1 /*
2  * Kernel support for the ptrace() and syscall tracing interfaces.
3  *
4  * Copyright (C) 1999-2005 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  * Copyright (C) 2006 Intel Co
7  *  2006-08-12	- IA64 Native Utrace implementation support added by
8  *	Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * Derived from the x86 and Alpha versions.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/errno.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/audit.h>
20 #include <linux/signal.h>
21 #include <linux/regset.h>
22 #include <linux/elf.h>
23 #include <linux/tracehook.h>
24 
25 #include <asm/pgtable.h>
26 #include <asm/processor.h>
27 #include <asm/ptrace_offsets.h>
28 #include <asm/rse.h>
29 #include <asm/uaccess.h>
30 #include <asm/unwind.h>
31 #ifdef CONFIG_PERFMON
32 #include <asm/perfmon.h>
33 #endif
34 
35 #include "entry.h"
36 
37 /*
38  * Bits in the PSR that we allow ptrace() to change:
39  *	be, up, ac, mfl, mfh (the user mask; five bits total)
40  *	db (debug breakpoint fault; one bit)
41  *	id (instruction debug fault disable; one bit)
42  *	dd (data debug fault disable; one bit)
43  *	ri (restart instruction; two bits)
44  *	is (instruction set; one bit)
45  */
46 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
47 		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
48 
49 #define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
50 #define PFM_MASK	MASK(38)
51 
52 #define PTRACE_DEBUG	0
53 
54 #if PTRACE_DEBUG
55 # define dprintk(format...)	printk(format)
56 # define inline
57 #else
58 # define dprintk(format...)
59 #endif
60 
61 /* Return TRUE if PT was created due to kernel-entry via a system-call.  */
62 
63 static inline int
in_syscall(struct pt_regs * pt)64 in_syscall (struct pt_regs *pt)
65 {
66 	return (long) pt->cr_ifs >= 0;
67 }
68 
69 /*
70  * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
71  * bitset where bit i is set iff the NaT bit of register i is set.
72  */
73 unsigned long
ia64_get_scratch_nat_bits(struct pt_regs * pt,unsigned long scratch_unat)74 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
75 {
76 #	define GET_BITS(first, last, unat)				\
77 	({								\
78 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
79 		unsigned long nbits = (last - first + 1);		\
80 		unsigned long mask = MASK(nbits) << first;		\
81 		unsigned long dist;					\
82 		if (bit < first)					\
83 			dist = 64 + bit - first;			\
84 		else							\
85 			dist = bit - first;				\
86 		ia64_rotr(unat, dist) & mask;				\
87 	})
88 	unsigned long val;
89 
90 	/*
91 	 * Registers that are stored consecutively in struct pt_regs
92 	 * can be handled in parallel.  If the register order in
93 	 * struct_pt_regs changes, this code MUST be updated.
94 	 */
95 	val  = GET_BITS( 1,  1, scratch_unat);
96 	val |= GET_BITS( 2,  3, scratch_unat);
97 	val |= GET_BITS(12, 13, scratch_unat);
98 	val |= GET_BITS(14, 14, scratch_unat);
99 	val |= GET_BITS(15, 15, scratch_unat);
100 	val |= GET_BITS( 8, 11, scratch_unat);
101 	val |= GET_BITS(16, 31, scratch_unat);
102 	return val;
103 
104 #	undef GET_BITS
105 }
106 
107 /*
108  * Set the NaT bits for the scratch registers according to NAT and
109  * return the resulting unat (assuming the scratch registers are
110  * stored in PT).
111  */
112 unsigned long
ia64_put_scratch_nat_bits(struct pt_regs * pt,unsigned long nat)113 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
114 {
115 #	define PUT_BITS(first, last, nat)				\
116 	({								\
117 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
118 		unsigned long nbits = (last - first + 1);		\
119 		unsigned long mask = MASK(nbits) << first;		\
120 		long dist;						\
121 		if (bit < first)					\
122 			dist = 64 + bit - first;			\
123 		else							\
124 			dist = bit - first;				\
125 		ia64_rotl(nat & mask, dist);				\
126 	})
127 	unsigned long scratch_unat;
128 
129 	/*
130 	 * Registers that are stored consecutively in struct pt_regs
131 	 * can be handled in parallel.  If the register order in
132 	 * struct_pt_regs changes, this code MUST be updated.
133 	 */
134 	scratch_unat  = PUT_BITS( 1,  1, nat);
135 	scratch_unat |= PUT_BITS( 2,  3, nat);
136 	scratch_unat |= PUT_BITS(12, 13, nat);
137 	scratch_unat |= PUT_BITS(14, 14, nat);
138 	scratch_unat |= PUT_BITS(15, 15, nat);
139 	scratch_unat |= PUT_BITS( 8, 11, nat);
140 	scratch_unat |= PUT_BITS(16, 31, nat);
141 
142 	return scratch_unat;
143 
144 #	undef PUT_BITS
145 }
146 
147 #define IA64_MLX_TEMPLATE	0x2
148 #define IA64_MOVL_OPCODE	6
149 
150 void
ia64_increment_ip(struct pt_regs * regs)151 ia64_increment_ip (struct pt_regs *regs)
152 {
153 	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
154 
155 	if (ri > 2) {
156 		ri = 0;
157 		regs->cr_iip += 16;
158 	} else if (ri == 2) {
159 		get_user(w0, (char __user *) regs->cr_iip + 0);
160 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
161 			/*
162 			 * rfi'ing to slot 2 of an MLX bundle causes
163 			 * an illegal operation fault.  We don't want
164 			 * that to happen...
165 			 */
166 			ri = 0;
167 			regs->cr_iip += 16;
168 		}
169 	}
170 	ia64_psr(regs)->ri = ri;
171 }
172 
173 void
ia64_decrement_ip(struct pt_regs * regs)174 ia64_decrement_ip (struct pt_regs *regs)
175 {
176 	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
177 
178 	if (ia64_psr(regs)->ri == 0) {
179 		regs->cr_iip -= 16;
180 		ri = 2;
181 		get_user(w0, (char __user *) regs->cr_iip + 0);
182 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
183 			/*
184 			 * rfi'ing to slot 2 of an MLX bundle causes
185 			 * an illegal operation fault.  We don't want
186 			 * that to happen...
187 			 */
188 			ri = 1;
189 		}
190 	}
191 	ia64_psr(regs)->ri = ri;
192 }
193 
194 /*
195  * This routine is used to read an rnat bits that are stored on the
196  * kernel backing store.  Since, in general, the alignment of the user
197  * and kernel are different, this is not completely trivial.  In
198  * essence, we need to construct the user RNAT based on up to two
199  * kernel RNAT values and/or the RNAT value saved in the child's
200  * pt_regs.
201  *
202  * user rbs
203  *
204  * +--------+ <-- lowest address
205  * | slot62 |
206  * +--------+
207  * |  rnat  | 0x....1f8
208  * +--------+
209  * | slot00 | \
210  * +--------+ |
211  * | slot01 | > child_regs->ar_rnat
212  * +--------+ |
213  * | slot02 | /				kernel rbs
214  * +--------+				+--------+
215  *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
216  * +- - - - +				+--------+
217  *					| slot62 |
218  * +- - - - +				+--------+
219  *					|  rnat	 |
220  * +- - - - +				+--------+
221  *   vrnat				| slot00 |
222  * +- - - - +				+--------+
223  *					=	 =
224  *					+--------+
225  *					| slot00 | \
226  *					+--------+ |
227  *					| slot01 | > child_stack->ar_rnat
228  *					+--------+ |
229  *					| slot02 | /
230  *					+--------+
231  *						  <--- child_stack->ar_bspstore
232  *
233  * The way to think of this code is as follows: bit 0 in the user rnat
234  * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
235  * value.  The kernel rnat value holding this bit is stored in
236  * variable rnat0.  rnat1 is loaded with the kernel rnat value that
237  * form the upper bits of the user rnat value.
238  *
239  * Boundary cases:
240  *
241  * o when reading the rnat "below" the first rnat slot on the kernel
242  *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
243  *   merged in from pt->ar_rnat.
244  *
245  * o when reading the rnat "above" the last rnat slot on the kernel
246  *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
247  */
248 static unsigned long
get_rnat(struct task_struct * task,struct switch_stack * sw,unsigned long * krbs,unsigned long * urnat_addr,unsigned long * urbs_end)249 get_rnat (struct task_struct *task, struct switch_stack *sw,
250 	  unsigned long *krbs, unsigned long *urnat_addr,
251 	  unsigned long *urbs_end)
252 {
253 	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
254 	unsigned long umask = 0, mask, m;
255 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
256 	long num_regs, nbits;
257 	struct pt_regs *pt;
258 
259 	pt = task_pt_regs(task);
260 	kbsp = (unsigned long *) sw->ar_bspstore;
261 	ubspstore = (unsigned long *) pt->ar_bspstore;
262 
263 	if (urbs_end < urnat_addr)
264 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
265 	else
266 		nbits = 63;
267 	mask = MASK(nbits);
268 	/*
269 	 * First, figure out which bit number slot 0 in user-land maps
270 	 * to in the kernel rnat.  Do this by figuring out how many
271 	 * register slots we're beyond the user's backingstore and
272 	 * then computing the equivalent address in kernel space.
