 }
2062 break;
2063 case IEEE80211_STA_ASSOC:
2064 if (sta->sta_state == IEEE80211_STA_AUTH) {
2065 set_bit(WLAN_STA_ASSOC, &sta->_flags);
2066 sta->assoc_at = ktime_get_boottime_ns();
2067 ieee80211_recalc_min_chandef(sta->sdata);
2068 if (!sta->sta.support_p2p_ps)
2069 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2070 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2071 ieee80211_vif_dec_num_mcast(sta->sdata);
2072 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2073 ieee80211_clear_fast_xmit(sta);
2074 ieee80211_clear_fast_rx(sta);
2075 }
2076 break;
2077 case IEEE80211_STA_AUTHORIZED:
2078 if (sta->sta_state == IEEE80211_STA_ASSOC) {
2079 ieee80211_vif_inc_num_mcast(sta->sdata);
2080 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2081 ieee80211_check_fast_xmit(sta);
2082 ieee80211_check_fast_rx(sta);
2083 }
2084 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2085 sta->sdata->vif.type == NL80211_IFTYPE_AP)
2086 cfg80211_send_layer2_update(sta->sdata->dev,
2087 sta->sta.addr);
2088 break;
2089 default:
2090 break;
2091 }
2092
2093 sta->sta_state = new_state;
2094
2095 return 0;
2096 }
2097
sta_info_tx_streams(struct sta_info * sta)2098 u8 sta_info_tx_streams(struct sta_info *sta)
2099 {
2100 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.deflink.ht_cap;
2101 u8 rx_streams;
2102
2103 if (!sta->sta.deflink.ht_cap.ht_supported)
2104 return 1;
2105
2106 if (sta->sta.deflink.vht_cap.vht_supported) {
2107 int i;
2108 u16 tx_mcs_map =
2109 le16_to_cpu(sta->sta.deflink.vht_cap.vht_mcs.tx_mcs_map);
2110
2111 for (i = 7; i >= 0; i--)
2112 if ((tx_mcs_map & (0x3 << (i * 2))) !=
2113 IEEE80211_VHT_MCS_NOT_SUPPORTED)
2114 return i + 1;
2115 }
2116
2117 if (ht_cap->mcs.rx_mask[3])
2118 rx_streams = 4;
2119 else if (ht_cap->mcs.rx_mask[2])
2120 rx_streams = 3;
2121 else if (ht_cap->mcs.rx_mask[1])
2122 rx_streams = 2;
2123 else
2124 rx_streams = 1;
2125
2126 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2127 return rx_streams;
2128
2129 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2130 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2131 }
2132
2133 static struct ieee80211_sta_rx_stats *
sta_get_last_rx_stats(struct sta_info * sta)2134 sta_get_last_rx_stats(struct sta_info *sta)
2135 {
2136 struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats;
2137 int cpu;
2138
2139 if (!sta->deflink.pcpu_rx_stats)
2140 return stats;
2141
2142 for_each_possible_cpu(cpu) {
2143 struct ieee80211_sta_rx_stats *cpustats;
2144
2145 cpustats = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu);
2146
2147 if (time_after(cpustats->last_rx, stats->last_rx))
2148 stats = cpustats;
2149 }
2150
2151 return stats;
2152 }
2153
sta_stats_decode_rate(struct ieee80211_local * local,u32 rate,struct rate_info * rinfo)2154 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2155 struct rate_info *rinfo)
2156 {
2157 rinfo->bw = STA_STATS_GET(BW, rate);
2158
2159 switch (STA_STATS_GET(TYPE, rate)) {
2160 case STA_STATS_RATE_TYPE_VHT:
2161 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2162 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2163 rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2164 if (STA_STATS_GET(SGI, rate))
2165 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2166 break;
2167 case STA_STATS_RATE_TYPE_HT:
2168 rinfo->flags = RATE_INFO_FLAGS_MCS;
2169 rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2170 if (STA_STATS_GET(SGI, rate))
2171 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2172 break;
2173 case STA_STATS_RATE_TYPE_LEGACY: {
2174 struct ieee80211_supported_band *sband;
2175 u16 brate;
2176 unsigned int shift;
2177 int band = STA_STATS_GET(LEGACY_BAND, rate);
2178 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2179
2180 sband = local->hw.wiphy->bands[band];
2181
2182 if (WARN_ON_ONCE(!sband->bitrates))
2183 break;
2184
2185 brate = sband->bitrates[rate_idx].bitrate;
2186 if (rinfo->bw == RATE_INFO_BW_5)
2187 shift = 2;
2188 else if (rinfo->bw == RATE_INFO_BW_10)
2189 shift = 1;
2190 else
2191 shift = 0;
2192 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2193 break;
2194 }
2195 case STA_STATS_RATE_TYPE_HE:
2196 rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2197 rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2198 rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2199 rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2200 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2201 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2202 break;
2203 }
2204 }
2205
sta_set_rate_info_rx(struct sta_info * sta,struct rate_info * rinfo)2206 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2207 {
2208 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2209
2210 if (rate == STA_STATS_RATE_INVALID)
2211 return -EINVAL;
2212
2213 sta_stats_decode_rate(sta->local, rate, rinfo);
2214 return 0;
2215 }
2216
sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats * rxstats,int tid)2217 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2218 int tid)
2219 {
2220 unsigned int start;
2221 u64 value;
2222
2223 do {
2224 start = u64_stats_fetch_begin_irq(&rxstats->syncp);
2225 value = rxstats->msdu[tid];
2226 } while (u64_stats_fetch_retry_irq(&rxstats->syncp, start));
2227
2228 return value;
2229 }
2230
sta_set_tidstats(struct sta_info * sta,struct cfg80211_tid_stats * tidstats,int tid)2231 static void sta_set_tidstats(struct sta_info *sta,
2232 struct cfg80211_tid_stats *tidstats,
2233 int tid)
2234 {
2235 struct ieee80211_local *local = sta->local;
2236 int cpu;
2237
2238 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2239 tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->deflink.rx_stats,
2240 tid);
2241
2242 if (sta->deflink.pcpu_rx_stats) {
2243 for_each_possible_cpu(cpu) {
2244 struct ieee80211_sta_rx_stats *cpurxs;
2245
2246 cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats,
2247 cpu);
2248 tidstats->rx_msdu +=
2249 sta_get_tidstats_msdu(cpurxs, tid);
2250 }
2251 }
2252
2253 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2254 }
2255
2256 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2257 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2258 tidstats->tx_msdu = sta->deflink.tx_stats.msdu[tid];
2259 }
2260
2261 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2262 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2263 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2264 tidstats->tx_msdu_retries = sta->deflink.status_stats.msdu_retries[tid];
2265 }
2266
2267 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2268 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2269 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2270 tidstats->tx_msdu_failed = sta->deflink.status_stats.msdu_failed[tid];
2271 }
2272
2273 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2274 spin_lock_bh(&local->fq.lock);
2275 rcu_read_lock();
2276
2277 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2278 ieee80211_fill_txq_stats(&tidstats->txq_stats,
2279 to_txq_info(sta->sta.txq[tid]));
2280
2281 rcu_read_unlock();
2282 spin_unlock_bh(&local->fq.lock);
2283 }
2284 }
2285
sta_get_stats_bytes(struct ieee80211_sta_rx_stats * rxstats)2286 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2287 {
2288 unsigned int start;
2289 u64 value;
2290
2291 do {
2292 start = u64_stats_fetch_begin_irq(&rxstats->syncp);
2293 value = rxstats->bytes;
2294 } while (u64_stats_fetch_retry_irq(&rxstats->syncp, start));
2295
2296 return value;
2297 }
2298
sta_set_sinfo(struct sta_info * sta,struct station_info * sinfo,bool tidstats)2299 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2300 bool tidstats)
2301 {
2302 struct ieee80211_sub_if_data *sdata = sta->sdata;
2303 struct ieee80211_local *local = sdata->local;
2304 u32 thr = 0;
2305 int i, ac, cpu;
2306 struct ieee80211_sta_rx_stats *last_rxstats;
2307
2308 last_rxstats = sta_get_last_rx_stats(sta);
2309
2310 sinfo->generation = sdata->local->sta_generation;
2311
2312 /* do before driver, so beacon filtering drivers have a
2313 * chance to e.g. just add the number of filtered beacons
2314 * (or just modify the value entirely, of course)
2315 */
2316 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2317 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2318
2319 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2320 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2321 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2322 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2323 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2324 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2325 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2326
2327 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2328 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2329 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2330 }
2331
2332 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2333 sinfo->assoc_at = sta->assoc_at;
2334 sinfo->inactive_time =
2335 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2336
2337 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2338 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2339 sinfo->tx_bytes = 0;
2340 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2341 sinfo->tx_bytes += sta->deflink.tx_stats.bytes[ac];
2342 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2343 }
2344
2345 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2346 sinfo->tx_packets = 0;
2347 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2348 sinfo->tx_packets += sta->deflink.tx_stats.packets[ac];
2349 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2350 }
2351
2352 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2353 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2354 sinfo->rx_bytes += sta_get_stats_bytes(&sta->deflink.rx_stats);
