1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 			  unsigned from, unsigned to);
24 
reiserfs_evict_inode(struct inode * inode)25 void reiserfs_evict_inode(struct inode *inode)
26 {
27 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 	int jbegin_count =
29 	    JOURNAL_PER_BALANCE_CNT * 2 +
30 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 	struct reiserfs_transaction_handle th;
32 	int depth;
33 	int err;
34 
35 	if (!inode->i_nlink && !is_bad_inode(inode))
36 		dquot_initialize(inode);
37 
38 	truncate_inode_pages(&inode->i_data, 0);
39 	if (inode->i_nlink)
40 		goto no_delete;
41 
42 	depth = reiserfs_write_lock_once(inode->i_sb);
43 
44 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
46 		reiserfs_delete_xattrs(inode);
47 
48 		if (journal_begin(&th, inode->i_sb, jbegin_count))
49 			goto out;
50 		reiserfs_update_inode_transaction(inode);
51 
52 		reiserfs_discard_prealloc(&th, inode);
53 
54 		err = reiserfs_delete_object(&th, inode);
55 
56 		/* Do quota update inside a transaction for journaled quotas. We must do that
57 		 * after delete_object so that quota updates go into the same transaction as
58 		 * stat data deletion */
59 		if (!err)
60 			dquot_free_inode(inode);
61 
62 		if (journal_end(&th, inode->i_sb, jbegin_count))
63 			goto out;
64 
65 		/* check return value from reiserfs_delete_object after
66 		 * ending the transaction
67 		 */
68 		if (err)
69 		    goto out;
70 
71 		/* all items of file are deleted, so we can remove "save" link */
72 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
73 								 * about an error here */
74 	} else {
75 		/* no object items are in the tree */
76 		;
77 	}
78       out:
79 	end_writeback(inode);	/* note this must go after the journal_end to prevent deadlock */
80 	dquot_drop(inode);
81 	inode->i_blocks = 0;
82 	reiserfs_write_unlock_once(inode->i_sb, depth);
83 	return;
84 
85 no_delete:
86 	end_writeback(inode);
87 	dquot_drop(inode);
88 }
89 
_make_cpu_key(struct cpu_key * key,int version,__u32 dirid,__u32 objectid,loff_t offset,int type,int length)90 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
91 			  __u32 objectid, loff_t offset, int type, int length)
92 {
93 	key->version = version;
94 
95 	key->on_disk_key.k_dir_id = dirid;
96 	key->on_disk_key.k_objectid = objectid;
97 	set_cpu_key_k_offset(key, offset);
98 	set_cpu_key_k_type(key, type);
99 	key->key_length = length;
100 }
101 
102 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
103    offset and type of key */
make_cpu_key(struct cpu_key * key,struct inode * inode,loff_t offset,int type,int length)104 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
105 		  int type, int length)
106 {
107 	_make_cpu_key(key, get_inode_item_key_version(inode),
108 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
109 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
110 		      length);
111 }
112 
113 //
114 // when key is 0, do not set version and short key
115 //
make_le_item_head(struct item_head * ih,const struct cpu_key * key,int version,loff_t offset,int type,int length,int entry_count)116 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
117 			      int version,
118 			      loff_t offset, int type, int length,
119 			      int entry_count /*or ih_free_space */ )
120 {
121 	if (key) {
122 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
123 		ih->ih_key.k_objectid =
124 		    cpu_to_le32(key->on_disk_key.k_objectid);
125 	}
126 	put_ih_version(ih, version);
127 	set_le_ih_k_offset(ih, offset);
128 	set_le_ih_k_type(ih, type);
129 	put_ih_item_len(ih, length);
130 	/*    set_ih_free_space (ih, 0); */
131 	// for directory items it is entry count, for directs and stat
132 	// datas - 0xffff, for indirects - 0
133 	put_ih_entry_count(ih, entry_count);
134 }
135 
136 //
137 // FIXME: we might cache recently accessed indirect item
138 
139 // Ugh.  Not too eager for that....
140 //  I cut the code until such time as I see a convincing argument (benchmark).
141 // I don't want a bloated inode struct..., and I don't like code complexity....
142 
143 /* cutting the code is fine, since it really isn't in use yet and is easy
144 ** to add back in.  But, Vladimir has a really good idea here.  Think
145 ** about what happens for reading a file.  For each page,
146 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
147 ** an indirect item.  This indirect item has X number of pointers, where
148 ** X is a big number if we've done the block allocation right.  But,
149 ** we only use one or two of these pointers during each call to readpage,
150 ** needlessly researching again later on.
151 **
152 ** The size of the cache could be dynamic based on the size of the file.
153 **
154 ** I'd also like to see us cache the location the stat data item, since
155 ** we are needlessly researching for that frequently.
156 **
157 ** --chris
158 */
159 
160 /* If this page has a file tail in it, and
161 ** it was read in by get_block_create_0, the page data is valid,
162 ** but tail is still sitting in a direct item, and we can't write to
163 ** it.  So, look through this page, and check all the mapped buffers
164 ** to make sure they have valid block numbers.  Any that don't need
165 ** to be unmapped, so that __block_write_begin will correctly call
166 ** reiserfs_get_block to convert the tail into an unformatted node
167 */
fix_tail_page_for_writing(struct page * page)168 static inline void fix_tail_page_for_writing(struct page *page)
169 {
170 	struct buffer_head *head, *next, *bh;
171 
172 	if (page && page_has_buffers(page)) {
173 		head = page_buffers(page);
174 		bh = head;
175 		do {
176 			next = bh->b_this_page;
177 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
178 				reiserfs_unmap_buffer(bh);
179 			}
180 			bh = next;
181 		} while (bh != head);
182 	}
183 }
184 
185 /* reiserfs_get_block does not need to allocate a block only if it has been
186    done already or non-hole position has been found in the indirect item */
allocation_needed(int retval,b_blocknr_t allocated,struct item_head * ih,__le32 * item,int pos_in_item)187 static inline int allocation_needed(int retval, b_blocknr_t allocated,
188 				    struct item_head *ih,
189 				    __le32 * item, int pos_in_item)
190 {
191 	if (allocated)
192 		return 0;
193 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
194 	    get_block_num(item, pos_in_item))
195 		return 0;
196 	return 1;
197 }
198 
indirect_item_found(int retval,struct item_head * ih)199 static inline int indirect_item_found(int retval, struct item_head *ih)
200 {
201 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
202 }
203 
set_block_dev_mapped(struct buffer_head * bh,b_blocknr_t block,struct inode * inode)204 static inline void set_block_dev_mapped(struct buffer_head *bh,
205 					b_blocknr_t block, struct inode *inode)
206 {
207 	map_bh(bh, inode->i_sb, block);
208 }
209 
210 //
211 // files which were created in the earlier version can not be longer,
212 // than 2 gb
213 //
file_capable(struct inode * inode,sector_t block)214 static int file_capable(struct inode *inode, sector_t block)
215 {
216 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
217 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
218 		return 1;
219 
220 	return 0;
221 }
222 
restart_transaction(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path)223 static int restart_transaction(struct reiserfs_transaction_handle *th,
224 			       struct inode *inode, struct treepath *path)
225 {
226 	struct super_block *s = th->t_super;
227 	int len = th->t_blocks_allocated;
228 	int err;
229 
230 	BUG_ON(!th->t_trans_id);
231 	BUG_ON(!th->t_refcount);
232 
233 	pathrelse(path);
234 
235 	/* we cannot restart while nested */
236 	if (th->t_refcount > 1) {
237 		return 0;
238 	}
239 	reiserfs_update_sd(th, inode);
240 	err = journal_end(th, s, len);
241 	if (!err) {
242 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
243 		if (!err)
244 			reiserfs_update_inode_transaction(inode);
245 	}
246 	return err;
247 }
248 
249 // it is called by get_block when create == 0. Returns block number
250 // for 'block'-th logical block of file. When it hits direct item it
251 // returns 0 (being called from bmap) or read direct item into piece
252 // of page (bh_result)
253 
254 // Please improve the english/clarity in the comment above, as it is
255 // hard to understand.
256 
_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int args)257 static int _get_block_create_0(struct inode *inode, sector_t block,
258 			       struct buffer_head *bh_result, int args)
259 {
260 	INITIALIZE_PATH(path);
261 	struct cpu_key key;
262 	struct buffer_head *bh;
263 	struct item_head *ih, tmp_ih;
264 	b_blocknr_t blocknr;
265 	char *p = NULL;
266 	int chars;
267 	int ret;
268 	int result;
269 	int done = 0;
270 	unsigned long offset;
271 
272 	// prepare the key to look for the 'block'-th block of file
273 	make_cpu_key(&key, inode,
274 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
275 		     3);
276 
277 	result = search_for_position_by_key(inode->i_sb, &key, &path);
278 	if (result != POSITION_FOUND) {
279 		pathrelse(&path);
280 		if (p)
281 			kunmap(bh_result->b_page);
282 		if (result == IO_ERROR)
283 			return -EIO;
284 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
285 		// That there is some MMAPED data associated with it that is yet to be written to disk.
286 		if ((args & GET_BLOCK_NO_HOLE)
287 		    && !PageUptodate(bh_result->b_page)) {
288 			return -ENOENT;
289 		}
290 		return 0;
291 	}
292 	//
293 	bh = get_last_bh(&path);
294 	ih = get_ih(&path);
295 	if (is_indirect_le_ih(ih)) {
296 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
297 
298 		/* FIXME: here we could cache indirect item or part of it in
299 		   the inode to avoid search_by_key in case of subsequent
300 		   access to file */
301 		blocknr = get_block_num(ind_item, path.pos_in_item);
302 		ret = 0;
303 		if (blocknr) {
304 			map_bh(bh_result, inode->i_sb, blocknr);
305 			if (path.pos_in_item ==
306 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
307 				set_buffer_boundary(bh_result);
308 			}
309 		} else
310 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
311 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
312 		if ((args & GET_BLOCK_NO_HOLE)
313 			    && !PageUptodate(bh_result->b_page)) {
314 			ret = -ENOENT;
315 		}
316 
317 		pathrelse(&path);
318 		if (p)
319 			kunmap(bh_result->b_page);
320 		return ret;
321 	}
322 	// requested data are in direct item(s)
323 	if (!(args & GET_BLOCK_READ_DIRECT)) {
324 		// we are called by bmap. FIXME: we can not map block of file
325 		// when it is stored in direct item(s)
326 		pathrelse(&path);
327 		if (p)
328 			kunmap(bh_result->b_page);
329 		return -ENOENT;
330 	}
331 
332 	/* if we've got a direct item, and the buffer or page was uptodate,
333 	 ** we don't want to pull data off disk again.  skip to the
334 	 ** end, where we map the buffer and return
335 	 */
336 	if (buffer_uptodate(bh_result)) {
337 		goto finished;
338 	} else
339 		/*
340 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
341 		 ** pages without any buffers.  If the page is up to date, we don't want
342 		 ** read old data off disk.  Set the up to date bit on the buffer instead
343 		 ** and jump to the end
344 		 */
345 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
346 		set_buffer_uptodate(bh_result);
347 		goto finished;
348 	}
349 	// read file tail into part of page
350 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
351 	copy_item_head(&tmp_ih, ih);
352 
353 	/* we only want to kmap if we are reading the tail into the page.
