1 /*
2 * linux/arch/ia64/kernel/time.c
3 *
4 * Copyright (C) 1998-2001 Hewlett-Packard Co
5 * Copyright (C) 1998-2000 Stephane Eranian <eranian@hpl.hp.com>
6 * Copyright (C) 1999-2001 David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10 */
11 #include <linux/config.h>
12
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/time.h>
17 #include <linux/interrupt.h>
18 #include <linux/efi.h>
19
20 #include <asm/delay.h>
21 #include <asm/hw_irq.h>
22 #include <asm/ptrace.h>
23 #include <asm/sal.h>
24 #include <asm/system.h>
25
26 extern rwlock_t xtime_lock;
27 extern unsigned long wall_jiffies;
28 extern unsigned long last_time_offset;
29
30 #ifdef CONFIG_IA64_DEBUG_IRQ
31
32 unsigned long last_cli_ip;
33
34 #endif
35
36 static void
do_profile(unsigned long ip)37 do_profile (unsigned long ip)
38 {
39 extern unsigned long prof_cpu_mask;
40 extern char _stext;
41
42 if (!prof_buffer)
43 return;
44
45 if (!((1UL << smp_processor_id()) & prof_cpu_mask))
46 return;
47
48 ip -= (unsigned long) &_stext;
49 ip >>= prof_shift;
50 /*
51 * Don't ignore out-of-bounds IP values silently, put them into the last
52 * histogram slot, so if present, they will show up as a sharp peak.
53 */
54 if (ip > prof_len - 1)
55 ip = prof_len - 1;
56
57 atomic_inc((atomic_t *) &prof_buffer[ip]);
58 }
59
60 /*
61 * Return the number of micro-seconds that elapsed since the last update to jiffy. The
62 * xtime_lock must be at least read-locked when calling this routine.
63 */
64 static inline unsigned long
gettimeoffset(void)65 gettimeoffset (void)
66 {
67 unsigned long elapsed_cycles, lost = jiffies - wall_jiffies;
68 unsigned long now, last_tick;
69 # define time_keeper_id 0 /* smp_processor_id() of time-keeper */
70
71 last_tick = (cpu_data(time_keeper_id)->itm_next
72 - (lost + 1)*cpu_data(time_keeper_id)->itm_delta);
73
74 now = ia64_get_itc();
75 if ((long) (now - last_tick) < 0) {
76 printk(KERN_ERR "CPU %d: now < last_tick (now=0x%lx,last_tick=0x%lx)!\n",
77 smp_processor_id(), now, last_tick);
78 return last_time_offset;
79 }
80 elapsed_cycles = now - last_tick;
81 return (elapsed_cycles*local_cpu_data->usec_per_cyc) >> IA64_USEC_PER_CYC_SHIFT;
82 }
83
84 void
do_settimeofday(struct timeval * tv)85 do_settimeofday (struct timeval *tv)
86 {
87 write_lock_irq(&xtime_lock);
88 {
89 /*
90 * This is revolting. We need to set "xtime" correctly. However, the value
91 * in this location is the value at the most recent update of wall time.
92 * Discover what correction gettimeofday would have done, and then undo
93 * it!
94 */
95 tv->tv_usec -= gettimeoffset();
96
97 while (tv->tv_usec < 0) {
98 tv->tv_usec += 1000000;
99 tv->tv_sec--;
100 }
101
102 xtime = *tv;
103 time_adjust = 0; /* stop active adjtime() */
104 time_status |= STA_UNSYNC;
105 time_maxerror = NTP_PHASE_LIMIT;
106 time_esterror = NTP_PHASE_LIMIT;
107 }
108 write_unlock_irq(&xtime_lock);
109 }
110
111 void
do_gettimeofday(struct timeval * tv)112 do_gettimeofday (struct timeval *tv)
113 {
114 unsigned long flags, usec, sec, old;
115
116 read_lock_irqsave(&xtime_lock, flags);
117 {
118 usec = gettimeoffset();
119
120 /*
121 * Ensure time never goes backwards, even when ITC on different CPUs are
122 * not perfectly synchronized.
123 */
124 do {
125 old = last_time_offset;
126 if (usec <= old) {
127 usec = old;
128 break;
129 }
130 } while (cmpxchg(&last_time_offset, old, usec) != old);
131
132 sec = xtime.tv_sec;
133 usec += xtime.tv_usec;
134 }
135 read_unlock_irqrestore(&xtime_lock, flags);
136
137 while (usec >= 1000000) {
138 usec -= 1000000;
139 ++sec;
140 }
141
142 tv->tv_sec = sec;
143 tv->tv_usec = usec;
144 }
145
146 static void
timer_interrupt(int irq,void * dev_id,struct pt_regs * regs)147 timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
148 {
149 unsigned long new_itm;
150
151 new_itm = local_cpu_data->itm_next;
152
153 if (!time_after(ia64_get_itc(), new_itm))
154 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
155 ia64_get_itc(), new_itm);
156
157 while (1) {
158 /*
159 * Do kernel PC profiling here. We multiply the instruction number by
160 * four so that we can use a prof_shift of 2 to get instruction-level
161 * instead of just bundle-level accuracy.
