1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static void iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24 static const char iavf_copyright[] =
25 "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27 /* iavf_pci_tbl - PCI Device ID Table
28 *
29 * Wildcard entries (PCI_ANY_ID) should come last
30 * Last entry must be all 0s
31 *
32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33 * Class, Class Mask, private data (not used) }
34 */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 /* required last entry */
41 {0, }
42 };
43
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53
iavf_status_to_errno(enum iavf_status status)54 int iavf_status_to_errno(enum iavf_status status)
55 {
56 switch (status) {
57 case IAVF_SUCCESS:
58 return 0;
59 case IAVF_ERR_PARAM:
60 case IAVF_ERR_MAC_TYPE:
61 case IAVF_ERR_INVALID_MAC_ADDR:
62 case IAVF_ERR_INVALID_LINK_SETTINGS:
63 case IAVF_ERR_INVALID_PD_ID:
64 case IAVF_ERR_INVALID_QP_ID:
65 case IAVF_ERR_INVALID_CQ_ID:
66 case IAVF_ERR_INVALID_CEQ_ID:
67 case IAVF_ERR_INVALID_AEQ_ID:
68 case IAVF_ERR_INVALID_SIZE:
69 case IAVF_ERR_INVALID_ARP_INDEX:
70 case IAVF_ERR_INVALID_FPM_FUNC_ID:
71 case IAVF_ERR_QP_INVALID_MSG_SIZE:
72 case IAVF_ERR_INVALID_FRAG_COUNT:
73 case IAVF_ERR_INVALID_ALIGNMENT:
74 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
75 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
76 case IAVF_ERR_INVALID_VF_ID:
77 case IAVF_ERR_INVALID_HMCFN_ID:
78 case IAVF_ERR_INVALID_PBLE_INDEX:
79 case IAVF_ERR_INVALID_SD_INDEX:
80 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
81 case IAVF_ERR_INVALID_SD_TYPE:
82 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
83 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
84 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
85 return -EINVAL;
86 case IAVF_ERR_NVM:
87 case IAVF_ERR_NVM_CHECKSUM:
88 case IAVF_ERR_PHY:
89 case IAVF_ERR_CONFIG:
90 case IAVF_ERR_UNKNOWN_PHY:
91 case IAVF_ERR_LINK_SETUP:
92 case IAVF_ERR_ADAPTER_STOPPED:
93 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
94 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
95 case IAVF_ERR_RESET_FAILED:
96 case IAVF_ERR_BAD_PTR:
97 case IAVF_ERR_SWFW_SYNC:
98 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
99 case IAVF_ERR_QUEUE_EMPTY:
100 case IAVF_ERR_FLUSHED_QUEUE:
101 case IAVF_ERR_OPCODE_MISMATCH:
102 case IAVF_ERR_CQP_COMPL_ERROR:
103 case IAVF_ERR_BACKING_PAGE_ERROR:
104 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
105 case IAVF_ERR_MEMCPY_FAILED:
106 case IAVF_ERR_SRQ_ENABLED:
107 case IAVF_ERR_ADMIN_QUEUE_ERROR:
108 case IAVF_ERR_ADMIN_QUEUE_FULL:
109 case IAVF_ERR_BAD_IWARP_CQE:
110 case IAVF_ERR_NVM_BLANK_MODE:
111 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
112 case IAVF_ERR_DIAG_TEST_FAILED:
113 case IAVF_ERR_FIRMWARE_API_VERSION:
114 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
115 return -EIO;
116 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
117 return -ENODEV;
118 case IAVF_ERR_NO_AVAILABLE_VSI:
119 case IAVF_ERR_RING_FULL:
120 return -ENOSPC;
121 case IAVF_ERR_NO_MEMORY:
122 return -ENOMEM;
123 case IAVF_ERR_TIMEOUT:
124 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
125 return -ETIMEDOUT;
126 case IAVF_ERR_NOT_IMPLEMENTED:
127 case IAVF_NOT_SUPPORTED:
128 return -EOPNOTSUPP;
129 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
130 return -EALREADY;
131 case IAVF_ERR_NOT_READY:
132 return -EBUSY;
133 case IAVF_ERR_BUF_TOO_SHORT:
134 return -EMSGSIZE;
135 }
136
137 return -EIO;
138 }
139
virtchnl_status_to_errno(enum virtchnl_status_code v_status)140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
141 {
142 switch (v_status) {
143 case VIRTCHNL_STATUS_SUCCESS:
144 return 0;
145 case VIRTCHNL_STATUS_ERR_PARAM:
146 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
147 return -EINVAL;
148 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
149 return -ENOMEM;
150 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
151 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
152 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
153 return -EIO;
154 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
155 return -EOPNOTSUPP;
156 }
157
158 return -EIO;
159 }
160
161 /**
162 * iavf_pdev_to_adapter - go from pci_dev to adapter
163 * @pdev: pci_dev pointer
164 */
iavf_pdev_to_adapter(struct pci_dev * pdev)165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
166 {
167 return netdev_priv(pci_get_drvdata(pdev));
168 }
169
170 /**
171 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
172 * @hw: pointer to the HW structure
173 * @mem: ptr to mem struct to fill out
174 * @size: size of memory requested
175 * @alignment: what to align the allocation to
176 **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
178 struct iavf_dma_mem *mem,
179 u64 size, u32 alignment)
180 {
181 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
182
183 if (!mem)
184 return IAVF_ERR_PARAM;
185
186 mem->size = ALIGN(size, alignment);
187 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
188 (dma_addr_t *)&mem->pa, GFP_KERNEL);
189 if (mem->va)
190 return 0;
191 else
192 return IAVF_ERR_NO_MEMORY;
193 }
194
195 /**
196 * iavf_free_dma_mem_d - OS specific memory free for shared code
197 * @hw: pointer to the HW structure
198 * @mem: ptr to mem struct to free
199 **/
iavf_free_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem)200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
201 struct iavf_dma_mem *mem)
202 {
203 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
204
205 if (!mem || !mem->va)
206 return IAVF_ERR_PARAM;
207 dma_free_coherent(&adapter->pdev->dev, mem->size,
208 mem->va, (dma_addr_t)mem->pa);
209 return 0;
210 }
211
212 /**
213 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
214 * @hw: pointer to the HW structure
215 * @mem: ptr to mem struct to fill out
216 * @size: size of memory requested
217 **/
iavf_allocate_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
219 struct iavf_virt_mem *mem, u32 size)
220 {
221 if (!mem)
222 return IAVF_ERR_PARAM;
223
224 mem->size = size;
225 mem->va = kzalloc(size, GFP_KERNEL);
226
227 if (mem->va)
228 return 0;
229 else
230 return IAVF_ERR_NO_MEMORY;
231 }
232
233 /**
234 * iavf_free_virt_mem_d - OS specific memory free for shared code
235 * @hw: pointer to the HW structure
236 * @mem: ptr to mem struct to free
237 **/
iavf_free_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem)238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
239 struct iavf_virt_mem *mem)
240 {
241 if (!mem)
242 return IAVF_ERR_PARAM;
243
244 /* it's ok to kfree a NULL pointer */
245 kfree(mem->va);
246
247 return 0;
248 }
249
250 /**
251 * iavf_lock_timeout - try to lock mutex but give up after timeout
252 * @lock: mutex that should be locked
253 * @msecs: timeout in msecs
254 *
255 * Returns 0 on success, negative on failure
256 **/
iavf_lock_timeout(struct mutex * lock,unsigned int msecs)257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
258 {
259 unsigned int wait, delay = 10;
260
261 for (wait = 0; wait < msecs; wait += delay) {
262 if (mutex_trylock(lock))
263 return 0;
264
265 msleep(delay);
266 }
267
268 return -1;
269 }
270
271 /**
272 * iavf_schedule_reset - Set the flags and schedule a reset event
273 * @adapter: board private structure
274 **/
iavf_schedule_reset(struct iavf_adapter * adapter)275 void iavf_schedule_reset(struct iavf_adapter *adapter)
276 {
277 if (!(adapter->flags &
278 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
279 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
280 queue_work(iavf_wq, &adapter->reset_task);
281 }
282 }
283
284 /**
285 * iavf_schedule_request_stats - Set the flags and schedule statistics request
286 * @adapter: board private structure
287 *
288 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
289 * request and refresh ethtool stats
290 **/
iavf_schedule_request_stats(struct iavf_adapter * adapter)291 void iavf_schedule_request_stats(struct iavf_adapter *adapter)
292 {
293 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
294 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
295 }
296
297 /**
298 * iavf_tx_timeout - Respond to a Tx Hang
299 * @netdev: network interface device structure
300 * @txqueue: queue number that is timing out
301 **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
303 {
304 struct iavf_adapter *adapter = netdev_priv(netdev);
305
306 adapter->tx_timeout_count++;
307 iavf_schedule_reset(adapter);
308 }
309
310 /**
311 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
312 * @adapter: board private structure
313 **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
315 {
316 struct iavf_hw *hw = &adapter->hw;
317
318 if (!adapter->msix_entries)
319 return;
320
321 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
322
323 iavf_flush(hw);
324
325 synchronize_irq(adapter->msix_entries[0].vector);
326 }
327
328 /**
329 * iavf_misc_irq_enable - Enable default interrupt generation settings
330 * @adapter: board private structure
331 **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
333 {
334 struct iavf_hw *hw = &adapter->hw;
335
336 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
337 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
338 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
339
340 iavf_flush(hw);
341 }
342
343 /**
344 * iavf_irq_disable - Mask off interrupt generation on the NIC
345 * @adapter: board private structure
346 **/
iavf_irq_disable(struct iavf_adapter * adapter)347 static void iavf_irq_disable(struct iavf_adapter *adapter)
348 {
349 int i;
350 struct iavf_hw *hw = &adapter->hw;
351
352 if (!adapter->msix_entries)
353 return;
354
355 for (i = 1; i < adapter->num_msix_vectors; i++) {
356 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
357 synchronize_irq(adapter->msix_entries[i].vector);
358 }
359 iavf_flush(hw);
360 }
361
362 /**
363 * iavf_irq_enable_queues - Enable interrupt for specified queues
364 * @adapter: board private structure
365 * @mask: bitmap of queues to enable
366 **/
iavf_irq_enable_queues(struct iavf_adapter * adapter,u32 mask)367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
368 {
369 struct iavf_hw *hw = &adapter->hw;
370 int i;
371
372 for (i = 1; i < adapter->num_msix_vectors; i++) {
373 if (mask & BIT(i - 1)) {
374 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
375 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
376 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
377 }
378 }
379 }
380
381 /**
382 * iavf_irq_enable - Enable default interrupt generation settings
383 * @adapter: board private structure
384 * @flush: boolean value whether to run rd32()
385 **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
387 {
388 struct iavf_hw *hw = &adapter->hw;
389
390 iavf_misc_irq_enable(adapter);
391 iavf_irq_enable_queues(adapter, ~0);
392
393 if (flush)
394 iavf_flush(hw);
395 }
396
397 /**
398 * iavf_msix_aq - Interrupt handler for vector 0
399 * @irq: interrupt number
400 * @data: pointer to netdev
401 **/
iavf_msix_aq(int irq,void * data)402 static irqreturn_t iavf_msix_aq(int irq, void *data)
403 {
404 struct net_device *netdev = data;
405 struct iavf_adapter *adapter = netdev_priv(netdev);
406 struct iavf_hw *hw = &adapter->hw;
407
408 /* handle non-queue interrupts, these reads clear the registers */
409 rd32(hw, IAVF_VFINT_ICR01);
410 rd32(hw, IAVF_VFINT_ICR0_ENA1);
411
412 if (adapter->state != __IAVF_REMOVE)
413 /* schedule work on the private workqueue */
414 queue_work(iavf_wq, &adapter->adminq_task);
415
416 return IRQ_HANDLED;
417 }
418
419 /**
420 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
421 * @irq: interrupt number
422 * @data: pointer to a q_vector
423 **/
iavf_msix_clean_rings(int irq,void * data)424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
425 {
426 struct iavf_q_vector *q_vector = data;
427
428 if (!q_vector->tx.ring && !q_vector->rx.ring)
429 return IRQ_HANDLED;
430
431 napi_schedule_irqoff(&q_vector->napi);
432
433 return IRQ_HANDLED;
434 }
435
436 /**
437 * iavf_map_vector_to_rxq - associate irqs with rx queues
438 * @adapter: board private structure
439 * @v_idx: interrupt number
440 * @r_idx: queue number
441 **/
442 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
444 {
445 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
446 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
447 struct iavf_hw *hw = &adapter->hw;
448
449 rx_ring->q_vector = q_vector;
450 rx_ring->next = q_vector->rx.ring;
451 rx_ring->vsi = &adapter->vsi;
452 q_vector->rx.ring = rx_ring;
453 q_vector->rx.count++;
454 q_vector->rx.next_update = jiffies + 1;
455 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
456 q_vector->ring_mask |= BIT(r_idx);
457 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
458 q_vector->rx.current_itr >> 1);
459 q_vector->rx.current_itr = q_vector->rx.target_itr;
460 }
461
462 /**
463 * iavf_map_vector_to_txq - associate irqs with tx queues
464 * @adapter: board private structure
465 * @v_idx: interrupt number
466 * @t_idx: queue number
467 **/
468 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
470 {
471 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
472 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
473 struct iavf_hw *hw = &adapter->hw;
474
475 tx_ring->q_vector = q_vector;
476 tx_ring->next = q_vector->tx.ring;
477 tx_ring->vsi = &adapter->vsi;
478 q_vector->tx.ring = tx_ring;
479 q_vector->tx.count++;
480 q_vector->tx.next_update = jiffies + 1;
481 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
482 q_vector->num_ringpairs++;
483 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
484 q_vector->tx.target_itr >> 1);
485 q_vector->tx.current_itr = q_vector->tx.target_itr;
486 }
487
488 /**
489 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
490 * @adapter: board private structure to initialize
491 *
492 * This function maps descriptor rings to the queue-specific vectors
493 * we were allotted through the MSI-X enabling code. Ideally, we'd have
494 * one vector per ring/queue, but on a constrained vector budget, we
495 * group the rings as "efficiently" as possible. You would add new
496 * mapping configurations in here.
497 **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
499 {
500 int rings_remaining = adapter->num_active_queues;
501 int ridx = 0, vidx = 0;
502 int q_vectors;
503
504 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
505
506 for (; ridx < rings_remaining; ridx++) {
507 iavf_map_vector_to_rxq(adapter, vidx, ridx);
508 iavf_map_vector_to_txq(adapter, vidx, ridx);
509
510 /* In the case where we have more queues than vectors, continue
511 * round-robin on vectors until all queues are mapped.
512 */
513 if (++vidx >= q_vectors)
514 vidx = 0;
515 }
516
517 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
518 }
519
520 /**
521 * iavf_irq_affinity_notify - Callback for affinity changes
522 * @notify: context as to what irq was changed
523 * @mask: the new affinity mask
524 *
525 * This is a callback function used by the irq_set_affinity_notifier function
526 * so that we may register to receive changes to the irq affinity masks.
527 **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
529 const cpumask_t *mask)
530 {
531 struct iavf_q_vector *q_vector =
532 container_of(notify, struct iavf_q_vector, affinity_notify);
533
534 cpumask_copy(&q_vector->affinity_mask, mask);
535 }
536
537 /**
538 * iavf_irq_affinity_release - Callback for affinity notifier release
539 * @ref: internal core kernel usage
540 *
541 * This is a callback function used by the irq_set_affinity_notifier function
542 * to inform the current notification subscriber that they will no longer
543 * receive notifications.
544 **/
iavf_irq_affinity_release(struct kref * ref)545 static void iavf_irq_affinity_release(struct kref *ref) {}
546
547 /**
548 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
549 * @adapter: board private structure
550 * @basename: device basename
551 *
552 * Allocates MSI-X vectors for tx and rx handling, and requests
553 * interrupts from the kernel.
554 **/
555 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
557 {
558 unsigned int vector, q_vectors;
559 unsigned int rx_int_idx = 0, tx_int_idx = 0;
560 int irq_num, err;
561 int cpu;
562
563 iavf_irq_disable(adapter);
564 /* Decrement for Other and TCP Timer vectors */
565 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
566
567 for (vector = 0; vector < q_vectors; vector++) {
568 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
569
570 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
571
572 if (q_vector->tx.ring && q_vector->rx.ring) {
573 snprintf(q_vector->name, sizeof(q_vector->name),
574 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
575 tx_int_idx++;
576 } else if (q_vector->rx.ring) {
577 snprintf(q_vector->name, sizeof(q_vector->name),
578 "iavf-%s-rx-%u", basename, rx_int_idx++);
579 } else if (q_vector->tx.ring) {
580 snprintf(q_vector->name, sizeof(q_vector->name),
581 "iavf-%s-tx-%u", basename, tx_int_idx++);
582 } else {
583 /* skip this unused q_vector */
584 continue;
585 }
586 err = request_irq(irq_num,
587 iavf_msix_clean_rings,
588 0,
589 q_vector->name,
590 q_vector);
591 if (err) {
592 dev_info(&adapter->pdev->dev,
593 "Request_irq failed, error: %d\n", err);
594 goto free_queue_irqs;
595 }
596 /* register for affinity change notifications */
597 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
598 q_vector->affinity_notify.release =
599 iavf_irq_affinity_release;
600 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
601 /* Spread the IRQ affinity hints across online CPUs. Note that
602 * get_cpu_mask returns a mask with a permanent lifetime so
603 * it's safe to use as a hint for irq_update_affinity_hint.
604 */
605 cpu = cpumask_local_spread(q_vector->v_idx, -1);
606 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
607 }
608
609 return 0;
610
611 free_queue_irqs:
612 while (vector) {
613 vector--;
614 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
615 irq_set_affinity_notifier(irq_num, NULL);
616 irq_update_affinity_hint(irq_num, NULL);
617 free_irq(irq_num, &adapter->q_vectors[vector]);
618 }
619 return err;
620 }
621
622 /**
623 * iavf_request_misc_irq - Initialize MSI-X interrupts
624 * @adapter: board private structure
625 *
626 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
627 * vector is only for the admin queue, and stays active even when the netdev
628 * is closed.