354 	 ** this is not the common case, so we don't kmap until we are
355 	 ** sure we need to.  But, this means the item might move if
356 	 ** kmap schedules
357 	 */
358 	if (!p)
359 		p = (char *)kmap(bh_result->b_page);
360 
361 	p += offset;
362 	memset(p, 0, inode->i_sb->s_blocksize);
363 	do {
364 		if (!is_direct_le_ih(ih)) {
365 			BUG();
366 		}
367 		/* make sure we don't read more bytes than actually exist in
368 		 ** the file.  This can happen in odd cases where i_size isn't
369 		 ** correct, and when direct item padding results in a few
370 		 ** extra bytes at the end of the direct item
371 		 */
372 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
373 			break;
374 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
375 			chars =
376 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
377 			    path.pos_in_item;
378 			done = 1;
379 		} else {
380 			chars = ih_item_len(ih) - path.pos_in_item;
381 		}
382 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
383 
384 		if (done)
385 			break;
386 
387 		p += chars;
388 
389 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
390 			// we done, if read direct item is not the last item of
391 			// node FIXME: we could try to check right delimiting key
392 			// to see whether direct item continues in the right
393 			// neighbor or rely on i_size
394 			break;
395 
396 		// update key to look for the next piece
397 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
398 		result = search_for_position_by_key(inode->i_sb, &key, &path);
399 		if (result != POSITION_FOUND)
400 			// i/o error most likely
401 			break;
402 		bh = get_last_bh(&path);
403 		ih = get_ih(&path);
404 	} while (1);
405 
406 	flush_dcache_page(bh_result->b_page);
407 	kunmap(bh_result->b_page);
408 
409       finished:
410 	pathrelse(&path);
411 
412 	if (result == IO_ERROR)
413 		return -EIO;
414 
415 	/* this buffer has valid data, but isn't valid for io.  mapping it to
416 	 * block #0 tells the rest of reiserfs it just has a tail in it
417 	 */
418 	map_bh(bh_result, inode->i_sb, 0);
419 	set_buffer_uptodate(bh_result);
420 	return 0;
421 }
422 
423 // this is called to create file map. So, _get_block_create_0 will not
424 // read direct item
reiserfs_bmap(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)425 static int reiserfs_bmap(struct inode *inode, sector_t block,
426 			 struct buffer_head *bh_result, int create)
427 {
428 	if (!file_capable(inode, block))
429 		return -EFBIG;
430 
431 	reiserfs_write_lock(inode->i_sb);
432 	/* do not read the direct item */
433 	_get_block_create_0(inode, block, bh_result, 0);
434 	reiserfs_write_unlock(inode->i_sb);
435 	return 0;
436 }
437 
438 /* special version of get_block that is only used by grab_tail_page right
439 ** now.  It is sent to __block_write_begin, and when you try to get a
440 ** block past the end of the file (or a block from a hole) it returns
441 ** -ENOENT instead of a valid buffer.  __block_write_begin expects to
442 ** be able to do i/o on the buffers returned, unless an error value
443 ** is also returned.
444 **
445 ** So, this allows __block_write_begin to be used for reading a single block
446 ** in a page.  Where it does not produce a valid page for holes, or past the
447 ** end of the file.  This turns out to be exactly what we need for reading
448 ** tails for conversion.
449 **
450 ** The point of the wrapper is forcing a certain value for create, even
451 ** though the VFS layer is calling this function with create==1.  If you
452 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
453 ** don't use this function.
454 */
reiserfs_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)455 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
456 				       struct buffer_head *bh_result,
457 				       int create)
458 {
459 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
460 }
461 
462 /* This is special helper for reiserfs_get_block in case we are executing
463    direct_IO request. */
reiserfs_get_blocks_direct_io(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)464 static int reiserfs_get_blocks_direct_io(struct inode *inode,
465 					 sector_t iblock,
466 					 struct buffer_head *bh_result,
467 					 int create)
468 {
469 	int ret;
470 
471 	bh_result->b_page = NULL;
472 
473 	/* We set the b_size before reiserfs_get_block call since it is
474 	   referenced in convert_tail_for_hole() that may be called from
475 	   reiserfs_get_block() */
476 	bh_result->b_size = (1 << inode->i_blkbits);
477 
478 	ret = reiserfs_get_block(inode, iblock, bh_result,
479 				 create | GET_BLOCK_NO_DANGLE);
480 	if (ret)
481 		goto out;
482 
483 	/* don't allow direct io onto tail pages */
484 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
485 		/* make sure future calls to the direct io funcs for this offset
486 		 ** in the file fail by unmapping the buffer
487 		 */
488 		clear_buffer_mapped(bh_result);
489 		ret = -EINVAL;
490 	}
491 	/* Possible unpacked tail. Flush the data before pages have
492 	   disappeared */
493 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
494 		int err;
495 
496 		reiserfs_write_lock(inode->i_sb);
497 
498 		err = reiserfs_commit_for_inode(inode);
499 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
500 
501 		reiserfs_write_unlock(inode->i_sb);
502 
503 		if (err < 0)
504 			ret = err;
505 	}
506       out:
507 	return ret;
508 }
509 
510 /*
511 ** helper function for when reiserfs_get_block is called for a hole
512 ** but the file tail is still in a direct item
513 ** bh_result is the buffer head for the hole
514 ** tail_offset is the offset of the start of the tail in the file
515 **
516 ** This calls prepare_write, which will start a new transaction
517 ** you should not be in a transaction, or have any paths held when you
518 ** call this.
519 */
convert_tail_for_hole(struct inode * inode,struct buffer_head * bh_result,loff_t tail_offset)520 static int convert_tail_for_hole(struct inode *inode,
521 				 struct buffer_head *bh_result,
522 				 loff_t tail_offset)
523 {
524 	unsigned long index;
525 	unsigned long tail_end;
526 	unsigned long tail_start;
527 	struct page *tail_page;
528 	struct page *hole_page = bh_result->b_page;
529 	int retval = 0;
530 
531 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
532 		return -EIO;
533 
534 	/* always try to read until the end of the block */
535 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
537 
538 	index = tail_offset >> PAGE_CACHE_SHIFT;
539 	/* hole_page can be zero in case of direct_io, we are sure
540 	   that we cannot get here if we write with O_DIRECT into
541 	   tail page */
542 	if (!hole_page || index != hole_page->index) {
543 		tail_page = grab_cache_page(inode->i_mapping, index);
544 		retval = -ENOMEM;
545 		if (!tail_page) {
546 			goto out;
547 		}
548 	} else {
549 		tail_page = hole_page;
550 	}
551 
552 	/* we don't have to make sure the conversion did not happen while
553 	 ** we were locking the page because anyone that could convert
554 	 ** must first take i_mutex.
555 	 **
556 	 ** We must fix the tail page for writing because it might have buffers
557 	 ** that are mapped, but have a block number of 0.  This indicates tail
558 	 ** data that has been read directly into the page, and
559 	 ** __block_write_begin won't trigger a get_block in this case.
560 	 */
561 	fix_tail_page_for_writing(tail_page);
562 	retval = __reiserfs_write_begin(tail_page, tail_start,
563 				      tail_end - tail_start);
564 	if (retval)
565 		goto unlock;
566 
567 	/* tail conversion might change the data in the page */
568 	flush_dcache_page(tail_page);
569 
570 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
571 
572       unlock:
573 	if (tail_page != hole_page) {
574 		unlock_page(tail_page);
575 		page_cache_release(tail_page);
576 	}
577       out:
578 	return retval;
579 }
580 
_allocate_block(struct reiserfs_transaction_handle * th,sector_t block,struct inode * inode,b_blocknr_t * allocated_block_nr,struct treepath * path,int flags)581 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
582 				  sector_t block,
583 				  struct inode *inode,
584 				  b_blocknr_t * allocated_block_nr,
585 				  struct treepath *path, int flags)
586 {
587 	BUG_ON(!th->t_trans_id);
588 
589 #ifdef REISERFS_PREALLOCATE
590 	if (!(flags & GET_BLOCK_NO_IMUX)) {
591 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
592 						  path, block);
593 	}
594 #endif
595 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
596 					 block);
597 }
598 
reiserfs_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)599 int reiserfs_get_block(struct inode *inode, sector_t block,
600 		       struct buffer_head *bh_result, int create)
601 {
602 	int repeat, retval = 0;
603 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
604 	INITIALIZE_PATH(path);
605 	int pos_in_item;
606 	struct cpu_key key;
607 	struct buffer_head *bh, *unbh = NULL;
608 	struct item_head *ih, tmp_ih;
609 	__le32 *item;
610 	int done;
611 	int fs_gen;
612 	int lock_depth;
613 	struct reiserfs_transaction_handle *th = NULL;
614 	/* space reserved in transaction batch:
615 	   . 3 balancings in direct->indirect conversion
616 	   . 1 block involved into reiserfs_update_sd()
617 	   XXX in practically impossible worst case direct2indirect()
618 	   can incur (much) more than 3 balancings.
