1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12
13 /**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
ice_vsi_type_str(enum ice_vsi_type vsi_type)17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_CTRL:
25 return "ICE_VSI_CTRL";
26 case ICE_VSI_CHNL:
27 return "ICE_VSI_CHNL";
28 case ICE_VSI_LB:
29 return "ICE_VSI_LB";
30 case ICE_VSI_SWITCHDEV_CTRL:
31 return "ICE_VSI_SWITCHDEV_CTRL";
32 default:
33 return "unknown";
34 }
35 }
36
37 /**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi * vsi,bool ena)47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64 }
65
66 /**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
121 if (!vsi->af_xdp_zc_qps)
122 goto err_zc_qps;
123
124 return 0;
125
126 err_zc_qps:
127 devm_kfree(dev, vsi->q_vectors);
128 err_vectors:
129 devm_kfree(dev, vsi->rxq_map);
130 err_rxq_map:
131 devm_kfree(dev, vsi->txq_map);
132 err_txq_map:
133 devm_kfree(dev, vsi->rx_rings);
134 err_rings:
135 devm_kfree(dev, vsi->tx_rings);
136 return -ENOMEM;
137 }
138
139 /**
140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
141 * @vsi: the VSI being configured
142 */
ice_vsi_set_num_desc(struct ice_vsi * vsi)143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
144 {
145 switch (vsi->type) {
146 case ICE_VSI_PF:
147 case ICE_VSI_SWITCHDEV_CTRL:
148 case ICE_VSI_CTRL:
149 case ICE_VSI_LB:
150 /* a user could change the values of num_[tr]x_desc using
151 * ethtool -G so we should keep those values instead of
152 * overwriting them with the defaults.
153 */
154 if (!vsi->num_rx_desc)
155 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
156 if (!vsi->num_tx_desc)
157 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
158 break;
159 default:
160 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
161 vsi->type);
162 break;
163 }
164 }
165
166 /**
167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
168 * @vsi: the VSI being configured
169 *
170 * Return 0 on success and a negative value on error
171 */
ice_vsi_set_num_qs(struct ice_vsi * vsi)172 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
173 {
174 enum ice_vsi_type vsi_type = vsi->type;
175 struct ice_pf *pf = vsi->back;
176 struct ice_vf *vf = vsi->vf;
177
178 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
179 return;
180
181 switch (vsi_type) {
182 case ICE_VSI_PF:
183 if (vsi->req_txq) {
184 vsi->alloc_txq = vsi->req_txq;
185 vsi->num_txq = vsi->req_txq;
186 } else {
187 vsi->alloc_txq = min3(pf->num_lan_msix,
188 ice_get_avail_txq_count(pf),
189 (u16)num_online_cpus());
190 }
191
192 pf->num_lan_tx = vsi->alloc_txq;
193
194 /* only 1 Rx queue unless RSS is enabled */
195 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
196 vsi->alloc_rxq = 1;
197 } else {
198 if (vsi->req_rxq) {
199 vsi->alloc_rxq = vsi->req_rxq;
200 vsi->num_rxq = vsi->req_rxq;
201 } else {
202 vsi->alloc_rxq = min3(pf->num_lan_msix,
203 ice_get_avail_rxq_count(pf),
204 (u16)num_online_cpus());
205 }
206 }
207
208 pf->num_lan_rx = vsi->alloc_rxq;
209
210 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
211 max_t(int, vsi->alloc_rxq,
212 vsi->alloc_txq));
213 break;
214 case ICE_VSI_SWITCHDEV_CTRL:
215 /* The number of queues for ctrl VSI is equal to number of VFs.
216 * Each ring is associated to the corresponding VF_PR netdev.
217 */
218 vsi->alloc_txq = ice_get_num_vfs(pf);
219 vsi->alloc_rxq = vsi->alloc_txq;
220 vsi->num_q_vectors = 1;
221 break;
222 case ICE_VSI_VF:
223 if (vf->num_req_qs)
224 vf->num_vf_qs = vf->num_req_qs;
225 vsi->alloc_txq = vf->num_vf_qs;
226 vsi->alloc_rxq = vf->num_vf_qs;
227 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
228 * data queue interrupts). Since vsi->num_q_vectors is number
229 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
230 * original vector count
231 */
232 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
233 break;
234 case ICE_VSI_CTRL:
235 vsi->alloc_txq = 1;
236 vsi->alloc_rxq = 1;
237 vsi->num_q_vectors = 1;
238 break;
239 case ICE_VSI_CHNL:
240 vsi->alloc_txq = 0;
241 vsi->alloc_rxq = 0;
242 break;
243 case ICE_VSI_LB:
244 vsi->alloc_txq = 1;
245 vsi->alloc_rxq = 1;
246 break;
247 default:
248 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
249 break;
250 }
251
252 ice_vsi_set_num_desc(vsi);
253 }
254
255 /**
256 * ice_get_free_slot - get the next non-NULL location index in array
257 * @array: array to search
258 * @size: size of the array
259 * @curr: last known occupied index to be used as a search hint
260 *
261 * void * is being used to keep the functionality generic. This lets us use this
262 * function on any array of pointers.
263 */
ice_get_free_slot(void * array,int size,int curr)264 static int ice_get_free_slot(void *array, int size, int curr)
265 {
266 int **tmp_array = (int **)array;
267 int next;
268
269 if (curr < (size - 1) && !tmp_array[curr + 1]) {
270 next = curr + 1;
271 } else {
272 int i = 0;
273
274 while ((i < size) && (tmp_array[i]))
275 i++;
276 if (i == size)
277 next = ICE_NO_VSI;
278 else
279 next = i;
280 }
281 return next;
282 }
283
284 /**
285 * ice_vsi_delete_from_hw - delete a VSI from the switch
286 * @vsi: pointer to VSI being removed
287 */
ice_vsi_delete_from_hw(struct ice_vsi * vsi)288 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
289 {
290 struct ice_pf *pf = vsi->back;
291 struct ice_vsi_ctx *ctxt;
292 int status;
293
294 ice_fltr_remove_all(vsi);
295 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
296 if (!ctxt)
297 return;
298
299 if (vsi->type == ICE_VSI_VF)
300 ctxt->vf_num = vsi->vf->vf_id;
301 ctxt->vsi_num = vsi->vsi_num;
302
303 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
304
305 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
306 if (status)
307 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
308 vsi->vsi_num, status);
309
310 kfree(ctxt);
311 }
312
313 /**
314 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
315 * @vsi: pointer to VSI being cleared
316 */
ice_vsi_free_arrays(struct ice_vsi * vsi)317 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
318 {
319 struct ice_pf *pf = vsi->back;
320 struct device *dev;
321
322 dev = ice_pf_to_dev(pf);
323
324 bitmap_free(vsi->af_xdp_zc_qps);
325 vsi->af_xdp_zc_qps = NULL;
326 /* free the ring and vector containers */
327 devm_kfree(dev, vsi->q_vectors);
328 vsi->q_vectors = NULL;
329 devm_kfree(dev, vsi->tx_rings);
330 vsi->tx_rings = NULL;
331 devm_kfree(dev, vsi->rx_rings);
332 vsi->rx_rings = NULL;
333 devm_kfree(dev, vsi->txq_map);
334 vsi->txq_map = NULL;
335 devm_kfree(dev, vsi->rxq_map);
336 vsi->rxq_map = NULL;
337 }
338
339 /**
340 * ice_vsi_free_stats - Free the ring statistics structures
341 * @vsi: VSI pointer
342 */
ice_vsi_free_stats(struct ice_vsi * vsi)343 static void ice_vsi_free_stats(struct ice_vsi *vsi)
344 {
345 struct ice_vsi_stats *vsi_stat;
346 struct ice_pf *pf = vsi->back;
347 int i;
348
349 if (vsi->type == ICE_VSI_CHNL)
350 return;
351 if (!pf->vsi_stats)
352 return;
353
354 vsi_stat = pf->vsi_stats[vsi->idx];
355 if (!vsi_stat)
356 return;
357
358 ice_for_each_alloc_txq(vsi, i) {
359 if (vsi_stat->tx_ring_stats[i]) {
360 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
361 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
362 }
363 }
364
365 ice_for_each_alloc_rxq(vsi, i) {
366 if (vsi_stat->rx_ring_stats[i]) {
367 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
368 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
369 }
370 }
371
372 kfree(vsi_stat->tx_ring_stats);
373 kfree(vsi_stat->rx_ring_stats);
374 kfree(vsi_stat);
375 pf->vsi_stats[vsi->idx] = NULL;
376 }
377
378 /**
379 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
380 * @vsi: VSI which is having stats allocated
381 */
ice_vsi_alloc_ring_stats(struct ice_vsi * vsi)382 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
383 {
384 struct ice_ring_stats **tx_ring_stats;
385 struct ice_ring_stats **rx_ring_stats;
386 struct ice_vsi_stats *vsi_stats;
387 struct ice_pf *pf = vsi->back;
388 u16 i;
389
390 vsi_stats = pf->vsi_stats[vsi->idx];
391 tx_ring_stats = vsi_stats->tx_ring_stats;
392 rx_ring_stats = vsi_stats->rx_ring_stats;
393
394 /* Allocate Tx ring stats */
395 ice_for_each_alloc_txq(vsi, i) {
396 struct ice_ring_stats *ring_stats;
397 struct ice_tx_ring *ring;
398
399 ring = vsi->tx_rings[i];
400 ring_stats = tx_ring_stats[i];
401
402 if (!ring_stats) {
403 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
404 if (!ring_stats)
405 goto err_out;
406
407 WRITE_ONCE(tx_ring_stats[i], ring_stats);
408 }
409
410 ring->ring_stats = ring_stats;
411 }
412
413 /* Allocate Rx ring stats */
414 ice_for_each_alloc_rxq(vsi, i) {
415 struct ice_ring_stats *ring_stats;
416 struct ice_rx_ring *ring;
417
418 ring = vsi->rx_rings[i];
419 ring_stats = rx_ring_stats[i];
420
421 if (!ring_stats) {
422 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
423 if (!ring_stats)
424 goto err_out;
425
426 WRITE_ONCE(rx_ring_stats[i], ring_stats);
427 }
428
429 ring->ring_stats = ring_stats;
430 }
431
432 return 0;
433
434 err_out:
435 ice_vsi_free_stats(vsi);
436 return -ENOMEM;
437 }
438
439 /**
440 * ice_vsi_free - clean up and deallocate the provided VSI
441 * @vsi: pointer to VSI being cleared
442 *
443 * This deallocates the VSI's queue resources, removes it from the PF's
444 * VSI array if necessary, and deallocates the VSI
445 */
ice_vsi_free(struct ice_vsi * vsi)446 static void ice_vsi_free(struct ice_vsi *vsi)
447 {
448 struct ice_pf *pf = NULL;
449 struct device *dev;
450
451 if (!vsi || !vsi->back)
452 return;
453
454 pf = vsi->back;
455 dev = ice_pf_to_dev(pf);
456
457 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
458 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
459 return;
460 }
461
462 mutex_lock(&pf->sw_mutex);
463 /* updates the PF for this cleared VSI */
464
465 pf->vsi[vsi->idx] = NULL;
466 pf->next_vsi = vsi->idx;
467
468 ice_vsi_free_stats(vsi);
469 ice_vsi_free_arrays(vsi);
470 mutex_unlock(&pf->sw_mutex);
471 devm_kfree(dev, vsi);
472 }
473
ice_vsi_delete(struct ice_vsi * vsi)474 void ice_vsi_delete(struct ice_vsi *vsi)
475 {
476 ice_vsi_delete_from_hw(vsi);
477 ice_vsi_free(vsi);
478 }
479
480 /**
481 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
482 * @irq: interrupt number
483 * @data: pointer to a q_vector
484 */
ice_msix_clean_ctrl_vsi(int __always_unused irq,void * data)485 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
486 {
487 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
488
489 if (!q_vector->tx.tx_ring)
490 return IRQ_HANDLED;
491
492 #define FDIR_RX_DESC_CLEAN_BUDGET 64
493 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
494 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
495
496 return IRQ_HANDLED;
497 }
498
499 /**
500 * ice_msix_clean_rings - MSIX mode Interrupt Handler
501 * @irq: interrupt number
502 * @data: pointer to a q_vector
503 */
ice_msix_clean_rings(int __always_unused irq,void * data)504 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
505 {
506 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
507
508 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
509 return IRQ_HANDLED;
510
511 q_vector->total_events++;
512
513 napi_schedule(&q_vector->napi);
514
515 return IRQ_HANDLED;
516 }
517
ice_eswitch_msix_clean_rings(int __always_unused irq,void * data)518 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
519 {
520 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
521 struct ice_pf *pf = q_vector->vsi->back;
522 struct ice_vf *vf;
523 unsigned int bkt;
524
525 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
526 return IRQ_HANDLED;
527
528 rcu_read_lock();
529 ice_for_each_vf_rcu(pf, bkt, vf)
530 napi_schedule(&vf->repr->q_vector->napi);
531 rcu_read_unlock();
532
533 return IRQ_HANDLED;
534 }
535
536 /**
537 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
538 * @vsi: VSI pointer
539 */
ice_vsi_alloc_stat_arrays(struct ice_vsi * vsi)540 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
541 {
542 struct ice_vsi_stats *vsi_stat;
543 struct ice_pf *pf = vsi->back;
544
545 if (vsi->type == ICE_VSI_CHNL)
546 return 0;
547 if (!pf->vsi_stats)
548 return -ENOENT;
549
550 if (pf->vsi_stats[vsi->idx])
551 /* realloc will happen in rebuild path */
552 return 0;
553
554 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
555 if (!vsi_stat)
556 return -ENOMEM;
557
558 vsi_stat->tx_ring_stats =
559 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
560 GFP_KERNEL);
561 if (!vsi_stat->tx_ring_stats)
562 goto err_alloc_tx;
563
564 vsi_stat->rx_ring_stats =
565 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
566 GFP_KERNEL);
567 if (!vsi_stat->rx_ring_stats)
568 goto err_alloc_rx;
569
570 pf->vsi_stats[vsi->idx] = vsi_stat;
571
572 return 0;
573
574 err_alloc_rx:
575 kfree(vsi_stat->rx_ring_stats);
576 err_alloc_tx:
577 kfree(vsi_stat->tx_ring_stats);
578 kfree(vsi_stat);
579 pf->vsi_stats[vsi->idx] = NULL;
580 return -ENOMEM;
581 }
582
583 /**
584 * ice_vsi_alloc_def - set default values for already allocated VSI
585 * @vsi: ptr to VSI
586 * @ch: ptr to channel
587 */
588 static int
ice_vsi_alloc_def(struct ice_vsi * vsi,struct ice_channel * ch)589 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
590 {
591 if (vsi->type != ICE_VSI_CHNL) {
592 ice_vsi_set_num_qs(vsi);
593 if (ice_vsi_alloc_arrays(vsi))
594 return -ENOMEM;
595 }
596
597 switch (vsi->type) {
598 case ICE_VSI_SWITCHDEV_CTRL:
599 /* Setup eswitch MSIX irq handler for VSI */
600 vsi->irq_handler = ice_eswitch_msix_clean_rings;
601 break;
602 case ICE_VSI_PF:
603 /* Setup default MSIX irq handler for VSI */
604 vsi->irq_handler = ice_msix_clean_rings;
605 break;
606 case ICE_VSI_CTRL:
607 /* Setup ctrl VSI MSIX irq handler */
608 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
609 break;
610 case ICE_VSI_CHNL:
611 if (!ch)
612 return -EINVAL;
613
614 vsi->num_rxq = ch->num_rxq;
615 vsi->num_txq = ch->num_txq;
616 vsi->next_base_q = ch->base_q;
617 break;
618 case ICE_VSI_VF:
619 case ICE_VSI_LB:
620 break;
621 default:
622 ice_vsi_free_arrays(vsi);
623 return -EINVAL;
624 }
625
626 return 0;
627 }
628
629 /**
630 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
631 * @pf: board private structure
632 *
633 * Reserves a VSI index from the PF and allocates an empty VSI structure
634 * without a type. The VSI structure must later be initialized by calling
635 * ice_vsi_cfg().
