1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42 #include <linux/ioasid.h>
43
44 #include <asm/stacktrace.h>
45 #include <asm/processor.h>
46 #include <asm/debugreg.h>
47 #include <asm/realmode.h>
48 #include <asm/text-patching.h>
49 #include <asm/ftrace.h>
50 #include <asm/traps.h>
51 #include <asm/desc.h>
52 #include <asm/fpu/api.h>
53 #include <asm/cpu.h>
54 #include <asm/cpu_entry_area.h>
55 #include <asm/mce.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/vm86.h>
61 #include <asm/umip.h>
62 #include <asm/insn.h>
63 #include <asm/insn-eval.h>
64 #include <asm/vdso.h>
65 #include <asm/tdx.h>
66
67 #ifdef CONFIG_X86_64
68 #include <asm/x86_init.h>
69 #include <asm/proto.h>
70 #else
71 #include <asm/processor-flags.h>
72 #include <asm/setup.h>
73 #include <asm/proto.h>
74 #endif
75
76 DECLARE_BITMAP(system_vectors, NR_VECTORS);
77
cond_local_irq_enable(struct pt_regs * regs)78 static inline void cond_local_irq_enable(struct pt_regs *regs)
79 {
80 if (regs->flags & X86_EFLAGS_IF)
81 local_irq_enable();
82 }
83
cond_local_irq_disable(struct pt_regs * regs)84 static inline void cond_local_irq_disable(struct pt_regs *regs)
85 {
86 if (regs->flags & X86_EFLAGS_IF)
87 local_irq_disable();
88 }
89
is_valid_bugaddr(unsigned long addr)90 __always_inline int is_valid_bugaddr(unsigned long addr)
91 {
92 if (addr < TASK_SIZE_MAX)
93 return 0;
94
95 /*
96 * We got #UD, if the text isn't readable we'd have gotten
97 * a different exception.
98 */
99 return *(unsigned short *)addr == INSN_UD2;
100 }
101
102 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,const char * str,struct pt_regs * regs,long error_code)103 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
104 struct pt_regs *regs, long error_code)
105 {
106 if (v8086_mode(regs)) {
107 /*
108 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
109 * On nmi (interrupt 2), do_trap should not be called.
110 */
111 if (trapnr < X86_TRAP_UD) {
112 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
113 error_code, trapnr))
114 return 0;
115 }
116 } else if (!user_mode(regs)) {
117 if (fixup_exception(regs, trapnr, error_code, 0))
118 return 0;
119
120 tsk->thread.error_code = error_code;
121 tsk->thread.trap_nr = trapnr;
122 die(str, regs, error_code);
123 } else {
124 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
125 return 0;
126 }
127
128 /*
129 * We want error_code and trap_nr set for userspace faults and
130 * kernelspace faults which result in die(), but not
131 * kernelspace faults which are fixed up. die() gives the
132 * process no chance to handle the signal and notice the
133 * kernel fault information, so that won't result in polluting
134 * the information about previously queued, but not yet
135 * delivered, faults. See also exc_general_protection below.
136 */
137 tsk->thread.error_code = error_code;
138 tsk->thread.trap_nr = trapnr;
139
140 return -1;
141 }
142
show_signal(struct task_struct * tsk,int signr,const char * type,const char * desc,struct pt_regs * regs,long error_code)143 static void show_signal(struct task_struct *tsk, int signr,
144 const char *type, const char *desc,
145 struct pt_regs *regs, long error_code)
146 {
147 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
148 printk_ratelimit()) {
149 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
150 tsk->comm, task_pid_nr(tsk), type, desc,
151 regs->ip, regs->sp, error_code);
152 print_vma_addr(KERN_CONT " in ", regs->ip);
153 pr_cont("\n");
154 }
155 }
156
157 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,int sicode,void __user * addr)158 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
159 long error_code, int sicode, void __user *addr)
160 {
161 struct task_struct *tsk = current;
162
163 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
164 return;
165
166 show_signal(tsk, signr, "trap ", str, regs, error_code);
167
168 if (!sicode)
169 force_sig(signr);
170 else
171 force_sig_fault(signr, sicode, addr);
172 }
173 NOKPROBE_SYMBOL(do_trap);
174
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr,int sicode,void __user * addr)175 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
176 unsigned long trapnr, int signr, int sicode, void __user *addr)
177 {
178 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
179
180 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
181 NOTIFY_STOP) {
182 cond_local_irq_enable(regs);
183 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
184 cond_local_irq_disable(regs);
185 }
186 }
187
188 /*
189 * Posix requires to provide the address of the faulting instruction for
190 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
191 *
192 * This address is usually regs->ip, but when an uprobe moved the code out
193 * of line then regs->ip points to the XOL code which would confuse
194 * anything which analyzes the fault address vs. the unmodified binary. If
195 * a trap happened in XOL code then uprobe maps regs->ip back to the
196 * original instruction address.