619 	   quota update for user, group */
620 	int jbegin_count =
621 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
622 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
623 	int version;
624 	int dangle = 1;
625 	loff_t new_offset =
626 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
627 
628 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
629 	version = get_inode_item_key_version(inode);
630 
631 	if (!file_capable(inode, block)) {
632 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
633 		return -EFBIG;
634 	}
635 
636 	/* if !create, we aren't changing the FS, so we don't need to
637 	 ** log anything, so we don't need to start a transaction
638 	 */
639 	if (!(create & GET_BLOCK_CREATE)) {
640 		int ret;
641 		/* find number of block-th logical block of the file */
642 		ret = _get_block_create_0(inode, block, bh_result,
643 					  create | GET_BLOCK_READ_DIRECT);
644 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
645 		return ret;
646 	}
647 	/*
648 	 * if we're already in a transaction, make sure to close
649 	 * any new transactions we start in this func
650 	 */
651 	if ((create & GET_BLOCK_NO_DANGLE) ||
652 	    reiserfs_transaction_running(inode->i_sb))
653 		dangle = 0;
654 
655 	/* If file is of such a size, that it might have a tail and tails are enabled
656 	 ** we should mark it as possibly needing tail packing on close
657 	 */
658 	if ((have_large_tails(inode->i_sb)
659 	     && inode->i_size < i_block_size(inode) * 4)
660 	    || (have_small_tails(inode->i_sb)
661 		&& inode->i_size < i_block_size(inode)))
662 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
663 
664 	/* set the key of the first byte in the 'block'-th block of file */
665 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
666 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
667 	      start_trans:
668 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
669 		if (!th) {
670 			retval = -ENOMEM;
671 			goto failure;
672 		}
673 		reiserfs_update_inode_transaction(inode);
674 	}
675       research:
676 
677 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
678 	if (retval == IO_ERROR) {
679 		retval = -EIO;
680 		goto failure;
681 	}
682 
683 	bh = get_last_bh(&path);
684 	ih = get_ih(&path);
685 	item = get_item(&path);
686 	pos_in_item = path.pos_in_item;
687 
688 	fs_gen = get_generation(inode->i_sb);
689 	copy_item_head(&tmp_ih, ih);
690 
691 	if (allocation_needed
692 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
693 		/* we have to allocate block for the unformatted node */
694 		if (!th) {
695 			pathrelse(&path);
696 			goto start_trans;
697 		}
698 
699 		repeat =
700 		    _allocate_block(th, block, inode, &allocated_block_nr,
701 				    &path, create);
702 
703 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
704 			/* restart the transaction to give the journal a chance to free
705 			 ** some blocks.  releases the path, so we have to go back to
706 			 ** research if we succeed on the second try
707 			 */
708 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
709 			retval = restart_transaction(th, inode, &path);
710 			if (retval)
711 				goto failure;
712 			repeat =
713 			    _allocate_block(th, block, inode,
714 					    &allocated_block_nr, NULL, create);
715 
716 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
717 				goto research;
718 			}
719 			if (repeat == QUOTA_EXCEEDED)
720 				retval = -EDQUOT;
721 			else
722 				retval = -ENOSPC;
723 			goto failure;
724 		}
725 
726 		if (fs_changed(fs_gen, inode->i_sb)
727 		    && item_moved(&tmp_ih, &path)) {
728 			goto research;
729 		}
730 	}
731 
732 	if (indirect_item_found(retval, ih)) {
733 		b_blocknr_t unfm_ptr;
734 		/* 'block'-th block is in the file already (there is
735 		   corresponding cell in some indirect item). But it may be
736 		   zero unformatted node pointer (hole) */
737 		unfm_ptr = get_block_num(item, pos_in_item);
738 		if (unfm_ptr == 0) {
739 			/* use allocated block to plug the hole */
740 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
741 			if (fs_changed(fs_gen, inode->i_sb)
742 			    && item_moved(&tmp_ih, &path)) {
743 				reiserfs_restore_prepared_buffer(inode->i_sb,
744 								 bh);
745 				goto research;
746 			}
747 			set_buffer_new(bh_result);
748 			if (buffer_dirty(bh_result)
749 			    && reiserfs_data_ordered(inode->i_sb))
750 				reiserfs_add_ordered_list(inode, bh_result);
751 			put_block_num(item, pos_in_item, allocated_block_nr);
752 			unfm_ptr = allocated_block_nr;
753 			journal_mark_dirty(th, inode->i_sb, bh);
754 			reiserfs_update_sd(th, inode);
755 		}
756 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
757 		pathrelse(&path);
758 		retval = 0;
759 		if (!dangle && th)
760 			retval = reiserfs_end_persistent_transaction(th);
761 
762 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
763 
764 		/* the item was found, so new blocks were not added to the file
765 		 ** there is no need to make sure the inode is updated with this
766 		 ** transaction
767 		 */
768 		return retval;
769 	}
770 
771 	if (!th) {
772 		pathrelse(&path);
773 		goto start_trans;
774 	}
775 
776 	/* desired position is not found or is in the direct item. We have
777 	   to append file with holes up to 'block'-th block converting
778 	   direct items to indirect one if necessary */
779 	done = 0;
780 	do {
781 		if (is_statdata_le_ih(ih)) {
782 			__le32 unp = 0;
783 			struct cpu_key tmp_key;
784 
785 			/* indirect item has to be inserted */
786 			make_le_item_head(&tmp_ih, &key, version, 1,
787 					  TYPE_INDIRECT, UNFM_P_SIZE,
788 					  0 /* free_space */ );
789 
790 			if (cpu_key_k_offset(&key) == 1) {
791 				/* we are going to add 'block'-th block to the file. Use
792 				   allocated block for that */
793 				unp = cpu_to_le32(allocated_block_nr);
794 				set_block_dev_mapped(bh_result,
795 						     allocated_block_nr, inode);
796 				set_buffer_new(bh_result);
797 				done = 1;
798 			}
799 			tmp_key = key;	// ;)
800 			set_cpu_key_k_offset(&tmp_key, 1);
801 			PATH_LAST_POSITION(&path)++;
802 
803 			retval =
804 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
805 						 inode, (char *)&unp);
806 			if (retval) {
807 				reiserfs_free_block(th, inode,
808 						    allocated_block_nr, 1);
809 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
810 			}
811 			//mark_tail_converted (inode);
812 		} else if (is_direct_le_ih(ih)) {
813 			/* direct item has to be converted */
814 			loff_t tail_offset;
815 
816 			tail_offset =
817 			    ((le_ih_k_offset(ih) -
818 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
819 			if (tail_offset == cpu_key_k_offset(&key)) {
820 				/* direct item we just found fits into block we have
821 				   to map. Convert it into unformatted node: use
822 				   bh_result for the conversion */
823 				set_block_dev_mapped(bh_result,
824 						     allocated_block_nr, inode);
825 				unbh = bh_result;
826 				done = 1;
827 			} else {
828 				/* we have to padd file tail stored in direct item(s)
829 				   up to block size and convert it to unformatted
830 				   node. FIXME: this should also get into page cache */
831 
832 				pathrelse(&path);
833 				/*
834 				 * ugly, but we can only end the transaction if
835 				 * we aren't nested
836 				 */
837 				BUG_ON(!th->t_refcount);
838 				if (th->t_refcount == 1) {
839 					retval =
840 					    reiserfs_end_persistent_transaction
841 					    (th);
842 					th = NULL;
843 					if (retval)
844 						goto failure;
845 				}
846 
847 				retval =
848 				    convert_tail_for_hole(inode, bh_result,
849 							  tail_offset);
850 				if (retval) {
851 					if (retval != -ENOSPC)
852 						reiserfs_error(inode->i_sb,
853 							"clm-6004",
854 							"convert tail failed "
855 							"inode %lu, error %d",
856 							inode->i_ino,
857 							retval);
858 					if (allocated_block_nr) {
859 						/* the bitmap, the super, and the stat data == 3 */
860 						if (!th)
861 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
862 						if (th)
863 							reiserfs_free_block(th,
864 									    inode,
865 									    allocated_block_nr,
866 									    1);
867 					}
868 					goto failure;
869 				}
870 				goto research;
871 			}
872 			retval =
873 			    direct2indirect(th, inode, &path, unbh,
874 					    tail_offset);
875 			if (retval) {
876 				reiserfs_unmap_buffer(unbh);
877 				reiserfs_free_block(th, inode,
878 						    allocated_block_nr, 1);
879 				goto failure;
880 			}
881 			/* it is important the set_buffer_uptodate is done after
882 			 ** the direct2indirect.  The buffer might contain valid
883 			 ** data newer than the data on disk (read by readpage, changed,
884 			 ** and then sent here by writepage).  direct2indirect needs
885 			 ** to know if unbh was already up to date, so it can decide
886 			 ** if the data in unbh needs to be replaced with data from
887 			 ** the disk
888 			 */
889 			set_buffer_uptodate(unbh);
890 
891 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
892 			   buffer will disappear shortly, so it should not be added to
893 			 */
894 			if (unbh->b_page) {
895 				/* we've converted the tail, so we must
896 				 ** flush unbh before the transaction commits
897 				 */
898 				reiserfs_add_tail_list(inode, unbh);
899 
900 				/* mark it dirty now to prevent commit_write from adding
901 				 ** this buffer to the inode's dirty buffer list
902 				 */
903 				/*
904 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
905 				 * It's still atomic, but it sets the page dirty too,
906 				 * which makes it eligible for writeback at any time by the
907 				 * VM (which was also the case with __mark_buffer_dirty())
908 				 */
909 				mark_buffer_dirty(unbh);
910 			}
911 		} else {
912 			/* append indirect item with holes if needed, when appending
913 			   pointer to 'block'-th block use block, which is already
914 			   allocated */
915 			struct cpu_key tmp_key;
916 			unp_t unf_single = 0;	// We use this in case we need to allocate only
917 			// one block which is a fastpath
918 			unp_t *un;
919 			__u64 max_to_insert =
920 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
921 			    UNFM_P_SIZE;
922 			__u64 blocks_needed;
923 
924 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
925 			       "vs-804: invalid position for append");
926 			/* indirect item has to be appended, set up key of that position */
927 			make_cpu_key(&tmp_key, inode,
928 				     le_key_k_offset(version,
929 						     &(ih->ih_key)) +
930 				     op_bytes_number(ih,
931 						     inode->i_sb->s_blocksize),
932 				     //pos_in_item * inode->i_sb->s_blocksize,
933 				     TYPE_INDIRECT, 3);	// key type is unimportant
934 
935 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
936 			       "green-805: invalid offset");
937 			blocks_needed =
938 			    1 +
939 			    ((cpu_key_k_offset(&key) -
940 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941 			     s_blocksize_bits);
942 
943 			if (blocks_needed == 1) {
944 				un = &unf_single;
945 			} else {
946 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
947 				if (!un) {
948 					un = &unf_single;
949 					blocks_needed = 1;
950 					max_to_insert = 0;
951 				}
952 			}
953 			if (blocks_needed <= max_to_insert) {
954 				/* we are going to add target block to the file. Use allocated
955 				   block for that */
956 				un[blocks_needed - 1] =
957 				    cpu_to_le32(allocated_block_nr);
958 				set_block_dev_mapped(bh_result,
959 						     allocated_block_nr, inode);
960 				set_buffer_new(bh_result);
961 				done = 1;
962 			} else {
963 				/* paste hole to the indirect item */
964 				/* If kmalloc failed, max_to_insert becomes zero and it means we
965 				   only have space for one block */
966 				blocks_needed =
967 				    max_to_insert ? max_to_insert : 1;
968 			}
969 			retval =
970 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
971 						     (char *)un,
972 						     UNFM_P_SIZE *
973 						     blocks_needed);
974 
975 			if (blocks_needed != 1)
976 				kfree(un);
977 
978 			if (retval) {
979 				reiserfs_free_block(th, inode,
980 						    allocated_block_nr, 1);
981 				goto failure;
982 			}
983 			if (!done) {
984 				/* We need to mark new file size in case this function will be
985 				   interrupted/aborted later on. And we may do this only for
986 				   holes. */
987 				inode->i_size +=
988 				    inode->i_sb->s_blocksize * blocks_needed;
989 			}
990 		}
991 
992 		if (done == 1)
993 			break;
994 
995 		/* this loop could log more blocks than we had originally asked
996 		 ** for.  So, we have to allow the transaction to end if it is
997 		 ** too big or too full.  Update the inode so things are
998 		 ** consistent if we crash before the function returns
999 		 **
1000 		 ** release the path so that anybody waiting on the path before
1001 		 ** ending their transaction will be able to continue.
1002 		 */
1003 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004 			retval = restart_transaction(th, inode, &path);
1005 			if (retval)
1006 				goto failure;
1007 		}
1008 		/*
1009 		 * inserting indirect pointers for a hole can take a
1010 		 * long time.  reschedule if needed and also release the write
1011 		 * lock for others.
1012 		 */
1013 		if (need_resched()) {
1014 			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015 			schedule();
1016 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1017 		}
1018 
1019 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020 		if (retval == IO_ERROR) {
1021 			retval = -EIO;
1022 			goto failure;
1023 		}
1024 		if (retval == POSITION_FOUND) {
1025 			reiserfs_warning(inode->i_sb, "vs-825",
1026 					 "%K should not be found", &key);
1027 			retval = -EEXIST;
1028 			if (allocated_block_nr)
1029 				reiserfs_free_block(th, inode,
1030 						    allocated_block_nr, 1);
1031 			pathrelse(&path);
1032 			goto failure;
1033 		}
1034 		bh = get_last_bh(&path);
1035 		ih = get_ih(&path);
1036 		item = get_item(&path);
1037 		pos_in_item = path.pos_in_item;
1038 	} while (1);
1039 
1040 	retval = 0;
1041 
1042       failure:
1043 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1044 		int err;
1045 		if (th->t_trans_id)
1046 			reiserfs_update_sd(th, inode);
1047 		err = reiserfs_end_persistent_transaction(th);
1048 		if (err)
1049 			retval = err;
1050 	}
1051 
1052 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053 	reiserfs_check_path(&path);
1054 	return retval;
1055 }
1056 
1057 static int
reiserfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1058 reiserfs_readpages(struct file *file, struct address_space *mapping,
1059 		   struct list_head *pages, unsigned nr_pages)
1060 {
1061 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1062 }
1063 
1064 /* Compute real number of used bytes by file
1065  * Following three functions can go away when we'll have enough space in stat item
1066  */
real_space_diff(struct inode * inode,int sd_size)1067 static int real_space_diff(struct inode *inode, int sd_size)
1068 {
1069 	int bytes;
1070 	loff_t blocksize = inode->i_sb->s_blocksize;
1071 
1072 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073 		return sd_size;
1074 
1075 	/* End of file is also in full block with indirect reference, so round
1076 	 ** up to the next block.