273 	 */
274 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
275 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
276 	shift = ia64_rse_slot_num(slot0_kaddr);
277 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
278 	rnat0_kaddr = rnat1_kaddr - 64;
279 
280 	if (ubspstore + 63 > urnat_addr) {
281 		/* some bits need to be merged in from pt->ar_rnat */
282 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
283 		urnat = (pt->ar_rnat & umask);
284 		mask &= ~umask;
285 		if (!mask)
286 			return urnat;
287 	}
288 
289 	m = mask << shift;
290 	if (rnat0_kaddr >= kbsp)
291 		rnat0 = sw->ar_rnat;
292 	else if (rnat0_kaddr > krbs)
293 		rnat0 = *rnat0_kaddr;
294 	urnat |= (rnat0 & m) >> shift;
295 
296 	m = mask >> (63 - shift);
297 	if (rnat1_kaddr >= kbsp)
298 		rnat1 = sw->ar_rnat;
299 	else if (rnat1_kaddr > krbs)
300 		rnat1 = *rnat1_kaddr;
301 	urnat |= (rnat1 & m) << (63 - shift);
302 	return urnat;
303 }
304 
305 /*
306  * The reverse of get_rnat.
307  */
308 static void
put_rnat(struct task_struct * task,struct switch_stack * sw,unsigned long * krbs,unsigned long * urnat_addr,unsigned long urnat,unsigned long * urbs_end)309 put_rnat (struct task_struct *task, struct switch_stack *sw,
310 	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
311 	  unsigned long *urbs_end)
312 {
313 	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
314 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
315 	long num_regs, nbits;
316 	struct pt_regs *pt;
317 	unsigned long cfm, *urbs_kargs;
318 
319 	pt = task_pt_regs(task);
320 	kbsp = (unsigned long *) sw->ar_bspstore;
321 	ubspstore = (unsigned long *) pt->ar_bspstore;
322 
323 	urbs_kargs = urbs_end;
324 	if (in_syscall(pt)) {
325 		/*
326 		 * If entered via syscall, don't allow user to set rnat bits
327 		 * for syscall args.
328 		 */
329 		cfm = pt->cr_ifs;
330 		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
331 	}
332 
333 	if (urbs_kargs >= urnat_addr)
334 		nbits = 63;
335 	else {
336 		if ((urnat_addr - 63) >= urbs_kargs)
337 			return;
338 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
339 	}
340 	mask = MASK(nbits);
341 
342 	/*
343 	 * First, figure out which bit number slot 0 in user-land maps
344 	 * to in the kernel rnat.  Do this by figuring out how many
345 	 * register slots we're beyond the user's backingstore and
346 	 * then computing the equivalent address in kernel space.
347 	 */
348 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
349 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
350 	shift = ia64_rse_slot_num(slot0_kaddr);
351 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
352 	rnat0_kaddr = rnat1_kaddr - 64;
353 
354 	if (ubspstore + 63 > urnat_addr) {
355 		/* some bits need to be place in pt->ar_rnat: */
356 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
357 		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
358 		mask &= ~umask;
359 		if (!mask)
360 			return;
361 	}
362 	/*
363 	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
364 	 * rnat slot is ignored. so we don't have to clear it here.
365 	 */
366 	rnat0 = (urnat << shift);
367 	m = mask << shift;
368 	if (rnat0_kaddr >= kbsp)
369 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
370 	else if (rnat0_kaddr > krbs)
371 		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
372 
373 	rnat1 = (urnat >> (63 - shift));
374 	m = mask >> (63 - shift);
375 	if (rnat1_kaddr >= kbsp)
376 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
377 	else if (rnat1_kaddr > krbs)
378 		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
379 }
380 
381 static inline int
on_kernel_rbs(unsigned long addr,unsigned long bspstore,unsigned long urbs_end)382 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
383 	       unsigned long urbs_end)
384 {
385 	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
386 						      urbs_end);
387 	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
388 }
389 
390 /*
391  * Read a word from the user-level backing store of task CHILD.  ADDR
392  * is the user-level address to read the word from, VAL a pointer to
393  * the return value, and USER_BSP gives the end of the user-level
394  * backing store (i.e., it's the address that would be in ar.bsp after
395  * the user executed a "cover" instruction).
396  *
397  * This routine takes care of accessing the kernel register backing
398  * store for those registers that got spilled there.  It also takes
399  * care of calculating the appropriate RNaT collection words.
400  */
401 long
ia64_peek(struct task_struct * child,struct switch_stack * child_stack,unsigned long user_rbs_end,unsigned long addr,long * val)402 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
403 	   unsigned long user_rbs_end, unsigned long addr, long *val)
404 {
405 	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
406 	struct pt_regs *child_regs;
407 	size_t copied;
408 	long ret;
409 
410 	urbs_end = (long *) user_rbs_end;
411 	laddr = (unsigned long *) addr;
412 	child_regs = task_pt_regs(child);
413 	bspstore = (unsigned long *) child_regs->ar_bspstore;
414 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
415 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
416 			  (unsigned long) urbs_end))
417 	{
418 		/*
419 		 * Attempt to read the RBS in an area that's actually
420 		 * on the kernel RBS => read the corresponding bits in
421 		 * the kernel RBS.
422 		 */
423 		rnat_addr = ia64_rse_rnat_addr(laddr);
424 		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
425 
426 		if (laddr == rnat_addr) {
427 			/* return NaT collection word itself */
428 			*val = ret;
429 			return 0;
430 		}
431 
432 		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
433 			/*
434 			 * It is implementation dependent whether the
435 			 * data portion of a NaT value gets saved on a
436 			 * st8.spill or RSE spill (e.g., see EAS 2.6,
437 			 * 4.4.4.6 Register Spill and Fill).  To get
438 			 * consistent behavior across all possible
439 			 * IA-64 implementations, we return zero in
440 			 * this case.
441 			 */
442 			*val = 0;
443 			return 0;
444 		}
445 
446 		if (laddr < urbs_end) {
447 			/*
448 			 * The desired word is on the kernel RBS and
449 			 * is not a NaT.
450 			 */
451 			regnum = ia64_rse_num_regs(bspstore, laddr);
452 			*val = *ia64_rse_skip_regs(krbs, regnum);
453 			return 0;
454 		}
455 	}
456 	copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
457 	if (copied != sizeof(ret))
458 		return -EIO;
459 	*val = ret;
460 	return 0;
461 }
462 
463 long
ia64_poke(struct task_struct * child,struct switch_stack * child_stack,unsigned long user_rbs_end,unsigned long addr,long val)464 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
465 	   unsigned long user_rbs_end, unsigned long addr, long val)
466 {
467 	unsigned long *bspstore, *krbs, regnum, *laddr;
468 	unsigned long *urbs_end = (long *) user_rbs_end;
469 	struct pt_regs *child_regs;
470 
471 	laddr = (unsigned long *) addr;
472 	child_regs = task_pt_regs(child);
473 	bspstore = (unsigned long *) child_regs->ar_bspstore;
474 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
475 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
476 			  (unsigned long) urbs_end))
477 	{
478 		/*
479 		 * Attempt to write the RBS in an area that's actually
480 		 * on the kernel RBS => write the corresponding bits
481 		 * in the kernel RBS.
482 		 */
483 		if (ia64_rse_is_rnat_slot(laddr))
484 			put_rnat(child, child_stack, krbs, laddr, val,
485 				 urbs_end);
486 		else {
487 			if (laddr < urbs_end) {
488 				regnum = ia64_rse_num_regs(bspstore, laddr);
489 				*ia64_rse_skip_regs(krbs, regnum) = val;
490 			}
491 		}
492 	} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
493 		   != sizeof(val))
494 		return -EIO;
495 	return 0;
496 }
497 
498 /*
499  * Calculate the address of the end of the user-level register backing
500  * store.  This is the address that would have been stored in ar.bsp
501  * if the user had executed a "cover" instruction right before
502  * entering the kernel.  If CFMP is not NULL, it is used to return the
503  * "current frame mask" that was active at the time the kernel was
504  * entered.
505  */
506 unsigned long
ia64_get_user_rbs_end(struct task_struct * child,struct pt_regs * pt,unsigned long * cfmp)507 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
508 		       unsigned long *cfmp)
509 {
510 	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
511 	long ndirty;
512 
513 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
514 	bspstore = (unsigned long *) pt->ar_bspstore;
515 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
516 
517 	if (in_syscall(pt))
518 		ndirty += (cfm & 0x7f);
519 	else
520 		cfm &= ~(1UL << 63);	/* clear valid bit */
521 
522 	if (cfmp)
523 		*cfmp = cfm;
524 	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
525 }
526 
527 /*
528  * Synchronize (i.e, write) the RSE backing store living in kernel
529  * space to the VM of the CHILD task.  SW and PT are the pointers to
530  * the switch_stack and pt_regs structures, respectively.