197 */
error_get_trap_addr(struct pt_regs * regs)198 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
199 {
200 return (void __user *)uprobe_get_trap_addr(regs);
201 }
202
DEFINE_IDTENTRY(exc_divide_error)203 DEFINE_IDTENTRY(exc_divide_error)
204 {
205 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
206 FPE_INTDIV, error_get_trap_addr(regs));
207 }
208
DEFINE_IDTENTRY(exc_overflow)209 DEFINE_IDTENTRY(exc_overflow)
210 {
211 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
212 }
213
214 #ifdef CONFIG_X86_KERNEL_IBT
215
216 static __ro_after_init bool ibt_fatal = true;
217
218 extern void ibt_selftest_ip(void); /* code label defined in asm below */
219
220 enum cp_error_code {
221 CP_EC = (1 << 15) - 1,
222
223 CP_RET = 1,
224 CP_IRET = 2,
225 CP_ENDBR = 3,
226 CP_RSTRORSSP = 4,
227 CP_SETSSBSY = 5,
228
229 CP_ENCL = 1 << 15,
230 };
231
DEFINE_IDTENTRY_ERRORCODE(exc_control_protection)232 DEFINE_IDTENTRY_ERRORCODE(exc_control_protection)
233 {
234 if (!cpu_feature_enabled(X86_FEATURE_IBT)) {
235 pr_err("Unexpected #CP\n");
236 BUG();
237 }
238
239 if (WARN_ON_ONCE(user_mode(regs) || (error_code & CP_EC) != CP_ENDBR))
240 return;
241
242 if (unlikely(regs->ip == (unsigned long)&ibt_selftest_ip)) {
243 regs->ax = 0;
244 return;
245 }
246
247 pr_err("Missing ENDBR: %pS\n", (void *)instruction_pointer(regs));
248 if (!ibt_fatal) {
249 printk(KERN_DEFAULT CUT_HERE);
250 __warn(__FILE__, __LINE__, (void *)regs->ip, TAINT_WARN, regs, NULL);
251 return;
252 }
253 BUG();
254 }
255
256 /* Must be noinline to ensure uniqueness of ibt_selftest_ip. */
ibt_selftest(void)257 noinline bool ibt_selftest(void)
258 {
259 unsigned long ret;
260
261 asm (" lea ibt_selftest_ip(%%rip), %%rax\n\t"
262 ANNOTATE_RETPOLINE_SAFE
263 " jmp *%%rax\n\t"
264 "ibt_selftest_ip:\n\t"
265 UNWIND_HINT_FUNC
266 ANNOTATE_NOENDBR
267 " nop\n\t"
268
269 : "=a" (ret) : : "memory");
270
271 return !ret;
272 }
273
ibt_setup(char * str)274 static int __init ibt_setup(char *str)
275 {
276 if (!strcmp(str, "off"))
277 setup_clear_cpu_cap(X86_FEATURE_IBT);
278
279 if (!strcmp(str, "warn"))
280 ibt_fatal = false;
281
282 return 1;
283 }
284
285 __setup("ibt=", ibt_setup);
286
287 #endif /* CONFIG_X86_KERNEL_IBT */
288
289 #ifdef CONFIG_X86_F00F_BUG
handle_invalid_op(struct pt_regs * regs)290 void handle_invalid_op(struct pt_regs *regs)
291 #else
292 static inline void handle_invalid_op(struct pt_regs *regs)
293 #endif
294 {
295 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
296 ILL_ILLOPN, error_get_trap_addr(regs));
297 }
298
handle_bug(struct pt_regs * regs)299 static noinstr bool handle_bug(struct pt_regs *regs)
300 {
301 bool handled = false;
302
303 if (!is_valid_bugaddr(regs->ip))
304 return handled;
305
306 /*
307 * All lies, just get the WARN/BUG out.
308 */
309 instrumentation_begin();
310 /*
311 * Since we're emulating a CALL with exceptions, restore the interrupt
312 * state to what it was at the exception site.
313 */
314 if (regs->flags & X86_EFLAGS_IF)
315 raw_local_irq_enable();
316 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
317 regs->ip += LEN_UD2;
318 handled = true;
319 }
320 if (regs->flags & X86_EFLAGS_IF)
321 raw_local_irq_disable();
322 instrumentation_end();
323
324 return handled;
325 }
326
DEFINE_IDTENTRY_RAW(exc_invalid_op)327 DEFINE_IDTENTRY_RAW(exc_invalid_op)
328 {
329 irqentry_state_t state;
330
331 /*
332 * We use UD2 as a short encoding for 'CALL __WARN', as such
333 * handle it before exception entry to avoid recursive WARN
334 * in case exception entry is the one triggering WARNs.
335 */
336 if (!user_mode(regs) && handle_bug(regs))
337 return;
338
339 state = irqentry_enter(regs);
340 instrumentation_begin();
341 handle_invalid_op(regs);
342 instrumentation_end();
343 irqentry_exit(regs, state);
344 }
345
DEFINE_IDTENTRY(exc_coproc_segment_overrun)346 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
347 {
348 do_error_trap(regs, 0, "coprocessor segment overrun",
349 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
350 }
351
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)352 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
353 {
354 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
355 0, NULL);
356 }
357
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)358 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
359 {
360 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
361 SIGBUS, 0, NULL);
362 }
363
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)364 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
365 {
366 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
367 0, NULL);
368 }
369
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)370 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
371 {
372 char *str = "alignment check";
373
374 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
375 return;
376
377 if (!user_mode(regs))
378 die("Split lock detected\n", regs, error_code);
379
380 local_irq_enable();
381
382 if (handle_user_split_lock(regs, error_code))
383 goto out;
384
385 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
386 error_code, BUS_ADRALN, NULL);
387
388 out:
389 local_irq_disable();
390 }
391
392 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(struct pt_regs * regs,unsigned long fault_address,struct stack_info * info)393 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
394 unsigned long fault_address,
395 struct stack_info *info)
396 {
397 const char *name = stack_type_name(info->type);
398
399 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
400 name, (void *)fault_address, info->begin, info->end);
401
402 die("stack guard page", regs, 0);
403
404 /* Be absolutely certain we don't return. */
405 panic("%s stack guard hit", name);
406 }
407 #endif
408
409 /*
410 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
411 *
412 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
413 * SDM's warnings about double faults being unrecoverable, returning works as
414 * expected. Presumably what the SDM actually means is that the CPU may get
415 * the register state wrong on entry, so returning could be a bad idea.
