1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17 * ice tracepoint functions. This must be done exactly once across the
18 * ice driver.
19 */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 #include "ice_vsi_vlan_ops.h"
25
26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
27 static const char ice_driver_string[] = DRV_SUMMARY;
28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29
30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
33
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38
39 static int debug = -1;
40 module_param(debug, int, 0644);
41 #ifndef CONFIG_DYNAMIC_DEBUG
42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43 #else
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45 #endif /* !CONFIG_DYNAMIC_DEBUG */
46
47 static DEFINE_IDA(ice_aux_ida);
48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49 EXPORT_SYMBOL(ice_xdp_locking_key);
50
51 /**
52 * ice_hw_to_dev - Get device pointer from the hardware structure
53 * @hw: pointer to the device HW structure
54 *
55 * Used to access the device pointer from compilation units which can't easily
56 * include the definition of struct ice_pf without leading to circular header
57 * dependencies.
58 */
ice_hw_to_dev(struct ice_hw * hw)59 struct device *ice_hw_to_dev(struct ice_hw *hw)
60 {
61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62
63 return &pf->pdev->dev;
64 }
65
66 static struct workqueue_struct *ice_wq;
67 static const struct net_device_ops ice_netdev_safe_mode_ops;
68 static const struct net_device_ops ice_netdev_ops;
69
70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71
72 static void ice_vsi_release_all(struct ice_pf *pf);
73
74 static int ice_rebuild_channels(struct ice_pf *pf);
75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76
77 static int
78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 void *cb_priv, enum tc_setup_type type, void *type_data,
80 void *data,
81 void (*cleanup)(struct flow_block_cb *block_cb));
82
netif_is_ice(struct net_device * dev)83 bool netif_is_ice(struct net_device *dev)
84 {
85 return dev && (dev->netdev_ops == &ice_netdev_ops);
86 }
87
88 /**
89 * ice_get_tx_pending - returns number of Tx descriptors not processed
90 * @ring: the ring of descriptors
91 */
ice_get_tx_pending(struct ice_tx_ring * ring)92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93 {
94 u16 head, tail;
95
96 head = ring->next_to_clean;
97 tail = ring->next_to_use;
98
99 if (head != tail)
100 return (head < tail) ?
101 tail - head : (tail + ring->count - head);
102 return 0;
103 }
104
105 /**
106 * ice_check_for_hang_subtask - check for and recover hung queues
107 * @pf: pointer to PF struct
108 */
ice_check_for_hang_subtask(struct ice_pf * pf)109 static void ice_check_for_hang_subtask(struct ice_pf *pf)
110 {
111 struct ice_vsi *vsi = NULL;
112 struct ice_hw *hw;
113 unsigned int i;
114 int packets;
115 u32 v;
116
117 ice_for_each_vsi(pf, v)
118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 vsi = pf->vsi[v];
120 break;
121 }
122
123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 return;
125
126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 return;
128
129 hw = &vsi->back->hw;
130
131 ice_for_each_txq(vsi, i) {
132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133
134 if (!tx_ring)
135 continue;
136 if (ice_ring_ch_enabled(tx_ring))
137 continue;
138
139 if (tx_ring->desc) {
140 /* If packet counter has not changed the queue is
141 * likely stalled, so force an interrupt for this
142 * queue.
143 *
144 * prev_pkt would be negative if there was no
145 * pending work.
146 */
147 packets = tx_ring->stats.pkts & INT_MAX;
148 if (tx_ring->tx_stats.prev_pkt == packets) {
149 /* Trigger sw interrupt to revive the queue */
150 ice_trigger_sw_intr(hw, tx_ring->q_vector);
151 continue;
152 }
153
154 /* Memory barrier between read of packet count and call
155 * to ice_get_tx_pending()
156 */
157 smp_rmb();
158 tx_ring->tx_stats.prev_pkt =
159 ice_get_tx_pending(tx_ring) ? packets : -1;
160 }
161 }
162 }
163
164 /**
165 * ice_init_mac_fltr - Set initial MAC filters
166 * @pf: board private structure
167 *
168 * Set initial set of MAC filters for PF VSI; configure filters for permanent
169 * address and broadcast address. If an error is encountered, netdevice will be
170 * unregistered.
171 */
ice_init_mac_fltr(struct ice_pf * pf)172 static int ice_init_mac_fltr(struct ice_pf *pf)
173 {
174 struct ice_vsi *vsi;
175 u8 *perm_addr;
176
177 vsi = ice_get_main_vsi(pf);
178 if (!vsi)
179 return -EINVAL;
180
181 perm_addr = vsi->port_info->mac.perm_addr;
182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
183 }
184
185 /**
186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
187 * @netdev: the net device on which the sync is happening
188 * @addr: MAC address to sync
189 *
190 * This is a callback function which is called by the in kernel device sync
191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
193 * MAC filters from the hardware.
194 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
196 {
197 struct ice_netdev_priv *np = netdev_priv(netdev);
198 struct ice_vsi *vsi = np->vsi;
199
200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
201 ICE_FWD_TO_VSI))
202 return -EINVAL;
203
204 return 0;
205 }
206
207 /**
208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
209 * @netdev: the net device on which the unsync is happening
210 * @addr: MAC address to unsync
211 *
212 * This is a callback function which is called by the in kernel device unsync
213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
215 * delete the MAC filters from the hardware.
216 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
218 {
219 struct ice_netdev_priv *np = netdev_priv(netdev);
220 struct ice_vsi *vsi = np->vsi;
221
222 /* Under some circumstances, we might receive a request to delete our
223 * own device address from our uc list. Because we store the device
224 * address in the VSI's MAC filter list, we need to ignore such
225 * requests and not delete our device address from this list.
226 */
227 if (ether_addr_equal(addr, netdev->dev_addr))
228 return 0;
229
230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
231 ICE_FWD_TO_VSI))
232 return -EINVAL;
233
234 return 0;
235 }
236
237 /**
238 * ice_vsi_fltr_changed - check if filter state changed
239 * @vsi: VSI to be checked
240 *
241 * returns true if filter state has changed, false otherwise.
242 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
244 {
245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
247 }
248
249 /**
250 * ice_set_promisc - Enable promiscuous mode for a given PF
251 * @vsi: the VSI being configured
252 * @promisc_m: mask of promiscuous config bits
253 *
254 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
256 {
257 int status;
258
259 if (vsi->type != ICE_VSI_PF)
260 return 0;
261
262 if (ice_vsi_has_non_zero_vlans(vsi)) {
263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
265 promisc_m);
266 } else {
267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
268 promisc_m, 0);
269 }
270 if (status && status != -EEXIST)
271 return status;
272
273 return 0;
274 }
275
276 /**
277 * ice_clear_promisc - Disable promiscuous mode for a given PF
278 * @vsi: the VSI being configured
279 * @promisc_m: mask of promiscuous config bits
280 *
281 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)282 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
283 {
284 int status;
285
286 if (vsi->type != ICE_VSI_PF)
287 return 0;
288
289 if (ice_vsi_has_non_zero_vlans(vsi)) {
290 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
291 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
292 promisc_m);
293 } else {
294 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
295 promisc_m, 0);
296 }
297
298 return status;
299 }
300
301 /**
302 * ice_get_devlink_port - Get devlink port from netdev
303 * @netdev: the netdevice structure
304 */
ice_get_devlink_port(struct net_device * netdev)305 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev)
306 {
307 struct ice_pf *pf = ice_netdev_to_pf(netdev);
308
309 if (!ice_is_switchdev_running(pf))
310 return NULL;
311
312 return &pf->devlink_port;
313 }
314
315 /**
316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
317 * @vsi: ptr to the VSI
318 *
319 * Push any outstanding VSI filter changes through the AdminQ.
320 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
322 {
323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
324 struct device *dev = ice_pf_to_dev(vsi->back);
325 struct net_device *netdev = vsi->netdev;
326 bool promisc_forced_on = false;
327 struct ice_pf *pf = vsi->back;
328 struct ice_hw *hw = &pf->hw;
329 u32 changed_flags = 0;
330 int err;
331
332 if (!vsi->netdev)
333 return -EINVAL;
334
335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
336 usleep_range(1000, 2000);
337
338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
339 vsi->current_netdev_flags = vsi->netdev->flags;
340
341 INIT_LIST_HEAD(&vsi->tmp_sync_list);
342 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
343
344 if (ice_vsi_fltr_changed(vsi)) {
345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
347
348 /* grab the netdev's addr_list_lock */
349 netif_addr_lock_bh(netdev);
350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
351 ice_add_mac_to_unsync_list);
352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
353 ice_add_mac_to_unsync_list);
354 /* our temp lists are populated. release lock */
355 netif_addr_unlock_bh(netdev);
356 }
357
358 /* Remove MAC addresses in the unsync list */
359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
361 if (err) {
362 netdev_err(netdev, "Failed to delete MAC filters\n");
363 /* if we failed because of alloc failures, just bail */
364 if (err == -ENOMEM)
365 goto out;
366 }
367
368 /* Add MAC addresses in the sync list */
369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
370 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
371 /* If filter is added successfully or already exists, do not go into
372 * 'if' condition and report it as error. Instead continue processing
373 * rest of the function.
374 */
375 if (err && err != -EEXIST) {
376 netdev_err(netdev, "Failed to add MAC filters\n");
377 /* If there is no more space for new umac filters, VSI
378 * should go into promiscuous mode. There should be some
379 * space reserved for promiscuous filters.
380 */
381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
383 vsi->state)) {
384 promisc_forced_on = true;
385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
386 vsi->vsi_num);
387 } else {
388 goto out;
389 }
390 }
391 err = 0;
392 /* check for changes in promiscuous modes */
393 if (changed_flags & IFF_ALLMULTI) {
394 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
396 if (err) {
397 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
398 goto out_promisc;
399 }
400 } else {
401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
403 if (err) {
404 vsi->current_netdev_flags |= IFF_ALLMULTI;
405 goto out_promisc;
406 }
407 }
408 }
409
410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
413 if (vsi->current_netdev_flags & IFF_PROMISC) {
414 /* Apply Rx filter rule to get traffic from wire */
415 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
416 err = ice_set_dflt_vsi(vsi);
417 if (err && err != -EEXIST) {
418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
419 err, vsi->vsi_num);
420 vsi->current_netdev_flags &=
421 ~IFF_PROMISC;
422 goto out_promisc;
423 }
424 err = 0;
425 vlan_ops->dis_rx_filtering(vsi);
426 }
427 } else {
428 /* Clear Rx filter to remove traffic from wire */
429 if (ice_is_vsi_dflt_vsi(vsi)) {
430 err = ice_clear_dflt_vsi(vsi);
431 if (err) {
432 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
433 err, vsi->vsi_num);
434 vsi->current_netdev_flags |=
435 IFF_PROMISC;
436 goto out_promisc;
437 }
438 if (vsi->netdev->features &
439 NETIF_F_HW_VLAN_CTAG_FILTER)
440 vlan_ops->ena_rx_filtering(vsi);
441 }
442 }
443 }
444 goto exit;
445
446 out_promisc:
447 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
448 goto exit;
449 out:
450 /* if something went wrong then set the changed flag so we try again */
451 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
452 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
453 exit:
454 clear_bit(ICE_CFG_BUSY, vsi->state);
455 return err;
456 }
457
458 /**
459 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
460 * @pf: board private structure
461 */
ice_sync_fltr_subtask(struct ice_pf * pf)462 static void ice_sync_fltr_subtask(struct ice_pf *pf)
463 {
464 int v;
465
466 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
467 return;
468
469 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
470
471 ice_for_each_vsi(pf, v)
472 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
473 ice_vsi_sync_fltr(pf->vsi[v])) {
474 /* come back and try again later */
475 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
476 break;
477 }
478 }
479
480 /**
481 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
482 * @pf: the PF
483 * @locked: is the rtnl_lock already held
484 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)485 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
486 {
487 int node;
488 int v;
489
490 ice_for_each_vsi(pf, v)
491 if (pf->vsi[v])
492 ice_dis_vsi(pf->vsi[v], locked);
493
494 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
495 pf->pf_agg_node[node].num_vsis = 0;
496
497 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
498 pf->vf_agg_node[node].num_vsis = 0;
499 }
500
501 /**
502 * ice_clear_sw_switch_recipes - clear switch recipes
503 * @pf: board private structure
504 *
505 * Mark switch recipes as not created in sw structures. There are cases where
506 * rules (especially advanced rules) need to be restored, either re-read from
507 * hardware or added again. For example after the reset. 'recp_created' flag
508 * prevents from doing that and need to be cleared upfront.
509 */
ice_clear_sw_switch_recipes(struct ice_pf * pf)510 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
511 {
512 struct ice_sw_recipe *recp;
513 u8 i;
514
515 recp = pf->hw.switch_info->recp_list;
516 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
517 recp[i].recp_created = false;
518 }
519
520 /**
521 * ice_prepare_for_reset - prep for reset
522 * @pf: board private structure
523 * @reset_type: reset type requested
524 *
525 * Inform or close all dependent features in prep for reset.
526 */
527 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)528 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
529 {
530 struct ice_hw *hw = &pf->hw;
531 struct ice_vsi *vsi;
532 struct ice_vf *vf;
533 unsigned int bkt;
534
535 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
536
537 /* already prepared for reset */
538 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
539 return;
540
541 ice_unplug_aux_dev(pf);
542
543 /* Notify VFs of impending reset */
544 if (ice_check_sq_alive(hw, &hw->mailboxq))
545 ice_vc_notify_reset(pf);
546
547 /* Disable VFs until reset is completed */
548 mutex_lock(&pf->vfs.table_lock);
549 ice_for_each_vf(pf, bkt, vf)
550 ice_set_vf_state_qs_dis(vf);
551 mutex_unlock(&pf->vfs.table_lock);
552
553 if (ice_is_eswitch_mode_switchdev(pf)) {
554 if (reset_type != ICE_RESET_PFR)
555 ice_clear_sw_switch_recipes(pf);
556 }
557
558 /* release ADQ specific HW and SW resources */
559 vsi = ice_get_main_vsi(pf);
560 if (!vsi)
561 goto skip;
562
563 /* to be on safe side, reset orig_rss_size so that normal flow
564 * of deciding rss_size can take precedence
565 */
566 vsi->orig_rss_size = 0;
567
568 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
569 if (reset_type == ICE_RESET_PFR) {
570 vsi->old_ena_tc = vsi->all_enatc;
571 vsi->old_numtc = vsi->all_numtc;
572 } else {
573 ice_remove_q_channels(vsi, true);
574
575 /* for other reset type, do not support channel rebuild
576 * hence reset needed info
577 */
578 vsi->old_ena_tc = 0;
579 vsi->all_enatc = 0;
580 vsi->old_numtc = 0;
581 vsi->all_numtc = 0;
582 vsi->req_txq = 0;
583 vsi->req_rxq = 0;
584 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
585 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
586 }
587 }
588 skip:
589
590 /* clear SW filtering DB */
591 ice_clear_hw_tbls(hw);
592 /* disable the VSIs and their queues that are not already DOWN */
593 ice_pf_dis_all_vsi(pf, false);
594
595 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
596 ice_ptp_prepare_for_reset(pf);
597
598 if (ice_is_feature_supported(pf, ICE_F_GNSS))
599 ice_gnss_exit(pf);
600
601 if (hw->port_info)
602 ice_sched_clear_port(hw->port_info);
603
604 ice_shutdown_all_ctrlq(hw);
605
606 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
607 }
608
609 /**
610 * ice_do_reset - Initiate one of many types of resets
611 * @pf: board private structure
612 * @reset_type: reset type requested before this function was called.
613 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)614 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
615 {
616 struct device *dev = ice_pf_to_dev(pf);
617 struct ice_hw *hw = &pf->hw;
618
619 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
620
621 ice_prepare_for_reset(pf, reset_type);
622
623 /* trigger the reset */
624 if (ice_reset(hw, reset_type)) {
625 dev_err(dev, "reset %d failed\n", reset_type);
626 set_bit(ICE_RESET_FAILED, pf->state);
627 clear_bit(ICE_RESET_OICR_RECV, pf->state);
628 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
629 clear_bit(ICE_PFR_REQ, pf->state);
630 clear_bit(ICE_CORER_REQ, pf->state);
631 clear_bit(ICE_GLOBR_REQ, pf->state);
632 wake_up(&pf->reset_wait_queue);
633 return;
634 }
635
636 /* PFR is a bit of a special case because it doesn't result in an OICR
637 * interrupt. So for PFR, rebuild after the reset and clear the reset-
638 * associated state bits.
639 */
640 if (reset_type == ICE_RESET_PFR) {
641 pf->pfr_count++;
642 ice_rebuild(pf, reset_type);
643 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
644 clear_bit(ICE_PFR_REQ, pf->state);
645 wake_up(&pf->reset_wait_queue);
646 ice_reset_all_vfs(pf);
647 }
648 }
649
650 /**
651 * ice_reset_subtask - Set up for resetting the device and driver
652 * @pf: board private structure
653 */
ice_reset_subtask(struct ice_pf * pf)654 static void ice_reset_subtask(struct ice_pf *pf)
655 {
656 enum ice_reset_req reset_type = ICE_RESET_INVAL;
657
658 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
659 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
660 * of reset is pending and sets bits in pf->state indicating the reset
661 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
662 * prepare for pending reset if not already (for PF software-initiated
663 * global resets the software should already be prepared for it as
664 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
665 * by firmware or software on other PFs, that bit is not set so prepare
666 * for the reset now), poll for reset done, rebuild and return.
667 */
668 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
669 /* Perform the largest reset requested */
670 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
671 reset_type = ICE_RESET_CORER;
672 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
673 reset_type = ICE_RESET_GLOBR;
674 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
675 reset_type = ICE_RESET_EMPR;
676 /* return if no valid reset type requested */
677 if (reset_type == ICE_RESET_INVAL)
678 return;
679 ice_prepare_for_reset(pf, reset_type);
680
681 /* make sure we are ready to rebuild */
682 if (ice_check_reset(&pf->hw)) {
683 set_bit(ICE_RESET_FAILED, pf->state);
684 } else {
685 /* done with reset. start rebuild */
686 pf->hw.reset_ongoing = false;
687 ice_rebuild(pf, reset_type);
688 /* clear bit to resume normal operations, but
689 * ICE_NEEDS_RESTART bit is set in case rebuild failed
690 */
691 clear_bit(ICE_RESET_OICR_RECV, pf->state);
692 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
693 clear_bit(ICE_PFR_REQ, pf->state);
694 clear_bit(ICE_CORER_REQ, pf->state);
695 clear_bit(ICE_GLOBR_REQ, pf->state);
696 wake_up(&pf->reset_wait_queue);
697 ice_reset_all_vfs(pf);
698 }
699
700 return;
701 }
702
703 /* No pending resets to finish processing. Check for new resets */
704 if (test_bit(ICE_PFR_REQ, pf->state))
705 reset_type = ICE_RESET_PFR;
706 if (test_bit(ICE_CORER_REQ, pf->state))
707 reset_type = ICE_RESET_CORER;
708 if (test_bit(ICE_GLOBR_REQ, pf->state))
709 reset_type = ICE_RESET_GLOBR;
710 /* If no valid reset type requested just return */
711 if (reset_type == ICE_RESET_INVAL)
712 return;
713
714 /* reset if not already down or busy */
715 if (!test_bit(ICE_DOWN, pf->state) &&
716 !test_bit(ICE_CFG_BUSY, pf->state)) {
717 ice_do_reset(pf, reset_type);
718 }
719 }
720
721 /**
722 * ice_print_topo_conflict - print topology conflict message
723 * @vsi: the VSI whose topology status is being checked
724 */
ice_print_topo_conflict(struct ice_vsi * vsi)725 static void ice_print_topo_conflict(struct ice_vsi *vsi)
726 {
727 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
728 case ICE_AQ_LINK_TOPO_CONFLICT:
729 case ICE_AQ_LINK_MEDIA_CONFLICT:
730 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
731 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
732 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
733 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
734 break;
735 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
736 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
737 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
738 else
739 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
740 break;
741 default:
742 break;
743 }
744 }
745
746 /**
747 * ice_print_link_msg - print link up or down message
748 * @vsi: the VSI whose link status is being queried
749 * @isup: boolean for if the link is now up or down
750 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)751 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
752 {
753 struct ice_aqc_get_phy_caps_data *caps;
754 const char *an_advertised;
755 const char *fec_req;
756 const char *speed;
757 const char *fec;
758 const char *fc;
759 const char *an;
760 int status;
761
762 if (!vsi)
763 return;
764
765 if (vsi->current_isup == isup)
766 return;
767
768 vsi->current_isup = isup;
769
770 if (!isup) {
771 netdev_info(vsi->netdev, "NIC Link is Down\n");
772 return;
773 }
774
775 switch (vsi->port_info->phy.link_info.link_speed) {
776 case ICE_AQ_LINK_SPEED_100GB:
777 speed = "100 G";
778 break;
779 case ICE_AQ_LINK_SPEED_50GB:
780 speed = "50 G";
781 break;
782 case ICE_AQ_LINK_SPEED_40GB:
783 speed = "40 G";
784 break;
785 case ICE_AQ_LINK_SPEED_25GB:
786 speed = "25 G";
787 break;
788 case ICE_AQ_LINK_SPEED_20GB:
789 speed = "20 G";
790 break;
791 case ICE_AQ_LINK_SPEED_10GB:
792 speed = "10 G";
793 break;
794 case ICE_AQ_LINK_SPEED_5GB:
795 speed = "5 G";
796 break;
797 case ICE_AQ_LINK_SPEED_2500MB:
798 speed = "2.5 G";
799 break;
800 case ICE_AQ_LINK_SPEED_1000MB:
801 speed = "1 G";
802 break;
803 case ICE_AQ_LINK_SPEED_100MB:
804 speed = "100 M";
805 break;
806 default:
807 speed = "Unknown ";
808 break;
809 }
810
811 switch (vsi->port_info->fc.current_mode) {
812 case ICE_FC_FULL:
813 fc = "Rx/Tx";
814 break;
815 case ICE_FC_TX_PAUSE:
816 fc = "Tx";
817 break;
818 case ICE_FC_RX_PAUSE:
819 fc = "Rx";
820 break;
821 case ICE_FC_NONE:
822 fc = "None";
823 break;
824 default:
825 fc = "Unknown";
826 break;
827 }
828
829 /* Get FEC mode based on negotiated link info */
830 switch (vsi->port_info->phy.link_info.fec_info) {
831 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
832 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
833 fec = "RS-FEC";
834 break;
835 case ICE_AQ_LINK_25G_KR_FEC_EN:
836 fec = "FC-FEC/BASE-R";
837 break;
838 default:
839 fec = "NONE";
840 break;
841 }
842
843 /* check if autoneg completed, might be false due to not supported */
844 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
845 an = "True";
846 else
847 an = "False";
848
849 /* Get FEC mode requested based on PHY caps last SW configuration */
850 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
851 if (!caps) {
852 fec_req = "Unknown";
853 an_advertised = "Unknown";
854 goto done;
855 }
856
857 status = ice_aq_get_phy_caps(vsi->port_info, false,
858 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
859 if (status)
860 netdev_info(vsi->netdev, "Get phy capability failed.\n");
861
862 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
863
864 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
865 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
866 fec_req = "RS-FEC";
867 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
868 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
869 fec_req = "FC-FEC/BASE-R";
870 else
871 fec_req = "NONE";
872
873 kfree(caps);
874
875 done:
876 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
877 speed, fec_req, fec, an_advertised, an, fc);
878 ice_print_topo_conflict(vsi);
879 }
880
881 /**
882 * ice_vsi_link_event - update the VSI's netdev
883 * @vsi: the VSI on which the link event occurred
884 * @link_up: whether or not the VSI needs to be set up or down
885 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)886 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
887 {
888 if (!vsi)
889 return;
890
891 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
892 return;
893
894 if (vsi->type == ICE_VSI_PF) {
895 if (link_up == netif_carrier_ok(vsi->netdev))
896 return;
897
898 if (link_up) {
899 netif_carrier_on(vsi->netdev);
900 netif_tx_wake_all_queues(vsi->netdev);
901 } else {
902 netif_carrier_off(vsi->netdev);
903 netif_tx_stop_all_queues(vsi->netdev);
904 }
905 }
906 }
907
908 /**
909 * ice_set_dflt_mib - send a default config MIB to the FW
910 * @pf: private PF struct
911 *
912 * This function sends a default configuration MIB to the FW.
913 *
914 * If this function errors out at any point, the driver is still able to
915 * function. The main impact is that LFC may not operate as expected.
916 * Therefore an error state in this function should be treated with a DBG
917 * message and continue on with driver rebuild/reenable.
918 */
ice_set_dflt_mib(struct ice_pf * pf)919 static void ice_set_dflt_mib(struct ice_pf *pf)
920 {
921 struct device *dev = ice_pf_to_dev(pf);
922 u8 mib_type, *buf, *lldpmib = NULL;
923 u16 len, typelen, offset = 0;
924 struct ice_lldp_org_tlv *tlv;
925 struct ice_hw *hw = &pf->hw;
926 u32 ouisubtype;
927
928 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
929 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
930 if (!lldpmib) {
931 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
932 __func__);
933 return;
934 }
935
936 /* Add ETS CFG TLV */
937 tlv = (struct ice_lldp_org_tlv *)lldpmib;
938 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
939 ICE_IEEE_ETS_TLV_LEN);
940 tlv->typelen = htons(typelen);
941 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
942 ICE_IEEE_SUBTYPE_ETS_CFG);
943 tlv->ouisubtype = htonl(ouisubtype);
944
945 buf = tlv->tlvinfo;
946 buf[0] = 0;
947
948 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
949 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
950 * Octets 13 - 20 are TSA values - leave as zeros
951 */
952 buf[5] = 0x64;
953 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
954 offset += len + 2;
955 tlv = (struct ice_lldp_org_tlv *)
956 ((char *)tlv + sizeof(tlv->typelen) + len);
957
958 /* Add ETS REC TLV */
959 buf = tlv->tlvinfo;
960 tlv->typelen = htons(typelen);
961
962 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
963 ICE_IEEE_SUBTYPE_ETS_REC);
964 tlv->ouisubtype = htonl(ouisubtype);
965
966 /* First octet of buf is reserved
967 * Octets 1 - 4 map UP to TC - all UPs map to zero
968 * Octets 5 - 12 are BW values - set TC 0 to 100%.
969 * Octets 13 - 20 are TSA value - leave as zeros
970 */
971 buf[5] = 0x64;
972 offset += len + 2;
973 tlv = (struct ice_lldp_org_tlv *)
974 ((char *)tlv + sizeof(tlv->typelen) + len);
975
976 /* Add PFC CFG TLV */
977 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
978 ICE_IEEE_PFC_TLV_LEN);
979 tlv->typelen = htons(typelen);
980
981 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
982 ICE_IEEE_SUBTYPE_PFC_CFG);
983 tlv->ouisubtype = htonl(ouisubtype);
984
985 /* Octet 1 left as all zeros - PFC disabled */
986 buf[0] = 0x08;
987 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
988 offset += len + 2;
989
990 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
991 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
992
993 kfree(lldpmib);
994 }
995
996 /**
997 * ice_check_phy_fw_load - check if PHY FW load failed
998 * @pf: pointer to PF struct
999 * @link_cfg_err: bitmap from the link info structure
1000 *
1001 * check if external PHY FW load failed and print an error message if it did
1002 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1003 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1004 {
1005 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1006 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1007 return;
1008 }
1009
1010 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1011 return;
1012
1013 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1014 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1015 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1016 }
1017 }
1018
1019 /**
1020 * ice_check_module_power
1021 * @pf: pointer to PF struct
1022 * @link_cfg_err: bitmap from the link info structure
1023 *
1024 * check module power level returned by a previous call to aq_get_link_info
1025 * and print error messages if module power level is not supported
1026 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1027 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 /* if module power level is supported, clear the flag */
1030 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1031 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1032 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1033 return;
1034 }
1035
1036 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1037 * above block didn't clear this bit, there's nothing to do
1038 */
1039 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1040 return;
1041
1042 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1043 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1044 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1045 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1046 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1047 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1048 }
1049 }
1050
1051 /**
1052 * ice_check_link_cfg_err - check if link configuration failed
1053 * @pf: pointer to the PF struct
1054 * @link_cfg_err: bitmap from the link info structure
1055 *
1056 * print if any link configuration failure happens due to the value in the
1057 * link_cfg_err parameter in the link info structure
1058 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1059 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1060 {
1061 ice_check_module_power(pf, link_cfg_err);
1062 ice_check_phy_fw_load(pf, link_cfg_err);
1063 }
1064
1065 /**
1066 * ice_link_event - process the link event
1067 * @pf: PF that the link event is associated with
1068 * @pi: port_info for the port that the link event is associated with
1069 * @link_up: true if the physical link is up and false if it is down
1070 * @link_speed: current link speed received from the link event
1071 *
1072 * Returns 0 on success and negative on failure
1073 */
1074 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1075 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1076 u16 link_speed)
1077 {
1078 struct device *dev = ice_pf_to_dev(pf);
1079 struct ice_phy_info *phy_info;
1080 struct ice_vsi *vsi;
1081 u16 old_link_speed;
1082 bool old_link;
1083 int status;
1084
1085 phy_info = &pi->phy;
1086 phy_info->link_info_old = phy_info->link_info;
1087
1088 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1089 old_link_speed = phy_info->link_info_old.link_speed;
1090
1091 /* update the link info structures and re-enable link events,
1092 * don't bail on failure due to other book keeping needed
1093 */
1094 status = ice_update_link_info(pi);
1095 if (status)
1096 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1097 pi->lport, status,
1098 ice_aq_str(pi->hw->adminq.sq_last_status));
1099
1100 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1101
1102 /* Check if the link state is up after updating link info, and treat
1103 * this event as an UP event since the link is actually UP now.
1104 */
1105 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1106 link_up = true;
1107
1108 vsi = ice_get_main_vsi(pf);
1109 if (!vsi || !vsi->port_info)
1110 return -EINVAL;
1111
1112 /* turn off PHY if media was removed */
1113 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1114 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1115 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1116 ice_set_link(vsi, false);
1117 }
1118
1119 /* if the old link up/down and speed is the same as the new */
1120 if (link_up == old_link && link_speed == old_link_speed)
1121 return 0;
1122
1123 if (!ice_is_e810(&pf->hw))
1124 ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1125
1126 if (ice_is_dcb_active(pf)) {
1127 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1128 ice_dcb_rebuild(pf);
1129 } else {
1130 if (link_up)
1131 ice_set_dflt_mib(pf);
1132 }
1133 ice_vsi_link_event(vsi, link_up);
1134 ice_print_link_msg(vsi, link_up);
1135
1136 ice_vc_notify_link_state(pf);
1137
1138 return 0;
1139 }
1140
1141 /**
1142 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1143 * @pf: board private structure
1144 */
ice_watchdog_subtask(struct ice_pf * pf)1145 static void ice_watchdog_subtask(struct ice_pf *pf)
1146 {
1147 int i;
1148
1149 /* if interface is down do nothing */
1150 if (test_bit(ICE_DOWN, pf->state) ||
1151 test_bit(ICE_CFG_BUSY, pf->state))
1152 return;
1153
1154 /* make sure we don't do these things too often */
1155 if (time_before(jiffies,
1156 pf->serv_tmr_prev + pf->serv_tmr_period))
1157 return;
1158
1159 pf->serv_tmr_prev = jiffies;
1160
1161 /* Update the stats for active netdevs so the network stack
1162 * can look at updated numbers whenever it cares to
1163 */
1164 ice_update_pf_stats(pf);
1165 ice_for_each_vsi(pf, i)
1166 if (pf->vsi[i] && pf->vsi[i]->netdev)
1167 ice_update_vsi_stats(pf->vsi[i]);
1168 }
1169
1170 /**
1171 * ice_init_link_events - enable/initialize link events
1172 * @pi: pointer to the port_info instance
1173 *
1174 * Returns -EIO on failure, 0 on success
1175 */
ice_init_link_events(struct ice_port_info * pi)1176 static int ice_init_link_events(struct ice_port_info *pi)
1177 {
1178 u16 mask;
1179
1180 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1181 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1182 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1183
1184 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1185 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1186 pi->lport);
1187 return -EIO;
1188 }
1189
1190 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1191 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1192 pi->lport);
1193 return -EIO;
1194 }
1195
1196 return 0;
1197 }
1198
1199 /**
1200 * ice_handle_link_event - handle link event via ARQ
1201 * @pf: PF that the link event is associated with
1202 * @event: event structure containing link status info
1203 */
1204 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1205 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1206 {
1207 struct ice_aqc_get_link_status_data *link_data;
1208 struct ice_port_info *port_info;
1209 int status;
1210
1211 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1212 port_info = pf->hw.port_info;
1213 if (!port_info)
1214 return -EINVAL;
1215
1216 status = ice_link_event(pf, port_info,
1217 !!(link_data->link_info & ICE_AQ_LINK_UP),
1218 le16_to_cpu(link_data->link_speed));
1219 if (status)
1220 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1221 status);
1222
1223 return status;
1224 }
1225
1226 enum ice_aq_task_state {
1227 ICE_AQ_TASK_WAITING = 0,
1228 ICE_AQ_TASK_COMPLETE,
1229 ICE_AQ_TASK_CANCELED,
1230 };
1231
1232 struct ice_aq_task {
1233 struct hlist_node entry;
1234
1235 u16 opcode;
1236 struct ice_rq_event_info *event;
1237 enum ice_aq_task_state state;
1238 };
1239
1240 /**
1241 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1242 * @pf: pointer to the PF private structure
1243 * @opcode: the opcode to wait for
1244 * @timeout: how long to wait, in jiffies
1245 * @event: storage for the event info
1246 *
1247 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1248 * current thread will be put to sleep until the specified event occurs or
1249 * until the given timeout is reached.
