1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27 
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 
49 #include <asm/machvec.h>
50 #include <asm/mca.h>
51 #include <asm/meminit.h>
52 #include <asm/page.h>
53 #include <asm/paravirt.h>
54 #include <asm/paravirt_patch.h>
55 #include <asm/patch.h>
56 #include <asm/pgtable.h>
57 #include <asm/processor.h>
58 #include <asm/sal.h>
59 #include <asm/sections.h>
60 #include <asm/setup.h>
61 #include <asm/smp.h>
62 #include <asm/system.h>
63 #include <asm/tlbflush.h>
64 #include <asm/unistd.h>
65 #include <asm/hpsim.h>
66 
67 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
68 # error "struct cpuinfo_ia64 too big!"
69 #endif
70 
71 #ifdef CONFIG_SMP
72 unsigned long __per_cpu_offset[NR_CPUS];
73 EXPORT_SYMBOL(__per_cpu_offset);
74 #endif
75 
76 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83 
84 static struct resource data_resource = {
85 	.name	= "Kernel data",
86 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88 
89 static struct resource code_resource = {
90 	.name	= "Kernel code",
91 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93 
94 static struct resource bss_resource = {
95 	.name	= "Kernel bss",
96 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
97 };
98 
99 unsigned long ia64_max_cacheline_size;
100 
101 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
102 EXPORT_SYMBOL(ia64_iobase);
103 struct io_space io_space[MAX_IO_SPACES];
104 EXPORT_SYMBOL(io_space);
105 unsigned int num_io_spaces;
106 
107 /*
108  * "flush_icache_range()" needs to know what processor dependent stride size to use
109  * when it makes i-cache(s) coherent with d-caches.
110  */
111 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
112 unsigned long ia64_i_cache_stride_shift = ~0;
113 /*
114  * "clflush_cache_range()" needs to know what processor dependent stride size to
115  * use when it flushes cache lines including both d-cache and i-cache.
116  */
117 /* Safest way to go: 32 bytes by 32 bytes */
118 #define	CACHE_STRIDE_SHIFT	5
119 unsigned long ia64_cache_stride_shift = ~0;
120 
121 /*
122  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
123  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
124  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
125  * address of the second buffer must be aligned to (merge_mask+1) in order to be
126  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
127  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
128  * page-size of 2^64.
129  */
130 unsigned long ia64_max_iommu_merge_mask = ~0UL;
131 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
132 
133 /*
134  * We use a special marker for the end of memory and it uses the extra (+1) slot
135  */
136 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
137 int num_rsvd_regions __initdata;
138 
139 
140 /*
141  * Filter incoming memory segments based on the primitive map created from the boot
142  * parameters. Segments contained in the map are removed from the memory ranges. A
143  * caller-specified function is called with the memory ranges that remain after filtering.
144  * This routine does not assume the incoming segments are sorted.
145  */
146 int __init
filter_rsvd_memory(u64 start,u64 end,void * arg)147 filter_rsvd_memory (u64 start, u64 end, void *arg)
148 {
149 	u64 range_start, range_end, prev_start;
150 	void (*func)(unsigned long, unsigned long, int);
151 	int i;
152 
153 #if IGNORE_PFN0
154 	if (start == PAGE_OFFSET) {
155 		printk(KERN_WARNING "warning: skipping physical page 0\n");
156 		start += PAGE_SIZE;
157 		if (start >= end) return 0;
158 	}
159 #endif
160 	/*
161 	 * lowest possible address(walker uses virtual)
162 	 */
163 	prev_start = PAGE_OFFSET;
164 	func = arg;
165 
166 	for (i = 0; i < num_rsvd_regions; ++i) {
167 		range_start = max(start, prev_start);
168 		range_end   = min(end, rsvd_region[i].start);
169 
170 		if (range_start < range_end)
171 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
172 
173 		/* nothing more available in this segment */
174 		if (range_end == end) return 0;
175 
176 		prev_start = rsvd_region[i].end;
177 	}
178 	/* end of memory marker allows full processing inside loop body */
179 	return 0;
180 }
181 
182 /*
183  * Similar to "filter_rsvd_memory()", but the reserved memory ranges
184  * are not filtered out.