416 *
417 * Various CPU engineers have promised that double faults due to an IRET fault
418 * while the stack is read-only are, in fact, recoverable.
419 *
420 * On x86_32, this is entered through a task gate, and regs are synthesized
421 * from the TSS. Returning is, in principle, okay, but changes to regs will
422 * be lost. If, for some reason, we need to return to a context with modified
423 * regs, the shim code could be adjusted to synchronize the registers.
424 *
425 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
426 * to be read before doing anything else.
427 */
DEFINE_IDTENTRY_DF(exc_double_fault)428 DEFINE_IDTENTRY_DF(exc_double_fault)
429 {
430 static const char str[] = "double fault";
431 struct task_struct *tsk = current;
432
433 #ifdef CONFIG_VMAP_STACK
434 unsigned long address = read_cr2();
435 struct stack_info info;
436 #endif
437
438 #ifdef CONFIG_X86_ESPFIX64
439 extern unsigned char native_irq_return_iret[];
440
441 /*
442 * If IRET takes a non-IST fault on the espfix64 stack, then we
443 * end up promoting it to a doublefault. In that case, take
444 * advantage of the fact that we're not using the normal (TSS.sp0)
445 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
446 * and then modify our own IRET frame so that, when we return,
447 * we land directly at the #GP(0) vector with the stack already
448 * set up according to its expectations.
449 *
450 * The net result is that our #GP handler will think that we
451 * entered from usermode with the bad user context.
452 *
453 * No need for nmi_enter() here because we don't use RCU.
454 */
455 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
456 regs->cs == __KERNEL_CS &&
457 regs->ip == (unsigned long)native_irq_return_iret)
458 {
459 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
460 unsigned long *p = (unsigned long *)regs->sp;
461
462 /*
463 * regs->sp points to the failing IRET frame on the
464 * ESPFIX64 stack. Copy it to the entry stack. This fills
465 * in gpregs->ss through gpregs->ip.
466 *
467 */
468 gpregs->ip = p[0];
469 gpregs->cs = p[1];
470 gpregs->flags = p[2];
471 gpregs->sp = p[3];
472 gpregs->ss = p[4];
473 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
474
475 /*
476 * Adjust our frame so that we return straight to the #GP
477 * vector with the expected RSP value. This is safe because
478 * we won't enable interrupts or schedule before we invoke
479 * general_protection, so nothing will clobber the stack
480 * frame we just set up.
481 *
482 * We will enter general_protection with kernel GSBASE,
483 * which is what the stub expects, given that the faulting
484 * RIP will be the IRET instruction.
485 */
486 regs->ip = (unsigned long)asm_exc_general_protection;
487 regs->sp = (unsigned long)&gpregs->orig_ax;
488
489 return;
490 }
491 #endif
492
493 irqentry_nmi_enter(regs);
494 instrumentation_begin();
495 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
496
497 tsk->thread.error_code = error_code;
498 tsk->thread.trap_nr = X86_TRAP_DF;
499
500 #ifdef CONFIG_VMAP_STACK
501 /*
502 * If we overflow the stack into a guard page, the CPU will fail
503 * to deliver #PF and will send #DF instead. Similarly, if we
504 * take any non-IST exception while too close to the bottom of
505 * the stack, the processor will get a page fault while
506 * delivering the exception and will generate a double fault.
507 *
508 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
509 * Page-Fault Exception (#PF):
510 *
511 * Processors update CR2 whenever a page fault is detected. If a
512 * second page fault occurs while an earlier page fault is being
513 * delivered, the faulting linear address of the second fault will
514 * overwrite the contents of CR2 (replacing the previous
515 * address). These updates to CR2 occur even if the page fault
516 * results in a double fault or occurs during the delivery of a
517 * double fault.
518 *
519 * The logic below has a small possibility of incorrectly diagnosing
520 * some errors as stack overflows. For example, if the IDT or GDT
521 * gets corrupted such that #GP delivery fails due to a bad descriptor
522 * causing #GP and we hit this condition while CR2 coincidentally
523 * points to the stack guard page, we'll think we overflowed the
524 * stack. Given that we're going to panic one way or another
525 * if this happens, this isn't necessarily worth fixing.
526 *
527 * If necessary, we could improve the test by only diagnosing
528 * a stack overflow if the saved RSP points within 47 bytes of
529 * the bottom of the stack: if RSP == tsk_stack + 48 and we
530 * take an exception, the stack is already aligned and there
531 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
532 * possible error code, so a stack overflow would *not* double
533 * fault. With any less space left, exception delivery could
534 * fail, and, as a practical matter, we've overflowed the
535 * stack even if the actual trigger for the double fault was
536 * something else.
537 */
538 if (get_stack_guard_info((void *)address, &info))
539 handle_stack_overflow(regs, address, &info);
540 #endif
541
542 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
543 die("double fault", regs, error_code);
544 panic("Machine halted.");
545 instrumentation_end();
546 }
547
DEFINE_IDTENTRY(exc_bounds)548 DEFINE_IDTENTRY(exc_bounds)
549 {
550 if (notify_die(DIE_TRAP, "bounds", regs, 0,
551 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
552 return;
553 cond_local_irq_enable(regs);
554
555 if (!user_mode(regs))
556 die("bounds", regs, 0);
557
558 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
559
560 cond_local_irq_disable(regs);
561 }
562
563 enum kernel_gp_hint {
564 GP_NO_HINT,
565 GP_NON_CANONICAL,
566 GP_CANONICAL
567 };
568
569 /*
570 * When an uncaught #GP occurs, try to determine the memory address accessed by
571 * the instruction and return that address to the caller. Also, try to figure
572 * out whether any part of the access to that address was non-canonical.