1077 	 **
1078 	 ** there is just no way to know if the tail is actually packed
1079 	 ** on the file, so we have to assume it isn't.  When we pack the
1080 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1081 	 ** node pointer
1082 	 */
1083 	bytes =
1084 	    ((inode->i_size +
1085 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086 	    sd_size;
1087 	return bytes;
1088 }
1089 
to_real_used_space(struct inode * inode,ulong blocks,int sd_size)1090 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091 					int sd_size)
1092 {
1093 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094 		return inode->i_size +
1095 		    (loff_t) (real_space_diff(inode, sd_size));
1096 	}
1097 	return ((loff_t) real_space_diff(inode, sd_size)) +
1098 	    (((loff_t) blocks) << 9);
1099 }
1100 
1101 /* Compute number of blocks used by file in ReiserFS counting */
to_fake_used_blocks(struct inode * inode,int sd_size)1102 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1103 {
1104 	loff_t bytes = inode_get_bytes(inode);
1105 	loff_t real_space = real_space_diff(inode, sd_size);
1106 
1107 	/* keeps fsck and non-quota versions of reiserfs happy */
1108 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109 		bytes += (loff_t) 511;
1110 	}
1111 
1112 	/* files from before the quota patch might i_blocks such that
1113 	 ** bytes < real_space.  Deal with that here to prevent it from
1114 	 ** going negative.
1115 	 */
1116 	if (bytes < real_space)
1117 		return 0;
1118 	return (bytes - real_space) >> 9;
1119 }
1120 
1121 //
1122 // BAD: new directories have stat data of new type and all other items
1123 // of old type. Version stored in the inode says about body items, so
1124 // in update_stat_data we can not rely on inode, but have to check
1125 // item version directly
1126 //
1127 
1128 // called by read_locked_inode
init_inode(struct inode * inode,struct treepath * path)1129 static void init_inode(struct inode *inode, struct treepath *path)
1130 {
1131 	struct buffer_head *bh;
1132 	struct item_head *ih;
1133 	__u32 rdev;
1134 	//int version = ITEM_VERSION_1;
1135 
1136 	bh = PATH_PLAST_BUFFER(path);
1137 	ih = PATH_PITEM_HEAD(path);
1138 
1139 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1140 
1141 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142 	REISERFS_I(inode)->i_flags = 0;
1143 	REISERFS_I(inode)->i_prealloc_block = 0;
1144 	REISERFS_I(inode)->i_prealloc_count = 0;
1145 	REISERFS_I(inode)->i_trans_id = 0;
1146 	REISERFS_I(inode)->i_jl = NULL;
1147 	reiserfs_init_xattr_rwsem(inode);
1148 
1149 	if (stat_data_v1(ih)) {
1150 		struct stat_data_v1 *sd =
1151 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152 		unsigned long blocks;
1153 
1154 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155 		set_inode_sd_version(inode, STAT_DATA_V1);
1156 		inode->i_mode = sd_v1_mode(sd);
1157 		inode->i_nlink = sd_v1_nlink(sd);
1158 		inode->i_uid = sd_v1_uid(sd);
1159 		inode->i_gid = sd_v1_gid(sd);
1160 		inode->i_size = sd_v1_size(sd);
1161 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1162 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164 		inode->i_atime.tv_nsec = 0;
1165 		inode->i_ctime.tv_nsec = 0;
1166 		inode->i_mtime.tv_nsec = 0;
1167 
1168 		inode->i_blocks = sd_v1_blocks(sd);
1169 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170 		blocks = (inode->i_size + 511) >> 9;
1171 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1172 		if (inode->i_blocks > blocks) {
1173 			// there was a bug in <=3.5.23 when i_blocks could take negative
1174 			// values. Starting from 3.5.17 this value could even be stored in
1175 			// stat data. For such files we set i_blocks based on file
1176 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177 			// only updated if file's inode will ever change
1178 			inode->i_blocks = blocks;
1179 		}
1180 
1181 		rdev = sd_v1_rdev(sd);
1182 		REISERFS_I(inode)->i_first_direct_byte =
1183 		    sd_v1_first_direct_byte(sd);
1184 		/* an early bug in the quota code can give us an odd number for the
1185 		 ** block count.  This is incorrect, fix it here.
1186 		 */
1187 		if (inode->i_blocks & 1) {
1188 			inode->i_blocks++;
1189 		}
1190 		inode_set_bytes(inode,
1191 				to_real_used_space(inode, inode->i_blocks,
1192 						   SD_V1_SIZE));
1193 		/* nopack is initially zero for v1 objects. For v2 objects,
1194 		   nopack is initialised from sd_attrs */
1195 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196 	} else {
1197 		// new stat data found, but object may have old items
1198 		// (directories and symlinks)
1199 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1200 
1201 		inode->i_mode = sd_v2_mode(sd);
1202 		inode->i_nlink = sd_v2_nlink(sd);
1203 		inode->i_uid = sd_v2_uid(sd);
1204 		inode->i_size = sd_v2_size(sd);
1205 		inode->i_gid = sd_v2_gid(sd);
1206 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1208 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209 		inode->i_ctime.tv_nsec = 0;
1210 		inode->i_mtime.tv_nsec = 0;
1211 		inode->i_atime.tv_nsec = 0;
1212 		inode->i_blocks = sd_v2_blocks(sd);
1213 		rdev = sd_v2_rdev(sd);
1214 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215 			inode->i_generation =
1216 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217 		else
1218 			inode->i_generation = sd_v2_generation(sd);
1219 
1220 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222 		else
1223 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224 		REISERFS_I(inode)->i_first_direct_byte = 0;
1225 		set_inode_sd_version(inode, STAT_DATA_V2);
1226 		inode_set_bytes(inode,
1227 				to_real_used_space(inode, inode->i_blocks,
1228 						   SD_V2_SIZE));
1229 		/* read persistent inode attributes from sd and initialise
1230 		   generic inode flags from them */
1231 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1233 	}
1234 
1235 	pathrelse(path);
1236 	if (S_ISREG(inode->i_mode)) {
1237 		inode->i_op = &reiserfs_file_inode_operations;
1238 		inode->i_fop = &reiserfs_file_operations;
1239 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240 	} else if (S_ISDIR(inode->i_mode)) {
1241 		inode->i_op = &reiserfs_dir_inode_operations;
1242 		inode->i_fop = &reiserfs_dir_operations;
1243 	} else if (S_ISLNK(inode->i_mode)) {
1244 		inode->i_op = &reiserfs_symlink_inode_operations;
1245 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246 	} else {
1247 		inode->i_blocks = 0;
1248 		inode->i_op = &reiserfs_special_inode_operations;
1249 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1250 	}
1251 }
1252 
1253 // update new stat data with inode fields
inode2sd(void * sd,struct inode * inode,loff_t size)1254 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1255 {
1256 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1257 	__u16 flags;
1258 
1259 	set_sd_v2_mode(sd_v2, inode->i_mode);
1260 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261 	set_sd_v2_uid(sd_v2, inode->i_uid);
1262 	set_sd_v2_size(sd_v2, size);
1263 	set_sd_v2_gid(sd_v2, inode->i_gid);
1264 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270 	else
1271 		set_sd_v2_generation(sd_v2, inode->i_generation);
1272 	flags = REISERFS_I(inode)->i_attrs;
1273 	i_attrs_to_sd_attrs(inode, &flags);
1274 	set_sd_v2_attrs(sd_v2, flags);
1275 }
1276 
1277 // used to copy inode's fields to old stat data
inode2sd_v1(void * sd,struct inode * inode,loff_t size)1278 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1279 {
1280 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1281 
1282 	set_sd_v1_mode(sd_v1, inode->i_mode);
1283 	set_sd_v1_uid(sd_v1, inode->i_uid);
1284 	set_sd_v1_gid(sd_v1, inode->i_gid);
1285 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286 	set_sd_v1_size(sd_v1, size);
1287 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1290 
1291 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293 	else
1294 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1295 
1296 	// Sigh. i_first_direct_byte is back
1297 	set_sd_v1_first_direct_byte(sd_v1,
1298 				    REISERFS_I(inode)->i_first_direct_byte);
1299 }
1300 
1301 /* NOTE, you must prepare the buffer head before sending it here,
1302 ** and then log it after the call
1303 */
update_stat_data(struct treepath * path,struct inode * inode,loff_t size)1304 static void update_stat_data(struct treepath *path, struct inode *inode,
1305 			     loff_t size)
1306 {
1307 	struct buffer_head *bh;
1308 	struct item_head *ih;
1309 
1310 	bh = PATH_PLAST_BUFFER(path);
1311 	ih = PATH_PITEM_HEAD(path);
1312 
1313 	if (!is_statdata_le_ih(ih))
1314 		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315 			       INODE_PKEY(inode), ih);
1316 
1317 	if (stat_data_v1(ih)) {
1318 		// path points to old stat data
1319 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320 	} else {
1321 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1322 	}
1323 
1324 	return;
1325 }
1326 
reiserfs_update_sd_size(struct reiserfs_transaction_handle * th,struct inode * inode,loff_t size)1327 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328 			     struct inode *inode, loff_t size)
1329 {
1330 	struct cpu_key key;
1331 	INITIALIZE_PATH(path);
1332 	struct buffer_head *bh;
1333 	int fs_gen;
1334 	struct item_head *ih, tmp_ih;
1335 	int retval;
1336 
1337 	BUG_ON(!th->t_trans_id);
1338 
1339 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1340 
1341 	for (;;) {
1342 		int pos;
1343 		/* look for the object's stat data */
1344 		retval = search_item(inode->i_sb, &key, &path);
1345 		if (retval == IO_ERROR) {
1346 			reiserfs_error(inode->i_sb, "vs-13050",
1347 				       "i/o failure occurred trying to "
1348 				       "update %K stat data", &key);
1349 			return;
1350 		}
1351 		if (retval == ITEM_NOT_FOUND) {
1352 			pos = PATH_LAST_POSITION(&path);
1353 			pathrelse(&path);
1354 			if (inode->i_nlink == 0) {
1355 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356 				return;
1357 			}
1358 			reiserfs_warning(inode->i_sb, "vs-13060",
1359 					 "stat data of object %k (nlink == %d) "
1360 					 "not found (pos %d)",
1361 					 INODE_PKEY(inode), inode->i_nlink,
1362 					 pos);
1363 			reiserfs_check_path(&path);
1364 			return;
1365 		}
1366 
1367 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1368 		 ** FS might change.  We have to detect that, and loop back to the
1369 		 ** search if the stat data item has moved
1370 		 */
1371 		bh = get_last_bh(&path);
1372 		ih = get_ih(&path);
1373 		copy_item_head(&tmp_ih, ih);
1374 		fs_gen = get_generation(inode->i_sb);
1375 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1376 		if (fs_changed(fs_gen, inode->i_sb)
1377 		    && item_moved(&tmp_ih, &path)) {
1378 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379 			continue;	/* Stat_data item has been moved after scheduling. */
1380 		}
1381 		break;
1382 	}
1383 	update_stat_data(&path, inode, size);
1384 	journal_mark_dirty(th, th->t_super, bh);
1385 	pathrelse(&path);
1386 	return;
1387 }
1388 
1389 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1391 ** and clear the key in the private portion of the inode, otherwise a
1392 ** corresponding iput might try to delete whatever object the inode last
1393 ** represented.
