1 /*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49
50 #include "core_priv.h"
51 #include "restrack.h"
52
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 static struct workqueue_struct *ib_unreg_wq;
62
63 /*
64 * Each of the three rwsem locks (devices, clients, client_data) protects the
65 * xarray of the same name. Specifically it allows the caller to assert that
66 * the MARK will/will not be changing under the lock, and for devices and
67 * clients, that the value in the xarray is still a valid pointer. Change of
68 * the MARK is linked to the object state, so holding the lock and testing the
69 * MARK also asserts that the contained object is in a certain state.
70 *
71 * This is used to build a two stage register/unregister flow where objects
72 * can continue to be in the xarray even though they are still in progress to
73 * register/unregister.
74 *
75 * The xarray itself provides additional locking, and restartable iteration,
76 * which is also relied on.
77 *
78 * Locks should not be nested, with the exception of client_data, which is
79 * allowed to nest under the read side of the other two locks.
80 *
81 * The devices_rwsem also protects the device name list, any change or
82 * assignment of device name must also hold the write side to guarantee unique
83 * names.
84 */
85
86 /*
87 * devices contains devices that have had their names assigned. The
88 * devices may not be registered. Users that care about the registration
89 * status need to call ib_device_try_get() on the device to ensure it is
90 * registered, and keep it registered, for the required duration.
91 *
92 */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101
ib_client_put(struct ib_client * client)102 static void ib_client_put(struct ib_client *client)
103 {
104 if (refcount_dec_and_test(&client->uses))
105 complete(&client->uses_zero);
106 }
107
108 /*
109 * If client_data is registered then the corresponding client must also still
110 * be registered.
111 */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113
114 unsigned int rdma_dev_net_id;
115
116 /*
117 * A list of net namespaces is maintained in an xarray. This is necessary
118 * because we can't get the locking right using the existing net ns list. We
119 * would require a init_net callback after the list is updated.
120 */
121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122 /*
123 * rwsem to protect accessing the rdma_nets xarray entries.
124 */
125 static DECLARE_RWSEM(rdma_nets_rwsem);
126
127 bool ib_devices_shared_netns = true;
128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129 MODULE_PARM_DESC(netns_mode,
130 "Share device among net namespaces; default=1 (shared)");
131 /**
132 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133 * from a specified net namespace or not.
134 * @dev: Pointer to rdma device which needs to be checked
135 * @net: Pointer to net namesapce for which access to be checked
136 *
137 * When the rdma device is in shared mode, it ignores the net namespace.
138 * When the rdma device is exclusive to a net namespace, rdma device net
139 * namespace is checked against the specified one.
140 */
rdma_dev_access_netns(const struct ib_device * dev,const struct net * net)141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142 {
143 return (ib_devices_shared_netns ||
144 net_eq(read_pnet(&dev->coredev.rdma_net), net));
145 }
146 EXPORT_SYMBOL(rdma_dev_access_netns);
147
148 /*
149 * xarray has this behavior where it won't iterate over NULL values stored in
150 * allocated arrays. So we need our own iterator to see all values stored in
151 * the array. This does the same thing as xa_for_each except that it also
152 * returns NULL valued entries if the array is allocating. Simplified to only
153 * work on simple xarrays.
154 */
xan_find_marked(struct xarray * xa,unsigned long * indexp,xa_mark_t filter)155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156 xa_mark_t filter)
157 {
158 XA_STATE(xas, xa, *indexp);
159 void *entry;
160
161 rcu_read_lock();
162 do {
163 entry = xas_find_marked(&xas, ULONG_MAX, filter);
164 if (xa_is_zero(entry))
165 break;
166 } while (xas_retry(&xas, entry));
167 rcu_read_unlock();
168
169 if (entry) {
170 *indexp = xas.xa_index;
171 if (xa_is_zero(entry))
172 return NULL;
173 return entry;
174 }
175 return XA_ERROR(-ENOENT);
176 }
177 #define xan_for_each_marked(xa, index, entry, filter) \
178 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \
179 !xa_is_err(entry); \
180 (index)++, entry = xan_find_marked(xa, &(index), filter))
181
182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
183 static DEFINE_SPINLOCK(ndev_hash_lock);
184 static DECLARE_HASHTABLE(ndev_hash, 5);
185
186 static void free_netdevs(struct ib_device *ib_dev);
187 static void ib_unregister_work(struct work_struct *work);
188 static void __ib_unregister_device(struct ib_device *device);
189 static int ib_security_change(struct notifier_block *nb, unsigned long event,
190 void *lsm_data);
191 static void ib_policy_change_task(struct work_struct *work);
192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193
__ibdev_printk(const char * level,const struct ib_device * ibdev,struct va_format * vaf)194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195 struct va_format *vaf)
196 {
197 if (ibdev && ibdev->dev.parent)
198 dev_printk_emit(level[1] - '0',
199 ibdev->dev.parent,
200 "%s %s %s: %pV",
201 dev_driver_string(ibdev->dev.parent),
202 dev_name(ibdev->dev.parent),
203 dev_name(&ibdev->dev),
204 vaf);
205 else if (ibdev)
206 printk("%s%s: %pV",
207 level, dev_name(&ibdev->dev), vaf);
208 else
209 printk("%s(NULL ib_device): %pV", level, vaf);
210 }
211
ibdev_printk(const char * level,const struct ib_device * ibdev,const char * format,...)212 void ibdev_printk(const char *level, const struct ib_device *ibdev,
213 const char *format, ...)
214 {
215 struct va_format vaf;
216 va_list args;
217
218 va_start(args, format);
219
220 vaf.fmt = format;
221 vaf.va = &args;
222
223 __ibdev_printk(level, ibdev, &vaf);
224
225 va_end(args);
226 }
227 EXPORT_SYMBOL(ibdev_printk);
228
229 #define define_ibdev_printk_level(func, level) \
230 void func(const struct ib_device *ibdev, const char *fmt, ...) \
231 { \
232 struct va_format vaf; \
233 va_list args; \
234 \
235 va_start(args, fmt); \
236 \
237 vaf.fmt = fmt; \
238 vaf.va = &args; \
239 \
240 __ibdev_printk(level, ibdev, &vaf); \
241 \
242 va_end(args); \
243 } \
244 EXPORT_SYMBOL(func);
245
246 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
247 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
248 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
249 define_ibdev_printk_level(ibdev_err, KERN_ERR);
250 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
251 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
252 define_ibdev_printk_level(ibdev_info, KERN_INFO);
253
254 static struct notifier_block ibdev_lsm_nb = {
255 .notifier_call = ib_security_change,
256 };
257
258 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
259 struct net *net);
260
261 /* Pointer to the RCU head at the start of the ib_port_data array */
262 struct ib_port_data_rcu {
263 struct rcu_head rcu_head;
264 struct ib_port_data pdata[];
265 };
266
ib_device_check_mandatory(struct ib_device * device)267 static void ib_device_check_mandatory(struct ib_device *device)
268 {
269 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
270 static const struct {
271 size_t offset;
272 char *name;
273 } mandatory_table[] = {
274 IB_MANDATORY_FUNC(query_device),
275 IB_MANDATORY_FUNC(query_port),
276 IB_MANDATORY_FUNC(alloc_pd),
277 IB_MANDATORY_FUNC(dealloc_pd),
278 IB_MANDATORY_FUNC(create_qp),
279 IB_MANDATORY_FUNC(modify_qp),
280 IB_MANDATORY_FUNC(destroy_qp),
281 IB_MANDATORY_FUNC(post_send),
282 IB_MANDATORY_FUNC(post_recv),
283 IB_MANDATORY_FUNC(create_cq),
284 IB_MANDATORY_FUNC(destroy_cq),
285 IB_MANDATORY_FUNC(poll_cq),
286 IB_MANDATORY_FUNC(req_notify_cq),
287 IB_MANDATORY_FUNC(get_dma_mr),
288 IB_MANDATORY_FUNC(reg_user_mr),
289 IB_MANDATORY_FUNC(dereg_mr),
290 IB_MANDATORY_FUNC(get_port_immutable)
291 };
292 int i;
293
294 device->kverbs_provider = true;
295 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
296 if (!*(void **) ((void *) &device->ops +
297 mandatory_table[i].offset)) {
298 device->kverbs_provider = false;
299 break;
300 }
301 }
302 }
303
304 /*
305 * Caller must perform ib_device_put() to return the device reference count
306 * when ib_device_get_by_index() returns valid device pointer.
307 */
ib_device_get_by_index(const struct net * net,u32 index)308 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
309 {
310 struct ib_device *device;
311
312 down_read(&devices_rwsem);
313 device = xa_load(&devices, index);
314 if (device) {
315 if (!rdma_dev_access_netns(device, net)) {
316 device = NULL;
317 goto out;
318 }
319
320 if (!ib_device_try_get(device))
321 device = NULL;
322 }
323 out:
324 up_read(&devices_rwsem);
325 return device;
326 }
327
328 /**
329 * ib_device_put - Release IB device reference
330 * @device: device whose reference to be released
331 *
332 * ib_device_put() releases reference to the IB device to allow it to be
333 * unregistered and eventually free.
334 */
ib_device_put(struct ib_device * device)335 void ib_device_put(struct ib_device *device)
336 {
337 if (refcount_dec_and_test(&device->refcount))
338 complete(&device->unreg_completion);
339 }
340 EXPORT_SYMBOL(ib_device_put);
341
__ib_device_get_by_name(const char * name)342 static struct ib_device *__ib_device_get_by_name(const char *name)
343 {
344 struct ib_device *device;
345 unsigned long index;
346
347 xa_for_each (&devices, index, device)
348 if (!strcmp(name, dev_name(&device->dev)))
349 return device;
350
351 return NULL;
352 }
353
354 /**
355 * ib_device_get_by_name - Find an IB device by name
356 * @name: The name to look for
357 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
358 *
359 * Find and hold an ib_device by its name. The caller must call
360 * ib_device_put() on the returned pointer.