573 */
get_kernel_gp_address(struct pt_regs * regs,unsigned long * addr)574 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
575 unsigned long *addr)
576 {
577 u8 insn_buf[MAX_INSN_SIZE];
578 struct insn insn;
579 int ret;
580
581 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
582 MAX_INSN_SIZE))
583 return GP_NO_HINT;
584
585 ret = insn_decode_kernel(&insn, insn_buf);
586 if (ret < 0)
587 return GP_NO_HINT;
588
589 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
590 if (*addr == -1UL)
591 return GP_NO_HINT;
592
593 #ifdef CONFIG_X86_64
594 /*
595 * Check that:
596 * - the operand is not in the kernel half
597 * - the last byte of the operand is not in the user canonical half
598 */
599 if (*addr < ~__VIRTUAL_MASK &&
600 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
601 return GP_NON_CANONICAL;
602 #endif
603
604 return GP_CANONICAL;
605 }
606
607 #define GPFSTR "general protection fault"
608
fixup_iopl_exception(struct pt_regs * regs)609 static bool fixup_iopl_exception(struct pt_regs *regs)
610 {
611 struct thread_struct *t = ¤t->thread;
612 unsigned char byte;
613 unsigned long ip;
614
615 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
616 return false;
617
618 if (insn_get_effective_ip(regs, &ip))
619 return false;
620
621 if (get_user(byte, (const char __user *)ip))
622 return false;
623
624 if (byte != 0xfa && byte != 0xfb)
625 return false;
626
627 if (!t->iopl_warn && printk_ratelimit()) {
628 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
629 current->comm, task_pid_nr(current), ip);
630 print_vma_addr(KERN_CONT " in ", ip);
631 pr_cont("\n");
632 t->iopl_warn = 1;
633 }
634
635 regs->ip += 1;
636 return true;
637 }
638
639 /*
640 * The unprivileged ENQCMD instruction generates #GPs if the
641 * IA32_PASID MSR has not been populated. If possible, populate
642 * the MSR from a PASID previously allocated to the mm.
643 */
try_fixup_enqcmd_gp(void)644 static bool try_fixup_enqcmd_gp(void)
645 {
646 #ifdef CONFIG_IOMMU_SVA
647 u32 pasid;
648
649 /*
650 * MSR_IA32_PASID is managed using XSAVE. Directly
651 * writing to the MSR is only possible when fpregs
652 * are valid and the fpstate is not. This is
653 * guaranteed when handling a userspace exception
654 * in *before* interrupts are re-enabled.
655 */
656 lockdep_assert_irqs_disabled();
657
658 /*
659 * Hardware without ENQCMD will not generate
660 * #GPs that can be fixed up here.
661 */
662 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
663 return false;
664
665 pasid = current->mm->pasid;
666
667 /*
668 * If the mm has not been allocated a
669 * PASID, the #GP can not be fixed up.
670 */
671 if (!pasid_valid(pasid))
672 return false;
673
674 /*
675 * Did this thread already have its PASID activated?
676 * If so, the #GP must be from something else.
677 */
678 if (current->pasid_activated)
679 return false;
680
681 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
682 current->pasid_activated = 1;
683
684 return true;
685 #else
686 return false;
687 #endif
688 }
689
gp_try_fixup_and_notify(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str)690 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
691 unsigned long error_code, const char *str)
692 {
693 if (fixup_exception(regs, trapnr, error_code, 0))
694 return true;
695
696 current->thread.error_code = error_code;
697 current->thread.trap_nr = trapnr;
698
699 /*
700 * To be potentially processing a kprobe fault and to trust the result
701 * from kprobe_running(), we have to be non-preemptible.
702 */
703 if (!preemptible() && kprobe_running() &&
704 kprobe_fault_handler(regs, trapnr))
705 return true;
706
707 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
708 }
709
gp_user_force_sig_segv(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str)710 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
711 unsigned long error_code, const char *str)
712 {
713 current->thread.error_code = error_code;
714 current->thread.trap_nr = trapnr;
715 show_signal(current, SIGSEGV, "", str, regs, error_code);
716 force_sig(SIGSEGV);
717 }
718
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)719 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
720 {
721 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
722 enum kernel_gp_hint hint = GP_NO_HINT;
723 unsigned long gp_addr;
724
725 if (user_mode(regs) && try_fixup_enqcmd_gp())
726 return;
727
728 cond_local_irq_enable(regs);
729
730 if (static_cpu_has(X86_FEATURE_UMIP)) {
731 if (user_mode(regs) && fixup_umip_exception(regs))
732 goto exit;
733 }
734
735 if (v8086_mode(regs)) {
736 local_irq_enable();
737 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
738 local_irq_disable();
739 return;
740 }
741
742 if (user_mode(regs)) {
743 if (fixup_iopl_exception(regs))
744 goto exit;
745
746 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
747 goto exit;
748
749 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
750 goto exit;
751 }
752
753 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc))
754 goto exit;
755
756 if (error_code)
757 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
758 else
759 hint = get_kernel_gp_address(regs, &gp_addr);
760
761 if (hint != GP_NO_HINT)
762 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
763 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
764 : "maybe for address",
765 gp_addr);
766
767 /*
768 * KASAN is interested only in the non-canonical case, clear it
769 * otherwise.