185  */
186 int __init
filter_memory(u64 start,u64 end,void * arg)187 filter_memory(u64 start, u64 end, void *arg)
188 {
189 	void (*func)(unsigned long, unsigned long, int);
190 
191 #if IGNORE_PFN0
192 	if (start == PAGE_OFFSET) {
193 		printk(KERN_WARNING "warning: skipping physical page 0\n");
194 		start += PAGE_SIZE;
195 		if (start >= end)
196 			return 0;
197 	}
198 #endif
199 	func = arg;
200 	if (start < end)
201 		call_pernode_memory(__pa(start), end - start, func);
202 	return 0;
203 }
204 
205 static void __init
sort_regions(struct rsvd_region * rsvd_region,int max)206 sort_regions (struct rsvd_region *rsvd_region, int max)
207 {
208 	int j;
209 
210 	/* simple bubble sorting */
211 	while (max--) {
212 		for (j = 0; j < max; ++j) {
213 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
214 				struct rsvd_region tmp;
215 				tmp = rsvd_region[j];
216 				rsvd_region[j] = rsvd_region[j + 1];
217 				rsvd_region[j + 1] = tmp;
218 			}
219 		}
220 	}
221 }
222 
223 /*
224  * Request address space for all standard resources
225  */
register_memory(void)226 static int __init register_memory(void)
227 {
228 	code_resource.start = ia64_tpa(_text);
229 	code_resource.end   = ia64_tpa(_etext) - 1;
230 	data_resource.start = ia64_tpa(_etext);
231 	data_resource.end   = ia64_tpa(_edata) - 1;
232 	bss_resource.start  = ia64_tpa(__bss_start);
233 	bss_resource.end    = ia64_tpa(_end) - 1;
234 	efi_initialize_iomem_resources(&code_resource, &data_resource,
235 			&bss_resource);
236 
237 	return 0;
238 }
239 
240 __initcall(register_memory);
241 
242 
243 #ifdef CONFIG_KEXEC
244 
245 /*
246  * This function checks if the reserved crashkernel is allowed on the specific
247  * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
248  * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
249  * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
250  * in kdump case. See the comment in sba_init() in sba_iommu.c.
251  *
252  * So, the only machvec that really supports loading the kdump kernel
253  * over 4 GB is "sn2".
254  */
check_crashkernel_memory(unsigned long pbase,size_t size)255 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
256 {
257 	if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
258 		return 1;
259 	else
260 		return pbase < (1UL << 32);
261 }
262 
setup_crashkernel(unsigned long total,int * n)263 static void __init setup_crashkernel(unsigned long total, int *n)
264 {
265 	unsigned long long base = 0, size = 0;
266 	int ret;
267 
268 	ret = parse_crashkernel(boot_command_line, total,
269 			&size, &base);
270 	if (ret == 0 && size > 0) {
271 		if (!base) {
272 			sort_regions(rsvd_region, *n);
273 			base = kdump_find_rsvd_region(size,
274 					rsvd_region, *n);
275 		}
276 
277 		if (!check_crashkernel_memory(base, size)) {
278 			pr_warning("crashkernel: There would be kdump memory "
279 				"at %ld GB but this is unusable because it "
280 				"must\nbe below 4 GB. Change the memory "
281 				"configuration of the machine.\n",
282 				(unsigned long)(base >> 30));
283 			return;
284 		}
285 
286 		if (base != ~0UL) {
287 			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
288 					"for crashkernel (System RAM: %ldMB)\n",
289 					(unsigned long)(size >> 20),
290 					(unsigned long)(base >> 20),
291 					(unsigned long)(total >> 20));
292 			rsvd_region[*n].start =
293 				(unsigned long)__va(base);
294 			rsvd_region[*n].end =
295 				(unsigned long)__va(base + size);
296 			(*n)++;
297 			crashk_res.start = base;
298 			crashk_res.end = base + size - 1;
299 		}
300 	}
301 	efi_memmap_res.start = ia64_boot_param->efi_memmap;
302 	efi_memmap_res.end = efi_memmap_res.start +
303 		ia64_boot_param->efi_memmap_size;
304 	boot_param_res.start = __pa(ia64_boot_param);
305 	boot_param_res.end = boot_param_res.start +
306 		sizeof(*ia64_boot_param);
307 }
308 #else
setup_crashkernel(unsigned long total,int * n)309 static inline void __init setup_crashkernel(unsigned long total, int *n)
310 {}
311 #endif
312 
313 /**
314  * reserve_memory - setup reserved memory areas
315  *
316  * Setup the reserved memory areas set aside for the boot parameters,
317  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
318  * see arch/ia64/include/asm/meminit.h if you need to define more.
