1 // SPDX-License-Identifier: GPL-2.0
2 #include <stdbool.h>
3 #include <assert.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include "metricgroup.h"
8 #include "cpumap.h"
9 #include "cputopo.h"
10 #include "debug.h"
11 #include "expr.h"
12 #include "expr-bison.h"
13 #include "expr-flex.h"
14 #include "smt.h"
15 #include <linux/err.h>
16 #include <linux/kernel.h>
17 #include <linux/zalloc.h>
18 #include <ctype.h>
19 #include <math.h>
20
21 #ifdef PARSER_DEBUG
22 extern int expr_debug;
23 #endif
24
25 struct expr_id_data {
26 union {
27 struct {
28 double val;
29 int source_count;
30 } val;
31 struct {
32 double val;
33 const char *metric_name;
34 const char *metric_expr;
35 } ref;
36 };
37
38 enum {
39 /* Holding a double value. */
40 EXPR_ID_DATA__VALUE,
41 /* Reference to another metric. */
42 EXPR_ID_DATA__REF,
43 /* A reference but the value has been computed. */
44 EXPR_ID_DATA__REF_VALUE,
45 } kind;
46 };
47
key_hash(const void * key,void * ctx __maybe_unused)48 static size_t key_hash(const void *key, void *ctx __maybe_unused)
49 {
50 const char *str = (const char *)key;
51 size_t hash = 0;
52
53 while (*str != '\0') {
54 hash *= 31;
55 hash += *str;
56 str++;
57 }
58 return hash;
59 }
60
key_equal(const void * key1,const void * key2,void * ctx __maybe_unused)61 static bool key_equal(const void *key1, const void *key2,
62 void *ctx __maybe_unused)
63 {
64 return !strcmp((const char *)key1, (const char *)key2);
65 }
66
ids__new(void)67 struct hashmap *ids__new(void)
68 {
69 struct hashmap *hash;
70
71 hash = hashmap__new(key_hash, key_equal, NULL);
72 if (IS_ERR(hash))
73 return NULL;
74 return hash;
75 }
76
ids__free(struct hashmap * ids)77 void ids__free(struct hashmap *ids)
78 {
79 struct hashmap_entry *cur;
80 size_t bkt;
81
82 if (ids == NULL)
83 return;
84
85 hashmap__for_each_entry(ids, cur, bkt) {
86 free((char *)cur->key);
87 free(cur->value);
88 }
89
90 hashmap__free(ids);
91 }
92
ids__insert(struct hashmap * ids,const char * id)93 int ids__insert(struct hashmap *ids, const char *id)
94 {
95 struct expr_id_data *data_ptr = NULL, *old_data = NULL;
96 char *old_key = NULL;
97 int ret;
98
99 ret = hashmap__set(ids, id, data_ptr,
100 (const void **)&old_key, (void **)&old_data);
101 if (ret)
102 free(data_ptr);
103 free(old_key);
104 free(old_data);
105 return ret;
106 }
107
ids__union(struct hashmap * ids1,struct hashmap * ids2)108 struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2)
109 {
110 size_t bkt;
111 struct hashmap_entry *cur;
112 int ret;
113 struct expr_id_data *old_data = NULL;
114 char *old_key = NULL;
115
116 if (!ids1)
117 return ids2;
118
119 if (!ids2)
120 return ids1;
121
122 if (hashmap__size(ids1) < hashmap__size(ids2)) {
123 struct hashmap *tmp = ids1;
124
125 ids1 = ids2;
126 ids2 = tmp;
127 }
128 hashmap__for_each_entry(ids2, cur, bkt) {
129 ret = hashmap__set(ids1, cur->key, cur->value,
130 (const void **)&old_key, (void **)&old_data);
131 free(old_key);
132 free(old_data);
133
134 if (ret) {
135 hashmap__free(ids1);
136 hashmap__free(ids2);
137 return NULL;
138 }
139 }
140 hashmap__free(ids2);
141 return ids1;
142 }
143
144 /* Caller must make sure id is allocated */
expr__add_id(struct expr_parse_ctx * ctx,const char * id)145 int expr__add_id(struct expr_parse_ctx *ctx, const char *id)
146 {
147 return ids__insert(ctx->ids, id);
148 }
149
150 /* Caller must make sure id is allocated */
expr__add_id_val(struct expr_parse_ctx * ctx,const char * id,double val)151 int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val)
152 {
153 return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1);
154 }
155
156 /* Caller must make sure id is allocated */
expr__add_id_val_source_count(struct expr_parse_ctx * ctx,const char * id,double val,int source_count)157 int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id,
158 double val, int source_count)
159 {
160 struct expr_id_data *data_ptr = NULL, *old_data = NULL;
161 char *old_key = NULL;
162 int ret;
163
164 data_ptr = malloc(sizeof(*data_ptr));
165 if (!data_ptr)
166 return -ENOMEM;
167 data_ptr->val.val = val;
168 data_ptr->val.source_count = source_count;
169 data_ptr->kind = EXPR_ID_DATA__VALUE;
170
171 ret = hashmap__set(ctx->ids, id, data_ptr,
172 (const void **)&old_key, (void **)&old_data);
173 if (ret)
174 free(data_ptr);
175 free(old_key);
176 free(old_data);
177 return ret;
178 }
179
expr__add_ref(struct expr_parse_ctx * ctx,struct metric_ref * ref)180 int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref)
181 {
182 struct expr_id_data *data_ptr = NULL, *old_data = NULL;
183 char *old_key = NULL;
184 char *name, *p;
185 int ret;
186
187 data_ptr = zalloc(sizeof(*data_ptr));
188 if (!data_ptr)
189 return -ENOMEM;
190
191 name = strdup(ref->metric_name);
192 if (!name) {
193 free(data_ptr);
194 return -ENOMEM;
195 }
196
197 /*
198 * The jevents tool converts all metric expressions
199 * to lowercase, including metric references, hence
200 * we need to add lowercase name for metric, so it's
201 * properly found.