1394 */
reiserfs_make_bad_inode(struct inode * inode)1395 static void reiserfs_make_bad_inode(struct inode *inode)
1396 {
1397 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398 	make_bad_inode(inode);
1399 }
1400 
1401 //
1402 // initially this function was derived from minix or ext2's analog and
1403 // evolved as the prototype did
1404 //
1405 
reiserfs_init_locked_inode(struct inode * inode,void * p)1406 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1407 {
1408 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409 	inode->i_ino = args->objectid;
1410 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411 	return 0;
1412 }
1413 
1414 /* looks for stat data in the tree, and fills up the fields of in-core
1415    inode stat data fields */
reiserfs_read_locked_inode(struct inode * inode,struct reiserfs_iget_args * args)1416 void reiserfs_read_locked_inode(struct inode *inode,
1417 				struct reiserfs_iget_args *args)
1418 {
1419 	INITIALIZE_PATH(path_to_sd);
1420 	struct cpu_key key;
1421 	unsigned long dirino;
1422 	int retval;
1423 
1424 	dirino = args->dirid;
1425 
1426 	/* set version 1, version 2 could be used too, because stat data
1427 	   key is the same in both versions */
1428 	key.version = KEY_FORMAT_3_5;
1429 	key.on_disk_key.k_dir_id = dirino;
1430 	key.on_disk_key.k_objectid = inode->i_ino;
1431 	key.on_disk_key.k_offset = 0;
1432 	key.on_disk_key.k_type = 0;
1433 
1434 	/* look for the object's stat data */
1435 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1436 	if (retval == IO_ERROR) {
1437 		reiserfs_error(inode->i_sb, "vs-13070",
1438 			       "i/o failure occurred trying to find "
1439 			       "stat data of %K", &key);
1440 		reiserfs_make_bad_inode(inode);
1441 		return;
1442 	}
1443 	if (retval != ITEM_FOUND) {
1444 		/* a stale NFS handle can trigger this without it being an error */
1445 		pathrelse(&path_to_sd);
1446 		reiserfs_make_bad_inode(inode);
1447 		inode->i_nlink = 0;
1448 		return;
1449 	}
1450 
1451 	init_inode(inode, &path_to_sd);
1452 
1453 	/* It is possible that knfsd is trying to access inode of a file
1454 	   that is being removed from the disk by some other thread. As we
1455 	   update sd on unlink all that is required is to check for nlink
1456 	   here. This bug was first found by Sizif when debugging
1457 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1458 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1459 
1460 	   More logical fix would require changes in fs/inode.c:iput() to
1461 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1462 	   in iget() to return NULL if I_FREEING inode is found in
1463 	   hash-table. */
1464 	/* Currently there is one place where it's ok to meet inode with
1465 	   nlink==0: processing of open-unlinked and half-truncated files
1466 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1467 	if ((inode->i_nlink == 0) &&
1468 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469 		reiserfs_warning(inode->i_sb, "vs-13075",
1470 				 "dead inode read from disk %K. "
1471 				 "This is likely to be race with knfsd. Ignore",
1472 				 &key);
1473 		reiserfs_make_bad_inode(inode);
1474 	}
1475 
1476 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1477 
1478 }
1479 
1480 /**
1481  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1482  *
1483  * @inode:    inode from hash table to check
1484  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1485  *
1486  * This function is called by iget5_locked() to distinguish reiserfs inodes
1487  * having the same inode numbers. Such inodes can only exist due to some
1488  * error condition. One of them should be bad. Inodes with identical
1489  * inode numbers (objectids) are distinguished by parent directory ids.
1490  *
1491  */
reiserfs_find_actor(struct inode * inode,void * opaque)1492 int reiserfs_find_actor(struct inode *inode, void *opaque)
1493 {
1494 	struct reiserfs_iget_args *args;
1495 
1496 	args = opaque;
1497 	/* args is already in CPU order */
1498 	return (inode->i_ino == args->objectid) &&
1499 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1500 }
1501 
reiserfs_iget(struct super_block * s,const struct cpu_key * key)1502 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1503 {
1504 	struct inode *inode;
1505 	struct reiserfs_iget_args args;
1506 
1507 	args.objectid = key->on_disk_key.k_objectid;
1508 	args.dirid = key->on_disk_key.k_dir_id;
1509 	reiserfs_write_unlock(s);
1510 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1511 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1512 			     (void *)(&args));
1513 	reiserfs_write_lock(s);
1514 	if (!inode)
1515 		return ERR_PTR(-ENOMEM);
1516 
1517 	if (inode->i_state & I_NEW) {
1518 		reiserfs_read_locked_inode(inode, &args);
1519 		unlock_new_inode(inode);
1520 	}
1521 
1522 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1523 		/* either due to i/o error or a stale NFS handle */
1524 		iput(inode);
1525 		inode = NULL;
1526 	}
1527 	return inode;
1528 }
1529 
reiserfs_get_dentry(struct super_block * sb,u32 objectid,u32 dir_id,u32 generation)1530 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1531 	u32 objectid, u32 dir_id, u32 generation)
1532 
1533 {
1534 	struct cpu_key key;
1535 	struct inode *inode;
1536 
1537 	key.on_disk_key.k_objectid = objectid;
1538 	key.on_disk_key.k_dir_id = dir_id;
1539 	reiserfs_write_lock(sb);
1540 	inode = reiserfs_iget(sb, &key);
1541 	if (inode && !IS_ERR(inode) && generation != 0 &&
1542 	    generation != inode->i_generation) {
1543 		iput(inode);
1544 		inode = NULL;
1545 	}
1546 	reiserfs_write_unlock(sb);
1547 
1548 	return d_obtain_alias(inode);
1549 }
1550 
reiserfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1551 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1552 		int fh_len, int fh_type)
1553 {
1554 	/* fhtype happens to reflect the number of u32s encoded.
1555 	 * due to a bug in earlier code, fhtype might indicate there
1556 	 * are more u32s then actually fitted.
1557 	 * so if fhtype seems to be more than len, reduce fhtype.
1558 	 * Valid types are:
1559 	 *   2 - objectid + dir_id - legacy support
1560 	 *   3 - objectid + dir_id + generation
1561 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1562 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1563 	 *   6 - as above plus generation of directory
1564 	 * 6 does not fit in NFSv2 handles
1565 	 */
1566 	if (fh_type > fh_len) {
1567 		if (fh_type != 6 || fh_len != 5)
1568 			reiserfs_warning(sb, "reiserfs-13077",
1569 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1570 				fh_type, fh_len);
1571 		fh_type = 5;
1572 	}
1573 
1574 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1575 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1576 }
1577 
reiserfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1578 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1579 		int fh_len, int fh_type)
1580 {
1581 	if (fh_type < 4)
1582 		return NULL;
1583 
1584 	return reiserfs_get_dentry(sb,
1585 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1586 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1587 		(fh_type == 6) ? fid->raw[5] : 0);
1588 }
1589 
reiserfs_encode_fh(struct dentry * dentry,__u32 * data,int * lenp,int need_parent)1590 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1591 		       int need_parent)
1592 {
1593 	struct inode *inode = dentry->d_inode;
1594 	int maxlen = *lenp;
1595 
1596 	if (need_parent && (maxlen < 5)) {
1597 		*lenp = 5;
1598 		return 255;
1599 	} else if (maxlen < 3) {
1600 		*lenp = 3;
1601 		return 255;
1602 	}
1603 
1604 	data[0] = inode->i_ino;
1605 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1606 	data[2] = inode->i_generation;
1607 	*lenp = 3;
1608 	/* no room for directory info? return what we've stored so far */
1609 	if (maxlen < 5 || !need_parent)
1610 		return 3;
1611 
1612 	spin_lock(&dentry->d_lock);
1613 	inode = dentry->d_parent->d_inode;
1614 	data[3] = inode->i_ino;
1615 	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1616 	*lenp = 5;
1617 	if (maxlen >= 6) {
1618 		data[5] = inode->i_generation;
1619 		*lenp = 6;
1620 	}
1621 	spin_unlock(&dentry->d_lock);
1622 	return *lenp;
1623 }
1624 
1625 /* looks for stat data, then copies fields to it, marks the buffer
1626    containing stat data as dirty */
1627 /* reiserfs inodes are never really dirty, since the dirty inode call
1628 ** always logs them.  This call allows the VFS inode marking routines
1629 ** to properly mark inodes for datasync and such, but only actually
1630 ** does something when called for a synchronous update.
1631 */
reiserfs_write_inode(struct inode * inode,struct writeback_control * wbc)1632 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1633 {
1634 	struct reiserfs_transaction_handle th;
1635 	int jbegin_count = 1;
1636 
1637 	if (inode->i_sb->s_flags & MS_RDONLY)
1638 		return -EROFS;
1639 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1640 	 ** these cases are just when the system needs ram, not when the
1641 	 ** inode needs to reach disk for safety, and they can safely be
1642 	 ** ignored because the altered inode has already been logged.
