1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2001 Hewlett-Packard Co
5  * Copyright (C) 1998-2000 Stephane Eranian <eranian@hpl.hp.com>
6  * Copyright (C) 1999-2001 David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 #include <linux/config.h>
12 
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/time.h>
17 #include <linux/interrupt.h>
18 #include <linux/efi.h>
19 
20 #include <asm/delay.h>
21 #include <asm/hw_irq.h>
22 #include <asm/ptrace.h>
23 #include <asm/sal.h>
24 #include <asm/system.h>
25 
26 extern rwlock_t xtime_lock;
27 extern unsigned long wall_jiffies;
28 extern unsigned long last_time_offset;
29 
30 #ifdef CONFIG_IA64_DEBUG_IRQ
31 
32 unsigned long last_cli_ip;
33 
34 #endif
35 
36 static void
do_profile(unsigned long ip)37 do_profile (unsigned long ip)
38 {
39 	extern unsigned long prof_cpu_mask;
40 	extern char _stext;
41 
42 	if (!prof_buffer)
43 		return;
44 
45 	if (!((1UL << smp_processor_id()) & prof_cpu_mask))
46 		return;
47 
48 	ip -= (unsigned long) &_stext;
49 	ip >>= prof_shift;
50 	/*
51 	 * Don't ignore out-of-bounds IP values silently, put them into the last
52 	 * histogram slot, so if present, they will show up as a sharp peak.
53 	 */
54 	if (ip > prof_len - 1)
55 		ip = prof_len - 1;
56 
57 	atomic_inc((atomic_t *) &prof_buffer[ip]);
58 }
59 
60 /*
61  * Return the number of micro-seconds that elapsed since the last update to jiffy.  The
62  * xtime_lock must be at least read-locked when calling this routine.
63  */
64 static inline unsigned long
gettimeoffset(void)65 gettimeoffset (void)
66 {
67 	unsigned long elapsed_cycles, lost = jiffies - wall_jiffies;
68 	unsigned long now, last_tick;
69 #	define time_keeper_id	0	/* smp_processor_id() of time-keeper */
70 
71 	last_tick = (cpu_data(time_keeper_id)->itm_next
72 		     - (lost + 1)*cpu_data(time_keeper_id)->itm_delta);
73 
74 	now = ia64_get_itc();
75 	if ((long) (now - last_tick) < 0) {
76 		printk(KERN_ERR "CPU %d: now < last_tick (now=0x%lx,last_tick=0x%lx)!\n",
77 		       smp_processor_id(), now, last_tick);
78 		return last_time_offset;
79 	}
80 	elapsed_cycles = now - last_tick;
81 	return (elapsed_cycles*local_cpu_data->usec_per_cyc) >> IA64_USEC_PER_CYC_SHIFT;
82 }
83 
84 void
do_settimeofday(struct timeval * tv)85 do_settimeofday (struct timeval *tv)
86 {
87 	write_lock_irq(&xtime_lock);
88 	{
89 		/*
90 		 * This is revolting. We need to set "xtime" correctly. However, the value
91 		 * in this location is the value at the most recent update of wall time.
92 		 * Discover what correction gettimeofday would have done, and then undo
93 		 * it!
94 		 */
95 		tv->tv_usec -= gettimeoffset();
96 
97 		while (tv->tv_usec < 0) {
98 			tv->tv_usec += 1000000;
99 			tv->tv_sec--;
100 		}
101 
102 		xtime = *tv;
103 		time_adjust = 0;		/* stop active adjtime() */
104 		time_status |= STA_UNSYNC;
105 		time_maxerror = NTP_PHASE_LIMIT;
106 		time_esterror = NTP_PHASE_LIMIT;
107 	}
108 	write_unlock_irq(&xtime_lock);
109 }
110 
111 void
do_gettimeofday(struct timeval * tv)112 do_gettimeofday (struct timeval *tv)
113 {
114 	unsigned long flags, usec, sec, old;
115 
116 	read_lock_irqsave(&xtime_lock, flags);
117 	{
118 		usec = gettimeoffset();
119 
120 		/*
121 		 * Ensure time never goes backwards, even when ITC on different CPUs are
122 		 * not perfectly synchronized.
123 		 */
124 		do {
125 			old = last_time_offset;
126 			if (usec <= old) {
127 				usec = old;
128 				break;
129 			}
130 		} while (cmpxchg(&last_time_offset, old, usec) != old);
131 
132 		sec = xtime.tv_sec;
133 		usec += xtime.tv_usec;
134 	}
135 	read_unlock_irqrestore(&xtime_lock, flags);
136 
137 	while (usec >= 1000000) {
138 		usec -= 1000000;
139 		++sec;
140 	}
141 
142 	tv->tv_sec = sec;
143 	tv->tv_usec = usec;
144 }
145 
146 static void
timer_interrupt(int irq,void * dev_id,struct pt_regs * regs)147 timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
148 {
149 	unsigned long new_itm;
150 
151 	new_itm = local_cpu_data->itm_next;
152 
153 	if (!time_after(ia64_get_itc(), new_itm))
154 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
155 		       ia64_get_itc(), new_itm);
156 
157 	while (1) {
158 		/*
159 		 * Do kernel PC profiling here.  We multiply the instruction number by
160 		 * four so that we can use a prof_shift of 2 to get instruction-level
161 		 * instead of just bundle-level accuracy.