636 *
637 * returns a pointer to a VSI on success, NULL on failure.
638 */
ice_vsi_alloc(struct ice_pf * pf)639 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
640 {
641 struct device *dev = ice_pf_to_dev(pf);
642 struct ice_vsi *vsi = NULL;
643
644 /* Need to protect the allocation of the VSIs at the PF level */
645 mutex_lock(&pf->sw_mutex);
646
647 /* If we have already allocated our maximum number of VSIs,
648 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
649 * is available to be populated
650 */
651 if (pf->next_vsi == ICE_NO_VSI) {
652 dev_dbg(dev, "out of VSI slots!\n");
653 goto unlock_pf;
654 }
655
656 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
657 if (!vsi)
658 goto unlock_pf;
659
660 vsi->back = pf;
661 set_bit(ICE_VSI_DOWN, vsi->state);
662
663 /* fill slot and make note of the index */
664 vsi->idx = pf->next_vsi;
665 pf->vsi[pf->next_vsi] = vsi;
666
667 /* prepare pf->next_vsi for next use */
668 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
669 pf->next_vsi);
670
671 unlock_pf:
672 mutex_unlock(&pf->sw_mutex);
673 return vsi;
674 }
675
676 /**
677 * ice_alloc_fd_res - Allocate FD resource for a VSI
678 * @vsi: pointer to the ice_vsi
679 *
680 * This allocates the FD resources
681 *
682 * Returns 0 on success, -EPERM on no-op or -EIO on failure
683 */
ice_alloc_fd_res(struct ice_vsi * vsi)684 static int ice_alloc_fd_res(struct ice_vsi *vsi)
685 {
686 struct ice_pf *pf = vsi->back;
687 u32 g_val, b_val;
688
689 /* Flow Director filters are only allocated/assigned to the PF VSI or
690 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
691 * add/delete filters so resources are not allocated to it
692 */
693 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
694 return -EPERM;
695
696 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
697 vsi->type == ICE_VSI_CHNL))
698 return -EPERM;
699
700 /* FD filters from guaranteed pool per VSI */
701 g_val = pf->hw.func_caps.fd_fltr_guar;
702 if (!g_val)
703 return -EPERM;
704
705 /* FD filters from best effort pool */
706 b_val = pf->hw.func_caps.fd_fltr_best_effort;
707 if (!b_val)
708 return -EPERM;
709
710 /* PF main VSI gets only 64 FD resources from guaranteed pool
711 * when ADQ is configured.
712 */
713 #define ICE_PF_VSI_GFLTR 64
714
715 /* determine FD filter resources per VSI from shared(best effort) and
716 * dedicated pool
717 */
718 if (vsi->type == ICE_VSI_PF) {
719 vsi->num_gfltr = g_val;
720 /* if MQPRIO is configured, main VSI doesn't get all FD
721 * resources from guaranteed pool. PF VSI gets 64 FD resources
722 */
723 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
724 if (g_val < ICE_PF_VSI_GFLTR)
725 return -EPERM;
726 /* allow bare minimum entries for PF VSI */
727 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
728 }
729
730 /* each VSI gets same "best_effort" quota */
731 vsi->num_bfltr = b_val;
732 } else if (vsi->type == ICE_VSI_VF) {
733 vsi->num_gfltr = 0;
734
735 /* each VSI gets same "best_effort" quota */
736 vsi->num_bfltr = b_val;
737 } else {
738 struct ice_vsi *main_vsi;
739 int numtc;
740
741 main_vsi = ice_get_main_vsi(pf);
742 if (!main_vsi)
743 return -EPERM;
744
745 if (!main_vsi->all_numtc)
746 return -EINVAL;
747
748 /* figure out ADQ numtc */
749 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
750
751 /* only one TC but still asking resources for channels,
752 * invalid config
753 */
754 if (numtc < ICE_CHNL_START_TC)
755 return -EPERM;
756
757 g_val -= ICE_PF_VSI_GFLTR;
758 /* channel VSIs gets equal share from guaranteed pool */
759 vsi->num_gfltr = g_val / numtc;
760
761 /* each VSI gets same "best_effort" quota */
762 vsi->num_bfltr = b_val;
763 }
764
765 return 0;
766 }
767
768 /**
769 * ice_vsi_get_qs - Assign queues from PF to VSI
770 * @vsi: the VSI to assign queues to
771 *
772 * Returns 0 on success and a negative value on error
773 */
ice_vsi_get_qs(struct ice_vsi * vsi)774 static int ice_vsi_get_qs(struct ice_vsi *vsi)
775 {
776 struct ice_pf *pf = vsi->back;
777 struct ice_qs_cfg tx_qs_cfg = {
778 .qs_mutex = &pf->avail_q_mutex,
779 .pf_map = pf->avail_txqs,
780 .pf_map_size = pf->max_pf_txqs,
781 .q_count = vsi->alloc_txq,
782 .scatter_count = ICE_MAX_SCATTER_TXQS,
783 .vsi_map = vsi->txq_map,
784 .vsi_map_offset = 0,
785 .mapping_mode = ICE_VSI_MAP_CONTIG
786 };
787 struct ice_qs_cfg rx_qs_cfg = {
788 .qs_mutex = &pf->avail_q_mutex,
789 .pf_map = pf->avail_rxqs,
790 .pf_map_size = pf->max_pf_rxqs,
791 .q_count = vsi->alloc_rxq,
792 .scatter_count = ICE_MAX_SCATTER_RXQS,
793 .vsi_map = vsi->rxq_map,
794 .vsi_map_offset = 0,
795 .mapping_mode = ICE_VSI_MAP_CONTIG
796 };
797 int ret;
798
799 if (vsi->type == ICE_VSI_CHNL)
800 return 0;
801
802 ret = __ice_vsi_get_qs(&tx_qs_cfg);
803 if (ret)
804 return ret;
805 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
806
807 ret = __ice_vsi_get_qs(&rx_qs_cfg);
808 if (ret)
809 return ret;
810 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
811
812 return 0;
813 }
814
815 /**
816 * ice_vsi_put_qs - Release queues from VSI to PF
817 * @vsi: the VSI that is going to release queues
818 */
ice_vsi_put_qs(struct ice_vsi * vsi)819 static void ice_vsi_put_qs(struct ice_vsi *vsi)
820 {
821 struct ice_pf *pf = vsi->back;
822 int i;
823
824 mutex_lock(&pf->avail_q_mutex);
825
826 ice_for_each_alloc_txq(vsi, i) {
827 clear_bit(vsi->txq_map[i], pf->avail_txqs);
828 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
829 }
830
831 ice_for_each_alloc_rxq(vsi, i) {
832 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
833 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
834 }
835
836 mutex_unlock(&pf->avail_q_mutex);
837 }
838
839 /**
840 * ice_is_safe_mode
841 * @pf: pointer to the PF struct
842 *
843 * returns true if driver is in safe mode, false otherwise
844 */
ice_is_safe_mode(struct ice_pf * pf)845 bool ice_is_safe_mode(struct ice_pf *pf)
846 {
847 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
848 }
849
850 /**
851 * ice_is_rdma_ena
852 * @pf: pointer to the PF struct
853 *
854 * returns true if RDMA is currently supported, false otherwise
855 */
ice_is_rdma_ena(struct ice_pf * pf)856 bool ice_is_rdma_ena(struct ice_pf *pf)
857 {
858 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
859 }
860
861 /**
862 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
863 * @vsi: the VSI being cleaned up
864 *
865 * This function deletes RSS input set for all flows that were configured
866 * for this VSI
867 */
ice_vsi_clean_rss_flow_fld(struct ice_vsi * vsi)868 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
869 {
870 struct ice_pf *pf = vsi->back;
871 int status;
872
873 if (ice_is_safe_mode(pf))
874 return;
875
876 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
877 if (status)
878 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
879 vsi->vsi_num, status);
880 }
881
882 /**
883 * ice_rss_clean - Delete RSS related VSI structures and configuration
884 * @vsi: the VSI being removed
885 */
ice_rss_clean(struct ice_vsi * vsi)886 static void ice_rss_clean(struct ice_vsi *vsi)
887 {
888 struct ice_pf *pf = vsi->back;
889 struct device *dev;
890
891 dev = ice_pf_to_dev(pf);
892
893 devm_kfree(dev, vsi->rss_hkey_user);
894 devm_kfree(dev, vsi->rss_lut_user);
895
896 ice_vsi_clean_rss_flow_fld(vsi);
897 /* remove RSS replay list */
898 if (!ice_is_safe_mode(pf))
899 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
900 }
901
902 /**
903 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
904 * @vsi: the VSI being configured
905 */
ice_vsi_set_rss_params(struct ice_vsi * vsi)906 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
907 {
908 struct ice_hw_common_caps *cap;
909 struct ice_pf *pf = vsi->back;
910 u16 max_rss_size;
911
912 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
913 vsi->rss_size = 1;
914 return;
915 }
916
917 cap = &pf->hw.func_caps.common_cap;
918 max_rss_size = BIT(cap->rss_table_entry_width);
919 switch (vsi->type) {
920 case ICE_VSI_CHNL:
921 case ICE_VSI_PF:
922 /* PF VSI will inherit RSS instance of PF */
923 vsi->rss_table_size = (u16)cap->rss_table_size;
924 if (vsi->type == ICE_VSI_CHNL)
925 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
926 else
927 vsi->rss_size = min_t(u16, num_online_cpus(),
928 max_rss_size);
929 vsi->rss_lut_type = ICE_LUT_PF;
930 break;
931 case ICE_VSI_SWITCHDEV_CTRL:
932 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
933 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
934 vsi->rss_lut_type = ICE_LUT_VSI;
935 break;
936 case ICE_VSI_VF:
937 /* VF VSI will get a small RSS table.
938 * For VSI_LUT, LUT size should be set to 64 bytes.
939 */
940 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
941 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
942 vsi->rss_lut_type = ICE_LUT_VSI;
943 break;
944 case ICE_VSI_LB:
945 break;
946 default:
947 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
948 ice_vsi_type_str(vsi->type));
949 break;
950 }
951 }
952
953 /**
954 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
955 * @hw: HW structure used to determine the VLAN mode of the device
956 * @ctxt: the VSI context being set
957 *
958 * This initializes a default VSI context for all sections except the Queues.
959 */
ice_set_dflt_vsi_ctx(struct ice_hw * hw,struct ice_vsi_ctx * ctxt)960 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
961 {
962 u32 table = 0;
963
964 memset(&ctxt->info, 0, sizeof(ctxt->info));
965 /* VSI's should be allocated from shared pool */
966 ctxt->alloc_from_pool = true;
967 /* Src pruning enabled by default */
968 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
969 /* Traffic from VSI can be sent to LAN */
970 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
971 /* allow all untagged/tagged packets by default on Tx */
972 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
973 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
974 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
975 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
976 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
977 *
978 * DVM - leave inner VLAN in packet by default
979 */
980 if (ice_is_dvm_ena(hw)) {
981 ctxt->info.inner_vlan_flags |=
982 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
983 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
984 ctxt->info.outer_vlan_flags =
985 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
986 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
987 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
988 ctxt->info.outer_vlan_flags |=
989 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
990 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
991 ICE_AQ_VSI_OUTER_TAG_TYPE_M;
992 ctxt->info.outer_vlan_flags |=
993 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
994 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
995 }
996 /* Have 1:1 UP mapping for both ingress/egress tables */
997 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
998 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
999 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
1000 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1001 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1002 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1003 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1004 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1005 ctxt->info.ingress_table = cpu_to_le32(table);
1006 ctxt->info.egress_table = cpu_to_le32(table);
1007 /* Have 1:1 UP mapping for outer to inner UP table */
1008 ctxt->info.outer_up_table = cpu_to_le32(table);
1009 /* No Outer tag support outer_tag_flags remains to zero */
1010 }
1011
1012 /**
1013 * ice_vsi_setup_q_map - Setup a VSI queue map
1014 * @vsi: the VSI being configured
1015 * @ctxt: VSI context structure
1016 */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1017 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1018 {
1019 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1020 u16 num_txq_per_tc, num_rxq_per_tc;
1021 u16 qcount_tx = vsi->alloc_txq;
1022 u16 qcount_rx = vsi->alloc_rxq;
1023 u8 netdev_tc = 0;
1024 int i;
1025
1026 if (!vsi->tc_cfg.numtc) {
1027 /* at least TC0 should be enabled by default */
1028 vsi->tc_cfg.numtc = 1;
1029 vsi->tc_cfg.ena_tc = 1;
1030 }
1031
1032 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1033 if (!num_rxq_per_tc)
1034 num_rxq_per_tc = 1;
1035 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1036 if (!num_txq_per_tc)
1037 num_txq_per_tc = 1;
1038
1039 /* find the (rounded up) power-of-2 of qcount */
1040 pow = (u16)order_base_2(num_rxq_per_tc);
1041
1042 /* TC mapping is a function of the number of Rx queues assigned to the
1043 * VSI for each traffic class and the offset of these queues.
1044 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1045 * queues allocated to TC0. No:of queues is a power-of-2.
1046 *
1047 * If TC is not enabled, the queue offset is set to 0, and allocate one
1048 * queue, this way, traffic for the given TC will be sent to the default
1049 * queue.