531  * USER_RBS_END is the user-level address at which the backing store
532  * ends.
533  */
534 long
ia64_sync_user_rbs(struct task_struct * child,struct switch_stack * sw,unsigned long user_rbs_start,unsigned long user_rbs_end)535 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
536 		    unsigned long user_rbs_start, unsigned long user_rbs_end)
537 {
538 	unsigned long addr, val;
539 	long ret;
540 
541 	/* now copy word for word from kernel rbs to user rbs: */
542 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
543 		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
544 		if (ret < 0)
545 			return ret;
546 		if (access_process_vm(child, addr, &val, sizeof(val), 1)
547 		    != sizeof(val))
548 			return -EIO;
549 	}
550 	return 0;
551 }
552 
553 static long
ia64_sync_kernel_rbs(struct task_struct * child,struct switch_stack * sw,unsigned long user_rbs_start,unsigned long user_rbs_end)554 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
555 		unsigned long user_rbs_start, unsigned long user_rbs_end)
556 {
557 	unsigned long addr, val;
558 	long ret;
559 
560 	/* now copy word for word from user rbs to kernel rbs: */
561 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
562 		if (access_process_vm(child, addr, &val, sizeof(val), 0)
563 				!= sizeof(val))
564 			return -EIO;
565 
566 		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
567 		if (ret < 0)
568 			return ret;
569 	}
570 	return 0;
571 }
572 
573 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
574 			    unsigned long, unsigned long);
575 
do_sync_rbs(struct unw_frame_info * info,void * arg)576 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
577 {
578 	struct pt_regs *pt;
579 	unsigned long urbs_end;
580 	syncfunc_t fn = arg;
581 
582 	if (unw_unwind_to_user(info) < 0)
583 		return;
584 	pt = task_pt_regs(info->task);
585 	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
586 
587 	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
588 }
589 
590 /*
591  * when a thread is stopped (ptraced), debugger might change thread's user
592  * stack (change memory directly), and we must avoid the RSE stored in kernel
593  * to override user stack (user space's RSE is newer than kernel's in the
594  * case). To workaround the issue, we copy kernel RSE to user RSE before the
595  * task is stopped, so user RSE has updated data.  we then copy user RSE to
596  * kernel after the task is resummed from traced stop and kernel will use the
597  * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
598  * synchronize user RSE to kernel.
599  */
ia64_ptrace_stop(void)600 void ia64_ptrace_stop(void)
601 {
602 	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
603 		return;
604 	set_notify_resume(current);
605 	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
606 }
607 
608 /*
609  * This is called to read back the register backing store.
610  */
ia64_sync_krbs(void)611 void ia64_sync_krbs(void)
612 {
613 	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
614 
615 	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
616 }
617 
618 /*
619  * After PTRACE_ATTACH, a thread's register backing store area in user
620  * space is assumed to contain correct data whenever the thread is
621  * stopped.  arch_ptrace_stop takes care of this on tracing stops.
622  * But if the child was already stopped for job control when we attach
623  * to it, then it might not ever get into ptrace_stop by the time we
624  * want to examine the user memory containing the RBS.
625  */
626 void
ptrace_attach_sync_user_rbs(struct task_struct * child)627 ptrace_attach_sync_user_rbs (struct task_struct *child)
628 {
629 	int stopped = 0;
630 	struct unw_frame_info info;
631 
632 	/*
633 	 * If the child is in TASK_STOPPED, we need to change that to
634 	 * TASK_TRACED momentarily while we operate on it.  This ensures
635 	 * that the child won't be woken up and return to user mode while
636 	 * we are doing the sync.  (It can only be woken up for SIGKILL.)
637 	 */
638 
639 	read_lock(&tasklist_lock);
640 	if (child->sighand) {
641 		spin_lock_irq(&child->sighand->siglock);
642 		if (child->state == TASK_STOPPED &&
643 		    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
644 			set_notify_resume(child);
645 
646 			child->state = TASK_TRACED;
647 			stopped = 1;
648 		}
649 		spin_unlock_irq(&child->sighand->siglock);
650 	}
651 	read_unlock(&tasklist_lock);
652 
653 	if (!stopped)
654 		return;
655 
656 	unw_init_from_blocked_task(&info, child);
657 	do_sync_rbs(&info, ia64_sync_user_rbs);
658 
659 	/*
660 	 * Now move the child back into TASK_STOPPED if it should be in a
661 	 * job control stop, so that SIGCONT can be used to wake it up.
662 	 */
663 	read_lock(&tasklist_lock);
664 	if (child->sighand) {
665 		spin_lock_irq(&child->sighand->siglock);
666 		if (child->state == TASK_TRACED &&
667 		    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
668 			child->state = TASK_STOPPED;
669 		}
670 		spin_unlock_irq(&child->sighand->siglock);
671 	}
672 	read_unlock(&tasklist_lock);
673 }
674 
675 static inline int
thread_matches(struct task_struct * thread,unsigned long addr)676 thread_matches (struct task_struct *thread, unsigned long addr)
677 {
678 	unsigned long thread_rbs_end;
679 	struct pt_regs *thread_regs;
680 
681 	if (ptrace_check_attach(thread, 0) < 0)
682 		/*
683 		 * If the thread is not in an attachable state, we'll
684 		 * ignore it.  The net effect is that if ADDR happens
685 		 * to overlap with the portion of the thread's
686 		 * register backing store that is currently residing
687 		 * on the thread's kernel stack, then ptrace() may end
688 		 * up accessing a stale value.  But if the thread
689 		 * isn't stopped, that's a problem anyhow, so we're
690 		 * doing as well as we can...
691 		 */
692 		return 0;
693 
694 	thread_regs = task_pt_regs(thread);
695 	thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
696 	if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
697 		return 0;
698 
699 	return 1;	/* looks like we've got a winner */
700 }
701 
702 /*
703  * Write f32-f127 back to task->thread.fph if it has been modified.
704  */
705 inline void
ia64_flush_fph(struct task_struct * task)706 ia64_flush_fph (struct task_struct *task)
707 {
708 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
709 
710 	/*
711 	 * Prevent migrating this task while
712 	 * we're fiddling with the FPU state
713 	 */
714 	preempt_disable();
715 	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
716 		psr->mfh = 0;
717 		task->thread.flags |= IA64_THREAD_FPH_VALID;
718 		ia64_save_fpu(&task->thread.fph[0]);
719 	}
720 	preempt_enable();
721 }
722 
723 /*
724  * Sync the fph state of the task so that it can be manipulated
725  * through thread.fph.  If necessary, f32-f127 are written back to
726  * thread.fph or, if the fph state hasn't been used before, thread.fph
727  * is cleared to zeroes.  Also, access to f32-f127 is disabled to
728  * ensure that the task picks up the state from thread.fph when it
729  * executes again.
730  */
731 void
ia64_sync_fph(struct task_struct * task)732 ia64_sync_fph (struct task_struct *task)
733 {
734 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
735 
736 	ia64_flush_fph(task);
737 	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
738 		task->thread.flags |= IA64_THREAD_FPH_VALID;
739 		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
740 	}
741 	ia64_drop_fpu(task);
742 	psr->dfh = 1;
743 }
744 
745 /*
746  * Change the machine-state of CHILD such that it will return via the normal
747  * kernel exit-path, rather than the syscall-exit path.
748  */
749 static void
convert_to_non_syscall(struct task_struct * child,struct pt_regs * pt,unsigned long cfm)750 convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
751 			unsigned long cfm)
752 {
753 	struct unw_frame_info info, prev_info;
754 	unsigned long ip, sp, pr;
755 
756 	unw_init_from_blocked_task(&info, child);
757 	while (1) {
758 		prev_info = info;
759 		if (unw_unwind(&info) < 0)
760 			return;
761 
762 		unw_get_sp(&info, &sp);
763 		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
764 		    < IA64_PT_REGS_SIZE) {
765 			dprintk("ptrace.%s: ran off the top of the kernel "
766 				"stack\n", __func__);
767 			return;
768 		}
769 		if (unw_get_pr (&prev_info, &pr) < 0) {
770 			unw_get_rp(&prev_info, &ip);
771 			dprintk("ptrace.%s: failed to read "
772 				"predicate register (ip=0x%lx)\n",
773 				__func__, ip);
774 			return;
775 		}
776 		if (unw_is_intr_frame(&info)
777 		    && (pr & (1UL << PRED_USER_STACK)))
778 			break;
779 	}
780 
781 	/*
782 	 * Note: at the time of this call, the target task is blocked
783 	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
784 	 * (aka, "pLvSys") we redirect execution from
785 	 * .work_pending_syscall_end to .work_processed_kernel.
786 	 */
787 	unw_get_pr(&prev_info, &pr);
788 	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
789 	pr |=  (1UL << PRED_NON_SYSCALL);
790 	unw_set_pr(&prev_info, pr);
791 
792 	pt->cr_ifs = (1UL << 63) | cfm;
793 	/*
794 	 * Clear the memory that is NOT written on syscall-entry to
795 	 * ensure we do not leak kernel-state to user when execution
796 	 * resumes.
