1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 /* ethtool support for iavf */
5 #include "iavf.h"
6
7 #include <linux/uaccess.h>
8
9 /* ethtool statistics helpers */
10
11 /**
12 * struct iavf_stats - definition for an ethtool statistic
13 * @stat_string: statistic name to display in ethtool -S output
14 * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64)
15 * @stat_offset: offsetof() the stat from a base pointer
16 *
17 * This structure defines a statistic to be added to the ethtool stats buffer.
18 * It defines a statistic as offset from a common base pointer. Stats should
19 * be defined in constant arrays using the IAVF_STAT macro, with every element
20 * of the array using the same _type for calculating the sizeof_stat and
21 * stat_offset.
22 *
23 * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or
24 * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from
25 * the iavf_add_ethtool_stat() helper function.
26 *
27 * The @stat_string is interpreted as a format string, allowing formatted
28 * values to be inserted while looping over multiple structures for a given
29 * statistics array. Thus, every statistic string in an array should have the
30 * same type and number of format specifiers, to be formatted by variadic
31 * arguments to the iavf_add_stat_string() helper function.
32 **/
33 struct iavf_stats {
34 char stat_string[ETH_GSTRING_LEN];
35 int sizeof_stat;
36 int stat_offset;
37 };
38
39 /* Helper macro to define an iavf_stat structure with proper size and type.
40 * Use this when defining constant statistics arrays. Note that @_type expects
41 * only a type name and is used multiple times.
42 */
43 #define IAVF_STAT(_type, _name, _stat) { \
44 .stat_string = _name, \
45 .sizeof_stat = sizeof_field(_type, _stat), \
46 .stat_offset = offsetof(_type, _stat) \
47 }
48
49 /* Helper macro for defining some statistics related to queues */
50 #define IAVF_QUEUE_STAT(_name, _stat) \
51 IAVF_STAT(struct iavf_ring, _name, _stat)
52
53 /* Stats associated with a Tx or Rx ring */
54 static const struct iavf_stats iavf_gstrings_queue_stats[] = {
55 IAVF_QUEUE_STAT("%s-%u.packets", stats.packets),
56 IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes),
57 };
58
59 /**
60 * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer
61 * @data: location to store the stat value
62 * @pointer: basis for where to copy from
63 * @stat: the stat definition
64 *
65 * Copies the stat data defined by the pointer and stat structure pair into
66 * the memory supplied as data. Used to implement iavf_add_ethtool_stats and
67 * iavf_add_queue_stats. If the pointer is null, data will be zero'd.
68 */
69 static void
iavf_add_one_ethtool_stat(u64 * data,void * pointer,const struct iavf_stats * stat)70 iavf_add_one_ethtool_stat(u64 *data, void *pointer,
71 const struct iavf_stats *stat)
72 {
73 char *p;
74
75 if (!pointer) {
76 /* ensure that the ethtool data buffer is zero'd for any stats
77 * which don't have a valid pointer.
78 */
79 *data = 0;
80 return;
81 }
82
83 p = (char *)pointer + stat->stat_offset;
84 switch (stat->sizeof_stat) {
85 case sizeof(u64):
86 *data = *((u64 *)p);
87 break;
88 case sizeof(u32):
89 *data = *((u32 *)p);
90 break;
91 case sizeof(u16):
92 *data = *((u16 *)p);
93 break;
94 case sizeof(u8):
95 *data = *((u8 *)p);
96 break;
97 default:
98 WARN_ONCE(1, "unexpected stat size for %s",
99 stat->stat_string);
100 *data = 0;
101 }
102 }
103
104 /**
105 * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer
106 * @data: ethtool stats buffer
107 * @pointer: location to copy stats from
108 * @stats: array of stats to copy
109 * @size: the size of the stats definition
110 *
111 * Copy the stats defined by the stats array using the pointer as a base into
112 * the data buffer supplied by ethtool. Updates the data pointer to point to
113 * the next empty location for successive calls to __iavf_add_ethtool_stats.
114 * If pointer is null, set the data values to zero and update the pointer to
115 * skip these stats.
116 **/
117 static void
__iavf_add_ethtool_stats(u64 ** data,void * pointer,const struct iavf_stats stats[],const unsigned int size)118 __iavf_add_ethtool_stats(u64 **data, void *pointer,
119 const struct iavf_stats stats[],
120 const unsigned int size)
121 {
122 unsigned int i;
123
124 for (i = 0; i < size; i++)
125 iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]);
126 }
127
128 /**
129 * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer
130 * @data: ethtool stats buffer
131 * @pointer: location where stats are stored
132 * @stats: static const array of stat definitions
133 *
134 * Macro to ease the use of __iavf_add_ethtool_stats by taking a static
135 * constant stats array and passing the ARRAY_SIZE(). This avoids typos by
136 * ensuring that we pass the size associated with the given stats array.
137 *
138 * The parameter @stats is evaluated twice, so parameters with side effects
139 * should be avoided.
140 **/
141 #define iavf_add_ethtool_stats(data, pointer, stats) \
142 __iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats))
143
144 /**
145 * iavf_add_queue_stats - copy queue statistics into supplied buffer
146 * @data: ethtool stats buffer
147 * @ring: the ring to copy
148 *
149 * Queue statistics must be copied while protected by
150 * u64_stats_fetch_begin_irq, so we can't directly use iavf_add_ethtool_stats.
151 * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the
152 * ring pointer is null, zero out the queue stat values and update the data
153 * pointer. Otherwise safely copy the stats from the ring into the supplied
154 * buffer and update the data pointer when finished.
155 *
156 * This function expects to be called while under rcu_read_lock().
157 **/
158 static void
iavf_add_queue_stats(u64 ** data,struct iavf_ring * ring)159 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring)
160 {
161 const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats);
162 const struct iavf_stats *stats = iavf_gstrings_queue_stats;
163 unsigned int start;
164 unsigned int i;
165
166 /* To avoid invalid statistics values, ensure that we keep retrying
167 * the copy until we get a consistent value according to
168 * u64_stats_fetch_retry_irq. But first, make sure our ring is
169 * non-null before attempting to access its syncp.
170 */
171 do {
172 start = !ring ? 0 : u64_stats_fetch_begin_irq(&ring->syncp);
173 for (i = 0; i < size; i++)
174 iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]);
175 } while (ring && u64_stats_fetch_retry_irq(&ring->syncp, start));
176
177 /* Once we successfully copy the stats in, update the data pointer */
178 *data += size;
179 }
180
181 /**
182 * __iavf_add_stat_strings - copy stat strings into ethtool buffer
183 * @p: ethtool supplied buffer
184 * @stats: stat definitions array
185 * @size: size of the stats array
186 *
187 * Format and copy the strings described by stats into the buffer pointed at
188 * by p.
189 **/
__iavf_add_stat_strings(u8 ** p,const struct iavf_stats stats[],const unsigned int size,...)190 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[],
191 const unsigned int size, ...)
192 {
193 unsigned int i;
194
195 for (i = 0; i < size; i++) {
196 va_list args;
197
198 va_start(args, size);
199 vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args);
200 *p += ETH_GSTRING_LEN;
201 va_end(args);
202 }
203 }
204
205 /**
206 * iavf_add_stat_strings - copy stat strings into ethtool buffer
207 * @p: ethtool supplied buffer
208 * @stats: stat definitions array
209 *
210 * Format and copy the strings described by the const static stats value into
211 * the buffer pointed at by p.
212 *
213 * The parameter @stats is evaluated twice, so parameters with side effects
214 * should be avoided. Additionally, stats must be an array such that
215 * ARRAY_SIZE can be called on it.
216 **/
217 #define iavf_add_stat_strings(p, stats, ...) \
218 __iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__)
219
220 #define VF_STAT(_name, _stat) \
221 IAVF_STAT(struct iavf_adapter, _name, _stat)
222
223 static const struct iavf_stats iavf_gstrings_stats[] = {
224 VF_STAT("rx_bytes", current_stats.rx_bytes),
225 VF_STAT("rx_unicast", current_stats.rx_unicast),
226 VF_STAT("rx_multicast", current_stats.rx_multicast),
227 VF_STAT("rx_broadcast", current_stats.rx_broadcast),
228 VF_STAT("rx_discards", current_stats.rx_discards),
229 VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol),
230 VF_STAT("tx_bytes", current_stats.tx_bytes),
231 VF_STAT("tx_unicast", current_stats.tx_unicast),
232 VF_STAT("tx_multicast", current_stats.tx_multicast),
233 VF_STAT("tx_broadcast", current_stats.tx_broadcast),
234 VF_STAT("tx_discards", current_stats.tx_discards),
235 VF_STAT("tx_errors", current_stats.tx_errors),
236 };
237
238 #define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats)
239
240 #define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats)
241
242 /* For now we have one and only one private flag and it is only defined
243 * when we have support for the SKIP_CPU_SYNC DMA attribute. Instead
244 * of leaving all this code sitting around empty we will strip it unless
245 * our one private flag is actually available.