1250 *
1251 * To obtain only the descriptor contents, pass an event without an allocated
1252 * msg_buf. If the complete data buffer is desired, allocate the
1253 * event->msg_buf with enough space ahead of time.
1254 *
1255 * Returns: zero on success, or a negative error code on failure.
1256 */
ice_aq_wait_for_event(struct ice_pf * pf,u16 opcode,unsigned long timeout,struct ice_rq_event_info * event)1257 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1258 struct ice_rq_event_info *event)
1259 {
1260 struct device *dev = ice_pf_to_dev(pf);
1261 struct ice_aq_task *task;
1262 unsigned long start;
1263 long ret;
1264 int err;
1265
1266 task = kzalloc(sizeof(*task), GFP_KERNEL);
1267 if (!task)
1268 return -ENOMEM;
1269
1270 INIT_HLIST_NODE(&task->entry);
1271 task->opcode = opcode;
1272 task->event = event;
1273 task->state = ICE_AQ_TASK_WAITING;
1274
1275 spin_lock_bh(&pf->aq_wait_lock);
1276 hlist_add_head(&task->entry, &pf->aq_wait_list);
1277 spin_unlock_bh(&pf->aq_wait_lock);
1278
1279 start = jiffies;
1280
1281 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1282 timeout);
1283 switch (task->state) {
1284 case ICE_AQ_TASK_WAITING:
1285 err = ret < 0 ? ret : -ETIMEDOUT;
1286 break;
1287 case ICE_AQ_TASK_CANCELED:
1288 err = ret < 0 ? ret : -ECANCELED;
1289 break;
1290 case ICE_AQ_TASK_COMPLETE:
1291 err = ret < 0 ? ret : 0;
1292 break;
1293 default:
1294 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1295 err = -EINVAL;
1296 break;
1297 }
1298
1299 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1300 jiffies_to_msecs(jiffies - start),
1301 jiffies_to_msecs(timeout),
1302 opcode);
1303
1304 spin_lock_bh(&pf->aq_wait_lock);
1305 hlist_del(&task->entry);
1306 spin_unlock_bh(&pf->aq_wait_lock);
1307 kfree(task);
1308
1309 return err;
1310 }
1311
1312 /**
1313 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1314 * @pf: pointer to the PF private structure
1315 * @opcode: the opcode of the event
1316 * @event: the event to check
1317 *
1318 * Loops over the current list of pending threads waiting for an AdminQ event.
1319 * For each matching task, copy the contents of the event into the task
1320 * structure and wake up the thread.
1321 *
1322 * If multiple threads wait for the same opcode, they will all be woken up.
1323 *
1324 * Note that event->msg_buf will only be duplicated if the event has a buffer
1325 * with enough space already allocated. Otherwise, only the descriptor and
1326 * message length will be copied.
1327 *
1328 * Returns: true if an event was found, false otherwise
1329 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1330 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1331 struct ice_rq_event_info *event)
1332 {
1333 struct ice_aq_task *task;
1334 bool found = false;
1335
1336 spin_lock_bh(&pf->aq_wait_lock);
1337 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1338 if (task->state || task->opcode != opcode)
1339 continue;
1340
1341 memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1342 task->event->msg_len = event->msg_len;
1343
1344 /* Only copy the data buffer if a destination was set */
1345 if (task->event->msg_buf &&
1346 task->event->buf_len > event->buf_len) {
1347 memcpy(task->event->msg_buf, event->msg_buf,
1348 event->buf_len);
1349 task->event->buf_len = event->buf_len;
1350 }
1351
1352 task->state = ICE_AQ_TASK_COMPLETE;
1353 found = true;
1354 }
1355 spin_unlock_bh(&pf->aq_wait_lock);
1356
1357 if (found)
1358 wake_up(&pf->aq_wait_queue);
1359 }
1360
1361 /**
1362 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1363 * @pf: the PF private structure
1364 *
1365 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1366 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1367 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1368 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1369 {
1370 struct ice_aq_task *task;
1371
1372 spin_lock_bh(&pf->aq_wait_lock);
1373 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1374 task->state = ICE_AQ_TASK_CANCELED;
1375 spin_unlock_bh(&pf->aq_wait_lock);
1376
1377 wake_up(&pf->aq_wait_queue);
1378 }
1379
1380 /**
1381 * __ice_clean_ctrlq - helper function to clean controlq rings
1382 * @pf: ptr to struct ice_pf
1383 * @q_type: specific Control queue type
1384 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1385 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1386 {
1387 struct device *dev = ice_pf_to_dev(pf);
1388 struct ice_rq_event_info event;
1389 struct ice_hw *hw = &pf->hw;
1390 struct ice_ctl_q_info *cq;
1391 u16 pending, i = 0;
1392 const char *qtype;
1393 u32 oldval, val;
1394
1395 /* Do not clean control queue if/when PF reset fails */
1396 if (test_bit(ICE_RESET_FAILED, pf->state))
1397 return 0;
1398
1399 switch (q_type) {
1400 case ICE_CTL_Q_ADMIN:
1401 cq = &hw->adminq;
1402 qtype = "Admin";
1403 break;
1404 case ICE_CTL_Q_SB:
1405 cq = &hw->sbq;
1406 qtype = "Sideband";
1407 break;
1408 case ICE_CTL_Q_MAILBOX:
1409 cq = &hw->mailboxq;
1410 qtype = "Mailbox";
1411 /* we are going to try to detect a malicious VF, so set the
1412 * state to begin detection
1413 */
1414 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1415 break;
1416 default:
1417 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1418 return 0;
1419 }
1420
1421 /* check for error indications - PF_xx_AxQLEN register layout for
1422 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1423 */
1424 val = rd32(hw, cq->rq.len);
1425 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1426 PF_FW_ARQLEN_ARQCRIT_M)) {
1427 oldval = val;
1428 if (val & PF_FW_ARQLEN_ARQVFE_M)
1429 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1430 qtype);
1431 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1432 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1433 qtype);
1434 }
1435 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1436 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1437 qtype);
1438 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1439 PF_FW_ARQLEN_ARQCRIT_M);
1440 if (oldval != val)
1441 wr32(hw, cq->rq.len, val);
1442 }
1443
1444 val = rd32(hw, cq->sq.len);
1445 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1446 PF_FW_ATQLEN_ATQCRIT_M)) {
1447 oldval = val;
1448 if (val & PF_FW_ATQLEN_ATQVFE_M)
1449 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1450 qtype);
1451 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1452 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1453 qtype);
1454 }
1455 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1456 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1457 qtype);
1458 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1459 PF_FW_ATQLEN_ATQCRIT_M);
1460 if (oldval != val)
1461 wr32(hw, cq->sq.len, val);
1462 }
1463
1464 event.buf_len = cq->rq_buf_size;
1465 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1466 if (!event.msg_buf)
1467 return 0;
1468
1469 do {
1470 u16 opcode;
1471 int ret;
1472
1473 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1474 if (ret == -EALREADY)
1475 break;
1476 if (ret) {
1477 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1478 ret);
1479 break;
1480 }
1481
1482 opcode = le16_to_cpu(event.desc.opcode);
1483
1484 /* Notify any thread that might be waiting for this event */
1485 ice_aq_check_events(pf, opcode, &event);
1486
1487 switch (opcode) {
1488 case ice_aqc_opc_get_link_status:
1489 if (ice_handle_link_event(pf, &event))
1490 dev_err(dev, "Could not handle link event\n");
1491 break;
1492 case ice_aqc_opc_event_lan_overflow:
1493 ice_vf_lan_overflow_event(pf, &event);
1494 break;
1495 case ice_mbx_opc_send_msg_to_pf:
1496 if (!ice_is_malicious_vf(pf, &event, i, pending))
1497 ice_vc_process_vf_msg(pf, &event);
1498 break;
1499 case ice_aqc_opc_fw_logging:
1500 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1501 break;
1502 case ice_aqc_opc_lldp_set_mib_change:
1503 ice_dcb_process_lldp_set_mib_change(pf, &event);
1504 break;
1505 default:
1506 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1507 qtype, opcode);
1508 break;
1509 }
1510 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1511
1512 kfree(event.msg_buf);
1513
1514 return pending && (i == ICE_DFLT_IRQ_WORK);
1515 }
1516
1517 /**
1518 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1519 * @hw: pointer to hardware info
1520 * @cq: control queue information
1521 *
1522 * returns true if there are pending messages in a queue, false if there aren't
1523 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1524 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1525 {
1526 u16 ntu;
1527
1528 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1529 return cq->rq.next_to_clean != ntu;
1530 }
1531
1532 /**
1533 * ice_clean_adminq_subtask - clean the AdminQ rings
1534 * @pf: board private structure
1535 */
ice_clean_adminq_subtask(struct ice_pf * pf)1536 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1537 {
1538 struct ice_hw *hw = &pf->hw;
1539
1540 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1541 return;
1542
1543 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1544 return;
1545
1546 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1547
1548 /* There might be a situation where new messages arrive to a control
1549 * queue between processing the last message and clearing the
1550 * EVENT_PENDING bit. So before exiting, check queue head again (using
1551 * ice_ctrlq_pending) and process new messages if any.
1552 */
1553 if (ice_ctrlq_pending(hw, &hw->adminq))
1554 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1555
1556 ice_flush(hw);
1557 }
1558
1559 /**
1560 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1561 * @pf: board private structure
1562 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1563 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1564 {
1565 struct ice_hw *hw = &pf->hw;
1566
1567 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1568 return;
1569
1570 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1571 return;
1572
1573 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1574
1575 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1576 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1577
1578 ice_flush(hw);
1579 }
1580
1581 /**
1582 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1583 * @pf: board private structure
1584 */
ice_clean_sbq_subtask(struct ice_pf * pf)1585 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1586 {
1587 struct ice_hw *hw = &pf->hw;
1588
1589 /* Nothing to do here if sideband queue is not supported */
1590 if (!ice_is_sbq_supported(hw)) {
1591 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1592 return;
1593 }
1594
1595 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1596 return;
1597
1598 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1599 return;
1600
1601 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1602
1603 if (ice_ctrlq_pending(hw, &hw->sbq))
1604 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1605
1606 ice_flush(hw);
1607 }
1608
1609 /**
1610 * ice_service_task_schedule - schedule the service task to wake up
1611 * @pf: board private structure
1612 *
1613 * If not already scheduled, this puts the task into the work queue.
1614 */
ice_service_task_schedule(struct ice_pf * pf)1615 void ice_service_task_schedule(struct ice_pf *pf)
1616 {
1617 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1618 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1619 !test_bit(ICE_NEEDS_RESTART, pf->state))
1620 queue_work(ice_wq, &pf->serv_task);
1621 }
1622
1623 /**
1624 * ice_service_task_complete - finish up the service task
1625 * @pf: board private structure
1626 */
ice_service_task_complete(struct ice_pf * pf)1627 static void ice_service_task_complete(struct ice_pf *pf)
1628 {
1629 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1630
1631 /* force memory (pf->state) to sync before next service task */
1632 smp_mb__before_atomic();
1633 clear_bit(ICE_SERVICE_SCHED, pf->state);
1634 }
1635
1636 /**
1637 * ice_service_task_stop - stop service task and cancel works
1638 * @pf: board private structure
1639 *
1640 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1641 * 1 otherwise.
1642 */
ice_service_task_stop(struct ice_pf * pf)1643 static int ice_service_task_stop(struct ice_pf *pf)
1644 {
1645 int ret;
1646
1647 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1648
1649 if (pf->serv_tmr.function)
1650 del_timer_sync(&pf->serv_tmr);
1651 if (pf->serv_task.func)
1652 cancel_work_sync(&pf->serv_task);
1653
1654 clear_bit(ICE_SERVICE_SCHED, pf->state);
1655 return ret;
1656 }
1657
1658 /**
1659 * ice_service_task_restart - restart service task and schedule works
1660 * @pf: board private structure
1661 *
1662 * This function is needed for suspend and resume works (e.g WoL scenario)
1663 */
ice_service_task_restart(struct ice_pf * pf)1664 static void ice_service_task_restart(struct ice_pf *pf)
1665 {
1666 clear_bit(ICE_SERVICE_DIS, pf->state);
1667 ice_service_task_schedule(pf);
1668 }
1669
1670 /**
1671 * ice_service_timer - timer callback to schedule service task
1672 * @t: pointer to timer_list
1673 */
ice_service_timer(struct timer_list * t)1674 static void ice_service_timer(struct timer_list *t)
1675 {
1676 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1677
1678 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1679 ice_service_task_schedule(pf);
1680 }
1681
1682 /**
1683 * ice_handle_mdd_event - handle malicious driver detect event
1684 * @pf: pointer to the PF structure
1685 *
1686 * Called from service task. OICR interrupt handler indicates MDD event.
1687 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1688 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1689 * disable the queue, the PF can be configured to reset the VF using ethtool
1690 * private flag mdd-auto-reset-vf.
1691 */
ice_handle_mdd_event(struct ice_pf * pf)1692 static void ice_handle_mdd_event(struct ice_pf *pf)
1693 {
1694 struct device *dev = ice_pf_to_dev(pf);
1695 struct ice_hw *hw = &pf->hw;
1696 struct ice_vf *vf;
1697 unsigned int bkt;
1698 u32 reg;
1699
1700 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1701 /* Since the VF MDD event logging is rate limited, check if
1702 * there are pending MDD events.
1703 */
1704 ice_print_vfs_mdd_events(pf);
1705 return;
1706 }
1707
1708 /* find what triggered an MDD event */
1709 reg = rd32(hw, GL_MDET_TX_PQM);
1710 if (reg & GL_MDET_TX_PQM_VALID_M) {
1711 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1712 GL_MDET_TX_PQM_PF_NUM_S;
1713 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1714 GL_MDET_TX_PQM_VF_NUM_S;
1715 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1716 GL_MDET_TX_PQM_MAL_TYPE_S;
1717 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1718 GL_MDET_TX_PQM_QNUM_S);
1719
1720 if (netif_msg_tx_err(pf))
1721 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1722 event, queue, pf_num, vf_num);
1723 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1724 }
1725
1726 reg = rd32(hw, GL_MDET_TX_TCLAN);
1727 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1728 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1729 GL_MDET_TX_TCLAN_PF_NUM_S;
1730 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1731 GL_MDET_TX_TCLAN_VF_NUM_S;
1732 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1733 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1734 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1735 GL_MDET_TX_TCLAN_QNUM_S);
1736
1737 if (netif_msg_tx_err(pf))
1738 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1739 event, queue, pf_num, vf_num);
1740 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1741 }
1742
1743 reg = rd32(hw, GL_MDET_RX);
1744 if (reg & GL_MDET_RX_VALID_M) {
1745 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1746 GL_MDET_RX_PF_NUM_S;
1747 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1748 GL_MDET_RX_VF_NUM_S;
1749 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1750 GL_MDET_RX_MAL_TYPE_S;
1751 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1752 GL_MDET_RX_QNUM_S);
1753
1754 if (netif_msg_rx_err(pf))
1755 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1756 event, queue, pf_num, vf_num);
1757 wr32(hw, GL_MDET_RX, 0xffffffff);
1758 }
1759
1760 /* check to see if this PF caused an MDD event */
1761 reg = rd32(hw, PF_MDET_TX_PQM);
1762 if (reg & PF_MDET_TX_PQM_VALID_M) {
1763 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1764 if (netif_msg_tx_err(pf))
1765 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1766 }
1767
1768 reg = rd32(hw, PF_MDET_TX_TCLAN);
1769 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1770 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1771 if (netif_msg_tx_err(pf))
1772 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1773 }
1774
1775 reg = rd32(hw, PF_MDET_RX);
1776 if (reg & PF_MDET_RX_VALID_M) {
1777 wr32(hw, PF_MDET_RX, 0xFFFF);
1778 if (netif_msg_rx_err(pf))
1779 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1780 }
1781
1782 /* Check to see if one of the VFs caused an MDD event, and then
1783 * increment counters and set print pending
1784 */
1785 mutex_lock(&pf->vfs.table_lock);
1786 ice_for_each_vf(pf, bkt, vf) {
1787 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1788 if (reg & VP_MDET_TX_PQM_VALID_M) {
1789 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1790 vf->mdd_tx_events.count++;
1791 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1792 if (netif_msg_tx_err(pf))
1793 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1794 vf->vf_id);
1795 }
1796
1797 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1798 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1799 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1800 vf->mdd_tx_events.count++;
1801 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1802 if (netif_msg_tx_err(pf))
1803 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1804 vf->vf_id);
1805 }
1806
1807 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1808 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1809 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1810 vf->mdd_tx_events.count++;
1811 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1812 if (netif_msg_tx_err(pf))
1813 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1814 vf->vf_id);
1815 }
1816
1817 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1818 if (reg & VP_MDET_RX_VALID_M) {
1819 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1820 vf->mdd_rx_events.count++;
1821 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1822 if (netif_msg_rx_err(pf))
1823 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1824 vf->vf_id);
1825
1826 /* Since the queue is disabled on VF Rx MDD events, the
1827 * PF can be configured to reset the VF through ethtool
1828 * private flag mdd-auto-reset-vf.
1829 */
1830 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1831 /* VF MDD event counters will be cleared by
1832 * reset, so print the event prior to reset.
1833 */
1834 ice_print_vf_rx_mdd_event(vf);
1835 ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1836 }
1837 }
1838 }
1839 mutex_unlock(&pf->vfs.table_lock);
1840
1841 ice_print_vfs_mdd_events(pf);
1842 }
1843
1844 /**
1845 * ice_force_phys_link_state - Force the physical link state
1846 * @vsi: VSI to force the physical link state to up/down
1847 * @link_up: true/false indicates to set the physical link to up/down
1848 *
1849 * Force the physical link state by getting the current PHY capabilities from
1850 * hardware and setting the PHY config based on the determined capabilities. If
1851 * link changes a link event will be triggered because both the Enable Automatic
1852 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1853 *
1854 * Returns 0 on success, negative on failure
1855 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1856 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1857 {
1858 struct ice_aqc_get_phy_caps_data *pcaps;
1859 struct ice_aqc_set_phy_cfg_data *cfg;
1860 struct ice_port_info *pi;
1861 struct device *dev;
1862 int retcode;
1863
1864 if (!vsi || !vsi->port_info || !vsi->back)
1865 return -EINVAL;
1866 if (vsi->type != ICE_VSI_PF)
1867 return 0;
1868
1869 dev = ice_pf_to_dev(vsi->back);
1870
1871 pi = vsi->port_info;
1872
1873 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1874 if (!pcaps)
1875 return -ENOMEM;
1876
1877 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1878 NULL);
1879 if (retcode) {
1880 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1881 vsi->vsi_num, retcode);
1882 retcode = -EIO;
1883 goto out;
1884 }
1885
1886 /* No change in link */
1887 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1888 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1889 goto out;
1890
1891 /* Use the current user PHY configuration. The current user PHY
1892 * configuration is initialized during probe from PHY capabilities
1893 * software mode, and updated on set PHY configuration.
1894 */
1895 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1896 if (!cfg) {
1897 retcode = -ENOMEM;
1898 goto out;
1899 }
1900
1901 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1902 if (link_up)
1903 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1904 else
1905 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1906
1907 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1908 if (retcode) {
1909 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1910 vsi->vsi_num, retcode);
1911 retcode = -EIO;
1912 }
1913
1914 kfree(cfg);
1915 out:
1916 kfree(pcaps);
1917 return retcode;
1918 }
1919
1920 /**
1921 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1922 * @pi: port info structure
1923 *
1924 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1925 */
ice_init_nvm_phy_type(struct ice_port_info * pi)1926 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1927 {
1928 struct ice_aqc_get_phy_caps_data *pcaps;
1929 struct ice_pf *pf = pi->hw->back;
1930 int err;
1931
1932 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1933 if (!pcaps)
1934 return -ENOMEM;
1935
1936 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1937 pcaps, NULL);
1938
1939 if (err) {
1940 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1941 goto out;
1942 }
1943
1944 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1945 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1946
1947 out:
1948 kfree(pcaps);
1949 return err;
1950 }
1951
1952 /**
1953 * ice_init_link_dflt_override - Initialize link default override
1954 * @pi: port info structure
1955 *
1956 * Initialize link default override and PHY total port shutdown during probe
1957 */
ice_init_link_dflt_override(struct ice_port_info * pi)1958 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1959 {
1960 struct ice_link_default_override_tlv *ldo;
1961 struct ice_pf *pf = pi->hw->back;
1962
1963 ldo = &pf->link_dflt_override;
1964 if (ice_get_link_default_override(ldo, pi))
1965 return;
1966
1967 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1968 return;
1969
1970 /* Enable Total Port Shutdown (override/replace link-down-on-close
1971 * ethtool private flag) for ports with Port Disable bit set.
1972 */
1973 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1974 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1975 }
1976
1977 /**
1978 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1979 * @pi: port info structure
1980 *
1981 * If default override is enabled, initialize the user PHY cfg speed and FEC
1982 * settings using the default override mask from the NVM.
1983 *
1984 * The PHY should only be configured with the default override settings the
1985 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1986 * is used to indicate that the user PHY cfg default override is initialized
1987 * and the PHY has not been configured with the default override settings. The
1988 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1989 * configured.
1990 *
1991 * This function should be called only if the FW doesn't support default
1992 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1993 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)1994 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1995 {
1996 struct ice_link_default_override_tlv *ldo;
1997 struct ice_aqc_set_phy_cfg_data *cfg;
1998 struct ice_phy_info *phy = &pi->phy;
1999 struct ice_pf *pf = pi->hw->back;
2000
2001 ldo = &pf->link_dflt_override;
2002
2003 /* If link default override is enabled, use to mask NVM PHY capabilities
2004 * for speed and FEC default configuration.
2005 */
2006 cfg = &phy->curr_user_phy_cfg;
2007
2008 if (ldo->phy_type_low || ldo->phy_type_high) {
2009 cfg->phy_type_low = pf->nvm_phy_type_lo &
2010 cpu_to_le64(ldo->phy_type_low);
2011 cfg->phy_type_high = pf->nvm_phy_type_hi &
2012 cpu_to_le64(ldo->phy_type_high);
2013 }
2014 cfg->link_fec_opt = ldo->fec_options;
2015 phy->curr_user_fec_req = ICE_FEC_AUTO;
2016
2017 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2018 }
2019
2020 /**
2021 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2022 * @pi: port info structure
2023 *
2024 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2025 * mode to default. The PHY defaults are from get PHY capabilities topology
2026 * with media so call when media is first available. An error is returned if
2027 * called when media is not available. The PHY initialization completed state is
2028 * set here.
2029 *
2030 * These configurations are used when setting PHY
2031 * configuration. The user PHY configuration is updated on set PHY
2032 * configuration. Returns 0 on success, negative on failure
2033 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2034 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2035 {
2036 struct ice_aqc_get_phy_caps_data *pcaps;
2037 struct ice_phy_info *phy = &pi->phy;
2038 struct ice_pf *pf = pi->hw->back;
2039 int err;
2040
2041 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2042 return -EIO;
2043
2044 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2045 if (!pcaps)
2046 return -ENOMEM;
2047
2048 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2049 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2050 pcaps, NULL);
2051 else
2052 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2053 pcaps, NULL);
2054 if (err) {
2055 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2056 goto err_out;
2057 }
2058
2059 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2060
2061 /* check if lenient mode is supported and enabled */
2062 if (ice_fw_supports_link_override(pi->hw) &&
2063 !(pcaps->module_compliance_enforcement &
2064 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2065 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2066
2067 /* if the FW supports default PHY configuration mode, then the driver
2068 * does not have to apply link override settings. If not,
2069 * initialize user PHY configuration with link override values
2070 */
2071 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2072 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2073 ice_init_phy_cfg_dflt_override(pi);
2074 goto out;
2075 }
2076 }
2077
2078 /* if link default override is not enabled, set user flow control and
2079 * FEC settings based on what get_phy_caps returned
2080 */
2081 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2082 pcaps->link_fec_options);
2083 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2084
2085 out:
2086 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2087 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2088 err_out:
2089 kfree(pcaps);
2090 return err;
2091 }
2092
2093 /**
2094 * ice_configure_phy - configure PHY
2095 * @vsi: VSI of PHY
2096 *
2097 * Set the PHY configuration. If the current PHY configuration is the same as
2098 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2099 * configure the based get PHY capabilities for topology with media.
2100 */
ice_configure_phy(struct ice_vsi * vsi)2101 static int ice_configure_phy(struct ice_vsi *vsi)
2102 {
2103 struct device *dev = ice_pf_to_dev(vsi->back);
2104 struct ice_port_info *pi = vsi->port_info;
2105 struct ice_aqc_get_phy_caps_data *pcaps;
2106 struct ice_aqc_set_phy_cfg_data *cfg;
2107 struct ice_phy_info *phy = &pi->phy;
2108 struct ice_pf *pf = vsi->back;
2109 int err;
2110
2111 /* Ensure we have media as we cannot configure a medialess port */
2112 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2113 return -EPERM;
2114
2115 ice_print_topo_conflict(vsi);
2116
2117 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2118 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2119 return -EPERM;
2120
2121 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2122 return ice_force_phys_link_state(vsi, true);
2123
2124 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2125 if (!pcaps)
2126 return -ENOMEM;
2127
2128 /* Get current PHY config */
2129 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2130 NULL);
2131 if (err) {
2132 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2133 vsi->vsi_num, err);
2134 goto done;
2135 }
2136
2137 /* If PHY enable link is configured and configuration has not changed,
2138 * there's nothing to do
2139 */
2140 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2141 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2142 goto done;
2143
2144 /* Use PHY topology as baseline for configuration */
2145 memset(pcaps, 0, sizeof(*pcaps));
2146 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2147 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2148 pcaps, NULL);
2149 else
2150 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2151 pcaps, NULL);
2152 if (err) {
2153 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2154 vsi->vsi_num, err);
2155 goto done;
2156 }
2157
2158 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2159 if (!cfg) {
2160 err = -ENOMEM;
2161 goto done;
2162 }
2163
2164 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2165
2166 /* Speed - If default override pending, use curr_user_phy_cfg set in
2167 * ice_init_phy_user_cfg_ldo.
2168 */
2169 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2170 vsi->back->state)) {
2171 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2172 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2173 } else {
2174 u64 phy_low = 0, phy_high = 0;
2175
2176 ice_update_phy_type(&phy_low, &phy_high,
2177 pi->phy.curr_user_speed_req);
2178 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2179 cfg->phy_type_high = pcaps->phy_type_high &
2180 cpu_to_le64(phy_high);
2181 }
2182
2183 /* Can't provide what was requested; use PHY capabilities */
2184 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2185 cfg->phy_type_low = pcaps->phy_type_low;
2186 cfg->phy_type_high = pcaps->phy_type_high;
2187 }
2188
2189 /* FEC */
2190 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2191
2192 /* Can't provide what was requested; use PHY capabilities */
2193 if (cfg->link_fec_opt !=
2194 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2195 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2196 cfg->link_fec_opt = pcaps->link_fec_options;
2197 }
2198
2199 /* Flow Control - always supported; no need to check against
2200 * capabilities
2201 */
2202 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2203
2204 /* Enable link and link update */
2205 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2206
2207 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2208 if (err)
2209 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2210 vsi->vsi_num, err);
2211
2212 kfree(cfg);
2213 done:
2214 kfree(pcaps);
2215 return err;
2216 }
2217
2218 /**
2219 * ice_check_media_subtask - Check for media
2220 * @pf: pointer to PF struct
2221 *
2222 * If media is available, then initialize PHY user configuration if it is not
2223 * been, and configure the PHY if the interface is up.
2224 */
ice_check_media_subtask(struct ice_pf * pf)2225 static void ice_check_media_subtask(struct ice_pf *pf)
2226 {
2227 struct ice_port_info *pi;
2228 struct ice_vsi *vsi;
2229 int err;
2230
2231 /* No need to check for media if it's already present */
2232 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2233 return;
2234
2235 vsi = ice_get_main_vsi(pf);
2236 if (!vsi)
2237 return;
2238
2239 /* Refresh link info and check if media is present */
2240 pi = vsi->port_info;
2241 err = ice_update_link_info(pi);
2242 if (err)
2243 return;
2244
2245 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2246
2247 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2248 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2249 ice_init_phy_user_cfg(pi);
2250
2251 /* PHY settings are reset on media insertion, reconfigure
2252 * PHY to preserve settings.
2253 */
2254 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2255 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2256 return;
2257
2258 err = ice_configure_phy(vsi);
2259 if (!err)
2260 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2261
2262 /* A Link Status Event will be generated; the event handler
2263 * will complete bringing the interface up
2264 */
2265 }
2266 }
2267
2268 /**
2269 * ice_service_task - manage and run subtasks
2270 * @work: pointer to work_struct contained by the PF struct
2271 */
ice_service_task(struct work_struct * work)2272 static void ice_service_task(struct work_struct *work)
2273 {
2274 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2275 unsigned long start_time = jiffies;
2276
2277 /* subtasks */
2278
2279 /* process reset requests first */
2280 ice_reset_subtask(pf);
2281
2282 /* bail if a reset/recovery cycle is pending or rebuild failed */
2283 if (ice_is_reset_in_progress(pf->state) ||
2284 test_bit(ICE_SUSPENDED, pf->state) ||
2285 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2286 ice_service_task_complete(pf);
2287 return;
2288 }
2289
2290 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2291 struct iidc_event *event;
2292
2293 event = kzalloc(sizeof(*event), GFP_KERNEL);
2294 if (event) {
2295 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2296 /* report the entire OICR value to AUX driver */
2297 swap(event->reg, pf->oicr_err_reg);
2298 ice_send_event_to_aux(pf, event);
2299 kfree(event);
2300 }
2301 }
2302
2303 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2304 /* Plug aux device per request */
2305 ice_plug_aux_dev(pf);
2306
2307 /* Mark plugging as done but check whether unplug was
2308 * requested during ice_plug_aux_dev() call
2309 * (e.g. from ice_clear_rdma_cap()) and if so then
2310 * plug aux device.
2311 */
2312 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2313 ice_unplug_aux_dev(pf);
2314 }
2315
2316 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2317 struct iidc_event *event;
2318
2319 event = kzalloc(sizeof(*event), GFP_KERNEL);
2320 if (event) {
2321 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2322 ice_send_event_to_aux(pf, event);
2323 kfree(event);
2324 }
2325 }
2326
2327 ice_clean_adminq_subtask(pf);
2328 ice_check_media_subtask(pf);
2329 ice_check_for_hang_subtask(pf);
2330 ice_sync_fltr_subtask(pf);
2331 ice_handle_mdd_event(pf);
2332 ice_watchdog_subtask(pf);
2333
2334 if (ice_is_safe_mode(pf)) {
2335 ice_service_task_complete(pf);
2336 return;
2337 }
2338
2339 ice_process_vflr_event(pf);
2340 ice_clean_mailboxq_subtask(pf);
2341 ice_clean_sbq_subtask(pf);
2342 ice_sync_arfs_fltrs(pf);
2343 ice_flush_fdir_ctx(pf);
2344
2345 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2346 ice_service_task_complete(pf);
2347
2348 /* If the tasks have taken longer than one service timer period
2349 * or there is more work to be done, reset the service timer to
2350 * schedule the service task now.
2351 */
2352 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2353 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2354 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2355 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2356 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2357 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2358 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2359 mod_timer(&pf->serv_tmr, jiffies);
2360 }
2361
2362 /**
2363 * ice_set_ctrlq_len - helper function to set controlq length
2364 * @hw: pointer to the HW instance
2365 */
ice_set_ctrlq_len(struct ice_hw * hw)2366 static void ice_set_ctrlq_len(struct ice_hw *hw)
2367 {
2368 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2369 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2370 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2371 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2372 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2373 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2374 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2375 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2376 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2377 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2378 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2379 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2380 }
2381
2382 /**
2383 * ice_schedule_reset - schedule a reset
2384 * @pf: board private structure
2385 * @reset: reset being requested
2386 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2387 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2388 {
2389 struct device *dev = ice_pf_to_dev(pf);
2390
2391 /* bail out if earlier reset has failed */
2392 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2393 dev_dbg(dev, "earlier reset has failed\n");
2394 return -EIO;
2395 }
2396 /* bail if reset/recovery already in progress */
2397 if (ice_is_reset_in_progress(pf->state)) {
2398 dev_dbg(dev, "Reset already in progress\n");
2399 return -EBUSY;
2400 }
2401
2402 switch (reset) {
2403 case ICE_RESET_PFR:
2404 set_bit(ICE_PFR_REQ, pf->state);
2405 break;
2406 case ICE_RESET_CORER:
2407 set_bit(ICE_CORER_REQ, pf->state);
2408 break;
2409 case ICE_RESET_GLOBR:
2410 set_bit(ICE_GLOBR_REQ, pf->state);
2411 break;
2412 default:
2413 return -EINVAL;
2414 }
2415
2416 ice_service_task_schedule(pf);
2417 return 0;
2418 }
2419
2420 /**
2421 * ice_irq_affinity_notify - Callback for affinity changes
2422 * @notify: context as to what irq was changed
2423 * @mask: the new affinity mask
2424 *
2425 * This is a callback function used by the irq_set_affinity_notifier function
2426 * so that we may register to receive changes to the irq affinity masks.