319  */
320 void __init
reserve_memory(void)321 reserve_memory (void)
322 {
323 	int n = 0;
324 	unsigned long total_memory;
325 
326 	/*
327 	 * none of the entries in this table overlap
328 	 */
329 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
330 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
331 	n++;
332 
333 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
334 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
335 	n++;
336 
337 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
338 	rsvd_region[n].end   = (rsvd_region[n].start
339 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
340 	n++;
341 
342 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
343 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
344 	n++;
345 
346 	n += paravirt_reserve_memory(&rsvd_region[n]);
347 
348 #ifdef CONFIG_BLK_DEV_INITRD
349 	if (ia64_boot_param->initrd_start) {
350 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
351 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
352 		n++;
353 	}
354 #endif
355 
356 #ifdef CONFIG_CRASH_DUMP
357 	if (reserve_elfcorehdr(&rsvd_region[n].start,
358 			       &rsvd_region[n].end) == 0)
359 		n++;
360 #endif
361 
362 	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
363 	n++;
364 
365 	setup_crashkernel(total_memory, &n);
366 
367 	/* end of memory marker */
368 	rsvd_region[n].start = ~0UL;
369 	rsvd_region[n].end   = ~0UL;
370 	n++;
371 
372 	num_rsvd_regions = n;
373 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
374 
375 	sort_regions(rsvd_region, num_rsvd_regions);
376 }
377 
378 
379 /**
380  * find_initrd - get initrd parameters from the boot parameter structure
381  *
382  * Grab the initrd start and end from the boot parameter struct given us by
383  * the boot loader.
384  */
385 void __init
find_initrd(void)386 find_initrd (void)
387 {
388 #ifdef CONFIG_BLK_DEV_INITRD
389 	if (ia64_boot_param->initrd_start) {
390 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
391 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
392 
393 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
394 		       initrd_start, ia64_boot_param->initrd_size);
395 	}
396 #endif
397 }
398 
399 static void __init
io_port_init(void)400 io_port_init (void)
401 {
402 	unsigned long phys_iobase;
403 
404 	/*
405 	 * Set `iobase' based on the EFI memory map or, failing that, the
406 	 * value firmware left in ar.k0.
407 	 *
408 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
409 	 * the port's virtual address, so ia32_load_state() loads it with a
410 	 * user virtual address.  But in ia64 mode, glibc uses the
411 	 * *physical* address in ar.k0 to mmap the appropriate area from
412 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
413 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
414 	 *
415 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
416 	 * any of the I/O port spaces and are done via MMIO using the
417 	 * virtual mmio_base from the appropriate io_space[].
418 	 */
419 	phys_iobase = efi_get_iobase();
420 	if (!phys_iobase) {
421 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
422 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
423 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
424 	}
425 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
426 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
427 
428 	/* setup legacy IO port space */
429 	io_space[0].mmio_base = ia64_iobase;
430 	io_space[0].sparse = 1;
431 	num_io_spaces = 1;
432 }
433 
434 /**
435  * early_console_setup - setup debugging console
436  *
437  * Consoles started here require little enough setup that we can start using
438  * them very early in the boot process, either right after the machine
439  * vector initialization, or even before if the drivers can detect their hw.
440  *
441  * Returns non-zero if a console couldn't be setup.