629 **/
iavf_request_misc_irq(struct iavf_adapter * adapter)630 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
631 {
632 struct net_device *netdev = adapter->netdev;
633 int err;
634
635 snprintf(adapter->misc_vector_name,
636 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
637 dev_name(&adapter->pdev->dev));
638 err = request_irq(adapter->msix_entries[0].vector,
639 &iavf_msix_aq, 0,
640 adapter->misc_vector_name, netdev);
641 if (err) {
642 dev_err(&adapter->pdev->dev,
643 "request_irq for %s failed: %d\n",
644 adapter->misc_vector_name, err);
645 free_irq(adapter->msix_entries[0].vector, netdev);
646 }
647 return err;
648 }
649
650 /**
651 * iavf_free_traffic_irqs - Free MSI-X interrupts
652 * @adapter: board private structure
653 *
654 * Frees all MSI-X vectors other than 0.
655 **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
657 {
658 int vector, irq_num, q_vectors;
659
660 if (!adapter->msix_entries)
661 return;
662
663 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
664
665 for (vector = 0; vector < q_vectors; vector++) {
666 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
667 irq_set_affinity_notifier(irq_num, NULL);
668 irq_update_affinity_hint(irq_num, NULL);
669 free_irq(irq_num, &adapter->q_vectors[vector]);
670 }
671 }
672
673 /**
674 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
675 * @adapter: board private structure
676 *
677 * Frees MSI-X vector 0.
678 **/
iavf_free_misc_irq(struct iavf_adapter * adapter)679 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
680 {
681 struct net_device *netdev = adapter->netdev;
682
683 if (!adapter->msix_entries)
684 return;
685
686 free_irq(adapter->msix_entries[0].vector, netdev);
687 }
688
689 /**
690 * iavf_configure_tx - Configure Transmit Unit after Reset
691 * @adapter: board private structure
692 *
693 * Configure the Tx unit of the MAC after a reset.
694 **/
iavf_configure_tx(struct iavf_adapter * adapter)695 static void iavf_configure_tx(struct iavf_adapter *adapter)
696 {
697 struct iavf_hw *hw = &adapter->hw;
698 int i;
699
700 for (i = 0; i < adapter->num_active_queues; i++)
701 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
702 }
703
704 /**
705 * iavf_configure_rx - Configure Receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 **/
iavf_configure_rx(struct iavf_adapter * adapter)710 static void iavf_configure_rx(struct iavf_adapter *adapter)
711 {
712 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
713 struct iavf_hw *hw = &adapter->hw;
714 int i;
715
716 /* Legacy Rx will always default to a 2048 buffer size. */
717 #if (PAGE_SIZE < 8192)
718 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
719 struct net_device *netdev = adapter->netdev;
720
721 /* For jumbo frames on systems with 4K pages we have to use
722 * an order 1 page, so we might as well increase the size
723 * of our Rx buffer to make better use of the available space
724 */
725 rx_buf_len = IAVF_RXBUFFER_3072;
726
727 /* We use a 1536 buffer size for configurations with
728 * standard Ethernet mtu. On x86 this gives us enough room
729 * for shared info and 192 bytes of padding.
730 */
731 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
732 (netdev->mtu <= ETH_DATA_LEN))
733 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
734 }
735 #endif
736
737 for (i = 0; i < adapter->num_active_queues; i++) {
738 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
739 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
740
741 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
742 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
743 else
744 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
745 }
746 }
747
748 /**
749 * iavf_find_vlan - Search filter list for specific vlan filter
750 * @adapter: board private structure
751 * @vlan: vlan tag
752 *
753 * Returns ptr to the filter object or NULL. Must be called while holding the
754 * mac_vlan_list_lock.
755 **/
756 static struct
iavf_find_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
758 struct iavf_vlan vlan)
759 {
760 struct iavf_vlan_filter *f;
761
762 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
763 if (f->vlan.vid == vlan.vid &&
764 f->vlan.tpid == vlan.tpid)
765 return f;
766 }
767
768 return NULL;
769 }
770
771 /**
772 * iavf_add_vlan - Add a vlan filter to the list
773 * @adapter: board private structure
774 * @vlan: VLAN tag
775 *
776 * Returns ptr to the filter object or NULL when no memory available.
777 **/
778 static struct
iavf_add_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
780 struct iavf_vlan vlan)
781 {
782 struct iavf_vlan_filter *f = NULL;
783
784 spin_lock_bh(&adapter->mac_vlan_list_lock);
785
786 f = iavf_find_vlan(adapter, vlan);
787 if (!f) {
788 f = kzalloc(sizeof(*f), GFP_ATOMIC);
789 if (!f)
790 goto clearout;
791
792 f->vlan = vlan;
793
794 list_add_tail(&f->list, &adapter->vlan_filter_list);
795 f->add = true;
796 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
797 }
798
799 clearout:
800 spin_unlock_bh(&adapter->mac_vlan_list_lock);
801 return f;
802 }
803
804 /**
805 * iavf_del_vlan - Remove a vlan filter from the list
806 * @adapter: board private structure
807 * @vlan: VLAN tag
808 **/
iavf_del_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
810 {
811 struct iavf_vlan_filter *f;
812
813 spin_lock_bh(&adapter->mac_vlan_list_lock);
814
815 f = iavf_find_vlan(adapter, vlan);
816 if (f) {
817 f->remove = true;
818 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
819 }
820
821 spin_unlock_bh(&adapter->mac_vlan_list_lock);
822 }
823
824 /**
825 * iavf_restore_filters
826 * @adapter: board private structure
827 *
828 * Restore existing non MAC filters when VF netdev comes back up
829 **/
iavf_restore_filters(struct iavf_adapter * adapter)830 static void iavf_restore_filters(struct iavf_adapter *adapter)
831 {
832 u16 vid;
833
834 /* re-add all VLAN filters */
835 for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
836 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
837
838 for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
839 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
840 }
841
842 /**
843 * iavf_get_num_vlans_added - get number of VLANs added
844 * @adapter: board private structure
845 */
iavf_get_num_vlans_added(struct iavf_adapter * adapter)846 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
847 {
848 return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
849 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
850 }
851
852 /**
853 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
854 * @adapter: board private structure
855 *
856 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
857 * do not impose a limit as that maintains current behavior and for
858 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
859 **/
iavf_get_max_vlans_allowed(struct iavf_adapter * adapter)860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
861 {
862 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
863 * never been a limit on the VF driver side
864 */
865 if (VLAN_ALLOWED(adapter))
866 return VLAN_N_VID;
867 else if (VLAN_V2_ALLOWED(adapter))
868 return adapter->vlan_v2_caps.filtering.max_filters;
869
870 return 0;
871 }
872
873 /**
874 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
875 * @adapter: board private structure
876 **/
iavf_max_vlans_added(struct iavf_adapter * adapter)877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
878 {
879 if (iavf_get_num_vlans_added(adapter) <
880 iavf_get_max_vlans_allowed(adapter))
881 return false;
882
883 return true;
884 }
885
886 /**
887 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
888 * @netdev: network device struct
889 * @proto: unused protocol data
890 * @vid: VLAN tag
891 **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)892 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
893 __always_unused __be16 proto, u16 vid)
894 {
895 struct iavf_adapter *adapter = netdev_priv(netdev);
896
897 if (!VLAN_FILTERING_ALLOWED(adapter))
898 return -EIO;
899
900 if (iavf_max_vlans_added(adapter)) {
901 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
902 iavf_get_max_vlans_allowed(adapter));
903 return -EIO;
904 }
905
906 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
907 return -ENOMEM;
908
909 return 0;
910 }
911
912 /**
913 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
914 * @netdev: network device struct
915 * @proto: unused protocol data
916 * @vid: VLAN tag
917 **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)918 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
919 __always_unused __be16 proto, u16 vid)
920 {
921 struct iavf_adapter *adapter = netdev_priv(netdev);
922
923 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
924 if (proto == cpu_to_be16(ETH_P_8021Q))
925 clear_bit(vid, adapter->vsi.active_cvlans);
926 else
927 clear_bit(vid, adapter->vsi.active_svlans);
928
929 return 0;
930 }
931
932 /**
933 * iavf_find_filter - Search filter list for specific mac filter
934 * @adapter: board private structure
935 * @macaddr: the MAC address
936 *
937 * Returns ptr to the filter object or NULL. Must be called while holding the
938 * mac_vlan_list_lock.
939 **/
940 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
942 const u8 *macaddr)
943 {
944 struct iavf_mac_filter *f;
945
946 if (!macaddr)
947 return NULL;
948
949 list_for_each_entry(f, &adapter->mac_filter_list, list) {
950 if (ether_addr_equal(macaddr, f->macaddr))
951 return f;
952 }
953 return NULL;
954 }
955
956 /**
957 * iavf_add_filter - Add a mac filter to the filter list
958 * @adapter: board private structure
959 * @macaddr: the MAC address
960 *
961 * Returns ptr to the filter object or NULL when no memory available.
962 **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
964 const u8 *macaddr)
965 {
966 struct iavf_mac_filter *f;
967
968 if (!macaddr)
969 return NULL;
970
971 f = iavf_find_filter(adapter, macaddr);
972 if (!f) {
973 f = kzalloc(sizeof(*f), GFP_ATOMIC);
974 if (!f)
975 return f;
976
977 ether_addr_copy(f->macaddr, macaddr);
978
979 list_add_tail(&f->list, &adapter->mac_filter_list);
980 f->add = true;
981 f->is_new_mac = true;
982 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
983 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
984 } else {
985 f->remove = false;
986 }
987
988 return f;
989 }
990
991 /**
992 * iavf_set_mac - NDO callback to set port mac address
993 * @netdev: network interface device structure
994 * @p: pointer to an address structure
995 *
996 * Returns 0 on success, negative on failure
997 **/
iavf_set_mac(struct net_device * netdev,void * p)998 static int iavf_set_mac(struct net_device *netdev, void *p)
999 {
1000 struct iavf_adapter *adapter = netdev_priv(netdev);
1001 struct iavf_hw *hw = &adapter->hw;
1002 struct iavf_mac_filter *f;
1003 struct sockaddr *addr = p;
1004
1005 if (!is_valid_ether_addr(addr->sa_data))
1006 return -EADDRNOTAVAIL;
1007
1008 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
1009 return 0;
1010
1011 spin_lock_bh(&adapter->mac_vlan_list_lock);
1012
1013 f = iavf_find_filter(adapter, hw->mac.addr);
1014 if (f) {
1015 f->remove = true;
1016 f->is_primary = true;
1017 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1018 }
1019
1020 f = iavf_add_filter(adapter, addr->sa_data);
1021 if (f) {
1022 f->is_primary = true;
1023 ether_addr_copy(hw->mac.addr, addr->sa_data);
1024 }
1025
1026 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1027
1028 /* schedule the watchdog task to immediately process the request */
1029 if (f)
1030 queue_work(iavf_wq, &adapter->watchdog_task.work);
1031
1032 return (f == NULL) ? -ENOMEM : 0;
1033 }
1034
1035 /**
1036 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1037 * @netdev: the netdevice
1038 * @addr: address to add
1039 *
1040 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1041 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1042 */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)1043 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1044 {
1045 struct iavf_adapter *adapter = netdev_priv(netdev);
1046
1047 if (iavf_add_filter(adapter, addr))
1048 return 0;
1049 else
1050 return -ENOMEM;
1051 }
1052
1053 /**
1054 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1055 * @netdev: the netdevice
1056 * @addr: address to add
1057 *
1058 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1059 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1060 */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)1061 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1062 {
1063 struct iavf_adapter *adapter = netdev_priv(netdev);
1064 struct iavf_mac_filter *f;
1065
1066 /* Under some circumstances, we might receive a request to delete
1067 * our own device address from our uc list. Because we store the
1068 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1069 * such requests and not delete our device address from this list.
1070 */
1071 if (ether_addr_equal(addr, netdev->dev_addr))
1072 return 0;
1073
1074 f = iavf_find_filter(adapter, addr);
1075 if (f) {
1076 f->remove = true;
1077 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1078 }
1079 return 0;
1080 }
1081
1082 /**
1083 * iavf_set_rx_mode - NDO callback to set the netdev filters
1084 * @netdev: network interface device structure
1085 **/
iavf_set_rx_mode(struct net_device * netdev)1086 static void iavf_set_rx_mode(struct net_device *netdev)
1087 {
1088 struct iavf_adapter *adapter = netdev_priv(netdev);
1089
1090 spin_lock_bh(&adapter->mac_vlan_list_lock);
1091 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1092 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1093 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1094
1095 if (netdev->flags & IFF_PROMISC &&
1096 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
1097 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
1098 else if (!(netdev->flags & IFF_PROMISC) &&
1099 adapter->flags & IAVF_FLAG_PROMISC_ON)
1100 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
1101
1102 if (netdev->flags & IFF_ALLMULTI &&
1103 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
1104 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
1105 else if (!(netdev->flags & IFF_ALLMULTI) &&
1106 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
1107 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
1108 }
1109
1110 /**
1111 * iavf_napi_enable_all - enable NAPI on all queue vectors
1112 * @adapter: board private structure
1113 **/
iavf_napi_enable_all(struct iavf_adapter * adapter)1114 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1115 {
1116 int q_idx;
1117 struct iavf_q_vector *q_vector;
1118 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1119
1120 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1121 struct napi_struct *napi;
1122
1123 q_vector = &adapter->q_vectors[q_idx];
1124 napi = &q_vector->napi;
1125 napi_enable(napi);
1126 }
1127 }
1128
1129 /**
1130 * iavf_napi_disable_all - disable NAPI on all queue vectors
1131 * @adapter: board private structure
1132 **/
iavf_napi_disable_all(struct iavf_adapter * adapter)1133 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1134 {
1135 int q_idx;
1136 struct iavf_q_vector *q_vector;
1137 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1138
1139 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1140 q_vector = &adapter->q_vectors[q_idx];
1141 napi_disable(&q_vector->napi);
1142 }
1143 }
1144
1145 /**
1146 * iavf_configure - set up transmit and receive data structures
1147 * @adapter: board private structure
1148 **/
iavf_configure(struct iavf_adapter * adapter)1149 static void iavf_configure(struct iavf_adapter *adapter)
1150 {
1151 struct net_device *netdev = adapter->netdev;
1152 int i;
1153
1154 iavf_set_rx_mode(netdev);
1155
1156 iavf_configure_tx(adapter);
1157 iavf_configure_rx(adapter);
1158 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1159
1160 for (i = 0; i < adapter->num_active_queues; i++) {
1161 struct iavf_ring *ring = &adapter->rx_rings[i];
1162
1163 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1164 }
1165 }
1166
1167 /**
1168 * iavf_up_complete - Finish the last steps of bringing up a connection
1169 * @adapter: board private structure
1170 *
1171 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1172 **/
iavf_up_complete(struct iavf_adapter * adapter)1173 static void iavf_up_complete(struct iavf_adapter *adapter)
1174 {
1175 iavf_change_state(adapter, __IAVF_RUNNING);
1176 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1177
1178 iavf_napi_enable_all(adapter);
1179
1180 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1181 if (CLIENT_ENABLED(adapter))
1182 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1183 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1184 }
1185
1186 /**
1187 * iavf_down - Shutdown the connection processing
1188 * @adapter: board private structure
1189 *
1190 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1191 **/
iavf_down(struct iavf_adapter * adapter)1192 void iavf_down(struct iavf_adapter *adapter)
1193 {
1194 struct net_device *netdev = adapter->netdev;
1195 struct iavf_vlan_filter *vlf;
1196 struct iavf_cloud_filter *cf;
1197 struct iavf_fdir_fltr *fdir;
1198 struct iavf_mac_filter *f;
1199 struct iavf_adv_rss *rss;
1200
1201 if (adapter->state <= __IAVF_DOWN_PENDING)
1202 return;
1203
1204 netif_carrier_off(netdev);
1205 netif_tx_disable(netdev);
1206 adapter->link_up = false;
1207 iavf_napi_disable_all(adapter);
1208 iavf_irq_disable(adapter);
1209
1210 spin_lock_bh(&adapter->mac_vlan_list_lock);
1211
1212 /* clear the sync flag on all filters */
1213 __dev_uc_unsync(adapter->netdev, NULL);
1214 __dev_mc_unsync(adapter->netdev, NULL);
1215
1216 /* remove all MAC filters */
1217 list_for_each_entry(f, &adapter->mac_filter_list, list) {
1218 f->remove = true;
1219 }
1220
1221 /* remove all VLAN filters */
1222 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1223 vlf->remove = true;
1224 }
1225
1226 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1227
1228 /* remove all cloud filters */
1229 spin_lock_bh(&adapter->cloud_filter_list_lock);
1230 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1231 cf->del = true;
1232 }
1233 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1234
1235 /* remove all Flow Director filters */
1236 spin_lock_bh(&adapter->fdir_fltr_lock);
1237 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1238 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1239 }
1240 spin_unlock_bh(&adapter->fdir_fltr_lock);
1241
1242 /* remove all advance RSS configuration */
1243 spin_lock_bh(&adapter->adv_rss_lock);
1244 list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1245 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1246 spin_unlock_bh(&adapter->adv_rss_lock);
1247
1248 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) {
1249 /* cancel any current operation */
1250 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1251 /* Schedule operations to close down the HW. Don't wait
1252 * here for this to complete. The watchdog is still running
1253 * and it will take care of this.
1254 */
1255 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1256 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1257 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1258 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1259 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1260 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1261 }
1262
1263 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1264 }
1265
1266 /**
1267 * iavf_acquire_msix_vectors - Setup the MSIX capability
1268 * @adapter: board private structure
1269 * @vectors: number of vectors to request
1270 *
1271 * Work with the OS to set up the MSIX vectors needed.
1272 *
1273 * Returns 0 on success, negative on failure
1274 **/
1275 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1276 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1277 {
1278 int err, vector_threshold;
1279
1280 /* We'll want at least 3 (vector_threshold):
1281 * 0) Other (Admin Queue and link, mostly)
1282 * 1) TxQ[0] Cleanup
1283 * 2) RxQ[0] Cleanup
1284 */
1285 vector_threshold = MIN_MSIX_COUNT;
1286
1287 /* The more we get, the more we will assign to Tx/Rx Cleanup
1288 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1289 * Right now, we simply care about how many we'll get; we'll
1290 * set them up later while requesting irq's.