797 	 */
798 	pt->r2 = 0;
799 	pt->r3 = 0;
800 	pt->r14 = 0;
801 	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
802 	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
803 	pt->b7 = 0;
804 	pt->ar_ccv = 0;
805 	pt->ar_csd = 0;
806 	pt->ar_ssd = 0;
807 }
808 
809 static int
access_nat_bits(struct task_struct * child,struct pt_regs * pt,struct unw_frame_info * info,unsigned long * data,int write_access)810 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
811 		 struct unw_frame_info *info,
812 		 unsigned long *data, int write_access)
813 {
814 	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
815 	char nat = 0;
816 
817 	if (write_access) {
818 		nat_bits = *data;
819 		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
820 		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
821 			dprintk("ptrace: failed to set ar.unat\n");
822 			return -1;
823 		}
824 		for (regnum = 4; regnum <= 7; ++regnum) {
825 			unw_get_gr(info, regnum, &dummy, &nat);
826 			unw_set_gr(info, regnum, dummy,
827 				   (nat_bits >> regnum) & 1);
828 		}
829 	} else {
830 		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
831 			dprintk("ptrace: failed to read ar.unat\n");
832 			return -1;
833 		}
834 		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
835 		for (regnum = 4; regnum <= 7; ++regnum) {
836 			unw_get_gr(info, regnum, &dummy, &nat);
837 			nat_bits |= (nat != 0) << regnum;
838 		}
839 		*data = nat_bits;
840 	}
841 	return 0;
842 }
843 
844 static int
845 access_uarea (struct task_struct *child, unsigned long addr,
846 	      unsigned long *data, int write_access);
847 
848 static long
ptrace_getregs(struct task_struct * child,struct pt_all_user_regs __user * ppr)849 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
850 {
851 	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
852 	struct unw_frame_info info;
853 	struct ia64_fpreg fpval;
854 	struct switch_stack *sw;
855 	struct pt_regs *pt;
856 	long ret, retval = 0;
857 	char nat = 0;
858 	int i;
859 
860 	if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
861 		return -EIO;
862 
863 	pt = task_pt_regs(child);
864 	sw = (struct switch_stack *) (child->thread.ksp + 16);
865 	unw_init_from_blocked_task(&info, child);
866 	if (unw_unwind_to_user(&info) < 0) {
867 		return -EIO;
868 	}
869 
870 	if (((unsigned long) ppr & 0x7) != 0) {
871 		dprintk("ptrace:unaligned register address %p\n", ppr);
872 		return -EIO;
873 	}
874 
875 	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
876 	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0
877 	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0
878 	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
879 	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
880 	    || access_uarea(child, PT_CFM, &cfm, 0)
881 	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
882 		return -EIO;
883 
884 	/* control regs */
885 
886 	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
887 	retval |= __put_user(psr, &ppr->cr_ipsr);
888 
889 	/* app regs */
890 
891 	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
892 	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
893 	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
894 	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
895 	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
896 	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
897 
898 	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
899 	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
900 	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
901 	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
902 	retval |= __put_user(cfm, &ppr->cfm);
903 
904 	/* gr1-gr3 */
905 
906 	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
907 	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
908 
909 	/* gr4-gr7 */
910 
911 	for (i = 4; i < 8; i++) {
912 		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
913 			return -EIO;
914 		retval |= __put_user(val, &ppr->gr[i]);
915 	}
916 
917 	/* gr8-gr11 */
918 
919 	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
920 
921 	/* gr12-gr15 */
922 
923 	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
924 	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
925 	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
926 
927 	/* gr16-gr31 */
928 
929 	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
930 
931 	/* b0 */
932 
933 	retval |= __put_user(pt->b0, &ppr->br[0]);
934 
935 	/* b1-b5 */
936 
937 	for (i = 1; i < 6; i++) {
938 		if (unw_access_br(&info, i, &val, 0) < 0)
939 			return -EIO;
940 		__put_user(val, &ppr->br[i]);
941 	}
942 
943 	/* b6-b7 */
944 
945 	retval |= __put_user(pt->b6, &ppr->br[6]);
946 	retval |= __put_user(pt->b7, &ppr->br[7]);
947 
948 	/* fr2-fr5 */
949 
950 	for (i = 2; i < 6; i++) {
951 		if (unw_get_fr(&info, i, &fpval) < 0)
952 			return -EIO;
953 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
954 	}
955 
956 	/* fr6-fr11 */
957 
958 	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
959 				 sizeof(struct ia64_fpreg) * 6);
960 
961 	/* fp scratch regs(12-15) */
962 
963 	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
964 				 sizeof(struct ia64_fpreg) * 4);
965 
966 	/* fr16-fr31 */
967 
968 	for (i = 16; i < 32; i++) {
969 		if (unw_get_fr(&info, i, &fpval) < 0)
970 			return -EIO;
971 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
972 	}
973 
974 	/* fph */
975 
976 	ia64_flush_fph(child);
977 	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
978 				 sizeof(ppr->fr[32]) * 96);
979 
980 	/*  preds */
981 
982 	retval |= __put_user(pt->pr, &ppr->pr);
983 
984 	/* nat bits */
985 
986 	retval |= __put_user(nat_bits, &ppr->nat);
987 
988 	ret = retval ? -EIO : 0;
989 	return ret;
990 }
991 
992 static long
ptrace_setregs(struct task_struct * child,struct pt_all_user_regs __user * ppr)993 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
994 {
995 	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
996 	struct unw_frame_info info;
997 	struct switch_stack *sw;
998 	struct ia64_fpreg fpval;
999 	struct pt_regs *pt;
1000 	long ret, retval = 0;
1001 	int i;
1002 
1003 	memset(&fpval, 0, sizeof(fpval));
1004 
1005 	if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1006 		return -EIO;
1007 
1008 	pt = task_pt_regs(child);
1009 	sw = (struct switch_stack *) (child->thread.ksp + 16);
1010 	unw_init_from_blocked_task(&info, child);
1011 	if (unw_unwind_to_user(&info) < 0) {
1012 		return -EIO;
1013 	}
1014 
1015 	if (((unsigned long) ppr & 0x7) != 0) {
1016 		dprintk("ptrace:unaligned register address %p\n", ppr);
1017 		return -EIO;
1018 	}
1019 
1020 	/* control regs */
1021 
1022 	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1023 	retval |= __get_user(psr, &ppr->cr_ipsr);
1024 
1025 	/* app regs */
1026 
1027 	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1028 	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1029 	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1030 	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1031 	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1032 	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1033 
1034 	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1035 	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1036 	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1037 	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1038 	retval |= __get_user(cfm, &ppr->cfm);
1039 
1040 	/* gr1-gr3 */
1041 
1042 	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1043 	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1044 
1045 	/* gr4-gr7 */
1046 
1047 	for (i = 4; i < 8; i++) {
1048 		retval |= __get_user(val, &ppr->gr[i]);
1049 		/* NaT bit will be set via PT_NAT_BITS: */
1050 		if (unw_set_gr(&info, i, val, 0) < 0)
1051 			return -EIO;
1052 	}
1053 
1054 	/* gr8-gr11 */
1055 
1056 	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1057 
1058 	/* gr12-gr15 */
1059 
1060 	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1061 	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1062 	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1063 
1064 	/* gr16-gr31 */
1065 
1066 	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1067 
1068 	/* b0 */
1069 
1070 	retval |= __get_user(pt->b0, &ppr->br[0]);
1071 
1072 	/* b1-b5 */
1073 
1074 	for (i = 1; i < 6; i++) {
1075 		retval |= __get_user(val, &ppr->br[i]);
1076 		unw_set_br(&info, i, val);
1077 	}
1078 
1079 	/* b6-b7 */
1080 
1081 	retval |= __get_user(pt->b6, &ppr->br[6]);
1082 	retval |= __get_user(pt->b7, &ppr->br[7]);
1083 
1084 	/* fr2-fr5 */
1085 
1086 	for (i = 2; i < 6; i++) {
1087 		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1088 		if (unw_set_fr(&info, i, fpval) < 0)
1089 			return -EIO;
1090 	}
1091 
1092 	/* fr6-fr11 */
1093 
1094 	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1095 				   sizeof(ppr->fr[6]) * 6);
1096 
1097 	/* fp scratch regs(12-15) */
1098 
1099 	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1100 				   sizeof(ppr->fr[12]) * 4);
1101 
1102 	/* fr16-fr31 */
1103 
1104 	for (i = 16; i < 32; i++) {
1105 		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1106 					   sizeof(fpval));
1107 		if (unw_set_fr(&info, i, fpval) < 0)
1108 			return -EIO;
1109 	}
1110 
1111 	/* fph */
1112 
1113 	ia64_sync_fph(child);
1114 	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1115 				   sizeof(ppr->fr[32]) * 96);
1116 
1117 	/* preds */
1118 
1119 	retval |= __get_user(pt->pr, &ppr->pr);
1120 
1121 	/* nat bits */
1122 
1123 	retval |= __get_user(nat_bits, &ppr->nat);
1124 
1125 	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1126 	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1127 	retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1128 	retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1129 	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1130 	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1131 	retval |= access_uarea(child, PT_CFM, &cfm, 1);
1132 	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1133 
1134 	ret = retval ? -EIO : 0;
1135 	return ret;
1136 }
1137 
1138 void
user_enable_single_step(struct task_struct * child)1139 user_enable_single_step (struct task_struct *child)
1140 {
1141 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1142 
1143 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1144 	child_psr->ss = 1;
1145 }
1146 
1147 void
user_enable_block_step(struct task_struct * child)1148 user_enable_block_step (struct task_struct *child)
1149 {
1150 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1151 
1152 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1153 	child_psr->tb = 1;
1154 }
1155 
1156 void
user_disable_single_step(struct task_struct * child)1157 user_disable_single_step (struct task_struct *child)
1158 {
1159 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1160 
1161 	/* make sure the single step/taken-branch trap bits are not set: */
1162 	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1163 	child_psr->ss = 0;
1164 	child_psr->tb = 0;
1165 }
1166 
1167 /*
1168  * Called by kernel/ptrace.c when detaching..