442  */
443 static inline int __init
early_console_setup(char * cmdline)444 early_console_setup (char *cmdline)
445 {
446 	int earlycons = 0;
447 
448 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
449 	{
450 		extern int sn_serial_console_early_setup(void);
451 		if (!sn_serial_console_early_setup())
452 			earlycons++;
453 	}
454 #endif
455 #ifdef CONFIG_EFI_PCDP
456 	if (!efi_setup_pcdp_console(cmdline))
457 		earlycons++;
458 #endif
459 	if (!simcons_register())
460 		earlycons++;
461 
462 	return (earlycons) ? 0 : -1;
463 }
464 
465 static inline void
mark_bsp_online(void)466 mark_bsp_online (void)
467 {
468 #ifdef CONFIG_SMP
469 	/* If we register an early console, allow CPU 0 to printk */
470 	cpu_set(smp_processor_id(), cpu_online_map);
471 #endif
472 }
473 
474 static __initdata int nomca;
setup_nomca(char * s)475 static __init int setup_nomca(char *s)
476 {
477 	nomca = 1;
478 	return 0;
479 }
480 early_param("nomca", setup_nomca);
481 
482 #ifdef CONFIG_CRASH_DUMP
reserve_elfcorehdr(u64 * start,u64 * end)483 int __init reserve_elfcorehdr(u64 *start, u64 *end)
484 {
485 	u64 length;
486 
487 	/* We get the address using the kernel command line,
488 	 * but the size is extracted from the EFI tables.
489 	 * Both address and size are required for reservation
490 	 * to work properly.
491 	 */
492 
493 	if (!is_vmcore_usable())
494 		return -EINVAL;
495 
496 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
497 		vmcore_unusable();
498 		return -EINVAL;
499 	}
500 
501 	*start = (unsigned long)__va(elfcorehdr_addr);
502 	*end = *start + length;
503 	return 0;
504 }
505 
506 #endif /* CONFIG_PROC_VMCORE */
507 
508 void __init
setup_arch(char ** cmdline_p)509 setup_arch (char **cmdline_p)
510 {
511 	unw_init();
512 
513 	paravirt_arch_setup_early();
514 
515 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
516 	paravirt_patch_apply();
517 
518 	*cmdline_p = __va(ia64_boot_param->command_line);
519 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
520 
521 	efi_init();
522 	io_port_init();
523 
524 #ifdef CONFIG_IA64_GENERIC
525 	/* machvec needs to be parsed from the command line
526 	 * before parse_early_param() is called to ensure
527 	 * that ia64_mv is initialised before any command line
528 	 * settings may cause console setup to occur
529 	 */
530 	machvec_init_from_cmdline(*cmdline_p);
531 #endif
532 
533 	parse_early_param();
534 
535 	if (early_console_setup(*cmdline_p) == 0)
536 		mark_bsp_online();
537 
538 #ifdef CONFIG_ACPI
539 	/* Initialize the ACPI boot-time table parser */
540 	acpi_table_init();
541 	early_acpi_boot_init();
542 # ifdef CONFIG_ACPI_NUMA
543 	acpi_numa_init();
544 #  ifdef CONFIG_ACPI_HOTPLUG_CPU
545 	prefill_possible_map();
546 #  endif
547 	per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
548 		32 : cpus_weight(early_cpu_possible_map)),
549 		additional_cpus > 0 ? additional_cpus : 0);
550 # endif
551 #endif /* CONFIG_APCI_BOOT */
552 
553 #ifdef CONFIG_SMP
554 	smp_build_cpu_map();
555 #endif
556 	find_memory();
557 
558 	/* process SAL system table: */
559 	ia64_sal_init(__va(efi.sal_systab));
560 
561 #ifdef CONFIG_ITANIUM
562 	ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
563 #else
564 	{
565 		unsigned long num_phys_stacked;
566 
567 		if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
568 			ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
569 	}
570 #endif
571 
572 #ifdef CONFIG_SMP
573 	cpu_physical_id(0) = hard_smp_processor_id();
574 #endif
575 
576 	cpu_init();	/* initialize the bootstrap CPU */
577 	mmu_context_init();	/* initialize context_id bitmap */
578 
579 	paravirt_banner();
580 	paravirt_arch_setup_console(cmdline_p);
581 
582 #ifdef CONFIG_VT
583 	if (!conswitchp) {
584 # if defined(CONFIG_DUMMY_CONSOLE)
585 		conswitchp = &dummy_con;
586 # endif
587 # if defined(CONFIG_VGA_CONSOLE)
588 		/*
589 		 * Non-legacy systems may route legacy VGA MMIO range to system
590 		 * memory.  vga_con probes the MMIO hole, so memory looks like
591 		 * a VGA device to it.  The EFI memory map can tell us if it's
592 		 * memory so we can avoid this problem.