1050 *
1051 * Setup number and offset of Rx queues for all TCs for the VSI
1052 */
1053 ice_for_each_traffic_class(i) {
1054 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1055 /* TC is not enabled */
1056 vsi->tc_cfg.tc_info[i].qoffset = 0;
1057 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1058 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1059 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1060 ctxt->info.tc_mapping[i] = 0;
1061 continue;
1062 }
1063
1064 /* TC is enabled */
1065 vsi->tc_cfg.tc_info[i].qoffset = offset;
1066 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1067 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1068 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1069
1070 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1071 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1072 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1073 ICE_AQ_VSI_TC_Q_NUM_M);
1074 offset += num_rxq_per_tc;
1075 tx_count += num_txq_per_tc;
1076 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1077 }
1078
1079 /* if offset is non-zero, means it is calculated correctly based on
1080 * enabled TCs for a given VSI otherwise qcount_rx will always
1081 * be correct and non-zero because it is based off - VSI's
1082 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1083 * at least 1)
1084 */
1085 if (offset)
1086 rx_count = offset;
1087 else
1088 rx_count = num_rxq_per_tc;
1089
1090 if (rx_count > vsi->alloc_rxq) {
1091 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1092 rx_count, vsi->alloc_rxq);
1093 return -EINVAL;
1094 }
1095
1096 if (tx_count > vsi->alloc_txq) {
1097 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1098 tx_count, vsi->alloc_txq);
1099 return -EINVAL;
1100 }
1101
1102 vsi->num_txq = tx_count;
1103 vsi->num_rxq = rx_count;
1104
1105 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1106 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1107 /* since there is a chance that num_rxq could have been changed
1108 * in the above for loop, make num_txq equal to num_rxq.
1109 */
1110 vsi->num_txq = vsi->num_rxq;
1111 }
1112
1113 /* Rx queue mapping */
1114 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1115 /* q_mapping buffer holds the info for the first queue allocated for
1116 * this VSI in the PF space and also the number of queues associated
1117 * with this VSI.
1118 */
1119 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1120 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1121
1122 return 0;
1123 }
1124
1125 /**
1126 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1127 * @ctxt: the VSI context being set
1128 * @vsi: the VSI being configured
1129 */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1130 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1131 {
1132 u8 dflt_q_group, dflt_q_prio;
1133 u16 dflt_q, report_q, val;
1134
1135 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1136 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1137 return;
1138
1139 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1140 ctxt->info.valid_sections |= cpu_to_le16(val);
1141 dflt_q = 0;
1142 dflt_q_group = 0;
1143 report_q = 0;
1144 dflt_q_prio = 0;
1145
1146 /* enable flow director filtering/programming */
1147 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1148 ctxt->info.fd_options = cpu_to_le16(val);
1149 /* max of allocated flow director filters */
1150 ctxt->info.max_fd_fltr_dedicated =
1151 cpu_to_le16(vsi->num_gfltr);
1152 /* max of shared flow director filters any VSI may program */
1153 ctxt->info.max_fd_fltr_shared =
1154 cpu_to_le16(vsi->num_bfltr);
1155 /* default queue index within the VSI of the default FD */
1156 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1157 ICE_AQ_VSI_FD_DEF_Q_M);
1158 /* target queue or queue group to the FD filter */
1159 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1160 ICE_AQ_VSI_FD_DEF_GRP_M);
1161 ctxt->info.fd_def_q = cpu_to_le16(val);
1162 /* queue index on which FD filter completion is reported */
1163 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1164 ICE_AQ_VSI_FD_REPORT_Q_M);
1165 /* priority of the default qindex action */
1166 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1167 ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1168 ctxt->info.fd_report_opt = cpu_to_le16(val);
1169 }
1170
1171 /**
1172 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1173 * @ctxt: the VSI context being set
1174 * @vsi: the VSI being configured
1175 */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1176 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1177 {
1178 u8 lut_type, hash_type;
1179 struct device *dev;
1180 struct ice_pf *pf;
1181
1182 pf = vsi->back;
1183 dev = ice_pf_to_dev(pf);
1184
1185 switch (vsi->type) {
1186 case ICE_VSI_CHNL:
1187 case ICE_VSI_PF:
1188 /* PF VSI will inherit RSS instance of PF */
1189 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1190 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1191 break;
1192 case ICE_VSI_VF:
1193 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1194 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1195 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1196 break;
1197 default:
1198 dev_dbg(dev, "Unsupported VSI type %s\n",
1199 ice_vsi_type_str(vsi->type));
1200 return;
1201 }
1202
1203 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1204 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1205 (hash_type & ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1206 }
1207
1208 static void
ice_chnl_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1209 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1210 {
1211 struct ice_pf *pf = vsi->back;
1212 u16 qcount, qmap;
1213 u8 offset = 0;
1214 int pow;
1215
1216 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1217
1218 pow = order_base_2(qcount);
1219 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1220 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1221 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1222 ICE_AQ_VSI_TC_Q_NUM_M);
1223
1224 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1225 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1226 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1227 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1228 }
1229
1230 /**
1231 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1232 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1233 *
1234 * returns true if Rx VLAN pruning is enabled and false otherwise.
1235 */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi * vsi)1236 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1237 {
1238 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1239 }
1240
1241 /**
1242 * ice_vsi_init - Create and initialize a VSI
1243 * @vsi: the VSI being configured
1244 * @vsi_flags: VSI configuration flags
1245 *
1246 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1247 * reconfigure an existing context.
1248 *
1249 * This initializes a VSI context depending on the VSI type to be added and
1250 * passes it down to the add_vsi aq command to create a new VSI.
1251 */
ice_vsi_init(struct ice_vsi * vsi,u32 vsi_flags)1252 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1253 {
1254 struct ice_pf *pf = vsi->back;
1255 struct ice_hw *hw = &pf->hw;
1256 struct ice_vsi_ctx *ctxt;
1257 struct device *dev;
1258 int ret = 0;
1259
1260 dev = ice_pf_to_dev(pf);
1261 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1262 if (!ctxt)
1263 return -ENOMEM;
1264
1265 switch (vsi->type) {
1266 case ICE_VSI_CTRL:
1267 case ICE_VSI_LB:
1268 case ICE_VSI_PF:
1269 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1270 break;
1271 case ICE_VSI_SWITCHDEV_CTRL:
1272 case ICE_VSI_CHNL:
1273 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1274 break;
1275 case ICE_VSI_VF:
1276 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1277 /* VF number here is the absolute VF number (0-255) */
1278 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1279 break;
1280 default:
1281 ret = -ENODEV;
1282 goto out;
1283 }
1284
1285 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1286 * prune enabled
1287 */
1288 if (vsi->type == ICE_VSI_CHNL) {
1289 struct ice_vsi *main_vsi;
1290
1291 main_vsi = ice_get_main_vsi(pf);
1292 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1293 ctxt->info.sw_flags2 |=
1294 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1295 else
1296 ctxt->info.sw_flags2 &=
1297 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1298 }
1299
1300 ice_set_dflt_vsi_ctx(hw, ctxt);
1301 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1302 ice_set_fd_vsi_ctx(ctxt, vsi);
1303 /* if the switch is in VEB mode, allow VSI loopback */
1304 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1305 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1306
1307 /* Set LUT type and HASH type if RSS is enabled */
1308 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1309 vsi->type != ICE_VSI_CTRL) {
1310 ice_set_rss_vsi_ctx(ctxt, vsi);
1311 /* if updating VSI context, make sure to set valid_section:
1312 * to indicate which section of VSI context being updated
1313 */
1314 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1315 ctxt->info.valid_sections |=
1316 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1317 }
1318
1319 ctxt->info.sw_id = vsi->port_info->sw_id;
1320 if (vsi->type == ICE_VSI_CHNL) {
1321 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1322 } else {
1323 ret = ice_vsi_setup_q_map(vsi, ctxt);
1324 if (ret)
1325 goto out;
1326
1327 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1328 /* means VSI being updated */
1329 /* must to indicate which section of VSI context are
1330 * being modified
1331 */
1332 ctxt->info.valid_sections |=
1333 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1334 }
1335
1336 /* Allow control frames out of main VSI */
1337 if (vsi->type == ICE_VSI_PF) {
1338 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1339 ctxt->info.valid_sections |=
1340 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1341 }
1342
1343 if (vsi_flags & ICE_VSI_FLAG_INIT) {
1344 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1345 if (ret) {
1346 dev_err(dev, "Add VSI failed, err %d\n", ret);
1347 ret = -EIO;
1348 goto out;
1349 }
1350 } else {
1351 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1352 if (ret) {
1353 dev_err(dev, "Update VSI failed, err %d\n", ret);
1354 ret = -EIO;
1355 goto out;
1356 }
1357 }
1358
1359 /* keep context for update VSI operations */
1360 vsi->info = ctxt->info;
1361
1362 /* record VSI number returned */
1363 vsi->vsi_num = ctxt->vsi_num;
1364
1365 out:
1366 kfree(ctxt);
1367 return ret;
1368 }
1369
1370 /**
1371 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1372 * @vsi: the VSI having rings deallocated
1373 */
ice_vsi_clear_rings(struct ice_vsi * vsi)1374 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1375 {
1376 int i;
1377
1378 /* Avoid stale references by clearing map from vector to ring */
1379 if (vsi->q_vectors) {
1380 ice_for_each_q_vector(vsi, i) {
1381 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1382
1383 if (q_vector) {
1384 q_vector->tx.tx_ring = NULL;
1385 q_vector->rx.rx_ring = NULL;
1386 }
1387 }
1388 }
1389
1390 if (vsi->tx_rings) {
1391 ice_for_each_alloc_txq(vsi, i) {
1392 if (vsi->tx_rings[i]) {
1393 kfree_rcu(vsi->tx_rings[i], rcu);
1394 WRITE_ONCE(vsi->tx_rings[i], NULL);
1395 }
1396 }
1397 }
1398 if (vsi->rx_rings) {
1399 ice_for_each_alloc_rxq(vsi, i) {
1400 if (vsi->rx_rings[i]) {
1401 kfree_rcu(vsi->rx_rings[i], rcu);
1402 WRITE_ONCE(vsi->rx_rings[i], NULL);
1403 }
1404 }
1405 }
1406 }
1407
1408 /**
1409 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1410 * @vsi: VSI which is having rings allocated
1411 */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1412 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1413 {
1414 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1415 struct ice_pf *pf = vsi->back;
1416 struct device *dev;
1417 u16 i;
1418
1419 dev = ice_pf_to_dev(pf);
1420 /* Allocate Tx rings */
1421 ice_for_each_alloc_txq(vsi, i) {
1422 struct ice_tx_ring *ring;
1423
1424 /* allocate with kzalloc(), free with kfree_rcu() */
1425 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1426
1427 if (!ring)
1428 goto err_out;
1429
1430 ring->q_index = i;
1431 ring->reg_idx = vsi->txq_map[i];
1432 ring->vsi = vsi;
1433 ring->tx_tstamps = &pf->ptp.port.tx;
1434 ring->dev = dev;
1435 ring->count = vsi->num_tx_desc;
1436 ring->txq_teid = ICE_INVAL_TEID;
1437 if (dvm_ena)
1438 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1439 else
1440 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1441 WRITE_ONCE(vsi->tx_rings[i], ring);
1442 }
1443
1444 /* Allocate Rx rings */
1445 ice_for_each_alloc_rxq(vsi, i) {
1446 struct ice_rx_ring *ring;
1447
1448 /* allocate with kzalloc(), free with kfree_rcu() */
1449 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1450 if (!ring)
1451 goto err_out;
1452
1453 ring->q_index = i;
1454 ring->reg_idx = vsi->rxq_map[i];
1455 ring->vsi = vsi;
1456 ring->netdev = vsi->netdev;
1457 ring->dev = dev;
1458 ring->count = vsi->num_rx_desc;
1459 ring->cached_phctime = pf->ptp.cached_phc_time;
1460 WRITE_ONCE(vsi->rx_rings[i], ring);
1461 }
1462
1463 return 0;
1464
1465 err_out:
1466 ice_vsi_clear_rings(vsi);
1467 return -ENOMEM;
1468 }
1469
1470 /**
1471 * ice_vsi_manage_rss_lut - disable/enable RSS
1472 * @vsi: the VSI being changed
1473 * @ena: boolean value indicating if this is an enable or disable request
1474 *
1475 * In the event of disable request for RSS, this function will zero out RSS
1476 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1477 * LUT.
1478 */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1479 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1480 {
1481 u8 *lut;
1482
1483 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1484 if (!lut)
1485 return;
1486
1487 if (ena) {
1488 if (vsi->rss_lut_user)
1489 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1490 else
1491 ice_fill_rss_lut(lut, vsi->rss_table_size,
1492 vsi->rss_size);
1493 }
1494
1495 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1496 kfree(lut);
1497 }
1498
1499 /**
1500 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1501 * @vsi: VSI to be configured
1502 * @disable: set to true to have FCS / CRC in the frame data
1503 */
ice_vsi_cfg_crc_strip(struct ice_vsi * vsi,bool disable)1504 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1505 {
1506 int i;
1507
1508 ice_for_each_rxq(vsi, i)
1509 if (disable)
1510 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1511 else
1512 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1513 }
1514
1515 /**
1516 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1517 * @vsi: VSI to be configured
1518 */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1519 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1520 {
1521 struct ice_pf *pf = vsi->back;
1522 struct device *dev;
1523 u8 *lut, *key;
1524 int err;
1525
1526 dev = ice_pf_to_dev(pf);
1527 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1528 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1529 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1530 } else {
1531 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1532
1533 /* If orig_rss_size is valid and it is less than determined
1534 * main VSI's rss_size, update main VSI's rss_size to be
1535 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1536 * RSS table gets programmed to be correct (whatever it was
1537 * to begin with (prior to setup-tc for ADQ config)
1538 */
1539 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1540 vsi->orig_rss_size <= vsi->num_rxq) {
1541 vsi->rss_size = vsi->orig_rss_size;
1542 /* now orig_rss_size is used, reset it to zero */
1543 vsi->orig_rss_size = 0;
1544 }
1545 }
1546
1547 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1548 if (!lut)
1549 return -ENOMEM;
1550
1551 if (vsi->rss_lut_user)
1552 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1553 else
1554 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1555
1556 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1557 if (err) {
1558 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1559 goto ice_vsi_cfg_rss_exit;
1560 }
1561
1562 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1563 if (!key) {
1564 err = -ENOMEM;
1565 goto ice_vsi_cfg_rss_exit;
1566 }
1567
1568 if (vsi->rss_hkey_user)
1569 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1570 else
1571 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1572
1573 err = ice_set_rss_key(vsi, key);
1574 if (err)
1575 dev_err(dev, "set_rss_key failed, error %d\n", err);
1576
1577 kfree(key);
1578 ice_vsi_cfg_rss_exit:
1579 kfree(lut);
1580 return err;
1581 }
1582
1583 /**
1584 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1585 * @vsi: VSI to be configured
1586 *
1587 * This function will only be called during the VF VSI setup. Upon successful
1588 * completion of package download, this function will configure default RSS
1589 * input sets for VF VSI.