361 */
ib_device_get_by_name(const char * name,enum rdma_driver_id driver_id)362 struct ib_device *ib_device_get_by_name(const char *name,
363 enum rdma_driver_id driver_id)
364 {
365 struct ib_device *device;
366
367 down_read(&devices_rwsem);
368 device = __ib_device_get_by_name(name);
369 if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
370 device->ops.driver_id != driver_id)
371 device = NULL;
372
373 if (device) {
374 if (!ib_device_try_get(device))
375 device = NULL;
376 }
377 up_read(&devices_rwsem);
378 return device;
379 }
380 EXPORT_SYMBOL(ib_device_get_by_name);
381
rename_compat_devs(struct ib_device * device)382 static int rename_compat_devs(struct ib_device *device)
383 {
384 struct ib_core_device *cdev;
385 unsigned long index;
386 int ret = 0;
387
388 mutex_lock(&device->compat_devs_mutex);
389 xa_for_each (&device->compat_devs, index, cdev) {
390 ret = device_rename(&cdev->dev, dev_name(&device->dev));
391 if (ret) {
392 dev_warn(&cdev->dev,
393 "Fail to rename compatdev to new name %s\n",
394 dev_name(&device->dev));
395 break;
396 }
397 }
398 mutex_unlock(&device->compat_devs_mutex);
399 return ret;
400 }
401
ib_device_rename(struct ib_device * ibdev,const char * name)402 int ib_device_rename(struct ib_device *ibdev, const char *name)
403 {
404 unsigned long index;
405 void *client_data;
406 int ret;
407
408 down_write(&devices_rwsem);
409 if (!strcmp(name, dev_name(&ibdev->dev))) {
410 up_write(&devices_rwsem);
411 return 0;
412 }
413
414 if (__ib_device_get_by_name(name)) {
415 up_write(&devices_rwsem);
416 return -EEXIST;
417 }
418
419 ret = device_rename(&ibdev->dev, name);
420 if (ret) {
421 up_write(&devices_rwsem);
422 return ret;
423 }
424
425 strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
426 ret = rename_compat_devs(ibdev);
427
428 downgrade_write(&devices_rwsem);
429 down_read(&ibdev->client_data_rwsem);
430 xan_for_each_marked(&ibdev->client_data, index, client_data,
431 CLIENT_DATA_REGISTERED) {
432 struct ib_client *client = xa_load(&clients, index);
433
434 if (!client || !client->rename)
435 continue;
436
437 client->rename(ibdev, client_data);
438 }
439 up_read(&ibdev->client_data_rwsem);
440 up_read(&devices_rwsem);
441 return 0;
442 }
443
ib_device_set_dim(struct ib_device * ibdev,u8 use_dim)444 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
445 {
446 if (use_dim > 1)
447 return -EINVAL;
448 ibdev->use_cq_dim = use_dim;
449
450 return 0;
451 }
452
alloc_name(struct ib_device * ibdev,const char * name)453 static int alloc_name(struct ib_device *ibdev, const char *name)
454 {
455 struct ib_device *device;
456 unsigned long index;
457 struct ida inuse;
458 int rc;
459 int i;
460
461 lockdep_assert_held_write(&devices_rwsem);
462 ida_init(&inuse);
463 xa_for_each (&devices, index, device) {
464 char buf[IB_DEVICE_NAME_MAX];
465
466 if (sscanf(dev_name(&device->dev), name, &i) != 1)
467 continue;
468 if (i < 0 || i >= INT_MAX)
469 continue;
470 snprintf(buf, sizeof buf, name, i);
471 if (strcmp(buf, dev_name(&device->dev)) != 0)
472 continue;
473
474 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
475 if (rc < 0)
476 goto out;
477 }
478
479 rc = ida_alloc(&inuse, GFP_KERNEL);
480 if (rc < 0)
481 goto out;
482
483 rc = dev_set_name(&ibdev->dev, name, rc);
484 out:
485 ida_destroy(&inuse);
486 return rc;
487 }
488
ib_device_release(struct device * device)489 static void ib_device_release(struct device *device)
490 {
491 struct ib_device *dev = container_of(device, struct ib_device, dev);
492
493 free_netdevs(dev);
494 WARN_ON(refcount_read(&dev->refcount));
495 if (dev->hw_stats_data)
496 ib_device_release_hw_stats(dev->hw_stats_data);
497 if (dev->port_data) {
498 ib_cache_release_one(dev);
499 ib_security_release_port_pkey_list(dev);
500 rdma_counter_release(dev);
501 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502 pdata[0]),
503 rcu_head);
504 }
505
506 mutex_destroy(&dev->unregistration_lock);
507 mutex_destroy(&dev->compat_devs_mutex);
508
509 xa_destroy(&dev->compat_devs);
510 xa_destroy(&dev->client_data);
511 kfree_rcu(dev, rcu_head);
512 }
513
ib_device_uevent(struct device * device,struct kobj_uevent_env * env)514 static int ib_device_uevent(struct device *device,
515 struct kobj_uevent_env *env)
516 {
517 if (add_uevent_var(env, "NAME=%s", dev_name(device)))
518 return -ENOMEM;
519
520 /*
521 * It would be nice to pass the node GUID with the event...
522 */
523
524 return 0;
525 }
526
net_namespace(struct device * d)527 static const void *net_namespace(struct device *d)
528 {
529 struct ib_core_device *coredev =
530 container_of(d, struct ib_core_device, dev);
531
532 return read_pnet(&coredev->rdma_net);
533 }
534
535 static struct class ib_class = {
536 .name = "infiniband",
537 .dev_release = ib_device_release,
538 .dev_uevent = ib_device_uevent,
539 .ns_type = &net_ns_type_operations,
540 .namespace = net_namespace,
541 };
542
rdma_init_coredev(struct ib_core_device * coredev,struct ib_device * dev,struct net * net)543 static void rdma_init_coredev(struct ib_core_device *coredev,
544 struct ib_device *dev, struct net *net)
545 {
546 /* This BUILD_BUG_ON is intended to catch layout change
547 * of union of ib_core_device and device.
548 * dev must be the first element as ib_core and providers
549 * driver uses it. Adding anything in ib_core_device before
550 * device will break this assumption.
551 */
552 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
553 offsetof(struct ib_device, dev));
554
555 coredev->dev.class = &ib_class;
556 coredev->dev.groups = dev->groups;
557 device_initialize(&coredev->dev);
558 coredev->owner = dev;
559 INIT_LIST_HEAD(&coredev->port_list);
560 write_pnet(&coredev->rdma_net, net);
561 }
562
563 /**
564 * _ib_alloc_device - allocate an IB device struct
565 * @size:size of structure to allocate
566 *
567 * Low-level drivers should use ib_alloc_device() to allocate &struct
568 * ib_device. @size is the size of the structure to be allocated,
569 * including any private data used by the low-level driver.
570 * ib_dealloc_device() must be used to free structures allocated with
571 * ib_alloc_device().
572 */
_ib_alloc_device(size_t size)573 struct ib_device *_ib_alloc_device(size_t size)
574 {
575 struct ib_device *device;
576 unsigned int i;
577
578 if (WARN_ON(size < sizeof(struct ib_device)))
579 return NULL;
580
581 device = kzalloc(size, GFP_KERNEL);
582 if (!device)
583 return NULL;
584
585 if (rdma_restrack_init(device)) {
586 kfree(device);
587 return NULL;
588 }
589
590 rdma_init_coredev(&device->coredev, device, &init_net);
591
592 INIT_LIST_HEAD(&device->event_handler_list);
593 spin_lock_init(&device->qp_open_list_lock);
594 init_rwsem(&device->event_handler_rwsem);
595 mutex_init(&device->unregistration_lock);
596 /*
597 * client_data needs to be alloc because we don't want our mark to be
598 * destroyed if the user stores NULL in the client data.
599 */
600 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
601 init_rwsem(&device->client_data_rwsem);
602 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
603 mutex_init(&device->compat_devs_mutex);
604 init_completion(&device->unreg_completion);
605 INIT_WORK(&device->unregistration_work, ib_unregister_work);
606
607 spin_lock_init(&device->cq_pools_lock);
608 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
609 INIT_LIST_HEAD(&device->cq_pools[i]);
610
611 rwlock_init(&device->cache_lock);
612
613 device->uverbs_cmd_mask =
614 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
615 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
616 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
617 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
618 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
619 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
620 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
621 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
622 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
623 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
624 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
625 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
626 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
627 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
628 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
629 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
630 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
631 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
632 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
633 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
634 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
635 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
636 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
637 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
638 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
639 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
640 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
641 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
642 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
643 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
644 return device;
645 }
646 EXPORT_SYMBOL(_ib_alloc_device);
647
648 /**
649 * ib_dealloc_device - free an IB device struct
650 * @device:structure to free
651 *
652 * Free a structure allocated with ib_alloc_device().
653 */
ib_dealloc_device(struct ib_device * device)654 void ib_dealloc_device(struct ib_device *device)
655 {
656 if (device->ops.dealloc_driver)
657 device->ops.dealloc_driver(device);
658
659 /*
660 * ib_unregister_driver() requires all devices to remain in the xarray
661 * while their ops are callable. The last op we call is dealloc_driver
662 * above. This is needed to create a fence on op callbacks prior to
663 * allowing the driver module to unload.
664 */
665 down_write(&devices_rwsem);
666 if (xa_load(&devices, device->index) == device)
667 xa_erase(&devices, device->index);
668 up_write(&devices_rwsem);
669
670 /* Expedite releasing netdev references */
671 free_netdevs(device);
672
673 WARN_ON(!xa_empty(&device->compat_devs));
674 WARN_ON(!xa_empty(&device->client_data));
675 WARN_ON(refcount_read(&device->refcount));
676 rdma_restrack_clean(device);
677 /* Balances with device_initialize */
678 put_device(&device->dev);
679 }
680 EXPORT_SYMBOL(ib_dealloc_device);
681
682 /*
683 * add_client_context() and remove_client_context() must be safe against
684 * parallel calls on the same device - registration/unregistration of both the
685 * device and client can be occurring in parallel.
686 *
687 * The routines need to be a fence, any caller must not return until the add
688 * or remove is fully completed.
689 */
add_client_context(struct ib_device * device,struct ib_client * client)690 static int add_client_context(struct ib_device *device,
691 struct ib_client *client)
692 {
693 int ret = 0;
694
695 if (!device->kverbs_provider && !client->no_kverbs_req)
696 return 0;
697
698 down_write(&device->client_data_rwsem);
699 /*
700 * So long as the client is registered hold both the client and device
701 * unregistration locks.
702 */
703 if (!refcount_inc_not_zero(&client->uses))
704 goto out_unlock;
705 refcount_inc(&device->refcount);
706
707 /*
708 * Another caller to add_client_context got here first and has already
709 * completely initialized context.
710 */
711 if (xa_get_mark(&device->client_data, client->client_id,
712 CLIENT_DATA_REGISTERED))
713 goto out;
714
715 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
716 GFP_KERNEL));
717 if (ret)
718 goto out;
719 downgrade_write(&device->client_data_rwsem);
720 if (client->add) {
721 if (client->add(device)) {
722 /*
723 * If a client fails to add then the error code is
724 * ignored, but we won't call any more ops on this
725 * client.
726 */
727 xa_erase(&device->client_data, client->client_id);
728 up_read(&device->client_data_rwsem);
729 ib_device_put(device);
730 ib_client_put(client);
731 return 0;
732 }
733 }
734
735 /* Readers shall not see a client until add has been completed */
736 xa_set_mark(&device->client_data, client->client_id,
737 CLIENT_DATA_REGISTERED);
738 up_read(&device->client_data_rwsem);
739 return 0;
740
741 out:
742 ib_device_put(device);
743 ib_client_put(client);
744 out_unlock:
745 up_write(&device->client_data_rwsem);
746 return ret;
747 }
748
remove_client_context(struct ib_device * device,unsigned int client_id)749 static void remove_client_context(struct ib_device *device,
750 unsigned int client_id)
751 {
752 struct ib_client *client;
753 void *client_data;
754
755 down_write(&device->client_data_rwsem);
756 if (!xa_get_mark(&device->client_data, client_id,
757 CLIENT_DATA_REGISTERED)) {
758 up_write(&device->client_data_rwsem);
759 return;
760 }
761 client_data = xa_load(&device->client_data, client_id);
762 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
763 client = xa_load(&clients, client_id);
764 up_write(&device->client_data_rwsem);
765
766 /*
767 * Notice we cannot be holding any exclusive locks when calling the
768 * remove callback as the remove callback can recurse back into any
769 * public functions in this module and thus try for any locks those
770 * functions take.
771 *
772 * For this reason clients and drivers should not call the
773 * unregistration functions will holdling any locks.
774 */
775 if (client->remove)
776 client->remove(device, client_data);
777
778 xa_erase(&device->client_data, client_id);
779 ib_device_put(device);
780 ib_client_put(client);
781 }
782
alloc_port_data(struct ib_device * device)783 static int alloc_port_data(struct ib_device *device)
784 {
785 struct ib_port_data_rcu *pdata_rcu;
786 u32 port;
787
788 if (device->port_data)
789 return 0;
790
791 /* This can only be called once the physical port range is defined */
792 if (WARN_ON(!device->phys_port_cnt))
793 return -EINVAL;
794
795 /* Reserve U32_MAX so the logic to go over all the ports is sane */
796 if (WARN_ON(device->phys_port_cnt == U32_MAX))
797 return -EINVAL;
798
799 /*
800 * device->port_data is indexed directly by the port number to make
801 * access to this data as efficient as possible.
802 *
803 * Therefore port_data is declared as a 1 based array with potential
804 * empty slots at the beginning.
805 */
806 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
807 rdma_end_port(device) + 1),
808 GFP_KERNEL);
809 if (!pdata_rcu)
810 return -ENOMEM;
811 /*
812 * The rcu_head is put in front of the port data array and the stored
813 * pointer is adjusted since we never need to see that member until
814 * kfree_rcu.
