1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Support for Intel Camera Imaging ISP subsystem.
4 * Copyright (c) 2015, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16 #include <linux/slab.h>
17
18 #include <math_support.h>
19 #include "sh_css_param_shading.h"
20 #include "ia_css_shading.h"
21 #include "assert_support.h"
22 #include "sh_css_defs.h"
23 #include "sh_css_internal.h"
24 #include "ia_css_debug.h"
25 #include "ia_css_pipe_binarydesc.h"
26
27 #include "sh_css_hrt.h"
28
29 #include "platform_support.h"
30
31 /* Bilinear interpolation on shading tables:
32 * For each target point T, we calculate the 4 surrounding source points:
33 * ul (upper left), ur (upper right), ll (lower left) and lr (lower right).
34 * We then calculate the distances from the T to the source points: x0, x1,
35 * y0 and y1.
36 * We then calculate the value of T:
37 * dx0*dy0*Slr + dx0*dy1*Sur + dx1*dy0*Sll + dx1*dy1*Sul.
38 * We choose a grid size of 1x1 which means:
39 * dx1 = 1-dx0
40 * dy1 = 1-dy0
41 *
42 * Sul dx0 dx1 Sur
43 * .<----->|<------------->.
44 * ^
45 * dy0|
46 * v T
47 * - .
48 * ^
49 * |
50 * dy1|
51 * v
52 * . .
53 * Sll Slr
54 *
55 * Padding:
56 * The area that the ISP operates on can include padding both on the left
57 * and the right. We need to padd the shading table such that the shading
58 * values end up on the correct pixel values. This means we must padd the
59 * shading table to match the ISP padding.
60 * We can have 5 cases:
61 * 1. All 4 points fall in the left padding.
62 * 2. The left 2 points fall in the left padding.
63 * 3. All 4 points fall in the cropped (target) region.
64 * 4. The right 2 points fall in the right padding.
65 * 5. All 4 points fall in the right padding.
66 * Cases 1 and 5 are easy to handle: we simply use the
67 * value 1 in the shading table.
68 * Cases 2 and 4 require interpolation that takes into
69 * account how far into the padding area the pixels
70 * fall. We extrapolate the shading table into the
71 * padded area and then interpolate.
72 */
73 static void
crop_and_interpolate(unsigned int cropped_width,unsigned int cropped_height,unsigned int left_padding,int right_padding,int top_padding,const struct ia_css_shading_table * in_table,struct ia_css_shading_table * out_table,enum ia_css_sc_color color)74 crop_and_interpolate(unsigned int cropped_width,
75 unsigned int cropped_height,
76 unsigned int left_padding,
77 int right_padding,
78 int top_padding,
79 const struct ia_css_shading_table *in_table,
80 struct ia_css_shading_table *out_table,
81 enum ia_css_sc_color color)
82 {
83 unsigned int i, j,
84 sensor_width,
85 sensor_height,
86 table_width,
87 table_height,
88 table_cell_h,
89 out_cell_size,
90 in_cell_size,
91 out_start_row,
92 padded_width;
93 int out_start_col, /* can be negative to indicate padded space */
94 table_cell_w;
95 unsigned short *in_ptr,
96 *out_ptr;
97
98 assert(in_table);
99 assert(out_table);
100
101 sensor_width = in_table->sensor_width;
102 sensor_height = in_table->sensor_height;
103 table_width = in_table->width;
104 table_height = in_table->height;
105 in_ptr = in_table->data[color];
106 out_ptr = out_table->data[color];
107
108 padded_width = cropped_width + left_padding + right_padding;
109 out_cell_size = CEIL_DIV(padded_width, out_table->width - 1);
110 in_cell_size = CEIL_DIV(sensor_width, table_width - 1);
111
112 out_start_col = ((int)sensor_width - (int)cropped_width) / 2 - left_padding;
113 out_start_row = ((int)sensor_height - (int)cropped_height) / 2 - top_padding;
114 table_cell_w = (int)((table_width - 1) * in_cell_size);
115 table_cell_h = (table_height - 1) * in_cell_size;
116
117 for (i = 0; i < out_table->height; i++) {
118 int ty, src_y0, src_y1;
119 unsigned int sy0, sy1, dy0, dy1, divy;
120
121 /*
122 * calculate target point and make sure it falls within
123 * the table
124 */
125 ty = out_start_row + i * out_cell_size;
126
127 /* calculate closest source points in shading table and
128 make sure they fall within the table */
129 src_y0 = ty / (int)in_cell_size;
130 if (in_cell_size < out_cell_size)
131 src_y1 = (ty + out_cell_size) / in_cell_size;
132 else
