1 /*
2  *	IDE I/O functions
3  *
4  *	Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25 
26 
27 #include <linux/config.h>
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/string.h>
31 #include <linux/kernel.h>
32 #include <linux/timer.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/major.h>
36 #include <linux/errno.h>
37 #include <linux/genhd.h>
38 #include <linux/blkpg.h>
39 #include <linux/slab.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/ide.h>
44 #include <linux/devfs_fs_kernel.h>
45 #include <linux/completion.h>
46 #include <linux/reboot.h>
47 #include <linux/cdrom.h>
48 #include <linux/seq_file.h>
49 #include <linux/kmod.h>
50 
51 #include <asm/byteorder.h>
52 #include <asm/irq.h>
53 #include <asm/uaccess.h>
54 #include <asm/io.h>
55 #include <asm/bitops.h>
56 
57 #include "ide_modes.h"
58 
59 /*
60  *	ide_end_request		-	complete an IDE I/O
61  *	@drive: IDE device for the I/O
62  *	@uptodate:
63  *
64  *	This is our end_request wrapper function. We complete the I/O
65  *	update random number input and dequeue the request.
66  */
67 
ide_end_request(ide_drive_t * drive,int uptodate)68 int ide_end_request (ide_drive_t *drive, int uptodate)
69 {
70 	struct request *rq;
71 	unsigned long flags;
72 	int ret = 1;
73 
74 	spin_lock_irqsave(&io_request_lock, flags);
75 	rq = HWGROUP(drive)->rq;
76 
77 	/*
78 	 * decide whether to reenable DMA -- 3 is a random magic for now,
79 	 * if we DMA timeout more than 3 times, just stay in PIO
80 	 */
81 	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
82 		drive->state = 0;
83 		HWGROUP(drive)->hwif->ide_dma_on(drive);
84 	}
85 
86 	if (!end_that_request_first(rq, uptodate, drive->name)) {
87 		add_blkdev_randomness(MAJOR(rq->rq_dev));
88 		blkdev_dequeue_request(rq);
89 		HWGROUP(drive)->rq = NULL;
90 		end_that_request_last(rq);
91 		ret = 0;
92 	}
93 
94 	spin_unlock_irqrestore(&io_request_lock, flags);
95 	return ret;
96 }
97 
98 EXPORT_SYMBOL(ide_end_request);
99 
100 /**
101  *	ide_end_drive_cmd	-	end an explicit drive command
102  *	@drive: command
103  *	@stat: status bits
104  *	@err: error bits
105  *
106  *	Clean up after success/failure of an explicit drive command.
107  *	These get thrown onto the queue so they are synchronized with
108  *	real I/O operations on the drive.
109  *
110  *	In LBA48 mode we have to read the register set twice to get
111  *	all the extra information out.
112  */
113 
ide_end_drive_cmd(ide_drive_t * drive,u8 stat,u8 err)114 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
115 {
116 	ide_hwif_t *hwif = HWIF(drive);
117 	unsigned long flags;
118 	struct request *rq;
119 
120 	spin_lock_irqsave(&io_request_lock, flags);
121 	rq = HWGROUP(drive)->rq;
122 	spin_unlock_irqrestore(&io_request_lock, flags);
123 
124 	switch(rq->cmd) {
125 		case IDE_DRIVE_CMD:
126 		{
127 			u8 *args = (u8 *) rq->buffer;
128 			if (rq->errors == 0)
129 				rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
130 
131 			if (args) {
132 				args[0] = stat;
133 				args[1] = err;
134 				args[2] = hwif->INB(IDE_NSECTOR_REG);
135 			}
136 			break;
137 		}
138 		case IDE_DRIVE_TASK:
139 		{
140 			u8 *args = (u8 *) rq->buffer;
141 			if (rq->errors == 0)
142 				rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
143 
144 			if (args) {
145 				args[0] = stat;
146 				args[1] = err;
147 				args[2] = hwif->INB(IDE_NSECTOR_REG);
148 				args[3] = hwif->INB(IDE_SECTOR_REG);
149 				args[4] = hwif->INB(IDE_LCYL_REG);
150 				args[5] = hwif->INB(IDE_HCYL_REG);
151 				args[6] = hwif->INB(IDE_SELECT_REG);
152 			}
153 			break;
154 		}
155 		case IDE_DRIVE_TASKFILE:
156 		{
157 			ide_task_t *args = (ide_task_t *) rq->special;
158 			if (rq->errors == 0)
159 				rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
160 
161 			if (args) {
162 				if (args->tf_in_flags.b.data) {
163 					u16 data			= hwif->INW(IDE_DATA_REG);
164 					args->tfRegister[IDE_DATA_OFFSET]	= (data) & 0xFF;
165 					args->hobRegister[IDE_DATA_OFFSET_HOB]	= (data >> 8) & 0xFF;
166 				}
167 				args->tfRegister[IDE_ERROR_OFFSET]   = err;
168 				args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
169 				args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
170 				args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
171 				args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
172 				args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
173 				args->tfRegister[IDE_STATUS_OFFSET]  = stat;
174 
175 				if (drive->addressing == 1) {
176 					hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG_HOB);
177 					args->hobRegister[IDE_FEATURE_OFFSET_HOB] = hwif->INB(IDE_FEATURE_REG);
178 					args->hobRegister[IDE_NSECTOR_OFFSET_HOB] = hwif->INB(IDE_NSECTOR_REG);
179 					args->hobRegister[IDE_SECTOR_OFFSET_HOB]  = hwif->INB(IDE_SECTOR_REG);
180 					args->hobRegister[IDE_LCYL_OFFSET_HOB]    = hwif->INB(IDE_LCYL_REG);
181 					args->hobRegister[IDE_HCYL_OFFSET_HOB]    = hwif->INB(IDE_HCYL_REG);
182 				}
183 			}
184 			break;
185 		}
186 		default:
187 			break;
188 	}
189 	spin_lock_irqsave(&io_request_lock, flags);
190 	blkdev_dequeue_request(rq);
191 	HWGROUP(drive)->rq = NULL;
192 	end_that_request_last(rq);
193 	spin_unlock_irqrestore(&io_request_lock, flags);
194 }
195 
196 EXPORT_SYMBOL(ide_end_drive_cmd);
197 
198 /**
199  *	try_to_flush_leftover_data	-	flush junk
200  *	@drive: drive to flush
201  *
202  *	try_to_flush_leftover_data() is invoked in response to a drive
203  *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
204  *	resetting the drive, this routine tries to clear the condition
205  *	by read a sector's worth of data from the drive.  Of course,
206  *	this may not help if the drive is *waiting* for data from *us*.