2427 */
2428 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2429 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2430 const cpumask_t *mask)
2431 {
2432 struct ice_q_vector *q_vector =
2433 container_of(notify, struct ice_q_vector, affinity_notify);
2434
2435 cpumask_copy(&q_vector->affinity_mask, mask);
2436 }
2437
2438 /**
2439 * ice_irq_affinity_release - Callback for affinity notifier release
2440 * @ref: internal core kernel usage
2441 *
2442 * This is a callback function used by the irq_set_affinity_notifier function
2443 * to inform the current notification subscriber that they will no longer
2444 * receive notifications.
2445 */
ice_irq_affinity_release(struct kref __always_unused * ref)2446 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2447
2448 /**
2449 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2450 * @vsi: the VSI being configured
2451 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2452 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2453 {
2454 struct ice_hw *hw = &vsi->back->hw;
2455 int i;
2456
2457 ice_for_each_q_vector(vsi, i)
2458 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2459
2460 ice_flush(hw);
2461 return 0;
2462 }
2463
2464 /**
2465 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2466 * @vsi: the VSI being configured
2467 * @basename: name for the vector
2468 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2469 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2470 {
2471 int q_vectors = vsi->num_q_vectors;
2472 struct ice_pf *pf = vsi->back;
2473 int base = vsi->base_vector;
2474 struct device *dev;
2475 int rx_int_idx = 0;
2476 int tx_int_idx = 0;
2477 int vector, err;
2478 int irq_num;
2479
2480 dev = ice_pf_to_dev(pf);
2481 for (vector = 0; vector < q_vectors; vector++) {
2482 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2483
2484 irq_num = pf->msix_entries[base + vector].vector;
2485
2486 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2487 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2488 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2489 tx_int_idx++;
2490 } else if (q_vector->rx.rx_ring) {
2491 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2492 "%s-%s-%d", basename, "rx", rx_int_idx++);
2493 } else if (q_vector->tx.tx_ring) {
2494 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2495 "%s-%s-%d", basename, "tx", tx_int_idx++);
2496 } else {
2497 /* skip this unused q_vector */
2498 continue;
2499 }
2500 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2501 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2502 IRQF_SHARED, q_vector->name,
2503 q_vector);
2504 else
2505 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2506 0, q_vector->name, q_vector);
2507 if (err) {
2508 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2509 err);
2510 goto free_q_irqs;
2511 }
2512
2513 /* register for affinity change notifications */
2514 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2515 struct irq_affinity_notify *affinity_notify;
2516
2517 affinity_notify = &q_vector->affinity_notify;
2518 affinity_notify->notify = ice_irq_affinity_notify;
2519 affinity_notify->release = ice_irq_affinity_release;
2520 irq_set_affinity_notifier(irq_num, affinity_notify);
2521 }
2522
2523 /* assign the mask for this irq */
2524 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2525 }
2526
2527 err = ice_set_cpu_rx_rmap(vsi);
2528 if (err) {
2529 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2530 vsi->vsi_num, ERR_PTR(err));
2531 goto free_q_irqs;
2532 }
2533
2534 vsi->irqs_ready = true;
2535 return 0;
2536
2537 free_q_irqs:
2538 while (vector) {
2539 vector--;
2540 irq_num = pf->msix_entries[base + vector].vector;
2541 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2542 irq_set_affinity_notifier(irq_num, NULL);
2543 irq_set_affinity_hint(irq_num, NULL);
2544 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2545 }
2546 return err;
2547 }
2548
2549 /**
2550 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2551 * @vsi: VSI to setup Tx rings used by XDP
2552 *
2553 * Return 0 on success and negative value on error
2554 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2555 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2556 {
2557 struct device *dev = ice_pf_to_dev(vsi->back);
2558 struct ice_tx_desc *tx_desc;
2559 int i, j;
2560
2561 ice_for_each_xdp_txq(vsi, i) {
2562 u16 xdp_q_idx = vsi->alloc_txq + i;
2563 struct ice_tx_ring *xdp_ring;
2564
2565 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2566
2567 if (!xdp_ring)
2568 goto free_xdp_rings;
2569
2570 xdp_ring->q_index = xdp_q_idx;
2571 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2572 xdp_ring->vsi = vsi;
2573 xdp_ring->netdev = NULL;
2574 xdp_ring->dev = dev;
2575 xdp_ring->count = vsi->num_tx_desc;
2576 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2577 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2578 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2579 if (ice_setup_tx_ring(xdp_ring))
2580 goto free_xdp_rings;
2581 ice_set_ring_xdp(xdp_ring);
2582 spin_lock_init(&xdp_ring->tx_lock);
2583 for (j = 0; j < xdp_ring->count; j++) {
2584 tx_desc = ICE_TX_DESC(xdp_ring, j);
2585 tx_desc->cmd_type_offset_bsz = 0;
2586 }
2587 }
2588
2589 return 0;
2590
2591 free_xdp_rings:
2592 for (; i >= 0; i--)
2593 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2594 ice_free_tx_ring(vsi->xdp_rings[i]);
2595 return -ENOMEM;
2596 }
2597
2598 /**
2599 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2600 * @vsi: VSI to set the bpf prog on
2601 * @prog: the bpf prog pointer
2602 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2603 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2604 {
2605 struct bpf_prog *old_prog;
2606 int i;
2607
2608 old_prog = xchg(&vsi->xdp_prog, prog);
2609 if (old_prog)
2610 bpf_prog_put(old_prog);
2611
2612 ice_for_each_rxq(vsi, i)
2613 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2614 }
2615
2616 /**
2617 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2618 * @vsi: VSI to bring up Tx rings used by XDP
2619 * @prog: bpf program that will be assigned to VSI
2620 *
2621 * Return 0 on success and negative value on error
2622 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog)2623 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2624 {
2625 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2626 int xdp_rings_rem = vsi->num_xdp_txq;
2627 struct ice_pf *pf = vsi->back;
2628 struct ice_qs_cfg xdp_qs_cfg = {
2629 .qs_mutex = &pf->avail_q_mutex,
2630 .pf_map = pf->avail_txqs,
2631 .pf_map_size = pf->max_pf_txqs,
2632 .q_count = vsi->num_xdp_txq,
2633 .scatter_count = ICE_MAX_SCATTER_TXQS,
2634 .vsi_map = vsi->txq_map,
2635 .vsi_map_offset = vsi->alloc_txq,
2636 .mapping_mode = ICE_VSI_MAP_CONTIG
2637 };
2638 struct device *dev;
2639 int i, v_idx;
2640 int status;
2641
2642 dev = ice_pf_to_dev(pf);
2643 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2644 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2645 if (!vsi->xdp_rings)
2646 return -ENOMEM;
2647
2648 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2649 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2650 goto err_map_xdp;
2651
2652 if (static_key_enabled(&ice_xdp_locking_key))
2653 netdev_warn(vsi->netdev,
2654 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2655
2656 if (ice_xdp_alloc_setup_rings(vsi))
2657 goto clear_xdp_rings;
2658
2659 /* follow the logic from ice_vsi_map_rings_to_vectors */
2660 ice_for_each_q_vector(vsi, v_idx) {
2661 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2662 int xdp_rings_per_v, q_id, q_base;
2663
2664 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2665 vsi->num_q_vectors - v_idx);
2666 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2667
2668 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2669 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2670
2671 xdp_ring->q_vector = q_vector;
2672 xdp_ring->next = q_vector->tx.tx_ring;
2673 q_vector->tx.tx_ring = xdp_ring;
2674 }
2675 xdp_rings_rem -= xdp_rings_per_v;
2676 }
2677
2678 ice_for_each_rxq(vsi, i) {
2679 if (static_key_enabled(&ice_xdp_locking_key)) {
2680 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2681 } else {
2682 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2683 struct ice_tx_ring *ring;
2684
2685 ice_for_each_tx_ring(ring, q_vector->tx) {
2686 if (ice_ring_is_xdp(ring)) {
2687 vsi->rx_rings[i]->xdp_ring = ring;
2688 break;
2689 }
2690 }
2691 }
2692 ice_tx_xsk_pool(vsi, i);
2693 }
2694
2695 /* omit the scheduler update if in reset path; XDP queues will be
2696 * taken into account at the end of ice_vsi_rebuild, where
2697 * ice_cfg_vsi_lan is being called
2698 */
2699 if (ice_is_reset_in_progress(pf->state))
2700 return 0;
2701
2702 /* tell the Tx scheduler that right now we have
2703 * additional queues
2704 */
2705 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2706 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2707
2708 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2709 max_txqs);
2710 if (status) {
2711 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2712 status);
2713 goto clear_xdp_rings;
2714 }
2715
2716 /* assign the prog only when it's not already present on VSI;
2717 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2718 * VSI rebuild that happens under ethtool -L can expose us to
2719 * the bpf_prog refcount issues as we would be swapping same
2720 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2721 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2722 * this is not harmful as dev_xdp_install bumps the refcount
2723 * before calling the op exposed by the driver;
2724 */
2725 if (!ice_is_xdp_ena_vsi(vsi))
2726 ice_vsi_assign_bpf_prog(vsi, prog);
2727
2728 return 0;
2729 clear_xdp_rings:
2730 ice_for_each_xdp_txq(vsi, i)
2731 if (vsi->xdp_rings[i]) {
2732 kfree_rcu(vsi->xdp_rings[i], rcu);
2733 vsi->xdp_rings[i] = NULL;
2734 }
2735
2736 err_map_xdp:
2737 mutex_lock(&pf->avail_q_mutex);
2738 ice_for_each_xdp_txq(vsi, i) {
2739 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2740 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2741 }
2742 mutex_unlock(&pf->avail_q_mutex);
2743
2744 devm_kfree(dev, vsi->xdp_rings);
2745 return -ENOMEM;
2746 }
2747
2748 /**
2749 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2750 * @vsi: VSI to remove XDP rings
2751 *
2752 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2753 * resources
2754 */
ice_destroy_xdp_rings(struct ice_vsi * vsi)2755 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2756 {
2757 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2758 struct ice_pf *pf = vsi->back;
2759 int i, v_idx;
2760
2761 /* q_vectors are freed in reset path so there's no point in detaching
2762 * rings; in case of rebuild being triggered not from reset bits
2763 * in pf->state won't be set, so additionally check first q_vector
2764 * against NULL
2765 */
2766 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2767 goto free_qmap;
2768
2769 ice_for_each_q_vector(vsi, v_idx) {
2770 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2771 struct ice_tx_ring *ring;
2772
2773 ice_for_each_tx_ring(ring, q_vector->tx)
2774 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2775 break;
2776
2777 /* restore the value of last node prior to XDP setup */
2778 q_vector->tx.tx_ring = ring;
2779 }
2780
2781 free_qmap:
2782 mutex_lock(&pf->avail_q_mutex);
2783 ice_for_each_xdp_txq(vsi, i) {
2784 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2785 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2786 }
2787 mutex_unlock(&pf->avail_q_mutex);
2788
2789 ice_for_each_xdp_txq(vsi, i)
2790 if (vsi->xdp_rings[i]) {
2791 if (vsi->xdp_rings[i]->desc) {
2792 synchronize_rcu();
2793 ice_free_tx_ring(vsi->xdp_rings[i]);
2794 }
2795 kfree_rcu(vsi->xdp_rings[i], rcu);
2796 vsi->xdp_rings[i] = NULL;
2797 }
2798
2799 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2800 vsi->xdp_rings = NULL;
2801
2802 if (static_key_enabled(&ice_xdp_locking_key))
2803 static_branch_dec(&ice_xdp_locking_key);
2804
2805 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2806 return 0;
2807
2808 ice_vsi_assign_bpf_prog(vsi, NULL);
2809
2810 /* notify Tx scheduler that we destroyed XDP queues and bring
2811 * back the old number of child nodes
2812 */
2813 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2814 max_txqs[i] = vsi->num_txq;
2815
2816 /* change number of XDP Tx queues to 0 */
2817 vsi->num_xdp_txq = 0;
2818
2819 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2820 max_txqs);
2821 }
2822
2823 /**
2824 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2825 * @vsi: VSI to schedule napi on
2826 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2827 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2828 {
2829 int i;
2830
2831 ice_for_each_rxq(vsi, i) {
2832 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2833
2834 if (rx_ring->xsk_pool)
2835 napi_schedule(&rx_ring->q_vector->napi);
2836 }
2837 }
2838
2839 /**
2840 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2841 * @vsi: VSI to determine the count of XDP Tx qs
2842 *
2843 * returns 0 if Tx qs count is higher than at least half of CPU count,
2844 * -ENOMEM otherwise
2845 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2846 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2847 {
2848 u16 avail = ice_get_avail_txq_count(vsi->back);
2849 u16 cpus = num_possible_cpus();
2850
2851 if (avail < cpus / 2)
2852 return -ENOMEM;
2853
2854 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2855
2856 if (vsi->num_xdp_txq < cpus)
2857 static_branch_inc(&ice_xdp_locking_key);
2858
2859 return 0;
2860 }
2861
2862 /**
2863 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2864 * @vsi: VSI to setup XDP for
2865 * @prog: XDP program
2866 * @extack: netlink extended ack
2867 */
2868 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2869 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2870 struct netlink_ext_ack *extack)
2871 {
2872 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2873 bool if_running = netif_running(vsi->netdev);
2874 int ret = 0, xdp_ring_err = 0;
2875
2876 if (frame_size > vsi->rx_buf_len) {
2877 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2878 return -EOPNOTSUPP;
2879 }
2880
2881 /* need to stop netdev while setting up the program for Rx rings */
2882 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2883 ret = ice_down(vsi);
2884 if (ret) {
2885 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2886 return ret;
2887 }
2888 }
2889
2890 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2891 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2892 if (xdp_ring_err) {
2893 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2894 } else {
2895 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2896 if (xdp_ring_err)
2897 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2898 }
2899 /* reallocate Rx queues that are used for zero-copy */
2900 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2901 if (xdp_ring_err)
2902 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2903 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2904 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2905 if (xdp_ring_err)
2906 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2907 /* reallocate Rx queues that were used for zero-copy */
2908 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2909 if (xdp_ring_err)
2910 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2911 } else {
2912 /* safe to call even when prog == vsi->xdp_prog as
2913 * dev_xdp_install in net/core/dev.c incremented prog's
2914 * refcount so corresponding bpf_prog_put won't cause
2915 * underflow
2916 */
2917 ice_vsi_assign_bpf_prog(vsi, prog);
2918 }
2919
2920 if (if_running)
2921 ret = ice_up(vsi);
2922
2923 if (!ret && prog)
2924 ice_vsi_rx_napi_schedule(vsi);
2925
2926 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2927 }
2928
2929 /**
2930 * ice_xdp_safe_mode - XDP handler for safe mode
2931 * @dev: netdevice
2932 * @xdp: XDP command
2933 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)2934 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2935 struct netdev_bpf *xdp)
2936 {
2937 NL_SET_ERR_MSG_MOD(xdp->extack,
2938 "Please provide working DDP firmware package in order to use XDP\n"
2939 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2940 return -EOPNOTSUPP;
2941 }
2942
2943 /**
2944 * ice_xdp - implements XDP handler
2945 * @dev: netdevice
2946 * @xdp: XDP command
2947 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)2948 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2949 {
2950 struct ice_netdev_priv *np = netdev_priv(dev);
2951 struct ice_vsi *vsi = np->vsi;
2952
2953 if (vsi->type != ICE_VSI_PF) {
2954 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2955 return -EINVAL;
2956 }
2957
2958 switch (xdp->command) {
2959 case XDP_SETUP_PROG:
2960 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2961 case XDP_SETUP_XSK_POOL:
2962 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2963 xdp->xsk.queue_id);
2964 default:
2965 return -EINVAL;
2966 }
2967 }
2968
2969 /**
2970 * ice_ena_misc_vector - enable the non-queue interrupts
2971 * @pf: board private structure
2972 */
ice_ena_misc_vector(struct ice_pf * pf)2973 static void ice_ena_misc_vector(struct ice_pf *pf)
2974 {
2975 struct ice_hw *hw = &pf->hw;
2976 u32 val;
2977
2978 /* Disable anti-spoof detection interrupt to prevent spurious event
2979 * interrupts during a function reset. Anti-spoof functionally is
2980 * still supported.
2981 */
2982 val = rd32(hw, GL_MDCK_TX_TDPU);
2983 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2984 wr32(hw, GL_MDCK_TX_TDPU, val);
2985
2986 /* clear things first */
2987 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
2988 rd32(hw, PFINT_OICR); /* read to clear */
2989
2990 val = (PFINT_OICR_ECC_ERR_M |
2991 PFINT_OICR_MAL_DETECT_M |
2992 PFINT_OICR_GRST_M |
2993 PFINT_OICR_PCI_EXCEPTION_M |
2994 PFINT_OICR_VFLR_M |
2995 PFINT_OICR_HMC_ERR_M |
2996 PFINT_OICR_PE_PUSH_M |
2997 PFINT_OICR_PE_CRITERR_M);
2998
2999 wr32(hw, PFINT_OICR_ENA, val);
3000
3001 /* SW_ITR_IDX = 0, but don't change INTENA */
3002 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
3003 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3004 }
3005
3006 /**
3007 * ice_misc_intr - misc interrupt handler
3008 * @irq: interrupt number
3009 * @data: pointer to a q_vector
3010 */
ice_misc_intr(int __always_unused irq,void * data)3011 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3012 {
3013 struct ice_pf *pf = (struct ice_pf *)data;
3014 struct ice_hw *hw = &pf->hw;
3015 irqreturn_t ret = IRQ_NONE;
3016 struct device *dev;
3017 u32 oicr, ena_mask;
3018
3019 dev = ice_pf_to_dev(pf);
3020 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3021 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3022 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3023
3024 oicr = rd32(hw, PFINT_OICR);
3025 ena_mask = rd32(hw, PFINT_OICR_ENA);
3026
3027 if (oicr & PFINT_OICR_SWINT_M) {
3028 ena_mask &= ~PFINT_OICR_SWINT_M;
3029 pf->sw_int_count++;
3030 }
3031
3032 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3033 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3034 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3035 }
3036 if (oicr & PFINT_OICR_VFLR_M) {
3037 /* disable any further VFLR event notifications */
3038 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3039 u32 reg = rd32(hw, PFINT_OICR_ENA);
3040
3041 reg &= ~PFINT_OICR_VFLR_M;
3042 wr32(hw, PFINT_OICR_ENA, reg);
3043 } else {
3044 ena_mask &= ~PFINT_OICR_VFLR_M;
3045 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3046 }
3047 }
3048
3049 if (oicr & PFINT_OICR_GRST_M) {
3050 u32 reset;
3051
3052 /* we have a reset warning */
3053 ena_mask &= ~PFINT_OICR_GRST_M;
3054 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3055 GLGEN_RSTAT_RESET_TYPE_S;
3056
3057 if (reset == ICE_RESET_CORER)
3058 pf->corer_count++;
3059 else if (reset == ICE_RESET_GLOBR)
3060 pf->globr_count++;
3061 else if (reset == ICE_RESET_EMPR)
3062 pf->empr_count++;
3063 else
3064 dev_dbg(dev, "Invalid reset type %d\n", reset);
3065
3066 /* If a reset cycle isn't already in progress, we set a bit in
3067 * pf->state so that the service task can start a reset/rebuild.
3068 */
3069 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3070 if (reset == ICE_RESET_CORER)
3071 set_bit(ICE_CORER_RECV, pf->state);
3072 else if (reset == ICE_RESET_GLOBR)
3073 set_bit(ICE_GLOBR_RECV, pf->state);
3074 else
3075 set_bit(ICE_EMPR_RECV, pf->state);
3076
3077 /* There are couple of different bits at play here.
3078 * hw->reset_ongoing indicates whether the hardware is
3079 * in reset. This is set to true when a reset interrupt
3080 * is received and set back to false after the driver
3081 * has determined that the hardware is out of reset.
3082 *
3083 * ICE_RESET_OICR_RECV in pf->state indicates
3084 * that a post reset rebuild is required before the
3085 * driver is operational again. This is set above.
3086 *
3087 * As this is the start of the reset/rebuild cycle, set
3088 * both to indicate that.
3089 */
3090 hw->reset_ongoing = true;
3091 }
3092 }
3093
3094 if (oicr & PFINT_OICR_TSYN_TX_M) {
3095 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3096 if (!hw->reset_ongoing)
3097 ret = IRQ_WAKE_THREAD;
3098 }
3099
3100 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3101 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3102 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3103
3104 /* Save EVENTs from GTSYN register */
3105 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3106 GLTSYN_STAT_EVENT1_M |
3107 GLTSYN_STAT_EVENT2_M);
3108 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3109 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3110 }
3111
3112 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3113 if (oicr & ICE_AUX_CRIT_ERR) {
3114 pf->oicr_err_reg |= oicr;
3115 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3116 ena_mask &= ~ICE_AUX_CRIT_ERR;
3117 }
3118
3119 /* Report any remaining unexpected interrupts */
3120 oicr &= ena_mask;
3121 if (oicr) {
3122 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3123 /* If a critical error is pending there is no choice but to
3124 * reset the device.
3125 */
3126 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3127 PFINT_OICR_ECC_ERR_M)) {
3128 set_bit(ICE_PFR_REQ, pf->state);
3129 ice_service_task_schedule(pf);
3130 }
3131 }
3132 if (!ret)
3133 ret = IRQ_HANDLED;
3134
3135 ice_service_task_schedule(pf);
3136 ice_irq_dynamic_ena(hw, NULL, NULL);
3137
3138 return ret;
3139 }
3140
3141 /**
3142 * ice_misc_intr_thread_fn - misc interrupt thread function
3143 * @irq: interrupt number
3144 * @data: pointer to a q_vector
3145 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3146 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3147 {
3148 struct ice_pf *pf = data;
3149
3150 if (ice_is_reset_in_progress(pf->state))
3151 return IRQ_HANDLED;
3152
3153 while (!ice_ptp_process_ts(pf))
3154 usleep_range(50, 100);
3155
3156 return IRQ_HANDLED;
3157 }
3158
3159 /**
3160 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3161 * @hw: pointer to HW structure
3162 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3163 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3164 {
3165 /* disable Admin queue Interrupt causes */
3166 wr32(hw, PFINT_FW_CTL,
3167 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3168
3169 /* disable Mailbox queue Interrupt causes */
3170 wr32(hw, PFINT_MBX_CTL,
3171 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3172
3173 wr32(hw, PFINT_SB_CTL,
3174 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3175
3176 /* disable Control queue Interrupt causes */
3177 wr32(hw, PFINT_OICR_CTL,
3178 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3179
3180 ice_flush(hw);
3181 }
3182
3183 /**
3184 * ice_free_irq_msix_misc - Unroll misc vector setup
3185 * @pf: board private structure
3186 */
ice_free_irq_msix_misc(struct ice_pf * pf)3187 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3188 {
3189 struct ice_hw *hw = &pf->hw;
3190
3191 ice_dis_ctrlq_interrupts(hw);
3192
3193 /* disable OICR interrupt */
3194 wr32(hw, PFINT_OICR_ENA, 0);
3195 ice_flush(hw);
3196
3197 if (pf->msix_entries) {
3198 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3199 devm_free_irq(ice_pf_to_dev(pf),
3200 pf->msix_entries[pf->oicr_idx].vector, pf);
3201 }
3202
3203 pf->num_avail_sw_msix += 1;
3204 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3205 }
3206
3207 /**
3208 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3209 * @hw: pointer to HW structure
3210 * @reg_idx: HW vector index to associate the control queue interrupts with
3211 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3212 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3213 {
3214 u32 val;
3215
3216 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3217 PFINT_OICR_CTL_CAUSE_ENA_M);
3218 wr32(hw, PFINT_OICR_CTL, val);
3219
3220 /* enable Admin queue Interrupt causes */
3221 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3222 PFINT_FW_CTL_CAUSE_ENA_M);
3223 wr32(hw, PFINT_FW_CTL, val);
3224
3225 /* enable Mailbox queue Interrupt causes */
3226 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3227 PFINT_MBX_CTL_CAUSE_ENA_M);
3228 wr32(hw, PFINT_MBX_CTL, val);
3229
3230 /* This enables Sideband queue Interrupt causes */
3231 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3232 PFINT_SB_CTL_CAUSE_ENA_M);
3233 wr32(hw, PFINT_SB_CTL, val);
3234
3235 ice_flush(hw);
3236 }
3237
3238 /**
3239 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3240 * @pf: board private structure
3241 *
3242 * This sets up the handler for MSIX 0, which is used to manage the
3243 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3244 * when in MSI or Legacy interrupt mode.
3245 */
ice_req_irq_msix_misc(struct ice_pf * pf)3246 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3247 {
3248 struct device *dev = ice_pf_to_dev(pf);
3249 struct ice_hw *hw = &pf->hw;
3250 int oicr_idx, err = 0;
3251
3252 if (!pf->int_name[0])
3253 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3254 dev_driver_string(dev), dev_name(dev));
3255
3256 /* Do not request IRQ but do enable OICR interrupt since settings are
3257 * lost during reset. Note that this function is called only during
3258 * rebuild path and not while reset is in progress.
3259 */
3260 if (ice_is_reset_in_progress(pf->state))
3261 goto skip_req_irq;
3262
3263 /* reserve one vector in irq_tracker for misc interrupts */
3264 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3265 if (oicr_idx < 0)
3266 return oicr_idx;
3267
3268 pf->num_avail_sw_msix -= 1;
3269 pf->oicr_idx = (u16)oicr_idx;
3270
3271 err = devm_request_threaded_irq(dev,
3272 pf->msix_entries[pf->oicr_idx].vector,
3273 ice_misc_intr, ice_misc_intr_thread_fn,
3274 0, pf->int_name, pf);
3275 if (err) {
3276 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3277 pf->int_name, err);
3278 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3279 pf->num_avail_sw_msix += 1;
3280 return err;
3281 }
3282
3283 skip_req_irq:
3284 ice_ena_misc_vector(pf);
3285
3286 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3287 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3288 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3289
3290 ice_flush(hw);
3291 ice_irq_dynamic_ena(hw, NULL, NULL);
3292
3293 return 0;
3294 }
3295
3296 /**
3297 * ice_napi_add - register NAPI handler for the VSI
3298 * @vsi: VSI for which NAPI handler is to be registered
3299 *
3300 * This function is only called in the driver's load path. Registering the NAPI
3301 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3302 * reset/rebuild, etc.)
3303 */
ice_napi_add(struct ice_vsi * vsi)3304 static void ice_napi_add(struct ice_vsi *vsi)
3305 {
3306 int v_idx;
3307
3308 if (!vsi->netdev)
3309 return;
3310
3311 ice_for_each_q_vector(vsi, v_idx)
3312 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3313 ice_napi_poll);
3314 }
3315
3316 /**
3317 * ice_set_ops - set netdev and ethtools ops for the given netdev
3318 * @netdev: netdev instance
3319 */
ice_set_ops(struct net_device * netdev)3320 static void ice_set_ops(struct net_device *netdev)
3321 {
3322 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3323
3324 if (ice_is_safe_mode(pf)) {
3325 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3326 ice_set_ethtool_safe_mode_ops(netdev);
3327 return;
3328 }
3329
3330 netdev->netdev_ops = &ice_netdev_ops;
3331 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3332 ice_set_ethtool_ops(netdev);
3333 }
3334
3335 /**
3336 * ice_set_netdev_features - set features for the given netdev
3337 * @netdev: netdev instance
3338 */
ice_set_netdev_features(struct net_device * netdev)3339 static void ice_set_netdev_features(struct net_device *netdev)
3340 {
3341 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3342 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3343 netdev_features_t csumo_features;
3344 netdev_features_t vlano_features;
3345 netdev_features_t dflt_features;
3346 netdev_features_t tso_features;
3347
3348 if (ice_is_safe_mode(pf)) {
3349 /* safe mode */
3350 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3351 netdev->hw_features = netdev->features;
3352 return;
3353 }
3354
3355 dflt_features = NETIF_F_SG |
3356 NETIF_F_HIGHDMA |
3357 NETIF_F_NTUPLE |
3358 NETIF_F_RXHASH;
3359
3360 csumo_features = NETIF_F_RXCSUM |
3361 NETIF_F_IP_CSUM |
3362 NETIF_F_SCTP_CRC |
3363 NETIF_F_IPV6_CSUM;
3364
3365 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3366 NETIF_F_HW_VLAN_CTAG_TX |
3367 NETIF_F_HW_VLAN_CTAG_RX;
3368
3369 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3370 if (is_dvm_ena)
3371 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3372
3373 tso_features = NETIF_F_TSO |
3374 NETIF_F_TSO_ECN |
3375 NETIF_F_TSO6 |
3376 NETIF_F_GSO_GRE |
3377 NETIF_F_GSO_UDP_TUNNEL |
3378 NETIF_F_GSO_GRE_CSUM |
3379 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3380 NETIF_F_GSO_PARTIAL |
3381 NETIF_F_GSO_IPXIP4 |
3382 NETIF_F_GSO_IPXIP6 |
3383 NETIF_F_GSO_UDP_L4;
3384
3385 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3386 NETIF_F_GSO_GRE_CSUM;
3387 /* set features that user can change */
3388 netdev->hw_features = dflt_features | csumo_features |
3389 vlano_features | tso_features;
3390
3391 /* add support for HW_CSUM on packets with MPLS header */
3392 netdev->mpls_features = NETIF_F_HW_CSUM |
3393 NETIF_F_TSO |
3394 NETIF_F_TSO6;
3395
3396 /* enable features */
3397 netdev->features |= netdev->hw_features;
3398
3399 netdev->hw_features |= NETIF_F_HW_TC;
3400 netdev->hw_features |= NETIF_F_LOOPBACK;
3401
3402 /* encap and VLAN devices inherit default, csumo and tso features */
3403 netdev->hw_enc_features |= dflt_features | csumo_features |
3404 tso_features;
3405 netdev->vlan_features |= dflt_features | csumo_features |
3406 tso_features;
3407
3408 /* advertise support but don't enable by default since only one type of
3409 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3410 * type turns on the other has to be turned off. This is enforced by the
3411 * ice_fix_features() ndo callback.
3412 */
3413 if (is_dvm_ena)
3414 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3415 NETIF_F_HW_VLAN_STAG_TX;
3416
3417 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3418 * be changed at runtime
3419 */
3420 netdev->hw_features |= NETIF_F_RXFCS;
3421 }
3422
3423 /**
3424 * ice_cfg_netdev - Allocate, configure and register a netdev
3425 * @vsi: the VSI associated with the new netdev
3426 *
3427 * Returns 0 on success, negative value on failure
3428 */
ice_cfg_netdev(struct ice_vsi * vsi)3429 static int ice_cfg_netdev(struct ice_vsi *vsi)
3430 {
3431 struct ice_netdev_priv *np;
3432 struct net_device *netdev;
3433 u8 mac_addr[ETH_ALEN];
3434
3435 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3436 vsi->alloc_rxq);
3437 if (!netdev)
3438 return -ENOMEM;
3439
3440 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3441 vsi->netdev = netdev;
3442 np = netdev_priv(netdev);
3443 np->vsi = vsi;
3444
3445 ice_set_netdev_features(netdev);
3446
3447 ice_set_ops(netdev);
3448
3449 if (vsi->type == ICE_VSI_PF) {
3450 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3451 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3452 eth_hw_addr_set(netdev, mac_addr);
3453 ether_addr_copy(netdev->perm_addr, mac_addr);
3454 }
3455
3456 netdev->priv_flags |= IFF_UNICAST_FLT;
3457
3458 /* Setup netdev TC information */
3459 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3460
3461 /* setup watchdog timeout value to be 5 second */
3462 netdev->watchdog_timeo = 5 * HZ;
3463
3464 netdev->min_mtu = ETH_MIN_MTU;
3465 netdev->max_mtu = ICE_MAX_MTU;
3466
3467 return 0;
3468 }
3469
3470 /**
3471 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3472 * @lut: Lookup table
3473 * @rss_table_size: Lookup table size
3474 * @rss_size: Range of queue number for hashing
3475 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3476 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3477 {
3478 u16 i;
3479
3480 for (i = 0; i < rss_table_size; i++)
3481 lut[i] = i % rss_size;
3482 }
3483
3484 /**
3485 * ice_pf_vsi_setup - Set up a PF VSI
3486 * @pf: board private structure
3487 * @pi: pointer to the port_info instance
3488 *
3489 * Returns pointer to the successfully allocated VSI software struct
3490 * on success, otherwise returns NULL on failure.