133 src_y1 = src_y0 + 1;
134 src_y0 = clamp(src_y0, 0, (int)table_height - 1);
135 src_y1 = clamp(src_y1, 0, (int)table_height - 1);
136 ty = min(clamp(ty, 0, (int)sensor_height - 1),
137 (int)table_cell_h);
138
139 /* calculate closest source points for distance computation */
140 sy0 = min(src_y0 * in_cell_size, sensor_height - 1);
141 sy1 = min(src_y1 * in_cell_size, sensor_height - 1);
142 /* calculate distance between source and target pixels */
143 dy0 = ty - sy0;
144 dy1 = sy1 - ty;
145 divy = sy1 - sy0;
146 if (divy == 0) {
147 dy0 = 1;
148 divy = 1;
149 }
150
151 for (j = 0; j < out_table->width; j++, out_ptr++) {
152 int tx, src_x0, src_x1;
153 unsigned int sx0, sx1, dx0, dx1, divx;
154 unsigned short s_ul, s_ur, s_ll, s_lr;
155
156 /* calculate target point */
157 tx = out_start_col + j * out_cell_size;
158 /* calculate closest source points. */
159 src_x0 = tx / (int)in_cell_size;
160 if (in_cell_size < out_cell_size) {
161 src_x1 = (tx + out_cell_size) /
162 (int)in_cell_size;
163 } else {
164 src_x1 = src_x0 + 1;
165 }
166 /* if src points fall in padding, select closest ones.*/
167 src_x0 = clamp(src_x0, 0, (int)table_width - 1);
168 src_x1 = clamp(src_x1, 0, (int)table_width - 1);
169 tx = min(clamp(tx, 0, (int)sensor_width - 1),
170 (int)table_cell_w);
171 /*
172 * calculate closest source points for distance
173 * computation
174 */
175 sx0 = min(src_x0 * in_cell_size, sensor_width - 1);
176 sx1 = min(src_x1 * in_cell_size, sensor_width - 1);
177 /*
178 * calculate distances between source and target
179 * pixels
180 */
181 dx0 = tx - sx0;
182 dx1 = sx1 - tx;
183 divx = sx1 - sx0;
184 /* if we're at the edge, we just use the closest
185 * point still in the grid. We make up for the divider
186 * in this case by setting the distance to
187 * out_cell_size, since it's actually 0.
188 */
189 if (divx == 0) {
190 dx0 = 1;
191 divx = 1;
192 }
193
194 /* get source pixel values */
195 s_ul = in_ptr[(table_width * src_y0) + src_x0];
196 s_ur = in_ptr[(table_width * src_y0) + src_x1];
197 s_ll = in_ptr[(table_width * src_y1) + src_x0];
198 s_lr = in_ptr[(table_width * src_y1) + src_x1];
199
200 *out_ptr = (unsigned short)((dx0 * dy0 * s_lr + dx0 * dy1 * s_ur + dx1 * dy0 *
201 s_ll + dx1 * dy1 * s_ul) /
202 (divx * divy));
203 }
204 }
205 }
206
207 void
sh_css_params_shading_id_table_generate(struct ia_css_shading_table ** target_table,unsigned int table_width,unsigned int table_height)208 sh_css_params_shading_id_table_generate(
209 struct ia_css_shading_table **target_table,
210 unsigned int table_width,
211 unsigned int table_height)
212 {
213 /* initialize table with ones, shift becomes zero */
214 unsigned int i, j;
215 struct ia_css_shading_table *result;
216
217 assert(target_table);
218
219 result = ia_css_shading_table_alloc(table_width, table_height);
220 if (!result) {
221 *target_table = NULL;
222 return;
223 }
224
225 for (i = 0; i < IA_CSS_SC_NUM_COLORS; i++) {
226 for (j = 0; j < table_height * table_width; j++)
227 result->data[i][j] = 1;
228 }
229 result->fraction_bits = 0;
230 *target_table = result;
231 }
232
233 void
prepare_shading_table(const struct ia_css_shading_table * in_table,unsigned int sensor_binning,struct ia_css_shading_table ** target_table,const struct ia_css_binary * binary,unsigned int bds_factor)234 prepare_shading_table(const struct ia_css_shading_table *in_table,
235 unsigned int sensor_binning,
236 struct ia_css_shading_table **target_table,
237 const struct ia_css_binary *binary,
238 unsigned int bds_factor)
239 {
240 unsigned int input_width, input_height, table_width, table_height, i;
241 unsigned int left_padding, top_padding, left_cropping;
242 unsigned int bds_numerator, bds_denominator;
243 int right_padding;
244
245 struct ia_css_shading_table *result;
246
247 assert(target_table);
248 assert(binary);
249
250 if (!in_table) {
251 sh_css_params_shading_id_table_generate(target_table,
252 binary->sctbl_width_per_color,
253 binary->sctbl_height);
254 return;
255 }
256
257 /*
258 * We use the ISP input resolution for the shading table because
259 * shading correction is performed in the bayer domain (before bayer
260 * down scaling).