207  */
208 
try_to_flush_leftover_data(ide_drive_t * drive)209 void try_to_flush_leftover_data (ide_drive_t *drive)
210 {
211 	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
212 
213 	if (drive->media != ide_disk)
214 		return;
215 	while (i > 0) {
216 		u32 buffer[16];
217 		u32 wcount = (i > 16) ? 16 : i;
218 
219 		i -= wcount;
220 		HWIF(drive)->ata_input_data(drive, buffer, wcount);
221 	}
222 }
223 
224 EXPORT_SYMBOL(try_to_flush_leftover_data);
225 
226 /*
227  * FIXME Add an ATAPI error
228  */
229 
230 /**
231  *	ide_error	-	handle an error on the IDE
232  *	@drive: drive the error occurred on
233  *	@msg: message to report
234  *	@stat: status bits
235  *
236  *	ide_error() takes action based on the error returned by the drive.
237  *	For normal I/O that may well include retries. We deal with
238  *	both new-style (taskfile) and old style command handling here.
239  *	In the case of taskfile command handling there is work left to
240  *	do
241  */
242 
ide_error(ide_drive_t * drive,const char * msg,u8 stat)243 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
244 {
245 	ide_hwif_t *hwif;
246 	struct request *rq;
247 	u8 err;
248 
249 	err = ide_dump_status(drive, msg, stat);
250 	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
251 		return ide_stopped;
252 
253 	hwif = HWIF(drive);
254 	/* retry only "normal" I/O: */
255 	if (rq->cmd == IDE_DRIVE_CMD || rq->cmd == IDE_DRIVE_TASK) {
256 		rq->errors = 1;
257 		ide_end_drive_cmd(drive, stat, err);
258 		return ide_stopped;
259 	}
260 	if (rq->cmd == IDE_DRIVE_TASKFILE) {
261 		rq->errors = 1;
262 		ide_end_drive_cmd(drive, stat, err);
263 //		ide_end_taskfile(drive, stat, err);
264 		return ide_stopped;
265 	}
266 
267 	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
268 		 /* other bits are useless when BUSY */
269 		rq->errors |= ERROR_RESET;
270 	} else {
271 		if (drive->media != ide_disk)
272 			goto media_out;
273 
274 		if (stat & ERR_STAT) {
275 			/* err has different meaning on cdrom and tape */
276 			if (err == ABRT_ERR) {
277 				if (drive->select.b.lba &&
278 				    (hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY))
279 					/* some newer drives don't
280 					 * support WIN_SPECIFY
281 					 */
282 					return ide_stopped;
283 			} else if ((err & BAD_CRC) == BAD_CRC) {
284 				drive->crc_count++;
285 				/* UDMA crc error -- just retry the operation */
286 			} else if (err & (BBD_ERR | ECC_ERR)) {
287 				/* retries won't help these */
288 				rq->errors = ERROR_MAX;
289 			} else if (err & TRK0_ERR) {
290 				/* help it find track zero */
291 				rq->errors |= ERROR_RECAL;
292 			}
293 		}
294 media_out:
295 		if ((stat & DRQ_STAT) && rq->cmd != WRITE)
296 			try_to_flush_leftover_data(drive);
297 	}
298 	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) {
299 		/* force an abort */
300 		hwif->OUTB(WIN_IDLEIMMEDIATE,IDE_COMMAND_REG);
301 	}
302 	if (rq->errors >= ERROR_MAX) {
303 		DRIVER(drive)->end_request(drive, 0);
304 	} else {
305 		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
306 			++rq->errors;
307 			return ide_do_reset(drive);
308 		}
309 		if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
310 			drive->special.b.recalibrate = 1;
311 		++rq->errors;
312 	}
313 	return ide_stopped;
314 }
315 
316 EXPORT_SYMBOL(ide_error);
317 
318 /**
319  *	ide_abort	-	abort pending IDE operatins
320  *	@drive: drive the error occurred on
321  *	@msg: message to report
322  *
323  *	ide_abort kills and cleans up when we are about to do a
324  *	host initiated reset on active commands. Longer term we
325  *	want handlers to have sensible abort handling themselves
326  *
327  *	This differs fundamentally from ide_error because in
328  *	this case the command is doing just fine when we
329  *	blow it away.
330  */
331 
ide_abort(ide_drive_t * drive,const char * msg)332 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
333 {
334 	ide_hwif_t *hwif;
335 	struct request *rq;
336 
337 	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
338 		return ide_stopped;
339 
340 	hwif = HWIF(drive);
341 	/* retry only "normal" I/O: */
342 	if (rq->cmd == IDE_DRIVE_CMD || rq->cmd == IDE_DRIVE_TASK) {
343 		rq->errors = 1;
344 		ide_end_drive_cmd(drive, BUSY_STAT, 0);
345 		return ide_stopped;
346 	}
347 	if (rq->cmd == IDE_DRIVE_TASKFILE) {
348 		rq->errors = 1;
349 		ide_end_drive_cmd(drive, BUSY_STAT, 0);
350 //		ide_end_taskfile(drive, BUSY_STAT, 0);
351 		return ide_stopped;
352 	}
353 
354 	rq->errors |= ERROR_RESET;
355 	DRIVER(drive)->end_request(drive, 0);
356 	return ide_stopped;
357 }
358 
359 EXPORT_SYMBOL(ide_abort);
360 
361 /**
362  *	ide_cmd		-	issue a simple drive command
363  *	@drive: drive the command is for
364  *	@cmd: command byte
365  *	@nsect: sector byte
366  *	@handler: handler for the command completion
367  *
368  *	Issue a simple drive command with interrupts.
369  *	The drive must be selected beforehand.