770 */
771 if (hint != GP_NON_CANONICAL)
772 gp_addr = 0;
773
774 die_addr(desc, regs, error_code, gp_addr);
775
776 exit:
777 cond_local_irq_disable(regs);
778 }
779
do_int3(struct pt_regs * regs)780 static bool do_int3(struct pt_regs *regs)
781 {
782 int res;
783
784 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
785 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
786 SIGTRAP) == NOTIFY_STOP)
787 return true;
788 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
789
790 #ifdef CONFIG_KPROBES
791 if (kprobe_int3_handler(regs))
792 return true;
793 #endif
794 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
795
796 return res == NOTIFY_STOP;
797 }
798 NOKPROBE_SYMBOL(do_int3);
799
do_int3_user(struct pt_regs * regs)800 static void do_int3_user(struct pt_regs *regs)
801 {
802 if (do_int3(regs))
803 return;
804
805 cond_local_irq_enable(regs);
806 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
807 cond_local_irq_disable(regs);
808 }
809
DEFINE_IDTENTRY_RAW(exc_int3)810 DEFINE_IDTENTRY_RAW(exc_int3)
811 {
812 /*
813 * poke_int3_handler() is completely self contained code; it does (and
814 * must) *NOT* call out to anything, lest it hits upon yet another
815 * INT3.
816 */
817 if (poke_int3_handler(regs))
818 return;
819
820 /*
821 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
822 * and therefore can trigger INT3, hence poke_int3_handler() must
823 * be done before. If the entry came from kernel mode, then use
824 * nmi_enter() because the INT3 could have been hit in any context
825 * including NMI.
826 */
827 if (user_mode(regs)) {
828 irqentry_enter_from_user_mode(regs);
829 instrumentation_begin();
830 do_int3_user(regs);
831 instrumentation_end();
832 irqentry_exit_to_user_mode(regs);
833 } else {
834 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
835
836 instrumentation_begin();
837 if (!do_int3(regs))
838 die("int3", regs, 0);
839 instrumentation_end();
840 irqentry_nmi_exit(regs, irq_state);
841 }
842 }
843
844 #ifdef CONFIG_X86_64
845 /*
846 * Help handler running on a per-cpu (IST or entry trampoline) stack
847 * to switch to the normal thread stack if the interrupted code was in
848 * user mode. The actual stack switch is done in entry_64.S
849 */
sync_regs(struct pt_regs * eregs)850 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
851 {
852 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
853 if (regs != eregs)
854 *regs = *eregs;
855 return regs;
856 }
857
858 #ifdef CONFIG_AMD_MEM_ENCRYPT
vc_switch_off_ist(struct pt_regs * regs)859 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
860 {
861 unsigned long sp, *stack;
862 struct stack_info info;
863 struct pt_regs *regs_ret;
864
865 /*
866 * In the SYSCALL entry path the RSP value comes from user-space - don't
867 * trust it and switch to the current kernel stack
868 */
869 if (ip_within_syscall_gap(regs)) {
870 sp = this_cpu_read(cpu_current_top_of_stack);
871 goto sync;
872 }
873
874 /*
875 * From here on the RSP value is trusted. Now check whether entry
876 * happened from a safe stack. Not safe are the entry or unknown stacks,
877 * use the fall-back stack instead in this case.
878 */
879 sp = regs->sp;
880 stack = (unsigned long *)sp;
881
882 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
883 info.type > STACK_TYPE_EXCEPTION_LAST)
884 sp = __this_cpu_ist_top_va(VC2);
885
886 sync:
887 /*
888 * Found a safe stack - switch to it as if the entry didn't happen via
889 * IST stack. The code below only copies pt_regs, the real switch happens
890 * in assembly code.
891 */
892 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
893
894 regs_ret = (struct pt_regs *)sp;
895 *regs_ret = *regs;
896
897 return regs_ret;
898 }
899 #endif
900
fixup_bad_iret(struct pt_regs * bad_regs)901 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
902 {
903 struct pt_regs tmp, *new_stack;
904
905 /*
906 * This is called from entry_64.S early in handling a fault
907 * caused by a bad iret to user mode. To handle the fault
908 * correctly, we want to move our stack frame to where it would
909 * be had we entered directly on the entry stack (rather than
910 * just below the IRET frame) and we want to pretend that the
911 * exception came from the IRET target.
912 */
913 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
914
915 /* Copy the IRET target to the temporary storage. */
916 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
917
918 /* Copy the remainder of the stack from the current stack. */
919 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
920
921 /* Update the entry stack */
922 __memcpy(new_stack, &tmp, sizeof(tmp));
923
924 BUG_ON(!user_mode(new_stack));
925 return new_stack;
926 }
927 #endif
928
is_sysenter_singlestep(struct pt_regs * regs)929 static bool is_sysenter_singlestep(struct pt_regs *regs)
930 {
931 /*
932 * We don't try for precision here. If we're anywhere in the region of
933 * code that can be single-stepped in the SYSENTER entry path, then
934 * assume that this is a useless single-step trap due to SYSENTER
935 * being invoked with TF set. (We don't know in advance exactly
936 * which instructions will be hit because BTF could plausibly
937 * be set.)