815 */
816 device->port_data = pdata_rcu->pdata;
817
818 rdma_for_each_port (device, port) {
819 struct ib_port_data *pdata = &device->port_data[port];
820
821 pdata->ib_dev = device;
822 spin_lock_init(&pdata->pkey_list_lock);
823 INIT_LIST_HEAD(&pdata->pkey_list);
824 spin_lock_init(&pdata->netdev_lock);
825 INIT_HLIST_NODE(&pdata->ndev_hash_link);
826 }
827 return 0;
828 }
829
verify_immutable(const struct ib_device * dev,u32 port)830 static int verify_immutable(const struct ib_device *dev, u32 port)
831 {
832 return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
833 rdma_max_mad_size(dev, port) != 0);
834 }
835
setup_port_data(struct ib_device * device)836 static int setup_port_data(struct ib_device *device)
837 {
838 u32 port;
839 int ret;
840
841 ret = alloc_port_data(device);
842 if (ret)
843 return ret;
844
845 rdma_for_each_port (device, port) {
846 struct ib_port_data *pdata = &device->port_data[port];
847
848 ret = device->ops.get_port_immutable(device, port,
849 &pdata->immutable);
850 if (ret)
851 return ret;
852
853 if (verify_immutable(device, port))
854 return -EINVAL;
855 }
856 return 0;
857 }
858
859 /**
860 * ib_port_immutable_read() - Read rdma port's immutable data
861 * @dev: IB device
862 * @port: port number whose immutable data to read. It starts with index 1 and
863 * valid upto including rdma_end_port().
864 */
865 const struct ib_port_immutable*
ib_port_immutable_read(struct ib_device * dev,unsigned int port)866 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
867 {
868 WARN_ON(!rdma_is_port_valid(dev, port));
869 return &dev->port_data[port].immutable;
870 }
871 EXPORT_SYMBOL(ib_port_immutable_read);
872
ib_get_device_fw_str(struct ib_device * dev,char * str)873 void ib_get_device_fw_str(struct ib_device *dev, char *str)
874 {
875 if (dev->ops.get_dev_fw_str)
876 dev->ops.get_dev_fw_str(dev, str);
877 else
878 str[0] = '\0';
879 }
880 EXPORT_SYMBOL(ib_get_device_fw_str);
881
ib_policy_change_task(struct work_struct * work)882 static void ib_policy_change_task(struct work_struct *work)
883 {
884 struct ib_device *dev;
885 unsigned long index;
886
887 down_read(&devices_rwsem);
888 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
889 unsigned int i;
890
891 rdma_for_each_port (dev, i) {
892 u64 sp;
893 ib_get_cached_subnet_prefix(dev, i, &sp);
894 ib_security_cache_change(dev, i, sp);
895 }
896 }
897 up_read(&devices_rwsem);
898 }
899
ib_security_change(struct notifier_block * nb,unsigned long event,void * lsm_data)900 static int ib_security_change(struct notifier_block *nb, unsigned long event,
901 void *lsm_data)
902 {
903 if (event != LSM_POLICY_CHANGE)
904 return NOTIFY_DONE;
905
906 schedule_work(&ib_policy_change_work);
907 ib_mad_agent_security_change();
908
909 return NOTIFY_OK;
910 }
911
compatdev_release(struct device * dev)912 static void compatdev_release(struct device *dev)
913 {
914 struct ib_core_device *cdev =
915 container_of(dev, struct ib_core_device, dev);
916
917 kfree(cdev);
918 }
919
add_one_compat_dev(struct ib_device * device,struct rdma_dev_net * rnet)920 static int add_one_compat_dev(struct ib_device *device,
921 struct rdma_dev_net *rnet)
922 {
923 struct ib_core_device *cdev;
924 int ret;
925
926 lockdep_assert_held(&rdma_nets_rwsem);
927 if (!ib_devices_shared_netns)
928 return 0;
929
930 /*
931 * Create and add compat device in all namespaces other than where it
932 * is currently bound to.
933 */
934 if (net_eq(read_pnet(&rnet->net),
935 read_pnet(&device->coredev.rdma_net)))
936 return 0;
937
938 /*
939 * The first of init_net() or ib_register_device() to take the
940 * compat_devs_mutex wins and gets to add the device. Others will wait
941 * for completion here.
942 */
943 mutex_lock(&device->compat_devs_mutex);
944 cdev = xa_load(&device->compat_devs, rnet->id);
945 if (cdev) {
946 ret = 0;
947 goto done;
948 }
949 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
950 if (ret)
951 goto done;
952
953 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
954 if (!cdev) {
955 ret = -ENOMEM;
956 goto cdev_err;
957 }
958
959 cdev->dev.parent = device->dev.parent;
960 rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
961 cdev->dev.release = compatdev_release;
962 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
963 if (ret)
964 goto add_err;
965
966 ret = device_add(&cdev->dev);
967 if (ret)
968 goto add_err;
969 ret = ib_setup_port_attrs(cdev);
970 if (ret)
971 goto port_err;
972
973 ret = xa_err(xa_store(&device->compat_devs, rnet->id,
974 cdev, GFP_KERNEL));
975 if (ret)
976 goto insert_err;
977
978 mutex_unlock(&device->compat_devs_mutex);
979 return 0;
980
981 insert_err:
982 ib_free_port_attrs(cdev);
983 port_err:
984 device_del(&cdev->dev);
985 add_err:
986 put_device(&cdev->dev);
987 cdev_err:
988 xa_release(&device->compat_devs, rnet->id);
989 done:
990 mutex_unlock(&device->compat_devs_mutex);
991 return ret;
992 }
993
remove_one_compat_dev(struct ib_device * device,u32 id)994 static void remove_one_compat_dev(struct ib_device *device, u32 id)
995 {
996 struct ib_core_device *cdev;
997
998 mutex_lock(&device->compat_devs_mutex);
999 cdev = xa_erase(&device->compat_devs, id);
1000 mutex_unlock(&device->compat_devs_mutex);
1001 if (cdev) {
1002 ib_free_port_attrs(cdev);
1003 device_del(&cdev->dev);
1004 put_device(&cdev->dev);
1005 }
1006 }
1007
remove_compat_devs(struct ib_device * device)1008 static void remove_compat_devs(struct ib_device *device)
1009 {
1010 struct ib_core_device *cdev;
1011 unsigned long index;
1012
1013 xa_for_each (&device->compat_devs, index, cdev)
1014 remove_one_compat_dev(device, index);
1015 }
1016
add_compat_devs(struct ib_device * device)1017 static int add_compat_devs(struct ib_device *device)
1018 {
1019 struct rdma_dev_net *rnet;
1020 unsigned long index;
1021 int ret = 0;
1022
1023 lockdep_assert_held(&devices_rwsem);
1024
1025 down_read(&rdma_nets_rwsem);
1026 xa_for_each (&rdma_nets, index, rnet) {
1027 ret = add_one_compat_dev(device, rnet);
1028 if (ret)
1029 break;
1030 }
1031 up_read(&rdma_nets_rwsem);
1032 return ret;
1033 }
1034
remove_all_compat_devs(void)1035 static void remove_all_compat_devs(void)
1036 {
1037 struct ib_compat_device *cdev;
1038 struct ib_device *dev;
1039 unsigned long index;
1040
1041 down_read(&devices_rwsem);
1042 xa_for_each (&devices, index, dev) {
1043 unsigned long c_index = 0;
1044
1045 /* Hold nets_rwsem so that any other thread modifying this
1046 * system param can sync with this thread.
1047 */
1048 down_read(&rdma_nets_rwsem);
1049 xa_for_each (&dev->compat_devs, c_index, cdev)
1050 remove_one_compat_dev(dev, c_index);
1051 up_read(&rdma_nets_rwsem);
1052 }
1053 up_read(&devices_rwsem);
1054 }
1055
add_all_compat_devs(void)1056 static int add_all_compat_devs(void)
1057 {
1058 struct rdma_dev_net *rnet;
1059 struct ib_device *dev;
1060 unsigned long index;
1061 int ret = 0;
1062
1063 down_read(&devices_rwsem);
1064 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1065 unsigned long net_index = 0;
1066
1067 /* Hold nets_rwsem so that any other thread modifying this
1068 * system param can sync with this thread.
1069 */
1070 down_read(&rdma_nets_rwsem);
1071 xa_for_each (&rdma_nets, net_index, rnet) {
1072 ret = add_one_compat_dev(dev, rnet);
1073 if (ret)
1074 break;
1075 }
1076 up_read(&rdma_nets_rwsem);
1077 }
1078 up_read(&devices_rwsem);
1079 if (ret)
1080 remove_all_compat_devs();
1081 return ret;
1082 }
1083
rdma_compatdev_set(u8 enable)1084 int rdma_compatdev_set(u8 enable)
1085 {
1086 struct rdma_dev_net *rnet;
1087 unsigned long index;
1088 int ret = 0;
1089
1090 down_write(&rdma_nets_rwsem);
1091 if (ib_devices_shared_netns == enable) {
1092 up_write(&rdma_nets_rwsem);
1093 return 0;
1094 }
1095
1096 /* enable/disable of compat devices is not supported
1097 * when more than default init_net exists.
1098 */
1099 xa_for_each (&rdma_nets, index, rnet) {
1100 ret++;
1101 break;
1102 }
1103 if (!ret)
1104 ib_devices_shared_netns = enable;
1105 up_write(&rdma_nets_rwsem);
1106 if (ret)
1107 return -EBUSY;
1108
1109 if (enable)
1110 ret = add_all_compat_devs();
1111 else
1112 remove_all_compat_devs();
1113 return ret;
1114 }
1115
rdma_dev_exit_net(struct net * net)1116 static void rdma_dev_exit_net(struct net *net)
1117 {
1118 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1119 struct ib_device *dev;
1120 unsigned long index;
1121 int ret;
1122
1123 down_write(&rdma_nets_rwsem);
1124 /*
1125 * Prevent the ID from being re-used and hide the id from xa_for_each.
1126 */
1127 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1128 WARN_ON(ret);
1129 up_write(&rdma_nets_rwsem);
1130
1131 down_read(&devices_rwsem);
1132 xa_for_each (&devices, index, dev) {
1133 get_device(&dev->dev);
1134 /*
1135 * Release the devices_rwsem so that pontentially blocking
1136 * device_del, doesn't hold the devices_rwsem for too long.
1137 */
1138 up_read(&devices_rwsem);
1139
1140 remove_one_compat_dev(dev, rnet->id);
1141
1142 /*
1143 * If the real device is in the NS then move it back to init.
1144 */
1145 rdma_dev_change_netns(dev, net, &init_net);
1146
1147 put_device(&dev->dev);
1148 down_read(&devices_rwsem);
1149 }
1150 up_read(&devices_rwsem);
1151
1152 rdma_nl_net_exit(rnet);
1153 xa_erase(&rdma_nets, rnet->id);
1154 }
1155
rdma_dev_init_net(struct net * net)1156 static __net_init int rdma_dev_init_net(struct net *net)
1157 {
1158 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1159 unsigned long index;
1160 struct ib_device *dev;
1161 int ret;
1162
1163 write_pnet(&rnet->net, net);
1164
1165 ret = rdma_nl_net_init(rnet);
1166 if (ret)
1167 return ret;
1168
1169 /* No need to create any compat devices in default init_net. */
1170 if (net_eq(net, &init_net))
1171 return 0;
1172
1173 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1174 if (ret) {
1175 rdma_nl_net_exit(rnet);
1176 return ret;
1177 }
1178
1179 down_read(&devices_rwsem);
1180 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1181 /* Hold nets_rwsem so that netlink command cannot change
1182 * system configuration for device sharing mode.