162 */
163 if (!user_mode(regs))
164 do_profile(regs->cr_iip + 4*ia64_psr(regs)->ri);
165
166 #ifdef CONFIG_SMP
167 smp_do_timer(regs);
168 #endif
169 new_itm += local_cpu_data->itm_delta;
170
171 if (smp_processor_id() == 0) {
172 /*
173 * Here we are in the timer irq handler. We have irqs locally
174 * disabled, but we don't know if the timer_bh is running on
175 * another CPU. We need to avoid to SMP race by acquiring the
176 * xtime_lock.
177 */
178 write_lock(&xtime_lock);
179 do_timer(regs);
180 local_cpu_data->itm_next = new_itm;
181 write_unlock(&xtime_lock);
182 } else
183 local_cpu_data->itm_next = new_itm;
184
185 if (time_after(new_itm, ia64_get_itc()))
186 break;
187 }
188
189 do {
190 /*
191 * If we're too close to the next clock tick for comfort, we increase the
192 * saftey margin by intentionally dropping the next tick(s). We do NOT update
193 * itm.next because that would force us to call do_timer() which in turn would
194 * let our clock run too fast (with the potentially devastating effect of
195 * losing monotony of time).
196 */
197 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
198 new_itm += local_cpu_data->itm_delta;
199 ia64_set_itm(new_itm);
200 /* double check, in case we got hit by a (slow) PMI: */
201 } while (time_after_eq(ia64_get_itc(), new_itm));
202 }
203
204 /*
205 * Encapsulate access to the itm structure for SMP.
206 */
207 void __init
ia64_cpu_local_tick(void)208 ia64_cpu_local_tick (void)
209 {
210 int cpu = smp_processor_id();
211 unsigned long shift = 0, delta;
212
213 /* arrange for the cycle counter to generate a timer interrupt: */
214 ia64_set_itv(IA64_TIMER_VECTOR);
215
216 delta = local_cpu_data->itm_delta;
217 /*
218 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
219 * same time:
220 */
221 if (cpu) {
222 unsigned long hi = 1UL << ia64_fls(cpu);
223 shift = (2*(cpu - hi) + 1) * delta/hi/2;
224 }
225 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
226 ia64_set_itm(local_cpu_data->itm_next);
227 }
228
229 void __init
ia64_init_itm(void)230 ia64_init_itm (void)
231 {
232 unsigned long platform_base_freq, itc_freq, drift;
233 struct pal_freq_ratio itc_ratio, proc_ratio;
234 long status;
235
236 /*
237 * According to SAL v2.6, we need to use a SAL call to determine the platform base
238 * frequency and then a PAL call to determine the frequency ratio between the ITC
239 * and the base frequency.
240 */
241 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM, &platform_base_freq, &drift);
242 if (status != 0) {
243 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
244 } else {
245 status = ia64_pal_freq_ratios(&proc_ratio, 0, &itc_ratio);
246 if (status != 0)
247 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
248 }
249 if (status != 0) {
250 /* invent "random" values */
251 printk(KERN_ERR
252 "SAL/PAL failed to obtain frequency info---inventing reasonably values\n");
253 platform_base_freq = 100000000;
254 itc_ratio.num = 3;
255 itc_ratio.den = 1;
256 }
257 if (platform_base_freq < 40000000) {
258 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
259 platform_base_freq);
260 platform_base_freq = 75000000;
261 }
262 if (!proc_ratio.den)
263 proc_ratio.den = 1; /* avoid division by zero */
264 if (!itc_ratio.den)
265 itc_ratio.den = 1; /* avoid division by zero */
266
267 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
268 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
269 printk(KERN_INFO "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, "
270 "ITC freq=%lu.%03luMHz\n", smp_processor_id(),
271 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
272 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
273
274 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
275 local_cpu_data->itc_freq = itc_freq;
276 local_cpu_data->cyc_per_usec = (itc_freq + 500000) / 1000000;
277 local_cpu_data->usec_per_cyc = ((1000000UL<<IA64_USEC_PER_CYC_SHIFT)
278 + itc_freq/2)/itc_freq;
279
280 /* Setup the CPU local timer tick */
281 ia64_cpu_local_tick();
282 }
283
284 static struct irqaction timer_irqaction = {
285 .handler = timer_interrupt,
286 .flags = SA_INTERRUPT,
287 .name = "timer"
288 };
289
290 void __init
time_init(void)291 time_init (void)
292 {
293 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
294 efi_gettimeofday((struct timeval *) &xtime);
295 ia64_init_itm();
296 }
297