938 */
939 #ifdef CONFIG_X86_32
940 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
941 (unsigned long)__end_SYSENTER_singlestep_region -
942 (unsigned long)__begin_SYSENTER_singlestep_region;
943 #elif defined(CONFIG_IA32_EMULATION)
944 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
945 (unsigned long)__end_entry_SYSENTER_compat -
946 (unsigned long)entry_SYSENTER_compat;
947 #else
948 return false;
949 #endif
950 }
951
debug_read_clear_dr6(void)952 static __always_inline unsigned long debug_read_clear_dr6(void)
953 {
954 unsigned long dr6;
955
956 /*
957 * The Intel SDM says:
958 *
959 * Certain debug exceptions may clear bits 0-3. The remaining
960 * contents of the DR6 register are never cleared by the
961 * processor. To avoid confusion in identifying debug
962 * exceptions, debug handlers should clear the register before
963 * returning to the interrupted task.
964 *
965 * Keep it simple: clear DR6 immediately.
966 */
967 get_debugreg(dr6, 6);
968 set_debugreg(DR6_RESERVED, 6);
969 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
970
971 return dr6;
972 }
973
974 /*
975 * Our handling of the processor debug registers is non-trivial.
976 * We do not clear them on entry and exit from the kernel. Therefore
977 * it is possible to get a watchpoint trap here from inside the kernel.
978 * However, the code in ./ptrace.c has ensured that the user can
979 * only set watchpoints on userspace addresses. Therefore the in-kernel
980 * watchpoint trap can only occur in code which is reading/writing
981 * from user space. Such code must not hold kernel locks (since it
982 * can equally take a page fault), therefore it is safe to call
983 * force_sig_info even though that claims and releases locks.
984 *
985 * Code in ./signal.c ensures that the debug control register
986 * is restored before we deliver any signal, and therefore that
987 * user code runs with the correct debug control register even though
988 * we clear it here.
989 *
990 * Being careful here means that we don't have to be as careful in a
991 * lot of more complicated places (task switching can be a bit lazy
992 * about restoring all the debug state, and ptrace doesn't have to
993 * find every occurrence of the TF bit that could be saved away even
994 * by user code)
995 *
996 * May run on IST stack.
997 */
998
notify_debug(struct pt_regs * regs,unsigned long * dr6)999 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
1000 {
1001 /*
1002 * Notifiers will clear bits in @dr6 to indicate the event has been
1003 * consumed - hw_breakpoint_handler(), single_stop_cont().
1004 *
1005 * Notifiers will set bits in @virtual_dr6 to indicate the desire
1006 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
1007 */
1008 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
1009 return true;
1010
1011 return false;
1012 }
1013
exc_debug_kernel(struct pt_regs * regs,unsigned long dr6)1014 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
1015 unsigned long dr6)
1016 {
1017 /*
1018 * Disable breakpoints during exception handling; recursive exceptions
1019 * are exceedingly 'fun'.
1020 *
1021 * Since this function is NOKPROBE, and that also applies to
1022 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
1023 * HW_BREAKPOINT_W on our stack)
1024 *
1025 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
1026 * includes the entry stack is excluded for everything.
1027 */
1028 unsigned long dr7 = local_db_save();
1029 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1030 instrumentation_begin();
1031
1032 /*
1033 * If something gets miswired and we end up here for a user mode
1034 * #DB, we will malfunction.
1035 */
1036 WARN_ON_ONCE(user_mode(regs));
1037
1038 if (test_thread_flag(TIF_BLOCKSTEP)) {
1039 /*
1040 * The SDM says "The processor clears the BTF flag when it
1041 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1042 * it for userspace, but we just took a kernel #DB, so re-set
1043 * BTF.
1044 */
1045 unsigned long debugctl;
1046
1047 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1048 debugctl |= DEBUGCTLMSR_BTF;
1049 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1050 }
1051
1052 /*
1053 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1054 * watchpoint at the same time then that will still be handled.
1055 */
1056 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1057 dr6 &= ~DR_STEP;
1058
1059 /*
1060 * The kernel doesn't use INT1
1061 */
1062 if (!dr6)
1063 goto out;
1064
1065 if (notify_debug(regs, &dr6))
1066 goto out;
1067
1068 /*
1069 * The kernel doesn't use TF single-step outside of:
1070 *
1071 * - Kprobes, consumed through kprobe_debug_handler()
1072 * - KGDB, consumed through notify_debug()
1073 *
1074 * So if we get here with DR_STEP set, something is wonky.
1075 *
1076 * A known way to trigger this is through QEMU's GDB stub,
1077 * which leaks #DB into the guest and causes IST recursion.
1078 */
1079 if (WARN_ON_ONCE(dr6 & DR_STEP))
1080 regs->flags &= ~X86_EFLAGS_TF;
1081 out:
1082 instrumentation_end();
1083 irqentry_nmi_exit(regs, irq_state);
1084
1085 local_db_restore(dr7);
1086 }
1087
exc_debug_user(struct pt_regs * regs,unsigned long dr6)1088 static __always_inline void exc_debug_user(struct pt_regs *regs,
1089 unsigned long dr6)
1090 {
1091 bool icebp;
1092
1093 /*
1094 * If something gets miswired and we end up here for a kernel mode
1095 * #DB, we will malfunction.
1096 */
1097 WARN_ON_ONCE(!user_mode(regs));
1098
1099 /*
1100 * NB: We can't easily clear DR7 here because
1101 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1102 * user memory, etc. This means that a recursive #DB is possible. If
1103 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1104 * Since we're not on the IST stack right now, everything will be
1105 * fine.
1106 */
1107
1108 irqentry_enter_from_user_mode(regs);
1109 instrumentation_begin();
1110
1111 /*
1112 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1113 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1114 *
1115 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1116 * even if it is not the result of PTRACE_SINGLESTEP.