1183 */
1184 down_read(&rdma_nets_rwsem);
1185 ret = add_one_compat_dev(dev, rnet);
1186 up_read(&rdma_nets_rwsem);
1187 if (ret)
1188 break;
1189 }
1190 up_read(&devices_rwsem);
1191
1192 if (ret)
1193 rdma_dev_exit_net(net);
1194
1195 return ret;
1196 }
1197
1198 /*
1199 * Assign the unique string device name and the unique device index. This is
1200 * undone by ib_dealloc_device.
1201 */
assign_name(struct ib_device * device,const char * name)1202 static int assign_name(struct ib_device *device, const char *name)
1203 {
1204 static u32 last_id;
1205 int ret;
1206
1207 down_write(&devices_rwsem);
1208 /* Assign a unique name to the device */
1209 if (strchr(name, '%'))
1210 ret = alloc_name(device, name);
1211 else
1212 ret = dev_set_name(&device->dev, name);
1213 if (ret)
1214 goto out;
1215
1216 if (__ib_device_get_by_name(dev_name(&device->dev))) {
1217 ret = -ENFILE;
1218 goto out;
1219 }
1220 strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1221
1222 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1223 &last_id, GFP_KERNEL);
1224 if (ret > 0)
1225 ret = 0;
1226
1227 out:
1228 up_write(&devices_rwsem);
1229 return ret;
1230 }
1231
1232 /*
1233 * setup_device() allocates memory and sets up data that requires calling the
1234 * device ops, this is the only reason these actions are not done during
1235 * ib_alloc_device. It is undone by ib_dealloc_device().
1236 */
setup_device(struct ib_device * device)1237 static int setup_device(struct ib_device *device)
1238 {
1239 struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1240 int ret;
1241
1242 ib_device_check_mandatory(device);
1243
1244 ret = setup_port_data(device);
1245 if (ret) {
1246 dev_warn(&device->dev, "Couldn't create per-port data\n");
1247 return ret;
1248 }
1249
1250 memset(&device->attrs, 0, sizeof(device->attrs));
1251 ret = device->ops.query_device(device, &device->attrs, &uhw);
1252 if (ret) {
1253 dev_warn(&device->dev,
1254 "Couldn't query the device attributes\n");
1255 return ret;
1256 }
1257
1258 return 0;
1259 }
1260
disable_device(struct ib_device * device)1261 static void disable_device(struct ib_device *device)
1262 {
1263 u32 cid;
1264
1265 WARN_ON(!refcount_read(&device->refcount));
1266
1267 down_write(&devices_rwsem);
1268 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1269 up_write(&devices_rwsem);
1270
1271 /*
1272 * Remove clients in LIFO order, see assign_client_id. This could be
1273 * more efficient if xarray learns to reverse iterate. Since no new
1274 * clients can be added to this ib_device past this point we only need
1275 * the maximum possible client_id value here.
1276 */
1277 down_read(&clients_rwsem);
1278 cid = highest_client_id;
1279 up_read(&clients_rwsem);
1280 while (cid) {
1281 cid--;
1282 remove_client_context(device, cid);
1283 }
1284
1285 ib_cq_pool_cleanup(device);
1286
1287 /* Pairs with refcount_set in enable_device */
1288 ib_device_put(device);
1289 wait_for_completion(&device->unreg_completion);
1290
1291 /*
1292 * compat devices must be removed after device refcount drops to zero.
1293 * Otherwise init_net() may add more compatdevs after removing compat
1294 * devices and before device is disabled.
1295 */
1296 remove_compat_devs(device);
1297 }
1298
1299 /*
1300 * An enabled device is visible to all clients and to all the public facing
1301 * APIs that return a device pointer. This always returns with a new get, even
1302 * if it fails.
1303 */
enable_device_and_get(struct ib_device * device)1304 static int enable_device_and_get(struct ib_device *device)
1305 {
1306 struct ib_client *client;
1307 unsigned long index;
1308 int ret = 0;
1309
1310 /*
1311 * One ref belongs to the xa and the other belongs to this
1312 * thread. This is needed to guard against parallel unregistration.
1313 */
1314 refcount_set(&device->refcount, 2);
1315 down_write(&devices_rwsem);
1316 xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1317
1318 /*
1319 * By using downgrade_write() we ensure that no other thread can clear
1320 * DEVICE_REGISTERED while we are completing the client setup.
1321 */
1322 downgrade_write(&devices_rwsem);
1323
1324 if (device->ops.enable_driver) {
1325 ret = device->ops.enable_driver(device);
1326 if (ret)
1327 goto out;
1328 }
1329
1330 down_read(&clients_rwsem);
1331 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1332 ret = add_client_context(device, client);
1333 if (ret)
1334 break;
1335 }
1336 up_read(&clients_rwsem);
1337 if (!ret)
1338 ret = add_compat_devs(device);
1339 out:
1340 up_read(&devices_rwsem);
1341 return ret;
1342 }
1343
prevent_dealloc_device(struct ib_device * ib_dev)1344 static void prevent_dealloc_device(struct ib_device *ib_dev)
1345 {
1346 }
1347
1348 /**
1349 * ib_register_device - Register an IB device with IB core
1350 * @device: Device to register
1351 * @name: unique string device name. This may include a '%' which will
1352 * cause a unique index to be added to the passed device name.
1353 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1354 * device will be used. In this case the caller should fully
1355 * setup the ibdev for DMA. This usually means using dma_virt_ops.
1356 *
1357 * Low-level drivers use ib_register_device() to register their
1358 * devices with the IB core. All registered clients will receive a
1359 * callback for each device that is added. @device must be allocated
1360 * with ib_alloc_device().
1361 *
1362 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1363 * asynchronously then the device pointer may become freed as soon as this
1364 * function returns.
1365 */
ib_register_device(struct ib_device * device,const char * name,struct device * dma_device)1366 int ib_register_device(struct ib_device *device, const char *name,
1367 struct device *dma_device)
1368 {
1369 int ret;
1370
1371 ret = assign_name(device, name);
1372 if (ret)
1373 return ret;
1374
1375 /*
1376 * If the caller does not provide a DMA capable device then the IB core
1377 * will set up ib_sge and scatterlist structures that stash the kernel
1378 * virtual address into the address field.
1379 */
1380 WARN_ON(dma_device && !dma_device->dma_parms);
1381 device->dma_device = dma_device;
1382
1383 ret = setup_device(device);
1384 if (ret)
1385 return ret;
1386
1387 ret = ib_cache_setup_one(device);
1388 if (ret) {
1389 dev_warn(&device->dev,
1390 "Couldn't set up InfiniBand P_Key/GID cache\n");
1391 return ret;
1392 }
1393
1394 device->groups[0] = &ib_dev_attr_group;
1395 device->groups[1] = device->ops.device_group;
1396 ret = ib_setup_device_attrs(device);
1397 if (ret)
1398 goto cache_cleanup;
1399
1400 ib_device_register_rdmacg(device);
1401
1402 rdma_counter_init(device);
1403
1404 /*
1405 * Ensure that ADD uevent is not fired because it
1406 * is too early amd device is not initialized yet.
1407 */
1408 dev_set_uevent_suppress(&device->dev, true);
1409 ret = device_add(&device->dev);
1410 if (ret)
1411 goto cg_cleanup;
1412
1413 ret = ib_setup_port_attrs(&device->coredev);
1414 if (ret) {
1415 dev_warn(&device->dev,
1416 "Couldn't register device with driver model\n");
1417 goto dev_cleanup;
1418 }
1419
1420 ret = enable_device_and_get(device);
1421 if (ret) {
1422 void (*dealloc_fn)(struct ib_device *);
1423
1424 /*
1425 * If we hit this error flow then we don't want to
1426 * automatically dealloc the device since the caller is
1427 * expected to call ib_dealloc_device() after
1428 * ib_register_device() fails. This is tricky due to the
1429 * possibility for a parallel unregistration along with this
1430 * error flow. Since we have a refcount here we know any
1431 * parallel flow is stopped in disable_device and will see the
1432 * special dealloc_driver pointer, causing the responsibility to
1433 * ib_dealloc_device() to revert back to this thread.
1434 */
1435 dealloc_fn = device->ops.dealloc_driver;
1436 device->ops.dealloc_driver = prevent_dealloc_device;
1437 ib_device_put(device);
1438 __ib_unregister_device(device);
1439 device->ops.dealloc_driver = dealloc_fn;
1440 dev_set_uevent_suppress(&device->dev, false);
1441 return ret;
1442 }
1443 dev_set_uevent_suppress(&device->dev, false);
1444 /* Mark for userspace that device is ready */
1445 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1446 ib_device_put(device);
1447
1448 return 0;
1449
1450 dev_cleanup:
1451 device_del(&device->dev);
1452 cg_cleanup:
1453 dev_set_uevent_suppress(&device->dev, false);
1454 ib_device_unregister_rdmacg(device);
1455 cache_cleanup:
1456 ib_cache_cleanup_one(device);
1457 return ret;
1458 }
1459 EXPORT_SYMBOL(ib_register_device);
1460
1461 /* Callers must hold a get on the device. */
__ib_unregister_device(struct ib_device * ib_dev)1462 static void __ib_unregister_device(struct ib_device *ib_dev)
1463 {
1464 /*
1465 * We have a registration lock so that all the calls to unregister are
1466 * fully fenced, once any unregister returns the device is truely
1467 * unregistered even if multiple callers are unregistering it at the
1468 * same time. This also interacts with the registration flow and
1469 * provides sane semantics if register and unregister are racing.
1470 */
1471 mutex_lock(&ib_dev->unregistration_lock);
1472 if (!refcount_read(&ib_dev->refcount))
1473 goto out;
1474
1475 disable_device(ib_dev);
1476
1477 /* Expedite removing unregistered pointers from the hash table */
1478 free_netdevs(ib_dev);
1479
1480 ib_free_port_attrs(&ib_dev->coredev);
1481 device_del(&ib_dev->dev);
1482 ib_device_unregister_rdmacg(ib_dev);
1483 ib_cache_cleanup_one(ib_dev);
1484
1485 /*
1486 * Drivers using the new flow may not call ib_dealloc_device except
1487 * in error unwind prior to registration success.
1488 */
1489 if (ib_dev->ops.dealloc_driver &&
1490 ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1491 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1492 ib_dealloc_device(ib_dev);
1493 }
1494 out:
1495 mutex_unlock(&ib_dev->unregistration_lock);
1496 }
1497
1498 /**
1499 * ib_unregister_device - Unregister an IB device
1500 * @ib_dev: The device to unregister
1501 *
1502 * Unregister an IB device. All clients will receive a remove callback.
1503 *
1504 * Callers should call this routine only once, and protect against races with
1505 * registration. Typically it should only be called as part of a remove
1506 * callback in an implementation of driver core's struct device_driver and
1507 * related.
1508 *
1509 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1510 * this function.
1511 */
ib_unregister_device(struct ib_device * ib_dev)1512 void ib_unregister_device(struct ib_device *ib_dev)
1513 {
1514 get_device(&ib_dev->dev);
1515 __ib_unregister_device(ib_dev);
1516 put_device(&ib_dev->dev);
1517 }
1518 EXPORT_SYMBOL(ib_unregister_device);
1519
1520 /**
1521 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1522 * @ib_dev: The device to unregister
1523 *
1524 * This is the same as ib_unregister_device(), except it includes an internal
1525 * ib_device_put() that should match a 'get' obtained by the caller.
1526 *
1527 * It is safe to call this routine concurrently from multiple threads while
1528 * holding the 'get'. When the function returns the device is fully
1529 * unregistered.
1530 *
1531 * Drivers using this flow MUST use the driver_unregister callback to clean up
1532 * their resources associated with the device and dealloc it.