1291 */
1292 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1293 vector_threshold, vectors);
1294 if (err < 0) {
1295 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1296 kfree(adapter->msix_entries);
1297 adapter->msix_entries = NULL;
1298 return err;
1299 }
1300
1301 /* Adjust for only the vectors we'll use, which is minimum
1302 * of max_msix_q_vectors + NONQ_VECS, or the number of
1303 * vectors we were allocated.
1304 */
1305 adapter->num_msix_vectors = err;
1306 return 0;
1307 }
1308
1309 /**
1310 * iavf_free_queues - Free memory for all rings
1311 * @adapter: board private structure to initialize
1312 *
1313 * Free all of the memory associated with queue pairs.
1314 **/
iavf_free_queues(struct iavf_adapter * adapter)1315 static void iavf_free_queues(struct iavf_adapter *adapter)
1316 {
1317 if (!adapter->vsi_res)
1318 return;
1319 adapter->num_active_queues = 0;
1320 kfree(adapter->tx_rings);
1321 adapter->tx_rings = NULL;
1322 kfree(adapter->rx_rings);
1323 adapter->rx_rings = NULL;
1324 }
1325
1326 /**
1327 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1328 * @adapter: board private structure
1329 *
1330 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1331 * stripped in certain descriptor fields. Instead of checking the offload
1332 * capability bits in the hot path, cache the location the ring specific
1333 * flags.
1334 */
iavf_set_queue_vlan_tag_loc(struct iavf_adapter * adapter)1335 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1336 {
1337 int i;
1338
1339 for (i = 0; i < adapter->num_active_queues; i++) {
1340 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1341 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1342
1343 /* prevent multiple L2TAG bits being set after VFR */
1344 tx_ring->flags &=
1345 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1346 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1347 rx_ring->flags &=
1348 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1349 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1350
1351 if (VLAN_ALLOWED(adapter)) {
1352 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1353 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1354 } else if (VLAN_V2_ALLOWED(adapter)) {
1355 struct virtchnl_vlan_supported_caps *stripping_support;
1356 struct virtchnl_vlan_supported_caps *insertion_support;
1357
1358 stripping_support =
1359 &adapter->vlan_v2_caps.offloads.stripping_support;
1360 insertion_support =
1361 &adapter->vlan_v2_caps.offloads.insertion_support;
1362
1363 if (stripping_support->outer) {
1364 if (stripping_support->outer &
1365 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1366 rx_ring->flags |=
1367 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1368 else if (stripping_support->outer &
1369 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1370 rx_ring->flags |=
1371 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1372 } else if (stripping_support->inner) {
1373 if (stripping_support->inner &
1374 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1375 rx_ring->flags |=
1376 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1377 else if (stripping_support->inner &
1378 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1379 rx_ring->flags |=
1380 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1381 }
1382
1383 if (insertion_support->outer) {
1384 if (insertion_support->outer &
1385 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1386 tx_ring->flags |=
1387 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1388 else if (insertion_support->outer &
1389 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1390 tx_ring->flags |=
1391 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1392 } else if (insertion_support->inner) {
1393 if (insertion_support->inner &
1394 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1395 tx_ring->flags |=
1396 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1397 else if (insertion_support->inner &
1398 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1399 tx_ring->flags |=
1400 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1401 }
1402 }
1403 }
1404 }
1405
1406 /**
1407 * iavf_alloc_queues - Allocate memory for all rings
1408 * @adapter: board private structure to initialize
1409 *
1410 * We allocate one ring per queue at run-time since we don't know the
1411 * number of queues at compile-time. The polling_netdev array is
1412 * intended for Multiqueue, but should work fine with a single queue.
1413 **/
iavf_alloc_queues(struct iavf_adapter * adapter)1414 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1415 {
1416 int i, num_active_queues;
1417
1418 /* If we're in reset reallocating queues we don't actually know yet for
1419 * certain the PF gave us the number of queues we asked for but we'll
1420 * assume it did. Once basic reset is finished we'll confirm once we
1421 * start negotiating config with PF.
1422 */
1423 if (adapter->num_req_queues)
1424 num_active_queues = adapter->num_req_queues;
1425 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1426 adapter->num_tc)
1427 num_active_queues = adapter->ch_config.total_qps;
1428 else
1429 num_active_queues = min_t(int,
1430 adapter->vsi_res->num_queue_pairs,
1431 (int)(num_online_cpus()));
1432
1433
1434 adapter->tx_rings = kcalloc(num_active_queues,
1435 sizeof(struct iavf_ring), GFP_KERNEL);
1436 if (!adapter->tx_rings)
1437 goto err_out;
1438 adapter->rx_rings = kcalloc(num_active_queues,
1439 sizeof(struct iavf_ring), GFP_KERNEL);
1440 if (!adapter->rx_rings)
1441 goto err_out;
1442
1443 for (i = 0; i < num_active_queues; i++) {
1444 struct iavf_ring *tx_ring;
1445 struct iavf_ring *rx_ring;
1446
1447 tx_ring = &adapter->tx_rings[i];
1448
1449 tx_ring->queue_index = i;
1450 tx_ring->netdev = adapter->netdev;
1451 tx_ring->dev = &adapter->pdev->dev;
1452 tx_ring->count = adapter->tx_desc_count;
1453 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1454 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1455 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1456
1457 rx_ring = &adapter->rx_rings[i];
1458 rx_ring->queue_index = i;
1459 rx_ring->netdev = adapter->netdev;
1460 rx_ring->dev = &adapter->pdev->dev;
1461 rx_ring->count = adapter->rx_desc_count;
1462 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1463 }
1464
1465 adapter->num_active_queues = num_active_queues;
1466
1467 iavf_set_queue_vlan_tag_loc(adapter);
1468
1469 return 0;
1470
1471 err_out:
1472 iavf_free_queues(adapter);
1473 return -ENOMEM;
1474 }
1475
1476 /**
1477 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1478 * @adapter: board private structure to initialize
1479 *
1480 * Attempt to configure the interrupts using the best available
1481 * capabilities of the hardware and the kernel.
1482 **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1483 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1484 {
1485 int vector, v_budget;
1486 int pairs = 0;
1487 int err = 0;
1488
1489 if (!adapter->vsi_res) {
1490 err = -EIO;
1491 goto out;
1492 }
1493 pairs = adapter->num_active_queues;
1494
1495 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1496 * us much good if we have more vectors than CPUs. However, we already
1497 * limit the total number of queues by the number of CPUs so we do not
1498 * need any further limiting here.
1499 */
1500 v_budget = min_t(int, pairs + NONQ_VECS,
1501 (int)adapter->vf_res->max_vectors);
1502
1503 adapter->msix_entries = kcalloc(v_budget,
1504 sizeof(struct msix_entry), GFP_KERNEL);
1505 if (!adapter->msix_entries) {
1506 err = -ENOMEM;
1507 goto out;
1508 }
1509
1510 for (vector = 0; vector < v_budget; vector++)
1511 adapter->msix_entries[vector].entry = vector;
1512
1513 err = iavf_acquire_msix_vectors(adapter, v_budget);
1514
1515 out:
1516 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1517 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1518 return err;
1519 }
1520
1521 /**
1522 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1523 * @adapter: board private structure
1524 *
1525 * Return 0 on success, negative on failure
1526 **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1527 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1528 {
1529 struct iavf_aqc_get_set_rss_key_data *rss_key =
1530 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1531 struct iavf_hw *hw = &adapter->hw;
1532 enum iavf_status status;
1533
1534 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1535 /* bail because we already have a command pending */
1536 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1537 adapter->current_op);
1538 return -EBUSY;
1539 }
1540
1541 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1542 if (status) {
1543 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1544 iavf_stat_str(hw, status),
1545 iavf_aq_str(hw, hw->aq.asq_last_status));
1546 return iavf_status_to_errno(status);
1547
1548 }
1549
1550 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1551 adapter->rss_lut, adapter->rss_lut_size);
1552 if (status) {
1553 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1554 iavf_stat_str(hw, status),
1555 iavf_aq_str(hw, hw->aq.asq_last_status));
1556 return iavf_status_to_errno(status);
1557 }
1558
1559 return 0;
1560
1561 }
1562
1563 /**
1564 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1565 * @adapter: board private structure
1566 *
1567 * Returns 0 on success, negative on failure
1568 **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1569 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1570 {
1571 struct iavf_hw *hw = &adapter->hw;
1572 u32 *dw;
1573 u16 i;
1574
1575 dw = (u32 *)adapter->rss_key;
1576 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1577 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1578
1579 dw = (u32 *)adapter->rss_lut;
1580 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1581 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1582
1583 iavf_flush(hw);
1584
1585 return 0;
1586 }
1587
1588 /**
1589 * iavf_config_rss - Configure RSS keys and lut
1590 * @adapter: board private structure
1591 *
1592 * Returns 0 on success, negative on failure
1593 **/
iavf_config_rss(struct iavf_adapter * adapter)1594 int iavf_config_rss(struct iavf_adapter *adapter)
1595 {
1596
1597 if (RSS_PF(adapter)) {
1598 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1599 IAVF_FLAG_AQ_SET_RSS_KEY;
1600 return 0;
1601 } else if (RSS_AQ(adapter)) {
1602 return iavf_config_rss_aq(adapter);
1603 } else {
1604 return iavf_config_rss_reg(adapter);
1605 }
1606 }
1607
1608 /**
1609 * iavf_fill_rss_lut - Fill the lut with default values
1610 * @adapter: board private structure
1611 **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1612 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1613 {
1614 u16 i;
1615
1616 for (i = 0; i < adapter->rss_lut_size; i++)
1617 adapter->rss_lut[i] = i % adapter->num_active_queues;
1618 }
1619
1620 /**
1621 * iavf_init_rss - Prepare for RSS
1622 * @adapter: board private structure
1623 *
1624 * Return 0 on success, negative on failure
1625 **/
iavf_init_rss(struct iavf_adapter * adapter)1626 static int iavf_init_rss(struct iavf_adapter *adapter)
1627 {
1628 struct iavf_hw *hw = &adapter->hw;
1629
1630 if (!RSS_PF(adapter)) {
1631 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1632 if (adapter->vf_res->vf_cap_flags &
1633 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1634 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1635 else
1636 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1637
1638 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1639 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1640 }
1641
1642 iavf_fill_rss_lut(adapter);
1643 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1644
1645 return iavf_config_rss(adapter);
1646 }
1647
1648 /**
1649 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1650 * @adapter: board private structure to initialize
1651 *
1652 * We allocate one q_vector per queue interrupt. If allocation fails we
1653 * return -ENOMEM.
1654 **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1655 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1656 {
1657 int q_idx = 0, num_q_vectors;
1658 struct iavf_q_vector *q_vector;
1659
1660 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1661 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1662 GFP_KERNEL);
1663 if (!adapter->q_vectors)
1664 return -ENOMEM;
1665
1666 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1667 q_vector = &adapter->q_vectors[q_idx];
1668 q_vector->adapter = adapter;
1669 q_vector->vsi = &adapter->vsi;
1670 q_vector->v_idx = q_idx;
1671 q_vector->reg_idx = q_idx;
1672 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1673 netif_napi_add(adapter->netdev, &q_vector->napi,
1674 iavf_napi_poll, NAPI_POLL_WEIGHT);
1675 }
1676
1677 return 0;
1678 }
1679
1680 /**
1681 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1682 * @adapter: board private structure to initialize
1683 *
1684 * This function frees the memory allocated to the q_vectors. In addition if
1685 * NAPI is enabled it will delete any references to the NAPI struct prior
1686 * to freeing the q_vector.
1687 **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1688 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1689 {
1690 int q_idx, num_q_vectors;
1691 int napi_vectors;
1692
1693 if (!adapter->q_vectors)
1694 return;
1695
1696 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1697 napi_vectors = adapter->num_active_queues;
1698
1699 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1700 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1701
1702 if (q_idx < napi_vectors)
1703 netif_napi_del(&q_vector->napi);
1704 }
1705 kfree(adapter->q_vectors);
1706 adapter->q_vectors = NULL;
1707 }
1708
1709 /**
1710 * iavf_reset_interrupt_capability - Reset MSIX setup
1711 * @adapter: board private structure
1712 *
1713 **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1714 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1715 {
1716 if (!adapter->msix_entries)
1717 return;
1718
1719 pci_disable_msix(adapter->pdev);
1720 kfree(adapter->msix_entries);
1721 adapter->msix_entries = NULL;
1722 }
1723
1724 /**
1725 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1726 * @adapter: board private structure to initialize
1727 *
1728 **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1729 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1730 {
1731 int err;
1732
1733 err = iavf_alloc_queues(adapter);
1734 if (err) {
1735 dev_err(&adapter->pdev->dev,
1736 "Unable to allocate memory for queues\n");
1737 goto err_alloc_queues;
1738 }
1739
1740 rtnl_lock();
1741 err = iavf_set_interrupt_capability(adapter);
1742 rtnl_unlock();
1743 if (err) {
1744 dev_err(&adapter->pdev->dev,
1745 "Unable to setup interrupt capabilities\n");
1746 goto err_set_interrupt;
1747 }
1748
1749 err = iavf_alloc_q_vectors(adapter);
1750 if (err) {
1751 dev_err(&adapter->pdev->dev,
1752 "Unable to allocate memory for queue vectors\n");
1753 goto err_alloc_q_vectors;
1754 }
1755
1756 /* If we've made it so far while ADq flag being ON, then we haven't
1757 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1758 * resources have been allocated in the reset path.
1759 * Now we can truly claim that ADq is enabled.
1760 */
1761 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1762 adapter->num_tc)
1763 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1764 adapter->num_tc);
1765
1766 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1767 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1768 adapter->num_active_queues);
1769
1770 return 0;
1771 err_alloc_q_vectors:
1772 iavf_reset_interrupt_capability(adapter);
1773 err_set_interrupt:
1774 iavf_free_queues(adapter);
1775 err_alloc_queues:
1776 return err;
1777 }
1778
1779 /**
1780 * iavf_free_rss - Free memory used by RSS structs
1781 * @adapter: board private structure
1782 **/
iavf_free_rss(struct iavf_adapter * adapter)1783 static void iavf_free_rss(struct iavf_adapter *adapter)
1784 {
1785 kfree(adapter->rss_key);
1786 adapter->rss_key = NULL;
1787
1788 kfree(adapter->rss_lut);
1789 adapter->rss_lut = NULL;
1790 }
1791
1792 /**
1793 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1794 * @adapter: board private structure
1795 *
1796 * Returns 0 on success, negative on failure
1797 **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter)1798 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1799 {
1800 struct net_device *netdev = adapter->netdev;
1801 int err;
1802
1803 if (netif_running(netdev))
1804 iavf_free_traffic_irqs(adapter);
1805 iavf_free_misc_irq(adapter);
1806 iavf_reset_interrupt_capability(adapter);
1807 iavf_free_q_vectors(adapter);
1808 iavf_free_queues(adapter);
1809
1810 err = iavf_init_interrupt_scheme(adapter);
1811 if (err)
1812 goto err;
1813
1814 netif_tx_stop_all_queues(netdev);
1815
1816 err = iavf_request_misc_irq(adapter);
1817 if (err)
1818 goto err;
1819
1820 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1821
1822 iavf_map_rings_to_vectors(adapter);
1823 err:
1824 return err;
1825 }
1826
1827 /**
1828 * iavf_process_aq_command - process aq_required flags
1829 * and sends aq command
1830 * @adapter: pointer to iavf adapter structure
1831 *
1832 * Returns 0 on success
1833 * Returns error code if no command was sent
1834 * or error code if the command failed.
1835 **/
iavf_process_aq_command(struct iavf_adapter * adapter)1836 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1837 {
1838 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1839 return iavf_send_vf_config_msg(adapter);
1840 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
1841 return iavf_send_vf_offload_vlan_v2_msg(adapter);
1842 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1843 iavf_disable_queues(adapter);
1844 return 0;
1845 }
1846
1847 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1848 iavf_map_queues(adapter);
1849 return 0;
1850 }
1851
1852 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1853 iavf_add_ether_addrs(adapter);
1854 return 0;
1855 }
1856
1857 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1858 iavf_add_vlans(adapter);
1859 return 0;
1860 }
1861
1862 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1863 iavf_del_ether_addrs(adapter);
1864 return 0;
1865 }
1866
1867 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1868 iavf_del_vlans(adapter);
1869 return 0;
1870 }
1871
1872 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1873 iavf_enable_vlan_stripping(adapter);
1874 return 0;
1875 }
1876
1877 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1878 iavf_disable_vlan_stripping(adapter);
1879 return 0;
1880 }
1881
1882 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1883 iavf_configure_queues(adapter);
1884 return 0;
1885 }
1886
1887 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1888 iavf_enable_queues(adapter);
1889 return 0;
1890 }
1891
1892 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1893 /* This message goes straight to the firmware, not the
1894 * PF, so we don't have to set current_op as we will
1895 * not get a response through the ARQ.
1896 */
1897 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1898 return 0;
1899 }
1900 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1901 iavf_get_hena(adapter);
1902 return 0;
1903 }
1904 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1905 iavf_set_hena(adapter);
1906 return 0;
1907 }
1908 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1909 iavf_set_rss_key(adapter);
1910 return 0;
1911 }
1912 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1913 iavf_set_rss_lut(adapter);
1914 return 0;
1915 }
1916
1917 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1918 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1919 FLAG_VF_MULTICAST_PROMISC);
1920 return 0;
1921 }
1922
1923 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1924 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1925 return 0;
1926 }
1927 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
1928 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1929 iavf_set_promiscuous(adapter, 0);
1930 return 0;
1931 }
1932
1933 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1934 iavf_enable_channels(adapter);
1935 return 0;
1936 }
1937
1938 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1939 iavf_disable_channels(adapter);
1940 return 0;
1941 }
1942 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1943 iavf_add_cloud_filter(adapter);
1944 return 0;
1945 }
1946
1947 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1948 iavf_del_cloud_filter(adapter);
1949 return 0;
1950 }
1951 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1952 iavf_del_cloud_filter(adapter);
1953 return 0;
1954 }
1955 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1956 iavf_add_cloud_filter(adapter);
1957 return 0;
1958 }
1959 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1960 iavf_add_fdir_filter(adapter);
1961 return IAVF_SUCCESS;
1962 }
1963 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1964 iavf_del_fdir_filter(adapter);
1965 return IAVF_SUCCESS;
1966 }
1967 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1968 iavf_add_adv_rss_cfg(adapter);
1969 return 0;
1970 }
1971 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1972 iavf_del_adv_rss_cfg(adapter);
1973 return 0;
1974 }
1975 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
1976 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
1977 return 0;
1978 }
1979 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
1980 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
1981 return 0;
1982 }
1983 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
1984 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
1985 return 0;
1986 }
1987 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
1988 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
1989 return 0;
1990 }
1991 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
1992 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
1993 return 0;
1994 }
1995 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
1996 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
1997 return 0;
1998 }
1999 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2000 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2001 return 0;
2002 }
2003 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2004 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2005 return 0;
2006 }
2007
2008 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2009 iavf_request_stats(adapter);
2010 return 0;
2011 }
2012
2013 return -EAGAIN;
2014 }
2015
2016 /**
2017 * iavf_set_vlan_offload_features - set VLAN offload configuration
2018 * @adapter: board private structure
2019 * @prev_features: previous features used for comparison
2020 * @features: updated features used for configuration
2021 *
2022 * Set the aq_required bit(s) based on the requested features passed in to
2023 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2024 * the watchdog if any changes are requested to expedite the request via
2025 * virtchnl.