370  */
371 
ide_cmd(ide_drive_t * drive,u8 cmd,u8 nsect,ide_handler_t * handler)372 void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect, ide_handler_t *handler)
373 {
374 	ide_hwif_t *hwif = HWIF(drive);
375 	if (IDE_CONTROL_REG)
376 		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);	/* clear nIEN */
377 	SELECT_MASK(drive,0);
378 	hwif->OUTB(nsect,IDE_NSECTOR_REG);
379 	ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
380 }
381 
382 EXPORT_SYMBOL(ide_cmd);
383 
384 /**
385  *	drive_cmd_intr		- 	drive command completion interrupt
386  *	@drive: drive the completion interrupt occurred on
387  *
388  *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
389  *	We do any neccessary daya reading and then wait for the drive to
390  *	go non busy. At that point we may read the error data and complete
391  *	the request
392  */
393 
drive_cmd_intr(ide_drive_t * drive)394 ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
395 {
396 	struct request *rq = HWGROUP(drive)->rq;
397 	ide_hwif_t *hwif = HWIF(drive);
398 	u8 *args = (u8 *) rq->buffer;
399 	u8 stat = hwif->INB(IDE_STATUS_REG);
400 	int retries = 10;
401 
402 	local_irq_enable();
403 	if ((stat & DRQ_STAT) && args && args[3]) {
404 		u8 io_32bit = drive->io_32bit;
405 		drive->io_32bit = 0;
406 		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
407 		drive->io_32bit = io_32bit;
408 		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
409 			udelay(100);
410 	}
411 
412 	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
413 		return DRIVER(drive)->error(drive, "drive_cmd", stat);
414 		/* calls ide_end_drive_cmd */
415 	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
416 	return ide_stopped;
417 }
418 
419 EXPORT_SYMBOL(drive_cmd_intr);
420 
421 /**
422  *	do_special		-	issue some special commands
423  *	@drive: drive the command is for
424  *
425  *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
426  *	commands to a drive.  It used to do much more, but has been scaled
427  *	back.
428  */
429 
do_special(ide_drive_t * drive)430 ide_startstop_t do_special (ide_drive_t *drive)
431 {
432 	special_t *s = &drive->special;
433 
434 #ifdef DEBUG
435 	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
436 #endif
437 	if (s->b.set_tune) {
438 		s->b.set_tune = 0;
439 		if (HWIF(drive)->tuneproc != NULL)
440 			HWIF(drive)->tuneproc(drive, drive->tune_req);
441 		return ide_stopped;
442 	}
443 	else
444 		return DRIVER(drive)->special(drive);
445 }
446 
447 EXPORT_SYMBOL(do_special);
448 
449 /**
450  *	execute_drive_command	-	issue special drive command
451  *	@drive: the drive to issue th command on
452  *	@rq: the request structure holding the command
453  *
454  *	execute_drive_cmd() issues a special drive command,  usually
455  *	initiated by ioctl() from the external hdparm program. The
456  *	command can be a drive command, drive task or taskfile
457  *	operation. Weirdly you can call it with NULL to wait for
458  *	all commands to finish. Don't do this as that is due to change
459  */
460 
execute_drive_cmd(ide_drive_t * drive,struct request * rq)461 ide_startstop_t execute_drive_cmd (ide_drive_t *drive, struct request *rq)
462 {
463 	ide_hwif_t *hwif = HWIF(drive);
464  	switch(rq->cmd) {
465  		case IDE_DRIVE_TASKFILE:
466  		{
467  			ide_task_t *args = rq->special;
468 
469  			if (!(args)) break;
470 
471 			if (args->tf_out_flags.all != 0)
472 				return flagged_taskfile(drive, args);
473 			return do_rw_taskfile(drive, args);
474  		}
475  		case IDE_DRIVE_TASK:
476  		{
477  			u8 *args = rq->buffer;
478  			u8 sel;
479 
480  			if (!(args)) break;
481 #ifdef DEBUG
482  			printk("%s: DRIVE_TASK_CMD ", drive->name);
483  			printk("cmd=0x%02x ", args[0]);
484  			printk("fr=0x%02x ", args[1]);
485  			printk("ns=0x%02x ", args[2]);
486  			printk("sc=0x%02x ", args[3]);
487  			printk("lcyl=0x%02x ", args[4]);
488  			printk("hcyl=0x%02x ", args[5]);
489  			printk("sel=0x%02x\n", args[6]);
490 #endif
491  			hwif->OUTB(args[1], IDE_FEATURE_REG);
492  			hwif->OUTB(args[3], IDE_SECTOR_REG);
493  			hwif->OUTB(args[4], IDE_LCYL_REG);
494  			hwif->OUTB(args[5], IDE_HCYL_REG);
495  			sel = (args[6] & ~0x10);
496  			if (drive->select.b.unit)
497  				sel |= 0x10;
498  			hwif->OUTB(sel, IDE_SELECT_REG);
499  			ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
500  			return ide_started;
501  		}
502  		case IDE_DRIVE_CMD:
503  		{
504  			u8 *args = rq->buffer;
505 
506  			if (!(args)) break;
507 #ifdef DEBUG
508  			printk("%s: DRIVE_CMD ", drive->name);
509  			printk("cmd=0x%02x ", args[0]);
510  			printk("sc=0x%02x ", args[1]);
511  			printk("fr=0x%02x ", args[2]);
512  			printk("xx=0x%02x\n", args[3]);
513 #endif
514  			if (args[0] == WIN_SMART) {
515  				hwif->OUTB(0x4f, IDE_LCYL_REG);
516  				hwif->OUTB(0xc2, IDE_HCYL_REG);
517  				hwif->OUTB(args[2],IDE_FEATURE_REG);
518  				hwif->OUTB(args[1],IDE_SECTOR_REG);
519  				ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
520  				return ide_started;
521  			}
522  			hwif->OUTB(args[2],IDE_FEATURE_REG);
523  			ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
524  			return ide_started;
525  		}
526  		default:
527  			break;
528  	}
529  	/*
530  	 * NULL is actually a valid way of waiting for
531  	 * all current requests to be flushed from the queue.