1533 */
ib_unregister_device_and_put(struct ib_device * ib_dev)1534 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1535 {
1536 WARN_ON(!ib_dev->ops.dealloc_driver);
1537 get_device(&ib_dev->dev);
1538 ib_device_put(ib_dev);
1539 __ib_unregister_device(ib_dev);
1540 put_device(&ib_dev->dev);
1541 }
1542 EXPORT_SYMBOL(ib_unregister_device_and_put);
1543
1544 /**
1545 * ib_unregister_driver - Unregister all IB devices for a driver
1546 * @driver_id: The driver to unregister
1547 *
1548 * This implements a fence for device unregistration. It only returns once all
1549 * devices associated with the driver_id have fully completed their
1550 * unregistration and returned from ib_unregister_device*().
1551 *
1552 * If device's are not yet unregistered it goes ahead and starts unregistering
1553 * them.
1554 *
1555 * This does not block creation of new devices with the given driver_id, that
1556 * is the responsibility of the caller.
1557 */
ib_unregister_driver(enum rdma_driver_id driver_id)1558 void ib_unregister_driver(enum rdma_driver_id driver_id)
1559 {
1560 struct ib_device *ib_dev;
1561 unsigned long index;
1562
1563 down_read(&devices_rwsem);
1564 xa_for_each (&devices, index, ib_dev) {
1565 if (ib_dev->ops.driver_id != driver_id)
1566 continue;
1567
1568 get_device(&ib_dev->dev);
1569 up_read(&devices_rwsem);
1570
1571 WARN_ON(!ib_dev->ops.dealloc_driver);
1572 __ib_unregister_device(ib_dev);
1573
1574 put_device(&ib_dev->dev);
1575 down_read(&devices_rwsem);
1576 }
1577 up_read(&devices_rwsem);
1578 }
1579 EXPORT_SYMBOL(ib_unregister_driver);
1580
ib_unregister_work(struct work_struct * work)1581 static void ib_unregister_work(struct work_struct *work)
1582 {
1583 struct ib_device *ib_dev =
1584 container_of(work, struct ib_device, unregistration_work);
1585
1586 __ib_unregister_device(ib_dev);
1587 put_device(&ib_dev->dev);
1588 }
1589
1590 /**
1591 * ib_unregister_device_queued - Unregister a device using a work queue
1592 * @ib_dev: The device to unregister
1593 *
1594 * This schedules an asynchronous unregistration using a WQ for the device. A
1595 * driver should use this to avoid holding locks while doing unregistration,
1596 * such as holding the RTNL lock.
1597 *
1598 * Drivers using this API must use ib_unregister_driver before module unload
1599 * to ensure that all scheduled unregistrations have completed.
1600 */
ib_unregister_device_queued(struct ib_device * ib_dev)1601 void ib_unregister_device_queued(struct ib_device *ib_dev)
1602 {
1603 WARN_ON(!refcount_read(&ib_dev->refcount));
1604 WARN_ON(!ib_dev->ops.dealloc_driver);
1605 get_device(&ib_dev->dev);
1606 if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1607 put_device(&ib_dev->dev);
1608 }
1609 EXPORT_SYMBOL(ib_unregister_device_queued);
1610
1611 /*
1612 * The caller must pass in a device that has the kref held and the refcount
1613 * released. If the device is in cur_net and still registered then it is moved
1614 * into net.
1615 */
rdma_dev_change_netns(struct ib_device * device,struct net * cur_net,struct net * net)1616 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1617 struct net *net)
1618 {
1619 int ret2 = -EINVAL;
1620 int ret;
1621
1622 mutex_lock(&device->unregistration_lock);
1623
1624 /*
1625 * If a device not under ib_device_get() or if the unregistration_lock
1626 * is not held, the namespace can be changed, or it can be unregistered.
1627 * Check again under the lock.
1628 */
1629 if (refcount_read(&device->refcount) == 0 ||
1630 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1631 ret = -ENODEV;
1632 goto out;
1633 }
1634
1635 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1636 disable_device(device);
1637
1638 /*
1639 * At this point no one can be using the device, so it is safe to
1640 * change the namespace.
1641 */
1642 write_pnet(&device->coredev.rdma_net, net);
1643
1644 down_read(&devices_rwsem);
1645 /*
1646 * Currently rdma devices are system wide unique. So the device name
1647 * is guaranteed free in the new namespace. Publish the new namespace
1648 * at the sysfs level.
1649 */
1650 ret = device_rename(&device->dev, dev_name(&device->dev));
1651 up_read(&devices_rwsem);
1652 if (ret) {
1653 dev_warn(&device->dev,
1654 "%s: Couldn't rename device after namespace change\n",
1655 __func__);
1656 /* Try and put things back and re-enable the device */
1657 write_pnet(&device->coredev.rdma_net, cur_net);
1658 }
1659
1660 ret2 = enable_device_and_get(device);
1661 if (ret2) {
1662 /*
1663 * This shouldn't really happen, but if it does, let the user
1664 * retry at later point. So don't disable the device.
1665 */
1666 dev_warn(&device->dev,
1667 "%s: Couldn't re-enable device after namespace change\n",
1668 __func__);
1669 }
1670 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1671
1672 ib_device_put(device);
1673 out:
1674 mutex_unlock(&device->unregistration_lock);
1675 if (ret)
1676 return ret;
1677 return ret2;
1678 }
1679
ib_device_set_netns_put(struct sk_buff * skb,struct ib_device * dev,u32 ns_fd)1680 int ib_device_set_netns_put(struct sk_buff *skb,
1681 struct ib_device *dev, u32 ns_fd)
1682 {
1683 struct net *net;
1684 int ret;
1685
1686 net = get_net_ns_by_fd(ns_fd);
1687 if (IS_ERR(net)) {
1688 ret = PTR_ERR(net);
1689 goto net_err;
1690 }
1691
1692 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1693 ret = -EPERM;
1694 goto ns_err;
1695 }
1696
1697 /*
1698 * All the ib_clients, including uverbs, are reset when the namespace is
1699 * changed and this cannot be blocked waiting for userspace to do
1700 * something, so disassociation is mandatory.
1701 */
1702 if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1703 ret = -EOPNOTSUPP;
1704 goto ns_err;
1705 }
1706
1707 get_device(&dev->dev);
1708 ib_device_put(dev);
1709 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1710 put_device(&dev->dev);
1711
1712 put_net(net);
1713 return ret;
1714
1715 ns_err:
1716 put_net(net);
1717 net_err:
1718 ib_device_put(dev);
1719 return ret;
1720 }
1721
1722 static struct pernet_operations rdma_dev_net_ops = {
1723 .init = rdma_dev_init_net,
1724 .exit = rdma_dev_exit_net,
1725 .id = &rdma_dev_net_id,
1726 .size = sizeof(struct rdma_dev_net),
1727 };
1728
assign_client_id(struct ib_client * client)1729 static int assign_client_id(struct ib_client *client)
1730 {
1731 int ret;
1732
1733 down_write(&clients_rwsem);
1734 /*
1735 * The add/remove callbacks must be called in FIFO/LIFO order. To
1736 * achieve this we assign client_ids so they are sorted in
1737 * registration order.
1738 */
1739 client->client_id = highest_client_id;
1740 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1741 if (ret)
1742 goto out;
1743
1744 highest_client_id++;
1745 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1746
1747 out:
1748 up_write(&clients_rwsem);
1749 return ret;
1750 }
1751
remove_client_id(struct ib_client * client)1752 static void remove_client_id(struct ib_client *client)
1753 {
1754 down_write(&clients_rwsem);
1755 xa_erase(&clients, client->client_id);
1756 for (; highest_client_id; highest_client_id--)
1757 if (xa_load(&clients, highest_client_id - 1))
1758 break;
1759 up_write(&clients_rwsem);
1760 }
1761
1762 /**
1763 * ib_register_client - Register an IB client
1764 * @client:Client to register
1765 *
1766 * Upper level users of the IB drivers can use ib_register_client() to
1767 * register callbacks for IB device addition and removal. When an IB
1768 * device is added, each registered client's add method will be called
1769 * (in the order the clients were registered), and when a device is
1770 * removed, each client's remove method will be called (in the reverse
1771 * order that clients were registered). In addition, when
1772 * ib_register_client() is called, the client will receive an add
1773 * callback for all devices already registered.
1774 */
ib_register_client(struct ib_client * client)1775 int ib_register_client(struct ib_client *client)
1776 {
1777 struct ib_device *device;
1778 unsigned long index;
1779 int ret;
1780
1781 refcount_set(&client->uses, 1);
1782 init_completion(&client->uses_zero);
1783 ret = assign_client_id(client);
1784 if (ret)
1785 return ret;
1786
1787 down_read(&devices_rwsem);
1788 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1789 ret = add_client_context(device, client);
1790 if (ret) {
1791 up_read(&devices_rwsem);
1792 ib_unregister_client(client);
1793 return ret;
1794 }
1795 }
1796 up_read(&devices_rwsem);
1797 return 0;
1798 }
1799 EXPORT_SYMBOL(ib_register_client);
1800
1801 /**
1802 * ib_unregister_client - Unregister an IB client
1803 * @client:Client to unregister
1804 *
1805 * Upper level users use ib_unregister_client() to remove their client
1806 * registration. When ib_unregister_client() is called, the client
1807 * will receive a remove callback for each IB device still registered.
1808 *
1809 * This is a full fence, once it returns no client callbacks will be called,
1810 * or are running in another thread.
1811 */
ib_unregister_client(struct ib_client * client)1812 void ib_unregister_client(struct ib_client *client)
1813 {
1814 struct ib_device *device;
1815 unsigned long index;
1816
1817 down_write(&clients_rwsem);
1818 ib_client_put(client);
1819 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1820 up_write(&clients_rwsem);
1821
1822 /* We do not want to have locks while calling client->remove() */
1823 rcu_read_lock();
1824 xa_for_each (&devices, index, device) {
1825 if (!ib_device_try_get(device))
1826 continue;
1827 rcu_read_unlock();
1828
1829 remove_client_context(device, client->client_id);
1830
1831 ib_device_put(device);
1832 rcu_read_lock();
1833 }
1834 rcu_read_unlock();
1835
1836 /*
1837 * remove_client_context() is not a fence, it can return even though a
1838 * removal is ongoing. Wait until all removals are completed.
1839 */
1840 wait_for_completion(&client->uses_zero);
1841 remove_client_id(client);
1842 }
1843 EXPORT_SYMBOL(ib_unregister_client);
1844
__ib_get_global_client_nl_info(const char * client_name,struct ib_client_nl_info * res)1845 static int __ib_get_global_client_nl_info(const char *client_name,
1846 struct ib_client_nl_info *res)
1847 {
1848 struct ib_client *client;
1849 unsigned long index;
1850 int ret = -ENOENT;
1851
1852 down_read(&clients_rwsem);
1853 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1854 if (strcmp(client->name, client_name) != 0)
1855 continue;
1856 if (!client->get_global_nl_info) {
1857 ret = -EOPNOTSUPP;
1858 break;
1859 }
1860 ret = client->get_global_nl_info(res);
1861 if (WARN_ON(ret == -ENOENT))
1862 ret = -EINVAL;
1863 if (!ret && res->cdev)
1864 get_device(res->cdev);
1865 break;
1866 }
1867 up_read(&clients_rwsem);
1868 return ret;
1869 }
1870
__ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1871 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1872 const char *client_name,
1873 struct ib_client_nl_info *res)
1874 {
1875 unsigned long index;
1876 void *client_data;
1877 int ret = -ENOENT;
1878
1879 down_read(&ibdev->client_data_rwsem);
1880 xan_for_each_marked (&ibdev->client_data, index, client_data,
1881 CLIENT_DATA_REGISTERED) {
1882 struct ib_client *client = xa_load(&clients, index);
1883
1884 if (!client || strcmp(client->name, client_name) != 0)
1885 continue;
1886 if (!client->get_nl_info) {
1887 ret = -EOPNOTSUPP;
1888 break;
1889 }
1890 ret = client->get_nl_info(ibdev, client_data, res);
1891 if (WARN_ON(ret == -ENOENT))
1892 ret = -EINVAL;
1893
1894 /*
1895 * The cdev is guaranteed valid as long as we are inside the
1896 * client_data_rwsem as remove_one can't be called. Keep it
1897 * valid for the caller.