593 		 */
594 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
595 			conswitchp = &vga_con;
596 # endif
597 	}
598 #endif
599 
600 	/* enable IA-64 Machine Check Abort Handling unless disabled */
601 	if (paravirt_arch_setup_nomca())
602 		nomca = 1;
603 	if (!nomca)
604 		ia64_mca_init();
605 
606 	platform_setup(cmdline_p);
607 #ifndef CONFIG_IA64_HP_SIM
608 	check_sal_cache_flush();
609 #endif
610 	paging_init();
611 }
612 
613 /*
614  * Display cpu info for all CPUs.
615  */
616 static int
show_cpuinfo(struct seq_file * m,void * v)617 show_cpuinfo (struct seq_file *m, void *v)
618 {
619 #ifdef CONFIG_SMP
620 #	define lpj	c->loops_per_jiffy
621 #	define cpunum	c->cpu
622 #else
623 #	define lpj	loops_per_jiffy
624 #	define cpunum	0
625 #endif
626 	static struct {
627 		unsigned long mask;
628 		const char *feature_name;
629 	} feature_bits[] = {
630 		{ 1UL << 0, "branchlong" },
631 		{ 1UL << 1, "spontaneous deferral"},
632 		{ 1UL << 2, "16-byte atomic ops" }
633 	};
634 	char features[128], *cp, *sep;
635 	struct cpuinfo_ia64 *c = v;
636 	unsigned long mask;
637 	unsigned long proc_freq;
638 	int i, size;
639 
640 	mask = c->features;
641 
642 	/* build the feature string: */
643 	memcpy(features, "standard", 9);
644 	cp = features;
645 	size = sizeof(features);
646 	sep = "";
647 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
648 		if (mask & feature_bits[i].mask) {
649 			cp += snprintf(cp, size, "%s%s", sep,
650 				       feature_bits[i].feature_name),
651 			sep = ", ";
652 			mask &= ~feature_bits[i].mask;
653 			size = sizeof(features) - (cp - features);
654 		}
655 	}
656 	if (mask && size > 1) {
657 		/* print unknown features as a hex value */
658 		snprintf(cp, size, "%s0x%lx", sep, mask);
659 	}
660 
661 	proc_freq = cpufreq_quick_get(cpunum);
662 	if (!proc_freq)
663 		proc_freq = c->proc_freq / 1000;
664 
665 	seq_printf(m,
666 		   "processor  : %d\n"
667 		   "vendor     : %s\n"
668 		   "arch       : IA-64\n"
669 		   "family     : %u\n"
670 		   "model      : %u\n"
671 		   "model name : %s\n"
672 		   "revision   : %u\n"
673 		   "archrev    : %u\n"
674 		   "features   : %s\n"
675 		   "cpu number : %lu\n"
676 		   "cpu regs   : %u\n"
677 		   "cpu MHz    : %lu.%03lu\n"
678 		   "itc MHz    : %lu.%06lu\n"
679 		   "BogoMIPS   : %lu.%02lu\n",
680 		   cpunum, c->vendor, c->family, c->model,
681 		   c->model_name, c->revision, c->archrev,
682 		   features, c->ppn, c->number,
683 		   proc_freq / 1000, proc_freq % 1000,
684 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
685 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
686 #ifdef CONFIG_SMP
687 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
688 	if (c->socket_id != -1)
689 		seq_printf(m, "physical id: %u\n", c->socket_id);
690 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
691 		seq_printf(m,
692 			   "core id    : %u\n"
693 			   "thread id  : %u\n",
694 			   c->core_id, c->thread_id);
695 #endif
696 	seq_printf(m,"\n");
697 
698 	return 0;
699 }
700 
701 static void *
c_start(struct seq_file * m,loff_t * pos)702 c_start (struct seq_file *m, loff_t *pos)
703 {
704 #ifdef CONFIG_SMP
705 	while (*pos < nr_cpu_ids && !cpu_online(*pos))
706 		++*pos;
707 #endif
708 	return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
709 }
710 
711 static void *
c_next(struct seq_file * m,void * v,loff_t * pos)712 c_next (struct seq_file *m, void *v, loff_t *pos)