532  	 */
533 #ifdef DEBUG
534  	printk("%s: DRIVE_CMD (null)\n", drive->name);
535 #endif
536  	ide_end_drive_cmd(drive,
537 			hwif->INB(IDE_STATUS_REG),
538 			hwif->INB(IDE_ERROR_REG));
539  	return ide_stopped;
540 }
541 
542 EXPORT_SYMBOL(execute_drive_cmd);
543 
544 /**
545  *	ide_start_request	-	start of I/O and command issuing for IDE
546  *
547  *	ide_start_request() initiates handling of a new I/O request. It
548  *	accepts commands and I/O (read/write) requests. It also does
549  *	the final remapping for weird stuff like EZDrive. Once
550  *	device mapper can work sector level the EZDrive stuff can go away
551  *
552  *	FIXME: this function needs a rename
553  */
554 
ide_start_request(ide_drive_t * drive,struct request * rq)555 static ide_startstop_t ide_start_request (ide_drive_t *drive, struct request *rq)
556 {
557 	ide_startstop_t startstop;
558 	unsigned long block, blockend;
559 	unsigned int minor = MINOR(rq->rq_dev), unit = minor >> PARTN_BITS;
560 	ide_hwif_t *hwif = HWIF(drive);
561 
562 #ifdef DEBUG
563 	printk("%s: ide_start_request: current=0x%08lx\n",
564 		hwif->name, (unsigned long) rq);
565 #endif
566 
567 	/* bail early if we've exceeded max_failures */
568 	if (!drive->present || (drive->max_failures && (drive->failures > drive->max_failures))) {
569 		goto kill_rq;
570 	}
571 
572 	/*
573 	 * bail early if we've sent a device to sleep, however how to wake
574 	 * this needs to be a masked flag.  FIXME for proper operations.
575 	 */
576 	if (drive->suspend_reset) {
577 		goto kill_rq;
578 	}
579 
580 	if (unit >= MAX_DRIVES) {
581 		printk(KERN_ERR "%s: bad device number: %s\n",
582 			hwif->name, kdevname(rq->rq_dev));
583 		goto kill_rq;
584 	}
585 #ifdef DEBUG
586 	if (rq->bh && !buffer_locked(rq->bh)) {
587 		printk(KERN_ERR "%s: block not locked\n", drive->name);
588 		goto kill_rq;
589 	}
590 #endif
591 	block    = rq->sector;
592 	blockend = block + rq->nr_sectors;
593 
594 	if (blk_fs_request(rq) &&
595 	    (drive->media == ide_disk || drive->media == ide_floppy)) {
596 		if ((blockend < block) || (blockend > drive->part[minor&PARTN_MASK].nr_sects)) {
597 			printk(KERN_ERR "%s%c: bad access: block=%ld, count=%ld\n", drive->name,
598 			 (minor&PARTN_MASK)?'0'+(minor&PARTN_MASK):' ', block, rq->nr_sectors);
599 			goto kill_rq;
600 		}
601 		block += drive->part[minor&PARTN_MASK].start_sect + drive->sect0;
602 	}
603 	/* Yecch - this will shift the entire interval,
604 	   possibly killing some innocent following sector */
605 	if (block == 0 && drive->remap_0_to_1 == 1)
606 		block = 1;  /* redirect MBR access to EZ-Drive partn table */
607 
608 	SELECT_DRIVE(drive);
609 	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
610 		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
611 		return startstop;
612 	}
613 	if (!drive->special.all) {
614 		switch(rq->cmd) {
615 			case IDE_DRIVE_CMD:
616 			case IDE_DRIVE_TASK:
617 				return execute_drive_cmd(drive, rq);
618 			case IDE_DRIVE_TASKFILE:
619 				return execute_drive_cmd(drive, rq);
620 			default:
621 				break;
622 		}
623 		return (DRIVER(drive)->do_request(drive, rq, block));
624 	}
625 	return do_special(drive);
626 kill_rq:
627 	DRIVER(drive)->end_request(drive, 0);
628 	return ide_stopped;
629 }
630 
631 /**
632  *	ide_stall_queue		-	pause an IDE device
633  *	@drive: drive to stall
634  *	@timeout: time to stall for (jiffies)
635  *
636  *	ide_stall_queue() can be used by a drive to give excess bandwidth back
637  *	to the hwgroup by sleeping for timeout jiffies.
638  */
639 
ide_stall_queue(ide_drive_t * drive,unsigned long timeout)640 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
641 {
642 	if (timeout > WAIT_WORSTCASE)
643 		timeout = WAIT_WORSTCASE;
644 	drive->sleep = timeout + jiffies;
645 }
646 
647 EXPORT_SYMBOL(ide_stall_queue);
648 
649 #define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
650 
651 /**
652  *	choose_drive		-	select a drive to service
653  *	@hwgroup: hardware group to select on
654  *
655  *	choose_drive() selects the next drive which will be serviced.
656  *	This is neccessary because the IDE layer can't issue commands
657  *	to both drives on the same cable, unlike SCSI.
658  */
659 
choose_drive(ide_hwgroup_t * hwgroup)660 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
661 {
662 	ide_drive_t *drive, *best;
663 
664 repeat:
665 	best = NULL;
666 	drive = hwgroup->drive;
667 	do {
668 		if (!blk_queue_empty(&drive->queue) && (!drive->sleep || time_after_eq(jiffies, drive->sleep))) {
669 			if (!best
670 			 || (drive->sleep && (!best->sleep || 0 < (signed long)(best->sleep - drive->sleep)))
671 			 || (!best->sleep && 0 < (signed long)(WAKEUP(best) - WAKEUP(drive))))
672 			{
673 				if (!blk_queue_plugged(&drive->queue))
674 					best = drive;
675 			}
676 		}
677 	} while ((drive = drive->next) != hwgroup->drive);
678 	if (best && best->nice1 && !best->sleep && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
679 		long t = (signed long)(WAKEUP(best) - jiffies);
680 		if (t >= WAIT_MIN_SLEEP) {
681 		/*
682 		 * We *may* have some time to spare, but first let's see if
683 		 * someone can potentially benefit from our nice mood today..
684 		 */
685 			drive = best->next;
686 			do {
687 				if (!drive->sleep
688 				 && 0 < (signed long)(WAKEUP(drive) - (jiffies - best->service_time))
689 				 && 0 < (signed long)((jiffies + t) - WAKEUP(drive)))
690 				{
691 					ide_stall_queue(best, IDE_MIN(t, 10 * WAIT_MIN_SLEEP));
692 					goto repeat;
693 				}
694 			} while ((drive = drive->next) != best);
695 		}
696 	}
697 	return best;
698 }
699 
700 /*
701  * Issue a new request to a drive from hwgroup
702  * Caller must have already done spin_lock_irqsave(&io_request_lock, ..);
703  *
704  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
705  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
706  * may have both interfaces in a single hwgroup to "serialize" access.