1590 */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi * vsi)1591 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1592 {
1593 struct ice_pf *pf = vsi->back;
1594 struct device *dev;
1595 int status;
1596
1597 dev = ice_pf_to_dev(pf);
1598 if (ice_is_safe_mode(pf)) {
1599 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1600 vsi->vsi_num);
1601 return;
1602 }
1603
1604 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1605 if (status)
1606 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1607 vsi->vsi_num, status);
1608 }
1609
1610 /**
1611 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1612 * @vsi: VSI to be configured
1613 *
1614 * This function will only be called after successful download package call
1615 * during initialization of PF. Since the downloaded package will erase the
1616 * RSS section, this function will configure RSS input sets for different
1617 * flow types. The last profile added has the highest priority, therefore 2
1618 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1619 * (i.e. IPv4 src/dst TCP src/dst port).
1620 */
ice_vsi_set_rss_flow_fld(struct ice_vsi * vsi)1621 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1622 {
1623 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1624 struct ice_pf *pf = vsi->back;
1625 struct ice_hw *hw = &pf->hw;
1626 struct device *dev;
1627 int status;
1628
1629 dev = ice_pf_to_dev(pf);
1630 if (ice_is_safe_mode(pf)) {
1631 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1632 vsi_num);
1633 return;
1634 }
1635 /* configure RSS for IPv4 with input set IP src/dst */
1636 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1637 ICE_FLOW_SEG_HDR_IPV4);
1638 if (status)
1639 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1640 vsi_num, status);
1641
1642 /* configure RSS for IPv6 with input set IPv6 src/dst */
1643 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1644 ICE_FLOW_SEG_HDR_IPV6);
1645 if (status)
1646 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1647 vsi_num, status);
1648
1649 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1650 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1651 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1652 if (status)
1653 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1654 vsi_num, status);
1655
1656 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1657 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1658 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1659 if (status)
1660 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1661 vsi_num, status);
1662
1663 /* configure RSS for sctp4 with input set IP src/dst */
1664 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1665 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1666 if (status)
1667 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1668 vsi_num, status);
1669
1670 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1671 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1672 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1673 if (status)
1674 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1675 vsi_num, status);
1676
1677 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1678 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1679 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1680 if (status)
1681 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1682 vsi_num, status);
1683
1684 /* configure RSS for sctp6 with input set IPv6 src/dst */
1685 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1686 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1687 if (status)
1688 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1689 vsi_num, status);
1690
1691 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1692 ICE_FLOW_SEG_HDR_ESP);
1693 if (status)
1694 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1695 vsi_num, status);
1696 }
1697
1698 /**
1699 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1700 * @vsi: VSI
1701 */
ice_vsi_cfg_frame_size(struct ice_vsi * vsi)1702 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1703 {
1704 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1705 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
1706 vsi->rx_buf_len = ICE_RXBUF_1664;
1707 #if (PAGE_SIZE < 8192)
1708 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1709 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1710 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1711 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1712 #endif
1713 } else {
1714 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1715 vsi->rx_buf_len = ICE_RXBUF_3072;
1716 }
1717 }
1718
1719 /**
1720 * ice_pf_state_is_nominal - checks the PF for nominal state
1721 * @pf: pointer to PF to check
1722 *
1723 * Check the PF's state for a collection of bits that would indicate
1724 * the PF is in a state that would inhibit normal operation for
1725 * driver functionality.
1726 *
1727 * Returns true if PF is in a nominal state, false otherwise
1728 */
ice_pf_state_is_nominal(struct ice_pf * pf)1729 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1730 {
1731 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1732
1733 if (!pf)
1734 return false;
1735
1736 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1737 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1738 return false;
1739
1740 return true;
1741 }
1742
1743 /**
1744 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1745 * @vsi: the VSI to be updated
1746 */
ice_update_eth_stats(struct ice_vsi * vsi)1747 void ice_update_eth_stats(struct ice_vsi *vsi)
1748 {
1749 struct ice_eth_stats *prev_es, *cur_es;
1750 struct ice_hw *hw = &vsi->back->hw;
1751 struct ice_pf *pf = vsi->back;
1752 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1753
1754 prev_es = &vsi->eth_stats_prev;
1755 cur_es = &vsi->eth_stats;
1756
1757 if (ice_is_reset_in_progress(pf->state))
1758 vsi->stat_offsets_loaded = false;
1759
1760 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1761 &prev_es->rx_bytes, &cur_es->rx_bytes);
1762
1763 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1764 &prev_es->rx_unicast, &cur_es->rx_unicast);
1765
1766 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1767 &prev_es->rx_multicast, &cur_es->rx_multicast);
1768
1769 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1770 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1771
1772 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1773 &prev_es->rx_discards, &cur_es->rx_discards);
1774
1775 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1776 &prev_es->tx_bytes, &cur_es->tx_bytes);
1777
1778 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1779 &prev_es->tx_unicast, &cur_es->tx_unicast);
1780
1781 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1782 &prev_es->tx_multicast, &cur_es->tx_multicast);
1783
1784 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1785 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1786
1787 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1788 &prev_es->tx_errors, &cur_es->tx_errors);
1789
1790 vsi->stat_offsets_loaded = true;
1791 }
1792
1793 /**
1794 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1795 * @hw: HW pointer
1796 * @pf_q: index of the Rx queue in the PF's queue space
1797 * @rxdid: flexible descriptor RXDID
1798 * @prio: priority for the RXDID for this queue
1799 * @ena_ts: true to enable timestamp and false to disable timestamp
1800 */
1801 void
ice_write_qrxflxp_cntxt(struct ice_hw * hw,u16 pf_q,u32 rxdid,u32 prio,bool ena_ts)1802 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1803 bool ena_ts)
1804 {
1805 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1806
1807 /* clear any previous values */
1808 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1809 QRXFLXP_CNTXT_RXDID_PRIO_M |
1810 QRXFLXP_CNTXT_TS_M);
1811
1812 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1813 QRXFLXP_CNTXT_RXDID_IDX_M;
1814
1815 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1816 QRXFLXP_CNTXT_RXDID_PRIO_M;
1817
1818 if (ena_ts)
1819 /* Enable TimeSync on this queue */
1820 regval |= QRXFLXP_CNTXT_TS_M;
1821
1822 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1823 }
1824
ice_vsi_cfg_single_rxq(struct ice_vsi * vsi,u16 q_idx)1825 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1826 {
1827 if (q_idx >= vsi->num_rxq)
1828 return -EINVAL;
1829
1830 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1831 }
1832
ice_vsi_cfg_single_txq(struct ice_vsi * vsi,struct ice_tx_ring ** tx_rings,u16 q_idx)1833 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1834 {
1835 struct ice_aqc_add_tx_qgrp *qg_buf;
1836 int err;
1837
1838 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1839 return -EINVAL;
1840
1841 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1842 if (!qg_buf)
1843 return -ENOMEM;
1844
1845 qg_buf->num_txqs = 1;
1846
1847 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1848 kfree(qg_buf);
1849 return err;
1850 }
1851
1852 /**
1853 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1854 * @vsi: the VSI being configured
1855 *
1856 * Return 0 on success and a negative value on error
1857 * Configure the Rx VSI for operation.
1858 */
ice_vsi_cfg_rxqs(struct ice_vsi * vsi)1859 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1860 {
1861 u16 i;
1862
1863 if (vsi->type == ICE_VSI_VF)
1864 goto setup_rings;
1865
1866 ice_vsi_cfg_frame_size(vsi);
1867 setup_rings:
1868 /* set up individual rings */
1869 ice_for_each_rxq(vsi, i) {
1870 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1871
1872 if (err)
1873 return err;
1874 }
1875
1876 return 0;
1877 }
1878
1879 /**
1880 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1881 * @vsi: the VSI being configured
1882 * @rings: Tx ring array to be configured
1883 * @count: number of Tx ring array elements
1884 *
1885 * Return 0 on success and a negative value on error
1886 * Configure the Tx VSI for operation.
1887 */
1888 static int
ice_vsi_cfg_txqs(struct ice_vsi * vsi,struct ice_tx_ring ** rings,u16 count)1889 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1890 {
1891 struct ice_aqc_add_tx_qgrp *qg_buf;
1892 u16 q_idx = 0;
1893 int err = 0;
1894
1895 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1896 if (!qg_buf)
1897 return -ENOMEM;
1898
1899 qg_buf->num_txqs = 1;
1900
1901 for (q_idx = 0; q_idx < count; q_idx++) {
1902 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1903 if (err)
1904 goto err_cfg_txqs;
1905 }
1906
1907 err_cfg_txqs:
1908 kfree(qg_buf);
1909 return err;
1910 }
1911
1912 /**
1913 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1914 * @vsi: the VSI being configured
1915 *
1916 * Return 0 on success and a negative value on error
1917 * Configure the Tx VSI for operation.
1918 */
ice_vsi_cfg_lan_txqs(struct ice_vsi * vsi)1919 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1920 {
1921 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1922 }
1923
1924 /**
1925 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1926 * @vsi: the VSI being configured
1927 *
1928 * Return 0 on success and a negative value on error
1929 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1930 */
ice_vsi_cfg_xdp_txqs(struct ice_vsi * vsi)1931 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1932 {
1933 int ret;
1934 int i;
1935
1936 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1937 if (ret)
1938 return ret;
1939
1940 ice_for_each_rxq(vsi, i)
1941 ice_tx_xsk_pool(vsi, i);
1942
1943 return 0;
1944 }
1945
1946 /**
1947 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1948 * @intrl: interrupt rate limit in usecs
1949 * @gran: interrupt rate limit granularity in usecs
1950 *
1951 * This function converts a decimal interrupt rate limit in usecs to the format
1952 * expected by firmware.
1953 */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1954 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1955 {
1956 u32 val = intrl / gran;
1957
1958 if (val)
1959 return val | GLINT_RATE_INTRL_ENA_M;
1960 return 0;
1961 }
1962
1963 /**
1964 * ice_write_intrl - write throttle rate limit to interrupt specific register
1965 * @q_vector: pointer to interrupt specific structure
1966 * @intrl: throttle rate limit in microseconds to write
1967 */
ice_write_intrl(struct ice_q_vector * q_vector,u8 intrl)1968 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1969 {
1970 struct ice_hw *hw = &q_vector->vsi->back->hw;
1971
1972 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1973 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1974 }
1975
ice_pull_qvec_from_rc(struct ice_ring_container * rc)1976 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1977 {
1978 switch (rc->type) {
1979 case ICE_RX_CONTAINER:
1980 if (rc->rx_ring)
1981 return rc->rx_ring->q_vector;
1982 break;
1983 case ICE_TX_CONTAINER:
1984 if (rc->tx_ring)
1985 return rc->tx_ring->q_vector;
1986 break;
1987 default:
1988 break;
1989 }
1990
1991 return NULL;
1992 }
1993
1994 /**
1995 * __ice_write_itr - write throttle rate to register
1996 * @q_vector: pointer to interrupt data structure
1997 * @rc: pointer to ring container
1998 * @itr: throttle rate in microseconds to write
1999 */
__ice_write_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc,u16 itr)2000 static void __ice_write_itr(struct ice_q_vector *q_vector,
2001 struct ice_ring_container *rc, u16 itr)
2002 {
2003 struct ice_hw *hw = &q_vector->vsi->back->hw;
2004
2005 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2006 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2007 }
2008
2009 /**
2010 * ice_write_itr - write throttle rate to queue specific register
2011 * @rc: pointer to ring container
2012 * @itr: throttle rate in microseconds to write
2013 */
ice_write_itr(struct ice_ring_container * rc,u16 itr)2014 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2015 {
2016 struct ice_q_vector *q_vector;
2017
2018 q_vector = ice_pull_qvec_from_rc(rc);
2019 if (!q_vector)
2020 return;
2021
2022 __ice_write_itr(q_vector, rc, itr);
2023 }
2024
2025 /**
2026 * ice_set_q_vector_intrl - set up interrupt rate limiting
2027 * @q_vector: the vector to be configured
2028 *
2029 * Interrupt rate limiting is local to the vector, not per-queue so we must
2030 * detect if either ring container has dynamic moderation enabled to decide
2031 * what to set the interrupt rate limit to via INTRL settings. In the case that
2032 * dynamic moderation is disabled on both, write the value with the cached
2033 * setting to make sure INTRL register matches the user visible value.
2034 */
ice_set_q_vector_intrl(struct ice_q_vector * q_vector)2035 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2036 {
2037 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2038 /* in the case of dynamic enabled, cap each vector to no more
2039 * than (4 us) 250,000 ints/sec, which allows low latency
2040 * but still less than 500,000 interrupts per second, which
2041 * reduces CPU a bit in the case of the lowest latency
2042 * setting. The 4 here is a value in microseconds.
2043 */
2044 ice_write_intrl(q_vector, 4);
2045 } else {
2046 ice_write_intrl(q_vector, q_vector->intrl);
2047 }
2048 }
2049
2050 /**
2051 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2052 * @vsi: the VSI being configured
2053 *
2054 * This configures MSIX mode interrupts for the PF VSI, and should not be used
2055 * for the VF VSI.
2056 */
ice_vsi_cfg_msix(struct ice_vsi * vsi)2057 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2058 {
2059 struct ice_pf *pf = vsi->back;
2060 struct ice_hw *hw = &pf->hw;
2061 u16 txq = 0, rxq = 0;
2062 int i, q;
2063
2064 ice_for_each_q_vector(vsi, i) {
2065 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2066 u16 reg_idx = q_vector->reg_idx;
2067
2068 ice_cfg_itr(hw, q_vector);
2069
2070 /* Both Transmit Queue Interrupt Cause Control register
2071 * and Receive Queue Interrupt Cause control register
2072 * expects MSIX_INDX field to be the vector index
2073 * within the function space and not the absolute
2074 * vector index across PF or across device.
2075 * For SR-IOV VF VSIs queue vector index always starts
2076 * with 1 since first vector index(0) is used for OICR
2077 * in VF space. Since VMDq and other PF VSIs are within
2078 * the PF function space, use the vector index that is
2079 * tracked for this PF.