3491 */
3492 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3493 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3494 {
3495 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3496 }
3497
3498 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3499 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3500 struct ice_channel *ch)
3501 {
3502 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3503 }
3504
3505 /**
3506 * ice_ctrl_vsi_setup - Set up a control VSI
3507 * @pf: board private structure
3508 * @pi: pointer to the port_info instance
3509 *
3510 * Returns pointer to the successfully allocated VSI software struct
3511 * on success, otherwise returns NULL on failure.
3512 */
3513 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3514 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3515 {
3516 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3517 }
3518
3519 /**
3520 * ice_lb_vsi_setup - Set up a loopback VSI
3521 * @pf: board private structure
3522 * @pi: pointer to the port_info instance
3523 *
3524 * Returns pointer to the successfully allocated VSI software struct
3525 * on success, otherwise returns NULL on failure.
3526 */
3527 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3528 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3529 {
3530 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3531 }
3532
3533 /**
3534 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3535 * @netdev: network interface to be adjusted
3536 * @proto: VLAN TPID
3537 * @vid: VLAN ID to be added
3538 *
3539 * net_device_ops implementation for adding VLAN IDs
3540 */
3541 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3542 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3543 {
3544 struct ice_netdev_priv *np = netdev_priv(netdev);
3545 struct ice_vsi_vlan_ops *vlan_ops;
3546 struct ice_vsi *vsi = np->vsi;
3547 struct ice_vlan vlan;
3548 int ret;
3549
3550 /* VLAN 0 is added by default during load/reset */
3551 if (!vid)
3552 return 0;
3553
3554 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3555 usleep_range(1000, 2000);
3556
3557 /* Add multicast promisc rule for the VLAN ID to be added if
3558 * all-multicast is currently enabled.
3559 */
3560 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3561 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3562 ICE_MCAST_VLAN_PROMISC_BITS,
3563 vid);
3564 if (ret)
3565 goto finish;
3566 }
3567
3568 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3569
3570 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3571 * packets aren't pruned by the device's internal switch on Rx
3572 */
3573 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3574 ret = vlan_ops->add_vlan(vsi, &vlan);
3575 if (ret)
3576 goto finish;
3577
3578 /* If all-multicast is currently enabled and this VLAN ID is only one
3579 * besides VLAN-0 we have to update look-up type of multicast promisc
3580 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3581 */
3582 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3583 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3584 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3585 ICE_MCAST_PROMISC_BITS, 0);
3586 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3587 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3588 }
3589
3590 finish:
3591 clear_bit(ICE_CFG_BUSY, vsi->state);
3592
3593 return ret;
3594 }
3595
3596 /**
3597 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3598 * @netdev: network interface to be adjusted
3599 * @proto: VLAN TPID
3600 * @vid: VLAN ID to be removed
3601 *
3602 * net_device_ops implementation for removing VLAN IDs
3603 */
3604 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3605 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3606 {
3607 struct ice_netdev_priv *np = netdev_priv(netdev);
3608 struct ice_vsi_vlan_ops *vlan_ops;
3609 struct ice_vsi *vsi = np->vsi;
3610 struct ice_vlan vlan;
3611 int ret;
3612
3613 /* don't allow removal of VLAN 0 */
3614 if (!vid)
3615 return 0;
3616
3617 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3618 usleep_range(1000, 2000);
3619
3620 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3621 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3622 if (ret) {
3623 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3624 vsi->vsi_num);
3625 vsi->current_netdev_flags |= IFF_ALLMULTI;
3626 }
3627
3628 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3629
3630 /* Make sure VLAN delete is successful before updating VLAN
3631 * information
3632 */
3633 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3634 ret = vlan_ops->del_vlan(vsi, &vlan);
3635 if (ret)
3636 goto finish;
3637
3638 /* Remove multicast promisc rule for the removed VLAN ID if
3639 * all-multicast is enabled.
3640 */
3641 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3642 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3643 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3644
3645 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3646 /* Update look-up type of multicast promisc rule for VLAN 0
3647 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3648 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3649 */
3650 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3651 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3652 ICE_MCAST_VLAN_PROMISC_BITS,
3653 0);
3654 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3655 ICE_MCAST_PROMISC_BITS, 0);
3656 }
3657 }
3658
3659 finish:
3660 clear_bit(ICE_CFG_BUSY, vsi->state);
3661
3662 return ret;
3663 }
3664
3665 /**
3666 * ice_rep_indr_tc_block_unbind
3667 * @cb_priv: indirection block private data
3668 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3669 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3670 {
3671 struct ice_indr_block_priv *indr_priv = cb_priv;
3672
3673 list_del(&indr_priv->list);
3674 kfree(indr_priv);
3675 }
3676
3677 /**
3678 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3679 * @vsi: VSI struct which has the netdev
3680 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3681 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3682 {
3683 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3684
3685 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3686 ice_rep_indr_tc_block_unbind);
3687 }
3688
3689 /**
3690 * ice_tc_indir_block_remove - clean indirect TC block notifications
3691 * @pf: PF structure
3692 */
ice_tc_indir_block_remove(struct ice_pf * pf)3693 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3694 {
3695 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3696
3697 if (!pf_vsi)
3698 return;
3699
3700 ice_tc_indir_block_unregister(pf_vsi);
3701 }
3702
3703 /**
3704 * ice_tc_indir_block_register - Register TC indirect block notifications
3705 * @vsi: VSI struct which has the netdev
3706 *
3707 * Returns 0 on success, negative value on failure
3708 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3709 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3710 {
3711 struct ice_netdev_priv *np;
3712
3713 if (!vsi || !vsi->netdev)
3714 return -EINVAL;
3715
3716 np = netdev_priv(vsi->netdev);
3717
3718 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3719 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3720 }
3721
3722 /**
3723 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3724 * @pf: board private structure
3725 *
3726 * Returns 0 on success, negative value on failure
3727 */
ice_setup_pf_sw(struct ice_pf * pf)3728 static int ice_setup_pf_sw(struct ice_pf *pf)
3729 {
3730 struct device *dev = ice_pf_to_dev(pf);
3731 bool dvm = ice_is_dvm_ena(&pf->hw);
3732 struct ice_vsi *vsi;
3733 int status;
3734
3735 if (ice_is_reset_in_progress(pf->state))
3736 return -EBUSY;
3737
3738 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3739 if (status)
3740 return -EIO;
3741
3742 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3743 if (!vsi)
3744 return -ENOMEM;
3745
3746 /* init channel list */
3747 INIT_LIST_HEAD(&vsi->ch_list);
3748
3749 status = ice_cfg_netdev(vsi);
3750 if (status)
3751 goto unroll_vsi_setup;
3752 /* netdev has to be configured before setting frame size */
3753 ice_vsi_cfg_frame_size(vsi);
3754
3755 /* init indirect block notifications */
3756 status = ice_tc_indir_block_register(vsi);
3757 if (status) {
3758 dev_err(dev, "Failed to register netdev notifier\n");
3759 goto unroll_cfg_netdev;
3760 }
3761
3762 /* Setup DCB netlink interface */
3763 ice_dcbnl_setup(vsi);
3764
3765 /* registering the NAPI handler requires both the queues and
3766 * netdev to be created, which are done in ice_pf_vsi_setup()
3767 * and ice_cfg_netdev() respectively
3768 */
3769 ice_napi_add(vsi);
3770
3771 status = ice_init_mac_fltr(pf);
3772 if (status)
3773 goto unroll_napi_add;
3774
3775 return 0;
3776
3777 unroll_napi_add:
3778 ice_tc_indir_block_unregister(vsi);
3779 unroll_cfg_netdev:
3780 if (vsi) {
3781 ice_napi_del(vsi);
3782 if (vsi->netdev) {
3783 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3784 free_netdev(vsi->netdev);
3785 vsi->netdev = NULL;
3786 }
3787 }
3788
3789 unroll_vsi_setup:
3790 ice_vsi_release(vsi);
3791 return status;
3792 }
3793
3794 /**
3795 * ice_get_avail_q_count - Get count of queues in use
3796 * @pf_qmap: bitmap to get queue use count from
3797 * @lock: pointer to a mutex that protects access to pf_qmap
3798 * @size: size of the bitmap
3799 */
3800 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3801 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3802 {
3803 unsigned long bit;
3804 u16 count = 0;
3805
3806 mutex_lock(lock);
3807 for_each_clear_bit(bit, pf_qmap, size)
3808 count++;
3809 mutex_unlock(lock);
3810
3811 return count;
3812 }
3813
3814 /**
3815 * ice_get_avail_txq_count - Get count of Tx queues in use
3816 * @pf: pointer to an ice_pf instance
3817 */
ice_get_avail_txq_count(struct ice_pf * pf)3818 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3819 {
3820 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3821 pf->max_pf_txqs);
3822 }
3823
3824 /**
3825 * ice_get_avail_rxq_count - Get count of Rx queues in use
3826 * @pf: pointer to an ice_pf instance
3827 */
ice_get_avail_rxq_count(struct ice_pf * pf)3828 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3829 {
3830 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3831 pf->max_pf_rxqs);
3832 }
3833
3834 /**
3835 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3836 * @pf: board private structure to initialize
3837 */
ice_deinit_pf(struct ice_pf * pf)3838 static void ice_deinit_pf(struct ice_pf *pf)
3839 {
3840 ice_service_task_stop(pf);
3841 mutex_destroy(&pf->adev_mutex);
3842 mutex_destroy(&pf->sw_mutex);
3843 mutex_destroy(&pf->tc_mutex);
3844 mutex_destroy(&pf->avail_q_mutex);
3845 mutex_destroy(&pf->vfs.table_lock);
3846
3847 if (pf->avail_txqs) {
3848 bitmap_free(pf->avail_txqs);
3849 pf->avail_txqs = NULL;
3850 }
3851
3852 if (pf->avail_rxqs) {
3853 bitmap_free(pf->avail_rxqs);
3854 pf->avail_rxqs = NULL;
3855 }
3856
3857 if (pf->ptp.clock)
3858 ptp_clock_unregister(pf->ptp.clock);
3859 }
3860
3861 /**
3862 * ice_set_pf_caps - set PFs capability flags
3863 * @pf: pointer to the PF instance
3864 */
ice_set_pf_caps(struct ice_pf * pf)3865 static void ice_set_pf_caps(struct ice_pf *pf)
3866 {
3867 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3868
3869 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3870 if (func_caps->common_cap.rdma)
3871 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3872 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3873 if (func_caps->common_cap.dcb)
3874 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3875 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3876 if (func_caps->common_cap.sr_iov_1_1) {
3877 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3878 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3879 ICE_MAX_SRIOV_VFS);
3880 }
3881 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3882 if (func_caps->common_cap.rss_table_size)
3883 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3884
3885 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3886 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3887 u16 unused;
3888
3889 /* ctrl_vsi_idx will be set to a valid value when flow director
3890 * is setup by ice_init_fdir
3891 */
3892 pf->ctrl_vsi_idx = ICE_NO_VSI;
3893 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3894 /* force guaranteed filter pool for PF */
3895 ice_alloc_fd_guar_item(&pf->hw, &unused,
3896 func_caps->fd_fltr_guar);
3897 /* force shared filter pool for PF */
3898 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3899 func_caps->fd_fltr_best_effort);
3900 }
3901
3902 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3903 if (func_caps->common_cap.ieee_1588)
3904 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3905
3906 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3907 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3908 }
3909
3910 /**
3911 * ice_init_pf - Initialize general software structures (struct ice_pf)
3912 * @pf: board private structure to initialize
3913 */
ice_init_pf(struct ice_pf * pf)3914 static int ice_init_pf(struct ice_pf *pf)
3915 {
3916 ice_set_pf_caps(pf);
3917
3918 mutex_init(&pf->sw_mutex);
3919 mutex_init(&pf->tc_mutex);
3920 mutex_init(&pf->adev_mutex);
3921
3922 INIT_HLIST_HEAD(&pf->aq_wait_list);
3923 spin_lock_init(&pf->aq_wait_lock);
3924 init_waitqueue_head(&pf->aq_wait_queue);
3925
3926 init_waitqueue_head(&pf->reset_wait_queue);
3927
3928 /* setup service timer and periodic service task */
3929 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3930 pf->serv_tmr_period = HZ;
3931 INIT_WORK(&pf->serv_task, ice_service_task);
3932 clear_bit(ICE_SERVICE_SCHED, pf->state);
3933
3934 mutex_init(&pf->avail_q_mutex);
3935 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3936 if (!pf->avail_txqs)
3937 return -ENOMEM;
3938
3939 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3940 if (!pf->avail_rxqs) {
3941 bitmap_free(pf->avail_txqs);
3942 pf->avail_txqs = NULL;
3943 return -ENOMEM;
3944 }
3945
3946 mutex_init(&pf->vfs.table_lock);
3947 hash_init(pf->vfs.table);
3948
3949 return 0;
3950 }
3951
3952 /**
3953 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors
3954 * @pf: board private structure
3955 * @v_remain: number of remaining MSI-X vectors to be distributed
3956 *
3957 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled.
3958 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of
3959 * remaining vectors.
3960 */
ice_reduce_msix_usage(struct ice_pf * pf,int v_remain)3961 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain)
3962 {
3963 int v_rdma;
3964
3965 if (!ice_is_rdma_ena(pf)) {
3966 pf->num_lan_msix = v_remain;
3967 return;
3968 }
3969
3970 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */
3971 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3972
3973 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) {
3974 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n");
3975 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3976
3977 pf->num_rdma_msix = 0;
3978 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3979 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
3980 (v_remain - v_rdma < v_rdma)) {
3981 /* Support minimum RDMA and give remaining vectors to LAN MSIX */
3982 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX;
3983 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX;
3984 } else {
3985 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX
3986 */
3987 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
3988 ICE_RDMA_NUM_AEQ_MSIX;
3989 pf->num_lan_msix = v_remain - pf->num_rdma_msix;
3990 }
3991 }
3992
3993 /**
3994 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3995 * @pf: board private structure
3996 *
3997 * Compute the number of MSIX vectors wanted and request from the OS. Adjust
3998 * device usage if there are not enough vectors. Return the number of vectors
3999 * reserved or negative on failure.
4000 */
ice_ena_msix_range(struct ice_pf * pf)4001 static int ice_ena_msix_range(struct ice_pf *pf)
4002 {
4003 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual;
4004 struct device *dev = ice_pf_to_dev(pf);
4005 int err, i;
4006
4007 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors;
4008 num_cpus = num_online_cpus();
4009
4010 /* LAN miscellaneous handler */
4011 v_other = ICE_MIN_LAN_OICR_MSIX;
4012
4013 /* Flow Director */
4014 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
4015 v_other += ICE_FDIR_MSIX;
4016
4017 /* switchdev */
4018 v_other += ICE_ESWITCH_MSIX;
4019
4020 v_wanted = v_other;
4021
4022 /* LAN traffic */
4023 pf->num_lan_msix = num_cpus;
4024 v_wanted += pf->num_lan_msix;
4025
4026 /* RDMA auxiliary driver */
4027 if (ice_is_rdma_ena(pf)) {
4028 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
4029 v_wanted += pf->num_rdma_msix;
4030 }
4031
4032 if (v_wanted > hw_num_msix) {
4033 int v_remain;
4034
4035 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n",
4036 v_wanted, hw_num_msix);
4037
4038 if (hw_num_msix < ICE_MIN_MSIX) {
4039 err = -ERANGE;
4040 goto exit_err;
4041 }
4042
4043 v_remain = hw_num_msix - v_other;
4044 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) {
4045 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX;
4046 v_remain = ICE_MIN_LAN_TXRX_MSIX;
4047 }
4048
4049 ice_reduce_msix_usage(pf, v_remain);
4050 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other;
4051
4052 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n",
4053 pf->num_lan_msix);
4054 if (ice_is_rdma_ena(pf))
4055 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n",
4056 pf->num_rdma_msix);
4057 }
4058
4059 pf->msix_entries = devm_kcalloc(dev, v_wanted,
4060 sizeof(*pf->msix_entries), GFP_KERNEL);
4061 if (!pf->msix_entries) {
4062 err = -ENOMEM;
4063 goto exit_err;
4064 }
4065
4066 for (i = 0; i < v_wanted; i++)
4067 pf->msix_entries[i].entry = i;
4068
4069 /* actually reserve the vectors */
4070 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
4071 ICE_MIN_MSIX, v_wanted);
4072 if (v_actual < 0) {
4073 dev_err(dev, "unable to reserve MSI-X vectors\n");
4074 err = v_actual;
4075 goto msix_err;
4076 }
4077
4078 if (v_actual < v_wanted) {
4079 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
4080 v_wanted, v_actual);
4081
4082 if (v_actual < ICE_MIN_MSIX) {
4083 /* error if we can't get minimum vectors */
4084 pci_disable_msix(pf->pdev);
4085 err = -ERANGE;
4086 goto msix_err;
4087 } else {
4088 int v_remain = v_actual - v_other;
4089
4090 if (v_remain < ICE_MIN_LAN_TXRX_MSIX)
4091 v_remain = ICE_MIN_LAN_TXRX_MSIX;
4092
4093 ice_reduce_msix_usage(pf, v_remain);
4094
4095 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4096 pf->num_lan_msix);
4097
4098 if (ice_is_rdma_ena(pf))
4099 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4100 pf->num_rdma_msix);
4101 }
4102 }
4103
4104 return v_actual;
4105
4106 msix_err:
4107 devm_kfree(dev, pf->msix_entries);
4108
4109 exit_err:
4110 pf->num_rdma_msix = 0;
4111 pf->num_lan_msix = 0;
4112 return err;
4113 }
4114
4115 /**
4116 * ice_dis_msix - Disable MSI-X interrupt setup in OS
4117 * @pf: board private structure
4118 */
ice_dis_msix(struct ice_pf * pf)4119 static void ice_dis_msix(struct ice_pf *pf)
4120 {
4121 pci_disable_msix(pf->pdev);
4122 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4123 pf->msix_entries = NULL;
4124 }
4125
4126 /**
4127 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4128 * @pf: board private structure
4129 */
ice_clear_interrupt_scheme(struct ice_pf * pf)4130 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4131 {
4132 ice_dis_msix(pf);
4133
4134 if (pf->irq_tracker) {
4135 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4136 pf->irq_tracker = NULL;
4137 }
4138 }
4139
4140 /**
4141 * ice_init_interrupt_scheme - Determine proper interrupt scheme
4142 * @pf: board private structure to initialize
4143 */
ice_init_interrupt_scheme(struct ice_pf * pf)4144 static int ice_init_interrupt_scheme(struct ice_pf *pf)
4145 {
4146 int vectors;
4147
4148 vectors = ice_ena_msix_range(pf);
4149
4150 if (vectors < 0)
4151 return vectors;
4152
4153 /* set up vector assignment tracking */
4154 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4155 struct_size(pf->irq_tracker, list, vectors),
4156 GFP_KERNEL);
4157 if (!pf->irq_tracker) {
4158 ice_dis_msix(pf);
4159 return -ENOMEM;
4160 }
4161
4162 /* populate SW interrupts pool with number of OS granted IRQs. */
4163 pf->num_avail_sw_msix = (u16)vectors;
4164 pf->irq_tracker->num_entries = (u16)vectors;
4165 pf->irq_tracker->end = pf->irq_tracker->num_entries;
4166
4167 return 0;
4168 }
4169
4170 /**
4171 * ice_is_wol_supported - check if WoL is supported
4172 * @hw: pointer to hardware info
4173 *
4174 * Check if WoL is supported based on the HW configuration.
4175 * Returns true if NVM supports and enables WoL for this port, false otherwise
4176 */
ice_is_wol_supported(struct ice_hw * hw)4177 bool ice_is_wol_supported(struct ice_hw *hw)
4178 {
4179 u16 wol_ctrl;
4180
4181 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4182 * word) indicates WoL is not supported on the corresponding PF ID.
4183 */
4184 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4185 return false;
4186
4187 return !(BIT(hw->port_info->lport) & wol_ctrl);
4188 }
4189
4190 /**
4191 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4192 * @vsi: VSI being changed
4193 * @new_rx: new number of Rx queues
4194 * @new_tx: new number of Tx queues
4195 *
4196 * Only change the number of queues if new_tx, or new_rx is non-0.
4197 *
4198 * Returns 0 on success.
4199 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx)4200 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
4201 {
4202 struct ice_pf *pf = vsi->back;
4203 int err = 0, timeout = 50;
4204
4205 if (!new_rx && !new_tx)
4206 return -EINVAL;
4207
4208 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4209 timeout--;
4210 if (!timeout)
4211 return -EBUSY;
4212 usleep_range(1000, 2000);
4213 }
4214
4215 if (new_tx)
4216 vsi->req_txq = (u16)new_tx;
4217 if (new_rx)
4218 vsi->req_rxq = (u16)new_rx;
4219
4220 /* set for the next time the netdev is started */
4221 if (!netif_running(vsi->netdev)) {
4222 ice_vsi_rebuild(vsi, false);
4223 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4224 goto done;
4225 }
4226
4227 ice_vsi_close(vsi);
4228 ice_vsi_rebuild(vsi, false);
4229 ice_pf_dcb_recfg(pf);
4230 ice_vsi_open(vsi);
4231 done:
4232 clear_bit(ICE_CFG_BUSY, pf->state);
4233 return err;
4234 }
4235
4236 /**
4237 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4238 * @pf: PF to configure
4239 *
4240 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4241 * VSI can still Tx/Rx VLAN tagged packets.
4242 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4243 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4244 {
4245 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4246 struct ice_vsi_ctx *ctxt;
4247 struct ice_hw *hw;
4248 int status;
4249
4250 if (!vsi)
4251 return;
4252
4253 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4254 if (!ctxt)
4255 return;
4256
4257 hw = &pf->hw;
4258 ctxt->info = vsi->info;
4259
4260 ctxt->info.valid_sections =
4261 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4262 ICE_AQ_VSI_PROP_SECURITY_VALID |
4263 ICE_AQ_VSI_PROP_SW_VALID);
4264
4265 /* disable VLAN anti-spoof */
4266 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4267 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4268
4269 /* disable VLAN pruning and keep all other settings */
4270 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4271
4272 /* allow all VLANs on Tx and don't strip on Rx */
4273 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4274 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4275
4276 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4277 if (status) {
4278 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4279 status, ice_aq_str(hw->adminq.sq_last_status));
4280 } else {
4281 vsi->info.sec_flags = ctxt->info.sec_flags;
4282 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4283 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4284 }
4285
4286 kfree(ctxt);
4287 }
4288
4289 /**
4290 * ice_log_pkg_init - log result of DDP package load
4291 * @hw: pointer to hardware info
4292 * @state: state of package load
4293 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4294 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4295 {
4296 struct ice_pf *pf = hw->back;
4297 struct device *dev;
4298
4299 dev = ice_pf_to_dev(pf);
4300
4301 switch (state) {
4302 case ICE_DDP_PKG_SUCCESS:
4303 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4304 hw->active_pkg_name,
4305 hw->active_pkg_ver.major,
4306 hw->active_pkg_ver.minor,
4307 hw->active_pkg_ver.update,
4308 hw->active_pkg_ver.draft);
4309 break;
4310 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4311 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4312 hw->active_pkg_name,
4313 hw->active_pkg_ver.major,
4314 hw->active_pkg_ver.minor,
4315 hw->active_pkg_ver.update,
4316 hw->active_pkg_ver.draft);
4317 break;
4318 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4319 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4320 hw->active_pkg_name,
4321 hw->active_pkg_ver.major,
4322 hw->active_pkg_ver.minor,
4323 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4324 break;
4325 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4326 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4327 hw->active_pkg_name,
4328 hw->active_pkg_ver.major,
4329 hw->active_pkg_ver.minor,
4330 hw->active_pkg_ver.update,
4331 hw->active_pkg_ver.draft,
4332 hw->pkg_name,
4333 hw->pkg_ver.major,
4334 hw->pkg_ver.minor,
4335 hw->pkg_ver.update,
4336 hw->pkg_ver.draft);
4337 break;
4338 case ICE_DDP_PKG_FW_MISMATCH:
4339 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4340 break;
4341 case ICE_DDP_PKG_INVALID_FILE:
4342 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4343 break;
4344 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4345 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4346 break;
4347 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4348 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4349 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4350 break;
4351 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4352 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4353 break;
4354 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4355 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4356 break;
4357 case ICE_DDP_PKG_LOAD_ERROR:
4358 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4359 /* poll for reset to complete */
4360 if (ice_check_reset(hw))
4361 dev_err(dev, "Error resetting device. Please reload the driver\n");
4362 break;
4363 case ICE_DDP_PKG_ERR:
4364 default:
4365 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4366 break;
4367 }
4368 }
4369
4370 /**
4371 * ice_load_pkg - load/reload the DDP Package file
4372 * @firmware: firmware structure when firmware requested or NULL for reload
4373 * @pf: pointer to the PF instance
4374 *
4375 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4376 * initialize HW tables.
4377 */
4378 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4379 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4380 {
4381 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4382 struct device *dev = ice_pf_to_dev(pf);
4383 struct ice_hw *hw = &pf->hw;
4384
4385 /* Load DDP Package */
4386 if (firmware && !hw->pkg_copy) {
4387 state = ice_copy_and_init_pkg(hw, firmware->data,
4388 firmware->size);
4389 ice_log_pkg_init(hw, state);
4390 } else if (!firmware && hw->pkg_copy) {
4391 /* Reload package during rebuild after CORER/GLOBR reset */
4392 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4393 ice_log_pkg_init(hw, state);
4394 } else {
4395 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4396 }
4397
4398 if (!ice_is_init_pkg_successful(state)) {
4399 /* Safe Mode */
4400 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4401 return;
4402 }
4403
4404 /* Successful download package is the precondition for advanced
4405 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4406 */
4407 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4408 }
4409
4410 /**
4411 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4412 * @pf: pointer to the PF structure
4413 *
4414 * There is no error returned here because the driver should be able to handle
4415 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4416 * specifically with Tx.
4417 */
ice_verify_cacheline_size(struct ice_pf * pf)4418 static void ice_verify_cacheline_size(struct ice_pf *pf)
4419 {
4420 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4421 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4422 ICE_CACHE_LINE_BYTES);
4423 }
4424
4425 /**
4426 * ice_send_version - update firmware with driver version
4427 * @pf: PF struct
4428 *
4429 * Returns 0 on success, else error code
4430 */
ice_send_version(struct ice_pf * pf)4431 static int ice_send_version(struct ice_pf *pf)
4432 {
4433 struct ice_driver_ver dv;
4434
4435 dv.major_ver = 0xff;
4436 dv.minor_ver = 0xff;
4437 dv.build_ver = 0xff;
4438 dv.subbuild_ver = 0;
4439 strscpy((char *)dv.driver_string, UTS_RELEASE,
4440 sizeof(dv.driver_string));
4441 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4442 }
4443
4444 /**
4445 * ice_init_fdir - Initialize flow director VSI and configuration
4446 * @pf: pointer to the PF instance
4447 *
4448 * returns 0 on success, negative on error
4449 */
ice_init_fdir(struct ice_pf * pf)4450 static int ice_init_fdir(struct ice_pf *pf)
4451 {
4452 struct device *dev = ice_pf_to_dev(pf);
4453 struct ice_vsi *ctrl_vsi;
4454 int err;
4455
4456 /* Side Band Flow Director needs to have a control VSI.
4457 * Allocate it and store it in the PF.
4458 */
4459 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4460 if (!ctrl_vsi) {
4461 dev_dbg(dev, "could not create control VSI\n");
4462 return -ENOMEM;
4463 }
4464
4465 err = ice_vsi_open_ctrl(ctrl_vsi);
4466 if (err) {
4467 dev_dbg(dev, "could not open control VSI\n");
4468 goto err_vsi_open;
4469 }
4470
4471 mutex_init(&pf->hw.fdir_fltr_lock);
4472
4473 err = ice_fdir_create_dflt_rules(pf);
4474 if (err)
4475 goto err_fdir_rule;
4476
4477 return 0;
4478
4479 err_fdir_rule:
4480 ice_fdir_release_flows(&pf->hw);
4481 ice_vsi_close(ctrl_vsi);
4482 err_vsi_open:
4483 ice_vsi_release(ctrl_vsi);
4484 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4485 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4486 pf->ctrl_vsi_idx = ICE_NO_VSI;
4487 }
4488 return err;
4489 }
4490
4491 /**
4492 * ice_get_opt_fw_name - return optional firmware file name or NULL
4493 * @pf: pointer to the PF instance
4494 */
ice_get_opt_fw_name(struct ice_pf * pf)4495 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4496 {
4497 /* Optional firmware name same as default with additional dash
4498 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4499 */
4500 struct pci_dev *pdev = pf->pdev;
4501 char *opt_fw_filename;
4502 u64 dsn;
4503
4504 /* Determine the name of the optional file using the DSN (two
4505 * dwords following the start of the DSN Capability).
4506 */
4507 dsn = pci_get_dsn(pdev);
4508 if (!dsn)
4509 return NULL;
4510
4511 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4512 if (!opt_fw_filename)
4513 return NULL;
4514
4515 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4516 ICE_DDP_PKG_PATH, dsn);
4517
4518 return opt_fw_filename;
4519 }
4520
4521 /**
4522 * ice_request_fw - Device initialization routine
4523 * @pf: pointer to the PF instance
4524 */
ice_request_fw(struct ice_pf * pf)4525 static void ice_request_fw(struct ice_pf *pf)
4526 {
4527 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4528 const struct firmware *firmware = NULL;
4529 struct device *dev = ice_pf_to_dev(pf);
4530 int err = 0;
4531
4532 /* optional device-specific DDP (if present) overrides the default DDP
4533 * package file. kernel logs a debug message if the file doesn't exist,
4534 * and warning messages for other errors.
4535 */
4536 if (opt_fw_filename) {
4537 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4538 if (err) {
4539 kfree(opt_fw_filename);
4540 goto dflt_pkg_load;
4541 }
4542
4543 /* request for firmware was successful. Download to device */
4544 ice_load_pkg(firmware, pf);
4545 kfree(opt_fw_filename);
4546 release_firmware(firmware);
4547 return;
4548 }
4549
4550 dflt_pkg_load:
4551 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4552 if (err) {
4553 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4554 return;
4555 }
4556
4557 /* request for firmware was successful. Download to device */
4558 ice_load_pkg(firmware, pf);
4559 release_firmware(firmware);
4560 }
4561
4562 /**
4563 * ice_print_wake_reason - show the wake up cause in the log
4564 * @pf: pointer to the PF struct
4565 */
ice_print_wake_reason(struct ice_pf * pf)4566 static void ice_print_wake_reason(struct ice_pf *pf)
4567 {
4568 u32 wus = pf->wakeup_reason;
4569 const char *wake_str;
4570
4571 /* if no wake event, nothing to print */
4572 if (!wus)
4573 return;
4574
4575 if (wus & PFPM_WUS_LNKC_M)
4576 wake_str = "Link\n";
4577 else if (wus & PFPM_WUS_MAG_M)
4578 wake_str = "Magic Packet\n";
4579 else if (wus & PFPM_WUS_MNG_M)
4580 wake_str = "Management\n";
4581 else if (wus & PFPM_WUS_FW_RST_WK_M)
4582 wake_str = "Firmware Reset\n";
4583 else
4584 wake_str = "Unknown\n";
4585
4586 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4587 }
4588
4589 /**
4590 * ice_register_netdev - register netdev and devlink port
4591 * @pf: pointer to the PF struct
4592 */
ice_register_netdev(struct ice_pf * pf)4593 static int ice_register_netdev(struct ice_pf *pf)
4594 {
4595 struct ice_vsi *vsi;
4596 int err = 0;
4597
4598 vsi = ice_get_main_vsi(pf);
4599 if (!vsi || !vsi->netdev)
4600 return -EIO;
4601
4602 err = ice_devlink_create_pf_port(pf);
4603 if (err)
4604 goto err_devlink_create;
4605
4606 err = register_netdev(vsi->netdev);
4607 if (err)
4608 goto err_register_netdev;
4609
4610 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4611 netif_carrier_off(vsi->netdev);
4612 netif_tx_stop_all_queues(vsi->netdev);
4613
4614 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
4615
4616 return 0;
4617 err_register_netdev:
4618 ice_devlink_destroy_pf_port(pf);
4619 err_devlink_create:
4620 free_netdev(vsi->netdev);
4621 vsi->netdev = NULL;
4622 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4623 return err;
4624 }
4625
4626 /**
4627 * ice_probe - Device initialization routine
4628 * @pdev: PCI device information struct
4629 * @ent: entry in ice_pci_tbl
4630 *
4631 * Returns 0 on success, negative on failure
4632 */
4633 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)4634 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4635 {
4636 struct device *dev = &pdev->dev;
4637 struct ice_pf *pf;
4638 struct ice_hw *hw;
4639 int i, err;
4640
4641 if (pdev->is_virtfn) {
4642 dev_err(dev, "can't probe a virtual function\n");
4643 return -EINVAL;
4644 }
4645
4646 /* this driver uses devres, see
4647 * Documentation/driver-api/driver-model/devres.rst
4648 */
4649 err = pcim_enable_device(pdev);
4650 if (err)
4651 return err;
4652
4653 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4654 if (err) {
4655 dev_err(dev, "BAR0 I/O map error %d\n", err);
4656 return err;
4657 }
4658
4659 pf = ice_allocate_pf(dev);
4660 if (!pf)
4661 return -ENOMEM;
4662
4663 /* initialize Auxiliary index to invalid value */
4664 pf->aux_idx = -1;
4665
4666 /* set up for high or low DMA */
4667 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4668 if (err) {
4669 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4670 return err;
4671 }
4672
4673 pci_enable_pcie_error_reporting(pdev);
4674 pci_set_master(pdev);
4675
4676 pf->pdev = pdev;
4677 pci_set_drvdata(pdev, pf);
4678 set_bit(ICE_DOWN, pf->state);
4679 /* Disable service task until DOWN bit is cleared */
4680 set_bit(ICE_SERVICE_DIS, pf->state);
4681
4682 hw = &pf->hw;
4683 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4684 pci_save_state(pdev);
4685
4686 hw->back = pf;
4687 hw->vendor_id = pdev->vendor;
4688 hw->device_id = pdev->device;
4689 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4690 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4691 hw->subsystem_device_id = pdev->subsystem_device;
4692 hw->bus.device = PCI_SLOT(pdev->devfn);
4693 hw->bus.func = PCI_FUNC(pdev->devfn);
4694 ice_set_ctrlq_len(hw);
4695
4696 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4697
4698 #ifndef CONFIG_DYNAMIC_DEBUG
4699 if (debug < -1)
4700 hw->debug_mask = debug;
4701 #endif
4702
4703 err = ice_init_hw(hw);
4704 if (err) {
4705 dev_err(dev, "ice_init_hw failed: %d\n", err);
4706 err = -EIO;
4707 goto err_exit_unroll;
4708 }
4709
4710 ice_init_feature_support(pf);
4711
4712 ice_request_fw(pf);
4713
4714 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4715 * set in pf->state, which will cause ice_is_safe_mode to return
4716 * true
4717 */
4718 if (ice_is_safe_mode(pf)) {
4719 /* we already got function/device capabilities but these don't
4720 * reflect what the driver needs to do in safe mode. Instead of
4721 * adding conditional logic everywhere to ignore these
4722 * device/function capabilities, override them.