2026 **/
2027 void
iavf_set_vlan_offload_features(struct iavf_adapter * adapter,netdev_features_t prev_features,netdev_features_t features)2028 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2029 netdev_features_t prev_features,
2030 netdev_features_t features)
2031 {
2032 bool enable_stripping = true, enable_insertion = true;
2033 u16 vlan_ethertype = 0;
2034 u64 aq_required = 0;
2035
2036 /* keep cases separate because one ethertype for offloads can be
2037 * disabled at the same time as another is disabled, so check for an
2038 * enabled ethertype first, then check for disabled. Default to
2039 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2040 * stripping.
2041 */
2042 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2043 vlan_ethertype = ETH_P_8021AD;
2044 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2045 vlan_ethertype = ETH_P_8021Q;
2046 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2047 vlan_ethertype = ETH_P_8021AD;
2048 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2049 vlan_ethertype = ETH_P_8021Q;
2050 else
2051 vlan_ethertype = ETH_P_8021Q;
2052
2053 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2054 enable_stripping = false;
2055 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2056 enable_insertion = false;
2057
2058 if (VLAN_ALLOWED(adapter)) {
2059 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2060 * stripping via virtchnl. VLAN insertion can be toggled on the
2061 * netdev, but it doesn't require a virtchnl message
2062 */
2063 if (enable_stripping)
2064 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2065 else
2066 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2067
2068 } else if (VLAN_V2_ALLOWED(adapter)) {
2069 switch (vlan_ethertype) {
2070 case ETH_P_8021Q:
2071 if (enable_stripping)
2072 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2073 else
2074 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2075
2076 if (enable_insertion)
2077 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2078 else
2079 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2080 break;
2081 case ETH_P_8021AD:
2082 if (enable_stripping)
2083 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2084 else
2085 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2086
2087 if (enable_insertion)
2088 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2089 else
2090 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2091 break;
2092 }
2093 }
2094
2095 if (aq_required) {
2096 adapter->aq_required |= aq_required;
2097 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
2098 }
2099 }
2100
2101 /**
2102 * iavf_startup - first step of driver startup
2103 * @adapter: board private structure
2104 *
2105 * Function process __IAVF_STARTUP driver state.
2106 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2107 * when fails the state is changed to __IAVF_INIT_FAILED
2108 **/
iavf_startup(struct iavf_adapter * adapter)2109 static void iavf_startup(struct iavf_adapter *adapter)
2110 {
2111 struct pci_dev *pdev = adapter->pdev;
2112 struct iavf_hw *hw = &adapter->hw;
2113 enum iavf_status status;
2114 int ret;
2115
2116 WARN_ON(adapter->state != __IAVF_STARTUP);
2117
2118 /* driver loaded, probe complete */
2119 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2120 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2121 status = iavf_set_mac_type(hw);
2122 if (status) {
2123 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status);
2124 goto err;
2125 }
2126
2127 ret = iavf_check_reset_complete(hw);
2128 if (ret) {
2129 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2130 ret);
2131 goto err;
2132 }
2133 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2134 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2135 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2136 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2137
2138 status = iavf_init_adminq(hw);
2139 if (status) {
2140 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2141 status);
2142 goto err;
2143 }
2144 ret = iavf_send_api_ver(adapter);
2145 if (ret) {
2146 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2147 iavf_shutdown_adminq(hw);
2148 goto err;
2149 }
2150 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2151 return;
2152 err:
2153 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2154 }
2155
2156 /**
2157 * iavf_init_version_check - second step of driver startup
2158 * @adapter: board private structure
2159 *
2160 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2161 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2162 * when fails the state is changed to __IAVF_INIT_FAILED
2163 **/
iavf_init_version_check(struct iavf_adapter * adapter)2164 static void iavf_init_version_check(struct iavf_adapter *adapter)
2165 {
2166 struct pci_dev *pdev = adapter->pdev;
2167 struct iavf_hw *hw = &adapter->hw;
2168 int err = -EAGAIN;
2169
2170 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2171
2172 if (!iavf_asq_done(hw)) {
2173 dev_err(&pdev->dev, "Admin queue command never completed\n");
2174 iavf_shutdown_adminq(hw);
2175 iavf_change_state(adapter, __IAVF_STARTUP);
2176 goto err;
2177 }
2178
2179 /* aq msg sent, awaiting reply */
2180 err = iavf_verify_api_ver(adapter);
2181 if (err) {
2182 if (err == -EALREADY)
2183 err = iavf_send_api_ver(adapter);
2184 else
2185 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2186 adapter->pf_version.major,
2187 adapter->pf_version.minor,
2188 VIRTCHNL_VERSION_MAJOR,
2189 VIRTCHNL_VERSION_MINOR);
2190 goto err;
2191 }
2192 err = iavf_send_vf_config_msg(adapter);
2193 if (err) {
2194 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2195 err);
2196 goto err;
2197 }
2198 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2199 return;
2200 err:
2201 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2202 }
2203
2204 /**
2205 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2206 * @adapter: board private structure
2207 */
iavf_parse_vf_resource_msg(struct iavf_adapter * adapter)2208 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2209 {
2210 int i, num_req_queues = adapter->num_req_queues;
2211 struct iavf_vsi *vsi = &adapter->vsi;
2212
2213 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2214 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2215 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2216 }
2217 if (!adapter->vsi_res) {
2218 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2219 return -ENODEV;
2220 }
2221
2222 if (num_req_queues &&
2223 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2224 /* Problem. The PF gave us fewer queues than what we had
2225 * negotiated in our request. Need a reset to see if we can't
2226 * get back to a working state.
2227 */
2228 dev_err(&adapter->pdev->dev,
2229 "Requested %d queues, but PF only gave us %d.\n",
2230 num_req_queues,
2231 adapter->vsi_res->num_queue_pairs);
2232 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2233 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2234 iavf_schedule_reset(adapter);
2235
2236 return -EAGAIN;
2237 }
2238 adapter->num_req_queues = 0;
2239 adapter->vsi.id = adapter->vsi_res->vsi_id;
2240
2241 adapter->vsi.back = adapter;
2242 adapter->vsi.base_vector = 1;
2243 vsi->netdev = adapter->netdev;
2244 vsi->qs_handle = adapter->vsi_res->qset_handle;
2245 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2246 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2247 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2248 } else {
2249 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2250 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2251 }
2252
2253 return 0;
2254 }
2255
2256 /**
2257 * iavf_init_get_resources - third step of driver startup
2258 * @adapter: board private structure
2259 *
2260 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2261 * finishes driver initialization procedure.
2262 * When success the state is changed to __IAVF_DOWN
2263 * when fails the state is changed to __IAVF_INIT_FAILED
2264 **/
iavf_init_get_resources(struct iavf_adapter * adapter)2265 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2266 {
2267 struct pci_dev *pdev = adapter->pdev;
2268 struct iavf_hw *hw = &adapter->hw;
2269 int err;
2270
2271 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2272 /* aq msg sent, awaiting reply */
2273 if (!adapter->vf_res) {
2274 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2275 GFP_KERNEL);
2276 if (!adapter->vf_res) {
2277 err = -ENOMEM;
2278 goto err;
2279 }
2280 }
2281 err = iavf_get_vf_config(adapter);
2282 if (err == -EALREADY) {
2283 err = iavf_send_vf_config_msg(adapter);
2284 goto err;
2285 } else if (err == -EINVAL) {
2286 /* We only get -EINVAL if the device is in a very bad
2287 * state or if we've been disabled for previous bad
2288 * behavior. Either way, we're done now.
2289 */
2290 iavf_shutdown_adminq(hw);
2291 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2292 return;
2293 }
2294 if (err) {
2295 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2296 goto err_alloc;
2297 }
2298
2299 err = iavf_parse_vf_resource_msg(adapter);
2300 if (err) {
2301 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2302 err);
2303 goto err_alloc;
2304 }
2305 /* Some features require additional messages to negotiate extended
2306 * capabilities. These are processed in sequence by the
2307 * __IAVF_INIT_EXTENDED_CAPS driver state.
2308 */
2309 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2310
2311 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2312 return;
2313
2314 err_alloc:
2315 kfree(adapter->vf_res);
2316 adapter->vf_res = NULL;
2317 err:
2318 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2319 }
2320
2321 /**
2322 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2323 * @adapter: board private structure
2324 *
2325 * Function processes send of the extended VLAN V2 capability message to the
2326 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2327 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2328 */
iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter * adapter)2329 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2330 {
2331 int ret;
2332
2333 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2334
2335 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2336 if (ret && ret == -EOPNOTSUPP) {
2337 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2338 * we did not send the capability exchange message and do not
2339 * expect a response.
2340 */
2341 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2342 }
2343
2344 /* We sent the message, so move on to the next step */
2345 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2346 }
2347
2348 /**
2349 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2350 * @adapter: board private structure
2351 *
2352 * Function processes receipt of the extended VLAN V2 capability message from
2353 * the PF.
2354 **/
iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter * adapter)2355 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2356 {
2357 int ret;
2358
2359 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2360
2361 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2362
2363 ret = iavf_get_vf_vlan_v2_caps(adapter);
2364 if (ret)
2365 goto err;
2366
2367 /* We've processed receipt of the VLAN V2 caps message */
2368 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2369 return;
2370 err:
2371 /* We didn't receive a reply. Make sure we try sending again when
2372 * __IAVF_INIT_FAILED attempts to recover.
2373 */
2374 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2375 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2376 }
2377
2378 /**
2379 * iavf_init_process_extended_caps - Part of driver startup
2380 * @adapter: board private structure
2381 *
2382 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2383 * handles negotiating capabilities for features which require an additional
2384 * message.
2385 *
2386 * Once all extended capabilities exchanges are finished, the driver will
2387 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2388 */
iavf_init_process_extended_caps(struct iavf_adapter * adapter)2389 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2390 {
2391 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2392
2393 /* Process capability exchange for VLAN V2 */
2394 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2395 iavf_init_send_offload_vlan_v2_caps(adapter);
2396 return;
2397 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2398 iavf_init_recv_offload_vlan_v2_caps(adapter);
2399 return;
2400 }
2401
2402 /* When we reach here, no further extended capabilities exchanges are
2403 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2404 */
2405 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2406 }
2407
2408 /**
2409 * iavf_init_config_adapter - last part of driver startup
2410 * @adapter: board private structure
2411 *
2412 * After all the supported capabilities are negotiated, then the
2413 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2414 */
iavf_init_config_adapter(struct iavf_adapter * adapter)2415 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2416 {
2417 struct net_device *netdev = adapter->netdev;
2418 struct pci_dev *pdev = adapter->pdev;
2419 int err;
2420
2421 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2422
2423 if (iavf_process_config(adapter))
2424 goto err;
2425
2426 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2427
2428 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2429
2430 netdev->netdev_ops = &iavf_netdev_ops;
2431 iavf_set_ethtool_ops(netdev);
2432 netdev->watchdog_timeo = 5 * HZ;
2433
2434 /* MTU range: 68 - 9710 */
2435 netdev->min_mtu = ETH_MIN_MTU;
2436 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2437
2438 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2439 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2440 adapter->hw.mac.addr);
2441 eth_hw_addr_random(netdev);
2442 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2443 } else {
2444 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2445 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2446 }
2447
2448 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2449 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2450 err = iavf_init_interrupt_scheme(adapter);
2451 if (err)
2452 goto err_sw_init;
2453 iavf_map_rings_to_vectors(adapter);
2454 if (adapter->vf_res->vf_cap_flags &
2455 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2456 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2457
2458 err = iavf_request_misc_irq(adapter);
2459 if (err)
2460 goto err_sw_init;
2461
2462 netif_carrier_off(netdev);
2463 adapter->link_up = false;
2464
2465 /* set the semaphore to prevent any callbacks after device registration
2466 * up to time when state of driver will be set to __IAVF_DOWN
2467 */
2468 rtnl_lock();
2469 if (!adapter->netdev_registered) {
2470 err = register_netdevice(netdev);
2471 if (err) {
2472 rtnl_unlock();
2473 goto err_register;
2474 }
2475 }
2476
2477 adapter->netdev_registered = true;
2478
2479 netif_tx_stop_all_queues(netdev);
2480 if (CLIENT_ALLOWED(adapter)) {
2481 err = iavf_lan_add_device(adapter);
2482 if (err)
2483 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2484 err);
2485 }
2486 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2487 if (netdev->features & NETIF_F_GRO)
2488 dev_info(&pdev->dev, "GRO is enabled\n");
2489
2490 iavf_change_state(adapter, __IAVF_DOWN);
2491 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2492 rtnl_unlock();
2493
2494 iavf_misc_irq_enable(adapter);
2495 wake_up(&adapter->down_waitqueue);
2496
2497 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2498 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2499 if (!adapter->rss_key || !adapter->rss_lut) {
2500 err = -ENOMEM;
2501 goto err_mem;
2502 }
2503 if (RSS_AQ(adapter))
2504 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2505 else
2506 iavf_init_rss(adapter);
2507
2508 if (VLAN_V2_ALLOWED(adapter))
2509 /* request initial VLAN offload settings */
2510 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2511
2512 return;
2513 err_mem:
2514 iavf_free_rss(adapter);
2515 err_register:
2516 iavf_free_misc_irq(adapter);
2517 err_sw_init:
2518 iavf_reset_interrupt_capability(adapter);
2519 err:
2520 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2521 }
2522
2523 /**
2524 * iavf_watchdog_task - Periodic call-back task
2525 * @work: pointer to work_struct
2526 **/
iavf_watchdog_task(struct work_struct * work)2527 static void iavf_watchdog_task(struct work_struct *work)
2528 {
2529 struct iavf_adapter *adapter = container_of(work,
2530 struct iavf_adapter,
2531 watchdog_task.work);
2532 struct iavf_hw *hw = &adapter->hw;
2533 u32 reg_val;
2534
2535 if (!mutex_trylock(&adapter->crit_lock)) {
2536 if (adapter->state == __IAVF_REMOVE)
2537 return;
2538
2539 goto restart_watchdog;
2540 }
2541
2542 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2543 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2544
2545 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2546 adapter->aq_required = 0;
2547 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2548 mutex_unlock(&adapter->crit_lock);
2549 queue_work(iavf_wq, &adapter->reset_task);
2550 return;
2551 }
2552
2553 switch (adapter->state) {
2554 case __IAVF_STARTUP:
2555 iavf_startup(adapter);
2556 mutex_unlock(&adapter->crit_lock);
2557 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2558 msecs_to_jiffies(30));
2559 return;
2560 case __IAVF_INIT_VERSION_CHECK:
2561 iavf_init_version_check(adapter);
2562 mutex_unlock(&adapter->crit_lock);
2563 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2564 msecs_to_jiffies(30));
2565 return;
2566 case __IAVF_INIT_GET_RESOURCES:
2567 iavf_init_get_resources(adapter);
2568 mutex_unlock(&adapter->crit_lock);
2569 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2570 msecs_to_jiffies(1));
2571 return;
2572 case __IAVF_INIT_EXTENDED_CAPS:
2573 iavf_init_process_extended_caps(adapter);
2574 mutex_unlock(&adapter->crit_lock);
2575 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2576 msecs_to_jiffies(1));
2577 return;
2578 case __IAVF_INIT_CONFIG_ADAPTER:
2579 iavf_init_config_adapter(adapter);
2580 mutex_unlock(&adapter->crit_lock);
2581 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2582 msecs_to_jiffies(1));
2583 return;
2584 case __IAVF_INIT_FAILED:
2585 if (test_bit(__IAVF_IN_REMOVE_TASK,
2586 &adapter->crit_section)) {
2587 /* Do not update the state and do not reschedule
2588 * watchdog task, iavf_remove should handle this state
2589 * as it can loop forever
2590 */
2591 mutex_unlock(&adapter->crit_lock);
2592 return;
2593 }
2594 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2595 dev_err(&adapter->pdev->dev,
2596 "Failed to communicate with PF; waiting before retry\n");
2597 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2598 iavf_shutdown_adminq(hw);
2599 mutex_unlock(&adapter->crit_lock);
2600 queue_delayed_work(iavf_wq,
2601 &adapter->watchdog_task, (5 * HZ));
2602 return;
2603 }
2604 /* Try again from failed step*/
2605 iavf_change_state(adapter, adapter->last_state);
2606 mutex_unlock(&adapter->crit_lock);
2607 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
2608 return;
2609 case __IAVF_COMM_FAILED:
2610 if (test_bit(__IAVF_IN_REMOVE_TASK,
2611 &adapter->crit_section)) {
2612 /* Set state to __IAVF_INIT_FAILED and perform remove
2613 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2614 * doesn't bring the state back to __IAVF_COMM_FAILED.
2615 */
2616 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2617 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2618 mutex_unlock(&adapter->crit_lock);
2619 return;
2620 }
2621 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2622 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2623 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2624 reg_val == VIRTCHNL_VFR_COMPLETED) {
2625 /* A chance for redemption! */
2626 dev_err(&adapter->pdev->dev,
2627 "Hardware came out of reset. Attempting reinit.\n");
2628 /* When init task contacts the PF and
2629 * gets everything set up again, it'll restart the
2630 * watchdog for us. Down, boy. Sit. Stay. Woof.