1169  *
1170  * Make sure the single step bit is not set.
1171  */
1172 void
ptrace_disable(struct task_struct * child)1173 ptrace_disable (struct task_struct *child)
1174 {
1175 	user_disable_single_step(child);
1176 }
1177 
1178 long
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)1179 arch_ptrace (struct task_struct *child, long request,
1180 	     unsigned long addr, unsigned long data)
1181 {
1182 	switch (request) {
1183 	case PTRACE_PEEKTEXT:
1184 	case PTRACE_PEEKDATA:
1185 		/* read word at location addr */
1186 		if (access_process_vm(child, addr, &data, sizeof(data), 0)
1187 		    != sizeof(data))
1188 			return -EIO;
1189 		/* ensure return value is not mistaken for error code */
1190 		force_successful_syscall_return();
1191 		return data;
1192 
1193 	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1194 	 * by the generic ptrace_request().
1195 	 */
1196 
1197 	case PTRACE_PEEKUSR:
1198 		/* read the word at addr in the USER area */
1199 		if (access_uarea(child, addr, &data, 0) < 0)
1200 			return -EIO;
1201 		/* ensure return value is not mistaken for error code */
1202 		force_successful_syscall_return();
1203 		return data;
1204 
1205 	case PTRACE_POKEUSR:
1206 		/* write the word at addr in the USER area */
1207 		if (access_uarea(child, addr, &data, 1) < 0)
1208 			return -EIO;
1209 		return 0;
1210 
1211 	case PTRACE_OLD_GETSIGINFO:
1212 		/* for backwards-compatibility */
1213 		return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1214 
1215 	case PTRACE_OLD_SETSIGINFO:
1216 		/* for backwards-compatibility */
1217 		return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1218 
1219 	case PTRACE_GETREGS:
1220 		return ptrace_getregs(child,
1221 				      (struct pt_all_user_regs __user *) data);
1222 
1223 	case PTRACE_SETREGS:
1224 		return ptrace_setregs(child,
1225 				      (struct pt_all_user_regs __user *) data);
1226 
1227 	default:
1228 		return ptrace_request(child, request, addr, data);
1229 	}
1230 }
1231 
1232 
1233 /* "asmlinkage" so the input arguments are preserved... */
1234 
1235 asmlinkage long
syscall_trace_enter(long arg0,long arg1,long arg2,long arg3,long arg4,long arg5,long arg6,long arg7,struct pt_regs regs)1236 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1237 		     long arg4, long arg5, long arg6, long arg7,
1238 		     struct pt_regs regs)
1239 {
1240 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1241 		if (tracehook_report_syscall_entry(&regs))
1242 			return -ENOSYS;
1243 
1244 	/* copy user rbs to kernel rbs */
1245 	if (test_thread_flag(TIF_RESTORE_RSE))
1246 		ia64_sync_krbs();
1247 
1248 
1249 	audit_syscall_entry(AUDIT_ARCH_IA64, regs.r15, arg0, arg1, arg2, arg3);
1250 
1251 	return 0;
1252 }
1253 
1254 /* "asmlinkage" so the input arguments are preserved... */
1255 
1256 asmlinkage void
syscall_trace_leave(long arg0,long arg1,long arg2,long arg3,long arg4,long arg5,long arg6,long arg7,struct pt_regs regs)1257 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1258 		     long arg4, long arg5, long arg6, long arg7,
1259 		     struct pt_regs regs)
1260 {
1261 	int step;
1262 
1263 	audit_syscall_exit(&regs);
1264 
1265 	step = test_thread_flag(TIF_SINGLESTEP);
1266 	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1267 		tracehook_report_syscall_exit(&regs, step);
1268 
1269 	/* copy user rbs to kernel rbs */
1270 	if (test_thread_flag(TIF_RESTORE_RSE))
1271 		ia64_sync_krbs();
1272 }
1273 
1274 /* Utrace implementation starts here */
1275 struct regset_get {
1276 	void *kbuf;
1277 	void __user *ubuf;
1278 };
1279 
1280 struct regset_set {
1281 	const void *kbuf;
1282 	const void __user *ubuf;
1283 };
1284 
1285 struct regset_getset {
1286 	struct task_struct *target;
1287 	const struct user_regset *regset;
1288 	union {
1289 		struct regset_get get;
1290 		struct regset_set set;
1291 	} u;
1292 	unsigned int pos;
1293 	unsigned int count;
1294 	int ret;
1295 };
1296 
1297 static int
access_elf_gpreg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1298 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1299 		unsigned long addr, unsigned long *data, int write_access)
1300 {
1301 	struct pt_regs *pt;
1302 	unsigned long *ptr = NULL;
1303 	int ret;
1304 	char nat = 0;
1305 
1306 	pt = task_pt_regs(target);
1307 	switch (addr) {
1308 	case ELF_GR_OFFSET(1):
1309 		ptr = &pt->r1;
1310 		break;
1311 	case ELF_GR_OFFSET(2):
1312 	case ELF_GR_OFFSET(3):
1313 		ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1314 		break;
1315 	case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1316 		if (write_access) {
1317 			/* read NaT bit first: */
1318 			unsigned long dummy;
1319 
1320 			ret = unw_get_gr(info, addr/8, &dummy, &nat);
1321 			if (ret < 0)
1322 				return ret;
1323 		}
1324 		return unw_access_gr(info, addr/8, data, &nat, write_access);
1325 	case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1326 		ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1327 		break;
1328 	case ELF_GR_OFFSET(12):
1329 	case ELF_GR_OFFSET(13):
1330 		ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1331 		break;
1332 	case ELF_GR_OFFSET(14):
1333 		ptr = &pt->r14;
1334 		break;
1335 	case ELF_GR_OFFSET(15):
1336 		ptr = &pt->r15;
1337 	}
1338 	if (write_access)
1339 		*ptr = *data;
1340 	else
1341 		*data = *ptr;
1342 	return 0;
1343 }
1344 
1345 static int
access_elf_breg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1346 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1347 		unsigned long addr, unsigned long *data, int write_access)
1348 {
1349 	struct pt_regs *pt;
1350 	unsigned long *ptr = NULL;
1351 
1352 	pt = task_pt_regs(target);
1353 	switch (addr) {
1354 	case ELF_BR_OFFSET(0):
1355 		ptr = &pt->b0;
1356 		break;
1357 	case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1358 		return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1359 				     data, write_access);
1360 	case ELF_BR_OFFSET(6):
1361 		ptr = &pt->b6;
1362 		break;
1363 	case ELF_BR_OFFSET(7):
1364 		ptr = &pt->b7;
1365 	}
1366 	if (write_access)
1367 		*ptr = *data;
1368 	else
1369 		*data = *ptr;
1370 	return 0;
1371 }
1372 
1373 static int
access_elf_areg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1374 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1375 		unsigned long addr, unsigned long *data, int write_access)
1376 {
1377 	struct pt_regs *pt;
1378 	unsigned long cfm, urbs_end;
1379 	unsigned long *ptr = NULL;
1380 
1381 	pt = task_pt_regs(target);
1382 	if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1383 		switch (addr) {
1384 		case ELF_AR_RSC_OFFSET:
1385 			/* force PL3 */
1386 			if (write_access)
1387 				pt->ar_rsc = *data | (3 << 2);
1388 			else
1389 				*data = pt->ar_rsc;
1390 			return 0;
1391 		case ELF_AR_BSP_OFFSET:
1392 			/*
1393 			 * By convention, we use PT_AR_BSP to refer to
1394 			 * the end of the user-level backing store.
1395 			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1396 			 * to get the real value of ar.bsp at the time
1397 			 * the kernel was entered.
