1 /*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 */
6 #include <linux/export.h>
7 #include <linux/bitops.h>
8 #include <linux/etherdevice.h>
9 #include <linux/slab.h>
10 #include <net/cfg80211.h>
11 #include <net/ip.h>
12 #include <net/dsfield.h>
13 #include "core.h"
14
15 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)16 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
17 u32 basic_rates, int bitrate)
18 {
19 struct ieee80211_rate *result = &sband->bitrates[0];
20 int i;
21
22 for (i = 0; i < sband->n_bitrates; i++) {
23 if (!(basic_rates & BIT(i)))
24 continue;
25 if (sband->bitrates[i].bitrate > bitrate)
26 continue;
27 result = &sband->bitrates[i];
28 }
29
30 return result;
31 }
32 EXPORT_SYMBOL(ieee80211_get_response_rate);
33
ieee80211_channel_to_frequency(int chan,enum ieee80211_band band)34 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
35 {
36 /* see 802.11 17.3.8.3.2 and Annex J
37 * there are overlapping channel numbers in 5GHz and 2GHz bands */
38 if (band == IEEE80211_BAND_5GHZ) {
39 if (chan >= 182 && chan <= 196)
40 return 4000 + chan * 5;
41 else
42 return 5000 + chan * 5;
43 } else { /* IEEE80211_BAND_2GHZ */
44 if (chan == 14)
45 return 2484;
46 else if (chan < 14)
47 return 2407 + chan * 5;
48 else
49 return 0; /* not supported */
50 }
51 }
52 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
53
ieee80211_frequency_to_channel(int freq)54 int ieee80211_frequency_to_channel(int freq)
55 {
56 /* see 802.11 17.3.8.3.2 and Annex J */
57 if (freq == 2484)
58 return 14;
59 else if (freq < 2484)
60 return (freq - 2407) / 5;
61 else if (freq >= 4910 && freq <= 4980)
62 return (freq - 4000) / 5;
63 else
64 return (freq - 5000) / 5;
65 }
66 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
67
__ieee80211_get_channel(struct wiphy * wiphy,int freq)68 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
69 int freq)
70 {
71 enum ieee80211_band band;
72 struct ieee80211_supported_band *sband;
73 int i;
74
75 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
76 sband = wiphy->bands[band];
77
78 if (!sband)
79 continue;
80
81 for (i = 0; i < sband->n_channels; i++) {
82 if (sband->channels[i].center_freq == freq)
83 return &sband->channels[i];
84 }
85 }
86
87 return NULL;
88 }
89 EXPORT_SYMBOL(__ieee80211_get_channel);
90
set_mandatory_flags_band(struct ieee80211_supported_band * sband,enum ieee80211_band band)91 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
92 enum ieee80211_band band)
93 {
94 int i, want;
95
96 switch (band) {
97 case IEEE80211_BAND_5GHZ:
98 want = 3;
99 for (i = 0; i < sband->n_bitrates; i++) {
100 if (sband->bitrates[i].bitrate == 60 ||
101 sband->bitrates[i].bitrate == 120 ||
102 sband->bitrates[i].bitrate == 240) {
103 sband->bitrates[i].flags |=
104 IEEE80211_RATE_MANDATORY_A;
105 want--;
106 }
107 }
108 WARN_ON(want);
109 break;
110 case IEEE80211_BAND_2GHZ:
111 want = 7;
112 for (i = 0; i < sband->n_bitrates; i++) {
113 if (sband->bitrates[i].bitrate == 10) {
114 sband->bitrates[i].flags |=
115 IEEE80211_RATE_MANDATORY_B |
116 IEEE80211_RATE_MANDATORY_G;
117 want--;
118 }
119
120 if (sband->bitrates[i].bitrate == 20 ||
121 sband->bitrates[i].bitrate == 55 ||
122 sband->bitrates[i].bitrate == 110 ||
123 sband->bitrates[i].bitrate == 60 ||
124 sband->bitrates[i].bitrate == 120 ||
125 sband->bitrates[i].bitrate == 240) {
126 sband->bitrates[i].flags |=
127 IEEE80211_RATE_MANDATORY_G;
128 want--;
129 }
130
131 if (sband->bitrates[i].bitrate != 10 &&
132 sband->bitrates[i].bitrate != 20 &&
133 sband->bitrates[i].bitrate != 55 &&
134 sband->bitrates[i].bitrate != 110)
135 sband->bitrates[i].flags |=
136 IEEE80211_RATE_ERP_G;
137 }
138 WARN_ON(want != 0 && want != 3 && want != 6);
139 break;
140 case IEEE80211_NUM_BANDS:
141 WARN_ON(1);