2355
2356 if (sta->deflink.pcpu_rx_stats) {
2357 for_each_possible_cpu(cpu) {
2358 struct ieee80211_sta_rx_stats *cpurxs;
2359
2360 cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats,
2361 cpu);
2362 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2363 }
2364 }
2365
2366 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2367 }
2368
2369 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2370 sinfo->rx_packets = sta->deflink.rx_stats.packets;
2371 if (sta->deflink.pcpu_rx_stats) {
2372 for_each_possible_cpu(cpu) {
2373 struct ieee80211_sta_rx_stats *cpurxs;
2374
2375 cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats,
2376 cpu);
2377 sinfo->rx_packets += cpurxs->packets;
2378 }
2379 }
2380 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2381 }
2382
2383 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2384 sinfo->tx_retries = sta->deflink.status_stats.retry_count;
2385 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2386 }
2387
2388 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2389 sinfo->tx_failed = sta->deflink.status_stats.retry_failed;
2390 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2391 }
2392
2393 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2394 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2395 sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2396 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2397 }
2398
2399 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2400 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2401 sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2402 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2403 }
2404
2405 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2406 sinfo->airtime_weight = sta->airtime[0].weight;
2407 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2408 }
2409
2410 sinfo->rx_dropped_misc = sta->deflink.rx_stats.dropped;
2411 if (sta->deflink.pcpu_rx_stats) {
2412 for_each_possible_cpu(cpu) {
2413 struct ieee80211_sta_rx_stats *cpurxs;
2414
2415 cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu);
2416 sinfo->rx_dropped_misc += cpurxs->dropped;
2417 }
2418 }
2419
2420 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2421 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2422 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2423 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2424 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2425 }
2426
2427 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2428 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2429 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2430 sinfo->signal = (s8)last_rxstats->last_signal;
2431 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2432 }
2433
2434 if (!sta->deflink.pcpu_rx_stats &&
2435 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2436 sinfo->signal_avg =
2437 -ewma_signal_read(&sta->deflink.rx_stats_avg.signal);
2438 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2439 }
2440 }
2441
2442 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2443 * the sta->rx_stats struct, so the check here is fine with and without
2444 * pcpu statistics
2445 */
2446 if (last_rxstats->chains &&
2447 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2448 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2449 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2450 if (!sta->deflink.pcpu_rx_stats)
2451 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2452
2453 sinfo->chains = last_rxstats->chains;
2454
2455 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2456 sinfo->chain_signal[i] =
2457 last_rxstats->chain_signal_last[i];
2458 sinfo->chain_signal_avg[i] =
2459 -ewma_signal_read(&sta->deflink.rx_stats_avg.chain_signal[i]);
2460 }
2461 }
2462
2463 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2464 sta_set_rate_info_tx(sta, &sta->deflink.tx_stats.last_rate,
2465 &sinfo->txrate);
2466 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2467 }
2468
2469 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2470 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2471 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2472 }
2473
2474 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2475 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2476 sta_set_tidstats(sta, &sinfo->pertid[i], i);
2477 }
2478
2479 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2480 #ifdef CONFIG_MAC80211_MESH
2481 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2482 BIT_ULL(NL80211_STA_INFO_PLID) |
2483 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2484 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2485 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2486 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2487 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) |
2488 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS);