707  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
708  * together into one hwgroup for serialized access.
709  *
710  * Note also that several hwgroups can end up sharing a single IRQ,
711  * possibly along with many other devices.  This is especially common in
712  * PCI-based systems with off-board IDE controller cards.
713  *
714  * The IDE driver uses the single global io_request_lock spinlock to protect
715  * access to the request queues, and to protect the hwgroup->busy flag.
716  *
717  * The first thread into the driver for a particular hwgroup sets the
718  * hwgroup->busy flag to indicate that this hwgroup is now active,
719  * and then initiates processing of the top request from the request queue.
720  *
721  * Other threads attempting entry notice the busy setting, and will simply
722  * queue their new requests and exit immediately.  Note that hwgroup->busy
723  * remains set even when the driver is merely awaiting the next interrupt.
724  * Thus, the meaning is "this hwgroup is busy processing a request".
725  *
726  * When processing of a request completes, the completing thread or IRQ-handler
727  * will start the next request from the queue.  If no more work remains,
728  * the driver will clear the hwgroup->busy flag and exit.
729  *
730  * The io_request_lock (spinlock) is used to protect all access to the
731  * hwgroup->busy flag, but is otherwise not needed for most processing in
732  * the driver.  This makes the driver much more friendlier to shared IRQs
733  * than previous designs, while remaining 100% (?) SMP safe and capable.
734  */
735 /* --BenH: made non-static as ide-pmac.c uses it to kick the hwgroup back
736  *         into life on wakeup from machine sleep.
737  */
ide_do_request(ide_hwgroup_t * hwgroup,int masked_irq)738 void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
739 {
740 	ide_drive_t	*drive;
741 	ide_hwif_t	*hwif;
742 	struct request	*rq;
743 	ide_startstop_t	startstop;
744 
745 	/* for atari only: POSSIBLY BROKEN HERE(?) */
746 	ide_get_lock(ide_intr, hwgroup);
747 
748 	/* necessary paranoia: ensure IRQs are masked on local CPU */
749 	local_irq_disable();
750 
751 	while (!hwgroup->busy) {
752 		hwgroup->busy = 1;
753 		drive = choose_drive(hwgroup);
754 		if (drive == NULL) {
755 			unsigned long sleep = 0;
756 			hwgroup->rq = NULL;
757 			drive = hwgroup->drive;
758 			do {
759 				if (drive->sleep && (!sleep || 0 < (signed long)(sleep - drive->sleep)))
760 					sleep = drive->sleep;
761 			} while ((drive = drive->next) != hwgroup->drive);
762 			if (sleep) {
763 		/*
764 		 * Take a short snooze, and then wake up this hwgroup again.
765 		 * This gives other hwgroups on the same a chance to
766 		 * play fairly with us, just in case there are big differences
767 		 * in relative throughputs.. don't want to hog the cpu too much.
768 		 */
769 				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
770 					sleep = jiffies + WAIT_MIN_SLEEP;
771 #if 1
772 				if (timer_pending(&hwgroup->timer))
773 					printk(KERN_ERR "ide_set_handler: timer already active\n");
774 #endif
775 				/* so that ide_timer_expiry knows what to do */
776 				hwgroup->sleeping = 1;
777 				mod_timer(&hwgroup->timer, sleep);
778 				/* we purposely leave hwgroup->busy==1
779 				 * while sleeping */
780 			} else {
781 				/* Ugly, but how can we sleep for the lock
782 				 * otherwise? perhaps from tq_disk?
783 				 */
784 
785 				/* for atari only */
786 				ide_release_lock();
787 				hwgroup->busy = 0;
788 			}
789 			/* no more work for this hwgroup (for now) */
790 			return;
791 		}
792 		hwif = HWIF(drive);
793 		if (hwgroup->hwif->sharing_irq &&
794 		    hwif != hwgroup->hwif &&
795 		    hwif->io_ports[IDE_CONTROL_OFFSET]) {
796 			/* set nIEN for previous hwif */
797 			SELECT_INTERRUPT(drive);
798 		}
799 		hwgroup->hwif = hwif;
800 		hwgroup->drive = drive;
801 		drive->sleep = 0;
802 		drive->service_start = jiffies;
803 
804 		/* paranoia */
805 		if (blk_queue_plugged(&drive->queue))
806 			printk(KERN_ERR "%s: Huh? nuking plugged queue\n", drive->name);
807 
808 		rq = blkdev_entry_next_request(&drive->queue.queue_head);
809 		hwgroup->rq = rq;
810 		/*
811 		 * Some systems have trouble with IDE IRQs arriving while
812 		 * the driver is still setting things up.  So, here we disable
813 		 * the IRQ used by this interface while the request is being started.
814 		 * This may look bad at first, but pretty much the same thing
815 		 * happens anyway when any interrupt comes in, IDE or otherwise
816 		 *  -- the kernel masks the IRQ while it is being handled.
817 		 */
818 		if (hwif->irq != masked_irq)
819 			disable_irq_nosync(hwif->irq);
820 		spin_unlock(&io_request_lock);
821 		local_irq_enable();
822 			/* allow other IRQs while we start this request */
823 		startstop = ide_start_request(drive, rq);
824 		spin_lock_irq(&io_request_lock);
825 		if (hwif->irq != masked_irq)
826 			enable_irq(hwif->irq);
827 		if (startstop == ide_stopped)
828 			hwgroup->busy = 0;
829 	}
830 }
831 
832 EXPORT_SYMBOL(ide_do_request);
833 
834 /*
835  * ide_get_queue() returns the queue which corresponds to a given device.