162 		 */
163 		if (!user_mode(regs))
164 			do_profile(regs->cr_iip + 4*ia64_psr(regs)->ri);
165 
166 #ifdef CONFIG_SMP
167 		smp_do_timer(regs);
168 #endif
169 		new_itm += local_cpu_data->itm_delta;
170 
171 		if (smp_processor_id() == 0) {
172 			/*
173 			 * Here we are in the timer irq handler. We have irqs locally
174 			 * disabled, but we don't know if the timer_bh is running on
175 			 * another CPU. We need to avoid to SMP race by acquiring the
176 			 * xtime_lock.
177 			 */
178 			write_lock(&xtime_lock);
179 			do_timer(regs);
180 			local_cpu_data->itm_next = new_itm;
181 			write_unlock(&xtime_lock);
182 		} else
183 			local_cpu_data->itm_next = new_itm;
184 
185 		if (time_after(new_itm, ia64_get_itc()))
186 			break;
187 	}
188 
189 	do {
190 	    /*
191 	     * If we're too close to the next clock tick for comfort, we increase the
192 	     * saftey margin by intentionally dropping the next tick(s).  We do NOT update
193 	     * itm.next because that would force us to call do_timer() which in turn would
194 	     * let our clock run too fast (with the potentially devastating effect of
195 	     * losing monotony of time).
196 	     */
197 	    while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
198 	      new_itm += local_cpu_data->itm_delta;
199 	    ia64_set_itm(new_itm);
200 	    /* double check, in case we got hit by a (slow) PMI: */
201 	} while (time_after_eq(ia64_get_itc(), new_itm));
202 }
203 
204 /*
205  * Encapsulate access to the itm structure for SMP.
206  */
207 void __init
ia64_cpu_local_tick(void)208 ia64_cpu_local_tick (void)
209 {
210 	int cpu = smp_processor_id();
211 	unsigned long shift = 0, delta;
212 
213 	/* arrange for the cycle counter to generate a timer interrupt: */
214 	ia64_set_itv(IA64_TIMER_VECTOR);
215 
216 	delta = local_cpu_data->itm_delta;
217 	/*
218 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
219 	 * same time:
220 	 */
221 	if (cpu) {
222 		unsigned long hi = 1UL << ia64_fls(cpu);
223 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
224 	}
225 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
226 	ia64_set_itm(local_cpu_data->itm_next);
227 }
228 
229 void __init
ia64_init_itm(void)230 ia64_init_itm (void)
231 {
232 	unsigned long platform_base_freq, itc_freq, drift;
233 	struct pal_freq_ratio itc_ratio, proc_ratio;
234 	long status;
235 
236 	/*
237 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
238 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
239 	 * and the base frequency.
240 	 */
241 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM, &platform_base_freq, &drift);
242 	if (status != 0) {
243 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
244 	} else {
245 		status = ia64_pal_freq_ratios(&proc_ratio, 0, &itc_ratio);
246 		if (status != 0)
247 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
248 	}
249 	if (status != 0) {
250 		/* invent "random" values */
251 		printk(KERN_ERR
252 		       "SAL/PAL failed to obtain frequency info---inventing reasonably values\n");
253 		platform_base_freq = 100000000;
254 		itc_ratio.num = 3;
255 		itc_ratio.den = 1;
256 	}
257 	if (platform_base_freq < 40000000) {
258 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
259 		       platform_base_freq);
260 		platform_base_freq = 75000000;
261 	}
262 	if (!proc_ratio.den)
263 		proc_ratio.den = 1;	/* avoid division by zero */
264 	if (!itc_ratio.den)
265 		itc_ratio.den = 1;	/* avoid division by zero */
266 
267 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
268 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
269 	printk(KERN_INFO "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, "
270 	       "ITC freq=%lu.%03luMHz\n", smp_processor_id(),
271 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
272 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
273 
274 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
275 	local_cpu_data->itc_freq = itc_freq;
276 	local_cpu_data->cyc_per_usec = (itc_freq + 500000) / 1000000;
277 	local_cpu_data->usec_per_cyc = ((1000000UL<<IA64_USEC_PER_CYC_SHIFT)
278 					+ itc_freq/2)/itc_freq;
279 
280 	/* Setup the CPU local timer tick */
281 	ia64_cpu_local_tick();
282 }
283 
284 static struct irqaction timer_irqaction = {
285 	.handler =	timer_interrupt,
286 	.flags =	SA_INTERRUPT,
287 	.name =		"timer"
288 };
289 
290 void __init
time_init(void)291 time_init (void)
292 {
293 	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
294 	efi_gettimeofday((struct timeval *) &xtime);
295 	ia64_init_itm();
296 }
297