1643 	 */
1644 	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1645 		reiserfs_write_lock(inode->i_sb);
1646 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1647 			reiserfs_update_sd(&th, inode);
1648 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1649 		}
1650 		reiserfs_write_unlock(inode->i_sb);
1651 	}
1652 	return 0;
1653 }
1654 
1655 /* stat data of new object is inserted already, this inserts the item
1656    containing "." and ".." entries */
reiserfs_new_directory(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,struct inode * dir)1657 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1658 				  struct inode *inode,
1659 				  struct item_head *ih, struct treepath *path,
1660 				  struct inode *dir)
1661 {
1662 	struct super_block *sb = th->t_super;
1663 	char empty_dir[EMPTY_DIR_SIZE];
1664 	char *body = empty_dir;
1665 	struct cpu_key key;
1666 	int retval;
1667 
1668 	BUG_ON(!th->t_trans_id);
1669 
1670 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1671 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1672 		      TYPE_DIRENTRY, 3 /*key length */ );
1673 
1674 	/* compose item head for new item. Directories consist of items of
1675 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1676 	   is done by reiserfs_new_inode */
1677 	if (old_format_only(sb)) {
1678 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1679 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1680 
1681 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1682 				       ih->ih_key.k_objectid,
1683 				       INODE_PKEY(dir)->k_dir_id,
1684 				       INODE_PKEY(dir)->k_objectid);
1685 	} else {
1686 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1687 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1688 
1689 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1690 				    ih->ih_key.k_objectid,
1691 				    INODE_PKEY(dir)->k_dir_id,
1692 				    INODE_PKEY(dir)->k_objectid);
1693 	}
1694 
1695 	/* look for place in the tree for new item */
1696 	retval = search_item(sb, &key, path);
1697 	if (retval == IO_ERROR) {
1698 		reiserfs_error(sb, "vs-13080",
1699 			       "i/o failure occurred creating new directory");
1700 		return -EIO;
1701 	}
1702 	if (retval == ITEM_FOUND) {
1703 		pathrelse(path);
1704 		reiserfs_warning(sb, "vs-13070",
1705 				 "object with this key exists (%k)",
1706 				 &(ih->ih_key));
1707 		return -EEXIST;
1708 	}
1709 
1710 	/* insert item, that is empty directory item */
1711 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1712 }
1713 
1714 /* stat data of object has been inserted, this inserts the item
1715    containing the body of symlink */
reiserfs_new_symlink(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,const char * symname,int item_len)1716 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1717 				struct item_head *ih,
1718 				struct treepath *path, const char *symname,
1719 				int item_len)
1720 {
1721 	struct super_block *sb = th->t_super;
1722 	struct cpu_key key;
1723 	int retval;
1724 
1725 	BUG_ON(!th->t_trans_id);
1726 
1727 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1728 		      le32_to_cpu(ih->ih_key.k_dir_id),
1729 		      le32_to_cpu(ih->ih_key.k_objectid),
1730 		      1, TYPE_DIRECT, 3 /*key length */ );
1731 
1732 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1733 			  0 /*free_space */ );
1734 
1735 	/* look for place in the tree for new item */
1736 	retval = search_item(sb, &key, path);
1737 	if (retval == IO_ERROR) {
1738 		reiserfs_error(sb, "vs-13080",
1739 			       "i/o failure occurred creating new symlink");
1740 		return -EIO;
1741 	}
1742 	if (retval == ITEM_FOUND) {
1743 		pathrelse(path);
1744 		reiserfs_warning(sb, "vs-13080",
1745 				 "object with this key exists (%k)",
1746 				 &(ih->ih_key));
1747 		return -EEXIST;
1748 	}
1749 
1750 	/* insert item, that is body of symlink */
1751 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1752 }
1753 
1754 /* inserts the stat data into the tree, and then calls
1755    reiserfs_new_directory (to insert ".", ".." item if new object is
1756    directory) or reiserfs_new_symlink (to insert symlink body if new
1757    object is symlink) or nothing (if new object is regular file)
1758 
1759    NOTE! uid and gid must already be set in the inode.  If we return
1760    non-zero due to an error, we have to drop the quota previously allocated
1761    for the fresh inode.  This can only be done outside a transaction, so
1762    if we return non-zero, we also end the transaction.  */
reiserfs_new_inode(struct reiserfs_transaction_handle * th,struct inode * dir,int mode,const char * symname,loff_t i_size,struct dentry * dentry,struct inode * inode,struct reiserfs_security_handle * security)1763 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1764 		       struct inode *dir, int mode, const char *symname,
1765 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1766 		          strlen (symname) for symlinks) */
1767 		       loff_t i_size, struct dentry *dentry,
1768 		       struct inode *inode,
1769 		       struct reiserfs_security_handle *security)
1770 {
1771 	struct super_block *sb;
1772 	struct reiserfs_iget_args args;
1773 	INITIALIZE_PATH(path_to_key);
1774 	struct cpu_key key;
1775 	struct item_head ih;
1776 	struct stat_data sd;
1777 	int retval;
1778 	int err;
1779 
1780 	BUG_ON(!th->t_trans_id);
1781 
1782 	dquot_initialize(inode);
1783 	err = dquot_alloc_inode(inode);
1784 	if (err)
1785 		goto out_end_trans;
1786 	if (!dir->i_nlink) {
1787 		err = -EPERM;
1788 		goto out_bad_inode;
1789 	}
1790 
1791 	sb = dir->i_sb;
1792 
1793 	/* item head of new item */
1794 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1795 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1796 	if (!ih.ih_key.k_objectid) {
1797 		err = -ENOMEM;
1798 		goto out_bad_inode;
1799 	}
1800 	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1801 	if (old_format_only(sb))
1802 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1803 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1804 	else
1805 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1806 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1807 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1808 	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1809 	if (insert_inode_locked4(inode, args.objectid,
1810 			     reiserfs_find_actor, &args) < 0) {
1811 		err = -EINVAL;
1812 		goto out_bad_inode;
1813 	}
1814 	if (old_format_only(sb))
1815 		/* not a perfect generation count, as object ids can be reused, but
1816 		 ** this is as good as reiserfs can do right now.
1817 		 ** note that the private part of inode isn't filled in yet, we have
1818 		 ** to use the directory.
1819 		 */
1820 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1821 	else
1822 #if defined( USE_INODE_GENERATION_COUNTER )
1823 		inode->i_generation =
1824 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1825 #else
1826 		inode->i_generation = ++event;
1827 #endif
1828 
1829 	/* fill stat data */
1830 	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1831 
1832 	/* uid and gid must already be set by the caller for quota init */
1833 
1834 	/* symlink cannot be immutable or append only, right? */
1835 	if (S_ISLNK(inode->i_mode))
1836 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1837 
1838 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1839 	inode->i_size = i_size;
1840 	inode->i_blocks = 0;
1841 	inode->i_bytes = 0;
1842 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1843 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1844 
1845 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1846 	REISERFS_I(inode)->i_flags = 0;
1847 	REISERFS_I(inode)->i_prealloc_block = 0;
1848 	REISERFS_I(inode)->i_prealloc_count = 0;
1849 	REISERFS_I(inode)->i_trans_id = 0;
1850 	REISERFS_I(inode)->i_jl = NULL;
1851 	REISERFS_I(inode)->i_attrs =
1852 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1853 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1854 	reiserfs_init_xattr_rwsem(inode);
1855 
1856 	/* key to search for correct place for new stat data */
1857 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1858 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1859 		      TYPE_STAT_DATA, 3 /*key length */ );
1860 
1861 	/* find proper place for inserting of stat data */
1862 	retval = search_item(sb, &key, &path_to_key);
1863 	if (retval == IO_ERROR) {
1864 		err = -EIO;
1865 		goto out_bad_inode;
1866 	}
1867 	if (retval == ITEM_FOUND) {
1868 		pathrelse(&path_to_key);
1869 		err = -EEXIST;
1870 		goto out_bad_inode;
1871 	}
1872 	if (old_format_only(sb)) {
1873 		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1874 			pathrelse(&path_to_key);
1875 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1876 			err = -EINVAL;
1877 			goto out_bad_inode;
1878 		}
1879 		inode2sd_v1(&sd, inode, inode->i_size);
1880 	} else {
1881 		inode2sd(&sd, inode, inode->i_size);
1882 	}
1883 	// store in in-core inode the key of stat data and version all
1884 	// object items will have (directory items will have old offset
1885 	// format, other new objects will consist of new items)
1886 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1887 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1888 	else
1889 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1890 	if (old_format_only(sb))
1891 		set_inode_sd_version(inode, STAT_DATA_V1);
1892 	else
1893 		set_inode_sd_version(inode, STAT_DATA_V2);
1894 
1895 	/* insert the stat data into the tree */
1896 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1897 	if (REISERFS_I(dir)->new_packing_locality)
1898 		th->displace_new_blocks = 1;
1899 #endif
1900 	retval =
1901 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1902 				 (char *)(&sd));
1903 	if (retval) {
1904 		err = retval;
1905 		reiserfs_check_path(&path_to_key);
1906 		goto out_bad_inode;
1907 	}
1908 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1909 	if (!th->displace_new_blocks)
1910 		REISERFS_I(dir)->new_packing_locality = 0;
1911 #endif
1912 	if (S_ISDIR(mode)) {
1913 		/* insert item with "." and ".." */
1914 		retval =
1915 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1916 	}
1917 
1918 	if (S_ISLNK(mode)) {
1919 		/* insert body of symlink */
1920 		if (!old_format_only(sb))
1921 			i_size = ROUND_UP(i_size);
1922 		retval =
1923 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1924 					 i_size);
1925 	}
1926 	if (retval) {
1927 		err = retval;
1928 		reiserfs_check_path(&path_to_key);
1929 		journal_end(th, th->t_super, th->t_blocks_allocated);
1930 		goto out_inserted_sd;
1931 	}
1932 
1933 	if (reiserfs_posixacl(inode->i_sb)) {
1934 		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1935 		if (retval) {
1936 			err = retval;
1937 			reiserfs_check_path(&path_to_key);
1938 			journal_end(th, th->t_super, th->t_blocks_allocated);
1939 			goto out_inserted_sd;
1940 		}
1941 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1942 		reiserfs_warning(inode->i_sb, "jdm-13090",
1943 				 "ACLs aren't enabled in the fs, "
1944 				 "but vfs thinks they are!");
1945 	} else if (IS_PRIVATE(dir))
1946 		inode->i_flags |= S_PRIVATE;
1947 
1948 	if (security->name) {
1949 		retval = reiserfs_security_write(th, inode, security);
1950 		if (retval) {
1951 			err = retval;
1952 			reiserfs_check_path(&path_to_key);
1953 			retval = journal_end(th, th->t_super,
1954 					     th->t_blocks_allocated);
1955 			if (retval)
1956 				err = retval;
1957 			goto out_inserted_sd;
1958 		}
1959 	}
1960 
1961 	reiserfs_update_sd(th, inode);
1962 	reiserfs_check_path(&path_to_key);
1963 
1964 	return 0;
1965 
1966 /* it looks like you can easily compress these two goto targets into
1967  * one.  Keeping it like this doesn't actually hurt anything, and they
1968  * are place holders for what the quota code actually needs.
1969  */
1970       out_bad_inode:
1971 	/* Invalidate the object, nothing was inserted yet */
1972 	INODE_PKEY(inode)->k_objectid = 0;
1973 
1974 	/* Quota change must be inside a transaction for journaling */
1975 	dquot_free_inode(inode);
1976 
1977       out_end_trans:
1978 	journal_end(th, th->t_super, th->t_blocks_allocated);
1979 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1980 	dquot_drop(inode);
1981 	inode->i_flags |= S_NOQUOTA;
1982 	make_bad_inode(inode);
1983 
1984       out_inserted_sd:
1985 	inode->i_nlink = 0;
1986 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1987 	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1988 	iput(inode);
1989 	return err;
1990 }
1991 
1992 /*
1993 ** finds the tail page in the page cache,
1994 ** reads the last block in.
1995 **
1996 ** On success, page_result is set to a locked, pinned page, and bh_result
1997 ** is set to an up to date buffer for the last block in the file.  returns 0.
1998 **
1999 ** tail conversion is not done, so bh_result might not be valid for writing
2000 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2001 ** trying to write the block.
2002 **
2003 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2004 */
grab_tail_page(struct inode * inode,struct page ** page_result,struct buffer_head ** bh_result)2005 static int grab_tail_page(struct inode *inode,
2006 			  struct page **page_result,
2007 			  struct buffer_head **bh_result)
2008 {
2009 
2010 	/* we want the page with the last byte in the file,
2011 	 ** not the page that will hold the next byte for appending
2012 	 */
2013 	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2014 	unsigned long pos = 0;
2015 	unsigned long start = 0;
2016 	unsigned long blocksize = inode->i_sb->s_blocksize;
2017 	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2018 	struct buffer_head *bh;
2019 	struct buffer_head *head;
2020 	struct page *page;
2021 	int error;
2022 
2023 	/* we know that we are only called with inode->i_size > 0.
2024 	 ** we also know that a file tail can never be as big as a block
2025 	 ** If i_size % blocksize == 0, our file is currently block aligned
2026 	 ** and it won't need converting or zeroing after a truncate.