202 */
203 for (p = name; *p; p++)
204 *p = tolower(*p);
205
206 /*
207 * Intentionally passing just const char pointers,
208 * originally from 'struct pmu_event' object.
209 * We don't need to change them, so there's no
210 * need to create our own copy.
211 */
212 data_ptr->ref.metric_name = ref->metric_name;
213 data_ptr->ref.metric_expr = ref->metric_expr;
214 data_ptr->kind = EXPR_ID_DATA__REF;
215
216 ret = hashmap__set(ctx->ids, name, data_ptr,
217 (const void **)&old_key, (void **)&old_data);
218 if (ret)
219 free(data_ptr);
220
221 pr_debug2("adding ref metric %s: %s\n",
222 ref->metric_name, ref->metric_expr);
223
224 free(old_key);
225 free(old_data);
226 return ret;
227 }
228
expr__get_id(struct expr_parse_ctx * ctx,const char * id,struct expr_id_data ** data)229 int expr__get_id(struct expr_parse_ctx *ctx, const char *id,
230 struct expr_id_data **data)
231 {
232 return hashmap__find(ctx->ids, id, (void **)data) ? 0 : -1;
233 }
234
expr__subset_of_ids(struct expr_parse_ctx * haystack,struct expr_parse_ctx * needles)235 bool expr__subset_of_ids(struct expr_parse_ctx *haystack,
236 struct expr_parse_ctx *needles)
237 {
238 struct hashmap_entry *cur;
239 size_t bkt;
240 struct expr_id_data *data;
241
242 hashmap__for_each_entry(needles->ids, cur, bkt) {
243 if (expr__get_id(haystack, cur->key, &data))
244 return false;
245 }
246 return true;
247 }
248
249
expr__resolve_id(struct expr_parse_ctx * ctx,const char * id,struct expr_id_data ** datap)250 int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id,
251 struct expr_id_data **datap)
252 {
253 struct expr_id_data *data;
254
255 if (expr__get_id(ctx, id, datap) || !*datap) {
256 pr_debug("%s not found\n", id);
257 return -1;
258 }
259
260 data = *datap;
261
262 switch (data->kind) {
263 case EXPR_ID_DATA__VALUE:
264 pr_debug2("lookup(%s): val %f\n", id, data->val.val);
265 break;
266 case EXPR_ID_DATA__REF:
267 pr_debug2("lookup(%s): ref metric name %s\n", id,
268 data->ref.metric_name);
269 pr_debug("processing metric: %s ENTRY\n", id);
270 data->kind = EXPR_ID_DATA__REF_VALUE;
271 if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) {
272 pr_debug("%s failed to count\n", id);
273 return -1;
274 }
275 pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val);
276 break;
277 case EXPR_ID_DATA__REF_VALUE:
278 pr_debug2("lookup(%s): ref val %f metric name %s\n", id,
279 data->ref.val, data->ref.metric_name);
280 break;
281 default:
282 assert(0); /* Unreachable. */
283 }
284
285 return 0;
286 }
287
expr__del_id(struct expr_parse_ctx * ctx,const char * id)288 void expr__del_id(struct expr_parse_ctx *ctx, const char *id)
289 {
290 struct expr_id_data *old_val = NULL;
291 char *old_key = NULL;
292
293 hashmap__delete(ctx->ids, id,
294 (const void **)&old_key, (void **)&old_val);
295 free(old_key);
296 free(old_val);
297 }
298
expr__ctx_new(void)299 struct expr_parse_ctx *expr__ctx_new(void)
300 {
301 struct expr_parse_ctx *ctx;
302
303 ctx = malloc(sizeof(struct expr_parse_ctx));
304 if (!ctx)
305 return NULL;
306
307 ctx->ids = hashmap__new(key_hash, key_equal, NULL);
308 if (IS_ERR(ctx->ids)) {
309 free(ctx);
310 return NULL;
311 }
312 ctx->runtime = 0;
313
314 return ctx;
315 }
316
expr__ctx_clear(struct expr_parse_ctx * ctx)317 void expr__ctx_clear(struct expr_parse_ctx *ctx)
318 {
319 struct hashmap_entry *cur;
320 size_t bkt;
321
322 hashmap__for_each_entry(ctx->ids, cur, bkt) {
323 free((char *)cur->key);
324 free(cur->value);
325 }