2080 */
2081 for (q = 0; q < q_vector->num_ring_tx; q++) {
2082 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2083 q_vector->tx.itr_idx);
2084 txq++;
2085 }
2086
2087 for (q = 0; q < q_vector->num_ring_rx; q++) {
2088 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2089 q_vector->rx.itr_idx);
2090 rxq++;
2091 }
2092 }
2093 }
2094
2095 /**
2096 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2097 * @vsi: the VSI whose rings are to be enabled
2098 *
2099 * Returns 0 on success and a negative value on error
2100 */
ice_vsi_start_all_rx_rings(struct ice_vsi * vsi)2101 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2102 {
2103 return ice_vsi_ctrl_all_rx_rings(vsi, true);
2104 }
2105
2106 /**
2107 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2108 * @vsi: the VSI whose rings are to be disabled
2109 *
2110 * Returns 0 on success and a negative value on error
2111 */
ice_vsi_stop_all_rx_rings(struct ice_vsi * vsi)2112 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2113 {
2114 return ice_vsi_ctrl_all_rx_rings(vsi, false);
2115 }
2116
2117 /**
2118 * ice_vsi_stop_tx_rings - Disable Tx rings
2119 * @vsi: the VSI being configured
2120 * @rst_src: reset source
2121 * @rel_vmvf_num: Relative ID of VF/VM
2122 * @rings: Tx ring array to be stopped
2123 * @count: number of Tx ring array elements
2124 */
2125 static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring ** rings,u16 count)2126 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2127 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2128 {
2129 u16 q_idx;
2130
2131 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2132 return -EINVAL;
2133
2134 for (q_idx = 0; q_idx < count; q_idx++) {
2135 struct ice_txq_meta txq_meta = { };
2136 int status;
2137
2138 if (!rings || !rings[q_idx])
2139 return -EINVAL;
2140
2141 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2142 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2143 rings[q_idx], &txq_meta);
2144
2145 if (status)
2146 return status;
2147 }
2148
2149 return 0;
2150 }
2151
2152 /**
2153 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2154 * @vsi: the VSI being configured
2155 * @rst_src: reset source
2156 * @rel_vmvf_num: Relative ID of VF/VM
2157 */
2158 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)2159 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2160 u16 rel_vmvf_num)
2161 {
2162 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2163 }
2164
2165 /**
2166 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2167 * @vsi: the VSI being configured
2168 */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi * vsi)2169 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2170 {
2171 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2172 }
2173
2174 /**
2175 * ice_vsi_is_rx_queue_active
2176 * @vsi: the VSI being configured
2177 *
2178 * Return true if at least one queue is active.
2179 */
ice_vsi_is_rx_queue_active(struct ice_vsi * vsi)2180 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2181 {
2182 struct ice_pf *pf = vsi->back;
2183 struct ice_hw *hw = &pf->hw;
2184 int i;
2185
2186 ice_for_each_rxq(vsi, i) {
2187 u32 rx_reg;
2188 int pf_q;
2189
2190 pf_q = vsi->rxq_map[i];
2191 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2192 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2193 return true;
2194 }
2195
2196 return false;
2197 }
2198
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2199 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2200 {
2201 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2202 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2203 vsi->tc_cfg.numtc = 1;
2204 return;
2205 }
2206
2207 /* set VSI TC information based on DCB config */
2208 ice_vsi_set_dcb_tc_cfg(vsi);
2209 }
2210
2211 /**
2212 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2213 * @vsi: the VSI being configured
2214 * @tx: bool to determine Tx or Rx rule
2215 * @create: bool to determine create or remove Rule
2216 */
ice_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2217 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2218 {
2219 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2220 enum ice_sw_fwd_act_type act);
2221 struct ice_pf *pf = vsi->back;
2222 struct device *dev;
2223 int status;
2224
2225 dev = ice_pf_to_dev(pf);
2226 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2227
2228 if (tx) {
2229 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2230 ICE_DROP_PACKET);
2231 } else {
2232 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2233 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2234 create);
2235 } else {
2236 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2237 ICE_FWD_TO_VSI);
2238 }
2239 }
2240
2241 if (status)
2242 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2243 create ? "adding" : "removing", tx ? "TX" : "RX",
2244 vsi->vsi_num, status);
2245 }
2246
2247 /**
2248 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2249 * @vsi: pointer to the VSI
2250 *
2251 * This function will allocate new scheduler aggregator now if needed and will
2252 * move specified VSI into it.
2253 */
ice_set_agg_vsi(struct ice_vsi * vsi)2254 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2255 {
2256 struct device *dev = ice_pf_to_dev(vsi->back);
2257 struct ice_agg_node *agg_node_iter = NULL;
2258 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2259 struct ice_agg_node *agg_node = NULL;
2260 int node_offset, max_agg_nodes = 0;
2261 struct ice_port_info *port_info;
2262 struct ice_pf *pf = vsi->back;
2263 u32 agg_node_id_start = 0;
2264 int status;
2265
2266 /* create (as needed) scheduler aggregator node and move VSI into
2267 * corresponding aggregator node
2268 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2269 * - VF aggregator nodes will contain VF VSI
2270 */
2271 port_info = pf->hw.port_info;
2272 if (!port_info)
2273 return;
2274
2275 switch (vsi->type) {
2276 case ICE_VSI_CTRL:
2277 case ICE_VSI_CHNL:
2278 case ICE_VSI_LB:
2279 case ICE_VSI_PF:
2280 case ICE_VSI_SWITCHDEV_CTRL:
2281 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2282 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2283 agg_node_iter = &pf->pf_agg_node[0];
2284 break;
2285 case ICE_VSI_VF:
2286 /* user can create 'n' VFs on a given PF, but since max children
2287 * per aggregator node can be only 64. Following code handles
2288 * aggregator(s) for VF VSIs, either selects a agg_node which
2289 * was already created provided num_vsis < 64, otherwise
2290 * select next available node, which will be created
2291 */
2292 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2293 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2294 agg_node_iter = &pf->vf_agg_node[0];
2295 break;
2296 default:
2297 /* other VSI type, handle later if needed */
2298 dev_dbg(dev, "unexpected VSI type %s\n",
2299 ice_vsi_type_str(vsi->type));
2300 return;
2301 }
2302
2303 /* find the appropriate aggregator node */
2304 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2305 /* see if we can find space in previously created
2306 * node if num_vsis < 64, otherwise skip
2307 */
2308 if (agg_node_iter->num_vsis &&
2309 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2310 agg_node_iter++;
2311 continue;
2312 }
2313
2314 if (agg_node_iter->valid &&
2315 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2316 agg_id = agg_node_iter->agg_id;
2317 agg_node = agg_node_iter;
2318 break;
2319 }
2320
2321 /* find unclaimed agg_id */
2322 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2323 agg_id = node_offset + agg_node_id_start;
2324 agg_node = agg_node_iter;
2325 break;
2326 }
2327 /* move to next agg_node */
2328 agg_node_iter++;
2329 }
2330
2331 if (!agg_node)
2332 return;
2333
2334 /* if selected aggregator node was not created, create it */
2335 if (!agg_node->valid) {
2336 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2337 (u8)vsi->tc_cfg.ena_tc);
2338 if (status) {
2339 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2340 agg_id);
2341 return;
2342 }
2343 /* aggregator node is created, store the needed info */
2344 agg_node->valid = true;
2345 agg_node->agg_id = agg_id;
2346 }
2347
2348 /* move VSI to corresponding aggregator node */
2349 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2350 (u8)vsi->tc_cfg.ena_tc);
2351 if (status) {
2352 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2353 vsi->idx, agg_id);
2354 return;
2355 }
2356
2357 /* keep active children count for aggregator node */
2358 agg_node->num_vsis++;
2359
2360 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2361 * to aggregator node
2362 */
2363 vsi->agg_node = agg_node;
2364 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2365 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2366 vsi->agg_node->num_vsis);
2367 }
2368
ice_vsi_cfg_tc_lan(struct ice_pf * pf,struct ice_vsi * vsi)2369 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2370 {
2371 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2372 struct device *dev = ice_pf_to_dev(pf);
2373 int ret, i;
2374
2375 /* configure VSI nodes based on number of queues and TC's */
2376 ice_for_each_traffic_class(i) {
2377 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2378 continue;
2379
2380 if (vsi->type == ICE_VSI_CHNL) {
2381 if (!vsi->alloc_txq && vsi->num_txq)
2382 max_txqs[i] = vsi->num_txq;
2383 else
2384 max_txqs[i] = pf->num_lan_tx;
2385 } else {
2386 max_txqs[i] = vsi->alloc_txq;
2387 }
2388
2389 if (vsi->type == ICE_VSI_PF)
2390 max_txqs[i] += vsi->num_xdp_txq;
2391 }
2392
2393 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2394 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2395 max_txqs);
2396 if (ret) {
2397 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2398 vsi->vsi_num, ret);
2399 return ret;
2400 }
2401
2402 return 0;
2403 }
2404
2405 /**
2406 * ice_vsi_cfg_def - configure default VSI based on the type
2407 * @vsi: pointer to VSI
2408 * @params: the parameters to configure this VSI with
2409 */
2410 static int
ice_vsi_cfg_def(struct ice_vsi * vsi,struct ice_vsi_cfg_params * params)2411 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2412 {
2413 struct device *dev = ice_pf_to_dev(vsi->back);
2414 struct ice_pf *pf = vsi->back;
2415 int ret;
2416
2417 vsi->vsw = pf->first_sw;
2418
2419 ret = ice_vsi_alloc_def(vsi, params->ch);
2420 if (ret)
2421 return ret;
2422
2423 /* allocate memory for Tx/Rx ring stat pointers */
2424 ret = ice_vsi_alloc_stat_arrays(vsi);
2425 if (ret)
2426 goto unroll_vsi_alloc;
2427
2428 ice_alloc_fd_res(vsi);
2429
2430 ret = ice_vsi_get_qs(vsi);
2431 if (ret) {
2432 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2433 vsi->idx);
2434 goto unroll_vsi_alloc_stat;
2435 }
2436
2437 /* set RSS capabilities */
2438 ice_vsi_set_rss_params(vsi);
2439
2440 /* set TC configuration */
2441 ice_vsi_set_tc_cfg(vsi);
2442
2443 /* create the VSI */
2444 ret = ice_vsi_init(vsi, params->flags);
2445 if (ret)
2446 goto unroll_get_qs;
2447
2448 ice_vsi_init_vlan_ops(vsi);
2449
2450 switch (vsi->type) {
2451 case ICE_VSI_CTRL:
2452 case ICE_VSI_SWITCHDEV_CTRL:
2453 case ICE_VSI_PF:
2454 ret = ice_vsi_alloc_q_vectors(vsi);
2455 if (ret)
2456 goto unroll_vsi_init;
2457
2458 ret = ice_vsi_alloc_rings(vsi);
2459 if (ret)
2460 goto unroll_vector_base;
2461
2462 ret = ice_vsi_alloc_ring_stats(vsi);
2463 if (ret)
2464 goto unroll_vector_base;
2465
2466 ice_vsi_map_rings_to_vectors(vsi);
2467 vsi->stat_offsets_loaded = false;
2468
2469 if (ice_is_xdp_ena_vsi(vsi)) {
2470 ret = ice_vsi_determine_xdp_res(vsi);
2471 if (ret)
2472 goto unroll_vector_base;
2473 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
2474 if (ret)
2475 goto unroll_vector_base;
2476 }
2477
2478 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2479 if (vsi->type != ICE_VSI_CTRL)
2480 /* Do not exit if configuring RSS had an issue, at
2481 * least receive traffic on first queue. Hence no
2482 * need to capture return value
2483 */
2484 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2485 ice_vsi_cfg_rss_lut_key(vsi);
2486 ice_vsi_set_rss_flow_fld(vsi);
2487 }
2488 ice_init_arfs(vsi);
2489 break;
2490 case ICE_VSI_CHNL:
2491 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2492 ice_vsi_cfg_rss_lut_key(vsi);
2493 ice_vsi_set_rss_flow_fld(vsi);
2494 }
2495 break;
2496 case ICE_VSI_VF:
2497 /* VF driver will take care of creating netdev for this type and
2498 * map queues to vectors through Virtchnl, PF driver only
2499 * creates a VSI and corresponding structures for bookkeeping
2500 * purpose
2501 */
2502 ret = ice_vsi_alloc_q_vectors(vsi);
2503 if (ret)
2504 goto unroll_vsi_init;
2505
2506 ret = ice_vsi_alloc_rings(vsi);
2507 if (ret)
2508 goto unroll_alloc_q_vector;
2509
2510 ret = ice_vsi_alloc_ring_stats(vsi);
2511 if (ret)
2512 goto unroll_vector_base;
2513
2514 vsi->stat_offsets_loaded = false;
2515
2516 /* Do not exit if configuring RSS had an issue, at least
2517 * receive traffic on first queue. Hence no need to capture
2518 * return value
2519 */
2520 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2521 ice_vsi_cfg_rss_lut_key(vsi);
2522 ice_vsi_set_vf_rss_flow_fld(vsi);
2523 }
2524 break;
2525 case ICE_VSI_LB:
2526 ret = ice_vsi_alloc_rings(vsi);
2527 if (ret)
2528 goto unroll_vsi_init;
2529
2530 ret = ice_vsi_alloc_ring_stats(vsi);
2531 if (ret)
2532 goto unroll_vector_base;
2533
2534 break;
2535 default:
2536 /* clean up the resources and exit */
2537 ret = -EINVAL;
2538 goto unroll_vsi_init;
2539 }
2540
2541 return 0;
2542
2543 unroll_vector_base:
2544 /* reclaim SW interrupts back to the common pool */
2545 unroll_alloc_q_vector:
2546 ice_vsi_free_q_vectors(vsi);
2547 unroll_vsi_init:
2548 ice_vsi_delete_from_hw(vsi);
2549 unroll_get_qs:
2550 ice_vsi_put_qs(vsi);
2551 unroll_vsi_alloc_stat:
2552 ice_vsi_free_stats(vsi);
2553 unroll_vsi_alloc:
2554 ice_vsi_free_arrays(vsi);
2555 return ret;
2556 }
2557
2558 /**
2559 * ice_vsi_cfg - configure a previously allocated VSI
2560 * @vsi: pointer to VSI
2561 * @params: parameters used to configure this VSI
2562 */
ice_vsi_cfg(struct ice_vsi * vsi,struct ice_vsi_cfg_params * params)2563 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2564 {
2565 struct ice_pf *pf = vsi->back;
2566 int ret;
2567
2568 if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2569 return -EINVAL;
2570
2571 vsi->type = params->type;
2572 vsi->port_info = params->pi;
2573
2574 /* For VSIs which don't have a connected VF, this will be NULL */
2575 vsi->vf = params->vf;
2576
2577 ret = ice_vsi_cfg_def(vsi, params);
2578 if (ret)
2579 return ret;
2580
2581 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2582 if (ret)
2583 ice_vsi_decfg(vsi);
2584
2585 if (vsi->type == ICE_VSI_CTRL) {
2586 if (vsi->vf) {
2587 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2588 vsi->vf->ctrl_vsi_idx = vsi->idx;
2589 } else {
2590 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2591 pf->ctrl_vsi_idx = vsi->idx;
2592 }
2593 }
2594
2595 return ret;
2596 }
2597
2598 /**
2599 * ice_vsi_decfg - remove all VSI configuration
2600 * @vsi: pointer to VSI
2601 */
ice_vsi_decfg(struct ice_vsi * vsi)2602 void ice_vsi_decfg(struct ice_vsi *vsi)
2603 {
2604 struct ice_pf *pf = vsi->back;
2605 int err;
2606
2607 /* The Rx rule will only exist to remove if the LLDP FW
2608 * engine is currently stopped
2609 */
2610 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2611 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2612 ice_cfg_sw_lldp(vsi, false, false);
2613
2614 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2615 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2616 if (err)
2617 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2618 vsi->vsi_num, err);
2619
2620 if (ice_is_xdp_ena_vsi(vsi))
2621 /* return value check can be skipped here, it always returns
2622 * 0 if reset is in progress
2623 */
2624 ice_destroy_xdp_rings(vsi);
2625
2626 ice_vsi_clear_rings(vsi);
2627 ice_vsi_free_q_vectors(vsi);
2628 ice_vsi_put_qs(vsi);
2629 ice_vsi_free_arrays(vsi);
2630
2631 /* SR-IOV determines needed MSIX resources all at once instead of per
2632 * VSI since when VFs are spawned we know how many VFs there are and how
2633 * many interrupts each VF needs. SR-IOV MSIX resources are also
2634 * cleared in the same manner.