2631 */
2632 iavf_change_state(adapter, __IAVF_STARTUP);
2633 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2634 }
2635 adapter->aq_required = 0;
2636 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2637 mutex_unlock(&adapter->crit_lock);
2638 queue_delayed_work(iavf_wq,
2639 &adapter->watchdog_task,
2640 msecs_to_jiffies(10));
2641 return;
2642 case __IAVF_RESETTING:
2643 mutex_unlock(&adapter->crit_lock);
2644 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2645 return;
2646 case __IAVF_DOWN:
2647 case __IAVF_DOWN_PENDING:
2648 case __IAVF_TESTING:
2649 case __IAVF_RUNNING:
2650 if (adapter->current_op) {
2651 if (!iavf_asq_done(hw)) {
2652 dev_dbg(&adapter->pdev->dev,
2653 "Admin queue timeout\n");
2654 iavf_send_api_ver(adapter);
2655 }
2656 } else {
2657 int ret = iavf_process_aq_command(adapter);
2658
2659 /* An error will be returned if no commands were
2660 * processed; use this opportunity to update stats
2661 * if the error isn't -ENOTSUPP
2662 */
2663 if (ret && ret != -EOPNOTSUPP &&
2664 adapter->state == __IAVF_RUNNING)
2665 iavf_request_stats(adapter);
2666 }
2667 if (adapter->state == __IAVF_RUNNING)
2668 iavf_detect_recover_hung(&adapter->vsi);
2669 break;
2670 case __IAVF_REMOVE:
2671 default:
2672 mutex_unlock(&adapter->crit_lock);
2673 return;
2674 }
2675
2676 /* check for hw reset */
2677 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2678 if (!reg_val) {
2679 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2680 adapter->aq_required = 0;
2681 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2682 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2683 queue_work(iavf_wq, &adapter->reset_task);
2684 mutex_unlock(&adapter->crit_lock);
2685 queue_delayed_work(iavf_wq,
2686 &adapter->watchdog_task, HZ * 2);
2687 return;
2688 }
2689
2690 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2691 mutex_unlock(&adapter->crit_lock);
2692 restart_watchdog:
2693 if (adapter->state >= __IAVF_DOWN)
2694 queue_work(iavf_wq, &adapter->adminq_task);
2695 if (adapter->aq_required)
2696 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2697 msecs_to_jiffies(20));
2698 else
2699 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2700 }
2701
2702 /**
2703 * iavf_disable_vf - disable VF
2704 * @adapter: board private structure
2705 *
2706 * Set communication failed flag and free all resources.
2707 * NOTE: This function is expected to be called with crit_lock being held.
2708 **/
iavf_disable_vf(struct iavf_adapter * adapter)2709 static void iavf_disable_vf(struct iavf_adapter *adapter)
2710 {
2711 struct iavf_mac_filter *f, *ftmp;
2712 struct iavf_vlan_filter *fv, *fvtmp;
2713 struct iavf_cloud_filter *cf, *cftmp;
2714
2715 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2716
2717 /* We don't use netif_running() because it may be true prior to
2718 * ndo_open() returning, so we can't assume it means all our open
2719 * tasks have finished, since we're not holding the rtnl_lock here.
2720 */
2721 if (adapter->state == __IAVF_RUNNING) {
2722 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2723 netif_carrier_off(adapter->netdev);
2724 netif_tx_disable(adapter->netdev);
2725 adapter->link_up = false;
2726 iavf_napi_disable_all(adapter);
2727 iavf_irq_disable(adapter);
2728 iavf_free_traffic_irqs(adapter);
2729 iavf_free_all_tx_resources(adapter);
2730 iavf_free_all_rx_resources(adapter);
2731 }
2732
2733 spin_lock_bh(&adapter->mac_vlan_list_lock);
2734
2735 /* Delete all of the filters */
2736 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2737 list_del(&f->list);
2738 kfree(f);
2739 }
2740
2741 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2742 list_del(&fv->list);
2743 kfree(fv);
2744 }
2745
2746 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2747
2748 spin_lock_bh(&adapter->cloud_filter_list_lock);
2749 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2750 list_del(&cf->list);
2751 kfree(cf);
2752 adapter->num_cloud_filters--;
2753 }
2754 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2755
2756 iavf_free_misc_irq(adapter);
2757 iavf_reset_interrupt_capability(adapter);
2758 iavf_free_q_vectors(adapter);
2759 iavf_free_queues(adapter);
2760 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2761 iavf_shutdown_adminq(&adapter->hw);
2762 adapter->netdev->flags &= ~IFF_UP;
2763 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2764 iavf_change_state(adapter, __IAVF_DOWN);
2765 wake_up(&adapter->down_waitqueue);
2766 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2767 }
2768
2769 /**
2770 * iavf_reset_task - Call-back task to handle hardware reset
2771 * @work: pointer to work_struct
2772 *
2773 * During reset we need to shut down and reinitialize the admin queue
2774 * before we can use it to communicate with the PF again. We also clear
2775 * and reinit the rings because that context is lost as well.
2776 **/
iavf_reset_task(struct work_struct * work)2777 static void iavf_reset_task(struct work_struct *work)
2778 {
2779 struct iavf_adapter *adapter = container_of(work,
2780 struct iavf_adapter,
2781 reset_task);
2782 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2783 struct net_device *netdev = adapter->netdev;
2784 struct iavf_hw *hw = &adapter->hw;
2785 struct iavf_mac_filter *f, *ftmp;
2786 struct iavf_cloud_filter *cf;
2787 enum iavf_status status;
2788 u32 reg_val;
2789 int i = 0, err;
2790 bool running;
2791
2792 /* Detach interface to avoid subsequent NDO callbacks */
2793 rtnl_lock();
2794 netif_device_detach(netdev);
2795 rtnl_unlock();
2796
2797 /* When device is being removed it doesn't make sense to run the reset
2798 * task, just return in such a case.
2799 */
2800 if (!mutex_trylock(&adapter->crit_lock)) {
2801 if (adapter->state != __IAVF_REMOVE)
2802 queue_work(iavf_wq, &adapter->reset_task);
2803
2804 goto reset_finish;
2805 }
2806
2807 while (!mutex_trylock(&adapter->client_lock))
2808 usleep_range(500, 1000);
2809 if (CLIENT_ENABLED(adapter)) {
2810 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2811 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2812 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2813 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2814 cancel_delayed_work_sync(&adapter->client_task);
2815 iavf_notify_client_close(&adapter->vsi, true);
2816 }
2817 iavf_misc_irq_disable(adapter);
2818 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2819 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2820 /* Restart the AQ here. If we have been reset but didn't
2821 * detect it, or if the PF had to reinit, our AQ will be hosed.
2822 */
2823 iavf_shutdown_adminq(hw);
2824 iavf_init_adminq(hw);
2825 iavf_request_reset(adapter);
2826 }
2827 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2828
2829 /* poll until we see the reset actually happen */
2830 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2831 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2832 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2833 if (!reg_val)
2834 break;
2835 usleep_range(5000, 10000);
2836 }
2837 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2838 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2839 goto continue_reset; /* act like the reset happened */
2840 }
2841
2842 /* wait until the reset is complete and the PF is responding to us */
2843 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2844 /* sleep first to make sure a minimum wait time is met */
2845 msleep(IAVF_RESET_WAIT_MS);
2846
2847 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2848 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2849 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2850 break;
2851 }
2852
2853 pci_set_master(adapter->pdev);
2854 pci_restore_msi_state(adapter->pdev);
2855
2856 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2857 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2858 reg_val);
2859 iavf_disable_vf(adapter);
2860 mutex_unlock(&adapter->client_lock);
2861 mutex_unlock(&adapter->crit_lock);
2862 return; /* Do not attempt to reinit. It's dead, Jim. */
2863 }
2864
2865 continue_reset:
2866 /* We don't use netif_running() because it may be true prior to
2867 * ndo_open() returning, so we can't assume it means all our open
2868 * tasks have finished, since we're not holding the rtnl_lock here.
2869 */
2870 running = adapter->state == __IAVF_RUNNING;
2871
2872 if (running) {
2873 netif_carrier_off(netdev);
2874 adapter->link_up = false;
2875 iavf_napi_disable_all(adapter);
2876 }
2877 iavf_irq_disable(adapter);
2878
2879 iavf_change_state(adapter, __IAVF_RESETTING);
2880 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2881
2882 /* free the Tx/Rx rings and descriptors, might be better to just
2883 * re-use them sometime in the future
2884 */
2885 iavf_free_all_rx_resources(adapter);
2886 iavf_free_all_tx_resources(adapter);
2887
2888 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2889 /* kill and reinit the admin queue */
2890 iavf_shutdown_adminq(hw);
2891 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2892 status = iavf_init_adminq(hw);
2893 if (status) {
2894 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2895 status);
2896 goto reset_err;
2897 }
2898 adapter->aq_required = 0;
2899
2900 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
2901 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
2902 err = iavf_reinit_interrupt_scheme(adapter);
2903 if (err)
2904 goto reset_err;
2905 }
2906
2907 if (RSS_AQ(adapter)) {
2908 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2909 } else {
2910 err = iavf_init_rss(adapter);
2911 if (err)
2912 goto reset_err;
2913 }
2914
2915 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2916 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
2917 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
2918 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
2919 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
2920 * been successfully sent and negotiated
2921 */
2922 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
2923 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2924
2925 spin_lock_bh(&adapter->mac_vlan_list_lock);
2926
2927 /* Delete filter for the current MAC address, it could have
2928 * been changed by the PF via administratively set MAC.
2929 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2930 */
2931 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2932 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2933 list_del(&f->list);
2934 kfree(f);
2935 }
2936 }
2937 /* re-add all MAC filters */
2938 list_for_each_entry(f, &adapter->mac_filter_list, list) {
2939 f->add = true;
2940 }
2941 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2942
2943 /* check if TCs are running and re-add all cloud filters */
2944 spin_lock_bh(&adapter->cloud_filter_list_lock);
2945 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2946 adapter->num_tc) {
2947 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2948 cf->add = true;
2949 }
2950 }
2951 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2952
2953 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2954 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2955 iavf_misc_irq_enable(adapter);
2956
2957 bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID);
2958 bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID);
2959
2960 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2961
2962 /* We were running when the reset started, so we need to restore some
2963 * state here.
2964 */
2965 if (running) {
2966 /* allocate transmit descriptors */
2967 err = iavf_setup_all_tx_resources(adapter);
2968 if (err)
2969 goto reset_err;
2970
2971 /* allocate receive descriptors */
2972 err = iavf_setup_all_rx_resources(adapter);
2973 if (err)
2974 goto reset_err;
2975
2976 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
2977 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
2978 err = iavf_request_traffic_irqs(adapter, netdev->name);
2979 if (err)
2980 goto reset_err;
2981
2982 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
2983 }
2984
2985 iavf_configure(adapter);
2986
2987 /* iavf_up_complete() will switch device back
2988 * to __IAVF_RUNNING
2989 */
2990 iavf_up_complete(adapter);
2991
2992 iavf_irq_enable(adapter, true);
2993 } else {
2994 iavf_change_state(adapter, __IAVF_DOWN);
2995 wake_up(&adapter->down_waitqueue);
2996 }
2997
2998 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2999
3000 mutex_unlock(&adapter->client_lock);
3001 mutex_unlock(&adapter->crit_lock);
3002
3003 goto reset_finish;
3004 reset_err:
3005 if (running) {
3006 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3007 iavf_free_traffic_irqs(adapter);
3008 }
3009 iavf_disable_vf(adapter);
3010
3011 mutex_unlock(&adapter->client_lock);
3012 mutex_unlock(&adapter->crit_lock);
3013 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3014 reset_finish:
3015 rtnl_lock();
3016 netif_device_attach(netdev);
3017 rtnl_unlock();
3018 }
3019
3020 /**
3021 * iavf_adminq_task - worker thread to clean the admin queue
3022 * @work: pointer to work_struct containing our data
3023 **/
iavf_adminq_task(struct work_struct * work)3024 static void iavf_adminq_task(struct work_struct *work)
3025 {
3026 struct iavf_adapter *adapter =
3027 container_of(work, struct iavf_adapter, adminq_task);
3028 struct iavf_hw *hw = &adapter->hw;
3029 struct iavf_arq_event_info event;
3030 enum virtchnl_ops v_op;
3031 enum iavf_status ret, v_ret;
3032 u32 val, oldval;
3033 u16 pending;
3034
3035 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3036 goto out;
3037
3038 if (!mutex_trylock(&adapter->crit_lock)) {
3039 if (adapter->state == __IAVF_REMOVE)
3040 return;
3041
3042 queue_work(iavf_wq, &adapter->adminq_task);
3043 goto out;
3044 }
3045
3046 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3047 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3048 if (!event.msg_buf)
3049 goto out;
3050
3051 do {
3052 ret = iavf_clean_arq_element(hw, &event, &pending);
3053 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3054 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3055
3056 if (ret || !v_op)
3057 break; /* No event to process or error cleaning ARQ */
3058
3059 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3060 event.msg_len);
3061 if (pending != 0)
3062 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3063 } while (pending);
3064 mutex_unlock(&adapter->crit_lock);
3065
3066 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) {
3067 if (adapter->netdev_registered ||
3068 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
3069 struct net_device *netdev = adapter->netdev;
3070
3071 rtnl_lock();
3072 netdev_update_features(netdev);
3073 rtnl_unlock();
3074 /* Request VLAN offload settings */
3075 if (VLAN_V2_ALLOWED(adapter))
3076 iavf_set_vlan_offload_features
3077 (adapter, 0, netdev->features);
3078
3079 iavf_set_queue_vlan_tag_loc(adapter);
3080 }
3081
3082 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
3083 }
3084 if ((adapter->flags &
3085 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
3086 adapter->state == __IAVF_RESETTING)
3087 goto freedom;
3088
3089 /* check for error indications */
3090 val = rd32(hw, hw->aq.arq.len);
3091 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3092 goto freedom;
3093 oldval = val;
3094 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3095 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3096 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3097 }
3098 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3099 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3100 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3101 }
3102 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3103 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3104 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3105 }
3106 if (oldval != val)
3107 wr32(hw, hw->aq.arq.len, val);
3108
3109 val = rd32(hw, hw->aq.asq.len);
3110 oldval = val;
3111 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3112 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3113 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3114 }
3115 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3116 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3117 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3118 }
3119 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3120 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3121 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3122 }
3123 if (oldval != val)
3124 wr32(hw, hw->aq.asq.len, val);
3125
3126 freedom:
3127 kfree(event.msg_buf);
3128 out:
3129 /* re-enable Admin queue interrupt cause */
3130 iavf_misc_irq_enable(adapter);
3131 }
3132
3133 /**
3134 * iavf_client_task - worker thread to perform client work
3135 * @work: pointer to work_struct containing our data
3136 *
3137 * This task handles client interactions. Because client calls can be
3138 * reentrant, we can't handle them in the watchdog.
3139 **/
iavf_client_task(struct work_struct * work)3140 static void iavf_client_task(struct work_struct *work)
3141 {
3142 struct iavf_adapter *adapter =
3143 container_of(work, struct iavf_adapter, client_task.work);
3144
3145 /* If we can't get the client bit, just give up. We'll be rescheduled
3146 * later.
3147 */
3148
3149 if (!mutex_trylock(&adapter->client_lock))
3150 return;
3151
3152 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
3153 iavf_client_subtask(adapter);
3154 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3155 goto out;
3156 }
3157 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
3158 iavf_notify_client_l2_params(&adapter->vsi);
3159 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
3160 goto out;
3161 }
3162 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
3163 iavf_notify_client_close(&adapter->vsi, false);
3164 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3165 goto out;
3166 }
3167 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
3168 iavf_notify_client_open(&adapter->vsi);
3169 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
3170 }
3171 out:
3172 mutex_unlock(&adapter->client_lock);
3173 }
3174
3175 /**
3176 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3177 * @adapter: board private structure
3178 *
3179 * Free all transmit software resources
3180 **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)3181 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3182 {
3183 int i;
3184
3185 if (!adapter->tx_rings)
3186 return;
3187
3188 for (i = 0; i < adapter->num_active_queues; i++)
3189 if (adapter->tx_rings[i].desc)
3190 iavf_free_tx_resources(&adapter->tx_rings[i]);
3191 }
3192
3193 /**
3194 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3195 * @adapter: board private structure
3196 *
3197 * If this function returns with an error, then it's possible one or
3198 * more of the rings is populated (while the rest are not). It is the
3199 * callers duty to clean those orphaned rings.
3200 *
3201 * Return 0 on success, negative on failure
3202 **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)3203 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3204 {
3205 int i, err = 0;
3206
3207 for (i = 0; i < adapter->num_active_queues; i++) {
3208 adapter->tx_rings[i].count = adapter->tx_desc_count;
3209 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3210 if (!err)
3211 continue;
3212 dev_err(&adapter->pdev->dev,
3213 "Allocation for Tx Queue %u failed\n", i);
3214 break;
3215 }
3216
3217 return err;
3218 }
3219
3220 /**
3221 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3222 * @adapter: board private structure
3223 *
3224 * If this function returns with an error, then it's possible one or
3225 * more of the rings is populated (while the rest are not). It is the
3226 * callers duty to clean those orphaned rings.