2027 	 */
2028 	if ((offset & (blocksize - 1)) == 0) {
2029 		return -ENOENT;
2030 	}
2031 	page = grab_cache_page(inode->i_mapping, index);
2032 	error = -ENOMEM;
2033 	if (!page) {
2034 		goto out;
2035 	}
2036 	/* start within the page of the last block in the file */
2037 	start = (offset / blocksize) * blocksize;
2038 
2039 	error = __block_write_begin(page, start, offset - start,
2040 				    reiserfs_get_block_create_0);
2041 	if (error)
2042 		goto unlock;
2043 
2044 	head = page_buffers(page);
2045 	bh = head;
2046 	do {
2047 		if (pos >= start) {
2048 			break;
2049 		}
2050 		bh = bh->b_this_page;
2051 		pos += blocksize;
2052 	} while (bh != head);
2053 
2054 	if (!buffer_uptodate(bh)) {
2055 		/* note, this should never happen, prepare_write should
2056 		 ** be taking care of this for us.  If the buffer isn't up to date,
2057 		 ** I've screwed up the code to find the buffer, or the code to
2058 		 ** call prepare_write
2059 		 */
2060 		reiserfs_error(inode->i_sb, "clm-6000",
2061 			       "error reading block %lu", bh->b_blocknr);
2062 		error = -EIO;
2063 		goto unlock;
2064 	}
2065 	*bh_result = bh;
2066 	*page_result = page;
2067 
2068       out:
2069 	return error;
2070 
2071       unlock:
2072 	unlock_page(page);
2073 	page_cache_release(page);
2074 	return error;
2075 }
2076 
2077 /*
2078 ** vfs version of truncate file.  Must NOT be called with
2079 ** a transaction already started.
2080 **
2081 ** some code taken from block_truncate_page
2082 */
reiserfs_truncate_file(struct inode * inode,int update_timestamps)2083 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2084 {
2085 	struct reiserfs_transaction_handle th;
2086 	/* we want the offset for the first byte after the end of the file */
2087 	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2088 	unsigned blocksize = inode->i_sb->s_blocksize;
2089 	unsigned length;
2090 	struct page *page = NULL;
2091 	int error;
2092 	struct buffer_head *bh = NULL;
2093 	int err2;
2094 	int lock_depth;
2095 
2096 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2097 
2098 	if (inode->i_size > 0) {
2099 		error = grab_tail_page(inode, &page, &bh);
2100 		if (error) {
2101 			// -ENOENT means we truncated past the end of the file,
2102 			// and get_block_create_0 could not find a block to read in,
2103 			// which is ok.
2104 			if (error != -ENOENT)
2105 				reiserfs_error(inode->i_sb, "clm-6001",
2106 					       "grab_tail_page failed %d",
2107 					       error);
2108 			page = NULL;
2109 			bh = NULL;
2110 		}
2111 	}
2112 
2113 	/* so, if page != NULL, we have a buffer head for the offset at
2114 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2115 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2116 	 ** and no zeroing is required on disk.  We zero after the truncate,
2117 	 ** because the truncate might pack the item anyway
2118 	 ** (it will unmap bh if it packs).
2119 	 */
2120 	/* it is enough to reserve space in transaction for 2 balancings:
2121 	   one for "save" link adding and another for the first
2122 	   cut_from_item. 1 is for update_sd */
2123 	error = journal_begin(&th, inode->i_sb,
2124 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2125 	if (error)
2126 		goto out;
2127 	reiserfs_update_inode_transaction(inode);
2128 	if (update_timestamps)
2129 		/* we are doing real truncate: if the system crashes before the last
2130 		   transaction of truncating gets committed - on reboot the file
2131 		   either appears truncated properly or not truncated at all */
2132 		add_save_link(&th, inode, 1);
2133 	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2134 	error =
2135 	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2136 	if (error)
2137 		goto out;
2138 
2139 	/* check reiserfs_do_truncate after ending the transaction */
2140 	if (err2) {
2141 		error = err2;
2142   		goto out;
2143 	}
2144 
2145 	if (update_timestamps) {
2146 		error = remove_save_link(inode, 1 /* truncate */);
2147 		if (error)
2148 			goto out;
2149 	}
2150 
2151 	if (page) {
2152 		length = offset & (blocksize - 1);
2153 		/* if we are not on a block boundary */
2154 		if (length) {
2155 			length = blocksize - length;
2156 			zero_user(page, offset, length);
2157 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2158 				mark_buffer_dirty(bh);
2159 			}
2160 		}
2161 		unlock_page(page);
2162 		page_cache_release(page);
2163 	}
2164 
2165 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2166 
2167 	return 0;
2168       out:
2169 	if (page) {
2170 		unlock_page(page);
2171 		page_cache_release(page);
2172 	}
2173 
2174 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2175 
2176 	return error;
2177 }
2178 
map_block_for_writepage(struct inode * inode,struct buffer_head * bh_result,unsigned long block)2179 static int map_block_for_writepage(struct inode *inode,
2180 				   struct buffer_head *bh_result,
2181 				   unsigned long block)
2182 {
2183 	struct reiserfs_transaction_handle th;
2184 	int fs_gen;
2185 	struct item_head tmp_ih;
2186 	struct item_head *ih;
2187 	struct buffer_head *bh;
2188 	__le32 *item;
2189 	struct cpu_key key;
2190 	INITIALIZE_PATH(path);
2191 	int pos_in_item;
2192 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2193 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2194 	int retval;
2195 	int use_get_block = 0;
2196 	int bytes_copied = 0;
2197 	int copy_size;
2198 	int trans_running = 0;
2199 
2200 	/* catch places below that try to log something without starting a trans */
2201 	th.t_trans_id = 0;
2202 
2203 	if (!buffer_uptodate(bh_result)) {
2204 		return -EIO;
2205 	}
2206 
2207 	kmap(bh_result->b_page);
2208       start_over:
2209 	reiserfs_write_lock(inode->i_sb);
2210 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2211 
2212       research:
2213 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2214 	if (retval != POSITION_FOUND) {
2215 		use_get_block = 1;
2216 		goto out;
2217 	}
2218 
2219 	bh = get_last_bh(&path);
2220 	ih = get_ih(&path);
2221 	item = get_item(&path);
2222 	pos_in_item = path.pos_in_item;
2223 
2224 	/* we've found an unformatted node */
2225 	if (indirect_item_found(retval, ih)) {
2226 		if (bytes_copied > 0) {
2227 			reiserfs_warning(inode->i_sb, "clm-6002",
2228 					 "bytes_copied %d", bytes_copied);
2229 		}
2230 		if (!get_block_num(item, pos_in_item)) {
2231 			/* crap, we are writing to a hole */
2232 			use_get_block = 1;
2233 			goto out;
2234 		}
2235 		set_block_dev_mapped(bh_result,
2236 				     get_block_num(item, pos_in_item), inode);
2237 	} else if (is_direct_le_ih(ih)) {
2238 		char *p;
2239 		p = page_address(bh_result->b_page);
2240 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2241 		copy_size = ih_item_len(ih) - pos_in_item;
2242 
2243 		fs_gen = get_generation(inode->i_sb);
2244 		copy_item_head(&tmp_ih, ih);
2245 
2246 		if (!trans_running) {
2247 			/* vs-3050 is gone, no need to drop the path */
2248 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2249 			if (retval)
2250 				goto out;
2251 			reiserfs_update_inode_transaction(inode);
2252 			trans_running = 1;
2253 			if (fs_changed(fs_gen, inode->i_sb)
2254 			    && item_moved(&tmp_ih, &path)) {
2255 				reiserfs_restore_prepared_buffer(inode->i_sb,
2256 								 bh);
2257 				goto research;
2258 			}
2259 		}
2260 
2261 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2262 
2263 		if (fs_changed(fs_gen, inode->i_sb)
2264 		    && item_moved(&tmp_ih, &path)) {
2265 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2266 			goto research;
2267 		}
2268 
2269 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2270 		       copy_size);
2271 
2272 		journal_mark_dirty(&th, inode->i_sb, bh);
2273 		bytes_copied += copy_size;
2274 		set_block_dev_mapped(bh_result, 0, inode);
2275 
2276 		/* are there still bytes left? */
2277 		if (bytes_copied < bh_result->b_size &&
2278 		    (byte_offset + bytes_copied) < inode->i_size) {
2279 			set_cpu_key_k_offset(&key,
2280 					     cpu_key_k_offset(&key) +
2281 					     copy_size);
2282 			goto research;
2283 		}
2284 	} else {
2285 		reiserfs_warning(inode->i_sb, "clm-6003",
2286 				 "bad item inode %lu", inode->i_ino);
2287 		retval = -EIO;
2288 		goto out;
2289 	}
2290 	retval = 0;
2291 
2292       out:
2293 	pathrelse(&path);
2294 	if (trans_running) {
2295 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2296 		if (err)
2297 			retval = err;
2298 		trans_running = 0;
2299 	}
2300 	reiserfs_write_unlock(inode->i_sb);
2301 
2302 	/* this is where we fill in holes in the file. */
2303 	if (use_get_block) {
2304 		retval = reiserfs_get_block(inode, block, bh_result,
2305 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2306 					    | GET_BLOCK_NO_DANGLE);
2307 		if (!retval) {
2308 			if (!buffer_mapped(bh_result)
2309 			    || bh_result->b_blocknr == 0) {
2310 				/* get_block failed to find a mapped unformatted node. */
2311 				use_get_block = 0;
2312 				goto start_over;
2313 			}
2314 		}
2315 	}
2316 	kunmap(bh_result->b_page);
2317 
2318 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2319 		/* we've copied data from the page into the direct item, so the
2320 		 * buffer in the page is now clean, mark it to reflect that.
2321 		 */
2322 		lock_buffer(bh_result);
2323 		clear_buffer_dirty(bh_result);
2324 		unlock_buffer(bh_result);
2325 	}
2326 	return retval;
2327 }
2328 
2329 /*
2330  * mason@suse.com: updated in 2.5.54 to follow the same general io
2331  * start/recovery path as __block_write_full_page, along with special
2332  * code to handle reiserfs tails.
2333  */
reiserfs_write_full_page(struct page * page,struct writeback_control * wbc)2334 static int reiserfs_write_full_page(struct page *page,
2335 				    struct writeback_control *wbc)
2336 {
2337 	struct inode *inode = page->mapping->host;
2338 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2339 	int error = 0;
2340 	unsigned long block;
2341 	sector_t last_block;
2342 	struct buffer_head *head, *bh;
2343 	int partial = 0;
2344 	int nr = 0;
2345 	int checked = PageChecked(page);
2346 	struct reiserfs_transaction_handle th;
2347 	struct super_block *s = inode->i_sb;
2348 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2349 	th.t_trans_id = 0;
2350 
2351 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2352 	if (checked && (current->flags & PF_MEMALLOC)) {
2353 		redirty_page_for_writepage(wbc, page);
2354 		unlock_page(page);
2355 		return 0;
2356 	}
2357 
2358 	/* The page dirty bit is cleared before writepage is called, which
2359 	 * means we have to tell create_empty_buffers to make dirty buffers
2360 	 * The page really should be up to date at this point, so tossing
2361 	 * in the BH_Uptodate is just a sanity check.