1398 			 *
1399 			 * Furthermore, when changing the contents of
1400 			 * PT_AR_BSP (or PT_CFM) while the task is
1401 			 * blocked in a system call, convert the state
1402 			 * so that the non-system-call exit
1403 			 * path is used.  This ensures that the proper
1404 			 * state will be picked up when resuming
1405 			 * execution.  However, it *also* means that
1406 			 * once we write PT_AR_BSP/PT_CFM, it won't be
1407 			 * possible to modify the syscall arguments of
1408 			 * the pending system call any longer.  This
1409 			 * shouldn't be an issue because modifying
1410 			 * PT_AR_BSP/PT_CFM generally implies that
1411 			 * we're either abandoning the pending system
1412 			 * call or that we defer it's re-execution
1413 			 * (e.g., due to GDB doing an inferior
1414 			 * function call).
1415 			 */
1416 			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1417 			if (write_access) {
1418 				if (*data != urbs_end) {
1419 					if (in_syscall(pt))
1420 						convert_to_non_syscall(target,
1421 								       pt,
1422 								       cfm);
1423 					/*
1424 					 * Simulate user-level write
1425 					 * of ar.bsp:
1426 					 */
1427 					pt->loadrs = 0;
1428 					pt->ar_bspstore = *data;
1429 				}
1430 			} else
1431 				*data = urbs_end;
1432 			return 0;
1433 		case ELF_AR_BSPSTORE_OFFSET:
1434 			ptr = &pt->ar_bspstore;
1435 			break;
1436 		case ELF_AR_RNAT_OFFSET:
1437 			ptr = &pt->ar_rnat;
1438 			break;
1439 		case ELF_AR_CCV_OFFSET:
1440 			ptr = &pt->ar_ccv;
1441 			break;
1442 		case ELF_AR_UNAT_OFFSET:
1443 			ptr = &pt->ar_unat;
1444 			break;
1445 		case ELF_AR_FPSR_OFFSET:
1446 			ptr = &pt->ar_fpsr;
1447 			break;
1448 		case ELF_AR_PFS_OFFSET:
1449 			ptr = &pt->ar_pfs;
1450 			break;
1451 		case ELF_AR_LC_OFFSET:
1452 			return unw_access_ar(info, UNW_AR_LC, data,
1453 					     write_access);
1454 		case ELF_AR_EC_OFFSET:
1455 			return unw_access_ar(info, UNW_AR_EC, data,
1456 					     write_access);
1457 		case ELF_AR_CSD_OFFSET:
1458 			ptr = &pt->ar_csd;
1459 			break;
1460 		case ELF_AR_SSD_OFFSET:
1461 			ptr = &pt->ar_ssd;
1462 		}
1463 	} else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1464 		switch (addr) {
1465 		case ELF_CR_IIP_OFFSET:
1466 			ptr = &pt->cr_iip;
1467 			break;
1468 		case ELF_CFM_OFFSET:
1469 			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1470 			if (write_access) {
1471 				if (((cfm ^ *data) & PFM_MASK) != 0) {
1472 					if (in_syscall(pt))
1473 						convert_to_non_syscall(target,
1474 								       pt,
1475 								       cfm);
1476 					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1477 						      | (*data & PFM_MASK));
1478 				}
1479 			} else
1480 				*data = cfm;
1481 			return 0;
1482 		case ELF_CR_IPSR_OFFSET:
1483 			if (write_access) {
1484 				unsigned long tmp = *data;
1485 				/* psr.ri==3 is a reserved value: SDM 2:25 */
1486 				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1487 					tmp &= ~IA64_PSR_RI;
1488 				pt->cr_ipsr = ((tmp & IPSR_MASK)
1489 					       | (pt->cr_ipsr & ~IPSR_MASK));
1490 			} else
1491 				*data = (pt->cr_ipsr & IPSR_MASK);
1492 			return 0;
1493 		}
1494 	} else if (addr == ELF_NAT_OFFSET)
1495 		return access_nat_bits(target, pt, info,
1496 				       data, write_access);
1497 	else if (addr == ELF_PR_OFFSET)
1498 		ptr = &pt->pr;
1499 	else
1500 		return -1;
1501 
1502 	if (write_access)
1503 		*ptr = *data;
1504 	else
1505 		*data = *ptr;
1506 
1507 	return 0;
1508 }
1509 
1510 static int
access_elf_reg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1511 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1512 		unsigned long addr, unsigned long *data, int write_access)
1513 {
1514 	if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1515 		return access_elf_gpreg(target, info, addr, data, write_access);
1516 	else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1517 		return access_elf_breg(target, info, addr, data, write_access);
1518 	else
1519 		return access_elf_areg(target, info, addr, data, write_access);
1520 }
1521 
do_gpregs_get(struct unw_frame_info * info,void * arg)1522 void do_gpregs_get(struct unw_frame_info *info, void *arg)
1523 {
1524 	struct pt_regs *pt;
1525 	struct regset_getset *dst = arg;
1526 	elf_greg_t tmp[16];
1527 	unsigned int i, index, min_copy;
1528 
1529 	if (unw_unwind_to_user(info) < 0)
1530 		return;
1531 
1532 	/*
1533 	 * coredump format:
1534 	 *      r0-r31
1535 	 *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1536 	 *      predicate registers (p0-p63)
1537 	 *      b0-b7
1538 	 *      ip cfm user-mask
1539 	 *      ar.rsc ar.bsp ar.bspstore ar.rnat
1540 	 *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1541 	 */
1542 
1543 
1544 	/* Skip r0 */
1545 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1546 		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1547 						      &dst->u.get.kbuf,
1548 						      &dst->u.get.ubuf,
1549 						      0, ELF_GR_OFFSET(1));
1550 		if (dst->ret || dst->count == 0)
1551 			return;
1552 	}
1553 
1554 	/* gr1 - gr15 */
1555 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1556 		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1557 		min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1558 			 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1559 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1560 				index++)
1561 			if (access_elf_reg(dst->target, info, i,
1562 						&tmp[index], 0) < 0) {
1563 				dst->ret = -EIO;
1564 				return;
1565 			}
1566 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1567 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1568 				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1569 		if (dst->ret || dst->count == 0)
1570 			return;
1571 	}
1572 
1573 	/* r16-r31 */
1574 	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1575 		pt = task_pt_regs(dst->target);
1576 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1577 				&dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1578 				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1579 		if (dst->ret || dst->count == 0)
1580 			return;
1581 	}
1582 
1583 	/* nat, pr, b0 - b7 */
1584 	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1585 		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1586 		min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1587 			 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1588 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1589 				index++)
1590 			if (access_elf_reg(dst->target, info, i,
1591 						&tmp[index], 0) < 0) {
1592 				dst->ret = -EIO;
1593 				return;
1594 			}
1595 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1596 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1597 				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1598 		if (dst->ret || dst->count == 0)
1599 			return;
1600 	}
1601 
1602 	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1603 	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1604 	 */
1605 	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1606 		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1607 		min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1608 			 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1609 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1610 				index++)
1611 			if (access_elf_reg(dst->target, info, i,
1612 						&tmp[index], 0) < 0) {
1613 				dst->ret = -EIO;
1614 				return;
1615 			}
1616 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1617 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1618 				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1619 	}
1620 }
1621 
do_gpregs_set(struct unw_frame_info * info,void * arg)1622 void do_gpregs_set(struct unw_frame_info *info, void *arg)
1623 {
1624 	struct pt_regs *pt;
1625 	struct regset_getset *dst = arg;
1626 	elf_greg_t tmp[16];
1627 	unsigned int i, index;
1628 
1629 	if (unw_unwind_to_user(info) < 0)
1630 		return;
1631 
1632 	/* Skip r0 */
1633 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1634 		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1635 						       &dst->u.set.kbuf,
1636 						       &dst->u.set.ubuf,
1637 						       0, ELF_GR_OFFSET(1));
1638 		if (dst->ret || dst->count == 0)
1639 			return;
1640 	}
1641 
1642 	/* gr1-gr15 */
1643 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1644 		i = dst->pos;