2635 */
2636
2637 if (vsi->type == ICE_VSI_VF &&
2638 vsi->agg_node && vsi->agg_node->valid)
2639 vsi->agg_node->num_vsis--;
2640 }
2641
2642 /**
2643 * ice_vsi_setup - Set up a VSI by a given type
2644 * @pf: board private structure
2645 * @params: parameters to use when creating the VSI
2646 *
2647 * This allocates the sw VSI structure and its queue resources.
2648 *
2649 * Returns pointer to the successfully allocated and configured VSI sw struct on
2650 * success, NULL on failure.
2651 */
2652 struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_vsi_cfg_params * params)2653 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2654 {
2655 struct device *dev = ice_pf_to_dev(pf);
2656 struct ice_vsi *vsi;
2657 int ret;
2658
2659 /* ice_vsi_setup can only initialize a new VSI, and we must have
2660 * a port_info structure for it.
2661 */
2662 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2663 WARN_ON(!params->pi))
2664 return NULL;
2665
2666 vsi = ice_vsi_alloc(pf);
2667 if (!vsi) {
2668 dev_err(dev, "could not allocate VSI\n");
2669 return NULL;
2670 }
2671
2672 ret = ice_vsi_cfg(vsi, params);
2673 if (ret)
2674 goto err_vsi_cfg;
2675
2676 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2677 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2678 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2679 * The rule is added once for PF VSI in order to create appropriate
2680 * recipe, since VSI/VSI list is ignored with drop action...
2681 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2682 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2683 * settings in the HW.
2684 */
2685 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2686 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2687 ICE_DROP_PACKET);
2688 ice_cfg_sw_lldp(vsi, true, true);
2689 }
2690
2691 if (!vsi->agg_node)
2692 ice_set_agg_vsi(vsi);
2693
2694 return vsi;
2695
2696 err_vsi_cfg:
2697 ice_vsi_free(vsi);
2698
2699 return NULL;
2700 }
2701
2702 /**
2703 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2704 * @vsi: the VSI being cleaned up
2705 */
ice_vsi_release_msix(struct ice_vsi * vsi)2706 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2707 {
2708 struct ice_pf *pf = vsi->back;
2709 struct ice_hw *hw = &pf->hw;
2710 u32 txq = 0;
2711 u32 rxq = 0;
2712 int i, q;
2713
2714 ice_for_each_q_vector(vsi, i) {
2715 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2716
2717 ice_write_intrl(q_vector, 0);
2718 for (q = 0; q < q_vector->num_ring_tx; q++) {
2719 ice_write_itr(&q_vector->tx, 0);
2720 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2721 if (ice_is_xdp_ena_vsi(vsi)) {
2722 u32 xdp_txq = txq + vsi->num_xdp_txq;
2723
2724 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2725 }
2726 txq++;
2727 }
2728
2729 for (q = 0; q < q_vector->num_ring_rx; q++) {
2730 ice_write_itr(&q_vector->rx, 0);
2731 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2732 rxq++;
2733 }
2734 }
2735
2736 ice_flush(hw);
2737 }
2738
2739 /**
2740 * ice_vsi_free_irq - Free the IRQ association with the OS
2741 * @vsi: the VSI being configured
2742 */
ice_vsi_free_irq(struct ice_vsi * vsi)2743 void ice_vsi_free_irq(struct ice_vsi *vsi)
2744 {
2745 struct ice_pf *pf = vsi->back;
2746 int i;
2747
2748 if (!vsi->q_vectors || !vsi->irqs_ready)
2749 return;
2750
2751 ice_vsi_release_msix(vsi);
2752 if (vsi->type == ICE_VSI_VF)
2753 return;
2754
2755 vsi->irqs_ready = false;
2756 ice_free_cpu_rx_rmap(vsi);
2757
2758 ice_for_each_q_vector(vsi, i) {
2759 int irq_num;
2760
2761 irq_num = vsi->q_vectors[i]->irq.virq;
2762
2763 /* free only the irqs that were actually requested */
2764 if (!vsi->q_vectors[i] ||
2765 !(vsi->q_vectors[i]->num_ring_tx ||
2766 vsi->q_vectors[i]->num_ring_rx))
2767 continue;
2768
2769 /* clear the affinity notifier in the IRQ descriptor */
2770 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2771 irq_set_affinity_notifier(irq_num, NULL);
2772
2773 /* clear the affinity_mask in the IRQ descriptor */
2774 irq_set_affinity_hint(irq_num, NULL);
2775 synchronize_irq(irq_num);
2776 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2777 }
2778 }
2779
2780 /**
2781 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2782 * @vsi: the VSI having resources freed
2783 */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2784 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2785 {
2786 int i;
2787
2788 if (!vsi->tx_rings)
2789 return;
2790
2791 ice_for_each_txq(vsi, i)
2792 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2793 ice_free_tx_ring(vsi->tx_rings[i]);
2794 }
2795
2796 /**
2797 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2798 * @vsi: the VSI having resources freed
2799 */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2800 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2801 {
2802 int i;
2803
2804 if (!vsi->rx_rings)
2805 return;
2806
2807 ice_for_each_rxq(vsi, i)
2808 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2809 ice_free_rx_ring(vsi->rx_rings[i]);
2810 }
2811
2812 /**
2813 * ice_vsi_close - Shut down a VSI
2814 * @vsi: the VSI being shut down
2815 */
ice_vsi_close(struct ice_vsi * vsi)2816 void ice_vsi_close(struct ice_vsi *vsi)
2817 {
2818 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2819 ice_down(vsi);
2820
2821 ice_vsi_free_irq(vsi);
2822 ice_vsi_free_tx_rings(vsi);
2823 ice_vsi_free_rx_rings(vsi);
2824 }
2825
2826 /**
2827 * ice_ena_vsi - resume a VSI
2828 * @vsi: the VSI being resume
2829 * @locked: is the rtnl_lock already held
2830 */
ice_ena_vsi(struct ice_vsi * vsi,bool locked)2831 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2832 {
2833 int err = 0;
2834
2835 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2836 return 0;
2837
2838 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2839
2840 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2841 if (netif_running(vsi->netdev)) {
2842 if (!locked)
2843 rtnl_lock();
2844
2845 err = ice_open_internal(vsi->netdev);
2846
2847 if (!locked)
2848 rtnl_unlock();
2849 }
2850 } else if (vsi->type == ICE_VSI_CTRL) {
2851 err = ice_vsi_open_ctrl(vsi);
2852 }
2853
2854 return err;
2855 }
2856
2857 /**
2858 * ice_dis_vsi - pause a VSI
2859 * @vsi: the VSI being paused
2860 * @locked: is the rtnl_lock already held
2861 */
ice_dis_vsi(struct ice_vsi * vsi,bool locked)2862 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2863 {
2864 if (test_bit(ICE_VSI_DOWN, vsi->state))
2865 return;
2866
2867 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2868
2869 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2870 if (netif_running(vsi->netdev)) {
2871 if (!locked)
2872 rtnl_lock();
2873
2874 ice_vsi_close(vsi);
2875
2876 if (!locked)
2877 rtnl_unlock();
2878 } else {
2879 ice_vsi_close(vsi);
2880 }
2881 } else if (vsi->type == ICE_VSI_CTRL ||
2882 vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2883 ice_vsi_close(vsi);
2884 }
2885 }
2886
2887 /**
2888 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2889 * @vsi: the VSI being un-configured
2890 */
ice_vsi_dis_irq(struct ice_vsi * vsi)2891 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2892 {
2893 struct ice_pf *pf = vsi->back;
2894 struct ice_hw *hw = &pf->hw;
2895 u32 val;
2896 int i;
2897
2898 /* disable interrupt causation from each queue */
2899 if (vsi->tx_rings) {
2900 ice_for_each_txq(vsi, i) {
2901 if (vsi->tx_rings[i]) {
2902 u16 reg;
2903
2904 reg = vsi->tx_rings[i]->reg_idx;
2905 val = rd32(hw, QINT_TQCTL(reg));
2906 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2907 wr32(hw, QINT_TQCTL(reg), val);
2908 }
2909 }
2910 }
2911
2912 if (vsi->rx_rings) {
2913 ice_for_each_rxq(vsi, i) {
2914 if (vsi->rx_rings[i]) {
2915 u16 reg;
2916
2917 reg = vsi->rx_rings[i]->reg_idx;
2918 val = rd32(hw, QINT_RQCTL(reg));
2919 val &= ~QINT_RQCTL_CAUSE_ENA_M;
2920 wr32(hw, QINT_RQCTL(reg), val);
2921 }
2922 }
2923 }
2924
2925 /* disable each interrupt */
2926 ice_for_each_q_vector(vsi, i) {
2927 if (!vsi->q_vectors[i])
2928 continue;
2929 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2930 }
2931
2932 ice_flush(hw);
2933
2934 /* don't call synchronize_irq() for VF's from the host */
2935 if (vsi->type == ICE_VSI_VF)
2936 return;
2937
2938 ice_for_each_q_vector(vsi, i)
2939 synchronize_irq(vsi->q_vectors[i]->irq.virq);
2940 }
2941
2942 /**
2943 * ice_vsi_release - Delete a VSI and free its resources
2944 * @vsi: the VSI being removed
2945 *
2946 * Returns 0 on success or < 0 on error
2947 */
ice_vsi_release(struct ice_vsi * vsi)2948 int ice_vsi_release(struct ice_vsi *vsi)
2949 {
2950 struct ice_pf *pf;
2951
2952 if (!vsi->back)
2953 return -ENODEV;
2954 pf = vsi->back;
2955
2956 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2957 ice_rss_clean(vsi);
2958
2959 ice_vsi_close(vsi);
2960 ice_vsi_decfg(vsi);
2961
2962 /* retain SW VSI data structure since it is needed to unregister and
2963 * free VSI netdev when PF is not in reset recovery pending state,\
2964 * for ex: during rmmod.
2965 */
2966 if (!ice_is_reset_in_progress(pf->state))
2967 ice_vsi_delete(vsi);
2968
2969 return 0;
2970 }
2971
2972 /**
2973 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2974 * @vsi: VSI connected with q_vectors
2975 * @coalesce: array of struct with stored coalesce
2976 *
2977 * Returns array size.
2978 */
2979 static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce)2980 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2981 struct ice_coalesce_stored *coalesce)
2982 {
2983 int i;
2984
2985 ice_for_each_q_vector(vsi, i) {
2986 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2987
2988 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2989 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2990 coalesce[i].intrl = q_vector->intrl;
2991
2992 if (i < vsi->num_txq)
2993 coalesce[i].tx_valid = true;
2994 if (i < vsi->num_rxq)
2995 coalesce[i].rx_valid = true;
2996 }
2997
2998 return vsi->num_q_vectors;
2999 }
3000
3001 /**
3002 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3003 * @vsi: VSI connected with q_vectors
3004 * @coalesce: pointer to array of struct with stored coalesce
3005 * @size: size of coalesce array
3006 *
3007 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3008 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3009 * to default value.
3010 */
3011 static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce,int size)3012 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3013 struct ice_coalesce_stored *coalesce, int size)
3014 {
3015 struct ice_ring_container *rc;
3016 int i;
3017
3018 if ((size && !coalesce) || !vsi)
3019 return;
3020
3021 /* There are a couple of cases that have to be handled here:
3022 * 1. The case where the number of queue vectors stays the same, but
3023 * the number of Tx or Rx rings changes (the first for loop)
3024 * 2. The case where the number of queue vectors increased (the
3025 * second for loop)
3026 */
3027 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3028 /* There are 2 cases to handle here and they are the same for
3029 * both Tx and Rx:
3030 * if the entry was valid previously (coalesce[i].[tr]x_valid
3031 * and the loop variable is less than the number of rings
3032 * allocated, then write the previous values
3033 *
3034 * if the entry was not valid previously, but the number of
3035 * rings is less than are allocated (this means the number of
3036 * rings increased from previously), then write out the
3037 * values in the first element
3038 *
3039 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
3040 * as there is no harm because the dynamic algorithm
3041 * will just overwrite.