142 break;
143 }
144 }
145
ieee80211_set_bitrate_flags(struct wiphy * wiphy)146 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
147 {
148 enum ieee80211_band band;
149
150 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
151 if (wiphy->bands[band])
152 set_mandatory_flags_band(wiphy->bands[band], band);
153 }
154
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)155 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
156 {
157 int i;
158 for (i = 0; i < wiphy->n_cipher_suites; i++)
159 if (cipher == wiphy->cipher_suites[i])
160 return true;
161 return false;
162 }
163
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)164 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
165 struct key_params *params, int key_idx,
166 bool pairwise, const u8 *mac_addr)
167 {
168 if (key_idx > 5)
169 return -EINVAL;
170
171 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
172 return -EINVAL;
173
174 if (pairwise && !mac_addr)
175 return -EINVAL;
176
177 /*
178 * Disallow pairwise keys with non-zero index unless it's WEP
179 * or a vendor specific cipher (because current deployments use
180 * pairwise WEP keys with non-zero indices and for vendor specific
181 * ciphers this should be validated in the driver or hardware level
182 * - but 802.11i clearly specifies to use zero)
183 */
184 if (pairwise && key_idx &&
185 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
186 (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
187 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
188 return -EINVAL;
189
190 switch (params->cipher) {
191 case WLAN_CIPHER_SUITE_WEP40:
192 if (params->key_len != WLAN_KEY_LEN_WEP40)
193 return -EINVAL;
194 break;
195 case WLAN_CIPHER_SUITE_TKIP:
196 if (params->key_len != WLAN_KEY_LEN_TKIP)
197 return -EINVAL;
198 break;
199 case WLAN_CIPHER_SUITE_CCMP:
200 if (params->key_len != WLAN_KEY_LEN_CCMP)
201 return -EINVAL;
202 break;
203 case WLAN_CIPHER_SUITE_WEP104:
204 if (params->key_len != WLAN_KEY_LEN_WEP104)
205 return -EINVAL;
206 break;
207 case WLAN_CIPHER_SUITE_AES_CMAC:
208 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
209 return -EINVAL;
210 break;
211 default:
212 /*
213 * We don't know anything about this algorithm,
214 * allow using it -- but the driver must check
215 * all parameters! We still check below whether
216 * or not the driver supports this algorithm,
217 * of course.
218 */
219 break;
220 }
221
222 if (params->seq) {
223 switch (params->cipher) {
224 case WLAN_CIPHER_SUITE_WEP40:
225 case WLAN_CIPHER_SUITE_WEP104:
226 /* These ciphers do not use key sequence */
227 return -EINVAL;
228 case WLAN_CIPHER_SUITE_TKIP:
229 case WLAN_CIPHER_SUITE_CCMP:
230 case WLAN_CIPHER_SUITE_AES_CMAC:
231 if (params->seq_len != 6)
232 return -EINVAL;
233 break;
234 }
235 }
236
237 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
238 return -EINVAL;
239
240 return 0;
241 }
242
ieee80211_hdrlen(__le16 fc)243 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
244 {
245 unsigned int hdrlen = 24;
246
247 if (ieee80211_is_data(fc)) {
248 if (ieee80211_has_a4(fc))
249 hdrlen = 30;
250 if (ieee80211_is_data_qos(fc)) {
251 hdrlen += IEEE80211_QOS_CTL_LEN;
252 if (ieee80211_has_order(fc))
253 hdrlen += IEEE80211_HT_CTL_LEN;
254 }
255 goto out;
256 }
257
258 if (ieee80211_is_ctl(fc)) {
259 /*
260 * ACK and CTS are 10 bytes, all others 16. To see how
261 * to get this condition consider
262 * subtype mask: 0b0000000011110000 (0x00F0)
263 * ACK subtype: 0b0000000011010000 (0x00D0)
264 * CTS subtype: 0b0000000011000000 (0x00C0)
265 * bits that matter: ^^^ (0x00E0)
266 * value of those: 0b0000000011000000 (0x00C0)
267 */
268 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
269 hdrlen = 10;
270 else
271 hdrlen = 16;
272 }
273 out:
274 return hdrlen;
275 }