1117 */
1118 current->thread.virtual_dr6 = (dr6 & DR_STEP);
1119
1120 /*
1121 * The SDM says "The processor clears the BTF flag when it
1122 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
1123 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1124 */
1125 clear_thread_flag(TIF_BLOCKSTEP);
1126
1127 /*
1128 * If dr6 has no reason to give us about the origin of this trap,
1129 * then it's very likely the result of an icebp/int01 trap.
1130 * User wants a sigtrap for that.
1131 */
1132 icebp = !dr6;
1133
1134 if (notify_debug(regs, &dr6))
1135 goto out;
1136
1137 /* It's safe to allow irq's after DR6 has been saved */
1138 local_irq_enable();
1139
1140 if (v8086_mode(regs)) {
1141 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1142 goto out_irq;
1143 }
1144
1145 /* #DB for bus lock can only be triggered from userspace. */
1146 if (dr6 & DR_BUS_LOCK)
1147 handle_bus_lock(regs);
1148
1149 /* Add the virtual_dr6 bits for signals. */
1150 dr6 |= current->thread.virtual_dr6;
1151 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1152 send_sigtrap(regs, 0, get_si_code(dr6));
1153
1154 out_irq:
1155 local_irq_disable();
1156 out:
1157 instrumentation_end();
1158 irqentry_exit_to_user_mode(regs);
1159 }
1160
1161 #ifdef CONFIG_X86_64
1162 /* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)1163 DEFINE_IDTENTRY_DEBUG(exc_debug)
1164 {
1165 exc_debug_kernel(regs, debug_read_clear_dr6());
1166 }
1167
1168 /* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)1169 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1170 {
1171 exc_debug_user(regs, debug_read_clear_dr6());
1172 }
1173 #else
1174 /* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)1175 DEFINE_IDTENTRY_RAW(exc_debug)
1176 {
1177 unsigned long dr6 = debug_read_clear_dr6();
1178
1179 if (user_mode(regs))
1180 exc_debug_user(regs, dr6);
1181 else
1182 exc_debug_kernel(regs, dr6);
1183 }
1184 #endif
1185
1186 /*
1187 * Note that we play around with the 'TS' bit in an attempt to get
1188 * the correct behaviour even in the presence of the asynchronous
1189 * IRQ13 behaviour
1190 */
math_error(struct pt_regs * regs,int trapnr)1191 static void math_error(struct pt_regs *regs, int trapnr)
1192 {
1193 struct task_struct *task = current;
1194 struct fpu *fpu = &task->thread.fpu;
1195 int si_code;
1196 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1197 "simd exception";
1198
1199 cond_local_irq_enable(regs);
1200
1201 if (!user_mode(regs)) {
1202 if (fixup_exception(regs, trapnr, 0, 0))
1203 goto exit;
1204
1205 task->thread.error_code = 0;
1206 task->thread.trap_nr = trapnr;
1207
1208 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1209 SIGFPE) != NOTIFY_STOP)
1210 die(str, regs, 0);
1211 goto exit;
1212 }
1213
1214 /*
1215 * Synchronize the FPU register state to the memory register state
1216 * if necessary. This allows the exception handler to inspect it.
1217 */
1218 fpu_sync_fpstate(fpu);
1219
1220 task->thread.trap_nr = trapnr;
1221 task->thread.error_code = 0;
1222
1223 si_code = fpu__exception_code(fpu, trapnr);
1224 /* Retry when we get spurious exceptions: */
1225 if (!si_code)
1226 goto exit;
1227
1228 if (fixup_vdso_exception(regs, trapnr, 0, 0))
1229 goto exit;
1230
1231 force_sig_fault(SIGFPE, si_code,
1232 (void __user *)uprobe_get_trap_addr(regs));
1233 exit:
1234 cond_local_irq_disable(regs);
1235 }
1236
DEFINE_IDTENTRY(exc_coprocessor_error)1237 DEFINE_IDTENTRY(exc_coprocessor_error)
1238 {
1239 math_error(regs, X86_TRAP_MF);
1240 }
1241
DEFINE_IDTENTRY(exc_simd_coprocessor_error)1242 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1243 {
1244 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1245 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1246 if (!static_cpu_has(X86_FEATURE_XMM)) {
1247 __exc_general_protection(regs, 0);
1248 return;
1249 }
1250 }
1251 math_error(regs, X86_TRAP_XF);
1252 }
1253
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)1254 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1255 {
1256 /*
1257 * This addresses a Pentium Pro Erratum:
1258 *
1259 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1260 * Virtual Wire mode implemented through the local APIC, an
1261 * interrupt vector of 0Fh (Intel reserved encoding) may be
1262 * generated by the local APIC (Int 15). This vector may be
1263 * generated upon receipt of a spurious interrupt (an interrupt
1264 * which is removed before the system receives the INTA sequence)
1265 * instead of the programmed 8259 spurious interrupt vector.
1266 *
1267 * IMPLICATION: The spurious interrupt vector programmed in the
1268 * 8259 is normally handled by an operating system's spurious
1269 * interrupt handler. However, a vector of 0Fh is unknown to some
1270 * operating systems, which would crash if this erratum occurred.
1271 *
1272 * In theory this could be limited to 32bit, but the handler is not
1273 * hurting and who knows which other CPUs suffer from this.