3042 */
3043 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3044 rc = &vsi->q_vectors[i]->rx;
3045 rc->itr_settings = coalesce[i].itr_rx;
3046 ice_write_itr(rc, rc->itr_setting);
3047 } else if (i < vsi->alloc_rxq) {
3048 rc = &vsi->q_vectors[i]->rx;
3049 rc->itr_settings = coalesce[0].itr_rx;
3050 ice_write_itr(rc, rc->itr_setting);
3051 }
3052
3053 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3054 rc = &vsi->q_vectors[i]->tx;
3055 rc->itr_settings = coalesce[i].itr_tx;
3056 ice_write_itr(rc, rc->itr_setting);
3057 } else if (i < vsi->alloc_txq) {
3058 rc = &vsi->q_vectors[i]->tx;
3059 rc->itr_settings = coalesce[0].itr_tx;
3060 ice_write_itr(rc, rc->itr_setting);
3061 }
3062
3063 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3064 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3065 }
3066
3067 /* the number of queue vectors increased so write whatever is in
3068 * the first element
3069 */
3070 for (; i < vsi->num_q_vectors; i++) {
3071 /* transmit */
3072 rc = &vsi->q_vectors[i]->tx;
3073 rc->itr_settings = coalesce[0].itr_tx;
3074 ice_write_itr(rc, rc->itr_setting);
3075
3076 /* receive */
3077 rc = &vsi->q_vectors[i]->rx;
3078 rc->itr_settings = coalesce[0].itr_rx;
3079 ice_write_itr(rc, rc->itr_setting);
3080
3081 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3082 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3083 }
3084 }
3085
3086 /**
3087 * ice_vsi_realloc_stat_arrays - Frees unused stat structures
3088 * @vsi: VSI pointer
3089 * @prev_txq: Number of Tx rings before ring reallocation
3090 * @prev_rxq: Number of Rx rings before ring reallocation
3091 */
3092 static void
ice_vsi_realloc_stat_arrays(struct ice_vsi * vsi,int prev_txq,int prev_rxq)3093 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi, int prev_txq, int prev_rxq)
3094 {
3095 struct ice_vsi_stats *vsi_stat;
3096 struct ice_pf *pf = vsi->back;
3097 int i;
3098
3099 if (!prev_txq || !prev_rxq)
3100 return;
3101 if (vsi->type == ICE_VSI_CHNL)
3102 return;
3103
3104 vsi_stat = pf->vsi_stats[vsi->idx];
3105
3106 if (vsi->num_txq < prev_txq) {
3107 for (i = vsi->num_txq; i < prev_txq; i++) {
3108 if (vsi_stat->tx_ring_stats[i]) {
3109 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3110 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3111 }
3112 }
3113 }
3114
3115 if (vsi->num_rxq < prev_rxq) {
3116 for (i = vsi->num_rxq; i < prev_rxq; i++) {
3117 if (vsi_stat->rx_ring_stats[i]) {
3118 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3119 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3120 }
3121 }
3122 }
3123 }
3124
3125 /**
3126 * ice_vsi_rebuild - Rebuild VSI after reset
3127 * @vsi: VSI to be rebuild
3128 * @vsi_flags: flags used for VSI rebuild flow
3129 *
3130 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3131 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3132 *
3133 * Returns 0 on success and negative value on failure
3134 */
ice_vsi_rebuild(struct ice_vsi * vsi,u32 vsi_flags)3135 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3136 {
3137 struct ice_vsi_cfg_params params = {};
3138 struct ice_coalesce_stored *coalesce;
3139 int ret, prev_txq, prev_rxq;
3140 int prev_num_q_vectors = 0;
3141 struct ice_pf *pf;
3142
3143 if (!vsi)
3144 return -EINVAL;
3145
3146 params = ice_vsi_to_params(vsi);
3147 params.flags = vsi_flags;
3148
3149 pf = vsi->back;
3150 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3151 return -EINVAL;
3152
3153 coalesce = kcalloc(vsi->num_q_vectors,
3154 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3155 if (!coalesce)
3156 return -ENOMEM;
3157
3158 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3159
3160 prev_txq = vsi->num_txq;
3161 prev_rxq = vsi->num_rxq;
3162
3163 ice_vsi_decfg(vsi);
3164 ret = ice_vsi_cfg_def(vsi, ¶ms);
3165 if (ret)
3166 goto err_vsi_cfg;
3167
3168 ret = ice_vsi_cfg_tc_lan(pf, vsi);
3169 if (ret) {
3170 if (vsi_flags & ICE_VSI_FLAG_INIT) {
3171 ret = -EIO;
3172 goto err_vsi_cfg_tc_lan;
3173 }
3174
3175 kfree(coalesce);
3176 return ice_schedule_reset(pf, ICE_RESET_PFR);
3177 }
3178
3179 ice_vsi_realloc_stat_arrays(vsi, prev_txq, prev_rxq);
3180
3181 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3182 kfree(coalesce);
3183
3184 return 0;
3185
3186 err_vsi_cfg_tc_lan:
3187 ice_vsi_decfg(vsi);
3188 err_vsi_cfg:
3189 kfree(coalesce);
3190 return ret;
3191 }
3192
3193 /**
3194 * ice_is_reset_in_progress - check for a reset in progress
3195 * @state: PF state field
3196 */
ice_is_reset_in_progress(unsigned long * state)3197 bool ice_is_reset_in_progress(unsigned long *state)
3198 {
3199 return test_bit(ICE_RESET_OICR_RECV, state) ||
3200 test_bit(ICE_PFR_REQ, state) ||
3201 test_bit(ICE_CORER_REQ, state) ||
3202 test_bit(ICE_GLOBR_REQ, state);
3203 }
3204
3205 /**
3206 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3207 * @pf: pointer to the PF structure
3208 * @timeout: length of time to wait, in jiffies
3209 *
3210 * Wait (sleep) for a short time until the driver finishes cleaning up from
3211 * a device reset. The caller must be able to sleep. Use this to delay
3212 * operations that could fail while the driver is cleaning up after a device
3213 * reset.
3214 *
3215 * Returns 0 on success, -EBUSY if the reset is not finished within the
3216 * timeout, and -ERESTARTSYS if the thread was interrupted.
3217 */
ice_wait_for_reset(struct ice_pf * pf,unsigned long timeout)3218 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3219 {
3220 long ret;
3221
3222 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3223 !ice_is_reset_in_progress(pf->state),
3224 timeout);
3225 if (ret < 0)
3226 return ret;
3227 else if (!ret)
3228 return -EBUSY;
3229 else
3230 return 0;
3231 }
3232
3233 /**
3234 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3235 * @vsi: VSI being configured
3236 * @ctx: the context buffer returned from AQ VSI update command
3237 */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3238 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3239 {
3240 vsi->info.mapping_flags = ctx->info.mapping_flags;
3241 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3242 sizeof(vsi->info.q_mapping));
3243 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3244 sizeof(vsi->info.tc_mapping));
3245 }
3246
3247 /**
3248 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3249 * @vsi: the VSI being configured
3250 * @ena_tc: TC map to be enabled
3251 */
ice_vsi_cfg_netdev_tc(struct ice_vsi * vsi,u8 ena_tc)3252 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3253 {
3254 struct net_device *netdev = vsi->netdev;
3255 struct ice_pf *pf = vsi->back;
3256 int numtc = vsi->tc_cfg.numtc;
3257 struct ice_dcbx_cfg *dcbcfg;
3258 u8 netdev_tc;
3259 int i;
3260
3261 if (!netdev)
3262 return;
3263
3264 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3265 if (vsi->type == ICE_VSI_CHNL)
3266 return;
3267
3268 if (!ena_tc) {
3269 netdev_reset_tc(netdev);
3270 return;
3271 }
3272
3273 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3274 numtc = vsi->all_numtc;
3275
3276 if (netdev_set_num_tc(netdev, numtc))
3277 return;
3278
3279 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3280
3281 ice_for_each_traffic_class(i)
3282 if (vsi->tc_cfg.ena_tc & BIT(i))
3283 netdev_set_tc_queue(netdev,
3284 vsi->tc_cfg.tc_info[i].netdev_tc,
3285 vsi->tc_cfg.tc_info[i].qcount_tx,
3286 vsi->tc_cfg.tc_info[i].qoffset);
3287 /* setup TC queue map for CHNL TCs */
3288 ice_for_each_chnl_tc(i) {
3289 if (!(vsi->all_enatc & BIT(i)))
3290 break;
3291 if (!vsi->mqprio_qopt.qopt.count[i])
3292 break;
3293 netdev_set_tc_queue(netdev, i,
3294 vsi->mqprio_qopt.qopt.count[i],
3295 vsi->mqprio_qopt.qopt.offset[i]);
3296 }
3297
3298 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3299 return;
3300
3301 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3302 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3303
3304 /* Get the mapped netdev TC# for the UP */
3305 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3306 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3307 }
3308 }
3309
3310 /**
3311 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3312 * @vsi: the VSI being configured,
3313 * @ctxt: VSI context structure
3314 * @ena_tc: number of traffic classes to enable
3315 *
3316 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3317 */
3318 static int
ice_vsi_setup_q_map_mqprio(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt,u8 ena_tc)3319 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3320 u8 ena_tc)
3321 {
3322 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3323 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3324 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3325 u16 new_txq, new_rxq;
3326 u8 netdev_tc = 0;
3327 int i;
3328
3329 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3330
3331 pow = order_base_2(tc0_qcount);
3332 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3333 ICE_AQ_VSI_TC_Q_OFFSET_M) |
3334 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3335
3336 ice_for_each_traffic_class(i) {
3337 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3338 /* TC is not enabled */
3339 vsi->tc_cfg.tc_info[i].qoffset = 0;
3340 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3341 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3342 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3343 ctxt->info.tc_mapping[i] = 0;
3344 continue;
3345 }
3346
3347 offset = vsi->mqprio_qopt.qopt.offset[i];
3348 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3349 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3350 vsi->tc_cfg.tc_info[i].qoffset = offset;
3351 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3352 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3353 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3354 }
3355
3356 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3357 ice_for_each_chnl_tc(i) {
3358 if (!(vsi->all_enatc & BIT(i)))
3359 continue;
3360 offset = vsi->mqprio_qopt.qopt.offset[i];
3361 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3362 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3363 }
3364 }
3365
3366 new_txq = offset + qcount_tx;
3367 if (new_txq > vsi->alloc_txq) {
3368 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3369 new_txq, vsi->alloc_txq);
3370 return -EINVAL;
3371 }
3372
3373 new_rxq = offset + qcount_rx;
3374 if (new_rxq > vsi->alloc_rxq) {
3375 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3376 new_rxq, vsi->alloc_rxq);
3377 return -EINVAL;
3378 }
3379
3380 /* Set actual Tx/Rx queue pairs */
3381 vsi->num_txq = new_txq;
3382 vsi->num_rxq = new_rxq;
3383
3384 /* Setup queue TC[0].qmap for given VSI context */
3385 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3386 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3387 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3388
3389 /* Find queue count available for channel VSIs and starting offset
3390 * for channel VSIs
3391 */
3392 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3393 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3394 vsi->next_base_q = tc0_qcount;
3395 }
3396 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3397 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3398 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3399 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3400
3401 return 0;
3402 }
3403
3404 /**
3405 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3406 * @vsi: VSI to be configured
3407 * @ena_tc: TC bitmap
3408 *
3409 * VSI queues expected to be quiesced before calling this function
3410 */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3411 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3412 {
3413 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3414 struct ice_pf *pf = vsi->back;
3415 struct ice_tc_cfg old_tc_cfg;
3416 struct ice_vsi_ctx *ctx;
3417 struct device *dev;
3418 int i, ret = 0;
3419 u8 num_tc = 0;
3420
3421 dev = ice_pf_to_dev(pf);
3422 if (vsi->tc_cfg.ena_tc == ena_tc &&
3423 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3424 return 0;
3425
3426 ice_for_each_traffic_class(i) {
3427 /* build bitmap of enabled TCs */
3428 if (ena_tc & BIT(i))
3429 num_tc++;
3430 /* populate max_txqs per TC */
3431 max_txqs[i] = vsi->alloc_txq;
3432 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3433 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3434 */
3435 if (vsi->type == ICE_VSI_CHNL &&
3436 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3437 max_txqs[i] = vsi->num_txq;
3438 }
3439
3440 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3441 vsi->tc_cfg.ena_tc = ena_tc;
3442 vsi->tc_cfg.numtc = num_tc;
3443
3444 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3445 if (!ctx)
3446 return -ENOMEM;
3447
3448 ctx->vf_num = 0;
3449 ctx->info = vsi->info;
3450
3451 if (vsi->type == ICE_VSI_PF &&
3452 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3453 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3454 else
3455 ret = ice_vsi_setup_q_map(vsi, ctx);
3456
3457 if (ret) {
3458 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3459 goto out;
3460 }
3461
3462 /* must to indicate which section of VSI context are being modified */
3463 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3464 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3465 if (ret) {
3466 dev_info(dev, "Failed VSI Update\n");
3467 goto out;
3468 }
3469
3470 if (vsi->type == ICE_VSI_PF &&
3471 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3472 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3473 else
3474 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3475 vsi->tc_cfg.ena_tc, max_txqs);
3476
3477 if (ret) {
3478 dev_err(dev, "VSI %d failed TC config, error %d\n",
3479 vsi->vsi_num, ret);
3480 goto out;
3481 }
3482 ice_vsi_update_q_map(vsi, ctx);
3483 vsi->info.valid_sections = 0;
3484
3485 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3486 out:
3487 kfree(ctx);
3488 return ret;
3489 }
3490
3491 /**
3492 * ice_update_ring_stats - Update ring statistics
3493 * @stats: stats to be updated
3494 * @pkts: number of processed packets
3495 * @bytes: number of processed bytes
3496 *
3497 * This function assumes that caller has acquired a u64_stats_sync lock.
3498 */
ice_update_ring_stats(struct ice_q_stats * stats,u64 pkts,u64 bytes)3499 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3500 {
3501 stats->bytes += bytes;
3502 stats->pkts += pkts;
3503 }
3504
3505 /**
3506 * ice_update_tx_ring_stats - Update Tx ring specific counters
3507 * @tx_ring: ring to update
3508 * @pkts: number of processed packets
3509 * @bytes: number of processed bytes
3510 */
ice_update_tx_ring_stats(struct ice_tx_ring * tx_ring,u64 pkts,u64 bytes)3511 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3512 {
3513 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3514 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3515 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3516 }
3517
3518 /**
3519 * ice_update_rx_ring_stats - Update Rx ring specific counters
3520 * @rx_ring: ring to update
3521 * @pkts: number of processed packets
3522 * @bytes: number of processed bytes
3523 */
ice_update_rx_ring_stats(struct ice_rx_ring * rx_ring,u64 pkts,u64 bytes)3524 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3525 {
3526 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3527 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3528 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3529 }
3530
3531 /**
3532 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3533 * @pi: port info of the switch with default VSI
3534 *
3535 * Return true if the there is a single VSI in default forwarding VSI list
3536 */
ice_is_dflt_vsi_in_use(struct ice_port_info * pi)3537 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3538 {
3539 bool exists = false;
3540
3541 ice_check_if_dflt_vsi(pi, 0, &exists);
3542 return exists;
3543 }
3544
3545 /**
3546 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3547 * @vsi: VSI to compare against default forwarding VSI
3548 *
3549 * If this VSI passed in is the default forwarding VSI then return true, else
3550 * return false
3551 */
ice_is_vsi_dflt_vsi(struct ice_vsi * vsi)3552 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3553 {
3554 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3555 }
3556
3557 /**
3558 * ice_set_dflt_vsi - set the default forwarding VSI
3559 * @vsi: VSI getting set as the default forwarding VSI on the switch
3560 *
3561 * If the VSI passed in is already the default VSI and it's enabled just return
3562 * success.