246 */
247 struct iavf_priv_flags {
248 char flag_string[ETH_GSTRING_LEN];
249 u32 flag;
250 bool read_only;
251 };
252
253 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \
254 .flag_string = _name, \
255 .flag = _flag, \
256 .read_only = _read_only, \
257 }
258
259 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = {
260 IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0),
261 };
262
263 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags)
264
265 /**
266 * iavf_get_link_ksettings - Get Link Speed and Duplex settings
267 * @netdev: network interface device structure
268 * @cmd: ethtool command
269 *
270 * Reports speed/duplex settings. Because this is a VF, we don't know what
271 * kind of link we really have, so we fake it.
272 **/
iavf_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)273 static int iavf_get_link_ksettings(struct net_device *netdev,
274 struct ethtool_link_ksettings *cmd)
275 {
276 struct iavf_adapter *adapter = netdev_priv(netdev);
277
278 ethtool_link_ksettings_zero_link_mode(cmd, supported);
279 cmd->base.autoneg = AUTONEG_DISABLE;
280 cmd->base.port = PORT_NONE;
281 cmd->base.duplex = DUPLEX_FULL;
282
283 if (ADV_LINK_SUPPORT(adapter)) {
284 if (adapter->link_speed_mbps &&
285 adapter->link_speed_mbps < U32_MAX)
286 cmd->base.speed = adapter->link_speed_mbps;
287 else
288 cmd->base.speed = SPEED_UNKNOWN;
289
290 return 0;
291 }
292
293 switch (adapter->link_speed) {
294 case VIRTCHNL_LINK_SPEED_40GB:
295 cmd->base.speed = SPEED_40000;
296 break;
297 case VIRTCHNL_LINK_SPEED_25GB:
298 cmd->base.speed = SPEED_25000;
299 break;
300 case VIRTCHNL_LINK_SPEED_20GB:
301 cmd->base.speed = SPEED_20000;
302 break;
303 case VIRTCHNL_LINK_SPEED_10GB:
304 cmd->base.speed = SPEED_10000;
305 break;
306 case VIRTCHNL_LINK_SPEED_5GB:
307 cmd->base.speed = SPEED_5000;
308 break;
309 case VIRTCHNL_LINK_SPEED_2_5GB:
310 cmd->base.speed = SPEED_2500;
311 break;
312 case VIRTCHNL_LINK_SPEED_1GB:
313 cmd->base.speed = SPEED_1000;
314 break;
315 case VIRTCHNL_LINK_SPEED_100MB:
316 cmd->base.speed = SPEED_100;
317 break;
318 default:
319 break;
320 }
321
322 return 0;
323 }
324
325 /**
326 * iavf_get_sset_count - Get length of string set
327 * @netdev: network interface device structure
328 * @sset: id of string set
329 *
330 * Reports size of various string tables.
331 **/
iavf_get_sset_count(struct net_device * netdev,int sset)332 static int iavf_get_sset_count(struct net_device *netdev, int sset)
333 {
334 /* Report the maximum number queues, even if not every queue is
335 * currently configured. Since allocation of queues is in pairs,
336 * use netdev->real_num_tx_queues * 2. The real_num_tx_queues is set
337 * at device creation and never changes.
338 */
339
340 if (sset == ETH_SS_STATS)
341 return IAVF_STATS_LEN +
342 (IAVF_QUEUE_STATS_LEN * 2 *
343 netdev->real_num_tx_queues);
344 else if (sset == ETH_SS_PRIV_FLAGS)
345 return IAVF_PRIV_FLAGS_STR_LEN;
346 else
347 return -EINVAL;
348 }
349
350 /**
351 * iavf_get_ethtool_stats - report device statistics
352 * @netdev: network interface device structure
353 * @stats: ethtool statistics structure
354 * @data: pointer to data buffer
355 *
356 * All statistics are added to the data buffer as an array of u64.
357 **/
iavf_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)358 static void iavf_get_ethtool_stats(struct net_device *netdev,
359 struct ethtool_stats *stats, u64 *data)
360 {
361 struct iavf_adapter *adapter = netdev_priv(netdev);
362 unsigned int i;
363
364 /* Explicitly request stats refresh */
365 iavf_schedule_request_stats(adapter);
366
367 iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats);
368
369 rcu_read_lock();
370 /* As num_active_queues describe both tx and rx queues, we can use
371 * it to iterate over rings' stats.
372 */
373 for (i = 0; i < adapter->num_active_queues; i++) {
374 struct iavf_ring *ring;
375
376 /* Tx rings stats */
377 ring = &adapter->tx_rings[i];
378 iavf_add_queue_stats(&data, ring);
379
380 /* Rx rings stats */
381 ring = &adapter->rx_rings[i];
382 iavf_add_queue_stats(&data, ring);
383 }
384 rcu_read_unlock();
385 }
386
387 /**
388 * iavf_get_priv_flag_strings - Get private flag strings
389 * @netdev: network interface device structure
390 * @data: buffer for string data
391 *
392 * Builds the private flags string table
393 **/
iavf_get_priv_flag_strings(struct net_device * netdev,u8 * data)394 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data)
395 {
396 unsigned int i;
397
398 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
399 snprintf(data, ETH_GSTRING_LEN, "%s",
400 iavf_gstrings_priv_flags[i].flag_string);
401 data += ETH_GSTRING_LEN;
402 }
403 }
404
405 /**
406 * iavf_get_stat_strings - Get stat strings
407 * @netdev: network interface device structure
408 * @data: buffer for string data
409 *
410 * Builds the statistics string table
411 **/
iavf_get_stat_strings(struct net_device * netdev,u8 * data)412 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data)
413 {
414 unsigned int i;
415
416 iavf_add_stat_strings(&data, iavf_gstrings_stats);
417
418 /* Queues are always allocated in pairs, so we just use
419 * real_num_tx_queues for both Tx and Rx queues.
420 */
421 for (i = 0; i < netdev->real_num_tx_queues; i++) {
422 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
423 "tx", i);
424 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
425 "rx", i);
426 }
427 }
428
429 /**
430 * iavf_get_strings - Get string set
431 * @netdev: network interface device structure
432 * @sset: id of string set
433 * @data: buffer for string data
434 *
435 * Builds string tables for various string sets
436 **/
iavf_get_strings(struct net_device * netdev,u32 sset,u8 * data)437 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data)
438 {
439 switch (sset) {
440 case ETH_SS_STATS:
441 iavf_get_stat_strings(netdev, data);
442 break;
443 case ETH_SS_PRIV_FLAGS:
444 iavf_get_priv_flag_strings(netdev, data);
445 break;
446 default:
447 break;
448 }
449 }
450
451 /**
452 * iavf_get_priv_flags - report device private flags
453 * @netdev: network interface device structure
454 *
455 * The get string set count and the string set should be matched for each
456 * flag returned. Add new strings for each flag to the iavf_gstrings_priv_flags
457 * array.
458 *
459 * Returns a u32 bitmap of flags.