713 {
714 	++*pos;
715 	return c_start(m, pos);
716 }
717 
718 static void
c_stop(struct seq_file * m,void * v)719 c_stop (struct seq_file *m, void *v)
720 {
721 }
722 
723 const struct seq_operations cpuinfo_op = {
724 	.start =	c_start,
725 	.next =		c_next,
726 	.stop =		c_stop,
727 	.show =		show_cpuinfo
728 };
729 
730 #define MAX_BRANDS	8
731 static char brandname[MAX_BRANDS][128];
732 
733 static char * __cpuinit
get_model_name(__u8 family,__u8 model)734 get_model_name(__u8 family, __u8 model)
735 {
736 	static int overflow;
737 	char brand[128];
738 	int i;
739 
740 	memcpy(brand, "Unknown", 8);
741 	if (ia64_pal_get_brand_info(brand)) {
742 		if (family == 0x7)
743 			memcpy(brand, "Merced", 7);
744 		else if (family == 0x1f) switch (model) {
745 			case 0: memcpy(brand, "McKinley", 9); break;
746 			case 1: memcpy(brand, "Madison", 8); break;
747 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
748 		}
749 	}
750 	for (i = 0; i < MAX_BRANDS; i++)
751 		if (strcmp(brandname[i], brand) == 0)
752 			return brandname[i];
753 	for (i = 0; i < MAX_BRANDS; i++)
754 		if (brandname[i][0] == '\0')
755 			return strcpy(brandname[i], brand);
756 	if (overflow++ == 0)
757 		printk(KERN_ERR
758 		       "%s: Table overflow. Some processor model information will be missing\n",
759 		       __func__);
760 	return "Unknown";
761 }
762 
763 static void __cpuinit
identify_cpu(struct cpuinfo_ia64 * c)764 identify_cpu (struct cpuinfo_ia64 *c)
765 {
766 	union {
767 		unsigned long bits[5];
768 		struct {
769 			/* id 0 & 1: */
770 			char vendor[16];
771 
772 			/* id 2 */
773 			u64 ppn;		/* processor serial number */
774 
775 			/* id 3: */
776 			unsigned number		:  8;
777 			unsigned revision	:  8;
778 			unsigned model		:  8;
779 			unsigned family		:  8;
780 			unsigned archrev	:  8;
781 			unsigned reserved	: 24;
782 
783 			/* id 4: */
784 			u64 features;
785 		} field;
786 	} cpuid;
787 	pal_vm_info_1_u_t vm1;
788 	pal_vm_info_2_u_t vm2;
789 	pal_status_t status;
790 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
791 	int i;
792 	for (i = 0; i < 5; ++i)
793 		cpuid.bits[i] = ia64_get_cpuid(i);
794 
795 	memcpy(c->vendor, cpuid.field.vendor, 16);
796 #ifdef CONFIG_SMP
797 	c->cpu = smp_processor_id();
798 
799 	/* below default values will be overwritten  by identify_siblings()
800 	 * for Multi-Threading/Multi-Core capable CPUs
801 	 */
802 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
803 	c->socket_id = -1;
804 
805 	identify_siblings(c);
806 
807 	if (c->threads_per_core > smp_num_siblings)
808 		smp_num_siblings = c->threads_per_core;
809 #endif
810 	c->ppn = cpuid.field.ppn;
811 	c->number = cpuid.field.number;
812 	c->revision = cpuid.field.revision;
813 	c->model = cpuid.field.model;
814 	c->family = cpuid.field.family;
815 	c->archrev = cpuid.field.archrev;
816 	c->features = cpuid.field.features;
817 	c->model_name = get_model_name(c->family, c->model);
818 
819 	status = ia64_pal_vm_summary(&vm1, &vm2);
820 	if (status == PAL_STATUS_SUCCESS) {
821 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
822 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
823 	}
824 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
825 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
826 }
827 
828 /*
829  * Do the following calculations:
830  *
831  * 1. the max. cache line size.