2489
2490 sinfo->llid = sta->mesh->llid;
2491 sinfo->plid = sta->mesh->plid;
2492 sinfo->plink_state = sta->mesh->plink_state;
2493 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2494 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2495 sinfo->t_offset = sta->mesh->t_offset;
2496 }
2497 sinfo->local_pm = sta->mesh->local_pm;
2498 sinfo->peer_pm = sta->mesh->peer_pm;
2499 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2500 sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2501 sinfo->connected_to_as = sta->mesh->connected_to_as;
2502 #endif
2503 }
2504
2505 sinfo->bss_param.flags = 0;
2506 if (sdata->vif.bss_conf.use_cts_prot)
2507 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2508 if (sdata->vif.bss_conf.use_short_preamble)
2509 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2510 if (sdata->vif.bss_conf.use_short_slot)
2511 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2512 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2513 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2514
2515 sinfo->sta_flags.set = 0;
2516 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2517 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2518 BIT(NL80211_STA_FLAG_WME) |
2519 BIT(NL80211_STA_FLAG_MFP) |
2520 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2521 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2522 BIT(NL80211_STA_FLAG_TDLS_PEER);
2523 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2524 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2525 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2526 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2527 if (sta->sta.wme)
2528 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2529 if (test_sta_flag(sta, WLAN_STA_MFP))
2530 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2531 if (test_sta_flag(sta, WLAN_STA_AUTH))
2532 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2533 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2534 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2535 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2536 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2537
2538 thr = sta_get_expected_throughput(sta);
2539
2540 if (thr != 0) {
2541 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2542 sinfo->expected_throughput = thr;
2543 }
2544
2545 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2546 sta->deflink.status_stats.ack_signal_filled) {
2547 sinfo->ack_signal = sta->deflink.status_stats.last_ack_signal;
2548 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2549 }
2550
2551 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2552 sta->deflink.status_stats.ack_signal_filled) {
2553 sinfo->avg_ack_signal =
2554 -(s8)ewma_avg_signal_read(
2555 &sta->deflink.status_stats.avg_ack_signal);
2556 sinfo->filled |=
2557 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2558 }
2559
2560 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2561 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2562 sinfo->airtime_link_metric =
2563 airtime_link_metric_get(local, sta);
2564 }
2565 }
2566
sta_get_expected_throughput(struct sta_info * sta)2567 u32 sta_get_expected_throughput(struct sta_info *sta)
2568 {
2569 struct ieee80211_sub_if_data *sdata = sta->sdata;
2570 struct ieee80211_local *local = sdata->local;
2571 struct rate_control_ref *ref = NULL;
2572 u32 thr = 0;
2573
2574 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2575 ref = local->rate_ctrl;
2576
2577 /* check if the driver has a SW RC implementation */
2578 if (ref && ref->ops->get_expected_throughput)
2579 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2580 else
2581 thr = drv_get_expected_throughput(local, sta);
2582
2583 return thr;
2584 }
2585
ieee80211_sta_last_active(struct sta_info * sta)2586 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2587 {
2588 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2589
2590 if (!sta->deflink.status_stats.last_ack ||
2591 time_after(stats->last_rx, sta->deflink.status_stats.last_ack))
2592 return stats->last_rx;
2593 return sta->deflink.status_stats.last_ack;
2594 }
2595
sta_update_codel_params(struct sta_info * sta,u32 thr)2596 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2597 {
2598 if (!sta->sdata->local->ops->wake_tx_queue)
2599 return;
2600
2601 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2602 sta->cparams.target = MS2TIME(50);
2603 sta->cparams.interval = MS2TIME(300);
2604 sta->cparams.ecn = false;
2605 } else {
2606 sta->cparams.target = MS2TIME(20);
2607 sta->cparams.interval = MS2TIME(100);
2608 sta->cparams.ecn = true;
2609 }
2610 }
2611
ieee80211_sta_set_expected_throughput(struct ieee80211_sta * pubsta,u32 thr)2612 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2613 u32 thr)
2614 {
2615 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2616
2617 sta_update_codel_params(sta, thr);
2618 }
2619