276 EXPORT_SYMBOL(ieee80211_hdrlen);
277
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)278 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
279 {
280 const struct ieee80211_hdr *hdr =
281 (const struct ieee80211_hdr *)skb->data;
282 unsigned int hdrlen;
283
284 if (unlikely(skb->len < 10))
285 return 0;
286 hdrlen = ieee80211_hdrlen(hdr->frame_control);
287 if (unlikely(hdrlen > skb->len))
288 return 0;
289 return hdrlen;
290 }
291 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
292
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)293 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
294 {
295 int ae = meshhdr->flags & MESH_FLAGS_AE;
296 /* 802.11-2012, 8.2.4.7.3 */
297 switch (ae) {
298 default:
299 case 0:
300 return 6;
301 case MESH_FLAGS_AE_A4:
302 return 12;
303 case MESH_FLAGS_AE_A5_A6:
304 return 18;
305 }
306 }
307 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
308
ieee80211_data_to_8023(struct sk_buff * skb,const u8 * addr,enum nl80211_iftype iftype)309 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
310 enum nl80211_iftype iftype)
311 {
312 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
313 u16 hdrlen, ethertype;
314 u8 *payload;
315 u8 dst[ETH_ALEN];
316 u8 src[ETH_ALEN] __aligned(2);
317
318 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
319 return -1;
320
321 hdrlen = ieee80211_hdrlen(hdr->frame_control);
322
323 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
324 * header
325 * IEEE 802.11 address fields:
326 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
327 * 0 0 DA SA BSSID n/a
328 * 0 1 DA BSSID SA n/a
329 * 1 0 BSSID SA DA n/a
330 * 1 1 RA TA DA SA
331 */
332 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
333 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
334
335 switch (hdr->frame_control &
336 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
337 case cpu_to_le16(IEEE80211_FCTL_TODS):
338 if (unlikely(iftype != NL80211_IFTYPE_AP &&
339 iftype != NL80211_IFTYPE_AP_VLAN &&
340 iftype != NL80211_IFTYPE_P2P_GO))
341 return -1;
342 break;
343 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
344 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
345 iftype != NL80211_IFTYPE_MESH_POINT &&
346 iftype != NL80211_IFTYPE_AP_VLAN &&
347 iftype != NL80211_IFTYPE_STATION))
348 return -1;
349 if (iftype == NL80211_IFTYPE_MESH_POINT) {
350 struct ieee80211s_hdr *meshdr =
351 (struct ieee80211s_hdr *) (skb->data + hdrlen);
352 /* make sure meshdr->flags is on the linear part */
353 if (!pskb_may_pull(skb, hdrlen + 1))
354 return -1;
355 if (meshdr->flags & MESH_FLAGS_AE_A4)
356 return -1;
357 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
358 skb_copy_bits(skb, hdrlen +
359 offsetof(struct ieee80211s_hdr, eaddr1),
360 dst, ETH_ALEN);
361 skb_copy_bits(skb, hdrlen +
362 offsetof(struct ieee80211s_hdr, eaddr2),
363 src, ETH_ALEN);
364 }
365 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
366 }
367 break;
368 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
369 if ((iftype != NL80211_IFTYPE_STATION &&
370 iftype != NL80211_IFTYPE_P2P_CLIENT &&
371 iftype != NL80211_IFTYPE_MESH_POINT) ||
372 (is_multicast_ether_addr(dst) &&
373 !compare_ether_addr(src, addr)))
374 return -1;
375 if (iftype == NL80211_IFTYPE_MESH_POINT) {
376 struct ieee80211s_hdr *meshdr =
377 (struct ieee80211s_hdr *) (skb->data + hdrlen);
378 /* make sure meshdr->flags is on the linear part */
379 if (!pskb_may_pull(skb, hdrlen + 1))
380 return -1;
381 if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
382 return -1;
383 if (meshdr->flags & MESH_FLAGS_AE_A4)
384 skb_copy_bits(skb, hdrlen +
385 offsetof(struct ieee80211s_hdr, eaddr1),
386 src, ETH_ALEN);
387 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
388 }
389 break;