1645 		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1646 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1647 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1648 				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1649 		if (dst->ret)
1650 			return;
1651 		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1652 			if (access_elf_reg(dst->target, info, i,
1653 						&tmp[index], 1) < 0) {
1654 				dst->ret = -EIO;
1655 				return;
1656 			}
1657 		if (dst->count == 0)
1658 			return;
1659 	}
1660 
1661 	/* gr16-gr31 */
1662 	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1663 		pt = task_pt_regs(dst->target);
1664 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1665 				&dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1666 				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1667 		if (dst->ret || dst->count == 0)
1668 			return;
1669 	}
1670 
1671 	/* nat, pr, b0 - b7 */
1672 	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1673 		i = dst->pos;
1674 		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1675 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1676 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1677 				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1678 		if (dst->ret)
1679 			return;
1680 		for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1681 			if (access_elf_reg(dst->target, info, i,
1682 						&tmp[index], 1) < 0) {
1683 				dst->ret = -EIO;
1684 				return;
1685 			}
1686 		if (dst->count == 0)
1687 			return;
1688 	}
1689 
1690 	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1691 	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1692 	 */
1693 	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1694 		i = dst->pos;
1695 		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1696 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1697 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1698 				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1699 		if (dst->ret)
1700 			return;
1701 		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1702 			if (access_elf_reg(dst->target, info, i,
1703 						&tmp[index], 1) < 0) {
1704 				dst->ret = -EIO;
1705 				return;
1706 			}
1707 	}
1708 }
1709 
1710 #define ELF_FP_OFFSET(i)	(i * sizeof(elf_fpreg_t))
1711 
do_fpregs_get(struct unw_frame_info * info,void * arg)1712 void do_fpregs_get(struct unw_frame_info *info, void *arg)
1713 {
1714 	struct regset_getset *dst = arg;
1715 	struct task_struct *task = dst->target;
1716 	elf_fpreg_t tmp[30];
1717 	int index, min_copy, i;
1718 
1719 	if (unw_unwind_to_user(info) < 0)
1720 		return;
1721 
1722 	/* Skip pos 0 and 1 */
1723 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1724 		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1725 						      &dst->u.get.kbuf,
1726 						      &dst->u.get.ubuf,
1727 						      0, ELF_FP_OFFSET(2));
1728 		if (dst->count == 0 || dst->ret)
1729 			return;
1730 	}
1731 
1732 	/* fr2-fr31 */
1733 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1734 		index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1735 
1736 		min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1737 				dst->pos + dst->count);
1738 		for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1739 				index++)
1740 			if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1741 					 &tmp[index])) {
1742 				dst->ret = -EIO;
1743 				return;
1744 			}
1745 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1746 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1747 				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1748 		if (dst->count == 0 || dst->ret)
1749 			return;
1750 	}
1751 
1752 	/* fph */
1753 	if (dst->count > 0) {
1754 		ia64_flush_fph(dst->target);
1755 		if (task->thread.flags & IA64_THREAD_FPH_VALID)
1756 			dst->ret = user_regset_copyout(
1757 				&dst->pos, &dst->count,
1758 				&dst->u.get.kbuf, &dst->u.get.ubuf,
1759 				&dst->target->thread.fph,
1760 				ELF_FP_OFFSET(32), -1);
1761 		else
1762 			/* Zero fill instead.  */
1763 			dst->ret = user_regset_copyout_zero(
1764 				&dst->pos, &dst->count,
1765 				&dst->u.get.kbuf, &dst->u.get.ubuf,
1766 				ELF_FP_OFFSET(32), -1);
1767 	}
1768 }
1769 
do_fpregs_set(struct unw_frame_info * info,void * arg)1770 void do_fpregs_set(struct unw_frame_info *info, void *arg)
1771 {
1772 	struct regset_getset *dst = arg;
1773 	elf_fpreg_t fpreg, tmp[30];
1774 	int index, start, end;
1775 
1776 	if (unw_unwind_to_user(info) < 0)
1777 		return;
1778 
1779 	/* Skip pos 0 and 1 */
1780 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1781 		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1782 						       &dst->u.set.kbuf,
1783 						       &dst->u.set.ubuf,
1784 						       0, ELF_FP_OFFSET(2));
1785 		if (dst->count == 0 || dst->ret)
1786 			return;
1787 	}
1788 
1789 	/* fr2-fr31 */
1790 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1791 		start = dst->pos;
1792 		end = min(((unsigned int)ELF_FP_OFFSET(32)),
1793 			 dst->pos + dst->count);
1794 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1795 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1796 				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1797 		if (dst->ret)
1798 			return;
1799 
1800 		if (start & 0xF) { /* only write high part */
1801 			if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1802 					 &fpreg)) {
1803 				dst->ret = -EIO;
1804 				return;
1805 			}
1806 			tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1807 				= fpreg.u.bits[0];
1808 			start &= ~0xFUL;
1809 		}
1810 		if (end & 0xF) { /* only write low part */
1811 			if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1812 					&fpreg)) {
1813 				dst->ret = -EIO;
1814 				return;
1815 			}
1816 			tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1817 				= fpreg.u.bits[1];
1818 			end = (end + 0xF) & ~0xFUL;
1819 		}
1820 
1821 		for ( ;	start < end ; start += sizeof(elf_fpreg_t)) {
1822 			index = start / sizeof(elf_fpreg_t);
1823 			if (unw_set_fr(info, index, tmp[index - 2])) {
1824 				dst->ret = -EIO;
1825 				return;
1826 			}
1827 		}
1828 		if (dst->ret || dst->count == 0)
1829 			return;
1830 	}
1831 
1832 	/* fph */
1833 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1834 		ia64_sync_fph(dst->target);
1835 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1836 						&dst->u.set.kbuf,
1837 						&dst->u.set.ubuf,
1838 						&dst->target->thread.fph,
1839 						ELF_FP_OFFSET(32), -1);
1840 	}
1841 }
1842 
1843 static int
do_regset_call(void (* call)(struct unw_frame_info *,void *),struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1844 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1845 	       struct task_struct *target,
1846 	       const struct user_regset *regset,
1847 	       unsigned int pos, unsigned int count,
1848 	       const void *kbuf, const void __user *ubuf)
1849 {
1850 	struct regset_getset info = { .target = target, .regset = regset,
1851 				 .pos = pos, .count = count,
1852 				 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1853 				 .ret = 0 };
1854 
1855 	if (target == current)
1856 		unw_init_running(call, &info);
1857 	else {
1858 		struct unw_frame_info ufi;
1859 		memset(&ufi, 0, sizeof(ufi));
1860 		unw_init_from_blocked_task(&ufi, target);
1861 		(*call)(&ufi, &info);
1862 	}
1863 
1864 	return info.ret;
1865 }
1866 
1867 static int
gpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1868 gpregs_get(struct task_struct *target,
1869 	   const struct user_regset *regset,
1870 	   unsigned int pos, unsigned int count,
1871 	   void *kbuf, void __user *ubuf)
1872 {
1873 	return do_regset_call(do_gpregs_get, target, regset, pos, count,
1874 		kbuf, ubuf);
1875 }
1876 
gpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1877 static int gpregs_set(struct task_struct *target,
1878 		const struct user_regset *regset,
1879 		unsigned int pos, unsigned int count,
1880 		const void *kbuf, const void __user *ubuf)
1881 {
1882 	return do_regset_call(do_gpregs_set, target, regset, pos, count,
1883 		kbuf, ubuf);
1884 }
1885 
do_gpregs_writeback(struct unw_frame_info * info,void * arg)1886 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1887 {
1888 	do_sync_rbs(info, ia64_sync_user_rbs);
1889 }
1890 
1891 /*
1892  * This is called to write back the register backing store.
1893  * ptrace does this before it stops, so that a tracer reading the user
1894  * memory after the thread stops will get the current register data.