836  */
ide_get_queue(kdev_t dev)837 request_queue_t *ide_get_queue (kdev_t dev)
838 {
839 	ide_hwif_t *hwif = (ide_hwif_t *)blk_dev[MAJOR(dev)].data;
840 
841 	return &hwif->drives[DEVICE_NR(dev) & 1].queue;
842 }
843 
844 EXPORT_SYMBOL(ide_get_queue);
845 
846 /*
847  * Passes the stuff to ide_do_request
848  */
do_ide_request(request_queue_t * q)849 void do_ide_request(request_queue_t *q)
850 {
851 	ide_do_request(q->queuedata, IDE_NO_IRQ);
852 }
853 
854 EXPORT_SYMBOL(do_ide_request);
855 
856 /*
857  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
858  * retry the current request in pio mode instead of risking tossing it
859  * all away
860  */
ide_dma_timeout_retry(ide_drive_t * drive,int error)861 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
862 {
863 	ide_hwif_t *hwif = HWIF(drive);
864 	struct request *rq;
865 	ide_startstop_t ret = ide_stopped;
866 
867 	/*
868 	 * end current dma transaction
869 	 */
870 	(void) hwif->ide_dma_end(drive);
871 
872 	/*
873 	 * complain a little, later we might remove some of this verbosity
874 	 */
875 
876 	if (error < 0) {
877 		printk(KERN_ERR "%s: error waiting for DMA\n", drive->name);
878 		(void)HWIF(drive)->ide_dma_end(drive);
879 		ret = DRIVER(drive)->error(drive, "dma timeout retry",
880 				hwif->INB(IDE_STATUS_REG));
881 	} else {
882 		printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
883 		(void) hwif->ide_dma_timeout(drive);
884 	}
885 
886 	/*
887 	 * disable dma for now, but remember that we did so because of
888 	 * a timeout -- we'll reenable after we finish this next request
889 	 * (or rather the first chunk of it) in pio.
890 	 */
891 	drive->retry_pio++;
892 	drive->state = DMA_PIO_RETRY;
893 	(void) hwif->ide_dma_off_quietly(drive);
894 
895 	/*
896 	 * un-busy drive etc (hwgroup->busy is cleared on return) and
897 	 * make sure request is sane
898 	 */
899 	rq = HWGROUP(drive)->rq;
900 	HWGROUP(drive)->rq = NULL;
901 
902 	if (rq) {
903 		rq->errors = 0;
904 		rq->sector = rq->bh->b_rsector;
905 		rq->current_nr_sectors = rq->bh->b_size >> 9;
906 		rq->hard_cur_sectors = rq->current_nr_sectors;
907 		rq->buffer = rq->bh->b_data;
908 	}
909 
910 	return ret;
911 }
912 
913 /**
914  *	ide_timer_expiry	-	handle lack of an IDE interrupt
915  *	@data: timer callback magic (hwgroup)
916  *
917  *	An IDE command has timed out before the expected drive return
918  *	occurred. At this point we attempt to clean up the current
919  *	mess. If the current handler includes an expiry handler then
920  *	we invoke the expiry handler, and providing it is happy the
921  *	work is done. If that fails we apply generic recovery rules
922  *	invoking the handler and checking the drive DMA status. We
923  *	have an excessively incestuous relationship with the DMA
924  *	logic that wants cleaning up.
925  */
926 
ide_timer_expiry(unsigned long data)927 void ide_timer_expiry (unsigned long data)
928 {
929 	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
930 	ide_handler_t	*handler;
931 	ide_expiry_t	*expiry;
932  	unsigned long	flags;
933 	unsigned long	wait = -1;
934 
935 	spin_lock_irqsave(&io_request_lock, flags);
936 
937 	if ((handler = hwgroup->handler) == NULL) {
938 		/*
939 		 * Either a marginal timeout occurred
940 		 * (got the interrupt just as timer expired),
941 		 * or we were "sleeping" to give other devices a chance.
942 		 * Either way, we don't really want to complain about anything.
943 		 */
944 		if (hwgroup->sleeping) {
945 			hwgroup->sleeping = 0;
946 			hwgroup->busy = 0;
947 		}
948 	} else {
949 		ide_drive_t *drive = hwgroup->drive;
950 		if (!drive) {
951 			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
952 			hwgroup->handler = NULL;
953 		} else {
954 			ide_hwif_t *hwif;
955 			ide_startstop_t startstop = ide_stopped;
956 			if (!hwgroup->busy) {
957 				hwgroup->busy = 1;	/* paranoia */
958 				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
959 			}
960 			if ((expiry = hwgroup->expiry) != NULL) {
961 				/* continue */
962 				if ((wait = expiry(drive)) > 0) {
963 					/* reset timer */
964 					hwgroup->timer.expires  = jiffies + wait;
965 					add_timer(&hwgroup->timer);
966 					spin_unlock_irqrestore(&io_request_lock, flags);
967 					return;
968 				}
969 			}
970 			hwgroup->handler = NULL;
971 			/*
972 			 * We need to simulate a real interrupt when invoking
973 			 * the handler() function, which means we need to
974 			 * globally mask the specific IRQ:
975 			 */
976 			spin_unlock(&io_request_lock);
977 			hwif  = HWIF(drive);
978 #if DISABLE_IRQ_NOSYNC
979 			disable_irq_nosync(hwif->irq);
980 #else
981 			/* disable_irq_nosync ?? */
982 			disable_irq(hwif->irq);
983 #endif /* DISABLE_IRQ_NOSYNC */
984 
985 			/* local CPU only,
986 			 * as if we were handling an interrupt */
987 			local_irq_disable();
988 			if (hwgroup->poll_timeout != 0) {
989 				startstop = handler(drive);
990 			} else if (drive_is_ready(drive)) {
991 				if (drive->waiting_for_dma)
992 					(void) hwgroup->hwif->ide_dma_lostirq(drive);
993 				(void)ide_ack_intr(hwif);
994 				printk(KERN_ERR "%s: lost interrupt\n", drive->name);
995 				startstop = handler(drive);
996 			} else {
997 				if (drive->waiting_for_dma) {
998 					startstop = ide_dma_timeout_retry(drive, wait);
999 				} else {
1000 					startstop = DRIVER(drive)->error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1001 				}
1002 			}
1003 			drive->service_time = jiffies - drive->service_start;
1004 			spin_lock_irq(&io_request_lock);
1005 			enable_irq(hwif->irq);
1006 			if (startstop == ide_stopped)
1007 				hwgroup->busy = 0;
1008 		}
1009 	}
1010 	ide_do_request(hwgroup, IDE_NO_IRQ);
1011 	spin_unlock_irqrestore(&io_request_lock, flags);
1012 }
1013 
1014 EXPORT_SYMBOL(ide_timer_expiry);
1015 
1016 /**
1017  *	unexpected_intr		-	handle an unexpected IDE interrupt
1018  *	@irq: interrupt line
1019  *	@hwgroup: hwgroup being processed
1020  *
1021  *	There's nothing really useful we can do with an unexpected interrupt,
1022  *	other than reading the status register (to clear it), and logging it.