390 case cpu_to_le16(0):
391 if (iftype != NL80211_IFTYPE_ADHOC &&
392 iftype != NL80211_IFTYPE_STATION)
393 return -1;
394 break;
395 }
396
397 if (!pskb_may_pull(skb, hdrlen + 8))
398 return -1;
399
400 payload = skb->data + hdrlen;
401 ethertype = (payload[6] << 8) | payload[7];
402
403 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
404 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
405 compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
406 /* remove RFC1042 or Bridge-Tunnel encapsulation and
407 * replace EtherType */
408 skb_pull(skb, hdrlen + 6);
409 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
410 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
411 } else {
412 struct ethhdr *ehdr;
413 __be16 len;
414
415 skb_pull(skb, hdrlen);
416 len = htons(skb->len);
417 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
418 memcpy(ehdr->h_dest, dst, ETH_ALEN);
419 memcpy(ehdr->h_source, src, ETH_ALEN);
420 ehdr->h_proto = len;
421 }
422 return 0;
423 }
424 EXPORT_SYMBOL(ieee80211_data_to_8023);
425
ieee80211_data_from_8023(struct sk_buff * skb,const u8 * addr,enum nl80211_iftype iftype,u8 * bssid,bool qos)426 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
427 enum nl80211_iftype iftype, u8 *bssid, bool qos)
428 {
429 struct ieee80211_hdr hdr;
430 u16 hdrlen, ethertype;
431 __le16 fc;
432 const u8 *encaps_data;
433 int encaps_len, skip_header_bytes;
434 int nh_pos, h_pos;
435 int head_need;
436
437 if (unlikely(skb->len < ETH_HLEN))
438 return -EINVAL;
439
440 nh_pos = skb_network_header(skb) - skb->data;
441 h_pos = skb_transport_header(skb) - skb->data;
442
443 /* convert Ethernet header to proper 802.11 header (based on
444 * operation mode) */
445 ethertype = (skb->data[12] << 8) | skb->data[13];
446 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
447
448 switch (iftype) {
449 case NL80211_IFTYPE_AP:
450 case NL80211_IFTYPE_AP_VLAN:
451 case NL80211_IFTYPE_P2P_GO:
452 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
453 /* DA BSSID SA */
454 memcpy(hdr.addr1, skb->data, ETH_ALEN);
455 memcpy(hdr.addr2, addr, ETH_ALEN);
456 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
457 hdrlen = 24;
458 break;
459 case NL80211_IFTYPE_STATION:
460 case NL80211_IFTYPE_P2P_CLIENT:
461 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
462 /* BSSID SA DA */
463 memcpy(hdr.addr1, bssid, ETH_ALEN);
464 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
465 memcpy(hdr.addr3, skb->data, ETH_ALEN);
466 hdrlen = 24;
467 break;
468 case NL80211_IFTYPE_ADHOC:
469 /* DA SA BSSID */
470 memcpy(hdr.addr1, skb->data, ETH_ALEN);
471 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
472 memcpy(hdr.addr3, bssid, ETH_ALEN);
473 hdrlen = 24;
474 break;
475 default:
476 return -EOPNOTSUPP;
477 }
478
479 if (qos) {
480 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
481 hdrlen += 2;
482 }
483
484 hdr.frame_control = fc;
485 hdr.duration_id = 0;
486 hdr.seq_ctrl = 0;
487
488 skip_header_bytes = ETH_HLEN;
489 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
490 encaps_data = bridge_tunnel_header;
491 encaps_len = sizeof(bridge_tunnel_header);
492 skip_header_bytes -= 2;
493 } else if (ethertype > 0x600) {
494 encaps_data = rfc1042_header;
495 encaps_len = sizeof(rfc1042_header);
496 skip_header_bytes -= 2;
497 } else {
498 encaps_data = NULL;
499 encaps_len = 0;
500 }
501
502 skb_pull(skb, skip_header_bytes);
503 nh_pos -= skip_header_bytes;
504 h_pos -= skip_header_bytes;
505
506 head_need = hdrlen + encaps_len - skb_headroom(skb);
507
508 if (head_need > 0 || skb_cloned(skb)) {
509 head_need = max(head_need, 0);
510 if (head_need)
511 skb_orphan(skb);
512
513 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
514 return -ENOMEM;
515
516 skb->truesize += head_need;
517 }