3227 *
3228 * Return 0 on success, negative on failure
3229 **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)3230 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3231 {
3232 int i, err = 0;
3233
3234 for (i = 0; i < adapter->num_active_queues; i++) {
3235 adapter->rx_rings[i].count = adapter->rx_desc_count;
3236 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3237 if (!err)
3238 continue;
3239 dev_err(&adapter->pdev->dev,
3240 "Allocation for Rx Queue %u failed\n", i);
3241 break;
3242 }
3243 return err;
3244 }
3245
3246 /**
3247 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3248 * @adapter: board private structure
3249 *
3250 * Free all receive software resources
3251 **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)3252 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3253 {
3254 int i;
3255
3256 if (!adapter->rx_rings)
3257 return;
3258
3259 for (i = 0; i < adapter->num_active_queues; i++)
3260 if (adapter->rx_rings[i].desc)
3261 iavf_free_rx_resources(&adapter->rx_rings[i]);
3262 }
3263
3264 /**
3265 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3266 * @adapter: board private structure
3267 * @max_tx_rate: max Tx bw for a tc
3268 **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)3269 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3270 u64 max_tx_rate)
3271 {
3272 int speed = 0, ret = 0;
3273
3274 if (ADV_LINK_SUPPORT(adapter)) {
3275 if (adapter->link_speed_mbps < U32_MAX) {
3276 speed = adapter->link_speed_mbps;
3277 goto validate_bw;
3278 } else {
3279 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3280 return -EINVAL;
3281 }
3282 }
3283
3284 switch (adapter->link_speed) {
3285 case VIRTCHNL_LINK_SPEED_40GB:
3286 speed = SPEED_40000;
3287 break;
3288 case VIRTCHNL_LINK_SPEED_25GB:
3289 speed = SPEED_25000;
3290 break;
3291 case VIRTCHNL_LINK_SPEED_20GB:
3292 speed = SPEED_20000;
3293 break;
3294 case VIRTCHNL_LINK_SPEED_10GB:
3295 speed = SPEED_10000;
3296 break;
3297 case VIRTCHNL_LINK_SPEED_5GB:
3298 speed = SPEED_5000;
3299 break;
3300 case VIRTCHNL_LINK_SPEED_2_5GB:
3301 speed = SPEED_2500;
3302 break;
3303 case VIRTCHNL_LINK_SPEED_1GB:
3304 speed = SPEED_1000;
3305 break;
3306 case VIRTCHNL_LINK_SPEED_100MB:
3307 speed = SPEED_100;
3308 break;
3309 default:
3310 break;
3311 }
3312
3313 validate_bw:
3314 if (max_tx_rate > speed) {
3315 dev_err(&adapter->pdev->dev,
3316 "Invalid tx rate specified\n");
3317 ret = -EINVAL;
3318 }
3319
3320 return ret;
3321 }
3322
3323 /**
3324 * iavf_validate_ch_config - validate queue mapping info
3325 * @adapter: board private structure
3326 * @mqprio_qopt: queue parameters
3327 *
3328 * This function validates if the config provided by the user to
3329 * configure queue channels is valid or not. Returns 0 on a valid
3330 * config.
3331 **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)3332 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3333 struct tc_mqprio_qopt_offload *mqprio_qopt)
3334 {
3335 u64 total_max_rate = 0;
3336 u32 tx_rate_rem = 0;
3337 int i, num_qps = 0;
3338 u64 tx_rate = 0;
3339 int ret = 0;
3340
3341 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3342 mqprio_qopt->qopt.num_tc < 1)
3343 return -EINVAL;
3344
3345 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3346 if (!mqprio_qopt->qopt.count[i] ||
3347 mqprio_qopt->qopt.offset[i] != num_qps)
3348 return -EINVAL;
3349 if (mqprio_qopt->min_rate[i]) {
3350 dev_err(&adapter->pdev->dev,
3351 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3352 i);
3353 return -EINVAL;
3354 }
3355
3356 /* convert to Mbps */
3357 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3358 IAVF_MBPS_DIVISOR);
3359
3360 if (mqprio_qopt->max_rate[i] &&
3361 tx_rate < IAVF_MBPS_QUANTA) {
3362 dev_err(&adapter->pdev->dev,
3363 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3364 i, IAVF_MBPS_QUANTA);
3365 return -EINVAL;
3366 }
3367
3368 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3369
3370 if (tx_rate_rem != 0) {
3371 dev_err(&adapter->pdev->dev,
3372 "Invalid max tx rate for TC%d, not divisible by %d\n",
3373 i, IAVF_MBPS_QUANTA);
3374 return -EINVAL;
3375 }
3376
3377 total_max_rate += tx_rate;
3378 num_qps += mqprio_qopt->qopt.count[i];
3379 }
3380 if (num_qps > adapter->num_active_queues) {
3381 dev_err(&adapter->pdev->dev,
3382 "Cannot support requested number of queues\n");
3383 return -EINVAL;
3384 }
3385
3386 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3387 return ret;
3388 }
3389
3390 /**
3391 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3392 * @adapter: board private structure
3393 **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)3394 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3395 {
3396 struct iavf_cloud_filter *cf, *cftmp;
3397
3398 spin_lock_bh(&adapter->cloud_filter_list_lock);
3399 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3400 list) {
3401 list_del(&cf->list);
3402 kfree(cf);
3403 adapter->num_cloud_filters--;
3404 }
3405 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3406 }
3407
3408 /**
3409 * __iavf_setup_tc - configure multiple traffic classes
3410 * @netdev: network interface device structure
3411 * @type_data: tc offload data
3412 *
3413 * This function processes the config information provided by the
3414 * user to configure traffic classes/queue channels and packages the
3415 * information to request the PF to setup traffic classes.
3416 *
3417 * Returns 0 on success.
3418 **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)3419 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3420 {
3421 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3422 struct iavf_adapter *adapter = netdev_priv(netdev);
3423 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3424 u8 num_tc = 0, total_qps = 0;
3425 int ret = 0, netdev_tc = 0;
3426 u64 max_tx_rate;
3427 u16 mode;
3428 int i;
3429
3430 num_tc = mqprio_qopt->qopt.num_tc;
3431 mode = mqprio_qopt->mode;
3432
3433 /* delete queue_channel */
3434 if (!mqprio_qopt->qopt.hw) {
3435 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3436 /* reset the tc configuration */
3437 netdev_reset_tc(netdev);
3438 adapter->num_tc = 0;
3439 netif_tx_stop_all_queues(netdev);
3440 netif_tx_disable(netdev);
3441 iavf_del_all_cloud_filters(adapter);
3442 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3443 total_qps = adapter->orig_num_active_queues;
3444 goto exit;
3445 } else {
3446 return -EINVAL;
3447 }
3448 }
3449
3450 /* add queue channel */
3451 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3452 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3453 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3454 return -EOPNOTSUPP;
3455 }
3456 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3457 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3458 return -EINVAL;
3459 }
3460
3461 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3462 if (ret)
3463 return ret;
3464 /* Return if same TC config is requested */
3465 if (adapter->num_tc == num_tc)
3466 return 0;
3467 adapter->num_tc = num_tc;
3468
3469 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3470 if (i < num_tc) {
3471 adapter->ch_config.ch_info[i].count =
3472 mqprio_qopt->qopt.count[i];
3473 adapter->ch_config.ch_info[i].offset =
3474 mqprio_qopt->qopt.offset[i];
3475 total_qps += mqprio_qopt->qopt.count[i];
3476 max_tx_rate = mqprio_qopt->max_rate[i];
3477 /* convert to Mbps */
3478 max_tx_rate = div_u64(max_tx_rate,
3479 IAVF_MBPS_DIVISOR);
3480 adapter->ch_config.ch_info[i].max_tx_rate =
3481 max_tx_rate;
3482 } else {
3483 adapter->ch_config.ch_info[i].count = 1;
3484 adapter->ch_config.ch_info[i].offset = 0;
3485 }
3486 }
3487
3488 /* Take snapshot of original config such as "num_active_queues"
3489 * It is used later when delete ADQ flow is exercised, so that
3490 * once delete ADQ flow completes, VF shall go back to its
3491 * original queue configuration
3492 */
3493
3494 adapter->orig_num_active_queues = adapter->num_active_queues;
3495
3496 /* Store queue info based on TC so that VF gets configured
3497 * with correct number of queues when VF completes ADQ config
3498 * flow
3499 */
3500 adapter->ch_config.total_qps = total_qps;
3501
3502 netif_tx_stop_all_queues(netdev);
3503 netif_tx_disable(netdev);
3504 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3505 netdev_reset_tc(netdev);
3506 /* Report the tc mapping up the stack */
3507 netdev_set_num_tc(adapter->netdev, num_tc);
3508 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3509 u16 qcount = mqprio_qopt->qopt.count[i];
3510 u16 qoffset = mqprio_qopt->qopt.offset[i];
3511
3512 if (i < num_tc)
3513 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3514 qoffset);
3515 }
3516 }
3517 exit:
3518 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3519 return 0;
3520
3521 netif_set_real_num_rx_queues(netdev, total_qps);
3522 netif_set_real_num_tx_queues(netdev, total_qps);
3523
3524 return ret;
3525 }
3526
3527 /**
3528 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3529 * @adapter: board private structure
3530 * @f: pointer to struct flow_cls_offload
3531 * @filter: pointer to cloud filter structure
3532 */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)3533 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3534 struct flow_cls_offload *f,
3535 struct iavf_cloud_filter *filter)
3536 {
3537 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3538 struct flow_dissector *dissector = rule->match.dissector;
3539 u16 n_proto_mask = 0;
3540 u16 n_proto_key = 0;
3541 u8 field_flags = 0;
3542 u16 addr_type = 0;
3543 u16 n_proto = 0;
3544 int i = 0;
3545 struct virtchnl_filter *vf = &filter->f;
3546
3547 if (dissector->used_keys &
3548 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3549 BIT(FLOW_DISSECTOR_KEY_BASIC) |
3550 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3551 BIT(FLOW_DISSECTOR_KEY_VLAN) |
3552 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3553 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3554 BIT(FLOW_DISSECTOR_KEY_PORTS) |
3555 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3556 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3557 dissector->used_keys);
3558 return -EOPNOTSUPP;
3559 }
3560
3561 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3562 struct flow_match_enc_keyid match;
3563
3564 flow_rule_match_enc_keyid(rule, &match);
3565 if (match.mask->keyid != 0)
3566 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3567 }
3568
3569 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3570 struct flow_match_basic match;
3571
3572 flow_rule_match_basic(rule, &match);
3573 n_proto_key = ntohs(match.key->n_proto);
3574 n_proto_mask = ntohs(match.mask->n_proto);
3575
3576 if (n_proto_key == ETH_P_ALL) {
3577 n_proto_key = 0;
3578 n_proto_mask = 0;
3579 }
3580 n_proto = n_proto_key & n_proto_mask;
3581 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3582 return -EINVAL;
3583 if (n_proto == ETH_P_IPV6) {
3584 /* specify flow type as TCP IPv6 */
3585 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3586 }
3587
3588 if (match.key->ip_proto != IPPROTO_TCP) {
3589 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3590 return -EINVAL;
3591 }
3592 }
3593
3594 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3595 struct flow_match_eth_addrs match;
3596
3597 flow_rule_match_eth_addrs(rule, &match);
3598
3599 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3600 if (!is_zero_ether_addr(match.mask->dst)) {
3601 if (is_broadcast_ether_addr(match.mask->dst)) {
3602 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3603 } else {
3604 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3605 match.mask->dst);
3606 return -EINVAL;
3607 }
3608 }
3609
3610 if (!is_zero_ether_addr(match.mask->src)) {
3611 if (is_broadcast_ether_addr(match.mask->src)) {
3612 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3613 } else {
3614 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3615 match.mask->src);
3616 return -EINVAL;
3617 }
3618 }
3619
3620 if (!is_zero_ether_addr(match.key->dst))
3621 if (is_valid_ether_addr(match.key->dst) ||
3622 is_multicast_ether_addr(match.key->dst)) {
3623 /* set the mask if a valid dst_mac address */
3624 for (i = 0; i < ETH_ALEN; i++)
3625 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3626 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3627 match.key->dst);
3628 }
3629
3630 if (!is_zero_ether_addr(match.key->src))
3631 if (is_valid_ether_addr(match.key->src) ||
3632 is_multicast_ether_addr(match.key->src)) {
3633 /* set the mask if a valid dst_mac address */
3634 for (i = 0; i < ETH_ALEN; i++)
3635 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3636 ether_addr_copy(vf->data.tcp_spec.src_mac,
3637 match.key->src);
3638 }
3639 }
3640
3641 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3642 struct flow_match_vlan match;
3643
3644 flow_rule_match_vlan(rule, &match);
3645 if (match.mask->vlan_id) {
3646 if (match.mask->vlan_id == VLAN_VID_MASK) {
3647 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3648 } else {
3649 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3650 match.mask->vlan_id);
3651 return -EINVAL;
3652 }
3653 }
3654 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3655 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3656 }
3657
3658 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3659 struct flow_match_control match;
3660
3661 flow_rule_match_control(rule, &match);
3662 addr_type = match.key->addr_type;
3663 }
3664
3665 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3666 struct flow_match_ipv4_addrs match;
3667
3668 flow_rule_match_ipv4_addrs(rule, &match);
3669 if (match.mask->dst) {
3670 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3671 field_flags |= IAVF_CLOUD_FIELD_IIP;
3672 } else {
3673 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3674 be32_to_cpu(match.mask->dst));
3675 return -EINVAL;
3676 }
3677 }
3678
3679 if (match.mask->src) {
3680 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3681 field_flags |= IAVF_CLOUD_FIELD_IIP;
3682 } else {
3683 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3684 be32_to_cpu(match.mask->dst));
3685 return -EINVAL;
3686 }
3687 }
3688
3689 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3690 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3691 return -EINVAL;
3692 }
3693 if (match.key->dst) {
3694 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3695 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3696 }
3697 if (match.key->src) {
3698 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3699 vf->data.tcp_spec.src_ip[0] = match.key->src;
3700 }
3701 }
3702
3703 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3704 struct flow_match_ipv6_addrs match;
3705
3706 flow_rule_match_ipv6_addrs(rule, &match);
3707
3708 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3709 if (ipv6_addr_any(&match.mask->dst)) {
3710 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3711 IPV6_ADDR_ANY);
3712 return -EINVAL;
3713 }
3714
3715 /* src and dest IPv6 address should not be LOOPBACK
3716 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3717 */
3718 if (ipv6_addr_loopback(&match.key->dst) ||
3719 ipv6_addr_loopback(&match.key->src)) {
3720 dev_err(&adapter->pdev->dev,
3721 "ipv6 addr should not be loopback\n");
3722 return -EINVAL;
3723 }
3724 if (!ipv6_addr_any(&match.mask->dst) ||
3725 !ipv6_addr_any(&match.mask->src))
3726 field_flags |= IAVF_CLOUD_FIELD_IIP;
3727
3728 for (i = 0; i < 4; i++)
3729 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3730 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3731 sizeof(vf->data.tcp_spec.dst_ip));
3732 for (i = 0; i < 4; i++)
3733 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3734 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3735 sizeof(vf->data.tcp_spec.src_ip));
3736 }
3737 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3738 struct flow_match_ports match;
3739
3740 flow_rule_match_ports(rule, &match);
3741 if (match.mask->src) {
3742 if (match.mask->src == cpu_to_be16(0xffff)) {
3743 field_flags |= IAVF_CLOUD_FIELD_IIP;
3744 } else {
3745 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3746 be16_to_cpu(match.mask->src));
3747 return -EINVAL;
3748 }
3749 }
3750
3751 if (match.mask->dst) {
3752 if (match.mask->dst == cpu_to_be16(0xffff)) {
3753 field_flags |= IAVF_CLOUD_FIELD_IIP;
3754 } else {
3755 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3756 be16_to_cpu(match.mask->dst));
3757 return -EINVAL;
3758 }
3759 }
3760 if (match.key->dst) {
3761 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3762 vf->data.tcp_spec.dst_port = match.key->dst;
3763 }
3764
3765 if (match.key->src) {
3766 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3767 vf->data.tcp_spec.src_port = match.key->src;
3768 }
3769 }
3770 vf->field_flags = field_flags;
3771
3772 return 0;
3773 }
3774
3775 /**
3776 * iavf_handle_tclass - Forward to a traffic class on the device
3777 * @adapter: board private structure
3778 * @tc: traffic class index on the device
3779 * @filter: pointer to cloud filter structure
3780 */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)3781 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3782 struct iavf_cloud_filter *filter)
3783 {
3784 if (tc == 0)
3785 return 0;
3786 if (tc < adapter->num_tc) {
3787 if (!filter->f.data.tcp_spec.dst_port) {
3788 dev_err(&adapter->pdev->dev,
3789 "Specify destination port to redirect to traffic class other than TC0\n");
3790 return -EINVAL;
3791 }
3792 }
3793 /* redirect to a traffic class on the same device */
3794 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3795 filter->f.action_meta = tc;
3796 return 0;
3797 }
3798
3799 /**
3800 * iavf_configure_clsflower - Add tc flower filters
3801 * @adapter: board private structure
3802 * @cls_flower: Pointer to struct flow_cls_offload
3803 */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3804 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3805 struct flow_cls_offload *cls_flower)
3806 {
3807 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3808 struct iavf_cloud_filter *filter = NULL;
3809 int err = -EINVAL, count = 50;
3810
3811 if (tc < 0) {
3812 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3813 return -EINVAL;
3814 }
3815
3816 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3817 if (!filter)
3818 return -ENOMEM;
3819
3820 while (!mutex_trylock(&adapter->crit_lock)) {
3821 if (--count == 0) {
3822 kfree(filter);
3823 return err;
3824 }
3825 udelay(1);
3826 }
3827
3828 filter->cookie = cls_flower->cookie;
3829
3830 /* set the mask to all zeroes to begin with */
3831 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3832 /* start out with flow type and eth type IPv4 to begin with */
3833 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3834 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3835 if (err)
3836 goto err;
3837
3838 err = iavf_handle_tclass(adapter, tc, filter);
3839 if (err)
3840 goto err;
3841
3842 /* add filter to the list */
3843 spin_lock_bh(&adapter->cloud_filter_list_lock);
3844 list_add_tail(&filter->list, &adapter->cloud_filter_list);
3845 adapter->num_cloud_filters++;
3846 filter->add = true;
3847 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3848 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3849 err:
3850 if (err)
3851 kfree(filter);
3852
3853 mutex_unlock(&adapter->crit_lock);
3854 return err;
3855 }
3856
3857 /* iavf_find_cf - Find the cloud filter in the list
3858 * @adapter: Board private structure
3859 * @cookie: filter specific cookie
3860 *
3861 * Returns ptr to the filter object or NULL. Must be called while holding the
3862 * cloud_filter_list_lock.