1895  */
1896 static int
gpregs_writeback(struct task_struct * target,const struct user_regset * regset,int now)1897 gpregs_writeback(struct task_struct *target,
1898 		 const struct user_regset *regset,
1899 		 int now)
1900 {
1901 	if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1902 		return 0;
1903 	set_notify_resume(target);
1904 	return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1905 		NULL, NULL);
1906 }
1907 
1908 static int
fpregs_active(struct task_struct * target,const struct user_regset * regset)1909 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1910 {
1911 	return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1912 }
1913 
fpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1914 static int fpregs_get(struct task_struct *target,
1915 		const struct user_regset *regset,
1916 		unsigned int pos, unsigned int count,
1917 		void *kbuf, void __user *ubuf)
1918 {
1919 	return do_regset_call(do_fpregs_get, target, regset, pos, count,
1920 		kbuf, ubuf);
1921 }
1922 
fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1923 static int fpregs_set(struct task_struct *target,
1924 		const struct user_regset *regset,
1925 		unsigned int pos, unsigned int count,
1926 		const void *kbuf, const void __user *ubuf)
1927 {
1928 	return do_regset_call(do_fpregs_set, target, regset, pos, count,
1929 		kbuf, ubuf);
1930 }
1931 
1932 static int
access_uarea(struct task_struct * child,unsigned long addr,unsigned long * data,int write_access)1933 access_uarea(struct task_struct *child, unsigned long addr,
1934 	      unsigned long *data, int write_access)
1935 {
1936 	unsigned int pos = -1; /* an invalid value */
1937 	int ret;
1938 	unsigned long *ptr, regnum;
1939 
1940 	if ((addr & 0x7) != 0) {
1941 		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1942 		return -1;
1943 	}
1944 	if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1945 		(addr >= PT_R7 + 8 && addr < PT_B1) ||
1946 		(addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1947 		(addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1948 		dprintk("ptrace: rejecting access to register "
1949 					"address 0x%lx\n", addr);
1950 		return -1;
1951 	}
1952 
1953 	switch (addr) {
1954 	case PT_F32 ... (PT_F127 + 15):
1955 		pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1956 		break;
1957 	case PT_F2 ... (PT_F5 + 15):
1958 		pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1959 		break;
1960 	case PT_F10 ... (PT_F31 + 15):
1961 		pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1962 		break;
1963 	case PT_F6 ... (PT_F9 + 15):
1964 		pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1965 		break;
1966 	}
1967 
1968 	if (pos != -1) {
1969 		if (write_access)
1970 			ret = fpregs_set(child, NULL, pos,
1971 				sizeof(unsigned long), data, NULL);
1972 		else
1973 			ret = fpregs_get(child, NULL, pos,
1974 				sizeof(unsigned long), data, NULL);
1975 		if (ret != 0)
1976 			return -1;
1977 		return 0;
1978 	}
1979 
1980 	switch (addr) {
1981 	case PT_NAT_BITS:
1982 		pos = ELF_NAT_OFFSET;
1983 		break;
1984 	case PT_R4 ... PT_R7:
1985 		pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1986 		break;
1987 	case PT_B1 ... PT_B5:
1988 		pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1989 		break;
1990 	case PT_AR_EC:
1991 		pos = ELF_AR_EC_OFFSET;
1992 		break;
1993 	case PT_AR_LC:
1994 		pos = ELF_AR_LC_OFFSET;
1995 		break;
1996 	case PT_CR_IPSR:
1997 		pos = ELF_CR_IPSR_OFFSET;
1998 		break;
1999 	case PT_CR_IIP:
2000 		pos = ELF_CR_IIP_OFFSET;
2001 		break;
2002 	case PT_CFM:
2003 		pos = ELF_CFM_OFFSET;
2004 		break;
2005 	case PT_AR_UNAT:
2006 		pos = ELF_AR_UNAT_OFFSET;
2007 		break;
2008 	case PT_AR_PFS:
2009 		pos = ELF_AR_PFS_OFFSET;
2010 		break;
2011 	case PT_AR_RSC:
2012 		pos = ELF_AR_RSC_OFFSET;
2013 		break;
2014 	case PT_AR_RNAT:
2015 		pos = ELF_AR_RNAT_OFFSET;
2016 		break;
2017 	case PT_AR_BSPSTORE:
2018 		pos = ELF_AR_BSPSTORE_OFFSET;
2019 		break;
2020 	case PT_PR:
2021 		pos = ELF_PR_OFFSET;
2022 		break;
2023 	case PT_B6:
2024 		pos = ELF_BR_OFFSET(6);
2025 		break;
2026 	case PT_AR_BSP:
2027 		pos = ELF_AR_BSP_OFFSET;
2028 		break;
2029 	case PT_R1 ... PT_R3:
2030 		pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2031 		break;
2032 	case PT_R12 ... PT_R15:
2033 		pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2034 		break;
2035 	case PT_R8 ... PT_R11:
2036 		pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2037 		break;
2038 	case PT_R16 ... PT_R31:
2039 		pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2040 		break;
2041 	case PT_AR_CCV:
2042 		pos = ELF_AR_CCV_OFFSET;
2043 		break;
2044 	case PT_AR_FPSR:
2045 		pos = ELF_AR_FPSR_OFFSET;
2046 		break;
2047 	case PT_B0:
2048 		pos = ELF_BR_OFFSET(0);
2049 		break;
2050 	case PT_B7:
2051 		pos = ELF_BR_OFFSET(7);
2052 		break;
2053 	case PT_AR_CSD:
2054 		pos = ELF_AR_CSD_OFFSET;
2055 		break;
2056 	case PT_AR_SSD:
2057 		pos = ELF_AR_SSD_OFFSET;
2058 		break;
2059 	}
2060 
2061 	if (pos != -1) {
2062 		if (write_access)
2063 			ret = gpregs_set(child, NULL, pos,
2064 				sizeof(unsigned long), data, NULL);
2065 		else
2066 			ret = gpregs_get(child, NULL, pos,
2067 				sizeof(unsigned long), data, NULL);
2068 		if (ret != 0)
2069 			return -1;
2070 		return 0;
2071 	}
2072 
2073 	/* access debug registers */
2074 	if (addr >= PT_IBR) {
2075 		regnum = (addr - PT_IBR) >> 3;
2076 		ptr = &child->thread.ibr[0];
2077 	} else {
2078 		regnum = (addr - PT_DBR) >> 3;
2079 		ptr = &child->thread.dbr[0];
2080 	}
2081 
2082 	if (regnum >= 8) {
2083 		dprintk("ptrace: rejecting access to register "
2084 				"address 0x%lx\n", addr);
2085 		return -1;
2086 	}
2087 #ifdef CONFIG_PERFMON
2088 	/*
2089 	 * Check if debug registers are used by perfmon. This
2090 	 * test must be done once we know that we can do the
2091 	 * operation, i.e. the arguments are all valid, but
2092 	 * before we start modifying the state.
2093 	 *
2094 	 * Perfmon needs to keep a count of how many processes
2095 	 * are trying to modify the debug registers for system
2096 	 * wide monitoring sessions.
2097 	 *
2098 	 * We also include read access here, because they may
2099 	 * cause the PMU-installed debug register state
2100 	 * (dbr[], ibr[]) to be reset. The two arrays are also
2101 	 * used by perfmon, but we do not use
2102 	 * IA64_THREAD_DBG_VALID. The registers are restored
2103 	 * by the PMU context switch code.
2104 	 */
2105 	if (pfm_use_debug_registers(child))
2106 		return -1;
2107 #endif
2108 
2109 	if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2110 		child->thread.flags |= IA64_THREAD_DBG_VALID;
2111 		memset(child->thread.dbr, 0,
2112 				sizeof(child->thread.dbr));
2113 		memset(child->thread.ibr, 0,
2114 				sizeof(child->thread.ibr));
2115 	}
2116 
2117 	ptr += regnum;
2118 
2119 	if ((regnum & 1) && write_access) {
2120 		/* don't let the user set kernel-level breakpoints: */
2121 		*ptr = *data & ~(7UL << 56);
2122 		return 0;
2123 	}
2124 	if (write_access)
2125 		*ptr = *data;
2126 	else
2127 		*data = *ptr;
2128 	return 0;
2129 }
2130 
2131 static const struct user_regset native_regsets[] = {
2132 	{
2133 		.core_note_type = NT_PRSTATUS,
2134 		.n = ELF_NGREG,
2135 		.size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2136 		.get = gpregs_get, .set = gpregs_set,
2137 		.writeback = gpregs_writeback
2138 	},
2139 	{
2140 		.core_note_type = NT_PRFPREG,
2141 		.n = ELF_NFPREG,
2142 		.size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2143 		.get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2144 	},
2145 };
2146 
2147 static const struct user_regset_view user_ia64_view = {
2148 	.name = "ia64",
2149 	.e_machine = EM_IA_64,
2150 	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2151 };
2152 
task_user_regset_view(struct task_struct * tsk)2153 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2154 {
2155 	return &user_ia64_view;
2156 }
2157 
2158 struct syscall_get_set_args {
2159 	unsigned int i;
2160 	unsigned int n;
2161 	unsigned long *args;
2162 	struct pt_regs *regs;
2163 	int rw;
2164 };
2165 
syscall_get_set_args_cb(struct unw_frame_info * info,void * data)2166 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2167 {
2168 	struct syscall_get_set_args *args = data;
2169 	struct pt_regs *pt = args->regs;
2170 	unsigned long *krbs, cfm, ndirty;
2171 	int i, count;
2172 
2173 	if (unw_unwind_to_user(info) < 0)
2174 		return;
2175 
2176 	cfm = pt->cr_ifs;
2177 	krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2178 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2179 
2180 	count = 0;
2181 	if (in_syscall(pt))
2182 		count = min_t(int, args->n, cfm & 0x7f);
2183 
2184 	for (i = 0; i < count; i++) {
2185 		if (args->rw)
2186 			*ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2187 				args->args[i];
2188 		else
2189 			args->args[i] = *ia64_rse_skip_regs(krbs,
2190 				ndirty + i + args->i);
2191 	}
2192 
2193 	if (!args->rw) {
2194 		while (i < args->n) {
2195 			args->args[i] = 0;
2196 			i++;
2197 		}
2198 	}
2199 }
2200 
ia64_syscall_get_set_arguments(struct task_struct * task,struct pt_regs * regs,unsigned int i,unsigned int n,unsigned long * args,int rw)2201 void ia64_syscall_get_set_arguments(struct task_struct *task,
2202 	struct pt_regs *regs, unsigned int i, unsigned int n,
2203 	unsigned long *args, int rw)
2204 {
2205 	struct syscall_get_set_args data = {
2206 		.i = i,
2207 		.n = n,
2208 		.args = args,
2209 		.regs = regs,
2210 		.rw = rw,
2211 	};
2212 
2213 	if (task == current)
2214 		unw_init_running(syscall_get_set_args_cb, &data);
2215 	else {
2216 		struct unw_frame_info ufi;
2217 		memset(&ufi, 0, sizeof(ufi));
2218 		unw_init_from_blocked_task(&ufi, task);
2219 		syscall_get_set_args_cb(&ufi, &data);
2220 	}
2221 }
2222