518
519 if (encaps_data) {
520 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
521 nh_pos += encaps_len;
522 h_pos += encaps_len;
523 }
524
525 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
526
527 nh_pos += hdrlen;
528 h_pos += hdrlen;
529
530 /* Update skb pointers to various headers since this modified frame
531 * is going to go through Linux networking code that may potentially
532 * need things like pointer to IP header. */
533 skb_set_mac_header(skb, 0);
534 skb_set_network_header(skb, nh_pos);
535 skb_set_transport_header(skb, h_pos);
536
537 return 0;
538 }
539 EXPORT_SYMBOL(ieee80211_data_from_8023);
540
541
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,bool has_80211_header)542 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
543 const u8 *addr, enum nl80211_iftype iftype,
544 const unsigned int extra_headroom,
545 bool has_80211_header)
546 {
547 struct sk_buff *frame = NULL;
548 u16 ethertype;
549 u8 *payload;
550 const struct ethhdr *eth;
551 int remaining, err;
552 u8 dst[ETH_ALEN], src[ETH_ALEN];
553
554 if (has_80211_header) {
555 err = ieee80211_data_to_8023(skb, addr, iftype);
556 if (err)
557 goto out;
558
559 /* skip the wrapping header */
560 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
561 if (!eth)
562 goto out;
563 } else {
564 eth = (struct ethhdr *) skb->data;
565 }
566
567 while (skb != frame) {
568 u8 padding;
569 __be16 len = eth->h_proto;
570 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
571
572 remaining = skb->len;
573 memcpy(dst, eth->h_dest, ETH_ALEN);
574 memcpy(src, eth->h_source, ETH_ALEN);
575
576 padding = (4 - subframe_len) & 0x3;
577 /* the last MSDU has no padding */
578 if (subframe_len > remaining)
579 goto purge;
580
581 skb_pull(skb, sizeof(struct ethhdr));
582 /* reuse skb for the last subframe */
583 if (remaining <= subframe_len + padding)
584 frame = skb;
585 else {
586 unsigned int hlen = ALIGN(extra_headroom, 4);
587 /*
588 * Allocate and reserve two bytes more for payload
589 * alignment since sizeof(struct ethhdr) is 14.
590 */
591 frame = dev_alloc_skb(hlen + subframe_len + 2);
592 if (!frame)
593 goto purge;
594
595 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
596 memcpy(skb_put(frame, ntohs(len)), skb->data,
597 ntohs(len));
598
599 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
600 padding);
601 if (!eth) {
602 dev_kfree_skb(frame);
603 goto purge;
604 }
605 }
606
607 skb_reset_network_header(frame);
608 frame->dev = skb->dev;
609 frame->priority = skb->priority;
610
611 payload = frame->data;
612 ethertype = (payload[6] << 8) | payload[7];
613
614 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
615 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
616 compare_ether_addr(payload,
617 bridge_tunnel_header) == 0)) {
618 /* remove RFC1042 or Bridge-Tunnel
619 * encapsulation and replace EtherType */
620 skb_pull(frame, 6);
621 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
622 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
623 } else {
624 memcpy(skb_push(frame, sizeof(__be16)), &len,
625 sizeof(__be16));
626 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
627 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
628 }
629 __skb_queue_tail(list, frame);
630 }
631
632 return;
633
634 purge:
635 __skb_queue_purge(list);
636 out:
637 dev_kfree_skb(skb);
638 }
639 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
640
641 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb)642 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
643 {
644 unsigned int dscp;
645
646 /* skb->priority values from 256->263 are magic values to
647 * directly indicate a specific 802.1d priority. This is used
648 * to allow 802.1d priority to be passed directly in from VLAN
649 * tags, etc.