4723 */
4724 ice_set_safe_mode_caps(hw);
4725 }
4726
4727 err = ice_init_pf(pf);
4728 if (err) {
4729 dev_err(dev, "ice_init_pf failed: %d\n", err);
4730 goto err_init_pf_unroll;
4731 }
4732
4733 ice_devlink_init_regions(pf);
4734
4735 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4736 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4737 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4738 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4739 i = 0;
4740 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4741 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4742 pf->hw.tnl.valid_count[TNL_VXLAN];
4743 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4744 UDP_TUNNEL_TYPE_VXLAN;
4745 i++;
4746 }
4747 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4748 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4749 pf->hw.tnl.valid_count[TNL_GENEVE];
4750 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4751 UDP_TUNNEL_TYPE_GENEVE;
4752 i++;
4753 }
4754
4755 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4756 if (!pf->num_alloc_vsi) {
4757 err = -EIO;
4758 goto err_init_pf_unroll;
4759 }
4760 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4761 dev_warn(&pf->pdev->dev,
4762 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4763 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4764 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4765 }
4766
4767 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4768 GFP_KERNEL);
4769 if (!pf->vsi) {
4770 err = -ENOMEM;
4771 goto err_init_pf_unroll;
4772 }
4773
4774 err = ice_init_interrupt_scheme(pf);
4775 if (err) {
4776 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4777 err = -EIO;
4778 goto err_init_vsi_unroll;
4779 }
4780
4781 /* In case of MSIX we are going to setup the misc vector right here
4782 * to handle admin queue events etc. In case of legacy and MSI
4783 * the misc functionality and queue processing is combined in
4784 * the same vector and that gets setup at open.
4785 */
4786 err = ice_req_irq_msix_misc(pf);
4787 if (err) {
4788 dev_err(dev, "setup of misc vector failed: %d\n", err);
4789 goto err_init_interrupt_unroll;
4790 }
4791
4792 /* create switch struct for the switch element created by FW on boot */
4793 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4794 if (!pf->first_sw) {
4795 err = -ENOMEM;
4796 goto err_msix_misc_unroll;
4797 }
4798
4799 if (hw->evb_veb)
4800 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4801 else
4802 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4803
4804 pf->first_sw->pf = pf;
4805
4806 /* record the sw_id available for later use */
4807 pf->first_sw->sw_id = hw->port_info->sw_id;
4808
4809 err = ice_setup_pf_sw(pf);
4810 if (err) {
4811 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4812 goto err_alloc_sw_unroll;
4813 }
4814
4815 clear_bit(ICE_SERVICE_DIS, pf->state);
4816
4817 /* tell the firmware we are up */
4818 err = ice_send_version(pf);
4819 if (err) {
4820 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4821 UTS_RELEASE, err);
4822 goto err_send_version_unroll;
4823 }
4824
4825 /* since everything is good, start the service timer */
4826 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4827
4828 err = ice_init_link_events(pf->hw.port_info);
4829 if (err) {
4830 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4831 goto err_send_version_unroll;
4832 }
4833
4834 /* not a fatal error if this fails */
4835 err = ice_init_nvm_phy_type(pf->hw.port_info);
4836 if (err)
4837 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4838
4839 /* not a fatal error if this fails */
4840 err = ice_update_link_info(pf->hw.port_info);
4841 if (err)
4842 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4843
4844 ice_init_link_dflt_override(pf->hw.port_info);
4845
4846 ice_check_link_cfg_err(pf,
4847 pf->hw.port_info->phy.link_info.link_cfg_err);
4848
4849 /* if media available, initialize PHY settings */
4850 if (pf->hw.port_info->phy.link_info.link_info &
4851 ICE_AQ_MEDIA_AVAILABLE) {
4852 /* not a fatal error if this fails */
4853 err = ice_init_phy_user_cfg(pf->hw.port_info);
4854 if (err)
4855 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4856
4857 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4858 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4859
4860 if (vsi)
4861 ice_configure_phy(vsi);
4862 }
4863 } else {
4864 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4865 }
4866
4867 ice_verify_cacheline_size(pf);
4868
4869 /* Save wakeup reason register for later use */
4870 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4871
4872 /* check for a power management event */
4873 ice_print_wake_reason(pf);
4874
4875 /* clear wake status, all bits */
4876 wr32(hw, PFPM_WUS, U32_MAX);
4877
4878 /* Disable WoL at init, wait for user to enable */
4879 device_set_wakeup_enable(dev, false);
4880
4881 if (ice_is_safe_mode(pf)) {
4882 ice_set_safe_mode_vlan_cfg(pf);
4883 goto probe_done;
4884 }
4885
4886 /* initialize DDP driven features */
4887 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4888 ice_ptp_init(pf);
4889
4890 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4891 ice_gnss_init(pf);
4892
4893 /* Note: Flow director init failure is non-fatal to load */
4894 if (ice_init_fdir(pf))
4895 dev_err(dev, "could not initialize flow director\n");
4896
4897 /* Note: DCB init failure is non-fatal to load */
4898 if (ice_init_pf_dcb(pf, false)) {
4899 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4900 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4901 } else {
4902 ice_cfg_lldp_mib_change(&pf->hw, true);
4903 }
4904
4905 if (ice_init_lag(pf))
4906 dev_warn(dev, "Failed to init link aggregation support\n");
4907
4908 /* print PCI link speed and width */
4909 pcie_print_link_status(pf->pdev);
4910
4911 probe_done:
4912 err = ice_register_netdev(pf);
4913 if (err)
4914 goto err_netdev_reg;
4915
4916 err = ice_devlink_register_params(pf);
4917 if (err)
4918 goto err_netdev_reg;
4919
4920 /* ready to go, so clear down state bit */
4921 clear_bit(ICE_DOWN, pf->state);
4922 if (ice_is_rdma_ena(pf)) {
4923 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4924 if (pf->aux_idx < 0) {
4925 dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4926 err = -ENOMEM;
4927 goto err_devlink_reg_param;
4928 }
4929
4930 err = ice_init_rdma(pf);
4931 if (err) {
4932 dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4933 err = -EIO;
4934 goto err_init_aux_unroll;
4935 }
4936 } else {
4937 dev_warn(dev, "RDMA is not supported on this device\n");
4938 }
4939
4940 ice_devlink_register(pf);
4941 return 0;
4942
4943 err_init_aux_unroll:
4944 pf->adev = NULL;
4945 ida_free(&ice_aux_ida, pf->aux_idx);
4946 err_devlink_reg_param:
4947 ice_devlink_unregister_params(pf);
4948 err_netdev_reg:
4949 err_send_version_unroll:
4950 ice_vsi_release_all(pf);
4951 err_alloc_sw_unroll:
4952 set_bit(ICE_SERVICE_DIS, pf->state);
4953 set_bit(ICE_DOWN, pf->state);
4954 devm_kfree(dev, pf->first_sw);
4955 err_msix_misc_unroll:
4956 ice_free_irq_msix_misc(pf);
4957 err_init_interrupt_unroll:
4958 ice_clear_interrupt_scheme(pf);
4959 err_init_vsi_unroll:
4960 devm_kfree(dev, pf->vsi);
4961 err_init_pf_unroll:
4962 ice_deinit_pf(pf);
4963 ice_devlink_destroy_regions(pf);
4964 ice_deinit_hw(hw);
4965 err_exit_unroll:
4966 pci_disable_pcie_error_reporting(pdev);
4967 pci_disable_device(pdev);
4968 return err;
4969 }
4970
4971 /**
4972 * ice_set_wake - enable or disable Wake on LAN
4973 * @pf: pointer to the PF struct
4974 *
4975 * Simple helper for WoL control
4976 */
ice_set_wake(struct ice_pf * pf)4977 static void ice_set_wake(struct ice_pf *pf)
4978 {
4979 struct ice_hw *hw = &pf->hw;
4980 bool wol = pf->wol_ena;
4981
4982 /* clear wake state, otherwise new wake events won't fire */
4983 wr32(hw, PFPM_WUS, U32_MAX);
4984
4985 /* enable / disable APM wake up, no RMW needed */
4986 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4987
4988 /* set magic packet filter enabled */
4989 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4990 }
4991
4992 /**
4993 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4994 * @pf: pointer to the PF struct
4995 *
4996 * Issue firmware command to enable multicast magic wake, making
4997 * sure that any locally administered address (LAA) is used for
4998 * wake, and that PF reset doesn't undo the LAA.
4999 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5000 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5001 {
5002 struct device *dev = ice_pf_to_dev(pf);
5003 struct ice_hw *hw = &pf->hw;
5004 u8 mac_addr[ETH_ALEN];
5005 struct ice_vsi *vsi;
5006 int status;
5007 u8 flags;
5008
5009 if (!pf->wol_ena)
5010 return;
5011
5012 vsi = ice_get_main_vsi(pf);
5013 if (!vsi)
5014 return;
5015
5016 /* Get current MAC address in case it's an LAA */
5017 if (vsi->netdev)
5018 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5019 else
5020 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5021
5022 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5023 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5024 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5025
5026 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5027 if (status)
5028 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5029 status, ice_aq_str(hw->adminq.sq_last_status));
5030 }
5031
5032 /**
5033 * ice_remove - Device removal routine
5034 * @pdev: PCI device information struct
5035 */
ice_remove(struct pci_dev * pdev)5036 static void ice_remove(struct pci_dev *pdev)
5037 {
5038 struct ice_pf *pf = pci_get_drvdata(pdev);
5039 int i;
5040
5041 ice_devlink_unregister(pf);
5042 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5043 if (!ice_is_reset_in_progress(pf->state))
5044 break;
5045 msleep(100);
5046 }
5047
5048 ice_tc_indir_block_remove(pf);
5049
5050 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5051 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5052 ice_free_vfs(pf);
5053 }
5054
5055 ice_service_task_stop(pf);
5056
5057 ice_aq_cancel_waiting_tasks(pf);
5058 ice_unplug_aux_dev(pf);
5059 if (pf->aux_idx >= 0)
5060 ida_free(&ice_aux_ida, pf->aux_idx);
5061 ice_devlink_unregister_params(pf);
5062 set_bit(ICE_DOWN, pf->state);
5063
5064 ice_deinit_lag(pf);
5065 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
5066 ice_ptp_release(pf);
5067 if (ice_is_feature_supported(pf, ICE_F_GNSS))
5068 ice_gnss_exit(pf);
5069 if (!ice_is_safe_mode(pf))
5070 ice_remove_arfs(pf);
5071 ice_setup_mc_magic_wake(pf);
5072 ice_vsi_release_all(pf);
5073 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5074 ice_set_wake(pf);
5075 ice_free_irq_msix_misc(pf);
5076 ice_for_each_vsi(pf, i) {
5077 if (!pf->vsi[i])
5078 continue;
5079 ice_vsi_free_q_vectors(pf->vsi[i]);
5080 }
5081 ice_deinit_pf(pf);
5082 ice_devlink_destroy_regions(pf);
5083 ice_deinit_hw(&pf->hw);
5084
5085 /* Issue a PFR as part of the prescribed driver unload flow. Do not
5086 * do it via ice_schedule_reset() since there is no need to rebuild
5087 * and the service task is already stopped.
5088 */
5089 ice_reset(&pf->hw, ICE_RESET_PFR);
5090 pci_wait_for_pending_transaction(pdev);
5091 ice_clear_interrupt_scheme(pf);
5092 pci_disable_pcie_error_reporting(pdev);
5093 pci_disable_device(pdev);
5094 }
5095
5096 /**
5097 * ice_shutdown - PCI callback for shutting down device
5098 * @pdev: PCI device information struct
5099 */
ice_shutdown(struct pci_dev * pdev)5100 static void ice_shutdown(struct pci_dev *pdev)
5101 {
5102 struct ice_pf *pf = pci_get_drvdata(pdev);
5103
5104 ice_remove(pdev);
5105
5106 if (system_state == SYSTEM_POWER_OFF) {
5107 pci_wake_from_d3(pdev, pf->wol_ena);
5108 pci_set_power_state(pdev, PCI_D3hot);
5109 }
5110 }
5111
5112 #ifdef CONFIG_PM
5113 /**
5114 * ice_prepare_for_shutdown - prep for PCI shutdown
5115 * @pf: board private structure
5116 *
5117 * Inform or close all dependent features in prep for PCI device shutdown
5118 */
ice_prepare_for_shutdown(struct ice_pf * pf)5119 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5120 {
5121 struct ice_hw *hw = &pf->hw;
5122 u32 v;
5123
5124 /* Notify VFs of impending reset */
5125 if (ice_check_sq_alive(hw, &hw->mailboxq))
5126 ice_vc_notify_reset(pf);
5127
5128 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5129
5130 /* disable the VSIs and their queues that are not already DOWN */
5131 ice_pf_dis_all_vsi(pf, false);
5132
5133 ice_for_each_vsi(pf, v)
5134 if (pf->vsi[v])
5135 pf->vsi[v]->vsi_num = 0;
5136
5137 ice_shutdown_all_ctrlq(hw);
5138 }
5139
5140 /**
5141 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5142 * @pf: board private structure to reinitialize
5143 *
5144 * This routine reinitialize interrupt scheme that was cleared during
5145 * power management suspend callback.
5146 *
5147 * This should be called during resume routine to re-allocate the q_vectors
5148 * and reacquire interrupts.
5149 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5150 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5151 {
5152 struct device *dev = ice_pf_to_dev(pf);
5153 int ret, v;
5154
5155 /* Since we clear MSIX flag during suspend, we need to
5156 * set it back during resume...
5157 */
5158
5159 ret = ice_init_interrupt_scheme(pf);
5160 if (ret) {
5161 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5162 return ret;
5163 }
5164
5165 /* Remap vectors and rings, after successful re-init interrupts */
5166 ice_for_each_vsi(pf, v) {
5167 if (!pf->vsi[v])
5168 continue;
5169
5170 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5171 if (ret)
5172 goto err_reinit;
5173 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5174 }
5175
5176 ret = ice_req_irq_msix_misc(pf);
5177 if (ret) {
5178 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5179 ret);
5180 goto err_reinit;
5181 }
5182
5183 return 0;
5184
5185 err_reinit:
5186 while (v--)
5187 if (pf->vsi[v])
5188 ice_vsi_free_q_vectors(pf->vsi[v]);
5189
5190 return ret;
5191 }
5192
5193 /**
5194 * ice_suspend
5195 * @dev: generic device information structure
5196 *
5197 * Power Management callback to quiesce the device and prepare
5198 * for D3 transition.
5199 */
ice_suspend(struct device * dev)5200 static int __maybe_unused ice_suspend(struct device *dev)
5201 {
5202 struct pci_dev *pdev = to_pci_dev(dev);
5203 struct ice_pf *pf;
5204 int disabled, v;
5205
5206 pf = pci_get_drvdata(pdev);
5207
5208 if (!ice_pf_state_is_nominal(pf)) {
5209 dev_err(dev, "Device is not ready, no need to suspend it\n");
5210 return -EBUSY;
5211 }
5212
5213 /* Stop watchdog tasks until resume completion.
5214 * Even though it is most likely that the service task is
5215 * disabled if the device is suspended or down, the service task's
5216 * state is controlled by a different state bit, and we should
5217 * store and honor whatever state that bit is in at this point.
5218 */
5219 disabled = ice_service_task_stop(pf);
5220
5221 ice_unplug_aux_dev(pf);
5222
5223 /* Already suspended?, then there is nothing to do */
5224 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5225 if (!disabled)
5226 ice_service_task_restart(pf);
5227 return 0;
5228 }
5229
5230 if (test_bit(ICE_DOWN, pf->state) ||
5231 ice_is_reset_in_progress(pf->state)) {
5232 dev_err(dev, "can't suspend device in reset or already down\n");
5233 if (!disabled)
5234 ice_service_task_restart(pf);
5235 return 0;
5236 }
5237
5238 ice_setup_mc_magic_wake(pf);
5239
5240 ice_prepare_for_shutdown(pf);
5241
5242 ice_set_wake(pf);
5243
5244 /* Free vectors, clear the interrupt scheme and release IRQs
5245 * for proper hibernation, especially with large number of CPUs.
5246 * Otherwise hibernation might fail when mapping all the vectors back
5247 * to CPU0.
5248 */
5249 ice_free_irq_msix_misc(pf);
5250 ice_for_each_vsi(pf, v) {
5251 if (!pf->vsi[v])
5252 continue;
5253 ice_vsi_free_q_vectors(pf->vsi[v]);
5254 }
5255 ice_clear_interrupt_scheme(pf);
5256
5257 pci_save_state(pdev);
5258 pci_wake_from_d3(pdev, pf->wol_ena);
5259 pci_set_power_state(pdev, PCI_D3hot);
5260 return 0;
5261 }
5262
5263 /**
5264 * ice_resume - PM callback for waking up from D3
5265 * @dev: generic device information structure
5266 */
ice_resume(struct device * dev)5267 static int __maybe_unused ice_resume(struct device *dev)
5268 {
5269 struct pci_dev *pdev = to_pci_dev(dev);
5270 enum ice_reset_req reset_type;
5271 struct ice_pf *pf;
5272 struct ice_hw *hw;
5273 int ret;
5274
5275 pci_set_power_state(pdev, PCI_D0);
5276 pci_restore_state(pdev);
5277 pci_save_state(pdev);
5278
5279 if (!pci_device_is_present(pdev))
5280 return -ENODEV;
5281
5282 ret = pci_enable_device_mem(pdev);
5283 if (ret) {
5284 dev_err(dev, "Cannot enable device after suspend\n");
5285 return ret;
5286 }
5287
5288 pf = pci_get_drvdata(pdev);
5289 hw = &pf->hw;
5290
5291 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5292 ice_print_wake_reason(pf);
5293
5294 /* We cleared the interrupt scheme when we suspended, so we need to
5295 * restore it now to resume device functionality.
5296 */
5297 ret = ice_reinit_interrupt_scheme(pf);
5298 if (ret)
5299 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5300
5301 clear_bit(ICE_DOWN, pf->state);
5302 /* Now perform PF reset and rebuild */
5303 reset_type = ICE_RESET_PFR;
5304 /* re-enable service task for reset, but allow reset to schedule it */
5305 clear_bit(ICE_SERVICE_DIS, pf->state);
5306
5307 if (ice_schedule_reset(pf, reset_type))
5308 dev_err(dev, "Reset during resume failed.\n");
5309
5310 clear_bit(ICE_SUSPENDED, pf->state);
5311 ice_service_task_restart(pf);
5312
5313 /* Restart the service task */
5314 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5315
5316 return 0;
5317 }
5318 #endif /* CONFIG_PM */
5319
5320 /**
5321 * ice_pci_err_detected - warning that PCI error has been detected
5322 * @pdev: PCI device information struct
5323 * @err: the type of PCI error
5324 *
5325 * Called to warn that something happened on the PCI bus and the error handling
5326 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5327 */
5328 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5329 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5330 {
5331 struct ice_pf *pf = pci_get_drvdata(pdev);
5332
5333 if (!pf) {
5334 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5335 __func__, err);
5336 return PCI_ERS_RESULT_DISCONNECT;
5337 }
5338
5339 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5340 ice_service_task_stop(pf);
5341
5342 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5343 set_bit(ICE_PFR_REQ, pf->state);
5344 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5345 }
5346 }
5347
5348 return PCI_ERS_RESULT_NEED_RESET;
5349 }
5350
5351 /**
5352 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5353 * @pdev: PCI device information struct
5354 *
5355 * Called to determine if the driver can recover from the PCI slot reset by
5356 * using a register read to determine if the device is recoverable.
5357 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5358 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5359 {
5360 struct ice_pf *pf = pci_get_drvdata(pdev);
5361 pci_ers_result_t result;
5362 int err;
5363 u32 reg;
5364
5365 err = pci_enable_device_mem(pdev);
5366 if (err) {
5367 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5368 err);
5369 result = PCI_ERS_RESULT_DISCONNECT;
5370 } else {
5371 pci_set_master(pdev);
5372 pci_restore_state(pdev);
5373 pci_save_state(pdev);
5374 pci_wake_from_d3(pdev, false);
5375
5376 /* Check for life */
5377 reg = rd32(&pf->hw, GLGEN_RTRIG);
5378 if (!reg)
5379 result = PCI_ERS_RESULT_RECOVERED;
5380 else
5381 result = PCI_ERS_RESULT_DISCONNECT;
5382 }
5383
5384 return result;
5385 }
5386
5387 /**
5388 * ice_pci_err_resume - restart operations after PCI error recovery
5389 * @pdev: PCI device information struct
5390 *
5391 * Called to allow the driver to bring things back up after PCI error and/or
5392 * reset recovery have finished
5393 */
ice_pci_err_resume(struct pci_dev * pdev)5394 static void ice_pci_err_resume(struct pci_dev *pdev)
5395 {
5396 struct ice_pf *pf = pci_get_drvdata(pdev);
5397
5398 if (!pf) {
5399 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5400 __func__);
5401 return;
5402 }
5403
5404 if (test_bit(ICE_SUSPENDED, pf->state)) {
5405 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5406 __func__);
5407 return;
5408 }
5409
5410 ice_restore_all_vfs_msi_state(pdev);
5411
5412 ice_do_reset(pf, ICE_RESET_PFR);
5413 ice_service_task_restart(pf);
5414 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5415 }
5416
5417 /**
5418 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5419 * @pdev: PCI device information struct
5420 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5421 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5422 {
5423 struct ice_pf *pf = pci_get_drvdata(pdev);
5424
5425 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5426 ice_service_task_stop(pf);
5427
5428 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5429 set_bit(ICE_PFR_REQ, pf->state);
5430 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5431 }
5432 }
5433 }
5434
5435 /**
5436 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5437 * @pdev: PCI device information struct
5438 */
ice_pci_err_reset_done(struct pci_dev * pdev)5439 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5440 {
5441 ice_pci_err_resume(pdev);
5442 }
5443
5444 /* ice_pci_tbl - PCI Device ID Table
5445 *
5446 * Wildcard entries (PCI_ANY_ID) should come last
5447 * Last entry must be all 0s
5448 *
5449 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5450 * Class, Class Mask, private data (not used) }
5451 */
5452 static const struct pci_device_id ice_pci_tbl[] = {
5453 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5454 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5455 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5456 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5457 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5458 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5459 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5460 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5461 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5462 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5463 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5464 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5465 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5466 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5467 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5468 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5469 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5470 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5471 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5472 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5473 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5474 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5475 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5476 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5477 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5478 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5479 /* required last entry */
5480 { 0, }
5481 };
5482 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5483
5484 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5485
5486 static const struct pci_error_handlers ice_pci_err_handler = {
5487 .error_detected = ice_pci_err_detected,
5488 .slot_reset = ice_pci_err_slot_reset,
5489 .reset_prepare = ice_pci_err_reset_prepare,
5490 .reset_done = ice_pci_err_reset_done,
5491 .resume = ice_pci_err_resume
5492 };
5493
5494 static struct pci_driver ice_driver = {
5495 .name = KBUILD_MODNAME,
5496 .id_table = ice_pci_tbl,
5497 .probe = ice_probe,
5498 .remove = ice_remove,
5499 #ifdef CONFIG_PM
5500 .driver.pm = &ice_pm_ops,
5501 #endif /* CONFIG_PM */
5502 .shutdown = ice_shutdown,
5503 .sriov_configure = ice_sriov_configure,
5504 .err_handler = &ice_pci_err_handler
5505 };
5506
5507 /**
5508 * ice_module_init - Driver registration routine
5509 *
5510 * ice_module_init is the first routine called when the driver is
5511 * loaded. All it does is register with the PCI subsystem.
5512 */
ice_module_init(void)5513 static int __init ice_module_init(void)
5514 {
5515 int status;
5516
5517 pr_info("%s\n", ice_driver_string);
5518 pr_info("%s\n", ice_copyright);
5519
5520 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5521 if (!ice_wq) {
5522 pr_err("Failed to create workqueue\n");
5523 return -ENOMEM;
5524 }
5525
5526 status = pci_register_driver(&ice_driver);
5527 if (status) {
5528 pr_err("failed to register PCI driver, err %d\n", status);
5529 destroy_workqueue(ice_wq);
5530 }
5531
5532 return status;
5533 }
5534 module_init(ice_module_init);
5535
5536 /**
5537 * ice_module_exit - Driver exit cleanup routine
5538 *
5539 * ice_module_exit is called just before the driver is removed
5540 * from memory.
5541 */
ice_module_exit(void)5542 static void __exit ice_module_exit(void)
5543 {
5544 pci_unregister_driver(&ice_driver);
5545 destroy_workqueue(ice_wq);
5546 pr_info("module unloaded\n");
5547 }
5548 module_exit(ice_module_exit);
5549
5550 /**
5551 * ice_set_mac_address - NDO callback to set MAC address
5552 * @netdev: network interface device structure
5553 * @pi: pointer to an address structure
5554 *
5555 * Returns 0 on success, negative on failure
5556 */
ice_set_mac_address(struct net_device * netdev,void * pi)5557 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5558 {
5559 struct ice_netdev_priv *np = netdev_priv(netdev);
5560 struct ice_vsi *vsi = np->vsi;
5561 struct ice_pf *pf = vsi->back;
5562 struct ice_hw *hw = &pf->hw;
5563 struct sockaddr *addr = pi;
5564 u8 old_mac[ETH_ALEN];
5565 u8 flags = 0;
5566 u8 *mac;
5567 int err;
5568
5569 mac = (u8 *)addr->sa_data;
5570
5571 if (!is_valid_ether_addr(mac))
5572 return -EADDRNOTAVAIL;
5573
5574 if (ether_addr_equal(netdev->dev_addr, mac)) {
5575 netdev_dbg(netdev, "already using mac %pM\n", mac);
5576 return 0;
5577 }
5578
5579 if (test_bit(ICE_DOWN, pf->state) ||
5580 ice_is_reset_in_progress(pf->state)) {
5581 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5582 mac);
5583 return -EBUSY;
5584 }
5585
5586 if (ice_chnl_dmac_fltr_cnt(pf)) {
5587 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5588 mac);
5589 return -EAGAIN;
5590 }
5591
5592 netif_addr_lock_bh(netdev);
5593 ether_addr_copy(old_mac, netdev->dev_addr);
5594 /* change the netdev's MAC address */
5595 eth_hw_addr_set(netdev, mac);
5596 netif_addr_unlock_bh(netdev);
5597
5598 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5599 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5600 if (err && err != -ENOENT) {
5601 err = -EADDRNOTAVAIL;
5602 goto err_update_filters;
5603 }
5604
5605 /* Add filter for new MAC. If filter exists, return success */
5606 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5607 if (err == -EEXIST) {
5608 /* Although this MAC filter is already present in hardware it's
5609 * possible in some cases (e.g. bonding) that dev_addr was
5610 * modified outside of the driver and needs to be restored back
5611 * to this value.
5612 */
5613 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5614
5615 return 0;
5616 } else if (err) {
5617 /* error if the new filter addition failed */
5618 err = -EADDRNOTAVAIL;
5619 }
5620
5621 err_update_filters:
5622 if (err) {
5623 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5624 mac);
5625 netif_addr_lock_bh(netdev);
5626 eth_hw_addr_set(netdev, old_mac);
5627 netif_addr_unlock_bh(netdev);
5628 return err;
5629 }
5630
5631 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5632 netdev->dev_addr);
5633
5634 /* write new MAC address to the firmware */
5635 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5636 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5637 if (err) {
5638 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5639 mac, err);
5640 }
5641 return 0;
5642 }
5643
5644 /**
5645 * ice_set_rx_mode - NDO callback to set the netdev filters
5646 * @netdev: network interface device structure
5647 */
ice_set_rx_mode(struct net_device * netdev)5648 static void ice_set_rx_mode(struct net_device *netdev)
5649 {
5650 struct ice_netdev_priv *np = netdev_priv(netdev);
5651 struct ice_vsi *vsi = np->vsi;
5652
5653 if (!vsi)
5654 return;
5655
5656 /* Set the flags to synchronize filters
5657 * ndo_set_rx_mode may be triggered even without a change in netdev
5658 * flags
5659 */
5660 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5661 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5662 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5663
5664 /* schedule our worker thread which will take care of
5665 * applying the new filter changes
5666 */
5667 ice_service_task_schedule(vsi->back);
5668 }
5669
5670 /**
5671 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5672 * @netdev: network interface device structure
5673 * @queue_index: Queue ID
5674 * @maxrate: maximum bandwidth in Mbps
5675 */
5676 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5677 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5678 {
5679 struct ice_netdev_priv *np = netdev_priv(netdev);
5680 struct ice_vsi *vsi = np->vsi;
5681 u16 q_handle;
5682 int status;
5683 u8 tc;
5684
5685 /* Validate maxrate requested is within permitted range */
5686 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5687 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5688 maxrate, queue_index);
5689 return -EINVAL;
5690 }
5691
5692 q_handle = vsi->tx_rings[queue_index]->q_handle;
5693 tc = ice_dcb_get_tc(vsi, queue_index);
5694
5695 /* Set BW back to default, when user set maxrate to 0 */
5696 if (!maxrate)
5697 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5698 q_handle, ICE_MAX_BW);
5699 else
5700 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5701 q_handle, ICE_MAX_BW, maxrate * 1000);
5702 if (status)
5703 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5704 status);
5705
5706 return status;
5707 }
5708
5709 /**
5710 * ice_fdb_add - add an entry to the hardware database
5711 * @ndm: the input from the stack
5712 * @tb: pointer to array of nladdr (unused)
5713 * @dev: the net device pointer
5714 * @addr: the MAC address entry being added
5715 * @vid: VLAN ID
5716 * @flags: instructions from stack about fdb operation
5717 * @extack: netlink extended ack
5718 */
5719 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5720 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5721 struct net_device *dev, const unsigned char *addr, u16 vid,
5722 u16 flags, struct netlink_ext_ack __always_unused *extack)
5723 {
5724 int err;
5725
5726 if (vid) {
5727 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5728 return -EINVAL;
5729 }
5730 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5731 netdev_err(dev, "FDB only supports static addresses\n");
5732 return -EINVAL;
5733 }
5734
5735 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5736 err = dev_uc_add_excl(dev, addr);
5737 else if (is_multicast_ether_addr(addr))
5738 err = dev_mc_add_excl(dev, addr);
5739 else
5740 err = -EINVAL;
5741
5742 /* Only return duplicate errors if NLM_F_EXCL is set */
5743 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5744 err = 0;
5745
5746 return err;
5747 }
5748
5749 /**
5750 * ice_fdb_del - delete an entry from the hardware database
5751 * @ndm: the input from the stack
5752 * @tb: pointer to array of nladdr (unused)
5753 * @dev: the net device pointer
5754 * @addr: the MAC address entry being added
5755 * @vid: VLAN ID
5756 * @extack: netlink extended ack
5757 */
5758 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,struct netlink_ext_ack * extack)5759 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5760 struct net_device *dev, const unsigned char *addr,
5761 __always_unused u16 vid, struct netlink_ext_ack *extack)
5762 {
5763 int err;
5764
5765 if (ndm->ndm_state & NUD_PERMANENT) {
5766 netdev_err(dev, "FDB only supports static addresses\n");
5767 return -EINVAL;
5768 }
5769
5770 if (is_unicast_ether_addr(addr))
5771 err = dev_uc_del(dev, addr);
5772 else if (is_multicast_ether_addr(addr))
5773 err = dev_mc_del(dev, addr);
5774 else
5775 err = -EINVAL;
5776
5777 return err;
5778 }
5779
5780 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5781 NETIF_F_HW_VLAN_CTAG_TX | \
5782 NETIF_F_HW_VLAN_STAG_RX | \
5783 NETIF_F_HW_VLAN_STAG_TX)
5784
5785 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5786 NETIF_F_HW_VLAN_STAG_RX)
5787
5788 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
5789 NETIF_F_HW_VLAN_STAG_FILTER)
5790
5791 /**
5792 * ice_fix_features - fix the netdev features flags based on device limitations
5793 * @netdev: ptr to the netdev that flags are being fixed on
5794 * @features: features that need to be checked and possibly fixed
5795 *
5796 * Make sure any fixups are made to features in this callback. This enables the
5797 * driver to not have to check unsupported configurations throughout the driver
5798 * because that's the responsiblity of this callback.