460 **/
iavf_get_priv_flags(struct net_device * netdev)461 static u32 iavf_get_priv_flags(struct net_device *netdev)
462 {
463 struct iavf_adapter *adapter = netdev_priv(netdev);
464 u32 i, ret_flags = 0;
465
466 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
467 const struct iavf_priv_flags *priv_flags;
468
469 priv_flags = &iavf_gstrings_priv_flags[i];
470
471 if (priv_flags->flag & adapter->flags)
472 ret_flags |= BIT(i);
473 }
474
475 return ret_flags;
476 }
477
478 /**
479 * iavf_set_priv_flags - set private flags
480 * @netdev: network interface device structure
481 * @flags: bit flags to be set
482 **/
iavf_set_priv_flags(struct net_device * netdev,u32 flags)483 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags)
484 {
485 struct iavf_adapter *adapter = netdev_priv(netdev);
486 u32 orig_flags, new_flags, changed_flags;
487 u32 i;
488
489 orig_flags = READ_ONCE(adapter->flags);
490 new_flags = orig_flags;
491
492 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
493 const struct iavf_priv_flags *priv_flags;
494
495 priv_flags = &iavf_gstrings_priv_flags[i];
496
497 if (flags & BIT(i))
498 new_flags |= priv_flags->flag;
499 else
500 new_flags &= ~(priv_flags->flag);
501
502 if (priv_flags->read_only &&
503 ((orig_flags ^ new_flags) & ~BIT(i)))
504 return -EOPNOTSUPP;
505 }
506
507 /* Before we finalize any flag changes, any checks which we need to
508 * perform to determine if the new flags will be supported should go
509 * here...
510 */
511
512 /* Compare and exchange the new flags into place. If we failed, that
513 * is if cmpxchg returns anything but the old value, this means
514 * something else must have modified the flags variable since we
515 * copied it. We'll just punt with an error and log something in the
516 * message buffer.
517 */
518 if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) {
519 dev_warn(&adapter->pdev->dev,
520 "Unable to update adapter->flags as it was modified by another thread...\n");
521 return -EAGAIN;
522 }
523
524 changed_flags = orig_flags ^ new_flags;
525
526 /* Process any additional changes needed as a result of flag changes.
527 * The changed_flags value reflects the list of bits that were changed
528 * in the code above.
529 */
530
531 /* issue a reset to force legacy-rx change to take effect */
532 if (changed_flags & IAVF_FLAG_LEGACY_RX) {
533 if (netif_running(netdev)) {
534 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
535 queue_work(adapter->wq, &adapter->reset_task);
536 }
537 }
538
539 return 0;
540 }
541
542 /**
543 * iavf_get_msglevel - Get debug message level
544 * @netdev: network interface device structure
545 *
546 * Returns current debug message level.
547 **/
iavf_get_msglevel(struct net_device * netdev)548 static u32 iavf_get_msglevel(struct net_device *netdev)
549 {
550 struct iavf_adapter *adapter = netdev_priv(netdev);
551
552 return adapter->msg_enable;
553 }
554
555 /**
556 * iavf_set_msglevel - Set debug message level
557 * @netdev: network interface device structure
558 * @data: message level
559 *
560 * Set current debug message level. Higher values cause the driver to
561 * be noisier.
562 **/
iavf_set_msglevel(struct net_device * netdev,u32 data)563 static void iavf_set_msglevel(struct net_device *netdev, u32 data)
564 {
565 struct iavf_adapter *adapter = netdev_priv(netdev);
566
567 if (IAVF_DEBUG_USER & data)
568 adapter->hw.debug_mask = data;
569 adapter->msg_enable = data;
570 }
571
572 /**
573 * iavf_get_drvinfo - Get driver info
574 * @netdev: network interface device structure
575 * @drvinfo: ethool driver info structure
576 *
577 * Returns information about the driver and device for display to the user.
578 **/
iavf_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)579 static void iavf_get_drvinfo(struct net_device *netdev,
580 struct ethtool_drvinfo *drvinfo)
581 {
582 struct iavf_adapter *adapter = netdev_priv(netdev);
583
584 strscpy(drvinfo->driver, iavf_driver_name, 32);
585 strscpy(drvinfo->fw_version, "N/A", 4);
586 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
587 drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN;
588 }
589
590 /**
591 * iavf_get_ringparam - Get ring parameters
592 * @netdev: network interface device structure
593 * @ring: ethtool ringparam structure
594 * @kernel_ring: ethtool extenal ringparam structure
595 * @extack: netlink extended ACK report struct
596 *
597 * Returns current ring parameters. TX and RX rings are reported separately,
598 * but the number of rings is not reported.
599 **/
iavf_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)600 static void iavf_get_ringparam(struct net_device *netdev,
601 struct ethtool_ringparam *ring,
602 struct kernel_ethtool_ringparam *kernel_ring,
603 struct netlink_ext_ack *extack)
604 {
605 struct iavf_adapter *adapter = netdev_priv(netdev);
606
607 ring->rx_max_pending = IAVF_MAX_RXD;
608 ring->tx_max_pending = IAVF_MAX_TXD;
609 ring->rx_pending = adapter->rx_desc_count;
610 ring->tx_pending = adapter->tx_desc_count;
611 }
612
613 /**
614 * iavf_set_ringparam - Set ring parameters
615 * @netdev: network interface device structure
616 * @ring: ethtool ringparam structure
617 * @kernel_ring: ethtool external ringparam structure
618 * @extack: netlink extended ACK report struct
619 *
620 * Sets ring parameters. TX and RX rings are controlled separately, but the
621 * number of rings is not specified, so all rings get the same settings.
622 **/
iavf_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)623 static int iavf_set_ringparam(struct net_device *netdev,
624 struct ethtool_ringparam *ring,
625 struct kernel_ethtool_ringparam *kernel_ring,
626 struct netlink_ext_ack *extack)
627 {
628 struct iavf_adapter *adapter = netdev_priv(netdev);
629 u32 new_rx_count, new_tx_count;
630
631 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
632 return -EINVAL;
633
634 if (ring->tx_pending > IAVF_MAX_TXD ||
635 ring->tx_pending < IAVF_MIN_TXD ||
636 ring->rx_pending > IAVF_MAX_RXD ||
637 ring->rx_pending < IAVF_MIN_RXD) {
638 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n",
639 ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD,
640 IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE);
641 return -EINVAL;
642 }
643
644 new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE);
645 if (new_tx_count != ring->tx_pending)
646 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n",
647 new_tx_count);
648
649 new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE);
650 if (new_rx_count != ring->rx_pending)
651 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n",
652 new_rx_count);
653
654 /* if nothing to do return success */
655 if ((new_tx_count == adapter->tx_desc_count) &&
656 (new_rx_count == adapter->rx_desc_count)) {
657 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n");
658 return 0;
659 }
660
661 if (new_tx_count != adapter->tx_desc_count) {
662 netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n",
663 adapter->tx_desc_count, new_tx_count);
664 adapter->tx_desc_count = new_tx_count;
665 }
666
667 if (new_rx_count != adapter->rx_desc_count) {
668 netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n",
669 adapter->rx_desc_count, new_rx_count);
670 adapter->rx_desc_count = new_rx_count;
671 }
672
673 if (netif_running(netdev)) {
674 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
675 queue_work(adapter->wq, &adapter->reset_task);
676 }
677
678 return 0;
679 }
680
681 /**
682 * __iavf_get_coalesce - get per-queue coalesce settings
683 * @netdev: the netdev to check
684 * @ec: ethtool coalesce data structure
685 * @queue: which queue to pick
686 *
687 * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs
688 * are per queue. If queue is <0 then we default to queue 0 as the
689 * representative value.
690 **/
__iavf_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,int queue)691 static int __iavf_get_coalesce(struct net_device *netdev,
692 struct ethtool_coalesce *ec, int queue)
693 {
694 struct iavf_adapter *adapter = netdev_priv(netdev);
695 struct iavf_ring *rx_ring, *tx_ring;
696
697 /* Rx and Tx usecs per queue value. If user doesn't specify the
698 * queue, return queue 0's value to represent.
699 */
700 if (queue < 0)
701 queue = 0;
702 else if (queue >= adapter->num_active_queues)
703 return -EINVAL;
704
705 rx_ring = &adapter->rx_rings[queue];
706 tx_ring = &adapter->tx_rings[queue];
707
708 if (ITR_IS_DYNAMIC(rx_ring->itr_setting))
709 ec->use_adaptive_rx_coalesce = 1;
710
711 if (ITR_IS_DYNAMIC(tx_ring->itr_setting))
712 ec->use_adaptive_tx_coalesce = 1;
713
714 ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
715 ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
716
717 return 0;
718 }
719
720 /**
721 * iavf_get_coalesce - Get interrupt coalescing settings
722 * @netdev: network interface device structure
723 * @ec: ethtool coalesce structure
724 * @kernel_coal: ethtool CQE mode setting structure
725 * @extack: extack for reporting error messages
726 *
727 * Returns current coalescing settings. This is referred to elsewhere in the
728 * driver as Interrupt Throttle Rate, as this is how the hardware describes
729 * this functionality. Note that if per-queue settings have been modified this
730 * only represents the settings of queue 0.