3563 *
3564 * Otherwise try to set the VSI passed in as the switch's default VSI and
3565 * return the result.
3566 */
ice_set_dflt_vsi(struct ice_vsi * vsi)3567 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3568 {
3569 struct device *dev;
3570 int status;
3571
3572 if (!vsi)
3573 return -EINVAL;
3574
3575 dev = ice_pf_to_dev(vsi->back);
3576
3577 if (ice_lag_is_switchdev_running(vsi->back)) {
3578 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3579 vsi->vsi_num);
3580 return 0;
3581 }
3582
3583 /* the VSI passed in is already the default VSI */
3584 if (ice_is_vsi_dflt_vsi(vsi)) {
3585 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3586 vsi->vsi_num);
3587 return 0;
3588 }
3589
3590 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3591 if (status) {
3592 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3593 vsi->vsi_num, status);
3594 return status;
3595 }
3596
3597 return 0;
3598 }
3599
3600 /**
3601 * ice_clear_dflt_vsi - clear the default forwarding VSI
3602 * @vsi: VSI to remove from filter list
3603 *
3604 * If the switch has no default VSI or it's not enabled then return error.
3605 *
3606 * Otherwise try to clear the default VSI and return the result.
3607 */
ice_clear_dflt_vsi(struct ice_vsi * vsi)3608 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3609 {
3610 struct device *dev;
3611 int status;
3612
3613 if (!vsi)
3614 return -EINVAL;
3615
3616 dev = ice_pf_to_dev(vsi->back);
3617
3618 /* there is no default VSI configured */
3619 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3620 return -ENODEV;
3621
3622 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3623 ICE_FLTR_RX);
3624 if (status) {
3625 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3626 vsi->vsi_num, status);
3627 return -EIO;
3628 }
3629
3630 return 0;
3631 }
3632
3633 /**
3634 * ice_get_link_speed_mbps - get link speed in Mbps
3635 * @vsi: the VSI whose link speed is being queried
3636 *
3637 * Return current VSI link speed and 0 if the speed is unknown.
3638 */
ice_get_link_speed_mbps(struct ice_vsi * vsi)3639 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3640 {
3641 unsigned int link_speed;
3642
3643 link_speed = vsi->port_info->phy.link_info.link_speed;
3644
3645 return (int)ice_get_link_speed(fls(link_speed) - 1);
3646 }
3647
3648 /**
3649 * ice_get_link_speed_kbps - get link speed in Kbps
3650 * @vsi: the VSI whose link speed is being queried
3651 *
3652 * Return current VSI link speed and 0 if the speed is unknown.
3653 */
ice_get_link_speed_kbps(struct ice_vsi * vsi)3654 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3655 {
3656 int speed_mbps;
3657
3658 speed_mbps = ice_get_link_speed_mbps(vsi);
3659
3660 return speed_mbps * 1000;
3661 }
3662
3663 /**
3664 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3665 * @vsi: VSI to be configured
3666 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3667 *
3668 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3669 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3670 * on TC 0.
3671 */
ice_set_min_bw_limit(struct ice_vsi * vsi,u64 min_tx_rate)3672 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3673 {
3674 struct ice_pf *pf = vsi->back;
3675 struct device *dev;
3676 int status;
3677 int speed;
3678
3679 dev = ice_pf_to_dev(pf);
3680 if (!vsi->port_info) {
3681 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3682 vsi->idx, vsi->type);
3683 return -EINVAL;
3684 }
3685
3686 speed = ice_get_link_speed_kbps(vsi);
3687 if (min_tx_rate > (u64)speed) {
3688 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3689 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3690 speed);
3691 return -EINVAL;
3692 }
3693
3694 /* Configure min BW for VSI limit */
3695 if (min_tx_rate) {
3696 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3697 ICE_MIN_BW, min_tx_rate);
3698 if (status) {
3699 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3700 min_tx_rate, ice_vsi_type_str(vsi->type),
3701 vsi->idx);
3702 return status;
3703 }
3704
3705 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3706 min_tx_rate, ice_vsi_type_str(vsi->type));
3707 } else {
3708 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3709 vsi->idx, 0,
3710 ICE_MIN_BW);
3711 if (status) {
3712 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3713 ice_vsi_type_str(vsi->type), vsi->idx);
3714 return status;
3715 }
3716
3717 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3718 ice_vsi_type_str(vsi->type), vsi->idx);
3719 }
3720
3721 return 0;
3722 }
3723
3724 /**
3725 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3726 * @vsi: VSI to be configured
3727 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3728 *
3729 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3730 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3731 * on TC 0.
3732 */
ice_set_max_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate)3733 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3734 {
3735 struct ice_pf *pf = vsi->back;
3736 struct device *dev;
3737 int status;
3738 int speed;
3739
3740 dev = ice_pf_to_dev(pf);
3741 if (!vsi->port_info) {
3742 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3743 vsi->idx, vsi->type);
3744 return -EINVAL;
3745 }
3746
3747 speed = ice_get_link_speed_kbps(vsi);
3748 if (max_tx_rate > (u64)speed) {
3749 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3750 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3751 speed);
3752 return -EINVAL;
3753 }
3754
3755 /* Configure max BW for VSI limit */
3756 if (max_tx_rate) {
3757 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3758 ICE_MAX_BW, max_tx_rate);
3759 if (status) {
3760 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3761 max_tx_rate, ice_vsi_type_str(vsi->type),
3762 vsi->idx);
3763 return status;
3764 }
3765
3766 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3767 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3768 } else {
3769 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3770 vsi->idx, 0,
3771 ICE_MAX_BW);
3772 if (status) {
3773 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3774 ice_vsi_type_str(vsi->type), vsi->idx);
3775 return status;
3776 }
3777
3778 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3779 ice_vsi_type_str(vsi->type), vsi->idx);
3780 }
3781
3782 return 0;
3783 }
3784
3785 /**
3786 * ice_set_link - turn on/off physical link
3787 * @vsi: VSI to modify physical link on
3788 * @ena: turn on/off physical link
3789 */
ice_set_link(struct ice_vsi * vsi,bool ena)3790 int ice_set_link(struct ice_vsi *vsi, bool ena)
3791 {
3792 struct device *dev = ice_pf_to_dev(vsi->back);
3793 struct ice_port_info *pi = vsi->port_info;
3794 struct ice_hw *hw = pi->hw;
3795 int status;
3796
3797 if (vsi->type != ICE_VSI_PF)
3798 return -EINVAL;
3799
3800 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3801
3802 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3803 * this is not a fatal error, so print a warning message and return
3804 * a success code. Return an error if FW returns an error code other
3805 * than ICE_AQ_RC_EMODE
3806 */
3807 if (status == -EIO) {
3808 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3809 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3810 (ena ? "ON" : "OFF"), status,
3811 ice_aq_str(hw->adminq.sq_last_status));
3812 } else if (status) {
3813 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3814 (ena ? "ON" : "OFF"), status,
3815 ice_aq_str(hw->adminq.sq_last_status));
3816 return status;
3817 }
3818
3819 return 0;
3820 }
3821
3822 /**
3823 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3824 * @vsi: VSI used to add VLAN filters
3825 *
3826 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3827 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3828 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3829 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3830 *
3831 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3832 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3833 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3834 *
3835 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3836 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3837 * part of filtering.
3838 */
ice_vsi_add_vlan_zero(struct ice_vsi * vsi)3839 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3840 {
3841 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3842 struct ice_vlan vlan;
3843 int err;
3844
3845 vlan = ICE_VLAN(0, 0, 0);
3846 err = vlan_ops->add_vlan(vsi, &vlan);
3847 if (err && err != -EEXIST)
3848 return err;
3849
3850 /* in SVM both VLAN 0 filters are identical */
3851 if (!ice_is_dvm_ena(&vsi->back->hw))
3852 return 0;
3853
3854 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3855 err = vlan_ops->add_vlan(vsi, &vlan);
3856 if (err && err != -EEXIST)
3857 return err;
3858
3859 return 0;
3860 }
3861
3862 /**
3863 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3864 * @vsi: VSI used to add VLAN filters
3865 *
3866 * Delete the VLAN 0 filters in the same manner that they were added in
3867 * ice_vsi_add_vlan_zero.
3868 */
ice_vsi_del_vlan_zero(struct ice_vsi * vsi)3869 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3870 {
3871 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3872 struct ice_vlan vlan;
3873 int err;
3874
3875 vlan = ICE_VLAN(0, 0, 0);
3876 err = vlan_ops->del_vlan(vsi, &vlan);
3877 if (err && err != -EEXIST)
3878 return err;
3879
3880 /* in SVM both VLAN 0 filters are identical */
3881 if (!ice_is_dvm_ena(&vsi->back->hw))
3882 return 0;
3883
3884 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3885 err = vlan_ops->del_vlan(vsi, &vlan);
3886 if (err && err != -EEXIST)
3887 return err;
3888
3889 /* when deleting the last VLAN filter, make sure to disable the VLAN
3890 * promisc mode so the filter isn't left by accident
3891 */
3892 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3893 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3894 }
3895
3896 /**
3897 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3898 * @vsi: VSI used to get the VLAN mode
3899 *
3900 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3901 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3902 */
ice_vsi_num_zero_vlans(struct ice_vsi * vsi)3903 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3904 {
3905 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
3906 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
3907 /* no VLAN 0 filter is created when a port VLAN is active */
3908 if (vsi->type == ICE_VSI_VF) {
3909 if (WARN_ON(!vsi->vf))
3910 return 0;
3911
3912 if (ice_vf_is_port_vlan_ena(vsi->vf))
3913 return 0;
3914 }
3915
3916 if (ice_is_dvm_ena(&vsi->back->hw))
3917 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3918 else
3919 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3920 }
3921
3922 /**
3923 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3924 * @vsi: VSI used to determine if any non-zero VLANs have been added
3925 */
ice_vsi_has_non_zero_vlans(struct ice_vsi * vsi)3926 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3927 {
3928 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3929 }
3930
3931 /**
3932 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3933 * @vsi: VSI used to get the number of non-zero VLANs added
3934 */
ice_vsi_num_non_zero_vlans(struct ice_vsi * vsi)3935 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3936 {
3937 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3938 }
3939
3940 /**
3941 * ice_is_feature_supported
3942 * @pf: pointer to the struct ice_pf instance
3943 * @f: feature enum to be checked
3944 *
3945 * returns true if feature is supported, false otherwise
3946 */
ice_is_feature_supported(struct ice_pf * pf,enum ice_feature f)3947 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3948 {
3949 if (f < 0 || f >= ICE_F_MAX)
3950 return false;
3951
3952 return test_bit(f, pf->features);
3953 }
3954
3955 /**
3956 * ice_set_feature_support
3957 * @pf: pointer to the struct ice_pf instance
3958 * @f: feature enum to set
3959 */
ice_set_feature_support(struct ice_pf * pf,enum ice_feature f)3960 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3961 {
3962 if (f < 0 || f >= ICE_F_MAX)
3963 return;
3964
3965 set_bit(f, pf->features);
3966 }
3967
3968 /**
3969 * ice_clear_feature_support
3970 * @pf: pointer to the struct ice_pf instance
3971 * @f: feature enum to clear
3972 */
ice_clear_feature_support(struct ice_pf * pf,enum ice_feature f)3973 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3974 {
3975 if (f < 0 || f >= ICE_F_MAX)
3976 return;
3977
3978 clear_bit(f, pf->features);
3979 }
3980
3981 /**
3982 * ice_init_feature_support
3983 * @pf: pointer to the struct ice_pf instance
3984 *
3985 * called during init to setup supported feature
3986 */
ice_init_feature_support(struct ice_pf * pf)3987 void ice_init_feature_support(struct ice_pf *pf)
3988 {
3989 switch (pf->hw.device_id) {
3990 case ICE_DEV_ID_E810C_BACKPLANE:
3991 case ICE_DEV_ID_E810C_QSFP:
3992 case ICE_DEV_ID_E810C_SFP:
3993 ice_set_feature_support(pf, ICE_F_DSCP);
3994 ice_set_feature_support(pf, ICE_F_PTP_EXTTS);
3995 if (ice_is_e810t(&pf->hw)) {
3996 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3997 if (ice_gnss_is_gps_present(&pf->hw))
3998 ice_set_feature_support(pf, ICE_F_GNSS);
3999 }
4000 break;
4001 default:
4002 break;
4003 }
4004 }
4005
4006 /**
4007 * ice_vsi_update_security - update security block in VSI
4008 * @vsi: pointer to VSI structure
4009 * @fill: function pointer to fill ctx
4010 */
4011 int
ice_vsi_update_security(struct ice_vsi * vsi,void (* fill)(struct ice_vsi_ctx *))4012 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4013 {
4014 struct ice_vsi_ctx ctx = { 0 };
4015
4016 ctx.info = vsi->info;
4017 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4018 fill(&ctx);
4019
4020 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4021 return -ENODEV;
4022
4023 vsi->info = ctx.info;
4024 return 0;
4025 }
4026
4027 /**
4028 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4029 * @ctx: pointer to VSI ctx structure
4030 */
ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx * ctx)4031 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4032 {
4033 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4034 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4035 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4036 }
4037
4038 /**
4039 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4040 * @ctx: pointer to VSI ctx structure
4041 */
ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx * ctx)4042 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4043 {
4044 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4045 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4046 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4047 }
4048
4049 /**
4050 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4051 * @ctx: pointer to VSI ctx structure
4052 */
ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx * ctx)4053 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4054 {
4055 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4056 }
4057
4058 /**
4059 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4060 * @ctx: pointer to VSI ctx structure
4061 */
ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx * ctx)4062 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4063 {
4064 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4065 }
4066
4067 /**
4068 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4069 * @vsi: pointer to VSI structure
4070 * @set: set or unset the bit
4071 */
4072 int
ice_vsi_update_local_lb(struct ice_vsi * vsi,bool set)4073 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4074 {
4075 struct ice_vsi_ctx ctx = {
4076 .info = vsi->info,
4077 };
4078
4079 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4080 if (set)
4081 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4082 else
4083 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4084
4085 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4086 return -ENODEV;
4087
4088 vsi->info = ctx.info;
4089 return 0;
4090 }
4091