5799 *
5800 * Single VLAN Mode (SVM) Supported Features:
5801 * NETIF_F_HW_VLAN_CTAG_FILTER
5802 * NETIF_F_HW_VLAN_CTAG_RX
5803 * NETIF_F_HW_VLAN_CTAG_TX
5804 *
5805 * Double VLAN Mode (DVM) Supported Features:
5806 * NETIF_F_HW_VLAN_CTAG_FILTER
5807 * NETIF_F_HW_VLAN_CTAG_RX
5808 * NETIF_F_HW_VLAN_CTAG_TX
5809 *
5810 * NETIF_F_HW_VLAN_STAG_FILTER
5811 * NETIF_HW_VLAN_STAG_RX
5812 * NETIF_HW_VLAN_STAG_TX
5813 *
5814 * Features that need fixing:
5815 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5816 * These are mutually exlusive as the VSI context cannot support multiple
5817 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
5818 * is not done, then default to clearing the requested STAG offload
5819 * settings.
5820 *
5821 * All supported filtering has to be enabled or disabled together. For
5822 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5823 * together. If this is not done, then default to VLAN filtering disabled.
5824 * These are mutually exclusive as there is currently no way to
5825 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5826 * prune rules.
5827 */
5828 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)5829 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5830 {
5831 struct ice_netdev_priv *np = netdev_priv(netdev);
5832 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5833 bool cur_ctag, cur_stag, req_ctag, req_stag;
5834
5835 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5836 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5837 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5838
5839 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5840 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5841 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5842
5843 if (req_vlan_fltr != cur_vlan_fltr) {
5844 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5845 if (req_ctag && req_stag) {
5846 features |= NETIF_VLAN_FILTERING_FEATURES;
5847 } else if (!req_ctag && !req_stag) {
5848 features &= ~NETIF_VLAN_FILTERING_FEATURES;
5849 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
5850 (!cur_stag && req_stag && !cur_ctag)) {
5851 features |= NETIF_VLAN_FILTERING_FEATURES;
5852 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5853 } else if ((cur_ctag && !req_ctag && cur_stag) ||
5854 (cur_stag && !req_stag && cur_ctag)) {
5855 features &= ~NETIF_VLAN_FILTERING_FEATURES;
5856 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
5857 }
5858 } else {
5859 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
5860 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
5861
5862 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
5863 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5864 }
5865 }
5866
5867 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5868 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5869 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5870 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5871 NETIF_F_HW_VLAN_STAG_TX);
5872 }
5873
5874 if (!(netdev->features & NETIF_F_RXFCS) &&
5875 (features & NETIF_F_RXFCS) &&
5876 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
5877 !ice_vsi_has_non_zero_vlans(np->vsi)) {
5878 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
5879 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
5880 }
5881
5882 return features;
5883 }
5884
5885 /**
5886 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5887 * @vsi: PF's VSI
5888 * @features: features used to determine VLAN offload settings
5889 *
5890 * First, determine the vlan_ethertype based on the VLAN offload bits in
5891 * features. Then determine if stripping and insertion should be enabled or
5892 * disabled. Finally enable or disable VLAN stripping and insertion.
5893 */
5894 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)5895 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5896 {
5897 bool enable_stripping = true, enable_insertion = true;
5898 struct ice_vsi_vlan_ops *vlan_ops;
5899 int strip_err = 0, insert_err = 0;
5900 u16 vlan_ethertype = 0;
5901
5902 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5903
5904 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5905 vlan_ethertype = ETH_P_8021AD;
5906 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5907 vlan_ethertype = ETH_P_8021Q;
5908
5909 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5910 enable_stripping = false;
5911 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5912 enable_insertion = false;
5913
5914 if (enable_stripping)
5915 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5916 else
5917 strip_err = vlan_ops->dis_stripping(vsi);
5918
5919 if (enable_insertion)
5920 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5921 else
5922 insert_err = vlan_ops->dis_insertion(vsi);
5923
5924 if (strip_err || insert_err)
5925 return -EIO;
5926
5927 return 0;
5928 }
5929
5930 /**
5931 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5932 * @vsi: PF's VSI
5933 * @features: features used to determine VLAN filtering settings
5934 *
5935 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5936 * features.
5937 */
5938 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)5939 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5940 {
5941 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5942 int err = 0;
5943
5944 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5945 * if either bit is set
5946 */
5947 if (features &
5948 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5949 err = vlan_ops->ena_rx_filtering(vsi);
5950 else
5951 err = vlan_ops->dis_rx_filtering(vsi);
5952
5953 return err;
5954 }
5955
5956 /**
5957 * ice_set_vlan_features - set VLAN settings based on suggested feature set
5958 * @netdev: ptr to the netdev being adjusted
5959 * @features: the feature set that the stack is suggesting
5960 *
5961 * Only update VLAN settings if the requested_vlan_features are different than
5962 * the current_vlan_features.
5963 */
5964 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)5965 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
5966 {
5967 netdev_features_t current_vlan_features, requested_vlan_features;
5968 struct ice_netdev_priv *np = netdev_priv(netdev);
5969 struct ice_vsi *vsi = np->vsi;
5970 int err;
5971
5972 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
5973 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
5974 if (current_vlan_features ^ requested_vlan_features) {
5975 if ((features & NETIF_F_RXFCS) &&
5976 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
5977 dev_err(ice_pf_to_dev(vsi->back),
5978 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
5979 return -EIO;
5980 }
5981
5982 err = ice_set_vlan_offload_features(vsi, features);
5983 if (err)
5984 return err;
5985 }
5986
5987 current_vlan_features = netdev->features &
5988 NETIF_VLAN_FILTERING_FEATURES;
5989 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
5990 if (current_vlan_features ^ requested_vlan_features) {
5991 err = ice_set_vlan_filtering_features(vsi, features);
5992 if (err)
5993 return err;
5994 }
5995
5996 return 0;
5997 }
5998
5999 /**
6000 * ice_set_loopback - turn on/off loopback mode on underlying PF
6001 * @vsi: ptr to VSI
6002 * @ena: flag to indicate the on/off setting
6003 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6004 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6005 {
6006 bool if_running = netif_running(vsi->netdev);
6007 int ret;
6008
6009 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6010 ret = ice_down(vsi);
6011 if (ret) {
6012 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6013 return ret;
6014 }
6015 }
6016 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6017 if (ret)
6018 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6019 if (if_running)
6020 ret = ice_up(vsi);
6021
6022 return ret;
6023 }
6024
6025 /**
6026 * ice_set_features - set the netdev feature flags
6027 * @netdev: ptr to the netdev being adjusted
6028 * @features: the feature set that the stack is suggesting
6029 */
6030 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6031 ice_set_features(struct net_device *netdev, netdev_features_t features)
6032 {
6033 netdev_features_t changed = netdev->features ^ features;
6034 struct ice_netdev_priv *np = netdev_priv(netdev);
6035 struct ice_vsi *vsi = np->vsi;
6036 struct ice_pf *pf = vsi->back;
6037 int ret = 0;
6038
6039 /* Don't set any netdev advanced features with device in Safe Mode */
6040 if (ice_is_safe_mode(pf)) {
6041 dev_err(ice_pf_to_dev(pf),
6042 "Device is in Safe Mode - not enabling advanced netdev features\n");
6043 return ret;
6044 }
6045
6046 /* Do not change setting during reset */
6047 if (ice_is_reset_in_progress(pf->state)) {
6048 dev_err(ice_pf_to_dev(pf),
6049 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6050 return -EBUSY;
6051 }
6052
6053 /* Multiple features can be changed in one call so keep features in
6054 * separate if/else statements to guarantee each feature is checked
6055 */
6056 if (changed & NETIF_F_RXHASH)
6057 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6058
6059 ret = ice_set_vlan_features(netdev, features);
6060 if (ret)
6061 return ret;
6062
6063 /* Turn on receive of FCS aka CRC, and after setting this
6064 * flag the packet data will have the 4 byte CRC appended
6065 */
6066 if (changed & NETIF_F_RXFCS) {
6067 if ((features & NETIF_F_RXFCS) &&
6068 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6069 dev_err(ice_pf_to_dev(vsi->back),
6070 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6071 return -EIO;
6072 }
6073
6074 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6075 ret = ice_down_up(vsi);
6076 if (ret)
6077 return ret;
6078 }
6079
6080 if (changed & NETIF_F_NTUPLE) {
6081 bool ena = !!(features & NETIF_F_NTUPLE);
6082
6083 ice_vsi_manage_fdir(vsi, ena);
6084 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6085 }
6086
6087 /* don't turn off hw_tc_offload when ADQ is already enabled */
6088 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6089 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6090 return -EACCES;
6091 }
6092
6093 if (changed & NETIF_F_HW_TC) {
6094 bool ena = !!(features & NETIF_F_HW_TC);
6095
6096 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6097 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6098 }
6099
6100 if (changed & NETIF_F_LOOPBACK)
6101 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6102
6103 return ret;
6104 }
6105
6106 /**
6107 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6108 * @vsi: VSI to setup VLAN properties for
6109 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6110 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6111 {
6112 int err;
6113
6114 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6115 if (err)
6116 return err;
6117
6118 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6119 if (err)
6120 return err;
6121
6122 return ice_vsi_add_vlan_zero(vsi);
6123 }
6124
6125 /**
6126 * ice_vsi_cfg - Setup the VSI
6127 * @vsi: the VSI being configured
6128 *
6129 * Return 0 on success and negative value on error
6130 */
ice_vsi_cfg(struct ice_vsi * vsi)6131 int ice_vsi_cfg(struct ice_vsi *vsi)
6132 {
6133 int err;
6134
6135 if (vsi->netdev) {
6136 ice_set_rx_mode(vsi->netdev);
6137
6138 if (vsi->type != ICE_VSI_LB) {
6139 err = ice_vsi_vlan_setup(vsi);
6140
6141 if (err)
6142 return err;
6143 }
6144 }
6145 ice_vsi_cfg_dcb_rings(vsi);
6146
6147 err = ice_vsi_cfg_lan_txqs(vsi);
6148 if (!err && ice_is_xdp_ena_vsi(vsi))
6149 err = ice_vsi_cfg_xdp_txqs(vsi);
6150 if (!err)
6151 err = ice_vsi_cfg_rxqs(vsi);
6152
6153 return err;
6154 }
6155
6156 /* THEORY OF MODERATION:
6157 * The ice driver hardware works differently than the hardware that DIMLIB was
6158 * originally made for. ice hardware doesn't have packet count limits that
6159 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6160 * which is hard-coded to a limit of 250,000 ints/second.
6161 * If not using dynamic moderation, the INTRL value can be modified
6162 * by ethtool rx-usecs-high.
6163 */
6164 struct ice_dim {
6165 /* the throttle rate for interrupts, basically worst case delay before
6166 * an initial interrupt fires, value is stored in microseconds.
6167 */
6168 u16 itr;
6169 };
6170
6171 /* Make a different profile for Rx that doesn't allow quite so aggressive
6172 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6173 * second.
6174 */
6175 static const struct ice_dim rx_profile[] = {
6176 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6177 {8}, /* 125,000 ints/s */
6178 {16}, /* 62,500 ints/s */
6179 {62}, /* 16,129 ints/s */
6180 {126} /* 7,936 ints/s */
6181 };
6182
6183 /* The transmit profile, which has the same sorts of values
6184 * as the previous struct
6185 */
6186 static const struct ice_dim tx_profile[] = {
6187 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6188 {8}, /* 125,000 ints/s */
6189 {40}, /* 16,125 ints/s */
6190 {128}, /* 7,812 ints/s */
6191 {256} /* 3,906 ints/s */
6192 };
6193
ice_tx_dim_work(struct work_struct * work)6194 static void ice_tx_dim_work(struct work_struct *work)
6195 {
6196 struct ice_ring_container *rc;
6197 struct dim *dim;
6198 u16 itr;
6199
6200 dim = container_of(work, struct dim, work);
6201 rc = (struct ice_ring_container *)dim->priv;
6202
6203 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6204
6205 /* look up the values in our local table */
6206 itr = tx_profile[dim->profile_ix].itr;
6207
6208 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6209 ice_write_itr(rc, itr);
6210
6211 dim->state = DIM_START_MEASURE;
6212 }
6213
ice_rx_dim_work(struct work_struct * work)6214 static void ice_rx_dim_work(struct work_struct *work)
6215 {
6216 struct ice_ring_container *rc;
6217 struct dim *dim;
6218 u16 itr;
6219
6220 dim = container_of(work, struct dim, work);
6221 rc = (struct ice_ring_container *)dim->priv;
6222
6223 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6224
6225 /* look up the values in our local table */
6226 itr = rx_profile[dim->profile_ix].itr;
6227
6228 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6229 ice_write_itr(rc, itr);
6230
6231 dim->state = DIM_START_MEASURE;
6232 }
6233
6234 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6235
6236 /**
6237 * ice_init_moderation - set up interrupt moderation
6238 * @q_vector: the vector containing rings to be configured
6239 *
6240 * Set up interrupt moderation registers, with the intent to do the right thing
6241 * when called from reset or from probe, and whether or not dynamic moderation
6242 * is enabled or not. Take special care to write all the registers in both
6243 * dynamic moderation mode or not in order to make sure hardware is in a known
6244 * state.
6245 */
ice_init_moderation(struct ice_q_vector * q_vector)6246 static void ice_init_moderation(struct ice_q_vector *q_vector)
6247 {
6248 struct ice_ring_container *rc;
6249 bool tx_dynamic, rx_dynamic;
6250
6251 rc = &q_vector->tx;
6252 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6253 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6254 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6255 rc->dim.priv = rc;
6256 tx_dynamic = ITR_IS_DYNAMIC(rc);
6257
6258 /* set the initial TX ITR to match the above */
6259 ice_write_itr(rc, tx_dynamic ?
6260 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6261
6262 rc = &q_vector->rx;
6263 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6264 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6265 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6266 rc->dim.priv = rc;
6267 rx_dynamic = ITR_IS_DYNAMIC(rc);
6268
6269 /* set the initial RX ITR to match the above */
6270 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6271 rc->itr_setting);
6272
6273 ice_set_q_vector_intrl(q_vector);
6274 }
6275
6276 /**
6277 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6278 * @vsi: the VSI being configured
6279 */
ice_napi_enable_all(struct ice_vsi * vsi)6280 static void ice_napi_enable_all(struct ice_vsi *vsi)
6281 {
6282 int q_idx;
6283
6284 if (!vsi->netdev)
6285 return;
6286
6287 ice_for_each_q_vector(vsi, q_idx) {
6288 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6289
6290 ice_init_moderation(q_vector);
6291
6292 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6293 napi_enable(&q_vector->napi);
6294 }
6295 }
6296
6297 /**
6298 * ice_up_complete - Finish the last steps of bringing up a connection
6299 * @vsi: The VSI being configured
6300 *
6301 * Return 0 on success and negative value on error
6302 */
ice_up_complete(struct ice_vsi * vsi)6303 static int ice_up_complete(struct ice_vsi *vsi)
6304 {
6305 struct ice_pf *pf = vsi->back;
6306 int err;
6307
6308 ice_vsi_cfg_msix(vsi);
6309
6310 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6311 * Tx queue group list was configured and the context bits were
6312 * programmed using ice_vsi_cfg_txqs
6313 */
6314 err = ice_vsi_start_all_rx_rings(vsi);
6315 if (err)
6316 return err;
6317
6318 clear_bit(ICE_VSI_DOWN, vsi->state);
6319 ice_napi_enable_all(vsi);
6320 ice_vsi_ena_irq(vsi);
6321
6322 if (vsi->port_info &&
6323 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6324 vsi->netdev) {
6325 ice_print_link_msg(vsi, true);
6326 netif_tx_start_all_queues(vsi->netdev);
6327 netif_carrier_on(vsi->netdev);
6328 if (!ice_is_e810(&pf->hw))
6329 ice_ptp_link_change(pf, pf->hw.pf_id, true);
6330 }
6331
6332 /* Perform an initial read of the statistics registers now to
6333 * set the baseline so counters are ready when interface is up
6334 */
6335 ice_update_eth_stats(vsi);
6336 ice_service_task_schedule(pf);
6337
6338 return 0;
6339 }
6340
6341 /**
6342 * ice_up - Bring the connection back up after being down
6343 * @vsi: VSI being configured
6344 */
ice_up(struct ice_vsi * vsi)6345 int ice_up(struct ice_vsi *vsi)
6346 {
6347 int err;
6348
6349 err = ice_vsi_cfg(vsi);
6350 if (!err)
6351 err = ice_up_complete(vsi);
6352
6353 return err;
6354 }
6355
6356 /**
6357 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6358 * @syncp: pointer to u64_stats_sync
6359 * @stats: stats that pkts and bytes count will be taken from
6360 * @pkts: packets stats counter
6361 * @bytes: bytes stats counter
6362 *
6363 * This function fetches stats from the ring considering the atomic operations
6364 * that needs to be performed to read u64 values in 32 bit machine.
6365 */
6366 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6367 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6368 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6369 {
6370 unsigned int start;
6371
6372 do {
6373 start = u64_stats_fetch_begin_irq(syncp);
6374 *pkts = stats.pkts;
6375 *bytes = stats.bytes;
6376 } while (u64_stats_fetch_retry_irq(syncp, start));
6377 }
6378
6379 /**
6380 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6381 * @vsi: the VSI to be updated
6382 * @vsi_stats: the stats struct to be updated
6383 * @rings: rings to work on
6384 * @count: number of rings
6385 */
6386 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6387 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6388 struct rtnl_link_stats64 *vsi_stats,
6389 struct ice_tx_ring **rings, u16 count)
6390 {
6391 u16 i;
6392
6393 for (i = 0; i < count; i++) {
6394 struct ice_tx_ring *ring;
6395 u64 pkts = 0, bytes = 0;
6396
6397 ring = READ_ONCE(rings[i]);
6398 if (!ring)
6399 continue;
6400 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6401 vsi_stats->tx_packets += pkts;
6402 vsi_stats->tx_bytes += bytes;
6403 vsi->tx_restart += ring->tx_stats.restart_q;
6404 vsi->tx_busy += ring->tx_stats.tx_busy;
6405 vsi->tx_linearize += ring->tx_stats.tx_linearize;
6406 }
6407 }
6408
6409 /**
6410 * ice_update_vsi_ring_stats - Update VSI stats counters
6411 * @vsi: the VSI to be updated
6412 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6413 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6414 {
6415 struct rtnl_link_stats64 *vsi_stats;
6416 u64 pkts, bytes;
6417 int i;
6418
6419 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6420 if (!vsi_stats)
6421 return;
6422
6423 /* reset non-netdev (extended) stats */
6424 vsi->tx_restart = 0;
6425 vsi->tx_busy = 0;
6426 vsi->tx_linearize = 0;
6427 vsi->rx_buf_failed = 0;
6428 vsi->rx_page_failed = 0;
6429
6430 rcu_read_lock();
6431
6432 /* update Tx rings counters */
6433 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6434 vsi->num_txq);
6435
6436 /* update Rx rings counters */
6437 ice_for_each_rxq(vsi, i) {
6438 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6439
6440 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6441 vsi_stats->rx_packets += pkts;
6442 vsi_stats->rx_bytes += bytes;
6443 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
6444 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
6445 }
6446
6447 /* update XDP Tx rings counters */
6448 if (ice_is_xdp_ena_vsi(vsi))
6449 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6450 vsi->num_xdp_txq);
6451
6452 rcu_read_unlock();
6453
6454 vsi->net_stats.tx_packets = vsi_stats->tx_packets;
6455 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes;
6456 vsi->net_stats.rx_packets = vsi_stats->rx_packets;
6457 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes;
6458
6459 kfree(vsi_stats);
6460 }
6461
6462 /**
6463 * ice_update_vsi_stats - Update VSI stats counters
6464 * @vsi: the VSI to be updated
6465 */
ice_update_vsi_stats(struct ice_vsi * vsi)6466 void ice_update_vsi_stats(struct ice_vsi *vsi)
6467 {
6468 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6469 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6470 struct ice_pf *pf = vsi->back;
6471
6472 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6473 test_bit(ICE_CFG_BUSY, pf->state))
6474 return;
6475
6476 /* get stats as recorded by Tx/Rx rings */
6477 ice_update_vsi_ring_stats(vsi);
6478
6479 /* get VSI stats as recorded by the hardware */
6480 ice_update_eth_stats(vsi);
6481
6482 cur_ns->tx_errors = cur_es->tx_errors;
6483 cur_ns->rx_dropped = cur_es->rx_discards;
6484 cur_ns->tx_dropped = cur_es->tx_discards;
6485 cur_ns->multicast = cur_es->rx_multicast;
6486
6487 /* update some more netdev stats if this is main VSI */
6488 if (vsi->type == ICE_VSI_PF) {
6489 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6490 cur_ns->rx_errors = pf->stats.crc_errors +
6491 pf->stats.illegal_bytes +
6492 pf->stats.rx_len_errors +
6493 pf->stats.rx_undersize +
6494 pf->hw_csum_rx_error +
6495 pf->stats.rx_jabber +
6496 pf->stats.rx_fragments +
6497 pf->stats.rx_oversize;
6498 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6499 /* record drops from the port level */
6500 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6501 }
6502 }
6503
6504 /**
6505 * ice_update_pf_stats - Update PF port stats counters
6506 * @pf: PF whose stats needs to be updated
6507 */
ice_update_pf_stats(struct ice_pf * pf)6508 void ice_update_pf_stats(struct ice_pf *pf)
6509 {
6510 struct ice_hw_port_stats *prev_ps, *cur_ps;
6511 struct ice_hw *hw = &pf->hw;
6512 u16 fd_ctr_base;
6513 u8 port;
6514
6515 port = hw->port_info->lport;
6516 prev_ps = &pf->stats_prev;
6517 cur_ps = &pf->stats;
6518
6519 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6520 &prev_ps->eth.rx_bytes,
6521 &cur_ps->eth.rx_bytes);
6522
6523 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6524 &prev_ps->eth.rx_unicast,
6525 &cur_ps->eth.rx_unicast);
6526
6527 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6528 &prev_ps->eth.rx_multicast,
6529 &cur_ps->eth.rx_multicast);
6530
6531 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6532 &prev_ps->eth.rx_broadcast,
6533 &cur_ps->eth.rx_broadcast);
6534
6535 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6536 &prev_ps->eth.rx_discards,
6537 &cur_ps->eth.rx_discards);
6538
6539 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6540 &prev_ps->eth.tx_bytes,
6541 &cur_ps->eth.tx_bytes);
6542
6543 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6544 &prev_ps->eth.tx_unicast,
6545 &cur_ps->eth.tx_unicast);
6546
6547 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6548 &prev_ps->eth.tx_multicast,
6549 &cur_ps->eth.tx_multicast);
6550
6551 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6552 &prev_ps->eth.tx_broadcast,
6553 &cur_ps->eth.tx_broadcast);
6554
6555 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6556 &prev_ps->tx_dropped_link_down,
6557 &cur_ps->tx_dropped_link_down);
6558
6559 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6560 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6561
6562 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6563 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6564
6565 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6566 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6567
6568 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6569 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6570
6571 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6572 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6573
6574 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6575 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6576
6577 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6578 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6579
6580 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6581 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6582
6583 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6584 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6585
6586 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6587 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6588
6589 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6590 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6591
6592 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6593 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6594
6595 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6596 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6597
6598 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6599 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6600
6601 fd_ctr_base = hw->fd_ctr_base;
6602
6603 ice_stat_update40(hw,
6604 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6605 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6606 &cur_ps->fd_sb_match);
6607 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6608 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6609
6610 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6611 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6612
6613 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6614 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6615
6616 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6617 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6618
6619 ice_update_dcb_stats(pf);
6620
6621 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6622 &prev_ps->crc_errors, &cur_ps->crc_errors);
6623
6624 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6625 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6626
6627 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6628 &prev_ps->mac_local_faults,
6629 &cur_ps->mac_local_faults);
6630
6631 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6632 &prev_ps->mac_remote_faults,
6633 &cur_ps->mac_remote_faults);
6634
6635 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6636 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6637
6638 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6639 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6640
6641 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6642 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6643
6644 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6645 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6646
6647 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6648 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6649
6650 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6651
6652 pf->stat_prev_loaded = true;
6653 }
6654
6655 /**
6656 * ice_get_stats64 - get statistics for network device structure
6657 * @netdev: network interface device structure
6658 * @stats: main device statistics structure
6659 */
6660 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6661 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6662 {
6663 struct ice_netdev_priv *np = netdev_priv(netdev);
6664 struct rtnl_link_stats64 *vsi_stats;
6665 struct ice_vsi *vsi = np->vsi;
6666
6667 vsi_stats = &vsi->net_stats;
6668
6669 if (!vsi->num_txq || !vsi->num_rxq)
6670 return;
6671
6672 /* netdev packet/byte stats come from ring counter. These are obtained
6673 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6674 * But, only call the update routine and read the registers if VSI is
6675 * not down.
6676 */
6677 if (!test_bit(ICE_VSI_DOWN, vsi->state))
6678 ice_update_vsi_ring_stats(vsi);
6679 stats->tx_packets = vsi_stats->tx_packets;
6680 stats->tx_bytes = vsi_stats->tx_bytes;
6681 stats->rx_packets = vsi_stats->rx_packets;
6682 stats->rx_bytes = vsi_stats->rx_bytes;
6683
6684 /* The rest of the stats can be read from the hardware but instead we
6685 * just return values that the watchdog task has already obtained from
6686 * the hardware.
6687 */
6688 stats->multicast = vsi_stats->multicast;
6689 stats->tx_errors = vsi_stats->tx_errors;
6690 stats->tx_dropped = vsi_stats->tx_dropped;
6691 stats->rx_errors = vsi_stats->rx_errors;
6692 stats->rx_dropped = vsi_stats->rx_dropped;
6693 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6694 stats->rx_length_errors = vsi_stats->rx_length_errors;
6695 }
6696
6697 /**
6698 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6699 * @vsi: VSI having NAPI disabled
6700 */
ice_napi_disable_all(struct ice_vsi * vsi)6701 static void ice_napi_disable_all(struct ice_vsi *vsi)
6702 {
6703 int q_idx;
6704
6705 if (!vsi->netdev)
6706 return;
6707
6708 ice_for_each_q_vector(vsi, q_idx) {
6709 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6710
6711 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6712 napi_disable(&q_vector->napi);
6713
6714 cancel_work_sync(&q_vector->tx.dim.work);
6715 cancel_work_sync(&q_vector->rx.dim.work);
6716 }
6717 }
6718
6719 /**
6720 * ice_down - Shutdown the connection
6721 * @vsi: The VSI being stopped
6722 *
6723 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6724 */
ice_down(struct ice_vsi * vsi)6725 int ice_down(struct ice_vsi *vsi)
6726 {
6727 int i, tx_err, rx_err, vlan_err = 0;
6728
6729 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6730
6731 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6732 vlan_err = ice_vsi_del_vlan_zero(vsi);
6733 if (!ice_is_e810(&vsi->back->hw))
6734 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6735 netif_carrier_off(vsi->netdev);
6736 netif_tx_disable(vsi->netdev);
6737 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6738 ice_eswitch_stop_all_tx_queues(vsi->back);
6739 }
6740
6741 ice_vsi_dis_irq(vsi);
6742
6743 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6744 if (tx_err)
6745 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6746 vsi->vsi_num, tx_err);
6747 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6748 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6749 if (tx_err)
6750 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6751 vsi->vsi_num, tx_err);
6752 }
6753
6754 rx_err = ice_vsi_stop_all_rx_rings(vsi);
6755 if (rx_err)
6756 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6757 vsi->vsi_num, rx_err);
6758
6759 ice_napi_disable_all(vsi);
6760
6761 ice_for_each_txq(vsi, i)
6762 ice_clean_tx_ring(vsi->tx_rings[i]);
6763
6764 ice_for_each_rxq(vsi, i)
6765 ice_clean_rx_ring(vsi->rx_rings[i]);
6766
6767 if (tx_err || rx_err || vlan_err) {
6768 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6769 vsi->vsi_num, vsi->vsw->sw_id);
6770 return -EIO;
6771 }
6772
6773 return 0;
6774 }
6775
6776 /**
6777 * ice_down_up - shutdown the VSI connection and bring it up
6778 * @vsi: the VSI to be reconnected
6779 */
ice_down_up(struct ice_vsi * vsi)6780 int ice_down_up(struct ice_vsi *vsi)
6781 {
6782 int ret;
6783
6784 /* if DOWN already set, nothing to do */
6785 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
6786 return 0;
6787
6788 ret = ice_down(vsi);
6789 if (ret)
6790 return ret;
6791
6792 ret = ice_up(vsi);
6793 if (ret) {
6794 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
6795 return ret;
6796 }
6797
6798 return 0;
6799 }
6800
6801 /**
6802 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6803 * @vsi: VSI having resources allocated
6804 *
6805 * Return 0 on success, negative on failure
6806 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)6807 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6808 {
6809 int i, err = 0;
6810
6811 if (!vsi->num_txq) {
6812 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6813 vsi->vsi_num);
6814 return -EINVAL;
6815 }
6816
6817 ice_for_each_txq(vsi, i) {
6818 struct ice_tx_ring *ring = vsi->tx_rings[i];
6819
6820 if (!ring)
6821 return -EINVAL;
6822
6823 if (vsi->netdev)
6824 ring->netdev = vsi->netdev;
6825 err = ice_setup_tx_ring(ring);
6826 if (err)
6827 break;
6828 }
6829
6830 return err;
6831 }
6832
6833 /**
6834 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6835 * @vsi: VSI having resources allocated
6836 *
6837 * Return 0 on success, negative on failure
6838 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)6839 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6840 {
6841 int i, err = 0;
6842
6843 if (!vsi->num_rxq) {
6844 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6845 vsi->vsi_num);
6846 return -EINVAL;
6847 }
6848
6849 ice_for_each_rxq(vsi, i) {
6850 struct ice_rx_ring *ring = vsi->rx_rings[i];
6851
6852 if (!ring)
6853 return -EINVAL;
6854
6855 if (vsi->netdev)
6856 ring->netdev = vsi->netdev;
6857 err = ice_setup_rx_ring(ring);
6858 if (err)
6859 break;
6860 }
6861
6862 return err;
6863 }
6864
6865 /**
6866 * ice_vsi_open_ctrl - open control VSI for use
6867 * @vsi: the VSI to open
6868 *
6869 * Initialization of the Control VSI
6870 *
6871 * Returns 0 on success, negative value on error
6872 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)6873 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6874 {
6875 char int_name[ICE_INT_NAME_STR_LEN];
6876 struct ice_pf *pf = vsi->back;
6877 struct device *dev;
6878 int err;
6879
6880 dev = ice_pf_to_dev(pf);
6881 /* allocate descriptors */
6882 err = ice_vsi_setup_tx_rings(vsi);
6883 if (err)
6884 goto err_setup_tx;
6885
6886 err = ice_vsi_setup_rx_rings(vsi);
6887 if (err)
6888 goto err_setup_rx;
6889
6890 err = ice_vsi_cfg(vsi);
6891 if (err)
6892 goto err_setup_rx;
6893
6894 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6895 dev_driver_string(dev), dev_name(dev));
6896 err = ice_vsi_req_irq_msix(vsi, int_name);
6897 if (err)
6898 goto err_setup_rx;
6899
6900 ice_vsi_cfg_msix(vsi);
6901
6902 err = ice_vsi_start_all_rx_rings(vsi);
6903 if (err)
6904 goto err_up_complete;
6905
6906 clear_bit(ICE_VSI_DOWN, vsi->state);
6907 ice_vsi_ena_irq(vsi);
6908
6909 return 0;
6910
6911 err_up_complete:
6912 ice_down(vsi);
6913 err_setup_rx:
6914 ice_vsi_free_rx_rings(vsi);
6915 err_setup_tx:
6916 ice_vsi_free_tx_rings(vsi);
6917
6918 return err;
6919 }
6920
6921 /**
6922 * ice_vsi_open - Called when a network interface is made active
6923 * @vsi: the VSI to open
6924 *
6925 * Initialization of the VSI
6926 *
6927 * Returns 0 on success, negative value on error
6928 */
ice_vsi_open(struct ice_vsi * vsi)6929 int ice_vsi_open(struct ice_vsi *vsi)
6930 {
6931 char int_name[ICE_INT_NAME_STR_LEN];
6932 struct ice_pf *pf = vsi->back;
6933 int err;
6934
6935 /* allocate descriptors */
6936 err = ice_vsi_setup_tx_rings(vsi);
6937 if (err)
6938 goto err_setup_tx;
6939
6940 err = ice_vsi_setup_rx_rings(vsi);
6941 if (err)
6942 goto err_setup_rx;
6943
6944 err = ice_vsi_cfg(vsi);
6945 if (err)
6946 goto err_setup_rx;
6947
6948 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6949 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6950 err = ice_vsi_req_irq_msix(vsi, int_name);
6951 if (err)
6952 goto err_setup_rx;
6953
6954 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
6955
6956 if (vsi->type == ICE_VSI_PF) {
6957 /* Notify the stack of the actual queue counts. */
6958 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6959 if (err)
6960 goto err_set_qs;
6961
6962 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6963 if (err)
6964 goto err_set_qs;
6965 }
6966
6967 err = ice_up_complete(vsi);
6968 if (err)
6969 goto err_up_complete;
6970
6971 return 0;
6972
6973 err_up_complete:
6974 ice_down(vsi);
6975 err_set_qs:
6976 ice_vsi_free_irq(vsi);
6977 err_setup_rx:
6978 ice_vsi_free_rx_rings(vsi);
6979 err_setup_tx:
6980 ice_vsi_free_tx_rings(vsi);
6981
6982 return err;
6983 }
6984
6985 /**
6986 * ice_vsi_release_all - Delete all VSIs
6987 * @pf: PF from which all VSIs are being removed
6988 */
ice_vsi_release_all(struct ice_pf * pf)6989 static void ice_vsi_release_all(struct ice_pf *pf)
6990 {
6991 int err, i;
6992
6993 if (!pf->vsi)
6994 return;
6995
6996 ice_for_each_vsi(pf, i) {
6997 if (!pf->vsi[i])
6998 continue;
6999
7000 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7001 continue;
7002
7003 err = ice_vsi_release(pf->vsi[i]);
7004 if (err)
7005 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7006 i, err, pf->vsi[i]->vsi_num);
7007 }
7008 }
7009
7010 /**
7011 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7012 * @pf: pointer to the PF instance
7013 * @type: VSI type to rebuild
7014 *
7015 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7016 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7017 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7018 {
7019 struct device *dev = ice_pf_to_dev(pf);
7020 int i, err;
7021
7022 ice_for_each_vsi(pf, i) {
7023 struct ice_vsi *vsi = pf->vsi[i];
7024
7025 if (!vsi || vsi->type != type)
7026 continue;
7027
7028 /* rebuild the VSI */
7029 err = ice_vsi_rebuild(vsi, true);
7030 if (err) {
7031 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7032 err, vsi->idx, ice_vsi_type_str(type));
7033 return err;
7034 }
7035
7036 /* replay filters for the VSI */
7037 err = ice_replay_vsi(&pf->hw, vsi->idx);
7038 if (err) {
7039 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7040 err, vsi->idx, ice_vsi_type_str(type));
7041 return err;
7042 }
7043
7044 /* Re-map HW VSI number, using VSI handle that has been
7045 * previously validated in ice_replay_vsi() call above
7046 */
7047 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7048
7049 /* enable the VSI */
7050 err = ice_ena_vsi(vsi, false);
7051 if (err) {
7052 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7053 err, vsi->idx, ice_vsi_type_str(type));
7054 return err;
7055 }
7056
7057 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7058 ice_vsi_type_str(type));
7059 }
7060
7061 return 0;
7062 }
7063
7064 /**
7065 * ice_update_pf_netdev_link - Update PF netdev link status
7066 * @pf: pointer to the PF instance
7067 */
ice_update_pf_netdev_link(struct ice_pf * pf)7068 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7069 {
7070 bool link_up;
7071 int i;
7072
7073 ice_for_each_vsi(pf, i) {
7074 struct ice_vsi *vsi = pf->vsi[i];
7075
7076 if (!vsi || vsi->type != ICE_VSI_PF)
7077 return;
7078
7079 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7080 if (link_up) {
7081 netif_carrier_on(pf->vsi[i]->netdev);
7082 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7083 } else {
7084 netif_carrier_off(pf->vsi[i]->netdev);
7085 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7086 }
7087 }
7088 }
7089
7090 /**
7091 * ice_rebuild - rebuild after reset
7092 * @pf: PF to rebuild
7093 * @reset_type: type of reset
7094 *
7095 * Do not rebuild VF VSI in this flow because that is already handled via
7096 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7097 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7098 * to reset/rebuild all the VF VSI twice.