1023  *	There should be no way that an irq can happen before we're ready for it,
1024  *	so we needn't worry much about losing an "important" interrupt here.
1025  *
1026  *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1027  *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1028  *	looks "good", we just ignore the interrupt completely.
1029  *
1030  *	This routine assumes __cli() is in effect when called.
1031  *
1032  *	If an unexpected interrupt happens on irq15 while we are handling irq14
1033  *	and if the two interfaces are "serialized" (CMD640), then it looks like
1034  *	we could screw up by interfering with a new request being set up for
1035  *	irq15.
1036  *
1037  *	In reality, this is a non-issue.  The new command is not sent unless
1038  *	the drive is ready to accept one, in which case we know the drive is
1039  *	not trying to interrupt us.  And ide_set_handler() is always invoked
1040  *	before completing the issuance of any new drive command, so we will not
1041  *	be accidentally invoked as a result of any valid command completion
1042  *	interrupt.
1043  *
1044  *	Note that we must walk the entire hwgroup here. We know which hwif
1045  *	is doing the current command, but we don't know which hwif burped
1046  *	mysteriously.
1047  */
1048 
unexpected_intr(int irq,ide_hwgroup_t * hwgroup)1049 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1050 {
1051 	u8 stat;
1052 	ide_hwif_t *hwif = hwgroup->hwif;
1053 
1054 	/*
1055 	 * handle the unexpected interrupt
1056 	 */
1057 	do {
1058 		if (hwif->irq == irq) {
1059 			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1060 			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1061 				/* Try to not flood the console with msgs */
1062 				static unsigned long last_msgtime, count;
1063 				++count;
1064 				if (time_after(jiffies, last_msgtime + HZ)) {
1065 					last_msgtime = jiffies;
1066 					printk(KERN_ERR "%s%s: unexpected interrupt, "
1067 						"status=0x%02x, count=%ld\n",
1068 						hwif->name,
1069 						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1070 				}
1071 			}
1072 		}
1073 	} while ((hwif = hwif->next) != hwgroup->hwif);
1074 }
1075 
1076 /**
1077  *	ide_intr	-	default IDE interrupt handler
1078  *	@irq: interrupt number
1079  *	@dev_id: hwif group
1080  *	@regs: unused weirdness from the kernel irq layer
1081  *
1082  *	This is the default IRQ handler for the IDE layer. You should
1083  *	not need to override it. If you do be aware it is subtle in
1084  *	places
1085  *
1086  *	hwgroup->hwif is the interface in the group currently performing
1087  *	a command. hwgroup->drive is the drive and hwgroup->handler is
1088  *	the IRQ handler to call. As we issue a command the handlers
1089  *	step through multiple states, reassigning the handler to the
1090  *	next step in the process. Unlike a smart SCSI controller IDE
1091  *	expects the main processor to sequence the various transfer
1092  *	stages. We also manage a poll timer to catch up with most
1093  *	timeout situations. There are still a few where the handlers
1094  *	don't ever decide to give up.
1095  *
1096  *	The handler eventually returns ide_stopped to indicate the
1097  *	request completed. At this point we issue the next request
1098  *	on the hwgroup and the process begins again.
1099  */
1100 
ide_intr(int irq,void * dev_id,struct pt_regs * regs)1101 void ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1102 {
1103 	unsigned long flags;
1104 	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1105 	ide_hwif_t *hwif;
1106 	ide_drive_t *drive;
1107 	ide_handler_t *handler;
1108 	ide_startstop_t startstop;
1109 
1110 	spin_lock_irqsave(&io_request_lock, flags);
1111 	hwif = hwgroup->hwif;
1112 
1113 	if (!ide_ack_intr(hwif)) {
1114 		spin_unlock_irqrestore(&io_request_lock, flags);
1115 		return;
1116 	}
1117 
1118 	if ((handler = hwgroup->handler) == NULL ||
1119 	    hwgroup->poll_timeout != 0) {
1120 		/*
1121 		 * Not expecting an interrupt from this drive.
1122 		 * That means this could be:
1123 		 *	(1) an interrupt from another PCI device
1124 		 *	sharing the same PCI INT# as us.
1125 		 * or	(2) a drive just entered sleep or standby mode,
1126 		 *	and is interrupting to let us know.
1127 		 * or	(3) a spurious interrupt of unknown origin.
1128 		 *
1129 		 * For PCI, we cannot tell the difference,
1130 		 * so in that case we just ignore it and hope it goes away.
1131 		 */
1132 #ifdef CONFIG_BLK_DEV_IDEPCI
1133 		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1134 #endif	/* CONFIG_BLK_DEV_IDEPCI */
1135 		{
1136 			/*
1137 			 * Probably not a shared PCI interrupt,
1138 			 * so we can safely try to do something about it:
1139 			 */
1140 			unexpected_intr(irq, hwgroup);
1141 #ifdef CONFIG_BLK_DEV_IDEPCI
1142 		} else {
1143 			/*
1144 			 * Whack the status register, just in case
1145 			 * we have a leftover pending IRQ.
1146 			 */
1147 			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1148 #endif /* CONFIG_BLK_DEV_IDEPCI */
1149 		}
1150 		spin_unlock_irqrestore(&io_request_lock, flags);
1151 		return;
1152 	}
1153 	drive = hwgroup->drive;
1154 	if (!drive) {
1155 		/*
1156 		 * This should NEVER happen, and there isn't much
1157 		 * we could do about it here.
1158 		 */
1159 		spin_unlock_irqrestore(&io_request_lock, flags);
1160 		return;
1161 	}
1162 	if (!drive_is_ready(drive)) {
1163 		/*
1164 		 * This happens regularly when we share a PCI IRQ with
1165 		 * another device.  Unfortunately, it can also happen
1166 		 * with some buggy drives that trigger the IRQ before
1167 		 * their status register is up to date.  Hopefully we have
1168 		 * enough advance overhead that the latter isn't a problem.