731 **/
iavf_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)732 static int iavf_get_coalesce(struct net_device *netdev,
733 struct ethtool_coalesce *ec,
734 struct kernel_ethtool_coalesce *kernel_coal,
735 struct netlink_ext_ack *extack)
736 {
737 return __iavf_get_coalesce(netdev, ec, -1);
738 }
739
740 /**
741 * iavf_get_per_queue_coalesce - get coalesce values for specific queue
742 * @netdev: netdev to read
743 * @ec: coalesce settings from ethtool
744 * @queue: the queue to read
745 *
746 * Read specific queue's coalesce settings.
747 **/
iavf_get_per_queue_coalesce(struct net_device * netdev,u32 queue,struct ethtool_coalesce * ec)748 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue,
749 struct ethtool_coalesce *ec)
750 {
751 return __iavf_get_coalesce(netdev, ec, queue);
752 }
753
754 /**
755 * iavf_set_itr_per_queue - set ITR values for specific queue
756 * @adapter: the VF adapter struct to set values for
757 * @ec: coalesce settings from ethtool
758 * @queue: the queue to modify
759 *
760 * Change the ITR settings for a specific queue.
761 **/
iavf_set_itr_per_queue(struct iavf_adapter * adapter,struct ethtool_coalesce * ec,int queue)762 static int iavf_set_itr_per_queue(struct iavf_adapter *adapter,
763 struct ethtool_coalesce *ec, int queue)
764 {
765 struct iavf_ring *rx_ring = &adapter->rx_rings[queue];
766 struct iavf_ring *tx_ring = &adapter->tx_rings[queue];
767 struct iavf_q_vector *q_vector;
768 u16 itr_setting;
769
770 itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
771
772 if (ec->rx_coalesce_usecs != itr_setting &&
773 ec->use_adaptive_rx_coalesce) {
774 netif_info(adapter, drv, adapter->netdev,
775 "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n");
776 return -EINVAL;
777 }
778
779 itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
780
781 if (ec->tx_coalesce_usecs != itr_setting &&
782 ec->use_adaptive_tx_coalesce) {
783 netif_info(adapter, drv, adapter->netdev,
784 "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n");
785 return -EINVAL;
786 }
787
788 rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs);
789 tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs);
790
791 rx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
792 if (!ec->use_adaptive_rx_coalesce)
793 rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
794
795 tx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
796 if (!ec->use_adaptive_tx_coalesce)
797 tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
798
799 q_vector = rx_ring->q_vector;
800 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
801
802 q_vector = tx_ring->q_vector;
803 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
804
805 /* The interrupt handler itself will take care of programming
806 * the Tx and Rx ITR values based on the values we have entered
807 * into the q_vector, no need to write the values now.
808 */
809 return 0;
810 }
811
812 /**
813 * __iavf_set_coalesce - set coalesce settings for particular queue
814 * @netdev: the netdev to change
815 * @ec: ethtool coalesce settings
816 * @queue: the queue to change
817 *
818 * Sets the coalesce settings for a particular queue.
819 **/
__iavf_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,int queue)820 static int __iavf_set_coalesce(struct net_device *netdev,
821 struct ethtool_coalesce *ec, int queue)
822 {
823 struct iavf_adapter *adapter = netdev_priv(netdev);
824 int i;
825
826 if (ec->rx_coalesce_usecs == 0) {
827 if (ec->use_adaptive_rx_coalesce)
828 netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n");
829 } else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) ||
830 (ec->rx_coalesce_usecs > IAVF_MAX_ITR)) {
831 netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n");
832 return -EINVAL;
833 } else if (ec->tx_coalesce_usecs == 0) {
834 if (ec->use_adaptive_tx_coalesce)
835 netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n");
836 } else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) ||
837 (ec->tx_coalesce_usecs > IAVF_MAX_ITR)) {
838 netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n");
839 return -EINVAL;
840 }
841
842 /* Rx and Tx usecs has per queue value. If user doesn't specify the
843 * queue, apply to all queues.
844 */
845 if (queue < 0) {
846 for (i = 0; i < adapter->num_active_queues; i++)
847 if (iavf_set_itr_per_queue(adapter, ec, i))
848 return -EINVAL;
849 } else if (queue < adapter->num_active_queues) {
850 if (iavf_set_itr_per_queue(adapter, ec, queue))
851 return -EINVAL;
852 } else {
853 netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n",
854 adapter->num_active_queues - 1);
855 return -EINVAL;
856 }
857
858 return 0;
859 }
860
861 /**
862 * iavf_set_coalesce - Set interrupt coalescing settings
863 * @netdev: network interface device structure
864 * @ec: ethtool coalesce structure
865 * @kernel_coal: ethtool CQE mode setting structure
866 * @extack: extack for reporting error messages
867 *
868 * Change current coalescing settings for every queue.
869 **/
iavf_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)870 static int iavf_set_coalesce(struct net_device *netdev,
871 struct ethtool_coalesce *ec,
872 struct kernel_ethtool_coalesce *kernel_coal,
873 struct netlink_ext_ack *extack)
874 {
875 return __iavf_set_coalesce(netdev, ec, -1);
876 }
877
878 /**
879 * iavf_set_per_queue_coalesce - set specific queue's coalesce settings
880 * @netdev: the netdev to change
881 * @ec: ethtool's coalesce settings
882 * @queue: the queue to modify
883 *
884 * Modifies a specific queue's coalesce settings.
885 */
iavf_set_per_queue_coalesce(struct net_device * netdev,u32 queue,struct ethtool_coalesce * ec)886 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue,
887 struct ethtool_coalesce *ec)
888 {
889 return __iavf_set_coalesce(netdev, ec, queue);
890 }
891
892 /**
893 * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool
894 * flow type values
895 * @flow: filter type to be converted
896 *
897 * Returns the corresponding ethtool flow type.
898 */
iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow)899 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow)
900 {
901 switch (flow) {
902 case IAVF_FDIR_FLOW_IPV4_TCP:
903 return TCP_V4_FLOW;
904 case IAVF_FDIR_FLOW_IPV4_UDP:
905 return UDP_V4_FLOW;
906 case IAVF_FDIR_FLOW_IPV4_SCTP:
907 return SCTP_V4_FLOW;
908 case IAVF_FDIR_FLOW_IPV4_AH:
909 return AH_V4_FLOW;
910 case IAVF_FDIR_FLOW_IPV4_ESP:
911 return ESP_V4_FLOW;
912 case IAVF_FDIR_FLOW_IPV4_OTHER:
913 return IPV4_USER_FLOW;
914 case IAVF_FDIR_FLOW_IPV6_TCP:
915 return TCP_V6_FLOW;
916 case IAVF_FDIR_FLOW_IPV6_UDP:
917 return UDP_V6_FLOW;
918 case IAVF_FDIR_FLOW_IPV6_SCTP:
919 return SCTP_V6_FLOW;
920 case IAVF_FDIR_FLOW_IPV6_AH:
921 return AH_V6_FLOW;
922 case IAVF_FDIR_FLOW_IPV6_ESP:
923 return ESP_V6_FLOW;
924 case IAVF_FDIR_FLOW_IPV6_OTHER:
925 return IPV6_USER_FLOW;
926 case IAVF_FDIR_FLOW_NON_IP_L2:
927 return ETHER_FLOW;
928 default:
929 /* 0 is undefined ethtool flow */
930 return 0;
931 }
932 }
933
934 /**
935 * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum
936 * @eth: Ethtool flow type to be converted
937 *
938 * Returns flow enum
939 */
iavf_ethtool_flow_to_fltr(int eth)940 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth)
941 {
942 switch (eth) {
943 case TCP_V4_FLOW:
944 return IAVF_FDIR_FLOW_IPV4_TCP;
945 case UDP_V4_FLOW:
946 return IAVF_FDIR_FLOW_IPV4_UDP;
947 case SCTP_V4_FLOW:
948 return IAVF_FDIR_FLOW_IPV4_SCTP;
949 case AH_V4_FLOW:
950 return IAVF_FDIR_FLOW_IPV4_AH;
951 case ESP_V4_FLOW:
952 return IAVF_FDIR_FLOW_IPV4_ESP;
953 case IPV4_USER_FLOW:
954 return IAVF_FDIR_FLOW_IPV4_OTHER;
955 case TCP_V6_FLOW:
956 return IAVF_FDIR_FLOW_IPV6_TCP;
957 case UDP_V6_FLOW:
958 return IAVF_FDIR_FLOW_IPV6_UDP;
959 case SCTP_V6_FLOW:
960 return IAVF_FDIR_FLOW_IPV6_SCTP;
961 case AH_V6_FLOW:
962 return IAVF_FDIR_FLOW_IPV6_AH;
963 case ESP_V6_FLOW:
964 return IAVF_FDIR_FLOW_IPV6_ESP;
965 case IPV6_USER_FLOW:
966 return IAVF_FDIR_FLOW_IPV6_OTHER;
967 case ETHER_FLOW:
968 return IAVF_FDIR_FLOW_NON_IP_L2;
969 default:
970 return IAVF_FDIR_FLOW_NONE;
971 }
972 }
973
974 /**
975 * iavf_is_mask_valid - check mask field set
976 * @mask: full mask to check
977 * @field: field for which mask should be valid
978 *
979 * If the mask is fully set return true. If it is not valid for field return
980 * false.