650 */
651 if (skb->priority >= 256 && skb->priority <= 263)
652 return skb->priority - 256;
653
654 switch (skb->protocol) {
655 case htons(ETH_P_IP):
656 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
657 break;
658 case htons(ETH_P_IPV6):
659 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
660 break;
661 default:
662 return 0;
663 }
664
665 return dscp >> 5;
666 }
667 EXPORT_SYMBOL(cfg80211_classify8021d);
668
ieee80211_bss_get_ie(struct cfg80211_bss * bss,u8 ie)669 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
670 {
671 u8 *end, *pos;
672
673 pos = bss->information_elements;
674 if (pos == NULL)
675 return NULL;
676 end = pos + bss->len_information_elements;
677
678 while (pos + 1 < end) {
679 if (pos + 2 + pos[1] > end)
680 break;
681 if (pos[0] == ie)
682 return pos;
683 pos += 2 + pos[1];
684 }
685
686 return NULL;
687 }
688 EXPORT_SYMBOL(ieee80211_bss_get_ie);
689
cfg80211_upload_connect_keys(struct wireless_dev * wdev)690 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
691 {
692 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
693 struct net_device *dev = wdev->netdev;
694 int i;
695
696 if (!wdev->connect_keys)
697 return;
698
699 for (i = 0; i < 6; i++) {
700 if (!wdev->connect_keys->params[i].cipher)
701 continue;
702 if (rdev->ops->add_key(wdev->wiphy, dev, i, false, NULL,
703 &wdev->connect_keys->params[i])) {
704 netdev_err(dev, "failed to set key %d\n", i);
705 continue;
706 }
707 if (wdev->connect_keys->def == i)
708 if (rdev->ops->set_default_key(wdev->wiphy, dev,
709 i, true, true)) {
710 netdev_err(dev, "failed to set defkey %d\n", i);
711 continue;
712 }
713 if (wdev->connect_keys->defmgmt == i)
714 if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
715 netdev_err(dev, "failed to set mgtdef %d\n", i);
716 }
717
718 kfree(wdev->connect_keys);
719 wdev->connect_keys = NULL;
720 }
721
cfg80211_process_wdev_events(struct wireless_dev * wdev)722 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
723 {
724 struct cfg80211_event *ev;
725 unsigned long flags;
726 const u8 *bssid = NULL;
727
728 spin_lock_irqsave(&wdev->event_lock, flags);
729 while (!list_empty(&wdev->event_list)) {
730 ev = list_first_entry(&wdev->event_list,
731 struct cfg80211_event, list);
732 list_del(&ev->list);
733 spin_unlock_irqrestore(&wdev->event_lock, flags);
734
735 wdev_lock(wdev);
736 switch (ev->type) {
737 case EVENT_CONNECT_RESULT:
738 if (!is_zero_ether_addr(ev->cr.bssid))
739 bssid = ev->cr.bssid;
740 __cfg80211_connect_result(
741 wdev->netdev, bssid,
742 ev->cr.req_ie, ev->cr.req_ie_len,
743 ev->cr.resp_ie, ev->cr.resp_ie_len,
744 ev->cr.status,
745 ev->cr.status == WLAN_STATUS_SUCCESS,
746 NULL);
747 break;
748 case EVENT_ROAMED:
749 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
750 ev->rm.req_ie_len, ev->rm.resp_ie,
751 ev->rm.resp_ie_len);
752 break;
753 case EVENT_DISCONNECTED:
754 __cfg80211_disconnected(wdev->netdev,
755 ev->dc.ie, ev->dc.ie_len,
756 ev->dc.reason, true);
757 break;
758 case EVENT_IBSS_JOINED:
759 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
760 break;
761 }
762 wdev_unlock(wdev);
763
764 kfree(ev);
765
766 spin_lock_irqsave(&wdev->event_lock, flags);
767 }
768 spin_unlock_irqrestore(&wdev->event_lock, flags);
769 }
770
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)771 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
772 {
773 struct wireless_dev *wdev;
774
775 ASSERT_RTNL();
776 ASSERT_RDEV_LOCK(rdev);
777
778 mutex_lock(&rdev->devlist_mtx);
779
780 list_for_each_entry(wdev, &rdev->netdev_list, list)
781 cfg80211_process_wdev_events(wdev);
782
783 mutex_unlock(&rdev->devlist_mtx);
784 }
785
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,u32 * flags,struct vif_params * params)786 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
787 struct net_device *dev, enum nl80211_iftype ntype,
788 u32 *flags, struct vif_params *params)
789 {
790 int err;
791 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
792
793 ASSERT_RDEV_LOCK(rdev);
794
795 /* don't support changing VLANs, you just re-create them */
796 if (otype == NL80211_IFTYPE_AP_VLAN)
797 return -EOPNOTSUPP;
798
799 if (!rdev->ops->change_virtual_intf ||