1274 */
1275 }
1276
handle_xfd_event(struct pt_regs * regs)1277 static bool handle_xfd_event(struct pt_regs *regs)
1278 {
1279 u64 xfd_err;
1280 int err;
1281
1282 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1283 return false;
1284
1285 rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1286 if (!xfd_err)
1287 return false;
1288
1289 wrmsrl(MSR_IA32_XFD_ERR, 0);
1290
1291 /* Die if that happens in kernel space */
1292 if (WARN_ON(!user_mode(regs)))
1293 return false;
1294
1295 local_irq_enable();
1296
1297 err = xfd_enable_feature(xfd_err);
1298
1299 switch (err) {
1300 case -EPERM:
1301 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1302 break;
1303 case -EFAULT:
1304 force_sig(SIGSEGV);
1305 break;
1306 }
1307
1308 local_irq_disable();
1309 return true;
1310 }
1311
DEFINE_IDTENTRY(exc_device_not_available)1312 DEFINE_IDTENTRY(exc_device_not_available)
1313 {
1314 unsigned long cr0 = read_cr0();
1315
1316 if (handle_xfd_event(regs))
1317 return;
1318
1319 #ifdef CONFIG_MATH_EMULATION
1320 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1321 struct math_emu_info info = { };
1322
1323 cond_local_irq_enable(regs);
1324
1325 info.regs = regs;
1326 math_emulate(&info);
1327
1328 cond_local_irq_disable(regs);
1329 return;
1330 }
1331 #endif
1332
1333 /* This should not happen. */
1334 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1335 /* Try to fix it up and carry on. */
1336 write_cr0(cr0 & ~X86_CR0_TS);
1337 } else {
1338 /*
1339 * Something terrible happened, and we're better off trying
1340 * to kill the task than getting stuck in a never-ending
1341 * loop of #NM faults.
1342 */
1343 die("unexpected #NM exception", regs, 0);
1344 }
1345 }
1346
1347 #ifdef CONFIG_INTEL_TDX_GUEST
1348
1349 #define VE_FAULT_STR "VE fault"
1350
ve_raise_fault(struct pt_regs * regs,long error_code)1351 static void ve_raise_fault(struct pt_regs *regs, long error_code)
1352 {
1353 if (user_mode(regs)) {
1354 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1355 return;
1356 }
1357
1358 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, VE_FAULT_STR))
1359 return;
1360
1361 die_addr(VE_FAULT_STR, regs, error_code, 0);
1362 }
1363
1364 /*
1365 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1366 * specific guest actions which may happen in either user space or the
1367 * kernel:
1368 *
1369 * * Specific instructions (WBINVD, for example)
1370 * * Specific MSR accesses
1371 * * Specific CPUID leaf accesses
1372 * * Access to specific guest physical addresses
1373 *
1374 * In the settings that Linux will run in, virtualization exceptions are
1375 * never generated on accesses to normal, TD-private memory that has been
1376 * accepted (by BIOS or with tdx_enc_status_changed()).
1377 *
1378 * Syscall entry code has a critical window where the kernel stack is not
1379 * yet set up. Any exception in this window leads to hard to debug issues
1380 * and can be exploited for privilege escalation. Exceptions in the NMI
1381 * entry code also cause issues. Returning from the exception handler with
1382 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1383 *
1384 * For these reasons, the kernel avoids #VEs during the syscall gap and
1385 * the NMI entry code. Entry code paths do not access TD-shared memory,
1386 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1387 * that might generate #VE. VMM can remove memory from TD at any point,
1388 * but access to unaccepted (or missing) private memory leads to VM
1389 * termination, not to #VE.
1390 *
1391 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1392 * handlers once the kernel is ready to deal with nested NMIs.
1393 *
1394 * During #VE delivery, all interrupts, including NMIs, are blocked until
1395 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1396 * the VE info.
1397 *
1398 * If a guest kernel action which would normally cause a #VE occurs in
1399 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1400 * exception) is delivered to the guest which will result in an oops.
1401 *
1402 * The entry code has been audited carefully for following these expectations.
1403 * Changes in the entry code have to be audited for correctness vs. this
1404 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1405 * privilege escalation or may lead to random crashes.
1406 */
DEFINE_IDTENTRY(exc_virtualization_exception)1407 DEFINE_IDTENTRY(exc_virtualization_exception)
1408 {
1409 struct ve_info ve;
1410
1411 /*
1412 * NMIs/Machine-checks/Interrupts will be in a disabled state
1413 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1414 * info cannot be overwritten by a nested #VE.
1415 */
1416 tdx_get_ve_info(&ve);
1417
1418 cond_local_irq_enable(regs);
1419
1420 /*
1421 * If tdx_handle_virt_exception() could not process
1422 * it successfully, treat it as #GP(0) and handle it.
1423 */
1424 if (!tdx_handle_virt_exception(regs, &ve))
1425 ve_raise_fault(regs, 0);
1426
1427 cond_local_irq_disable(regs);
1428 }
1429
1430 #endif
1431
1432 #ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)1433 DEFINE_IDTENTRY_SW(iret_error)
1434 {
1435 local_irq_enable();
1436 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1437 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1438 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1439 ILL_BADSTK, (void __user *)NULL);
1440 }
1441 local_irq_disable();
1442 }
1443 #endif
1444
trap_init(void)1445 void __init trap_init(void)
1446 {
1447 /* Init cpu_entry_area before IST entries are set up */
1448 setup_cpu_entry_areas();
1449
1450 /* Init GHCB memory pages when running as an SEV-ES guest */
1451 sev_es_init_vc_handling();
1452
1453 /* Initialize TSS before setting up traps so ISTs work */
1454 cpu_init_exception_handling();
1455 /* Setup traps as cpu_init() might #GP */
1456 idt_setup_traps();
1457 cpu_init();
1458 }
1459