981 */
iavf_is_mask_valid(u64 mask,u64 field)982 static bool iavf_is_mask_valid(u64 mask, u64 field)
983 {
984 return (mask & field) == field;
985 }
986
987 /**
988 * iavf_parse_rx_flow_user_data - deconstruct user-defined data
989 * @fsp: pointer to ethtool Rx flow specification
990 * @fltr: pointer to Flow Director filter for userdef data storage
991 *
992 * Returns 0 on success, negative error value on failure
993 */
994 static int
iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec * fsp,struct iavf_fdir_fltr * fltr)995 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp,
996 struct iavf_fdir_fltr *fltr)
997 {
998 struct iavf_flex_word *flex;
999 int i, cnt = 0;
1000
1001 if (!(fsp->flow_type & FLOW_EXT))
1002 return 0;
1003
1004 for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) {
1005 #define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0)
1006 #define IAVF_USERDEF_FLEX_OFFS_S 16
1007 #define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S)
1008 #define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0)
1009 u32 value = be32_to_cpu(fsp->h_ext.data[i]);
1010 u32 mask = be32_to_cpu(fsp->m_ext.data[i]);
1011
1012 if (!value || !mask)
1013 continue;
1014
1015 if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M))
1016 return -EINVAL;
1017
1018 /* 504 is the maximum value for offsets, and offset is measured
1019 * from the start of the MAC address.
1020 */
1021 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504
1022 flex = &fltr->flex_words[cnt++];
1023 flex->word = value & IAVF_USERDEF_FLEX_WORD_M;
1024 flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >>
1025 IAVF_USERDEF_FLEX_OFFS_S;
1026 if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL)
1027 return -EINVAL;
1028 }
1029
1030 fltr->flex_cnt = cnt;
1031
1032 return 0;
1033 }
1034
1035 /**
1036 * iavf_fill_rx_flow_ext_data - fill the additional data
1037 * @fsp: pointer to ethtool Rx flow specification
1038 * @fltr: pointer to Flow Director filter to get additional data
1039 */
1040 static void
iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec * fsp,struct iavf_fdir_fltr * fltr)1041 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp,
1042 struct iavf_fdir_fltr *fltr)
1043 {
1044 if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1])
1045 return;
1046
1047 fsp->flow_type |= FLOW_EXT;
1048
1049 memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data));
1050 memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data));
1051 }
1052
1053 /**
1054 * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data
1055 * @adapter: the VF adapter structure that contains filter list
1056 * @cmd: ethtool command data structure to receive the filter data
1057 *
1058 * Returns 0 as expected for success by ethtool
1059 */
1060 static int
iavf_get_ethtool_fdir_entry(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1061 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter,
1062 struct ethtool_rxnfc *cmd)
1063 {
1064 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1065 struct iavf_fdir_fltr *rule = NULL;
1066 int ret = 0;
1067
1068 if (!FDIR_FLTR_SUPPORT(adapter))
1069 return -EOPNOTSUPP;
1070
1071 spin_lock_bh(&adapter->fdir_fltr_lock);
1072
1073 rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1074 if (!rule) {
1075 ret = -EINVAL;
1076 goto release_lock;
1077 }
1078
1079 fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type);
1080
1081 memset(&fsp->m_u, 0, sizeof(fsp->m_u));
1082 memset(&fsp->m_ext, 0, sizeof(fsp->m_ext));
1083
1084 switch (fsp->flow_type) {
1085 case TCP_V4_FLOW:
1086 case UDP_V4_FLOW:
1087 case SCTP_V4_FLOW:
1088 fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1089 fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1090 fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port;
1091 fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port;
1092 fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos;
1093 fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1094 fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1095 fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port;
1096 fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port;
1097 fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos;
1098 break;
1099 case AH_V4_FLOW:
1100 case ESP_V4_FLOW:
1101 fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1102 fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1103 fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi;
1104 fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos;
1105 fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1106 fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1107 fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi;
1108 fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos;
1109 break;
1110 case IPV4_USER_FLOW:
1111 fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1112 fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1113 fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header;
1114 fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos;
1115 fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
1116 fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto;
1117 fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1118 fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1119 fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header;
1120 fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos;
1121 fsp->m_u.usr_ip4_spec.ip_ver = 0xFF;
1122 fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto;
1123 break;
1124 case TCP_V6_FLOW:
1125 case UDP_V6_FLOW:
1126 case SCTP_V6_FLOW:
1127 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1128 sizeof(struct in6_addr));
1129 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1130 sizeof(struct in6_addr));
1131 fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port;
1132 fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port;
1133 fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass;
1134 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1135 sizeof(struct in6_addr));
1136 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1137 sizeof(struct in6_addr));
1138 fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port;
1139 fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port;
1140 fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass;
1141 break;
1142 case AH_V6_FLOW:
1143 case ESP_V6_FLOW:
1144 memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1145 sizeof(struct in6_addr));
1146 memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1147 sizeof(struct in6_addr));
1148 fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi;
1149 fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass;
1150 memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1151 sizeof(struct in6_addr));
1152 memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1153 sizeof(struct in6_addr));
1154 fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi;
1155 fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass;
1156 break;
1157 case IPV6_USER_FLOW:
1158 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1159 sizeof(struct in6_addr));
1160 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1161 sizeof(struct in6_addr));
1162 fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header;
1163 fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass;
1164 fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto;
1165 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1166 sizeof(struct in6_addr));
1167 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1168 sizeof(struct in6_addr));
1169 fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header;
1170 fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass;
1171 fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto;
1172 break;
1173 case ETHER_FLOW:
1174 fsp->h_u.ether_spec.h_proto = rule->eth_data.etype;
1175 fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype;
1176 break;
1177 default:
1178 ret = -EINVAL;
1179 break;
1180 }
1181
1182 iavf_fill_rx_flow_ext_data(fsp, rule);
1183
1184 if (rule->action == VIRTCHNL_ACTION_DROP)
1185 fsp->ring_cookie = RX_CLS_FLOW_DISC;
1186 else
1187 fsp->ring_cookie = rule->q_index;
1188
1189 release_lock:
1190 spin_unlock_bh(&adapter->fdir_fltr_lock);
1191 return ret;
1192 }
1193
1194 /**
1195 * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters
1196 * @adapter: the VF adapter structure containing the filter list
1197 * @cmd: ethtool command data structure
1198 * @rule_locs: ethtool array passed in from OS to receive filter IDs
1199 *
1200 * Returns 0 as expected for success by ethtool
1201 */
1202 static int
iavf_get_fdir_fltr_ids(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd,u32 * rule_locs)1203 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd,
1204 u32 *rule_locs)
1205 {
1206 struct iavf_fdir_fltr *fltr;
1207 unsigned int cnt = 0;
1208 int val = 0;
1209
1210 if (!FDIR_FLTR_SUPPORT(adapter))
1211 return -EOPNOTSUPP;
1212
1213 cmd->data = IAVF_MAX_FDIR_FILTERS;
1214
1215 spin_lock_bh(&adapter->fdir_fltr_lock);
1216
1217 list_for_each_entry(fltr, &adapter->fdir_list_head, list) {
1218 if (cnt == cmd->rule_cnt) {
1219 val = -EMSGSIZE;
1220 goto release_lock;
1221 }
1222 rule_locs[cnt] = fltr->loc;
1223 cnt++;
1224 }
1225
1226 release_lock:
1227 spin_unlock_bh(&adapter->fdir_fltr_lock);
1228 if (!val)
1229 cmd->rule_cnt = cnt;
1230
1231 return val;
1232 }
1233
1234 /**
1235 * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter
1236 * @adapter: pointer to the VF adapter structure
1237 * @fsp: pointer to ethtool Rx flow specification
1238 * @fltr: filter structure
1239 */
1240 static int
iavf_add_fdir_fltr_info(struct iavf_adapter * adapter,struct ethtool_rx_flow_spec * fsp,struct iavf_fdir_fltr * fltr)1241 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp,
1242 struct iavf_fdir_fltr *fltr)
1243 {
1244 u32 flow_type, q_index = 0;
1245 enum virtchnl_action act;
1246 int err;
1247
1248 if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
1249 act = VIRTCHNL_ACTION_DROP;
1250 } else {
1251 q_index = fsp->ring_cookie;
1252 if (q_index >= adapter->num_active_queues)
1253 return -EINVAL;
1254
1255 act = VIRTCHNL_ACTION_QUEUE;
1256 }
1257
1258 fltr->action = act;
1259 fltr->loc = fsp->location;
1260 fltr->q_index = q_index;
1261
1262 if (fsp->flow_type & FLOW_EXT) {
1263 memcpy(fltr->ext_data.usr_def, fsp->h_ext.data,
1264 sizeof(fltr->ext_data.usr_def));
1265 memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data,
1266 sizeof(fltr->ext_mask.usr_def));
1267 }
1268
1269 flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);
1270 fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type);
1271
1272 switch (flow_type) {
1273 case TCP_V4_FLOW:
1274 case UDP_V4_FLOW:
1275 case SCTP_V4_FLOW:
1276 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src;
1277 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst;
1278 fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc;
1279 fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst;
1280 fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos;