800 !(rdev->wiphy.interface_modes & (1 << ntype)))
801 return -EOPNOTSUPP;
802
803 /* if it's part of a bridge, reject changing type to station/ibss */
804 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
805 (ntype == NL80211_IFTYPE_ADHOC ||
806 ntype == NL80211_IFTYPE_STATION ||
807 ntype == NL80211_IFTYPE_P2P_CLIENT))
808 return -EBUSY;
809
810 if (ntype != otype && netif_running(dev)) {
811 err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
812 ntype);
813 if (err)
814 return err;
815
816 dev->ieee80211_ptr->use_4addr = false;
817 dev->ieee80211_ptr->mesh_id_up_len = 0;
818
819 switch (otype) {
820 case NL80211_IFTYPE_ADHOC:
821 cfg80211_leave_ibss(rdev, dev, false);
822 break;
823 case NL80211_IFTYPE_STATION:
824 case NL80211_IFTYPE_P2P_CLIENT:
825 cfg80211_disconnect(rdev, dev,
826 WLAN_REASON_DEAUTH_LEAVING, true);
827 break;
828 case NL80211_IFTYPE_MESH_POINT:
829 /* mesh should be handled? */
830 break;
831 default:
832 break;
833 }
834
835 cfg80211_process_rdev_events(rdev);
836 }
837
838 err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev,
839 ntype, flags, params);
840
841 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
842
843 if (!err && params && params->use_4addr != -1)
844 dev->ieee80211_ptr->use_4addr = params->use_4addr;
845
846 if (!err) {
847 dev->priv_flags &= ~IFF_DONT_BRIDGE;
848 switch (ntype) {
849 case NL80211_IFTYPE_STATION:
850 if (dev->ieee80211_ptr->use_4addr)
851 break;
852 /* fall through */
853 case NL80211_IFTYPE_P2P_CLIENT:
854 case NL80211_IFTYPE_ADHOC:
855 dev->priv_flags |= IFF_DONT_BRIDGE;
856 break;
857 case NL80211_IFTYPE_P2P_GO:
858 case NL80211_IFTYPE_AP:
859 case NL80211_IFTYPE_AP_VLAN:
860 case NL80211_IFTYPE_WDS:
861 case NL80211_IFTYPE_MESH_POINT:
862 /* bridging OK */
863 break;
864 case NL80211_IFTYPE_MONITOR:
865 /* monitor can't bridge anyway */
866 break;
867 case NL80211_IFTYPE_UNSPECIFIED:
868 case NUM_NL80211_IFTYPES:
869 /* not happening */
870 break;
871 }
872 }
873
874 return err;
875 }
876
cfg80211_calculate_bitrate(struct rate_info * rate)877 u16 cfg80211_calculate_bitrate(struct rate_info *rate)
878 {
879 int modulation, streams, bitrate;
880
881 if (!(rate->flags & RATE_INFO_FLAGS_MCS))
882 return rate->legacy;
883
884 /* the formula below does only work for MCS values smaller than 32 */
885 if (rate->mcs >= 32)
886 return 0;
887
888 modulation = rate->mcs & 7;
889 streams = (rate->mcs >> 3) + 1;
890
891 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
892 13500000 : 6500000;
893
894 if (modulation < 4)
895 bitrate *= (modulation + 1);
896 else if (modulation == 4)
897 bitrate *= (modulation + 2);
898 else
899 bitrate *= (modulation + 3);
900
901 bitrate *= streams;
902
903 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
904 bitrate = (bitrate / 9) * 10;
905
906 /* do NOT round down here */
907 return (bitrate + 50000) / 100000;
908 }
909 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
910
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,u32 beacon_int)911 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
912 u32 beacon_int)
913 {
914 struct wireless_dev *wdev;
915 int res = 0;
916
917 if (!beacon_int)
918 return -EINVAL;
919
920 mutex_lock(&rdev->devlist_mtx);
921
922 list_for_each_entry(wdev, &rdev->netdev_list, list) {
923 if (!wdev->beacon_interval)
924 continue;
925 if (wdev->beacon_interval != beacon_int) {
926 res = -EINVAL;
927 break;
928 }
929 }
930
931 mutex_unlock(&rdev->devlist_mtx);
932
933 return res;
934 }
935
cfg80211_can_change_interface(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev,enum nl80211_iftype iftype)936 int cfg80211_can_change_interface(struct cfg80211_registered_device *rdev,
937 struct wireless_dev *wdev,
938 enum nl80211_iftype iftype)
939 {
940 struct wireless_dev *wdev_iter;
941 u32 used_iftypes = BIT(iftype);
942 int num[NUM_NL80211_IFTYPES];
943 int total = 1;
944 int i, j;
945
946 ASSERT_RTNL();
947
948 /* Always allow software iftypes */
949 if (rdev->wiphy.software_iftypes & BIT(iftype))
950 return 0;
951
952 /*
953 * Drivers will gradually all set this flag, until all
954 * have it we only enforce for those that set it.