1898 */
1899 if (!ret && res->cdev)
1900 get_device(res->cdev);
1901 break;
1902 }
1903 up_read(&ibdev->client_data_rwsem);
1904
1905 return ret;
1906 }
1907
1908 /**
1909 * ib_get_client_nl_info - Fetch the nl_info from a client
1910 * @ibdev: IB device
1911 * @client_name: Name of the client
1912 * @res: Result of the query
1913 */
ib_get_client_nl_info(struct ib_device * ibdev,const char * client_name,struct ib_client_nl_info * res)1914 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1915 struct ib_client_nl_info *res)
1916 {
1917 int ret;
1918
1919 if (ibdev)
1920 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1921 else
1922 ret = __ib_get_global_client_nl_info(client_name, res);
1923 #ifdef CONFIG_MODULES
1924 if (ret == -ENOENT) {
1925 request_module("rdma-client-%s", client_name);
1926 if (ibdev)
1927 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1928 else
1929 ret = __ib_get_global_client_nl_info(client_name, res);
1930 }
1931 #endif
1932 if (ret) {
1933 if (ret == -ENOENT)
1934 return -EOPNOTSUPP;
1935 return ret;
1936 }
1937
1938 if (WARN_ON(!res->cdev))
1939 return -EINVAL;
1940 return 0;
1941 }
1942
1943 /**
1944 * ib_set_client_data - Set IB client context
1945 * @device:Device to set context for
1946 * @client:Client to set context for
1947 * @data:Context to set
1948 *
1949 * ib_set_client_data() sets client context data that can be retrieved with
1950 * ib_get_client_data(). This can only be called while the client is
1951 * registered to the device, once the ib_client remove() callback returns this
1952 * cannot be called.
1953 */
ib_set_client_data(struct ib_device * device,struct ib_client * client,void * data)1954 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1955 void *data)
1956 {
1957 void *rc;
1958
1959 if (WARN_ON(IS_ERR(data)))
1960 data = NULL;
1961
1962 rc = xa_store(&device->client_data, client->client_id, data,
1963 GFP_KERNEL);
1964 WARN_ON(xa_is_err(rc));
1965 }
1966 EXPORT_SYMBOL(ib_set_client_data);
1967
1968 /**
1969 * ib_register_event_handler - Register an IB event handler
1970 * @event_handler:Handler to register
1971 *
1972 * ib_register_event_handler() registers an event handler that will be
1973 * called back when asynchronous IB events occur (as defined in
1974 * chapter 11 of the InfiniBand Architecture Specification). This
1975 * callback occurs in workqueue context.
1976 */
ib_register_event_handler(struct ib_event_handler * event_handler)1977 void ib_register_event_handler(struct ib_event_handler *event_handler)
1978 {
1979 down_write(&event_handler->device->event_handler_rwsem);
1980 list_add_tail(&event_handler->list,
1981 &event_handler->device->event_handler_list);
1982 up_write(&event_handler->device->event_handler_rwsem);
1983 }
1984 EXPORT_SYMBOL(ib_register_event_handler);
1985
1986 /**
1987 * ib_unregister_event_handler - Unregister an event handler
1988 * @event_handler:Handler to unregister
1989 *
1990 * Unregister an event handler registered with
1991 * ib_register_event_handler().
1992 */
ib_unregister_event_handler(struct ib_event_handler * event_handler)1993 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1994 {
1995 down_write(&event_handler->device->event_handler_rwsem);
1996 list_del(&event_handler->list);
1997 up_write(&event_handler->device->event_handler_rwsem);
1998 }
1999 EXPORT_SYMBOL(ib_unregister_event_handler);
2000
ib_dispatch_event_clients(struct ib_event * event)2001 void ib_dispatch_event_clients(struct ib_event *event)
2002 {
2003 struct ib_event_handler *handler;
2004
2005 down_read(&event->device->event_handler_rwsem);
2006
2007 list_for_each_entry(handler, &event->device->event_handler_list, list)
2008 handler->handler(handler, event);
2009
2010 up_read(&event->device->event_handler_rwsem);
2011 }
2012
iw_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2013 static int iw_query_port(struct ib_device *device,
2014 u32 port_num,
2015 struct ib_port_attr *port_attr)
2016 {
2017 struct in_device *inetdev;
2018 struct net_device *netdev;
2019
2020 memset(port_attr, 0, sizeof(*port_attr));
2021
2022 netdev = ib_device_get_netdev(device, port_num);
2023 if (!netdev)
2024 return -ENODEV;
2025
2026 port_attr->max_mtu = IB_MTU_4096;
2027 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2028
2029 if (!netif_carrier_ok(netdev)) {
2030 port_attr->state = IB_PORT_DOWN;
2031 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2032 } else {
2033 rcu_read_lock();
2034 inetdev = __in_dev_get_rcu(netdev);
2035
2036 if (inetdev && inetdev->ifa_list) {
2037 port_attr->state = IB_PORT_ACTIVE;
2038 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2039 } else {
2040 port_attr->state = IB_PORT_INIT;
2041 port_attr->phys_state =
2042 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2043 }
2044
2045 rcu_read_unlock();
2046 }
2047
2048 dev_put(netdev);
2049 return device->ops.query_port(device, port_num, port_attr);
2050 }
2051
__ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2052 static int __ib_query_port(struct ib_device *device,
2053 u32 port_num,
2054 struct ib_port_attr *port_attr)
2055 {
2056 int err;
2057
2058 memset(port_attr, 0, sizeof(*port_attr));
2059
2060 err = device->ops.query_port(device, port_num, port_attr);
2061 if (err || port_attr->subnet_prefix)
2062 return err;
2063
2064 if (rdma_port_get_link_layer(device, port_num) !=
2065 IB_LINK_LAYER_INFINIBAND)
2066 return 0;
2067
2068 ib_get_cached_subnet_prefix(device, port_num,
2069 &port_attr->subnet_prefix);
2070 return 0;
2071 }
2072
2073 /**
2074 * ib_query_port - Query IB port attributes
2075 * @device:Device to query
2076 * @port_num:Port number to query
2077 * @port_attr:Port attributes
2078 *
2079 * ib_query_port() returns the attributes of a port through the
2080 * @port_attr pointer.
2081 */
ib_query_port(struct ib_device * device,u32 port_num,struct ib_port_attr * port_attr)2082 int ib_query_port(struct ib_device *device,
2083 u32 port_num,
2084 struct ib_port_attr *port_attr)
2085 {
2086 if (!rdma_is_port_valid(device, port_num))
2087 return -EINVAL;
2088
2089 if (rdma_protocol_iwarp(device, port_num))
2090 return iw_query_port(device, port_num, port_attr);
2091 else
2092 return __ib_query_port(device, port_num, port_attr);
2093 }
2094 EXPORT_SYMBOL(ib_query_port);
2095
add_ndev_hash(struct ib_port_data * pdata)2096 static void add_ndev_hash(struct ib_port_data *pdata)
2097 {
2098 unsigned long flags;
2099
2100 might_sleep();
2101
2102 spin_lock_irqsave(&ndev_hash_lock, flags);
2103 if (hash_hashed(&pdata->ndev_hash_link)) {
2104 hash_del_rcu(&pdata->ndev_hash_link);
2105 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2106 /*
2107 * We cannot do hash_add_rcu after a hash_del_rcu until the
2108 * grace period
2109 */
2110 synchronize_rcu();
2111 spin_lock_irqsave(&ndev_hash_lock, flags);
2112 }
2113 if (pdata->netdev)
2114 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2115 (uintptr_t)pdata->netdev);
2116 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2117 }
2118
2119 /**
2120 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2121 * @ib_dev: Device to modify
2122 * @ndev: net_device to affiliate, may be NULL
2123 * @port: IB port the net_device is connected to
2124 *
2125 * Drivers should use this to link the ib_device to a netdev so the netdev
2126 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2127 * affiliated with any port.
2128 *
2129 * The caller must ensure that the given ndev is not unregistered or
2130 * unregistering, and that either the ib_device is unregistered or
2131 * ib_device_set_netdev() is called with NULL when the ndev sends a
2132 * NETDEV_UNREGISTER event.
2133 */
ib_device_set_netdev(struct ib_device * ib_dev,struct net_device * ndev,u32 port)2134 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2135 u32 port)
2136 {
2137 struct net_device *old_ndev;
2138 struct ib_port_data *pdata;
2139 unsigned long flags;
2140 int ret;
2141
2142 /*
2143 * Drivers wish to call this before ib_register_driver, so we have to
2144 * setup the port data early.
2145 */
2146 ret = alloc_port_data(ib_dev);
2147 if (ret)
2148 return ret;
2149
2150 if (!rdma_is_port_valid(ib_dev, port))
2151 return -EINVAL;
2152
2153 pdata = &ib_dev->port_data[port];
2154 spin_lock_irqsave(&pdata->netdev_lock, flags);
2155 old_ndev = rcu_dereference_protected(
2156 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2157 if (old_ndev == ndev) {
2158 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2159 return 0;
2160 }
2161
2162 if (ndev)
2163 dev_hold(ndev);
2164 rcu_assign_pointer(pdata->netdev, ndev);
2165 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2166
2167 add_ndev_hash(pdata);
2168 if (old_ndev)
2169 dev_put(old_ndev);
2170
2171 return 0;
2172 }
2173 EXPORT_SYMBOL(ib_device_set_netdev);
2174
free_netdevs(struct ib_device * ib_dev)2175 static void free_netdevs(struct ib_device *ib_dev)
2176 {
2177 unsigned long flags;
2178 u32 port;
2179
2180 if (!ib_dev->port_data)
2181 return;
2182
2183 rdma_for_each_port (ib_dev, port) {
2184 struct ib_port_data *pdata = &ib_dev->port_data[port];
2185 struct net_device *ndev;
2186
2187 spin_lock_irqsave(&pdata->netdev_lock, flags);
2188 ndev = rcu_dereference_protected(
2189 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2190 if (ndev) {
2191 spin_lock(&ndev_hash_lock);
2192 hash_del_rcu(&pdata->ndev_hash_link);
2193 spin_unlock(&ndev_hash_lock);
2194
2195 /*
2196 * If this is the last dev_put there is still a
2197 * synchronize_rcu before the netdev is kfreed, so we
2198 * can continue to rely on unlocked pointer
2199 * comparisons after the put
2200 */
2201 rcu_assign_pointer(pdata->netdev, NULL);
2202 dev_put(ndev);
2203 }
2204 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2205 }
2206 }
2207
ib_device_get_netdev(struct ib_device * ib_dev,u32 port)2208 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2209 u32 port)
2210 {
2211 struct ib_port_data *pdata;
2212 struct net_device *res;
2213
2214 if (!rdma_is_port_valid(ib_dev, port))
2215 return NULL;
2216
2217 pdata = &ib_dev->port_data[port];
2218
2219 /*
2220 * New drivers should use ib_device_set_netdev() not the legacy
2221 * get_netdev().
2222 */
2223 if (ib_dev->ops.get_netdev)
2224 res = ib_dev->ops.get_netdev(ib_dev, port);
2225 else {
2226 spin_lock(&pdata->netdev_lock);
2227 res = rcu_dereference_protected(
2228 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2229 if (res)
2230 dev_hold(res);
2231 spin_unlock(&pdata->netdev_lock);
2232 }
2233
2234 /*
2235 * If we are starting to unregister expedite things by preventing
2236 * propagation of an unregistering netdev.
2237 */
2238 if (res && res->reg_state != NETREG_REGISTERED) {
2239 dev_put(res);
2240 return NULL;
2241 }
2242
2243 return res;
2244 }
2245
2246 /**
2247 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2248 * @ndev: netdev to locate
2249 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2250 *
2251 * Find and hold an ib_device that is associated with a netdev via
2252 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2253 * returned pointer.