1281 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src;
1282 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst;
1283 fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc;
1284 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst;
1285 fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos;
1286 break;
1287 case AH_V4_FLOW:
1288 case ESP_V4_FLOW:
1289 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src;
1290 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst;
1291 fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi;
1292 fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos;
1293 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src;
1294 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst;
1295 fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi;
1296 fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos;
1297 break;
1298 case IPV4_USER_FLOW:
1299 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src;
1300 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst;
1301 fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes;
1302 fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos;
1303 fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto;
1304 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src;
1305 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst;
1306 fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes;
1307 fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos;
1308 fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto;
1309 break;
1310 case TCP_V6_FLOW:
1311 case UDP_V6_FLOW:
1312 case SCTP_V6_FLOW:
1313 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1314 sizeof(struct in6_addr));
1315 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1316 sizeof(struct in6_addr));
1317 fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc;
1318 fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst;
1319 fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass;
1320 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1321 sizeof(struct in6_addr));
1322 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1323 sizeof(struct in6_addr));
1324 fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc;
1325 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst;
1326 fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass;
1327 break;
1328 case AH_V6_FLOW:
1329 case ESP_V6_FLOW:
1330 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src,
1331 sizeof(struct in6_addr));
1332 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst,
1333 sizeof(struct in6_addr));
1334 fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi;
1335 fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass;
1336 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src,
1337 sizeof(struct in6_addr));
1338 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst,
1339 sizeof(struct in6_addr));
1340 fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi;
1341 fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass;
1342 break;
1343 case IPV6_USER_FLOW:
1344 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1345 sizeof(struct in6_addr));
1346 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1347 sizeof(struct in6_addr));
1348 fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes;
1349 fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass;
1350 fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto;
1351 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1352 sizeof(struct in6_addr));
1353 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1354 sizeof(struct in6_addr));
1355 fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes;
1356 fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass;
1357 fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto;
1358 break;
1359 case ETHER_FLOW:
1360 fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto;
1361 fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto;
1362 break;
1363 default:
1364 /* not doing un-parsed flow types */
1365 return -EINVAL;
1366 }
1367
1368 if (iavf_fdir_is_dup_fltr(adapter, fltr))
1369 return -EEXIST;
1370
1371 err = iavf_parse_rx_flow_user_data(fsp, fltr);
1372 if (err)
1373 return err;
1374
1375 return iavf_fill_fdir_add_msg(adapter, fltr);
1376 }
1377
1378 /**
1379 * iavf_add_fdir_ethtool - add Flow Director filter
1380 * @adapter: pointer to the VF adapter structure
1381 * @cmd: command to add Flow Director filter
1382 *
1383 * Returns 0 on success and negative values for failure
1384 */
iavf_add_fdir_ethtool(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1385 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1386 {
1387 struct ethtool_rx_flow_spec *fsp = &cmd->fs;
1388 struct iavf_fdir_fltr *fltr;
1389 int count = 50;
1390 int err;
1391
1392 if (!FDIR_FLTR_SUPPORT(adapter))
1393 return -EOPNOTSUPP;
1394
1395 if (fsp->flow_type & FLOW_MAC_EXT)
1396 return -EINVAL;
1397
1398 if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) {
1399 dev_err(&adapter->pdev->dev,
1400 "Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n",
1401 IAVF_MAX_FDIR_FILTERS);
1402 return -ENOSPC;
1403 }
1404
1405 spin_lock_bh(&adapter->fdir_fltr_lock);
1406 if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) {
1407 dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n");
1408 spin_unlock_bh(&adapter->fdir_fltr_lock);
1409 return -EEXIST;
1410 }
1411 spin_unlock_bh(&adapter->fdir_fltr_lock);
1412
1413 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
1414 if (!fltr)
1415 return -ENOMEM;
1416
1417 while (!mutex_trylock(&adapter->crit_lock)) {
1418 if (--count == 0) {
1419 kfree(fltr);
1420 return -EINVAL;
1421 }
1422 udelay(1);
1423 }
1424
1425 err = iavf_add_fdir_fltr_info(adapter, fsp, fltr);
1426 if (err)
1427 goto ret;
1428
1429 spin_lock_bh(&adapter->fdir_fltr_lock);
1430 iavf_fdir_list_add_fltr(adapter, fltr);
1431 adapter->fdir_active_fltr++;
1432 fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST;
1433 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
1434 spin_unlock_bh(&adapter->fdir_fltr_lock);
1435
1436 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1437
1438 ret:
1439 if (err && fltr)
1440 kfree(fltr);
1441
1442 mutex_unlock(&adapter->crit_lock);
1443 return err;
1444 }
1445
1446 /**
1447 * iavf_del_fdir_ethtool - delete Flow Director filter
1448 * @adapter: pointer to the VF adapter structure
1449 * @cmd: command to delete Flow Director filter
1450 *
1451 * Returns 0 on success and negative values for failure
1452 */
iavf_del_fdir_ethtool(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1453 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1454 {
1455 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1456 struct iavf_fdir_fltr *fltr = NULL;
1457 int err = 0;
1458
1459 if (!FDIR_FLTR_SUPPORT(adapter))
1460 return -EOPNOTSUPP;
1461
1462 spin_lock_bh(&adapter->fdir_fltr_lock);
1463 fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1464 if (fltr) {
1465 if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) {
1466 fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1467 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1468 } else {
1469 err = -EBUSY;
1470 }
1471 } else if (adapter->fdir_active_fltr) {
1472 err = -EINVAL;
1473 }
1474 spin_unlock_bh(&adapter->fdir_fltr_lock);
1475
1476 if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST)
1477 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1478
1479 return err;
1480 }
1481
1482 /**
1483 * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input
1484 * @cmd: ethtool rxnfc command
1485 *
1486 * This function parses the rxnfc command and returns intended
1487 * header types for RSS configuration
1488 */
iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc * cmd)1489 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd)
1490 {
1491 u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE;
1492
1493 switch (cmd->flow_type) {
1494 case TCP_V4_FLOW:
1495 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1496 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1497 break;
1498 case UDP_V4_FLOW:
1499 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1500 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1501 break;
1502 case SCTP_V4_FLOW:
1503 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1504 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1505 break;
1506 case TCP_V6_FLOW:
1507 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1508 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1509 break;
1510 case UDP_V6_FLOW:
1511 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1512 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1513 break;
1514 case SCTP_V6_FLOW:
1515 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1516 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1517 break;
1518 default:
1519 break;
1520 }
1521
1522 return hdrs;
1523 }
1524
1525 /**
1526 * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input
1527 * @cmd: ethtool rxnfc command
1528 *
1529 * This function parses the rxnfc command and returns intended hash fields for
1530 * RSS configuration
1531 */
iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc * cmd)1532 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd)
1533 {
1534 u64 hfld = IAVF_ADV_RSS_HASH_INVALID;
1535
1536 if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) {
1537 switch (cmd->flow_type) {
1538 case TCP_V4_FLOW:
1539 case UDP_V4_FLOW:
1540 case SCTP_V4_FLOW:
1541 if (cmd->data & RXH_IP_SRC)
1542 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA;
1543 if (cmd->data & RXH_IP_DST)
1544 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA;
1545 break;
1546 case TCP_V6_FLOW:
1547 case UDP_V6_FLOW:
1548 case SCTP_V6_FLOW:
1549 if (cmd->data & RXH_IP_SRC)
1550 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA;
1551 if (cmd->data & RXH_IP_DST)
1552 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA;
1553 break;
1554 default:
1555 break;
1556 }
1557 }
1558
1559 if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) {
1560 switch (cmd->flow_type) {
1561 case TCP_V4_FLOW:
1562 case TCP_V6_FLOW:
1563 if (cmd->data & RXH_L4_B_0_1)
1564 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT;
1565 if (cmd->data & RXH_L4_B_2_3)
1566 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT;
1567 break;
1568 case UDP_V4_FLOW:
1569 case UDP_V6_FLOW:
1570 if (cmd->data & RXH_L4_B_0_1)
1571 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT;
1572 if (cmd->data & RXH_L4_B_2_3)
1573 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT;
1574 break;
1575 case SCTP_V4_FLOW:
1576 case SCTP_V6_FLOW:
1577 if (cmd->data & RXH_L4_B_0_1)
1578 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT;
1579 if (cmd->data & RXH_L4_B_2_3)
1580 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT;
1581 break;
1582 default:
1583 break;
1584 }
1585 }
1586
1587 return hfld;
1588 }
1589
1590 /**
1591 * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash
1592 * @adapter: pointer to the VF adapter structure
1593 * @cmd: ethtool rxnfc command
1594 *
1595 * Returns Success if the flow input set is supported.