955 */
956 if (!(rdev->wiphy.flags & WIPHY_FLAG_ENFORCE_COMBINATIONS))
957 return 0;
958
959 memset(num, 0, sizeof(num));
960
961 num[iftype] = 1;
962
963 mutex_lock(&rdev->devlist_mtx);
964 list_for_each_entry(wdev_iter, &rdev->netdev_list, list) {
965 if (wdev_iter == wdev)
966 continue;
967 if (!netif_running(wdev_iter->netdev))
968 continue;
969
970 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
971 continue;
972
973 num[wdev_iter->iftype]++;
974 total++;
975 used_iftypes |= BIT(wdev_iter->iftype);
976 }
977 mutex_unlock(&rdev->devlist_mtx);
978
979 if (total == 1)
980 return 0;
981
982 for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
983 const struct ieee80211_iface_combination *c;
984 struct ieee80211_iface_limit *limits;
985 u32 all_iftypes = 0;
986
987 c = &rdev->wiphy.iface_combinations[i];
988
989 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
990 GFP_KERNEL);
991 if (!limits)
992 return -ENOMEM;
993 if (total > c->max_interfaces)
994 goto cont;
995
996 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
997 if (rdev->wiphy.software_iftypes & BIT(iftype))
998 continue;
999 for (j = 0; j < c->n_limits; j++) {
1000 all_iftypes |= limits[j].types;
1001 if (!(limits[j].types & BIT(iftype)))
1002 continue;
1003 if (limits[j].max < num[iftype])
1004 goto cont;
1005 limits[j].max -= num[iftype];
1006 }
1007 }
1008
1009 /*
1010 * Finally check that all iftypes that we're currently
1011 * using are actually part of this combination. If they
1012 * aren't then we can't use this combination and have
1013 * to continue to the next.
1014 */
1015 if ((all_iftypes & used_iftypes) != used_iftypes)
1016 goto cont;
1017
1018 /*
1019 * This combination covered all interface types and
1020 * supported the requested numbers, so we're good.
1021 */
1022 kfree(limits);
1023 return 0;
1024 cont:
1025 kfree(limits);
1026 }
1027
1028 return -EBUSY;
1029 }
1030
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1031 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1032 const u8 *rates, unsigned int n_rates,
1033 u32 *mask)
1034 {
1035 int i, j;
1036
1037 if (!sband)
1038 return -EINVAL;
1039
1040 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1041 return -EINVAL;
1042
1043 *mask = 0;
1044
1045 for (i = 0; i < n_rates; i++) {
1046 int rate = (rates[i] & 0x7f) * 5;
1047 bool found = false;
1048
1049 for (j = 0; j < sband->n_bitrates; j++) {
1050 if (sband->bitrates[j].bitrate == rate) {
1051 found = true;
1052 *mask |= BIT(j);
1053 break;
1054 }
1055 }
1056 if (!found)
1057 return -EINVAL;
1058 }
1059
1060 /*
1061 * mask must have at least one bit set here since we
1062 * didn't accept a 0-length rates array nor allowed
1063 * entries in the array that didn't exist
1064 */
1065
1066 return 0;
1067 }
1068
1069 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1070 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1071 const unsigned char rfc1042_header[] __aligned(2) =
1072 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1073 EXPORT_SYMBOL(rfc1042_header);
1074
1075 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1076 const unsigned char bridge_tunnel_header[] __aligned(2) =
1077 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1078 EXPORT_SYMBOL(bridge_tunnel_header);
1079