261 */
262 input_height = binary->in_frame_info.res.height;
263 input_width = binary->in_frame_info.res.width;
264 left_padding = binary->left_padding;
265 left_cropping = (binary->info->sp.pipeline.left_cropping == 0) ?
266 binary->dvs_envelope.width : 2 * ISP_VEC_NELEMS;
267
268 sh_css_bds_factor_get_numerator_denominator
269 (bds_factor, &bds_numerator, &bds_denominator);
270
271 left_padding = (left_padding + binary->info->sp.pipeline.left_cropping) *
272 bds_numerator / bds_denominator -
273 binary->info->sp.pipeline.left_cropping;
274 right_padding = (binary->internal_frame_info.res.width -
275 binary->effective_in_frame_res.width * bds_denominator /
276 bds_numerator - left_cropping) * bds_numerator / bds_denominator;
277 top_padding = binary->info->sp.pipeline.top_cropping * bds_numerator /
278 bds_denominator -
279 binary->info->sp.pipeline.top_cropping;
280
281 /*
282 * We take into account the binning done by the sensor. We do this
283 * by cropping the non-binned part of the shading table and then
284 * increasing the size of a grid cell with this same binning factor.
285 */
286 input_width <<= sensor_binning;
287 input_height <<= sensor_binning;
288 /*
289 * We also scale the padding by the same binning factor. This will
290 * make it much easier later on to calculate the padding of the
291 * shading table.
292 */
293 left_padding <<= sensor_binning;
294 right_padding <<= sensor_binning;
295 top_padding <<= sensor_binning;
296
297 /*
298 * during simulation, the used resolution can exceed the sensor
299 * resolution, so we clip it.
300 */
301 input_width = min(input_width, in_table->sensor_width);
302 input_height = min(input_height, in_table->sensor_height);
303
304 /* This prepare_shading_table() function is called only in legacy API (not in new API).
305 Then, the legacy shading table width and height should be used. */
306 table_width = binary->sctbl_width_per_color;
307 table_height = binary->sctbl_height;
308
309 result = ia_css_shading_table_alloc(table_width, table_height);
310 if (!result) {
311 *target_table = NULL;
312 return;
313 }
314 result->sensor_width = in_table->sensor_width;
315 result->sensor_height = in_table->sensor_height;
316 result->fraction_bits = in_table->fraction_bits;
317
318 /*
319 * now we crop the original shading table and then interpolate to the
320 * requested resolution and decimation factor.
321 */
322 for (i = 0; i < IA_CSS_SC_NUM_COLORS; i++) {
323 crop_and_interpolate(input_width, input_height,
324 left_padding, right_padding, top_padding,
325 in_table,
326 result, i);
327 }
328 *target_table = result;
329 }
330
331 struct ia_css_shading_table *
ia_css_shading_table_alloc(unsigned int width,unsigned int height)332 ia_css_shading_table_alloc(
333 unsigned int width,
334 unsigned int height)
335 {
336 unsigned int i;
337 struct ia_css_shading_table *me;
338
339 IA_CSS_ENTER("");
340
341 me = kmalloc(sizeof(*me), GFP_KERNEL);
342 if (!me)
343 return me;
344
345 me->width = width;
346 me->height = height;
347 me->sensor_width = 0;
348 me->sensor_height = 0;
349 me->fraction_bits = 0;
350 for (i = 0; i < IA_CSS_SC_NUM_COLORS; i++) {
351 me->data[i] =
352 kvmalloc(width * height * sizeof(*me->data[0]),
353 GFP_KERNEL);
354 if (!me->data[i]) {
355 unsigned int j;
356
357 for (j = 0; j < i; j++) {
358 kvfree(me->data[j]);
359 me->data[j] = NULL;
360 }
361 kfree(me);
362 return NULL;
363 }
364 }
365
366 IA_CSS_LEAVE("");
367 return me;
368 }
369
370 void
ia_css_shading_table_free(struct ia_css_shading_table * table)371 ia_css_shading_table_free(struct ia_css_shading_table *table)
372 {
373 unsigned int i;
374
375 if (!table)
376 return;
377
378 /*
379 * We only output logging when the table is not NULL, otherwise
380 * logs will give the impression that a table was freed.
381 */
382 IA_CSS_ENTER("");
383
384 for (i = 0; i < IA_CSS_SC_NUM_COLORS; i++) {
385 if (table->data[i]) {
386 kvfree(table->data[i]);
387 table->data[i] = NULL;
388 }
389 }
390 kfree(table);
391
392 IA_CSS_LEAVE("");
393 }
394