1596 */
1597 static int
iavf_set_adv_rss_hash_opt(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1598 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter,
1599 struct ethtool_rxnfc *cmd)
1600 {
1601 struct iavf_adv_rss *rss_old, *rss_new;
1602 bool rss_new_add = false;
1603 int count = 50, err = 0;
1604 u64 hash_flds;
1605 u32 hdrs;
1606
1607 if (!ADV_RSS_SUPPORT(adapter))
1608 return -EOPNOTSUPP;
1609
1610 hdrs = iavf_adv_rss_parse_hdrs(cmd);
1611 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1612 return -EINVAL;
1613
1614 hash_flds = iavf_adv_rss_parse_hash_flds(cmd);
1615 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1616 return -EINVAL;
1617
1618 rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL);
1619 if (!rss_new)
1620 return -ENOMEM;
1621
1622 if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) {
1623 kfree(rss_new);
1624 return -EINVAL;
1625 }
1626
1627 while (!mutex_trylock(&adapter->crit_lock)) {
1628 if (--count == 0) {
1629 kfree(rss_new);
1630 return -EINVAL;
1631 }
1632
1633 udelay(1);
1634 }
1635
1636 spin_lock_bh(&adapter->adv_rss_lock);
1637 rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1638 if (rss_old) {
1639 if (rss_old->state != IAVF_ADV_RSS_ACTIVE) {
1640 err = -EBUSY;
1641 } else if (rss_old->hash_flds != hash_flds) {
1642 rss_old->state = IAVF_ADV_RSS_ADD_REQUEST;
1643 rss_old->hash_flds = hash_flds;
1644 memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg,
1645 sizeof(rss_new->cfg_msg));
1646 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
1647 } else {
1648 err = -EEXIST;
1649 }
1650 } else {
1651 rss_new_add = true;
1652 rss_new->state = IAVF_ADV_RSS_ADD_REQUEST;
1653 rss_new->packet_hdrs = hdrs;
1654 rss_new->hash_flds = hash_flds;
1655 list_add_tail(&rss_new->list, &adapter->adv_rss_list_head);
1656 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
1657 }
1658 spin_unlock_bh(&adapter->adv_rss_lock);
1659
1660 if (!err)
1661 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1662
1663 mutex_unlock(&adapter->crit_lock);
1664
1665 if (!rss_new_add)
1666 kfree(rss_new);
1667
1668 return err;
1669 }
1670
1671 /**
1672 * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type
1673 * @adapter: pointer to the VF adapter structure
1674 * @cmd: ethtool rxnfc command
1675 *
1676 * Returns Success if the flow input set is supported.
1677 */
1678 static int
iavf_get_adv_rss_hash_opt(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1679 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter,
1680 struct ethtool_rxnfc *cmd)
1681 {
1682 struct iavf_adv_rss *rss;
1683 u64 hash_flds;
1684 u32 hdrs;
1685
1686 if (!ADV_RSS_SUPPORT(adapter))
1687 return -EOPNOTSUPP;
1688
1689 cmd->data = 0;
1690
1691 hdrs = iavf_adv_rss_parse_hdrs(cmd);
1692 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1693 return -EINVAL;
1694
1695 spin_lock_bh(&adapter->adv_rss_lock);
1696 rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1697 if (rss)
1698 hash_flds = rss->hash_flds;
1699 else
1700 hash_flds = IAVF_ADV_RSS_HASH_INVALID;
1701 spin_unlock_bh(&adapter->adv_rss_lock);
1702
1703 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1704 return -EINVAL;
1705
1706 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA |
1707 IAVF_ADV_RSS_HASH_FLD_IPV6_SA))
1708 cmd->data |= (u64)RXH_IP_SRC;
1709
1710 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA |
1711 IAVF_ADV_RSS_HASH_FLD_IPV6_DA))
1712 cmd->data |= (u64)RXH_IP_DST;
1713
1714 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT |
1715 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT |
1716 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT))
1717 cmd->data |= (u64)RXH_L4_B_0_1;
1718
1719 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT |
1720 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT |
1721 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT))
1722 cmd->data |= (u64)RXH_L4_B_2_3;
1723
1724 return 0;
1725 }
1726
1727 /**
1728 * iavf_set_rxnfc - command to set Rx flow rules.
1729 * @netdev: network interface device structure
1730 * @cmd: ethtool rxnfc command
1731 *
1732 * Returns 0 for success and negative values for errors
1733 */
iavf_set_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd)1734 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
1735 {
1736 struct iavf_adapter *adapter = netdev_priv(netdev);
1737 int ret = -EOPNOTSUPP;
1738
1739 switch (cmd->cmd) {
1740 case ETHTOOL_SRXCLSRLINS:
1741 ret = iavf_add_fdir_ethtool(adapter, cmd);
1742 break;
1743 case ETHTOOL_SRXCLSRLDEL:
1744 ret = iavf_del_fdir_ethtool(adapter, cmd);
1745 break;
1746 case ETHTOOL_SRXFH:
1747 ret = iavf_set_adv_rss_hash_opt(adapter, cmd);
1748 break;
1749 default:
1750 break;
1751 }
1752
1753 return ret;
1754 }
1755
1756 /**
1757 * iavf_get_rxnfc - command to get RX flow classification rules
1758 * @netdev: network interface device structure
1759 * @cmd: ethtool rxnfc command
1760 * @rule_locs: pointer to store rule locations
1761 *
1762 * Returns Success if the command is supported.