1169 		 */
1170 		spin_unlock_irqrestore(&io_request_lock, flags);
1171 		return;
1172 	}
1173 	if (!hwgroup->busy) {
1174 		hwgroup->busy = 1;	/* paranoia */
1175 		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1176 	}
1177 	hwgroup->handler = NULL;
1178 	del_timer(&hwgroup->timer);
1179 	spin_unlock(&io_request_lock);
1180 
1181 	if (drive->unmask)
1182 		local_irq_enable();
1183 
1184 	/* service this interrupt, may set handler for next interrupt */
1185 	startstop = handler(drive);
1186 	spin_lock_irq(&io_request_lock);
1187 
1188 	/*
1189 	 * Note that handler() may have set things up for another
1190 	 * interrupt to occur soon, but it cannot happen until
1191 	 * we exit from this routine, because it will be the
1192 	 * same irq as is currently being serviced here, and Linux
1193 	 * won't allow another of the same (on any CPU) until we return.
1194 	 */
1195 	drive->service_time = jiffies - drive->service_start;
1196 	if (startstop == ide_stopped) {
1197 		if (hwgroup->handler == NULL) {	/* paranoia */
1198 			hwgroup->busy = 0;
1199 			ide_do_request(hwgroup, hwif->irq);
1200 		} else {
1201 			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1202 				"on exit\n", drive->name);
1203 		}
1204 	}
1205 	spin_unlock_irqrestore(&io_request_lock, flags);
1206 }
1207 
1208 EXPORT_SYMBOL(ide_intr);
1209 
1210 /*
1211  * get_info_ptr() returns the (ide_drive_t *) for a given device number.
1212  * It returns NULL if the given device number does not match any present drives.
1213  */
ide_info_ptr(kdev_t i_rdev,int force)1214 ide_drive_t *ide_info_ptr (kdev_t i_rdev, int force)
1215 {
1216 	int		major = MAJOR(i_rdev);
1217 	unsigned int	h;
1218 
1219 	for (h = 0; h < MAX_HWIFS; ++h) {
1220 		ide_hwif_t  *hwif = &ide_hwifs[h];
1221 		if (hwif->present && major == hwif->major) {
1222 			unsigned unit = DEVICE_NR(i_rdev);
1223 			if (unit < MAX_DRIVES) {
1224 				ide_drive_t *drive = &hwif->drives[unit];
1225 				if (drive->present || force)
1226 					return drive;
1227 			}
1228 			break;
1229 		}
1230 	}
1231 	return NULL;
1232 }
1233 
1234 EXPORT_SYMBOL(ide_info_ptr);
1235 
1236 /**
1237  *	ide_init_drive_cmd	-	initialize a drive command request
1238  *	@rq: request object
1239  *
1240  *	Initialize a request before we fill it in and send it down to
1241  *	ide_do_drive_cmd. Commands must be set up by this function. Right
1242  *	now it doesn't do a lot, but if that changes abusers will have a
1243  *	nasty suprise.
1244  */
1245 
ide_init_drive_cmd(struct request * rq)1246 void ide_init_drive_cmd (struct request *rq)
1247 {
1248 	memset(rq, 0, sizeof(*rq));
1249 	rq->cmd = IDE_DRIVE_CMD;
1250 }
1251 
1252 EXPORT_SYMBOL(ide_init_drive_cmd);
1253 
1254 /**
1255  *	ide_do_drive_cmd	-	issue IDE special command
1256  *	@drive: device to issue command
1257  *	@rq: request to issue
1258  *	@action: action for processing
1259  *
1260  *	This function issues a special IDE device request
1261  *	onto the request queue.
1262  *
1263  *	If action is ide_wait, then the rq is queued at the end of the
1264  *	request queue, and the function sleeps until it has been processed.
1265  *	This is for use when invoked from an ioctl handler.
1266  *
1267  *	If action is ide_preempt, then the rq is queued at the head of
1268  *	the request queue, displacing the currently-being-processed
1269  *	request and this function returns immediately without waiting
1270  *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1271  *	intended for careful use by the ATAPI tape/cdrom driver code.
1272  *
1273  *	If action is ide_next, then the rq is queued immediately after
1274  *	the currently-being-processed-request (if any), and the function
1275  *	returns without waiting for the new rq to be completed.  As above,
1276  *	This is VERY DANGEROUS, and is intended for careful use by the
1277  *	ATAPI tape/cdrom driver code.
1278  *
1279  *	If action is ide_end, then the rq is queued at the end of the
1280  *	request queue, and the function returns immediately without waiting
1281  *	for the new rq to be completed. This is again intended for careful
1282  *	use by the ATAPI tape/cdrom driver code.
1283  */
1284 
ide_do_drive_cmd(ide_drive_t * drive,struct request * rq,ide_action_t action)1285 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1286 {
1287 	unsigned long flags;
1288 	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1289 	unsigned int major = HWIF(drive)->major;
1290 	request_queue_t *q = &drive->queue;
1291 	struct list_head *queue_head = &q->queue_head;
1292 	DECLARE_COMPLETION(wait);
1293 
1294 #ifdef CONFIG_BLK_DEV_PDC4030
1295 	if (HWIF(drive)->chipset == ide_pdc4030 && rq->buffer != NULL)
1296 		return -ENOSYS;  /* special drive cmds not supported */
1297 #endif
1298 	rq->errors = 0;
1299 	rq->rq_status = RQ_ACTIVE;
1300 	rq->rq_dev = MKDEV(major,(drive->select.b.unit)<<PARTN_BITS);
1301 	if (action == ide_wait)
1302 		rq->waiting = &wait;
1303 	spin_lock_irqsave(&io_request_lock, flags);
1304 	if (blk_queue_empty(q) || action == ide_preempt) {
1305 		if (action == ide_preempt)
1306 			hwgroup->rq = NULL;
1307 	} else {
1308 		if (action == ide_wait || action == ide_end) {
1309 			queue_head = queue_head->prev;
1310 		} else
1311 			queue_head = queue_head->next;
1312 	}
1313 	list_add(&rq->queue, queue_head);
1314 	ide_do_request(hwgroup, IDE_NO_IRQ);
1315 	spin_unlock_irqrestore(&io_request_lock, flags);
1316 	if (action == ide_wait) {
1317 		/* wait for it to be serviced */
1318 		wait_for_completion(&wait);
1319 		/* return -EIO if errors */
1320 		return rq->errors ? -EIO : 0;
1321 	}
1322 	return 0;
1323 
1324 }
1325 
1326 EXPORT_SYMBOL(ide_do_drive_cmd);
1327