7099 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7100 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7101 {
7102 struct device *dev = ice_pf_to_dev(pf);
7103 struct ice_hw *hw = &pf->hw;
7104 bool dvm;
7105 int err;
7106
7107 if (test_bit(ICE_DOWN, pf->state))
7108 goto clear_recovery;
7109
7110 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7111
7112 #define ICE_EMP_RESET_SLEEP_MS 5000
7113 if (reset_type == ICE_RESET_EMPR) {
7114 /* If an EMP reset has occurred, any previously pending flash
7115 * update will have completed. We no longer know whether or
7116 * not the NVM update EMP reset is restricted.
7117 */
7118 pf->fw_emp_reset_disabled = false;
7119
7120 msleep(ICE_EMP_RESET_SLEEP_MS);
7121 }
7122
7123 err = ice_init_all_ctrlq(hw);
7124 if (err) {
7125 dev_err(dev, "control queues init failed %d\n", err);
7126 goto err_init_ctrlq;
7127 }
7128
7129 /* if DDP was previously loaded successfully */
7130 if (!ice_is_safe_mode(pf)) {
7131 /* reload the SW DB of filter tables */
7132 if (reset_type == ICE_RESET_PFR)
7133 ice_fill_blk_tbls(hw);
7134 else
7135 /* Reload DDP Package after CORER/GLOBR reset */
7136 ice_load_pkg(NULL, pf);
7137 }
7138
7139 err = ice_clear_pf_cfg(hw);
7140 if (err) {
7141 dev_err(dev, "clear PF configuration failed %d\n", err);
7142 goto err_init_ctrlq;
7143 }
7144
7145 ice_clear_pxe_mode(hw);
7146
7147 err = ice_init_nvm(hw);
7148 if (err) {
7149 dev_err(dev, "ice_init_nvm failed %d\n", err);
7150 goto err_init_ctrlq;
7151 }
7152
7153 err = ice_get_caps(hw);
7154 if (err) {
7155 dev_err(dev, "ice_get_caps failed %d\n", err);
7156 goto err_init_ctrlq;
7157 }
7158
7159 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7160 if (err) {
7161 dev_err(dev, "set_mac_cfg failed %d\n", err);
7162 goto err_init_ctrlq;
7163 }
7164
7165 dvm = ice_is_dvm_ena(hw);
7166
7167 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7168 if (err)
7169 goto err_init_ctrlq;
7170
7171 err = ice_sched_init_port(hw->port_info);
7172 if (err)
7173 goto err_sched_init_port;
7174
7175 /* start misc vector */
7176 err = ice_req_irq_msix_misc(pf);
7177 if (err) {
7178 dev_err(dev, "misc vector setup failed: %d\n", err);
7179 goto err_sched_init_port;
7180 }
7181
7182 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7183 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7184 if (!rd32(hw, PFQF_FD_SIZE)) {
7185 u16 unused, guar, b_effort;
7186
7187 guar = hw->func_caps.fd_fltr_guar;
7188 b_effort = hw->func_caps.fd_fltr_best_effort;
7189
7190 /* force guaranteed filter pool for PF */
7191 ice_alloc_fd_guar_item(hw, &unused, guar);
7192 /* force shared filter pool for PF */
7193 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7194 }
7195 }
7196
7197 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7198 ice_dcb_rebuild(pf);
7199
7200 /* If the PF previously had enabled PTP, PTP init needs to happen before
7201 * the VSI rebuild. If not, this causes the PTP link status events to
7202 * fail.
7203 */
7204 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7205 ice_ptp_reset(pf);
7206
7207 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7208 ice_gnss_init(pf);
7209
7210 /* rebuild PF VSI */
7211 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7212 if (err) {
7213 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7214 goto err_vsi_rebuild;
7215 }
7216
7217 /* configure PTP timestamping after VSI rebuild */
7218 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7219 ice_ptp_cfg_timestamp(pf, false);
7220
7221 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7222 if (err) {
7223 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7224 goto err_vsi_rebuild;
7225 }
7226
7227 if (reset_type == ICE_RESET_PFR) {
7228 err = ice_rebuild_channels(pf);
7229 if (err) {
7230 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7231 err);
7232 goto err_vsi_rebuild;
7233 }
7234 }
7235
7236 /* If Flow Director is active */
7237 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7238 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7239 if (err) {
7240 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7241 goto err_vsi_rebuild;
7242 }
7243
7244 /* replay HW Flow Director recipes */
7245 if (hw->fdir_prof)
7246 ice_fdir_replay_flows(hw);
7247
7248 /* replay Flow Director filters */
7249 ice_fdir_replay_fltrs(pf);
7250
7251 ice_rebuild_arfs(pf);
7252 }
7253
7254 ice_update_pf_netdev_link(pf);
7255
7256 /* tell the firmware we are up */
7257 err = ice_send_version(pf);
7258 if (err) {
7259 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7260 err);
7261 goto err_vsi_rebuild;
7262 }
7263
7264 ice_replay_post(hw);
7265
7266 /* if we get here, reset flow is successful */
7267 clear_bit(ICE_RESET_FAILED, pf->state);
7268
7269 ice_plug_aux_dev(pf);
7270 return;
7271
7272 err_vsi_rebuild:
7273 err_sched_init_port:
7274 ice_sched_cleanup_all(hw);
7275 err_init_ctrlq:
7276 ice_shutdown_all_ctrlq(hw);
7277 set_bit(ICE_RESET_FAILED, pf->state);
7278 clear_recovery:
7279 /* set this bit in PF state to control service task scheduling */
7280 set_bit(ICE_NEEDS_RESTART, pf->state);
7281 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7282 }
7283
7284 /**
7285 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7286 * @vsi: Pointer to VSI structure
7287 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)7288 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7289 {
7290 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7291 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7292 else
7293 return ICE_RXBUF_3072;
7294 }
7295
7296 /**
7297 * ice_change_mtu - NDO callback to change the MTU
7298 * @netdev: network interface device structure
7299 * @new_mtu: new value for maximum frame size
7300 *
7301 * Returns 0 on success, negative on failure
7302 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7303 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7304 {
7305 struct ice_netdev_priv *np = netdev_priv(netdev);
7306 struct ice_vsi *vsi = np->vsi;
7307 struct ice_pf *pf = vsi->back;
7308 u8 count = 0;
7309 int err = 0;
7310
7311 if (new_mtu == (int)netdev->mtu) {
7312 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7313 return 0;
7314 }
7315
7316 if (ice_is_xdp_ena_vsi(vsi)) {
7317 int frame_size = ice_max_xdp_frame_size(vsi);
7318
7319 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7320 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7321 frame_size - ICE_ETH_PKT_HDR_PAD);
7322 return -EINVAL;
7323 }
7324 }
7325
7326 /* if a reset is in progress, wait for some time for it to complete */
7327 do {
7328 if (ice_is_reset_in_progress(pf->state)) {
7329 count++;
7330 usleep_range(1000, 2000);
7331 } else {
7332 break;
7333 }
7334
7335 } while (count < 100);
7336
7337 if (count == 100) {
7338 netdev_err(netdev, "can't change MTU. Device is busy\n");
7339 return -EBUSY;
7340 }
7341
7342 netdev->mtu = (unsigned int)new_mtu;
7343
7344 /* if VSI is up, bring it down and then back up */
7345 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7346 err = ice_down(vsi);
7347 if (err) {
7348 netdev_err(netdev, "change MTU if_down err %d\n", err);
7349 return err;
7350 }
7351
7352 err = ice_up(vsi);
7353 if (err) {
7354 netdev_err(netdev, "change MTU if_up err %d\n", err);
7355 return err;
7356 }
7357 }
7358
7359 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7360 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7361
7362 return err;
7363 }
7364
7365 /**
7366 * ice_eth_ioctl - Access the hwtstamp interface
7367 * @netdev: network interface device structure
7368 * @ifr: interface request data
7369 * @cmd: ioctl command
7370 */
ice_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)7371 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7372 {
7373 struct ice_netdev_priv *np = netdev_priv(netdev);
7374 struct ice_pf *pf = np->vsi->back;
7375
7376 switch (cmd) {
7377 case SIOCGHWTSTAMP:
7378 return ice_ptp_get_ts_config(pf, ifr);
7379 case SIOCSHWTSTAMP:
7380 return ice_ptp_set_ts_config(pf, ifr);
7381 default:
7382 return -EOPNOTSUPP;
7383 }
7384 }
7385
7386 /**
7387 * ice_aq_str - convert AQ err code to a string
7388 * @aq_err: the AQ error code to convert
7389 */
ice_aq_str(enum ice_aq_err aq_err)7390 const char *ice_aq_str(enum ice_aq_err aq_err)
7391 {
7392 switch (aq_err) {
7393 case ICE_AQ_RC_OK:
7394 return "OK";
7395 case ICE_AQ_RC_EPERM:
7396 return "ICE_AQ_RC_EPERM";
7397 case ICE_AQ_RC_ENOENT:
7398 return "ICE_AQ_RC_ENOENT";
7399 case ICE_AQ_RC_ENOMEM:
7400 return "ICE_AQ_RC_ENOMEM";
7401 case ICE_AQ_RC_EBUSY:
7402 return "ICE_AQ_RC_EBUSY";
7403 case ICE_AQ_RC_EEXIST:
7404 return "ICE_AQ_RC_EEXIST";
7405 case ICE_AQ_RC_EINVAL:
7406 return "ICE_AQ_RC_EINVAL";
7407 case ICE_AQ_RC_ENOSPC:
7408 return "ICE_AQ_RC_ENOSPC";
7409 case ICE_AQ_RC_ENOSYS:
7410 return "ICE_AQ_RC_ENOSYS";
7411 case ICE_AQ_RC_EMODE:
7412 return "ICE_AQ_RC_EMODE";
7413 case ICE_AQ_RC_ENOSEC:
7414 return "ICE_AQ_RC_ENOSEC";
7415 case ICE_AQ_RC_EBADSIG:
7416 return "ICE_AQ_RC_EBADSIG";
7417 case ICE_AQ_RC_ESVN:
7418 return "ICE_AQ_RC_ESVN";
7419 case ICE_AQ_RC_EBADMAN:
7420 return "ICE_AQ_RC_EBADMAN";
7421 case ICE_AQ_RC_EBADBUF:
7422 return "ICE_AQ_RC_EBADBUF";
7423 }
7424
7425 return "ICE_AQ_RC_UNKNOWN";
7426 }
7427
7428 /**
7429 * ice_set_rss_lut - Set RSS LUT
7430 * @vsi: Pointer to VSI structure
7431 * @lut: Lookup table
7432 * @lut_size: Lookup table size
7433 *
7434 * Returns 0 on success, negative on failure
7435 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7436 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7437 {
7438 struct ice_aq_get_set_rss_lut_params params = {};
7439 struct ice_hw *hw = &vsi->back->hw;
7440 int status;
7441
7442 if (!lut)
7443 return -EINVAL;
7444
7445 params.vsi_handle = vsi->idx;
7446 params.lut_size = lut_size;
7447 params.lut_type = vsi->rss_lut_type;
7448 params.lut = lut;
7449
7450 status = ice_aq_set_rss_lut(hw, ¶ms);
7451 if (status)
7452 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7453 status, ice_aq_str(hw->adminq.sq_last_status));
7454
7455 return status;
7456 }
7457
7458 /**
7459 * ice_set_rss_key - Set RSS key
7460 * @vsi: Pointer to the VSI structure
7461 * @seed: RSS hash seed
7462 *
7463 * Returns 0 on success, negative on failure
7464 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7465 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7466 {
7467 struct ice_hw *hw = &vsi->back->hw;
7468 int status;
7469
7470 if (!seed)
7471 return -EINVAL;
7472
7473 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7474 if (status)
7475 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7476 status, ice_aq_str(hw->adminq.sq_last_status));
7477
7478 return status;
7479 }
7480
7481 /**
7482 * ice_get_rss_lut - Get RSS LUT
7483 * @vsi: Pointer to VSI structure
7484 * @lut: Buffer to store the lookup table entries
7485 * @lut_size: Size of buffer to store the lookup table entries
7486 *
7487 * Returns 0 on success, negative on failure
7488 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7489 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7490 {
7491 struct ice_aq_get_set_rss_lut_params params = {};
7492 struct ice_hw *hw = &vsi->back->hw;
7493 int status;
7494
7495 if (!lut)
7496 return -EINVAL;
7497
7498 params.vsi_handle = vsi->idx;
7499 params.lut_size = lut_size;
7500 params.lut_type = vsi->rss_lut_type;
7501 params.lut = lut;
7502
7503 status = ice_aq_get_rss_lut(hw, ¶ms);
7504 if (status)
7505 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7506 status, ice_aq_str(hw->adminq.sq_last_status));
7507
7508 return status;
7509 }
7510
7511 /**
7512 * ice_get_rss_key - Get RSS key
7513 * @vsi: Pointer to VSI structure
7514 * @seed: Buffer to store the key in
7515 *
7516 * Returns 0 on success, negative on failure
7517 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)7518 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7519 {
7520 struct ice_hw *hw = &vsi->back->hw;
7521 int status;
7522
7523 if (!seed)
7524 return -EINVAL;
7525
7526 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7527 if (status)
7528 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7529 status, ice_aq_str(hw->adminq.sq_last_status));
7530
7531 return status;
7532 }
7533
7534 /**
7535 * ice_bridge_getlink - Get the hardware bridge mode
7536 * @skb: skb buff
7537 * @pid: process ID
7538 * @seq: RTNL message seq
7539 * @dev: the netdev being configured
7540 * @filter_mask: filter mask passed in
7541 * @nlflags: netlink flags passed in
7542 *
7543 * Return the bridge mode (VEB/VEPA)
7544 */
7545 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)7546 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7547 struct net_device *dev, u32 filter_mask, int nlflags)
7548 {
7549 struct ice_netdev_priv *np = netdev_priv(dev);
7550 struct ice_vsi *vsi = np->vsi;
7551 struct ice_pf *pf = vsi->back;
7552 u16 bmode;
7553
7554 bmode = pf->first_sw->bridge_mode;
7555
7556 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7557 filter_mask, NULL);
7558 }
7559
7560 /**
7561 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7562 * @vsi: Pointer to VSI structure
7563 * @bmode: Hardware bridge mode (VEB/VEPA)
7564 *
7565 * Returns 0 on success, negative on failure
7566 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)7567 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7568 {
7569 struct ice_aqc_vsi_props *vsi_props;
7570 struct ice_hw *hw = &vsi->back->hw;
7571 struct ice_vsi_ctx *ctxt;
7572 int ret;
7573
7574 vsi_props = &vsi->info;
7575
7576 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7577 if (!ctxt)
7578 return -ENOMEM;
7579
7580 ctxt->info = vsi->info;
7581
7582 if (bmode == BRIDGE_MODE_VEB)
7583 /* change from VEPA to VEB mode */
7584 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7585 else
7586 /* change from VEB to VEPA mode */
7587 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7588 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7589
7590 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7591 if (ret) {
7592 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7593 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7594 goto out;
7595 }
7596 /* Update sw flags for book keeping */
7597 vsi_props->sw_flags = ctxt->info.sw_flags;
7598
7599 out:
7600 kfree(ctxt);
7601 return ret;
7602 }
7603
7604 /**
7605 * ice_bridge_setlink - Set the hardware bridge mode
7606 * @dev: the netdev being configured
7607 * @nlh: RTNL message
7608 * @flags: bridge setlink flags
7609 * @extack: netlink extended ack
7610 *
7611 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7612 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7613 * not already set for all VSIs connected to this switch. And also update the
7614 * unicast switch filter rules for the corresponding switch of the netdev.
7615 */
7616 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)7617 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7618 u16 __always_unused flags,
7619 struct netlink_ext_ack __always_unused *extack)
7620 {
7621 struct ice_netdev_priv *np = netdev_priv(dev);
7622 struct ice_pf *pf = np->vsi->back;
7623 struct nlattr *attr, *br_spec;
7624 struct ice_hw *hw = &pf->hw;
7625 struct ice_sw *pf_sw;
7626 int rem, v, err = 0;
7627
7628 pf_sw = pf->first_sw;
7629 /* find the attribute in the netlink message */
7630 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7631
7632 nla_for_each_nested(attr, br_spec, rem) {
7633 __u16 mode;
7634
7635 if (nla_type(attr) != IFLA_BRIDGE_MODE)
7636 continue;
7637 mode = nla_get_u16(attr);
7638 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7639 return -EINVAL;
7640 /* Continue if bridge mode is not being flipped */
7641 if (mode == pf_sw->bridge_mode)
7642 continue;
7643 /* Iterates through the PF VSI list and update the loopback
7644 * mode of the VSI
7645 */
7646 ice_for_each_vsi(pf, v) {
7647 if (!pf->vsi[v])
7648 continue;
7649 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7650 if (err)
7651 return err;
7652 }
7653
7654 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7655 /* Update the unicast switch filter rules for the corresponding
7656 * switch of the netdev
7657 */
7658 err = ice_update_sw_rule_bridge_mode(hw);
7659 if (err) {
7660 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7661 mode, err,
7662 ice_aq_str(hw->adminq.sq_last_status));
7663 /* revert hw->evb_veb */
7664 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7665 return err;
7666 }
7667
7668 pf_sw->bridge_mode = mode;
7669 }
7670
7671 return 0;
7672 }
7673
7674 /**
7675 * ice_tx_timeout - Respond to a Tx Hang
7676 * @netdev: network interface device structure
7677 * @txqueue: Tx queue
7678 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)7679 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7680 {
7681 struct ice_netdev_priv *np = netdev_priv(netdev);
7682 struct ice_tx_ring *tx_ring = NULL;
7683 struct ice_vsi *vsi = np->vsi;
7684 struct ice_pf *pf = vsi->back;
7685 u32 i;
7686
7687 pf->tx_timeout_count++;
7688
7689 /* Check if PFC is enabled for the TC to which the queue belongs
7690 * to. If yes then Tx timeout is not caused by a hung queue, no
7691 * need to reset and rebuild
7692 */
7693 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7694 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7695 txqueue);
7696 return;
7697 }
7698
7699 /* now that we have an index, find the tx_ring struct */
7700 ice_for_each_txq(vsi, i)
7701 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7702 if (txqueue == vsi->tx_rings[i]->q_index) {
7703 tx_ring = vsi->tx_rings[i];
7704 break;
7705 }
7706
7707 /* Reset recovery level if enough time has elapsed after last timeout.
7708 * Also ensure no new reset action happens before next timeout period.
7709 */
7710 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7711 pf->tx_timeout_recovery_level = 1;
7712 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7713 netdev->watchdog_timeo)))
7714 return;
7715
7716 if (tx_ring) {
7717 struct ice_hw *hw = &pf->hw;
7718 u32 head, val = 0;
7719
7720 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7721 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7722 /* Read interrupt register */
7723 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7724
7725 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7726 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7727 head, tx_ring->next_to_use, val);
7728 }
7729
7730 pf->tx_timeout_last_recovery = jiffies;
7731 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7732 pf->tx_timeout_recovery_level, txqueue);
7733
7734 switch (pf->tx_timeout_recovery_level) {
7735 case 1:
7736 set_bit(ICE_PFR_REQ, pf->state);
7737 break;
7738 case 2:
7739 set_bit(ICE_CORER_REQ, pf->state);
7740 break;
7741 case 3:
7742 set_bit(ICE_GLOBR_REQ, pf->state);
7743 break;
7744 default:
7745 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7746 set_bit(ICE_DOWN, pf->state);
7747 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7748 set_bit(ICE_SERVICE_DIS, pf->state);
7749 break;
7750 }
7751
7752 ice_service_task_schedule(pf);
7753 pf->tx_timeout_recovery_level++;
7754 }
7755
7756 /**
7757 * ice_setup_tc_cls_flower - flower classifier offloads
7758 * @np: net device to configure
7759 * @filter_dev: device on which filter is added
7760 * @cls_flower: offload data
7761 */
7762 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower)7763 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7764 struct net_device *filter_dev,
7765 struct flow_cls_offload *cls_flower)
7766 {
7767 struct ice_vsi *vsi = np->vsi;
7768
7769 if (cls_flower->common.chain_index)
7770 return -EOPNOTSUPP;
7771
7772 switch (cls_flower->command) {
7773 case FLOW_CLS_REPLACE:
7774 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7775 case FLOW_CLS_DESTROY:
7776 return ice_del_cls_flower(vsi, cls_flower);
7777 default:
7778 return -EINVAL;
7779 }
7780 }
7781
7782 /**
7783 * ice_setup_tc_block_cb - callback handler registered for TC block
7784 * @type: TC SETUP type
7785 * @type_data: TC flower offload data that contains user input
7786 * @cb_priv: netdev private data
7787 */
7788 static int
ice_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)7789 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7790 {
7791 struct ice_netdev_priv *np = cb_priv;
7792
7793 switch (type) {
7794 case TC_SETUP_CLSFLOWER:
7795 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7796 type_data);
7797 default:
7798 return -EOPNOTSUPP;
7799 }
7800 }
7801
7802 /**
7803 * ice_validate_mqprio_qopt - Validate TCF input parameters
7804 * @vsi: Pointer to VSI
7805 * @mqprio_qopt: input parameters for mqprio queue configuration
7806 *
7807 * This function validates MQPRIO params, such as qcount (power of 2 wherever
7808 * needed), and make sure user doesn't specify qcount and BW rate limit
7809 * for TCs, which are more than "num_tc"
7810 */
7811 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)7812 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7813 struct tc_mqprio_qopt_offload *mqprio_qopt)
7814 {
7815 u64 sum_max_rate = 0, sum_min_rate = 0;
7816 int non_power_of_2_qcount = 0;
7817 struct ice_pf *pf = vsi->back;
7818 int max_rss_q_cnt = 0;
7819 struct device *dev;
7820 int i, speed;
7821 u8 num_tc;
7822
7823 if (vsi->type != ICE_VSI_PF)
7824 return -EINVAL;
7825
7826 if (mqprio_qopt->qopt.offset[0] != 0 ||
7827 mqprio_qopt->qopt.num_tc < 1 ||
7828 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7829 return -EINVAL;
7830
7831 dev = ice_pf_to_dev(pf);
7832 vsi->ch_rss_size = 0;
7833 num_tc = mqprio_qopt->qopt.num_tc;
7834
7835 for (i = 0; num_tc; i++) {
7836 int qcount = mqprio_qopt->qopt.count[i];
7837 u64 max_rate, min_rate, rem;
7838
7839 if (!qcount)
7840 return -EINVAL;
7841
7842 if (is_power_of_2(qcount)) {
7843 if (non_power_of_2_qcount &&
7844 qcount > non_power_of_2_qcount) {
7845 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7846 qcount, non_power_of_2_qcount);
7847 return -EINVAL;
7848 }
7849 if (qcount > max_rss_q_cnt)
7850 max_rss_q_cnt = qcount;
7851 } else {
7852 if (non_power_of_2_qcount &&
7853 qcount != non_power_of_2_qcount) {
7854 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7855 qcount, non_power_of_2_qcount);
7856 return -EINVAL;
7857 }
7858 if (qcount < max_rss_q_cnt) {
7859 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7860 qcount, max_rss_q_cnt);
7861 return -EINVAL;
7862 }
7863 max_rss_q_cnt = qcount;
7864 non_power_of_2_qcount = qcount;
7865 }
7866
7867 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7868 * converts the bandwidth rate limit into Bytes/s when
7869 * passing it down to the driver. So convert input bandwidth
7870 * from Bytes/s to Kbps
7871 */
7872 max_rate = mqprio_qopt->max_rate[i];
7873 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7874 sum_max_rate += max_rate;
7875
7876 /* min_rate is minimum guaranteed rate and it can't be zero */
7877 min_rate = mqprio_qopt->min_rate[i];
7878 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7879 sum_min_rate += min_rate;
7880
7881 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7882 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7883 min_rate, ICE_MIN_BW_LIMIT);
7884 return -EINVAL;
7885 }
7886
7887 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7888 if (rem) {
7889 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7890 i, ICE_MIN_BW_LIMIT);
7891 return -EINVAL;
7892 }
7893
7894 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7895 if (rem) {
7896 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7897 i, ICE_MIN_BW_LIMIT);
7898 return -EINVAL;
7899 }
7900
7901 /* min_rate can't be more than max_rate, except when max_rate
7902 * is zero (implies max_rate sought is max line rate). In such
7903 * a case min_rate can be more than max.
7904 */
7905 if (max_rate && min_rate > max_rate) {
7906 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7907 min_rate, max_rate);
7908 return -EINVAL;
7909 }
7910
7911 if (i >= mqprio_qopt->qopt.num_tc - 1)
7912 break;
7913 if (mqprio_qopt->qopt.offset[i + 1] !=
7914 (mqprio_qopt->qopt.offset[i] + qcount))
7915 return -EINVAL;
7916 }
7917 if (vsi->num_rxq <
7918 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7919 return -EINVAL;
7920 if (vsi->num_txq <
7921 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7922 return -EINVAL;
7923
7924 speed = ice_get_link_speed_kbps(vsi);
7925 if (sum_max_rate && sum_max_rate > (u64)speed) {
7926 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7927 sum_max_rate, speed);
7928 return -EINVAL;
7929 }
7930 if (sum_min_rate && sum_min_rate > (u64)speed) {
7931 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7932 sum_min_rate, speed);
7933 return -EINVAL;
7934 }
7935
7936 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7937 vsi->ch_rss_size = max_rss_q_cnt;
7938
7939 return 0;
7940 }
7941
7942 /**
7943 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
7944 * @pf: ptr to PF device
7945 * @vsi: ptr to VSI
7946 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)7947 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
7948 {
7949 struct device *dev = ice_pf_to_dev(pf);
7950 bool added = false;
7951 struct ice_hw *hw;
7952 int flow;
7953
7954 if (!(vsi->num_gfltr || vsi->num_bfltr))
7955 return -EINVAL;
7956
7957 hw = &pf->hw;
7958 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
7959 struct ice_fd_hw_prof *prof;
7960 int tun, status;
7961 u64 entry_h;
7962
7963 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
7964 hw->fdir_prof[flow]->cnt))
7965 continue;
7966
7967 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
7968 enum ice_flow_priority prio;
7969 u64 prof_id;
7970
7971 /* add this VSI to FDir profile for this flow */
7972 prio = ICE_FLOW_PRIO_NORMAL;
7973 prof = hw->fdir_prof[flow];
7974 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
7975 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
7976 prof->vsi_h[0], vsi->idx,
7977 prio, prof->fdir_seg[tun],
7978 &entry_h);
7979 if (status) {
7980 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
7981 vsi->idx, flow);
7982 continue;
7983 }
7984
7985 prof->entry_h[prof->cnt][tun] = entry_h;
7986 }
7987
7988 /* store VSI for filter replay and delete */
7989 prof->vsi_h[prof->cnt] = vsi->idx;
7990 prof->cnt++;
7991
7992 added = true;
7993 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
7994 flow);
7995 }
7996
7997 if (!added)
7998 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
7999
8000 return 0;
8001 }
8002
8003 /**
8004 * ice_add_channel - add a channel by adding VSI
8005 * @pf: ptr to PF device
8006 * @sw_id: underlying HW switching element ID
8007 * @ch: ptr to channel structure
8008 *
8009 * Add a channel (VSI) using add_vsi and queue_map
8010 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8011 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8012 {
8013 struct device *dev = ice_pf_to_dev(pf);
8014 struct ice_vsi *vsi;
8015
8016 if (ch->type != ICE_VSI_CHNL) {
8017 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8018 return -EINVAL;
8019 }
8020
8021 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8022 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8023 dev_err(dev, "create chnl VSI failure\n");
8024 return -EINVAL;
8025 }
8026
8027 ice_add_vsi_to_fdir(pf, vsi);
8028
8029 ch->sw_id = sw_id;
8030 ch->vsi_num = vsi->vsi_num;
8031 ch->info.mapping_flags = vsi->info.mapping_flags;
8032 ch->ch_vsi = vsi;
8033 /* set the back pointer of channel for newly created VSI */
8034 vsi->ch = ch;
8035
8036 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8037 sizeof(vsi->info.q_mapping));
8038 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8039 sizeof(vsi->info.tc_mapping));
8040
8041 return 0;
8042 }
8043
8044 /**
8045 * ice_chnl_cfg_res
8046 * @vsi: the VSI being setup
8047 * @ch: ptr to channel structure
8048 *
8049 * Configure channel specific resources such as rings, vector.