832  * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
833  * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
834  */
835 static void __cpuinit
get_cache_info(void)836 get_cache_info(void)
837 {
838 	unsigned long line_size, max = 1;
839 	unsigned long l, levels, unique_caches;
840 	pal_cache_config_info_t cci;
841 	long status;
842 
843         status = ia64_pal_cache_summary(&levels, &unique_caches);
844         if (status != 0) {
845                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
846                        __func__, status);
847                 max = SMP_CACHE_BYTES;
848 		/* Safest setup for "flush_icache_range()" */
849 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
850 		/* Safest setup for "clflush_cache_range()" */
851 		ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
852 		goto out;
853         }
854 
855 	for (l = 0; l < levels; ++l) {
856 		/* cache_type (data_or_unified)=2 */
857 		status = ia64_pal_cache_config_info(l, 2, &cci);
858 		if (status != 0) {
859 			printk(KERN_ERR "%s: ia64_pal_cache_config_info"
860 				"(l=%lu, 2) failed (status=%ld)\n",
861 				__func__, l, status);
862 			max = SMP_CACHE_BYTES;
863 			/* The safest setup for "flush_icache_range()" */
864 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
865 			/* The safest setup for "clflush_cache_range()" */
866 			ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
867 			cci.pcci_unified = 1;
868 		} else {
869 			if (cci.pcci_stride < ia64_cache_stride_shift)
870 				ia64_cache_stride_shift = cci.pcci_stride;
871 
872 			line_size = 1 << cci.pcci_line_size;
873 			if (line_size > max)
874 				max = line_size;
875 		}
876 
877 		if (!cci.pcci_unified) {
878 			/* cache_type (instruction)=1*/
879 			status = ia64_pal_cache_config_info(l, 1, &cci);
880 			if (status != 0) {
881 				printk(KERN_ERR "%s: ia64_pal_cache_config_info"
882 					"(l=%lu, 1) failed (status=%ld)\n",
883 					__func__, l, status);
884 				/* The safest setup for flush_icache_range() */
885 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
886 			}
887 		}
888 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
889 			ia64_i_cache_stride_shift = cci.pcci_stride;
890 	}
891   out:
892 	if (max > ia64_max_cacheline_size)
893 		ia64_max_cacheline_size = max;
894 }
895 
896 /*
897  * cpu_init() initializes state that is per-CPU.  This function acts
898  * as a 'CPU state barrier', nothing should get across.
899  */
900 void __cpuinit
cpu_init(void)901 cpu_init (void)
902 {
903 	extern void __cpuinit ia64_mmu_init (void *);
904 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
905 	unsigned long num_phys_stacked;
906 	pal_vm_info_2_u_t vmi;
907 	unsigned int max_ctx;
908 	struct cpuinfo_ia64 *cpu_info;
909 	void *cpu_data;
910 
911 	cpu_data = per_cpu_init();
912 #ifdef CONFIG_SMP
913 	/*
914 	 * insert boot cpu into sibling and core mapes
915 	 * (must be done after per_cpu area is setup)
916 	 */
917 	if (smp_processor_id() == 0) {
918 		cpu_set(0, per_cpu(cpu_sibling_map, 0));
919 		cpu_set(0, cpu_core_map[0]);
920 	} else {
921 		/*
922 		 * Set ar.k3 so that assembly code in MCA handler can compute
923 		 * physical addresses of per cpu variables with a simple:
924 		 *   phys = ar.k3 + &per_cpu_var
925 		 * and the alt-dtlb-miss handler can set per-cpu mapping into
926 		 * the TLB when needed. head.S already did this for cpu0.