3863 */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)3864 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3865 unsigned long *cookie)
3866 {
3867 struct iavf_cloud_filter *filter = NULL;
3868
3869 if (!cookie)
3870 return NULL;
3871
3872 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3873 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3874 return filter;
3875 }
3876 return NULL;
3877 }
3878
3879 /**
3880 * iavf_delete_clsflower - Remove tc flower filters
3881 * @adapter: board private structure
3882 * @cls_flower: Pointer to struct flow_cls_offload
3883 */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3884 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3885 struct flow_cls_offload *cls_flower)
3886 {
3887 struct iavf_cloud_filter *filter = NULL;
3888 int err = 0;
3889
3890 spin_lock_bh(&adapter->cloud_filter_list_lock);
3891 filter = iavf_find_cf(adapter, &cls_flower->cookie);
3892 if (filter) {
3893 filter->del = true;
3894 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3895 } else {
3896 err = -EINVAL;
3897 }
3898 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3899
3900 return err;
3901 }
3902
3903 /**
3904 * iavf_setup_tc_cls_flower - flower classifier offloads
3905 * @adapter: board private structure
3906 * @cls_flower: pointer to flow_cls_offload struct with flow info
3907 */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3908 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3909 struct flow_cls_offload *cls_flower)
3910 {
3911 switch (cls_flower->command) {
3912 case FLOW_CLS_REPLACE:
3913 return iavf_configure_clsflower(adapter, cls_flower);
3914 case FLOW_CLS_DESTROY:
3915 return iavf_delete_clsflower(adapter, cls_flower);
3916 case FLOW_CLS_STATS:
3917 return -EOPNOTSUPP;
3918 default:
3919 return -EOPNOTSUPP;
3920 }
3921 }
3922
3923 /**
3924 * iavf_setup_tc_block_cb - block callback for tc
3925 * @type: type of offload
3926 * @type_data: offload data
3927 * @cb_priv:
3928 *
3929 * This function is the block callback for traffic classes
3930 **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3931 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3932 void *cb_priv)
3933 {
3934 struct iavf_adapter *adapter = cb_priv;
3935
3936 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3937 return -EOPNOTSUPP;
3938
3939 switch (type) {
3940 case TC_SETUP_CLSFLOWER:
3941 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3942 default:
3943 return -EOPNOTSUPP;
3944 }
3945 }
3946
3947 static LIST_HEAD(iavf_block_cb_list);
3948
3949 /**
3950 * iavf_setup_tc - configure multiple traffic classes
3951 * @netdev: network interface device structure
3952 * @type: type of offload
3953 * @type_data: tc offload data
3954 *
3955 * This function is the callback to ndo_setup_tc in the
3956 * netdev_ops.
3957 *
3958 * Returns 0 on success
3959 **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)3960 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3961 void *type_data)
3962 {
3963 struct iavf_adapter *adapter = netdev_priv(netdev);
3964
3965 switch (type) {
3966 case TC_SETUP_QDISC_MQPRIO:
3967 return __iavf_setup_tc(netdev, type_data);
3968 case TC_SETUP_BLOCK:
3969 return flow_block_cb_setup_simple(type_data,
3970 &iavf_block_cb_list,
3971 iavf_setup_tc_block_cb,
3972 adapter, adapter, true);
3973 default:
3974 return -EOPNOTSUPP;
3975 }
3976 }
3977
3978 /**
3979 * iavf_open - Called when a network interface is made active
3980 * @netdev: network interface device structure
3981 *
3982 * Returns 0 on success, negative value on failure
3983 *
3984 * The open entry point is called when a network interface is made
3985 * active by the system (IFF_UP). At this point all resources needed
3986 * for transmit and receive operations are allocated, the interrupt
3987 * handler is registered with the OS, the watchdog is started,
3988 * and the stack is notified that the interface is ready.
3989 **/
iavf_open(struct net_device * netdev)3990 static int iavf_open(struct net_device *netdev)
3991 {
3992 struct iavf_adapter *adapter = netdev_priv(netdev);
3993 int err;
3994
3995 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3996 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3997 return -EIO;
3998 }
3999
4000 while (!mutex_trylock(&adapter->crit_lock)) {
4001 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4002 * is already taken and iavf_open is called from an upper
4003 * device's notifier reacting on NETDEV_REGISTER event.
4004 * We have to leave here to avoid dead lock.
4005 */
4006 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4007 return -EBUSY;
4008
4009 usleep_range(500, 1000);
4010 }
4011
4012 if (adapter->state != __IAVF_DOWN) {
4013 err = -EBUSY;
4014 goto err_unlock;
4015 }
4016
4017 if (adapter->state == __IAVF_RUNNING &&
4018 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4019 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4020 err = 0;
4021 goto err_unlock;
4022 }
4023
4024 /* allocate transmit descriptors */
4025 err = iavf_setup_all_tx_resources(adapter);
4026 if (err)
4027 goto err_setup_tx;
4028
4029 /* allocate receive descriptors */
4030 err = iavf_setup_all_rx_resources(adapter);
4031 if (err)
4032 goto err_setup_rx;
4033
4034 /* clear any pending interrupts, may auto mask */
4035 err = iavf_request_traffic_irqs(adapter, netdev->name);
4036 if (err)
4037 goto err_req_irq;
4038
4039 spin_lock_bh(&adapter->mac_vlan_list_lock);
4040
4041 iavf_add_filter(adapter, adapter->hw.mac.addr);
4042
4043 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4044
4045 /* Restore VLAN filters that were removed with IFF_DOWN */
4046 iavf_restore_filters(adapter);
4047
4048 iavf_configure(adapter);
4049
4050 iavf_up_complete(adapter);
4051
4052 iavf_irq_enable(adapter, true);
4053
4054 mutex_unlock(&adapter->crit_lock);
4055
4056 return 0;
4057
4058 err_req_irq:
4059 iavf_down(adapter);
4060 iavf_free_traffic_irqs(adapter);
4061 err_setup_rx:
4062 iavf_free_all_rx_resources(adapter);
4063 err_setup_tx:
4064 iavf_free_all_tx_resources(adapter);
4065 err_unlock:
4066 mutex_unlock(&adapter->crit_lock);
4067
4068 return err;
4069 }
4070
4071 /**
4072 * iavf_close - Disables a network interface
4073 * @netdev: network interface device structure
4074 *
4075 * Returns 0, this is not allowed to fail
4076 *
4077 * The close entry point is called when an interface is de-activated
4078 * by the OS. The hardware is still under the drivers control, but
4079 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4080 * are freed, along with all transmit and receive resources.
4081 **/
iavf_close(struct net_device * netdev)4082 static int iavf_close(struct net_device *netdev)
4083 {
4084 struct iavf_adapter *adapter = netdev_priv(netdev);
4085 int status;
4086
4087 mutex_lock(&adapter->crit_lock);
4088
4089 if (adapter->state <= __IAVF_DOWN_PENDING) {
4090 mutex_unlock(&adapter->crit_lock);
4091 return 0;
4092 }
4093
4094 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4095 if (CLIENT_ENABLED(adapter))
4096 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
4097
4098 iavf_down(adapter);
4099 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4100 iavf_free_traffic_irqs(adapter);
4101
4102 mutex_unlock(&adapter->crit_lock);
4103
4104 /* We explicitly don't free resources here because the hardware is
4105 * still active and can DMA into memory. Resources are cleared in
4106 * iavf_virtchnl_completion() after we get confirmation from the PF
4107 * driver that the rings have been stopped.
4108 *
4109 * Also, we wait for state to transition to __IAVF_DOWN before
4110 * returning. State change occurs in iavf_virtchnl_completion() after
4111 * VF resources are released (which occurs after PF driver processes and
4112 * responds to admin queue commands).
4113 */
4114
4115 status = wait_event_timeout(adapter->down_waitqueue,
4116 adapter->state == __IAVF_DOWN,
4117 msecs_to_jiffies(500));
4118 if (!status)
4119 netdev_warn(netdev, "Device resources not yet released\n");
4120 return 0;
4121 }
4122
4123 /**
4124 * iavf_change_mtu - Change the Maximum Transfer Unit
4125 * @netdev: network interface device structure
4126 * @new_mtu: new value for maximum frame size
4127 *
4128 * Returns 0 on success, negative on failure
4129 **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)4130 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4131 {
4132 struct iavf_adapter *adapter = netdev_priv(netdev);
4133
4134 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4135 netdev->mtu, new_mtu);
4136 netdev->mtu = new_mtu;
4137 if (CLIENT_ENABLED(adapter)) {
4138 iavf_notify_client_l2_params(&adapter->vsi);
4139 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
4140 }
4141
4142 if (netif_running(netdev)) {
4143 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
4144 queue_work(iavf_wq, &adapter->reset_task);
4145 }
4146
4147 return 0;
4148 }
4149
4150 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4151 NETIF_F_HW_VLAN_CTAG_TX | \
4152 NETIF_F_HW_VLAN_STAG_RX | \
4153 NETIF_F_HW_VLAN_STAG_TX)
4154
4155 /**
4156 * iavf_set_features - set the netdev feature flags
4157 * @netdev: ptr to the netdev being adjusted
4158 * @features: the feature set that the stack is suggesting
4159 * Note: expects to be called while under rtnl_lock()
4160 **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)4161 static int iavf_set_features(struct net_device *netdev,
4162 netdev_features_t features)
4163 {
4164 struct iavf_adapter *adapter = netdev_priv(netdev);
4165
4166 /* trigger update on any VLAN feature change */
4167 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4168 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4169 iavf_set_vlan_offload_features(adapter, netdev->features,
4170 features);
4171
4172 return 0;
4173 }
4174
4175 /**
4176 * iavf_features_check - Validate encapsulated packet conforms to limits
4177 * @skb: skb buff
4178 * @dev: This physical port's netdev
4179 * @features: Offload features that the stack believes apply
4180 **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)4181 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4182 struct net_device *dev,
4183 netdev_features_t features)
4184 {
4185 size_t len;
4186
4187 /* No point in doing any of this if neither checksum nor GSO are
4188 * being requested for this frame. We can rule out both by just
4189 * checking for CHECKSUM_PARTIAL
4190 */
4191 if (skb->ip_summed != CHECKSUM_PARTIAL)
4192 return features;
4193
4194 /* We cannot support GSO if the MSS is going to be less than
4195 * 64 bytes. If it is then we need to drop support for GSO.
4196 */
4197 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4198 features &= ~NETIF_F_GSO_MASK;
4199
4200 /* MACLEN can support at most 63 words */
4201 len = skb_network_header(skb) - skb->data;
4202 if (len & ~(63 * 2))
4203 goto out_err;
4204
4205 /* IPLEN and EIPLEN can support at most 127 dwords */
4206 len = skb_transport_header(skb) - skb_network_header(skb);
4207 if (len & ~(127 * 4))
4208 goto out_err;
4209
4210 if (skb->encapsulation) {
4211 /* L4TUNLEN can support 127 words */
4212 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4213 if (len & ~(127 * 2))
4214 goto out_err;
4215
4216 /* IPLEN can support at most 127 dwords */
4217 len = skb_inner_transport_header(skb) -
4218 skb_inner_network_header(skb);
4219 if (len & ~(127 * 4))
4220 goto out_err;
4221 }
4222
4223 /* No need to validate L4LEN as TCP is the only protocol with a
4224 * a flexible value and we support all possible values supported
4225 * by TCP, which is at most 15 dwords
4226 */
4227
4228 return features;
4229 out_err:
4230 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4231 }
4232
4233 /**
4234 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4235 * @adapter: board private structure
4236 *
4237 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4238 * were negotiated determine the VLAN features that can be toggled on and off.
4239 **/
4240 static netdev_features_t
iavf_get_netdev_vlan_hw_features(struct iavf_adapter * adapter)4241 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4242 {
4243 netdev_features_t hw_features = 0;
4244
4245 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4246 return hw_features;
4247
4248 /* Enable VLAN features if supported */
4249 if (VLAN_ALLOWED(adapter)) {
4250 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4251 NETIF_F_HW_VLAN_CTAG_RX);
4252 } else if (VLAN_V2_ALLOWED(adapter)) {
4253 struct virtchnl_vlan_caps *vlan_v2_caps =
4254 &adapter->vlan_v2_caps;
4255 struct virtchnl_vlan_supported_caps *stripping_support =
4256 &vlan_v2_caps->offloads.stripping_support;
4257 struct virtchnl_vlan_supported_caps *insertion_support =
4258 &vlan_v2_caps->offloads.insertion_support;
4259
4260 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4261 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4262 if (stripping_support->outer &
4263 VIRTCHNL_VLAN_ETHERTYPE_8100)
4264 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4265 if (stripping_support->outer &
4266 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4267 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4268 } else if (stripping_support->inner !=
4269 VIRTCHNL_VLAN_UNSUPPORTED &&
4270 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4271 if (stripping_support->inner &
4272 VIRTCHNL_VLAN_ETHERTYPE_8100)
4273 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4274 }
4275
4276 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4277 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4278 if (insertion_support->outer &
4279 VIRTCHNL_VLAN_ETHERTYPE_8100)
4280 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4281 if (insertion_support->outer &
4282 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4283 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4284 } else if (insertion_support->inner &&
4285 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4286 if (insertion_support->inner &
4287 VIRTCHNL_VLAN_ETHERTYPE_8100)
4288 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4289 }
4290 }
4291
4292 return hw_features;
4293 }
4294
4295 /**
4296 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4297 * @adapter: board private structure
4298 *
4299 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4300 * were negotiated determine the VLAN features that are enabled by default.
4301 **/
4302 static netdev_features_t
iavf_get_netdev_vlan_features(struct iavf_adapter * adapter)4303 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4304 {
4305 netdev_features_t features = 0;
4306
4307 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4308 return features;
4309
4310 if (VLAN_ALLOWED(adapter)) {
4311 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4312 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4313 } else if (VLAN_V2_ALLOWED(adapter)) {
4314 struct virtchnl_vlan_caps *vlan_v2_caps =
4315 &adapter->vlan_v2_caps;
4316 struct virtchnl_vlan_supported_caps *filtering_support =
4317 &vlan_v2_caps->filtering.filtering_support;
4318 struct virtchnl_vlan_supported_caps *stripping_support =
4319 &vlan_v2_caps->offloads.stripping_support;
4320 struct virtchnl_vlan_supported_caps *insertion_support =
4321 &vlan_v2_caps->offloads.insertion_support;
4322 u32 ethertype_init;
4323
4324 /* give priority to outer stripping and don't support both outer
4325 * and inner stripping
4326 */
4327 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4328 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4329 if (stripping_support->outer &
4330 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4331 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4332 features |= NETIF_F_HW_VLAN_CTAG_RX;
4333 else if (stripping_support->outer &
4334 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4335 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4336 features |= NETIF_F_HW_VLAN_STAG_RX;
4337 } else if (stripping_support->inner !=
4338 VIRTCHNL_VLAN_UNSUPPORTED) {
4339 if (stripping_support->inner &
4340 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4341 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4342 features |= NETIF_F_HW_VLAN_CTAG_RX;
4343 }
4344
4345 /* give priority to outer insertion and don't support both outer
4346 * and inner insertion
4347 */
4348 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4349 if (insertion_support->outer &
4350 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4351 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4352 features |= NETIF_F_HW_VLAN_CTAG_TX;
4353 else if (insertion_support->outer &
4354 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4355 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4356 features |= NETIF_F_HW_VLAN_STAG_TX;
4357 } else if (insertion_support->inner !=
4358 VIRTCHNL_VLAN_UNSUPPORTED) {
4359 if (insertion_support->inner &
4360 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4361 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4362 features |= NETIF_F_HW_VLAN_CTAG_TX;
4363 }
4364
4365 /* give priority to outer filtering and don't bother if both
4366 * outer and inner filtering are enabled
4367 */
4368 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4369 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4370 if (filtering_support->outer &
4371 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4372 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4373 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4374 if (filtering_support->outer &
4375 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4376 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4377 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4378 } else if (filtering_support->inner !=
4379 VIRTCHNL_VLAN_UNSUPPORTED) {
4380 if (filtering_support->inner &
4381 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4382 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4383 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4384 if (filtering_support->inner &
4385 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4386 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4387 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4388 }
4389 }
4390
4391 return features;
4392 }
4393
4394 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4395 (!(((requested) & (feature_bit)) && \
4396 !((allowed) & (feature_bit))))
4397
4398 /**
4399 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4400 * @adapter: board private structure
4401 * @requested_features: stack requested NETDEV features
4402 **/
4403 static netdev_features_t
iavf_fix_netdev_vlan_features(struct iavf_adapter * adapter,netdev_features_t requested_features)4404 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4405 netdev_features_t requested_features)
4406 {
4407 netdev_features_t allowed_features;
4408
4409 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4410 iavf_get_netdev_vlan_features(adapter);
4411
4412 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4413 allowed_features,
4414 NETIF_F_HW_VLAN_CTAG_TX))
4415 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4416
4417 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4418 allowed_features,
4419 NETIF_F_HW_VLAN_CTAG_RX))
4420 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4421
4422 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4423 allowed_features,
4424 NETIF_F_HW_VLAN_STAG_TX))
4425 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4426 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4427 allowed_features,
4428 NETIF_F_HW_VLAN_STAG_RX))
4429 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4430
4431 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4432 allowed_features,
4433 NETIF_F_HW_VLAN_CTAG_FILTER))
4434 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4435
4436 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4437 allowed_features,
4438 NETIF_F_HW_VLAN_STAG_FILTER))
4439 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4440
4441 if ((requested_features &
4442 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4443 (requested_features &
4444 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4445 adapter->vlan_v2_caps.offloads.ethertype_match ==
4446 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4447 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4448 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4449 NETIF_F_HW_VLAN_STAG_TX);
4450 }
4451
4452 return requested_features;
4453 }
4454
4455 /**
4456 * iavf_fix_features - fix up the netdev feature bits
4457 * @netdev: our net device
4458 * @features: desired feature bits
4459 *
4460 * Returns fixed-up features bits
4461 **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)4462 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4463 netdev_features_t features)
4464 {
4465 struct iavf_adapter *adapter = netdev_priv(netdev);
4466
4467 return iavf_fix_netdev_vlan_features(adapter, features);
4468 }
4469
4470 static const struct net_device_ops iavf_netdev_ops = {
4471 .ndo_open = iavf_open,
4472 .ndo_stop = iavf_close,
4473 .ndo_start_xmit = iavf_xmit_frame,
4474 .ndo_set_rx_mode = iavf_set_rx_mode,
4475 .ndo_validate_addr = eth_validate_addr,
4476 .ndo_set_mac_address = iavf_set_mac,
4477 .ndo_change_mtu = iavf_change_mtu,
4478 .ndo_tx_timeout = iavf_tx_timeout,
4479 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
4480 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
4481 .ndo_features_check = iavf_features_check,
4482 .ndo_fix_features = iavf_fix_features,
4483 .ndo_set_features = iavf_set_features,
4484 .ndo_setup_tc = iavf_setup_tc,
4485 };
4486
4487 /**
4488 * iavf_check_reset_complete - check that VF reset is complete
4489 * @hw: pointer to hw struct
4490 *
4491 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4492 **/
iavf_check_reset_complete(struct iavf_hw * hw)4493 static int iavf_check_reset_complete(struct iavf_hw *hw)
4494 {
4495 u32 rstat;
4496 int i;
4497
4498 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4499 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4500 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4501 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4502 (rstat == VIRTCHNL_VFR_COMPLETED))
4503 return 0;
4504 usleep_range(10, 20);
4505 }
4506 return -EBUSY;
4507 }
4508
4509 /**
4510 * iavf_process_config - Process the config information we got from the PF
4511 * @adapter: board private structure
4512 *
4513 * Verify that we have a valid config struct, and set up our netdev features
4514 * and our VSI struct.