326 hashmap__clear(ctx->ids);
327 }
328
expr__ctx_free(struct expr_parse_ctx * ctx)329 void expr__ctx_free(struct expr_parse_ctx *ctx)
330 {
331 struct hashmap_entry *cur;
332 size_t bkt;
333
334 hashmap__for_each_entry(ctx->ids, cur, bkt) {
335 free((char *)cur->key);
336 free(cur->value);
337 }
338 hashmap__free(ctx->ids);
339 free(ctx);
340 }
341
342 static int
__expr__parse(double * val,struct expr_parse_ctx * ctx,const char * expr,bool compute_ids)343 __expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr,
344 bool compute_ids)
345 {
346 struct expr_scanner_ctx scanner_ctx = {
347 .runtime = ctx->runtime,
348 };
349 YY_BUFFER_STATE buffer;
350 void *scanner;
351 int ret;
352
353 pr_debug2("parsing metric: %s\n", expr);
354
355 ret = expr_lex_init_extra(&scanner_ctx, &scanner);
356 if (ret)
357 return ret;
358
359 buffer = expr__scan_string(expr, scanner);
360
361 #ifdef PARSER_DEBUG
362 expr_debug = 1;
363 expr_set_debug(1, scanner);
364 #endif
365
366 ret = expr_parse(val, ctx, compute_ids, scanner);
367
368 expr__flush_buffer(buffer, scanner);
369 expr__delete_buffer(buffer, scanner);
370 expr_lex_destroy(scanner);
371 return ret;
372 }
373
expr__parse(double * final_val,struct expr_parse_ctx * ctx,const char * expr)374 int expr__parse(double *final_val, struct expr_parse_ctx *ctx,
375 const char *expr)
376 {
377 return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0;
378 }
379
expr__find_ids(const char * expr,const char * one,struct expr_parse_ctx * ctx)380 int expr__find_ids(const char *expr, const char *one,
381 struct expr_parse_ctx *ctx)
382 {
383 int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true);
384
385 if (one)
386 expr__del_id(ctx, one);
387
388 return ret;
389 }
390
expr_id_data__value(const struct expr_id_data * data)391 double expr_id_data__value(const struct expr_id_data *data)
392 {
393 if (data->kind == EXPR_ID_DATA__VALUE)
394 return data->val.val;
395 assert(data->kind == EXPR_ID_DATA__REF_VALUE);
396 return data->ref.val;
397 }
398
expr_id_data__source_count(const struct expr_id_data * data)399 double expr_id_data__source_count(const struct expr_id_data *data)
400 {
401 assert(data->kind == EXPR_ID_DATA__VALUE);
402 return data->val.source_count;
403 }
404
expr__get_literal(const char * literal)405 double expr__get_literal(const char *literal)
406 {
407 static struct cpu_topology *topology;
408 double result = NAN;
409
410 if (!strcasecmp("#smt_on", literal)) {
411 result = smt_on() > 0 ? 1.0 : 0.0;
412 goto out;
413 }
414
415 if (!strcmp("#num_cpus", literal)) {
416 result = cpu__max_present_cpu().cpu;
417 goto out;
418 }
419
420 /*
421 * Assume that topology strings are consistent, such as CPUs "0-1"
422 * wouldn't be listed as "0,1", and so after deduplication the number of
423 * these strings gives an indication of the number of packages, dies,
424 * etc.
425 */
426 if (!topology) {
427 topology = cpu_topology__new();
428 if (!topology) {
429 pr_err("Error creating CPU topology");
430 goto out;
431 }
432 }
433 if (!strcmp("#num_packages", literal)) {
434 result = topology->package_cpus_lists;
435 goto out;
436 }
437 if (!strcmp("#num_dies", literal)) {
438 result = topology->die_cpus_lists;
439 goto out;
440 }
441 if (!strcmp("#num_cores", literal)) {
442 result = topology->core_cpus_lists;
443 goto out;
444 }
445
446 pr_err("Unrecognized literal '%s'", literal);
447 out:
448 pr_debug2("literal: %s = %f\n", literal, result);
449 return result;
450 }
451