927 		 */
928 		ia64_set_kr(IA64_KR_PER_CPU_DATA,
929 			    ia64_tpa(cpu_data) - (long) __per_cpu_start);
930 	}
931 #endif
932 
933 	get_cache_info();
934 
935 	/*
936 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
937 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
938 	 * depends on the data returned by identify_cpu().  We break the dependency by
939 	 * accessing cpu_data() through the canonical per-CPU address.
940 	 */
941 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
942 	identify_cpu(cpu_info);
943 
944 #ifdef CONFIG_MCKINLEY
945 	{
946 #		define FEATURE_SET 16
947 		struct ia64_pal_retval iprv;
948 
949 		if (cpu_info->family == 0x1f) {
950 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
951 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
952 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
953 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
954 		}
955 	}
956 #endif
957 
958 	/* Clear the stack memory reserved for pt_regs: */
959 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
960 
961 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
962 
963 	/*
964 	 * Initialize the page-table base register to a global
965 	 * directory with all zeroes.  This ensure that we can handle
966 	 * TLB-misses to user address-space even before we created the
967 	 * first user address-space.  This may happen, e.g., due to
968 	 * aggressive use of lfetch.fault.
969 	 */
970 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
971 
972 	/*
973 	 * Initialize default control register to defer speculative faults except
974 	 * for those arising from TLB misses, which are not deferred.  The
975 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
976 	 * the kernel must have recovery code for all speculative accesses).  Turn on
977 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
978 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
979 	 * be fine).
980 	 */
981 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
982 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
983 	atomic_inc(&init_mm.mm_count);
984 	current->active_mm = &init_mm;
985 	BUG_ON(current->mm);
986 
987 	ia64_mmu_init(ia64_imva(cpu_data));
988 	ia64_mca_cpu_init(ia64_imva(cpu_data));
989 
990 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
991 	ia64_set_itc(0);
992 
993 	/* disable all local interrupt sources: */
994 	ia64_set_itv(1 << 16);
995 	ia64_set_lrr0(1 << 16);
996 	ia64_set_lrr1(1 << 16);
997 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
998 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
999 
1000 	/* clear TPR & XTP to enable all interrupt classes: */
1001 	ia64_setreg(_IA64_REG_CR_TPR, 0);
1002 
1003 	/* Clear any pending interrupts left by SAL/EFI */
1004 	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1005 		ia64_eoi();
1006 
1007 #ifdef CONFIG_SMP
1008 	normal_xtp();
1009 #endif
1010 
1011 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1012 	if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1013 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1014 		setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1015 	} else {
1016 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1017 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
1018 	}
1019 	while (max_ctx < ia64_ctx.max_ctx) {
1020 		unsigned int old = ia64_ctx.max_ctx;
1021 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1022 			break;
1023 	}
1024 
1025 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1026 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1027 		       "stacked regs\n");
1028 		num_phys_stacked = 96;
1029 	}
1030 	/* size of physical stacked register partition plus 8 bytes: */
1031 	if (num_phys_stacked > max_num_phys_stacked) {
1032 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1033 		max_num_phys_stacked = num_phys_stacked;
1034 	}
1035 	platform_cpu_init();
1036 	pm_idle = default_idle;
1037 }
1038 
1039 void __init
check_bugs(void)1040 check_bugs (void)
1041 {
1042 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1043 			       (unsigned long) __end___mckinley_e9_bundles);
1044 }
1045 
run_dmi_scan(void)1046 static int __init run_dmi_scan(void)
1047 {
1048 	dmi_scan_machine();
1049 	return 0;
1050 }
1051 core_initcall(run_dmi_scan);
1052