2254 */
ib_device_get_by_netdev(struct net_device * ndev,enum rdma_driver_id driver_id)2255 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2256 enum rdma_driver_id driver_id)
2257 {
2258 struct ib_device *res = NULL;
2259 struct ib_port_data *cur;
2260
2261 rcu_read_lock();
2262 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2263 (uintptr_t)ndev) {
2264 if (rcu_access_pointer(cur->netdev) == ndev &&
2265 (driver_id == RDMA_DRIVER_UNKNOWN ||
2266 cur->ib_dev->ops.driver_id == driver_id) &&
2267 ib_device_try_get(cur->ib_dev)) {
2268 res = cur->ib_dev;
2269 break;
2270 }
2271 }
2272 rcu_read_unlock();
2273
2274 return res;
2275 }
2276 EXPORT_SYMBOL(ib_device_get_by_netdev);
2277
2278 /**
2279 * ib_enum_roce_netdev - enumerate all RoCE ports
2280 * @ib_dev : IB device we want to query
2281 * @filter: Should we call the callback?
2282 * @filter_cookie: Cookie passed to filter
2283 * @cb: Callback to call for each found RoCE ports
2284 * @cookie: Cookie passed back to the callback
2285 *
2286 * Enumerates all of the physical RoCE ports of ib_dev
2287 * which are related to netdevice and calls callback() on each
2288 * device for which filter() function returns non zero.
2289 */
ib_enum_roce_netdev(struct ib_device * ib_dev,roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2290 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2291 roce_netdev_filter filter,
2292 void *filter_cookie,
2293 roce_netdev_callback cb,
2294 void *cookie)
2295 {
2296 u32 port;
2297
2298 rdma_for_each_port (ib_dev, port)
2299 if (rdma_protocol_roce(ib_dev, port)) {
2300 struct net_device *idev =
2301 ib_device_get_netdev(ib_dev, port);
2302
2303 if (filter(ib_dev, port, idev, filter_cookie))
2304 cb(ib_dev, port, idev, cookie);
2305
2306 if (idev)
2307 dev_put(idev);
2308 }
2309 }
2310
2311 /**
2312 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2313 * @filter: Should we call the callback?
2314 * @filter_cookie: Cookie passed to filter
2315 * @cb: Callback to call for each found RoCE ports
2316 * @cookie: Cookie passed back to the callback
2317 *
2318 * Enumerates all RoCE devices' physical ports which are related
2319 * to netdevices and calls callback() on each device for which
2320 * filter() function returns non zero.
2321 */
ib_enum_all_roce_netdevs(roce_netdev_filter filter,void * filter_cookie,roce_netdev_callback cb,void * cookie)2322 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2323 void *filter_cookie,
2324 roce_netdev_callback cb,
2325 void *cookie)
2326 {
2327 struct ib_device *dev;
2328 unsigned long index;
2329
2330 down_read(&devices_rwsem);
2331 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2332 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2333 up_read(&devices_rwsem);
2334 }
2335
2336 /*
2337 * ib_enum_all_devs - enumerate all ib_devices
2338 * @cb: Callback to call for each found ib_device
2339 *
2340 * Enumerates all ib_devices and calls callback() on each device.
2341 */
ib_enum_all_devs(nldev_callback nldev_cb,struct sk_buff * skb,struct netlink_callback * cb)2342 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2343 struct netlink_callback *cb)
2344 {
2345 unsigned long index;
2346 struct ib_device *dev;
2347 unsigned int idx = 0;
2348 int ret = 0;
2349
2350 down_read(&devices_rwsem);
2351 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2352 if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2353 continue;
2354
2355 ret = nldev_cb(dev, skb, cb, idx);
2356 if (ret)
2357 break;
2358 idx++;
2359 }
2360 up_read(&devices_rwsem);
2361 return ret;
2362 }
2363
2364 /**
2365 * ib_query_pkey - Get P_Key table entry
2366 * @device:Device to query
2367 * @port_num:Port number to query
2368 * @index:P_Key table index to query
2369 * @pkey:Returned P_Key
2370 *
2371 * ib_query_pkey() fetches the specified P_Key table entry.
2372 */
ib_query_pkey(struct ib_device * device,u32 port_num,u16 index,u16 * pkey)2373 int ib_query_pkey(struct ib_device *device,
2374 u32 port_num, u16 index, u16 *pkey)
2375 {
2376 if (!rdma_is_port_valid(device, port_num))
2377 return -EINVAL;
2378
2379 if (!device->ops.query_pkey)
2380 return -EOPNOTSUPP;
2381
2382 return device->ops.query_pkey(device, port_num, index, pkey);
2383 }
2384 EXPORT_SYMBOL(ib_query_pkey);
2385
2386 /**
2387 * ib_modify_device - Change IB device attributes
2388 * @device:Device to modify
2389 * @device_modify_mask:Mask of attributes to change
2390 * @device_modify:New attribute values
2391 *
2392 * ib_modify_device() changes a device's attributes as specified by
2393 * the @device_modify_mask and @device_modify structure.
2394 */
ib_modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)2395 int ib_modify_device(struct ib_device *device,
2396 int device_modify_mask,
2397 struct ib_device_modify *device_modify)
2398 {
2399 if (!device->ops.modify_device)
2400 return -EOPNOTSUPP;
2401
2402 return device->ops.modify_device(device, device_modify_mask,
2403 device_modify);
2404 }
2405 EXPORT_SYMBOL(ib_modify_device);
2406
2407 /**
2408 * ib_modify_port - Modifies the attributes for the specified port.
2409 * @device: The device to modify.
2410 * @port_num: The number of the port to modify.
2411 * @port_modify_mask: Mask used to specify which attributes of the port
2412 * to change.
2413 * @port_modify: New attribute values for the port.
2414 *
2415 * ib_modify_port() changes a port's attributes as specified by the
2416 * @port_modify_mask and @port_modify structure.
2417 */
ib_modify_port(struct ib_device * device,u32 port_num,int port_modify_mask,struct ib_port_modify * port_modify)2418 int ib_modify_port(struct ib_device *device,
2419 u32 port_num, int port_modify_mask,
2420 struct ib_port_modify *port_modify)
2421 {
2422 int rc;
2423
2424 if (!rdma_is_port_valid(device, port_num))
2425 return -EINVAL;
2426
2427 if (device->ops.modify_port)
2428 rc = device->ops.modify_port(device, port_num,
2429 port_modify_mask,
2430 port_modify);
2431 else if (rdma_protocol_roce(device, port_num) &&
2432 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2433 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2434 rc = 0;
2435 else
2436 rc = -EOPNOTSUPP;
2437 return rc;
2438 }
2439 EXPORT_SYMBOL(ib_modify_port);
2440
2441 /**
2442 * ib_find_gid - Returns the port number and GID table index where
2443 * a specified GID value occurs. Its searches only for IB link layer.
2444 * @device: The device to query.
2445 * @gid: The GID value to search for.
2446 * @port_num: The port number of the device where the GID value was found.
2447 * @index: The index into the GID table where the GID was found. This
2448 * parameter may be NULL.
2449 */
ib_find_gid(struct ib_device * device,union ib_gid * gid,u32 * port_num,u16 * index)2450 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2451 u32 *port_num, u16 *index)
2452 {
2453 union ib_gid tmp_gid;
2454 u32 port;
2455 int ret, i;
2456
2457 rdma_for_each_port (device, port) {
2458 if (!rdma_protocol_ib(device, port))
2459 continue;
2460
2461 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2462 ++i) {
2463 ret = rdma_query_gid(device, port, i, &tmp_gid);
2464 if (ret)
2465 continue;
2466
2467 if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2468 *port_num = port;
2469 if (index)
2470 *index = i;
2471 return 0;
2472 }
2473 }
2474 }
2475
2476 return -ENOENT;
2477 }
2478 EXPORT_SYMBOL(ib_find_gid);
2479
2480 /**
2481 * ib_find_pkey - Returns the PKey table index where a specified
2482 * PKey value occurs.
2483 * @device: The device to query.
2484 * @port_num: The port number of the device to search for the PKey.
2485 * @pkey: The PKey value to search for.
2486 * @index: The index into the PKey table where the PKey was found.
2487 */
ib_find_pkey(struct ib_device * device,u32 port_num,u16 pkey,u16 * index)2488 int ib_find_pkey(struct ib_device *device,
2489 u32 port_num, u16 pkey, u16 *index)
2490 {
2491 int ret, i;
2492 u16 tmp_pkey;
2493 int partial_ix = -1;
2494
2495 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2496 ++i) {
2497 ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2498 if (ret)
2499 return ret;
2500 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2501 /* if there is full-member pkey take it.*/
2502 if (tmp_pkey & 0x8000) {
2503 *index = i;
2504 return 0;
2505 }
2506 if (partial_ix < 0)
2507 partial_ix = i;
2508 }
2509 }
2510
2511 /*no full-member, if exists take the limited*/
2512 if (partial_ix >= 0) {
2513 *index = partial_ix;
2514 return 0;
2515 }
2516 return -ENOENT;
2517 }
2518 EXPORT_SYMBOL(ib_find_pkey);
2519
2520 /**
2521 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2522 * for a received CM request
2523 * @dev: An RDMA device on which the request has been received.
2524 * @port: Port number on the RDMA device.
2525 * @pkey: The Pkey the request came on.
2526 * @gid: A GID that the net_dev uses to communicate.
2527 * @addr: Contains the IP address that the request specified as its
2528 * destination.