1763 **/
iavf_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd,u32 * rule_locs)1764 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
1765 u32 *rule_locs)
1766 {
1767 struct iavf_adapter *adapter = netdev_priv(netdev);
1768 int ret = -EOPNOTSUPP;
1769
1770 switch (cmd->cmd) {
1771 case ETHTOOL_GRXRINGS:
1772 cmd->data = adapter->num_active_queues;
1773 ret = 0;
1774 break;
1775 case ETHTOOL_GRXCLSRLCNT:
1776 if (!FDIR_FLTR_SUPPORT(adapter))
1777 break;
1778 cmd->rule_cnt = adapter->fdir_active_fltr;
1779 cmd->data = IAVF_MAX_FDIR_FILTERS;
1780 ret = 0;
1781 break;
1782 case ETHTOOL_GRXCLSRULE:
1783 ret = iavf_get_ethtool_fdir_entry(adapter, cmd);
1784 break;
1785 case ETHTOOL_GRXCLSRLALL:
1786 ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs);
1787 break;
1788 case ETHTOOL_GRXFH:
1789 ret = iavf_get_adv_rss_hash_opt(adapter, cmd);
1790 break;
1791 default:
1792 break;
1793 }
1794
1795 return ret;
1796 }
1797 /**
1798 * iavf_get_channels: get the number of channels supported by the device
1799 * @netdev: network interface device structure
1800 * @ch: channel information structure
1801 *
1802 * For the purposes of our device, we only use combined channels, i.e. a tx/rx
1803 * queue pair. Report one extra channel to match our "other" MSI-X vector.
1804 **/
iavf_get_channels(struct net_device * netdev,struct ethtool_channels * ch)1805 static void iavf_get_channels(struct net_device *netdev,
1806 struct ethtool_channels *ch)
1807 {
1808 struct iavf_adapter *adapter = netdev_priv(netdev);
1809
1810 /* Report maximum channels */
1811 ch->max_combined = adapter->vsi_res->num_queue_pairs;
1812
1813 ch->max_other = NONQ_VECS;
1814 ch->other_count = NONQ_VECS;
1815
1816 ch->combined_count = adapter->num_active_queues;
1817 }
1818
1819 /**
1820 * iavf_set_channels: set the new channel count
1821 * @netdev: network interface device structure
1822 * @ch: channel information structure
1823 *
1824 * Negotiate a new number of channels with the PF then do a reset. During
1825 * reset we'll realloc queues and fix the RSS table. Returns 0 on success,
1826 * negative on failure.
1827 **/
iavf_set_channels(struct net_device * netdev,struct ethtool_channels * ch)1828 static int iavf_set_channels(struct net_device *netdev,
1829 struct ethtool_channels *ch)
1830 {
1831 struct iavf_adapter *adapter = netdev_priv(netdev);
1832 u32 num_req = ch->combined_count;
1833 int i;
1834
1835 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1836 adapter->num_tc) {
1837 dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n");
1838 return -EINVAL;
1839 }
1840
1841 /* All of these should have already been checked by ethtool before this
1842 * even gets to us, but just to be sure.
1843 */
1844 if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs)
1845 return -EINVAL;
1846
1847 if (num_req == adapter->num_active_queues)
1848 return 0;
1849
1850 if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS)
1851 return -EINVAL;
1852
1853 adapter->num_req_queues = num_req;
1854 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
1855 iavf_schedule_reset(adapter);
1856
1857 /* wait for the reset is done */
1858 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
1859 msleep(IAVF_RESET_WAIT_MS);
1860 if (adapter->flags & IAVF_FLAG_RESET_PENDING)
1861 continue;
1862 break;
1863 }
1864 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
1865 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
1866 adapter->num_active_queues = num_req;
1867 return -EOPNOTSUPP;
1868 }
1869
1870 return 0;
1871 }
1872
1873 /**
1874 * iavf_get_rxfh_key_size - get the RSS hash key size
1875 * @netdev: network interface device structure
1876 *
1877 * Returns the table size.
1878 **/
iavf_get_rxfh_key_size(struct net_device * netdev)1879 static u32 iavf_get_rxfh_key_size(struct net_device *netdev)
1880 {
1881 struct iavf_adapter *adapter = netdev_priv(netdev);
1882
1883 return adapter->rss_key_size;
1884 }
1885
1886 /**
1887 * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size
1888 * @netdev: network interface device structure
1889 *
1890 * Returns the table size.
1891 **/
iavf_get_rxfh_indir_size(struct net_device * netdev)1892 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev)
1893 {
1894 struct iavf_adapter *adapter = netdev_priv(netdev);
1895
1896 return adapter->rss_lut_size;
1897 }
1898
1899 /**
1900 * iavf_get_rxfh - get the rx flow hash indirection table
1901 * @netdev: network interface device structure
1902 * @indir: indirection table
1903 * @key: hash key
1904 * @hfunc: hash function in use
1905 *
1906 * Reads the indirection table directly from the hardware. Always returns 0.
1907 **/
iavf_get_rxfh(struct net_device * netdev,u32 * indir,u8 * key,u8 * hfunc)1908 static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
1909 u8 *hfunc)
1910 {
1911 struct iavf_adapter *adapter = netdev_priv(netdev);
1912 u16 i;
1913
1914 if (hfunc)
1915 *hfunc = ETH_RSS_HASH_TOP;
1916 if (key)
1917 memcpy(key, adapter->rss_key, adapter->rss_key_size);
1918
1919 if (indir)
1920 /* Each 32 bits pointed by 'indir' is stored with a lut entry */
1921 for (i = 0; i < adapter->rss_lut_size; i++)
1922 indir[i] = (u32)adapter->rss_lut[i];
1923
1924 return 0;
1925 }
1926
1927 /**
1928 * iavf_set_rxfh - set the rx flow hash indirection table
1929 * @netdev: network interface device structure
1930 * @indir: indirection table
1931 * @key: hash key
1932 * @hfunc: hash function to use
1933 *
1934 * Returns -EINVAL if the table specifies an invalid queue id, otherwise
1935 * returns 0 after programming the table.
1936 **/
iavf_set_rxfh(struct net_device * netdev,const u32 * indir,const u8 * key,const u8 hfunc)1937 static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir,
1938 const u8 *key, const u8 hfunc)
1939 {
1940 struct iavf_adapter *adapter = netdev_priv(netdev);
1941 u16 i;
1942
1943 /* Only support toeplitz hash function */
1944 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1945 return -EOPNOTSUPP;
1946
1947 if (!key && !indir)
1948 return 0;
1949
1950 if (key)
1951 memcpy(adapter->rss_key, key, adapter->rss_key_size);
1952
1953 if (indir) {
1954 /* Each 32 bits pointed by 'indir' is stored with a lut entry */
1955 for (i = 0; i < adapter->rss_lut_size; i++)
1956 adapter->rss_lut[i] = (u8)(indir[i]);
1957 }
1958
1959 return iavf_config_rss(adapter);
1960 }
1961
1962 static const struct ethtool_ops iavf_ethtool_ops = {
1963 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
1964 ETHTOOL_COALESCE_USE_ADAPTIVE,
1965 .get_drvinfo = iavf_get_drvinfo,
1966 .get_link = ethtool_op_get_link,
1967 .get_ringparam = iavf_get_ringparam,
1968 .set_ringparam = iavf_set_ringparam,
1969 .get_strings = iavf_get_strings,
1970 .get_ethtool_stats = iavf_get_ethtool_stats,
1971 .get_sset_count = iavf_get_sset_count,
1972 .get_priv_flags = iavf_get_priv_flags,
1973 .set_priv_flags = iavf_set_priv_flags,
1974 .get_msglevel = iavf_get_msglevel,
1975 .set_msglevel = iavf_set_msglevel,
1976 .get_coalesce = iavf_get_coalesce,
1977 .set_coalesce = iavf_set_coalesce,
1978 .get_per_queue_coalesce = iavf_get_per_queue_coalesce,
1979 .set_per_queue_coalesce = iavf_set_per_queue_coalesce,
1980 .set_rxnfc = iavf_set_rxnfc,
1981 .get_rxnfc = iavf_get_rxnfc,
1982 .get_rxfh_indir_size = iavf_get_rxfh_indir_size,
1983 .get_rxfh = iavf_get_rxfh,
1984 .set_rxfh = iavf_set_rxfh,
1985 .get_channels = iavf_get_channels,
1986 .set_channels = iavf_set_channels,
1987 .get_rxfh_key_size = iavf_get_rxfh_key_size,
1988 .get_link_ksettings = iavf_get_link_ksettings,
1989 };
1990
1991 /**
1992 * iavf_set_ethtool_ops - Initialize ethtool ops struct
1993 * @netdev: network interface device structure
1994 *
1995 * Sets ethtool ops struct in our netdev so that ethtool can call
1996 * our functions.
1997 **/
iavf_set_ethtool_ops(struct net_device * netdev)1998 void iavf_set_ethtool_ops(struct net_device *netdev)
1999 {
2000 netdev->ethtool_ops = &iavf_ethtool_ops;
2001 }
2002