4515 **/
iavf_process_config(struct iavf_adapter * adapter)4516 int iavf_process_config(struct iavf_adapter *adapter)
4517 {
4518 struct virtchnl_vf_resource *vfres = adapter->vf_res;
4519 netdev_features_t hw_vlan_features, vlan_features;
4520 struct net_device *netdev = adapter->netdev;
4521 netdev_features_t hw_enc_features;
4522 netdev_features_t hw_features;
4523
4524 hw_enc_features = NETIF_F_SG |
4525 NETIF_F_IP_CSUM |
4526 NETIF_F_IPV6_CSUM |
4527 NETIF_F_HIGHDMA |
4528 NETIF_F_SOFT_FEATURES |
4529 NETIF_F_TSO |
4530 NETIF_F_TSO_ECN |
4531 NETIF_F_TSO6 |
4532 NETIF_F_SCTP_CRC |
4533 NETIF_F_RXHASH |
4534 NETIF_F_RXCSUM |
4535 0;
4536
4537 /* advertise to stack only if offloads for encapsulated packets is
4538 * supported
4539 */
4540 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4541 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
4542 NETIF_F_GSO_GRE |
4543 NETIF_F_GSO_GRE_CSUM |
4544 NETIF_F_GSO_IPXIP4 |
4545 NETIF_F_GSO_IPXIP6 |
4546 NETIF_F_GSO_UDP_TUNNEL_CSUM |
4547 NETIF_F_GSO_PARTIAL |
4548 0;
4549
4550 if (!(vfres->vf_cap_flags &
4551 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4552 netdev->gso_partial_features |=
4553 NETIF_F_GSO_UDP_TUNNEL_CSUM;
4554
4555 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4556 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4557 netdev->hw_enc_features |= hw_enc_features;
4558 }
4559 /* record features VLANs can make use of */
4560 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4561
4562 /* Write features and hw_features separately to avoid polluting
4563 * with, or dropping, features that are set when we registered.
4564 */
4565 hw_features = hw_enc_features;
4566
4567 /* get HW VLAN features that can be toggled */
4568 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4569
4570 /* Enable cloud filter if ADQ is supported */
4571 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4572 hw_features |= NETIF_F_HW_TC;
4573 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4574 hw_features |= NETIF_F_GSO_UDP_L4;
4575
4576 netdev->hw_features |= hw_features | hw_vlan_features;
4577 vlan_features = iavf_get_netdev_vlan_features(adapter);
4578
4579 netdev->features |= hw_features | vlan_features;
4580
4581 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4582 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4583
4584 netdev->priv_flags |= IFF_UNICAST_FLT;
4585
4586 /* Do not turn on offloads when they are requested to be turned off.
4587 * TSO needs minimum 576 bytes to work correctly.
4588 */
4589 if (netdev->wanted_features) {
4590 if (!(netdev->wanted_features & NETIF_F_TSO) ||
4591 netdev->mtu < 576)
4592 netdev->features &= ~NETIF_F_TSO;
4593 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4594 netdev->mtu < 576)
4595 netdev->features &= ~NETIF_F_TSO6;
4596 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4597 netdev->features &= ~NETIF_F_TSO_ECN;
4598 if (!(netdev->wanted_features & NETIF_F_GRO))
4599 netdev->features &= ~NETIF_F_GRO;
4600 if (!(netdev->wanted_features & NETIF_F_GSO))
4601 netdev->features &= ~NETIF_F_GSO;
4602 }
4603
4604 return 0;
4605 }
4606
4607 /**
4608 * iavf_shutdown - Shutdown the device in preparation for a reboot
4609 * @pdev: pci device structure
4610 **/
iavf_shutdown(struct pci_dev * pdev)4611 static void iavf_shutdown(struct pci_dev *pdev)
4612 {
4613 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4614 struct net_device *netdev = adapter->netdev;
4615
4616 netif_device_detach(netdev);
4617
4618 if (netif_running(netdev))
4619 iavf_close(netdev);
4620
4621 if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4622 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
4623 /* Prevent the watchdog from running. */
4624 iavf_change_state(adapter, __IAVF_REMOVE);
4625 adapter->aq_required = 0;
4626 mutex_unlock(&adapter->crit_lock);
4627
4628 #ifdef CONFIG_PM
4629 pci_save_state(pdev);
4630
4631 #endif
4632 pci_disable_device(pdev);
4633 }
4634
4635 /**
4636 * iavf_probe - Device Initialization Routine
4637 * @pdev: PCI device information struct
4638 * @ent: entry in iavf_pci_tbl
4639 *
4640 * Returns 0 on success, negative on failure
4641 *
4642 * iavf_probe initializes an adapter identified by a pci_dev structure.
4643 * The OS initialization, configuring of the adapter private structure,
4644 * and a hardware reset occur.
4645 **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)4646 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4647 {
4648 struct net_device *netdev;
4649 struct iavf_adapter *adapter = NULL;
4650 struct iavf_hw *hw = NULL;
4651 int err;
4652
4653 err = pci_enable_device(pdev);
4654 if (err)
4655 return err;
4656
4657 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4658 if (err) {
4659 dev_err(&pdev->dev,
4660 "DMA configuration failed: 0x%x\n", err);
4661 goto err_dma;
4662 }
4663
4664 err = pci_request_regions(pdev, iavf_driver_name);
4665 if (err) {
4666 dev_err(&pdev->dev,
4667 "pci_request_regions failed 0x%x\n", err);
4668 goto err_pci_reg;
4669 }
4670
4671 pci_enable_pcie_error_reporting(pdev);
4672
4673 pci_set_master(pdev);
4674
4675 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4676 IAVF_MAX_REQ_QUEUES);
4677 if (!netdev) {
4678 err = -ENOMEM;
4679 goto err_alloc_etherdev;
4680 }
4681
4682 SET_NETDEV_DEV(netdev, &pdev->dev);
4683
4684 pci_set_drvdata(pdev, netdev);
4685 adapter = netdev_priv(netdev);
4686
4687 adapter->netdev = netdev;
4688 adapter->pdev = pdev;
4689
4690 hw = &adapter->hw;
4691 hw->back = adapter;
4692
4693 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4694 iavf_change_state(adapter, __IAVF_STARTUP);
4695
4696 /* Call save state here because it relies on the adapter struct. */
4697 pci_save_state(pdev);
4698
4699 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4700 pci_resource_len(pdev, 0));
4701 if (!hw->hw_addr) {
4702 err = -EIO;
4703 goto err_ioremap;
4704 }
4705 hw->vendor_id = pdev->vendor;
4706 hw->device_id = pdev->device;
4707 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4708 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4709 hw->subsystem_device_id = pdev->subsystem_device;
4710 hw->bus.device = PCI_SLOT(pdev->devfn);
4711 hw->bus.func = PCI_FUNC(pdev->devfn);
4712 hw->bus.bus_id = pdev->bus->number;
4713
4714 /* set up the locks for the AQ, do this only once in probe
4715 * and destroy them only once in remove
4716 */
4717 mutex_init(&adapter->crit_lock);
4718 mutex_init(&adapter->client_lock);
4719 mutex_init(&hw->aq.asq_mutex);
4720 mutex_init(&hw->aq.arq_mutex);
4721
4722 spin_lock_init(&adapter->mac_vlan_list_lock);
4723 spin_lock_init(&adapter->cloud_filter_list_lock);
4724 spin_lock_init(&adapter->fdir_fltr_lock);
4725 spin_lock_init(&adapter->adv_rss_lock);
4726
4727 INIT_LIST_HEAD(&adapter->mac_filter_list);
4728 INIT_LIST_HEAD(&adapter->vlan_filter_list);
4729 INIT_LIST_HEAD(&adapter->cloud_filter_list);
4730 INIT_LIST_HEAD(&adapter->fdir_list_head);
4731 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4732
4733 INIT_WORK(&adapter->reset_task, iavf_reset_task);
4734 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4735 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4736 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4737 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
4738 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4739
4740 /* Setup the wait queue for indicating transition to down status */
4741 init_waitqueue_head(&adapter->down_waitqueue);
4742
4743 return 0;
4744
4745 err_ioremap:
4746 free_netdev(netdev);
4747 err_alloc_etherdev:
4748 pci_disable_pcie_error_reporting(pdev);
4749 pci_release_regions(pdev);
4750 err_pci_reg:
4751 err_dma:
4752 pci_disable_device(pdev);
4753 return err;
4754 }
4755
4756 /**
4757 * iavf_suspend - Power management suspend routine
4758 * @dev_d: device info pointer
4759 *
4760 * Called when the system (VM) is entering sleep/suspend.
4761 **/
iavf_suspend(struct device * dev_d)4762 static int __maybe_unused iavf_suspend(struct device *dev_d)
4763 {
4764 struct net_device *netdev = dev_get_drvdata(dev_d);
4765 struct iavf_adapter *adapter = netdev_priv(netdev);
4766
4767 netif_device_detach(netdev);
4768
4769 while (!mutex_trylock(&adapter->crit_lock))
4770 usleep_range(500, 1000);
4771
4772 if (netif_running(netdev)) {
4773 rtnl_lock();
4774 iavf_down(adapter);
4775 rtnl_unlock();
4776 }
4777 iavf_free_misc_irq(adapter);
4778 iavf_reset_interrupt_capability(adapter);
4779
4780 mutex_unlock(&adapter->crit_lock);
4781
4782 return 0;
4783 }
4784
4785 /**
4786 * iavf_resume - Power management resume routine
4787 * @dev_d: device info pointer
4788 *
4789 * Called when the system (VM) is resumed from sleep/suspend.
4790 **/
iavf_resume(struct device * dev_d)4791 static int __maybe_unused iavf_resume(struct device *dev_d)
4792 {
4793 struct pci_dev *pdev = to_pci_dev(dev_d);
4794 struct iavf_adapter *adapter;
4795 u32 err;
4796
4797 adapter = iavf_pdev_to_adapter(pdev);
4798
4799 pci_set_master(pdev);
4800
4801 rtnl_lock();
4802 err = iavf_set_interrupt_capability(adapter);
4803 if (err) {
4804 rtnl_unlock();
4805 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
4806 return err;
4807 }
4808 err = iavf_request_misc_irq(adapter);
4809 rtnl_unlock();
4810 if (err) {
4811 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
4812 return err;
4813 }
4814
4815 queue_work(iavf_wq, &adapter->reset_task);
4816
4817 netif_device_attach(adapter->netdev);
4818
4819 return err;
4820 }
4821
4822 /**
4823 * iavf_remove - Device Removal Routine
4824 * @pdev: PCI device information struct
4825 *
4826 * iavf_remove is called by the PCI subsystem to alert the driver
4827 * that it should release a PCI device. The could be caused by a
4828 * Hot-Plug event, or because the driver is going to be removed from
4829 * memory.
4830 **/
iavf_remove(struct pci_dev * pdev)4831 static void iavf_remove(struct pci_dev *pdev)
4832 {
4833 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4834 struct net_device *netdev = adapter->netdev;
4835 struct iavf_fdir_fltr *fdir, *fdirtmp;
4836 struct iavf_vlan_filter *vlf, *vlftmp;
4837 struct iavf_adv_rss *rss, *rsstmp;
4838 struct iavf_mac_filter *f, *ftmp;
4839 struct iavf_cloud_filter *cf, *cftmp;
4840 struct iavf_hw *hw = &adapter->hw;
4841 int err;
4842
4843 /* When reboot/shutdown is in progress no need to do anything
4844 * as the adapter is already REMOVE state that was set during
4845 * iavf_shutdown() callback.
4846 */
4847 if (adapter->state == __IAVF_REMOVE)
4848 return;
4849
4850 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
4851 /* Wait until port initialization is complete.
4852 * There are flows where register/unregister netdev may race.
4853 */
4854 while (1) {
4855 mutex_lock(&adapter->crit_lock);
4856 if (adapter->state == __IAVF_RUNNING ||
4857 adapter->state == __IAVF_DOWN ||
4858 adapter->state == __IAVF_INIT_FAILED) {
4859 mutex_unlock(&adapter->crit_lock);
4860 break;
4861 }
4862
4863 mutex_unlock(&adapter->crit_lock);
4864 usleep_range(500, 1000);
4865 }
4866 cancel_delayed_work_sync(&adapter->watchdog_task);
4867
4868 if (adapter->netdev_registered) {
4869 rtnl_lock();
4870 unregister_netdevice(netdev);
4871 adapter->netdev_registered = false;
4872 rtnl_unlock();
4873 }
4874 if (CLIENT_ALLOWED(adapter)) {
4875 err = iavf_lan_del_device(adapter);
4876 if (err)
4877 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
4878 err);
4879 }
4880
4881 mutex_lock(&adapter->crit_lock);
4882 dev_info(&adapter->pdev->dev, "Remove device\n");
4883 iavf_change_state(adapter, __IAVF_REMOVE);
4884
4885 iavf_request_reset(adapter);
4886 msleep(50);
4887 /* If the FW isn't responding, kick it once, but only once. */
4888 if (!iavf_asq_done(hw)) {
4889 iavf_request_reset(adapter);
4890 msleep(50);
4891 }
4892
4893 iavf_misc_irq_disable(adapter);
4894 /* Shut down all the garbage mashers on the detention level */
4895 cancel_work_sync(&adapter->reset_task);
4896 cancel_delayed_work_sync(&adapter->watchdog_task);
4897 cancel_work_sync(&adapter->adminq_task);
4898 cancel_delayed_work_sync(&adapter->client_task);
4899
4900 adapter->aq_required = 0;
4901 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
4902
4903 iavf_free_all_tx_resources(adapter);
4904 iavf_free_all_rx_resources(adapter);
4905 iavf_free_misc_irq(adapter);
4906
4907 iavf_reset_interrupt_capability(adapter);
4908 iavf_free_q_vectors(adapter);
4909
4910 iavf_free_rss(adapter);
4911
4912 if (hw->aq.asq.count)
4913 iavf_shutdown_adminq(hw);
4914
4915 /* destroy the locks only once, here */
4916 mutex_destroy(&hw->aq.arq_mutex);
4917 mutex_destroy(&hw->aq.asq_mutex);
4918 mutex_destroy(&adapter->client_lock);
4919 mutex_unlock(&adapter->crit_lock);
4920 mutex_destroy(&adapter->crit_lock);
4921
4922 iounmap(hw->hw_addr);
4923 pci_release_regions(pdev);
4924 iavf_free_queues(adapter);
4925 kfree(adapter->vf_res);
4926 spin_lock_bh(&adapter->mac_vlan_list_lock);
4927 /* If we got removed before an up/down sequence, we've got a filter
4928 * hanging out there that we need to get rid of.
4929 */
4930 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
4931 list_del(&f->list);
4932 kfree(f);
4933 }
4934 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
4935 list) {
4936 list_del(&vlf->list);
4937 kfree(vlf);
4938 }
4939
4940 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4941
4942 spin_lock_bh(&adapter->cloud_filter_list_lock);
4943 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4944 list_del(&cf->list);
4945 kfree(cf);
4946 }
4947 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4948
4949 spin_lock_bh(&adapter->fdir_fltr_lock);
4950 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4951 list_del(&fdir->list);
4952 kfree(fdir);
4953 }
4954 spin_unlock_bh(&adapter->fdir_fltr_lock);
4955
4956 spin_lock_bh(&adapter->adv_rss_lock);
4957 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4958 list) {
4959 list_del(&rss->list);
4960 kfree(rss);
4961 }
4962 spin_unlock_bh(&adapter->adv_rss_lock);
4963
4964 free_netdev(netdev);
4965
4966 pci_disable_pcie_error_reporting(pdev);
4967
4968 pci_disable_device(pdev);
4969 }
4970
4971 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4972
4973 static struct pci_driver iavf_driver = {
4974 .name = iavf_driver_name,
4975 .id_table = iavf_pci_tbl,
4976 .probe = iavf_probe,
4977 .remove = iavf_remove,
4978 .driver.pm = &iavf_pm_ops,
4979 .shutdown = iavf_shutdown,
4980 };
4981
4982 /**
4983 * iavf_init_module - Driver Registration Routine
4984 *
4985 * iavf_init_module is the first routine called when the driver is
4986 * loaded. All it does is register with the PCI subsystem.
4987 **/
iavf_init_module(void)4988 static int __init iavf_init_module(void)
4989 {
4990 pr_info("iavf: %s\n", iavf_driver_string);
4991
4992 pr_info("%s\n", iavf_copyright);
4993
4994 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4995 iavf_driver_name);
4996 if (!iavf_wq) {
4997 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4998 return -ENOMEM;
4999 }
5000 return pci_register_driver(&iavf_driver);
5001 }
5002
5003 module_init(iavf_init_module);
5004
5005 /**
5006 * iavf_exit_module - Driver Exit Cleanup Routine
5007 *
5008 * iavf_exit_module is called just before the driver is removed
5009 * from memory.
5010 **/
iavf_exit_module(void)5011 static void __exit iavf_exit_module(void)
5012 {
5013 pci_unregister_driver(&iavf_driver);
5014 destroy_workqueue(iavf_wq);
5015 }
5016
5017 module_exit(iavf_exit_module);
5018
5019 /* iavf_main.c */
5020