2529 *
2530 */
ib_get_net_dev_by_params(struct ib_device * dev,u32 port,u16 pkey,const union ib_gid * gid,const struct sockaddr * addr)2531 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2532 u32 port,
2533 u16 pkey,
2534 const union ib_gid *gid,
2535 const struct sockaddr *addr)
2536 {
2537 struct net_device *net_dev = NULL;
2538 unsigned long index;
2539 void *client_data;
2540
2541 if (!rdma_protocol_ib(dev, port))
2542 return NULL;
2543
2544 /*
2545 * Holding the read side guarantees that the client will not become
2546 * unregistered while we are calling get_net_dev_by_params()
2547 */
2548 down_read(&dev->client_data_rwsem);
2549 xan_for_each_marked (&dev->client_data, index, client_data,
2550 CLIENT_DATA_REGISTERED) {
2551 struct ib_client *client = xa_load(&clients, index);
2552
2553 if (!client || !client->get_net_dev_by_params)
2554 continue;
2555
2556 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2557 addr, client_data);
2558 if (net_dev)
2559 break;
2560 }
2561 up_read(&dev->client_data_rwsem);
2562
2563 return net_dev;
2564 }
2565 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2566
ib_set_device_ops(struct ib_device * dev,const struct ib_device_ops * ops)2567 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2568 {
2569 struct ib_device_ops *dev_ops = &dev->ops;
2570 #define SET_DEVICE_OP(ptr, name) \
2571 do { \
2572 if (ops->name) \
2573 if (!((ptr)->name)) \
2574 (ptr)->name = ops->name; \
2575 } while (0)
2576
2577 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2578
2579 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2580 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2581 dev_ops->driver_id != ops->driver_id);
2582 dev_ops->driver_id = ops->driver_id;
2583 }
2584 if (ops->owner) {
2585 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2586 dev_ops->owner = ops->owner;
2587 }
2588 if (ops->uverbs_abi_ver)
2589 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2590
2591 dev_ops->uverbs_no_driver_id_binding |=
2592 ops->uverbs_no_driver_id_binding;
2593
2594 SET_DEVICE_OP(dev_ops, add_gid);
2595 SET_DEVICE_OP(dev_ops, advise_mr);
2596 SET_DEVICE_OP(dev_ops, alloc_dm);
2597 SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2598 SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2599 SET_DEVICE_OP(dev_ops, alloc_mr);
2600 SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2601 SET_DEVICE_OP(dev_ops, alloc_mw);
2602 SET_DEVICE_OP(dev_ops, alloc_pd);
2603 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2604 SET_DEVICE_OP(dev_ops, alloc_ucontext);
2605 SET_DEVICE_OP(dev_ops, alloc_xrcd);
2606 SET_DEVICE_OP(dev_ops, attach_mcast);
2607 SET_DEVICE_OP(dev_ops, check_mr_status);
2608 SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2609 SET_DEVICE_OP(dev_ops, counter_bind_qp);
2610 SET_DEVICE_OP(dev_ops, counter_dealloc);
2611 SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2612 SET_DEVICE_OP(dev_ops, counter_update_stats);
2613 SET_DEVICE_OP(dev_ops, create_ah);
2614 SET_DEVICE_OP(dev_ops, create_counters);
2615 SET_DEVICE_OP(dev_ops, create_cq);
2616 SET_DEVICE_OP(dev_ops, create_flow);
2617 SET_DEVICE_OP(dev_ops, create_qp);
2618 SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2619 SET_DEVICE_OP(dev_ops, create_srq);
2620 SET_DEVICE_OP(dev_ops, create_user_ah);
2621 SET_DEVICE_OP(dev_ops, create_wq);
2622 SET_DEVICE_OP(dev_ops, dealloc_dm);
2623 SET_DEVICE_OP(dev_ops, dealloc_driver);
2624 SET_DEVICE_OP(dev_ops, dealloc_mw);
2625 SET_DEVICE_OP(dev_ops, dealloc_pd);
2626 SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2627 SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2628 SET_DEVICE_OP(dev_ops, del_gid);
2629 SET_DEVICE_OP(dev_ops, dereg_mr);
2630 SET_DEVICE_OP(dev_ops, destroy_ah);
2631 SET_DEVICE_OP(dev_ops, destroy_counters);
2632 SET_DEVICE_OP(dev_ops, destroy_cq);
2633 SET_DEVICE_OP(dev_ops, destroy_flow);
2634 SET_DEVICE_OP(dev_ops, destroy_flow_action);
2635 SET_DEVICE_OP(dev_ops, destroy_qp);
2636 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2637 SET_DEVICE_OP(dev_ops, destroy_srq);
2638 SET_DEVICE_OP(dev_ops, destroy_wq);
2639 SET_DEVICE_OP(dev_ops, device_group);
2640 SET_DEVICE_OP(dev_ops, detach_mcast);
2641 SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2642 SET_DEVICE_OP(dev_ops, drain_rq);
2643 SET_DEVICE_OP(dev_ops, drain_sq);
2644 SET_DEVICE_OP(dev_ops, enable_driver);
2645 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2646 SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2647 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2648 SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2649 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2650 SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2651 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2652 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2653 SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2654 SET_DEVICE_OP(dev_ops, get_dma_mr);
2655 SET_DEVICE_OP(dev_ops, get_hw_stats);
2656 SET_DEVICE_OP(dev_ops, get_link_layer);
2657 SET_DEVICE_OP(dev_ops, get_netdev);
2658 SET_DEVICE_OP(dev_ops, get_numa_node);
2659 SET_DEVICE_OP(dev_ops, get_port_immutable);
2660 SET_DEVICE_OP(dev_ops, get_vector_affinity);
2661 SET_DEVICE_OP(dev_ops, get_vf_config);
2662 SET_DEVICE_OP(dev_ops, get_vf_guid);
2663 SET_DEVICE_OP(dev_ops, get_vf_stats);
2664 SET_DEVICE_OP(dev_ops, iw_accept);
2665 SET_DEVICE_OP(dev_ops, iw_add_ref);
2666 SET_DEVICE_OP(dev_ops, iw_connect);
2667 SET_DEVICE_OP(dev_ops, iw_create_listen);
2668 SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2669 SET_DEVICE_OP(dev_ops, iw_get_qp);
2670 SET_DEVICE_OP(dev_ops, iw_reject);
2671 SET_DEVICE_OP(dev_ops, iw_rem_ref);
2672 SET_DEVICE_OP(dev_ops, map_mr_sg);
2673 SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2674 SET_DEVICE_OP(dev_ops, mmap);
2675 SET_DEVICE_OP(dev_ops, mmap_free);
2676 SET_DEVICE_OP(dev_ops, modify_ah);
2677 SET_DEVICE_OP(dev_ops, modify_cq);
2678 SET_DEVICE_OP(dev_ops, modify_device);
2679 SET_DEVICE_OP(dev_ops, modify_hw_stat);
2680 SET_DEVICE_OP(dev_ops, modify_port);
2681 SET_DEVICE_OP(dev_ops, modify_qp);
2682 SET_DEVICE_OP(dev_ops, modify_srq);
2683 SET_DEVICE_OP(dev_ops, modify_wq);
2684 SET_DEVICE_OP(dev_ops, peek_cq);
2685 SET_DEVICE_OP(dev_ops, poll_cq);
2686 SET_DEVICE_OP(dev_ops, port_groups);
2687 SET_DEVICE_OP(dev_ops, post_recv);
2688 SET_DEVICE_OP(dev_ops, post_send);
2689 SET_DEVICE_OP(dev_ops, post_srq_recv);
2690 SET_DEVICE_OP(dev_ops, process_mad);
2691 SET_DEVICE_OP(dev_ops, query_ah);
2692 SET_DEVICE_OP(dev_ops, query_device);
2693 SET_DEVICE_OP(dev_ops, query_gid);
2694 SET_DEVICE_OP(dev_ops, query_pkey);
2695 SET_DEVICE_OP(dev_ops, query_port);
2696 SET_DEVICE_OP(dev_ops, query_qp);
2697 SET_DEVICE_OP(dev_ops, query_srq);
2698 SET_DEVICE_OP(dev_ops, query_ucontext);
2699 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2700 SET_DEVICE_OP(dev_ops, read_counters);
2701 SET_DEVICE_OP(dev_ops, reg_dm_mr);
2702 SET_DEVICE_OP(dev_ops, reg_user_mr);
2703 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2704 SET_DEVICE_OP(dev_ops, req_notify_cq);
2705 SET_DEVICE_OP(dev_ops, rereg_user_mr);
2706 SET_DEVICE_OP(dev_ops, resize_cq);
2707 SET_DEVICE_OP(dev_ops, set_vf_guid);
2708 SET_DEVICE_OP(dev_ops, set_vf_link_state);
2709
2710 SET_OBJ_SIZE(dev_ops, ib_ah);
2711 SET_OBJ_SIZE(dev_ops, ib_counters);
2712 SET_OBJ_SIZE(dev_ops, ib_cq);
2713 SET_OBJ_SIZE(dev_ops, ib_mw);
2714 SET_OBJ_SIZE(dev_ops, ib_pd);
2715 SET_OBJ_SIZE(dev_ops, ib_qp);
2716 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2717 SET_OBJ_SIZE(dev_ops, ib_srq);
2718 SET_OBJ_SIZE(dev_ops, ib_ucontext);
2719 SET_OBJ_SIZE(dev_ops, ib_xrcd);
2720 }
2721 EXPORT_SYMBOL(ib_set_device_ops);
2722
2723 #ifdef CONFIG_INFINIBAND_VIRT_DMA
ib_dma_virt_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents)2724 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2725 {
2726 struct scatterlist *s;
2727 int i;
2728
2729 for_each_sg(sg, s, nents, i) {
2730 sg_dma_address(s) = (uintptr_t)sg_virt(s);
2731 sg_dma_len(s) = s->length;
2732 }
2733 return nents;
2734 }
2735 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2736 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2737
2738 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2739 [RDMA_NL_LS_OP_RESOLVE] = {
2740 .doit = ib_nl_handle_resolve_resp,
2741 .flags = RDMA_NL_ADMIN_PERM,
2742 },
2743 [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2744 .doit = ib_nl_handle_set_timeout,
2745 .flags = RDMA_NL_ADMIN_PERM,
2746 },
2747 [RDMA_NL_LS_OP_IP_RESOLVE] = {
2748 .doit = ib_nl_handle_ip_res_resp,
2749 .flags = RDMA_NL_ADMIN_PERM,
2750 },
2751 };
2752
ib_core_init(void)2753 static int __init ib_core_init(void)
2754 {
2755 int ret = -ENOMEM;
2756
2757 ib_wq = alloc_workqueue("infiniband", 0, 0);
2758 if (!ib_wq)
2759 return -ENOMEM;
2760
2761 ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2762 WQ_UNBOUND_MAX_ACTIVE);
2763 if (!ib_unreg_wq)
2764 goto err;
2765
2766 ib_comp_wq = alloc_workqueue("ib-comp-wq",
2767 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2768 if (!ib_comp_wq)
2769 goto err_unbound;
2770
2771 ib_comp_unbound_wq =
2772 alloc_workqueue("ib-comp-unb-wq",
2773 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2774 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2775 if (!ib_comp_unbound_wq)
2776 goto err_comp;
2777
2778 ret = class_register(&ib_class);
2779 if (ret) {
2780 pr_warn("Couldn't create InfiniBand device class\n");
2781 goto err_comp_unbound;
2782 }
2783
2784 rdma_nl_init();
2785
2786 ret = addr_init();
2787 if (ret) {
2788 pr_warn("Couldn't init IB address resolution\n");
2789 goto err_ibnl;
2790 }
2791
2792 ret = ib_mad_init();
2793 if (ret) {
2794 pr_warn("Couldn't init IB MAD\n");
2795 goto err_addr;
2796 }
2797
2798 ret = ib_sa_init();
2799 if (ret) {
2800 pr_warn("Couldn't init SA\n");
2801 goto err_mad;
2802 }
2803
2804 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2805 if (ret) {
2806 pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2807 goto err_sa;
2808 }
2809
2810 ret = register_pernet_device(&rdma_dev_net_ops);
2811 if (ret) {
2812 pr_warn("Couldn't init compat dev. ret %d\n", ret);
2813 goto err_compat;
2814 }
2815
2816 nldev_init();
2817 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2818 ret = roce_gid_mgmt_init();
2819 if (ret) {
2820 pr_warn("Couldn't init RoCE GID management\n");
2821 goto err_parent;
2822 }
2823
2824 return 0;
2825
2826 err_parent:
2827 rdma_nl_unregister(RDMA_NL_LS);
2828 nldev_exit();
2829 unregister_pernet_device(&rdma_dev_net_ops);
2830 err_compat:
2831 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2832 err_sa:
2833 ib_sa_cleanup();
2834 err_mad:
2835 ib_mad_cleanup();
2836 err_addr:
2837 addr_cleanup();
2838 err_ibnl:
2839 class_unregister(&ib_class);
2840 err_comp_unbound:
2841 destroy_workqueue(ib_comp_unbound_wq);
2842 err_comp:
2843 destroy_workqueue(ib_comp_wq);
2844 err_unbound:
2845 destroy_workqueue(ib_unreg_wq);
2846 err:
2847 destroy_workqueue(ib_wq);
2848 return ret;
2849 }
2850
ib_core_cleanup(void)2851 static void __exit ib_core_cleanup(void)
2852 {
2853 roce_gid_mgmt_cleanup();
2854 rdma_nl_unregister(RDMA_NL_LS);
2855 nldev_exit();
2856 unregister_pernet_device(&rdma_dev_net_ops);
2857 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2858 ib_sa_cleanup();
2859 ib_mad_cleanup();
2860 addr_cleanup();
2861 rdma_nl_exit();
2862 class_unregister(&ib_class);
2863 destroy_workqueue(ib_comp_unbound_wq);
2864 destroy_workqueue(ib_comp_wq);
2865 /* Make sure that any pending umem accounting work is done. */
2866 destroy_workqueue(ib_wq);
2867 destroy_workqueue(ib_unreg_wq);
2868 WARN_ON(!xa_empty(&clients));
2869 WARN_ON(!xa_empty(&devices));
2870 }
2871
2872 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2873
2874 /* ib core relies on netdev stack to first register net_ns_type_operations
2875 * ns kobject type before ib_core initialization.
2876 */
2877 fs_initcall(ib_core_init);
2878 module_exit(ib_core_cleanup);
2879