8050 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8051 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8052 {
8053 int i;
8054
8055 for (i = 0; i < ch->num_txq; i++) {
8056 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8057 struct ice_ring_container *rc;
8058 struct ice_tx_ring *tx_ring;
8059 struct ice_rx_ring *rx_ring;
8060
8061 tx_ring = vsi->tx_rings[ch->base_q + i];
8062 rx_ring = vsi->rx_rings[ch->base_q + i];
8063 if (!tx_ring || !rx_ring)
8064 continue;
8065
8066 /* setup ring being channel enabled */
8067 tx_ring->ch = ch;
8068 rx_ring->ch = ch;
8069
8070 /* following code block sets up vector specific attributes */
8071 tx_q_vector = tx_ring->q_vector;
8072 rx_q_vector = rx_ring->q_vector;
8073 if (!tx_q_vector && !rx_q_vector)
8074 continue;
8075
8076 if (tx_q_vector) {
8077 tx_q_vector->ch = ch;
8078 /* setup Tx and Rx ITR setting if DIM is off */
8079 rc = &tx_q_vector->tx;
8080 if (!ITR_IS_DYNAMIC(rc))
8081 ice_write_itr(rc, rc->itr_setting);
8082 }
8083 if (rx_q_vector) {
8084 rx_q_vector->ch = ch;
8085 /* setup Tx and Rx ITR setting if DIM is off */
8086 rc = &rx_q_vector->rx;
8087 if (!ITR_IS_DYNAMIC(rc))
8088 ice_write_itr(rc, rc->itr_setting);
8089 }
8090 }
8091
8092 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8093 * GLINT_ITR register would have written to perform in-context
8094 * update, hence perform flush
8095 */
8096 if (ch->num_txq || ch->num_rxq)
8097 ice_flush(&vsi->back->hw);
8098 }
8099
8100 /**
8101 * ice_cfg_chnl_all_res - configure channel resources
8102 * @vsi: pte to main_vsi
8103 * @ch: ptr to channel structure
8104 *
8105 * This function configures channel specific resources such as flow-director
8106 * counter index, and other resources such as queues, vectors, ITR settings
8107 */
8108 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8109 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8110 {
8111 /* configure channel (aka ADQ) resources such as queues, vectors,
8112 * ITR settings for channel specific vectors and anything else
8113 */
8114 ice_chnl_cfg_res(vsi, ch);
8115 }
8116
8117 /**
8118 * ice_setup_hw_channel - setup new channel
8119 * @pf: ptr to PF device
8120 * @vsi: the VSI being setup
8121 * @ch: ptr to channel structure
8122 * @sw_id: underlying HW switching element ID
8123 * @type: type of channel to be created (VMDq2/VF)
8124 *
8125 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8126 * and configures Tx rings accordingly
8127 */
8128 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8129 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8130 struct ice_channel *ch, u16 sw_id, u8 type)
8131 {
8132 struct device *dev = ice_pf_to_dev(pf);
8133 int ret;
8134
8135 ch->base_q = vsi->next_base_q;
8136 ch->type = type;
8137
8138 ret = ice_add_channel(pf, sw_id, ch);
8139 if (ret) {
8140 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8141 return ret;
8142 }
8143
8144 /* configure/setup ADQ specific resources */
8145 ice_cfg_chnl_all_res(vsi, ch);
8146
8147 /* make sure to update the next_base_q so that subsequent channel's
8148 * (aka ADQ) VSI queue map is correct
8149 */
8150 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8151 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8152 ch->num_rxq);
8153
8154 return 0;
8155 }
8156
8157 /**
8158 * ice_setup_channel - setup new channel using uplink element
8159 * @pf: ptr to PF device
8160 * @vsi: the VSI being setup
8161 * @ch: ptr to channel structure
8162 *
8163 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8164 * and uplink switching element
8165 */
8166 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8167 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8168 struct ice_channel *ch)
8169 {
8170 struct device *dev = ice_pf_to_dev(pf);
8171 u16 sw_id;
8172 int ret;
8173
8174 if (vsi->type != ICE_VSI_PF) {
8175 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8176 return false;
8177 }
8178
8179 sw_id = pf->first_sw->sw_id;
8180
8181 /* create channel (VSI) */
8182 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8183 if (ret) {
8184 dev_err(dev, "failed to setup hw_channel\n");
8185 return false;
8186 }
8187 dev_dbg(dev, "successfully created channel()\n");
8188
8189 return ch->ch_vsi ? true : false;
8190 }
8191
8192 /**
8193 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8194 * @vsi: VSI to be configured
8195 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8196 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8197 */
8198 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8199 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8200 {
8201 int err;
8202
8203 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8204 if (err)
8205 return err;
8206
8207 return ice_set_max_bw_limit(vsi, max_tx_rate);
8208 }
8209
8210 /**
8211 * ice_create_q_channel - function to create channel
8212 * @vsi: VSI to be configured
8213 * @ch: ptr to channel (it contains channel specific params)
8214 *
8215 * This function creates channel (VSI) using num_queues specified by user,
8216 * reconfigs RSS if needed.
8217 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8218 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8219 {
8220 struct ice_pf *pf = vsi->back;
8221 struct device *dev;
8222
8223 if (!ch)
8224 return -EINVAL;
8225
8226 dev = ice_pf_to_dev(pf);
8227 if (!ch->num_txq || !ch->num_rxq) {
8228 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8229 return -EINVAL;
8230 }
8231
8232 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8233 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8234 vsi->cnt_q_avail, ch->num_txq);
8235 return -EINVAL;
8236 }
8237
8238 if (!ice_setup_channel(pf, vsi, ch)) {
8239 dev_info(dev, "Failed to setup channel\n");
8240 return -EINVAL;
8241 }
8242 /* configure BW rate limit */
8243 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8244 int ret;
8245
8246 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8247 ch->min_tx_rate);
8248 if (ret)
8249 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8250 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8251 else
8252 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8253 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8254 }
8255
8256 vsi->cnt_q_avail -= ch->num_txq;
8257
8258 return 0;
8259 }
8260
8261 /**
8262 * ice_rem_all_chnl_fltrs - removes all channel filters
8263 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8264 *
8265 * Remove all advanced switch filters only if they are channel specific
8266 * tc-flower based filter
8267 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8268 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8269 {
8270 struct ice_tc_flower_fltr *fltr;
8271 struct hlist_node *node;
8272
8273 /* to remove all channel filters, iterate an ordered list of filters */
8274 hlist_for_each_entry_safe(fltr, node,
8275 &pf->tc_flower_fltr_list,
8276 tc_flower_node) {
8277 struct ice_rule_query_data rule;
8278 int status;
8279
8280 /* for now process only channel specific filters */
8281 if (!ice_is_chnl_fltr(fltr))
8282 continue;
8283
8284 rule.rid = fltr->rid;
8285 rule.rule_id = fltr->rule_id;
8286 rule.vsi_handle = fltr->dest_id;
8287 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8288 if (status) {
8289 if (status == -ENOENT)
8290 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8291 rule.rule_id);
8292 else
8293 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8294 status);
8295 } else if (fltr->dest_vsi) {
8296 /* update advanced switch filter count */
8297 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8298 u32 flags = fltr->flags;
8299
8300 fltr->dest_vsi->num_chnl_fltr--;
8301 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8302 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8303 pf->num_dmac_chnl_fltrs--;
8304 }
8305 }
8306
8307 hlist_del(&fltr->tc_flower_node);
8308 kfree(fltr);
8309 }
8310 }
8311
8312 /**
8313 * ice_remove_q_channels - Remove queue channels for the TCs
8314 * @vsi: VSI to be configured
8315 * @rem_fltr: delete advanced switch filter or not
8316 *
8317 * Remove queue channels for the TCs
8318 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8319 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8320 {
8321 struct ice_channel *ch, *ch_tmp;
8322 struct ice_pf *pf = vsi->back;
8323 int i;
8324
8325 /* remove all tc-flower based filter if they are channel filters only */
8326 if (rem_fltr)
8327 ice_rem_all_chnl_fltrs(pf);
8328
8329 /* remove ntuple filters since queue configuration is being changed */
8330 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8331 struct ice_hw *hw = &pf->hw;
8332
8333 mutex_lock(&hw->fdir_fltr_lock);
8334 ice_fdir_del_all_fltrs(vsi);
8335 mutex_unlock(&hw->fdir_fltr_lock);
8336 }
8337
8338 /* perform cleanup for channels if they exist */
8339 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8340 struct ice_vsi *ch_vsi;
8341
8342 list_del(&ch->list);
8343 ch_vsi = ch->ch_vsi;
8344 if (!ch_vsi) {
8345 kfree(ch);
8346 continue;
8347 }
8348
8349 /* Reset queue contexts */
8350 for (i = 0; i < ch->num_rxq; i++) {
8351 struct ice_tx_ring *tx_ring;
8352 struct ice_rx_ring *rx_ring;
8353
8354 tx_ring = vsi->tx_rings[ch->base_q + i];
8355 rx_ring = vsi->rx_rings[ch->base_q + i];
8356 if (tx_ring) {
8357 tx_ring->ch = NULL;
8358 if (tx_ring->q_vector)
8359 tx_ring->q_vector->ch = NULL;
8360 }
8361 if (rx_ring) {
8362 rx_ring->ch = NULL;
8363 if (rx_ring->q_vector)
8364 rx_ring->q_vector->ch = NULL;
8365 }
8366 }
8367
8368 /* Release FD resources for the channel VSI */
8369 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8370
8371 /* clear the VSI from scheduler tree */
8372 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8373
8374 /* Delete VSI from FW */
8375 ice_vsi_delete(ch->ch_vsi);
8376
8377 /* Delete VSI from PF and HW VSI arrays */
8378 ice_vsi_clear(ch->ch_vsi);
8379
8380 /* free the channel */
8381 kfree(ch);
8382 }
8383
8384 /* clear the channel VSI map which is stored in main VSI */
8385 ice_for_each_chnl_tc(i)
8386 vsi->tc_map_vsi[i] = NULL;
8387
8388 /* reset main VSI's all TC information */
8389 vsi->all_enatc = 0;
8390 vsi->all_numtc = 0;
8391 }
8392
8393 /**
8394 * ice_rebuild_channels - rebuild channel
8395 * @pf: ptr to PF
8396 *
8397 * Recreate channel VSIs and replay filters
8398 */
ice_rebuild_channels(struct ice_pf * pf)8399 static int ice_rebuild_channels(struct ice_pf *pf)
8400 {
8401 struct device *dev = ice_pf_to_dev(pf);
8402 struct ice_vsi *main_vsi;
8403 bool rem_adv_fltr = true;
8404 struct ice_channel *ch;
8405 struct ice_vsi *vsi;
8406 int tc_idx = 1;
8407 int i, err;
8408
8409 main_vsi = ice_get_main_vsi(pf);
8410 if (!main_vsi)
8411 return 0;
8412
8413 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8414 main_vsi->old_numtc == 1)
8415 return 0; /* nothing to be done */
8416
8417 /* reconfigure main VSI based on old value of TC and cached values
8418 * for MQPRIO opts
8419 */
8420 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8421 if (err) {
8422 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8423 main_vsi->old_ena_tc, main_vsi->vsi_num);
8424 return err;
8425 }
8426
8427 /* rebuild ADQ VSIs */
8428 ice_for_each_vsi(pf, i) {
8429 enum ice_vsi_type type;
8430
8431 vsi = pf->vsi[i];
8432 if (!vsi || vsi->type != ICE_VSI_CHNL)
8433 continue;
8434
8435 type = vsi->type;
8436
8437 /* rebuild ADQ VSI */
8438 err = ice_vsi_rebuild(vsi, true);
8439 if (err) {
8440 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8441 ice_vsi_type_str(type), vsi->idx, err);
8442 goto cleanup;
8443 }
8444
8445 /* Re-map HW VSI number, using VSI handle that has been
8446 * previously validated in ice_replay_vsi() call above
8447 */
8448 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8449
8450 /* replay filters for the VSI */
8451 err = ice_replay_vsi(&pf->hw, vsi->idx);
8452 if (err) {
8453 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8454 ice_vsi_type_str(type), err, vsi->idx);
8455 rem_adv_fltr = false;
8456 goto cleanup;
8457 }
8458 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8459 ice_vsi_type_str(type), vsi->idx);
8460
8461 /* store ADQ VSI at correct TC index in main VSI's
8462 * map of TC to VSI
8463 */
8464 main_vsi->tc_map_vsi[tc_idx++] = vsi;
8465 }
8466
8467 /* ADQ VSI(s) has been rebuilt successfully, so setup
8468 * channel for main VSI's Tx and Rx rings
8469 */
8470 list_for_each_entry(ch, &main_vsi->ch_list, list) {
8471 struct ice_vsi *ch_vsi;
8472
8473 ch_vsi = ch->ch_vsi;
8474 if (!ch_vsi)
8475 continue;
8476
8477 /* reconfig channel resources */
8478 ice_cfg_chnl_all_res(main_vsi, ch);
8479
8480 /* replay BW rate limit if it is non-zero */
8481 if (!ch->max_tx_rate && !ch->min_tx_rate)
8482 continue;
8483
8484 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8485 ch->min_tx_rate);
8486 if (err)
8487 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8488 err, ch->max_tx_rate, ch->min_tx_rate,
8489 ch_vsi->vsi_num);
8490 else
8491 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8492 ch->max_tx_rate, ch->min_tx_rate,
8493 ch_vsi->vsi_num);
8494 }
8495
8496 /* reconfig RSS for main VSI */
8497 if (main_vsi->ch_rss_size)
8498 ice_vsi_cfg_rss_lut_key(main_vsi);
8499
8500 return 0;
8501
8502 cleanup:
8503 ice_remove_q_channels(main_vsi, rem_adv_fltr);
8504 return err;
8505 }
8506
8507 /**
8508 * ice_create_q_channels - Add queue channel for the given TCs
8509 * @vsi: VSI to be configured
8510 *
8511 * Configures queue channel mapping to the given TCs
8512 */
ice_create_q_channels(struct ice_vsi * vsi)8513 static int ice_create_q_channels(struct ice_vsi *vsi)
8514 {
8515 struct ice_pf *pf = vsi->back;
8516 struct ice_channel *ch;
8517 int ret = 0, i;
8518
8519 ice_for_each_chnl_tc(i) {
8520 if (!(vsi->all_enatc & BIT(i)))
8521 continue;
8522
8523 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8524 if (!ch) {
8525 ret = -ENOMEM;
8526 goto err_free;
8527 }
8528 INIT_LIST_HEAD(&ch->list);
8529 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8530 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8531 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8532 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8533 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8534
8535 /* convert to Kbits/s */
8536 if (ch->max_tx_rate)
8537 ch->max_tx_rate = div_u64(ch->max_tx_rate,
8538 ICE_BW_KBPS_DIVISOR);
8539 if (ch->min_tx_rate)
8540 ch->min_tx_rate = div_u64(ch->min_tx_rate,
8541 ICE_BW_KBPS_DIVISOR);
8542
8543 ret = ice_create_q_channel(vsi, ch);
8544 if (ret) {
8545 dev_err(ice_pf_to_dev(pf),
8546 "failed creating channel TC:%d\n", i);
8547 kfree(ch);
8548 goto err_free;
8549 }
8550 list_add_tail(&ch->list, &vsi->ch_list);
8551 vsi->tc_map_vsi[i] = ch->ch_vsi;
8552 dev_dbg(ice_pf_to_dev(pf),
8553 "successfully created channel: VSI %pK\n", ch->ch_vsi);
8554 }
8555 return 0;
8556
8557 err_free:
8558 ice_remove_q_channels(vsi, false);
8559
8560 return ret;
8561 }
8562
8563 /**
8564 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8565 * @netdev: net device to configure
8566 * @type_data: TC offload data
8567 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)8568 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8569 {
8570 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8571 struct ice_netdev_priv *np = netdev_priv(netdev);
8572 struct ice_vsi *vsi = np->vsi;
8573 struct ice_pf *pf = vsi->back;
8574 u16 mode, ena_tc_qdisc = 0;
8575 int cur_txq, cur_rxq;
8576 u8 hw = 0, num_tcf;
8577 struct device *dev;
8578 int ret, i;
8579
8580 dev = ice_pf_to_dev(pf);
8581 num_tcf = mqprio_qopt->qopt.num_tc;
8582 hw = mqprio_qopt->qopt.hw;
8583 mode = mqprio_qopt->mode;
8584 if (!hw) {
8585 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8586 vsi->ch_rss_size = 0;
8587 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8588 goto config_tcf;
8589 }
8590
8591 /* Generate queue region map for number of TCF requested */
8592 for (i = 0; i < num_tcf; i++)
8593 ena_tc_qdisc |= BIT(i);
8594
8595 switch (mode) {
8596 case TC_MQPRIO_MODE_CHANNEL:
8597
8598 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8599 if (ret) {
8600 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8601 ret);
8602 return ret;
8603 }
8604 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8605 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8606 /* don't assume state of hw_tc_offload during driver load
8607 * and set the flag for TC flower filter if hw_tc_offload
8608 * already ON
8609 */
8610 if (vsi->netdev->features & NETIF_F_HW_TC)
8611 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8612 break;
8613 default:
8614 return -EINVAL;
8615 }
8616
8617 config_tcf:
8618
8619 /* Requesting same TCF configuration as already enabled */
8620 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8621 mode != TC_MQPRIO_MODE_CHANNEL)
8622 return 0;
8623
8624 /* Pause VSI queues */
8625 ice_dis_vsi(vsi, true);
8626
8627 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8628 ice_remove_q_channels(vsi, true);
8629
8630 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8631 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8632 num_online_cpus());
8633 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8634 num_online_cpus());
8635 } else {
8636 /* logic to rebuild VSI, same like ethtool -L */
8637 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8638
8639 for (i = 0; i < num_tcf; i++) {
8640 if (!(ena_tc_qdisc & BIT(i)))
8641 continue;
8642
8643 offset = vsi->mqprio_qopt.qopt.offset[i];
8644 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8645 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8646 }
8647 vsi->req_txq = offset + qcount_tx;
8648 vsi->req_rxq = offset + qcount_rx;
8649
8650 /* store away original rss_size info, so that it gets reused
8651 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8652 * determine, what should be the rss_sizefor main VSI
8653 */
8654 vsi->orig_rss_size = vsi->rss_size;
8655 }
8656
8657 /* save current values of Tx and Rx queues before calling VSI rebuild
8658 * for fallback option
8659 */
8660 cur_txq = vsi->num_txq;
8661 cur_rxq = vsi->num_rxq;
8662
8663 /* proceed with rebuild main VSI using correct number of queues */
8664 ret = ice_vsi_rebuild(vsi, false);
8665 if (ret) {
8666 /* fallback to current number of queues */
8667 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8668 vsi->req_txq = cur_txq;
8669 vsi->req_rxq = cur_rxq;
8670 clear_bit(ICE_RESET_FAILED, pf->state);
8671 if (ice_vsi_rebuild(vsi, false)) {
8672 dev_err(dev, "Rebuild of main VSI failed again\n");
8673 return ret;
8674 }
8675 }
8676
8677 vsi->all_numtc = num_tcf;
8678 vsi->all_enatc = ena_tc_qdisc;
8679 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8680 if (ret) {
8681 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8682 vsi->vsi_num);
8683 goto exit;
8684 }
8685
8686 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8687 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8688 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8689
8690 /* set TC0 rate limit if specified */
8691 if (max_tx_rate || min_tx_rate) {
8692 /* convert to Kbits/s */
8693 if (max_tx_rate)
8694 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8695 if (min_tx_rate)
8696 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8697
8698 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8699 if (!ret) {
8700 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8701 max_tx_rate, min_tx_rate, vsi->vsi_num);
8702 } else {
8703 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8704 max_tx_rate, min_tx_rate, vsi->vsi_num);
8705 goto exit;
8706 }
8707 }
8708 ret = ice_create_q_channels(vsi);
8709 if (ret) {
8710 netdev_err(netdev, "failed configuring queue channels\n");
8711 goto exit;
8712 } else {
8713 netdev_dbg(netdev, "successfully configured channels\n");
8714 }
8715 }
8716
8717 if (vsi->ch_rss_size)
8718 ice_vsi_cfg_rss_lut_key(vsi);
8719
8720 exit:
8721 /* if error, reset the all_numtc and all_enatc */
8722 if (ret) {
8723 vsi->all_numtc = 0;
8724 vsi->all_enatc = 0;
8725 }
8726 /* resume VSI */
8727 ice_ena_vsi(vsi, true);
8728
8729 return ret;
8730 }
8731
8732 static LIST_HEAD(ice_block_cb_list);
8733
8734 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)8735 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8736 void *type_data)
8737 {
8738 struct ice_netdev_priv *np = netdev_priv(netdev);
8739 struct ice_pf *pf = np->vsi->back;
8740 int err;
8741
8742 switch (type) {
8743 case TC_SETUP_BLOCK:
8744 return flow_block_cb_setup_simple(type_data,
8745 &ice_block_cb_list,
8746 ice_setup_tc_block_cb,
8747 np, np, true);
8748 case TC_SETUP_QDISC_MQPRIO:
8749 /* setup traffic classifier for receive side */
8750 mutex_lock(&pf->tc_mutex);
8751 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8752 mutex_unlock(&pf->tc_mutex);
8753 return err;
8754 default:
8755 return -EOPNOTSUPP;
8756 }
8757 return -EOPNOTSUPP;
8758 }
8759
8760 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)8761 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8762 struct net_device *netdev)
8763 {
8764 struct ice_indr_block_priv *cb_priv;
8765
8766 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8767 if (!cb_priv->netdev)
8768 return NULL;
8769 if (cb_priv->netdev == netdev)
8770 return cb_priv;
8771 }
8772 return NULL;
8773 }
8774
8775 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)8776 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8777 void *indr_priv)
8778 {
8779 struct ice_indr_block_priv *priv = indr_priv;
8780 struct ice_netdev_priv *np = priv->np;
8781
8782 switch (type) {
8783 case TC_SETUP_CLSFLOWER:
8784 return ice_setup_tc_cls_flower(np, priv->netdev,
8785 (struct flow_cls_offload *)
8786 type_data);
8787 default:
8788 return -EOPNOTSUPP;
8789 }
8790 }
8791
8792 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))8793 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8794 struct ice_netdev_priv *np,
8795 struct flow_block_offload *f, void *data,
8796 void (*cleanup)(struct flow_block_cb *block_cb))
8797 {
8798 struct ice_indr_block_priv *indr_priv;
8799 struct flow_block_cb *block_cb;
8800
8801 if (!ice_is_tunnel_supported(netdev) &&
8802 !(is_vlan_dev(netdev) &&
8803 vlan_dev_real_dev(netdev) == np->vsi->netdev))
8804 return -EOPNOTSUPP;
8805
8806 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8807 return -EOPNOTSUPP;
8808
8809 switch (f->command) {
8810 case FLOW_BLOCK_BIND:
8811 indr_priv = ice_indr_block_priv_lookup(np, netdev);
8812 if (indr_priv)
8813 return -EEXIST;
8814
8815 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8816 if (!indr_priv)
8817 return -ENOMEM;
8818
8819 indr_priv->netdev = netdev;
8820 indr_priv->np = np;
8821 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8822
8823 block_cb =
8824 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8825 indr_priv, indr_priv,
8826 ice_rep_indr_tc_block_unbind,
8827 f, netdev, sch, data, np,
8828 cleanup);
8829
8830 if (IS_ERR(block_cb)) {
8831 list_del(&indr_priv->list);
8832 kfree(indr_priv);
8833 return PTR_ERR(block_cb);
8834 }
8835 flow_block_cb_add(block_cb, f);
8836 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8837 break;
8838 case FLOW_BLOCK_UNBIND:
8839 indr_priv = ice_indr_block_priv_lookup(np, netdev);
8840 if (!indr_priv)
8841 return -ENOENT;
8842
8843 block_cb = flow_block_cb_lookup(f->block,
8844 ice_indr_setup_block_cb,
8845 indr_priv);
8846 if (!block_cb)
8847 return -ENOENT;
8848
8849 flow_indr_block_cb_remove(block_cb, f);
8850
8851 list_del(&block_cb->driver_list);
8852 break;
8853 default:
8854 return -EOPNOTSUPP;
8855 }
8856 return 0;
8857 }
8858
8859 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))8860 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8861 void *cb_priv, enum tc_setup_type type, void *type_data,
8862 void *data,
8863 void (*cleanup)(struct flow_block_cb *block_cb))
8864 {
8865 switch (type) {
8866 case TC_SETUP_BLOCK:
8867 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8868 data, cleanup);
8869
8870 default:
8871 return -EOPNOTSUPP;
8872 }
8873 }
8874
8875 /**
8876 * ice_open - Called when a network interface becomes active
8877 * @netdev: network interface device structure
8878 *
8879 * The open entry point is called when a network interface is made
8880 * active by the system (IFF_UP). At this point all resources needed
8881 * for transmit and receive operations are allocated, the interrupt
8882 * handler is registered with the OS, the netdev watchdog is enabled,
8883 * and the stack is notified that the interface is ready.
8884 *
8885 * Returns 0 on success, negative value on failure
8886 */
ice_open(struct net_device * netdev)8887 int ice_open(struct net_device *netdev)
8888 {
8889 struct ice_netdev_priv *np = netdev_priv(netdev);
8890 struct ice_pf *pf = np->vsi->back;
8891
8892 if (ice_is_reset_in_progress(pf->state)) {
8893 netdev_err(netdev, "can't open net device while reset is in progress");
8894 return -EBUSY;
8895 }
8896
8897 return ice_open_internal(netdev);
8898 }
8899
8900 /**
8901 * ice_open_internal - Called when a network interface becomes active
8902 * @netdev: network interface device structure
8903 *
8904 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8905 * handling routine
8906 *
8907 * Returns 0 on success, negative value on failure
8908 */
ice_open_internal(struct net_device * netdev)8909 int ice_open_internal(struct net_device *netdev)
8910 {
8911 struct ice_netdev_priv *np = netdev_priv(netdev);
8912 struct ice_vsi *vsi = np->vsi;
8913 struct ice_pf *pf = vsi->back;
8914 struct ice_port_info *pi;
8915 int err;
8916
8917 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8918 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8919 return -EIO;
8920 }
8921
8922 netif_carrier_off(netdev);
8923
8924 pi = vsi->port_info;
8925 err = ice_update_link_info(pi);
8926 if (err) {
8927 netdev_err(netdev, "Failed to get link info, error %d\n", err);
8928 return err;
8929 }
8930
8931 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8932
8933 /* Set PHY if there is media, otherwise, turn off PHY */
8934 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8935 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8936 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8937 err = ice_init_phy_user_cfg(pi);
8938 if (err) {
8939 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8940 err);
8941 return err;
8942 }
8943 }
8944
8945 err = ice_configure_phy(vsi);
8946 if (err) {
8947 netdev_err(netdev, "Failed to set physical link up, error %d\n",
8948 err);
8949 return err;
8950 }
8951 } else {
8952 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8953 ice_set_link(vsi, false);
8954 }
8955
8956 err = ice_vsi_open(vsi);
8957 if (err)
8958 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
8959 vsi->vsi_num, vsi->vsw->sw_id);
8960
8961 /* Update existing tunnels information */
8962 udp_tunnel_get_rx_info(netdev);
8963
8964 return err;
8965 }
8966
8967 /**
8968 * ice_stop - Disables a network interface
8969 * @netdev: network interface device structure
8970 *
8971 * The stop entry point is called when an interface is de-activated by the OS,
8972 * and the netdevice enters the DOWN state. The hardware is still under the
8973 * driver's control, but the netdev interface is disabled.
8974 *
8975 * Returns success only - not allowed to fail
8976 */
ice_stop(struct net_device * netdev)8977 int ice_stop(struct net_device *netdev)
8978 {
8979 struct ice_netdev_priv *np = netdev_priv(netdev);
8980 struct ice_vsi *vsi = np->vsi;
8981 struct ice_pf *pf = vsi->back;
8982
8983 if (ice_is_reset_in_progress(pf->state)) {
8984 netdev_err(netdev, "can't stop net device while reset is in progress");
8985 return -EBUSY;
8986 }
8987
8988 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
8989 int link_err = ice_force_phys_link_state(vsi, false);
8990
8991 if (link_err) {
8992 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
8993 vsi->vsi_num, link_err);
8994 return -EIO;
8995 }
8996 }
8997
8998 ice_vsi_close(vsi);
8999
9000 return 0;
9001 }
9002
9003 /**
9004 * ice_features_check - Validate encapsulated packet conforms to limits
9005 * @skb: skb buffer
9006 * @netdev: This port's netdev
9007 * @features: Offload features that the stack believes apply
9008 */
9009 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9010 ice_features_check(struct sk_buff *skb,
9011 struct net_device __always_unused *netdev,
9012 netdev_features_t features)
9013 {
9014 bool gso = skb_is_gso(skb);
9015 size_t len;
9016
9017 /* No point in doing any of this if neither checksum nor GSO are
9018 * being requested for this frame. We can rule out both by just
9019 * checking for CHECKSUM_PARTIAL
9020 */
9021 if (skb->ip_summed != CHECKSUM_PARTIAL)
9022 return features;
9023
9024 /* We cannot support GSO if the MSS is going to be less than
9025 * 64 bytes. If it is then we need to drop support for GSO.
9026 */
9027 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9028 features &= ~NETIF_F_GSO_MASK;
9029
9030 len = skb_network_offset(skb);
9031 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9032 goto out_rm_features;
9033
9034 len = skb_network_header_len(skb);
9035 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9036 goto out_rm_features;
9037
9038 if (skb->encapsulation) {
9039 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9040 * the case of IPIP frames, the transport header pointer is
9041 * after the inner header! So check to make sure that this
9042 * is a GRE or UDP_TUNNEL frame before doing that math.
9043 */
9044 if (gso && (skb_shinfo(skb)->gso_type &
9045 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9046 len = skb_inner_network_header(skb) -
9047 skb_transport_header(skb);
9048 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9049 goto out_rm_features;
9050 }
9051
9052 len = skb_inner_network_header_len(skb);
9053 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9054 goto out_rm_features;
9055 }
9056
9057 return features;
9058 out_rm_features:
9059 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9060 }
9061
9062 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9063 .ndo_open = ice_open,
9064 .ndo_stop = ice_stop,
9065 .ndo_start_xmit = ice_start_xmit,
9066 .ndo_set_mac_address = ice_set_mac_address,
9067 .ndo_validate_addr = eth_validate_addr,
9068 .ndo_change_mtu = ice_change_mtu,
9069 .ndo_get_stats64 = ice_get_stats64,
9070 .ndo_tx_timeout = ice_tx_timeout,
9071 .ndo_bpf = ice_xdp_safe_mode,
9072 };
9073
9074 static const struct net_device_ops ice_netdev_ops = {
9075 .ndo_open = ice_open,
9076 .ndo_stop = ice_stop,
9077 .ndo_start_xmit = ice_start_xmit,
9078 .ndo_select_queue = ice_select_queue,
9079 .ndo_features_check = ice_features_check,
9080 .ndo_fix_features = ice_fix_features,
9081 .ndo_set_rx_mode = ice_set_rx_mode,
9082 .ndo_set_mac_address = ice_set_mac_address,
9083 .ndo_validate_addr = eth_validate_addr,
9084 .ndo_change_mtu = ice_change_mtu,
9085 .ndo_get_stats64 = ice_get_stats64,
9086 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9087 .ndo_eth_ioctl = ice_eth_ioctl,
9088 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9089 .ndo_set_vf_mac = ice_set_vf_mac,
9090 .ndo_get_vf_config = ice_get_vf_cfg,
9091 .ndo_set_vf_trust = ice_set_vf_trust,
9092 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9093 .ndo_set_vf_link_state = ice_set_vf_link_state,
9094 .ndo_get_vf_stats = ice_get_vf_stats,
9095 .ndo_set_vf_rate = ice_set_vf_bw,
9096 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9097 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9098 .ndo_setup_tc = ice_setup_tc,
9099 .ndo_set_features = ice_set_features,
9100 .ndo_bridge_getlink = ice_bridge_getlink,
9101 .ndo_bridge_setlink = ice_bridge_setlink,
9102 .ndo_fdb_add = ice_fdb_add,
9103 .ndo_fdb_del = ice_fdb_del,
9104 #ifdef CONFIG_RFS_ACCEL
9105 .ndo_rx_flow_steer = ice_rx_flow_steer,
9106 #endif
9107 .ndo_tx_timeout = ice_tx_timeout,
9108 .ndo_bpf = ice_xdp,
9109 .ndo_xdp_xmit = ice_xdp_xmit,
9110 .ndo_xsk_wakeup = ice_xsk_wakeup,
9111 .ndo_get_devlink_port = ice_get_devlink_port,
9112 };
9113