2362 	 */
2363 	if (!page_has_buffers(page)) {
2364 		create_empty_buffers(page, s->s_blocksize,
2365 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2366 	}
2367 	head = page_buffers(page);
2368 
2369 	/* last page in the file, zero out any contents past the
2370 	 ** last byte in the file
2371 	 */
2372 	if (page->index >= end_index) {
2373 		unsigned last_offset;
2374 
2375 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2376 		/* no file contents in this page */
2377 		if (page->index >= end_index + 1 || !last_offset) {
2378 			unlock_page(page);
2379 			return 0;
2380 		}
2381 		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2382 	}
2383 	bh = head;
2384 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2385 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2386 	/* first map all the buffers, logging any direct items we find */
2387 	do {
2388 		if (block > last_block) {
2389 			/*
2390 			 * This can happen when the block size is less than
2391 			 * the page size.  The corresponding bytes in the page
2392 			 * were zero filled above
2393 			 */
2394 			clear_buffer_dirty(bh);
2395 			set_buffer_uptodate(bh);
2396 		} else if ((checked || buffer_dirty(bh)) &&
2397 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2398 						       && bh->b_blocknr ==
2399 						       0))) {
2400 			/* not mapped yet, or it points to a direct item, search
2401 			 * the btree for the mapping info, and log any direct
2402 			 * items found
2403 			 */
2404 			if ((error = map_block_for_writepage(inode, bh, block))) {
2405 				goto fail;
2406 			}
2407 		}
2408 		bh = bh->b_this_page;
2409 		block++;
2410 	} while (bh != head);
2411 
2412 	/*
2413 	 * we start the transaction after map_block_for_writepage,
2414 	 * because it can create holes in the file (an unbounded operation).
2415 	 * starting it here, we can make a reliable estimate for how many
2416 	 * blocks we're going to log
2417 	 */
2418 	if (checked) {
2419 		ClearPageChecked(page);
2420 		reiserfs_write_lock(s);
2421 		error = journal_begin(&th, s, bh_per_page + 1);
2422 		if (error) {
2423 			reiserfs_write_unlock(s);
2424 			goto fail;
2425 		}
2426 		reiserfs_update_inode_transaction(inode);
2427 	}
2428 	/* now go through and lock any dirty buffers on the page */
2429 	do {
2430 		get_bh(bh);
2431 		if (!buffer_mapped(bh))
2432 			continue;
2433 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2434 			continue;
2435 
2436 		if (checked) {
2437 			reiserfs_prepare_for_journal(s, bh, 1);
2438 			journal_mark_dirty(&th, s, bh);
2439 			continue;
2440 		}
2441 		/* from this point on, we know the buffer is mapped to a
2442 		 * real block and not a direct item
2443 		 */
2444 		if (wbc->sync_mode != WB_SYNC_NONE) {
2445 			lock_buffer(bh);
2446 		} else {
2447 			if (!trylock_buffer(bh)) {
2448 				redirty_page_for_writepage(wbc, page);
2449 				continue;
2450 			}
2451 		}
2452 		if (test_clear_buffer_dirty(bh)) {
2453 			mark_buffer_async_write(bh);
2454 		} else {
2455 			unlock_buffer(bh);
2456 		}
2457 	} while ((bh = bh->b_this_page) != head);
2458 
2459 	if (checked) {
2460 		error = journal_end(&th, s, bh_per_page + 1);
2461 		reiserfs_write_unlock(s);
2462 		if (error)
2463 			goto fail;
2464 	}
2465 	BUG_ON(PageWriteback(page));
2466 	set_page_writeback(page);
2467 	unlock_page(page);
2468 
2469 	/*
2470 	 * since any buffer might be the only dirty buffer on the page,
2471 	 * the first submit_bh can bring the page out of writeback.
2472 	 * be careful with the buffers.
2473 	 */
2474 	do {
2475 		struct buffer_head *next = bh->b_this_page;
2476 		if (buffer_async_write(bh)) {
2477 			submit_bh(WRITE, bh);
2478 			nr++;
2479 		}
2480 		put_bh(bh);
2481 		bh = next;
2482 	} while (bh != head);
2483 
2484 	error = 0;
2485       done:
2486 	if (nr == 0) {
2487 		/*
2488 		 * if this page only had a direct item, it is very possible for
2489 		 * no io to be required without there being an error.  Or,
2490 		 * someone else could have locked them and sent them down the
2491 		 * pipe without locking the page
2492 		 */
2493 		bh = head;
2494 		do {
2495 			if (!buffer_uptodate(bh)) {
2496 				partial = 1;
2497 				break;
2498 			}
2499 			bh = bh->b_this_page;
2500 		} while (bh != head);
2501 		if (!partial)
2502 			SetPageUptodate(page);
2503 		end_page_writeback(page);
2504 	}
2505 	return error;
2506 
2507       fail:
2508 	/* catches various errors, we need to make sure any valid dirty blocks
2509 	 * get to the media.  The page is currently locked and not marked for
2510 	 * writeback
2511 	 */
2512 	ClearPageUptodate(page);
2513 	bh = head;
2514 	do {
2515 		get_bh(bh);
2516 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2517 			lock_buffer(bh);
2518 			mark_buffer_async_write(bh);
2519 		} else {
2520 			/*
2521 			 * clear any dirty bits that might have come from getting
2522 			 * attached to a dirty page
2523 			 */
2524 			clear_buffer_dirty(bh);
2525 		}
2526 		bh = bh->b_this_page;
2527 	} while (bh != head);
2528 	SetPageError(page);
2529 	BUG_ON(PageWriteback(page));
2530 	set_page_writeback(page);
2531 	unlock_page(page);
2532 	do {
2533 		struct buffer_head *next = bh->b_this_page;
2534 		if (buffer_async_write(bh)) {
2535 			clear_buffer_dirty(bh);
2536 			submit_bh(WRITE, bh);
2537 			nr++;
2538 		}
2539 		put_bh(bh);
2540 		bh = next;
2541 	} while (bh != head);
2542 	goto done;
2543 }
2544 
reiserfs_readpage(struct file * f,struct page * page)2545 static int reiserfs_readpage(struct file *f, struct page *page)
2546 {
2547 	return block_read_full_page(page, reiserfs_get_block);
2548 }
2549 
reiserfs_writepage(struct page * page,struct writeback_control * wbc)2550 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2551 {
2552 	struct inode *inode = page->mapping->host;
2553 	reiserfs_wait_on_write_block(inode->i_sb);
2554 	return reiserfs_write_full_page(page, wbc);
2555 }
2556 
reiserfs_truncate_failed_write(struct inode * inode)2557 static void reiserfs_truncate_failed_write(struct inode *inode)
2558 {
2559 	truncate_inode_pages(inode->i_mapping, inode->i_size);
2560 	reiserfs_truncate_file(inode, 0);
2561 }
2562 
reiserfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2563 static int reiserfs_write_begin(struct file *file,
2564 				struct address_space *mapping,
2565 				loff_t pos, unsigned len, unsigned flags,
2566 				struct page **pagep, void **fsdata)
2567 {
2568 	struct inode *inode;
2569 	struct page *page;
2570 	pgoff_t index;
2571 	int ret;
2572 	int old_ref = 0;
2573 
2574  	inode = mapping->host;
2575 	*fsdata = 0;
2576  	if (flags & AOP_FLAG_CONT_EXPAND &&
2577  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2578  		pos ++;
2579 		*fsdata = (void *)(unsigned long)flags;
2580 	}
2581 
2582 	index = pos >> PAGE_CACHE_SHIFT;
2583 	page = grab_cache_page_write_begin(mapping, index, flags);
2584 	if (!page)
2585 		return -ENOMEM;
2586 	*pagep = page;
2587 
2588 	reiserfs_wait_on_write_block(inode->i_sb);
2589 	fix_tail_page_for_writing(page);
2590 	if (reiserfs_transaction_running(inode->i_sb)) {
2591 		struct reiserfs_transaction_handle *th;
2592 		th = (struct reiserfs_transaction_handle *)current->
2593 		    journal_info;
2594 		BUG_ON(!th->t_refcount);
2595 		BUG_ON(!th->t_trans_id);
2596 		old_ref = th->t_refcount;
2597 		th->t_refcount++;
2598 	}
2599 	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2600 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2601 		struct reiserfs_transaction_handle *th = current->journal_info;
2602 		/* this gets a little ugly.  If reiserfs_get_block returned an
2603 		 * error and left a transacstion running, we've got to close it,
2604 		 * and we've got to free handle if it was a persistent transaction.
2605 		 *
2606 		 * But, if we had nested into an existing transaction, we need
2607 		 * to just drop the ref count on the handle.
2608 		 *
2609 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2610 		 * and it was a persistent trans.  Otherwise, it was nested above.
2611 		 */
2612 		if (th->t_refcount > old_ref) {
2613 			if (old_ref)
2614 				th->t_refcount--;
2615 			else {
2616 				int err;
2617 				reiserfs_write_lock(inode->i_sb);
2618 				err = reiserfs_end_persistent_transaction(th);
2619 				reiserfs_write_unlock(inode->i_sb);
2620 				if (err)
2621 					ret = err;
2622 			}
2623 		}
2624 	}
2625 	if (ret) {
2626 		unlock_page(page);
2627 		page_cache_release(page);
2628 		/* Truncate allocated blocks */
2629 		reiserfs_truncate_failed_write(inode);
2630 	}
2631 	return ret;
2632 }
2633 
__reiserfs_write_begin(struct page * page,unsigned from,unsigned len)2634 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2635 {
2636 	struct inode *inode = page->mapping->host;
2637 	int ret;
2638 	int old_ref = 0;
2639 
2640 	reiserfs_write_unlock(inode->i_sb);
2641 	reiserfs_wait_on_write_block(inode->i_sb);
2642 	reiserfs_write_lock(inode->i_sb);
2643 
2644 	fix_tail_page_for_writing(page);
2645 	if (reiserfs_transaction_running(inode->i_sb)) {
2646 		struct reiserfs_transaction_handle *th;
2647 		th = (struct reiserfs_transaction_handle *)current->
2648 		    journal_info;
2649 		BUG_ON(!th->t_refcount);
2650 		BUG_ON(!th->t_trans_id);
2651 		old_ref = th->t_refcount;
2652 		th->t_refcount++;
2653 	}
2654 
2655 	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2656 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2657 		struct reiserfs_transaction_handle *th = current->journal_info;
2658 		/* this gets a little ugly.  If reiserfs_get_block returned an
2659 		 * error and left a transacstion running, we've got to close it,
2660 		 * and we've got to free handle if it was a persistent transaction.
2661 		 *
2662 		 * But, if we had nested into an existing transaction, we need
2663 		 * to just drop the ref count on the handle.
2664 		 *
2665 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2666 		 * and it was a persistent trans.  Otherwise, it was nested above.
2667 		 */
2668 		if (th->t_refcount > old_ref) {
2669 			if (old_ref)
2670 				th->t_refcount--;
2671 			else {
2672 				int err;
2673 				reiserfs_write_lock(inode->i_sb);
2674 				err = reiserfs_end_persistent_transaction(th);
2675 				reiserfs_write_unlock(inode->i_sb);
2676 				if (err)
2677 					ret = err;
2678 			}
2679 		}
2680 	}
2681 	return ret;
2682 
2683 }
2684 
reiserfs_aop_bmap(struct address_space * as,sector_t block)2685 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2686 {
2687 	return generic_block_bmap(as, block, reiserfs_bmap);
2688 }
2689 
reiserfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2690 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2691 			      loff_t pos, unsigned len, unsigned copied,
2692 			      struct page *page, void *fsdata)
2693 {
2694 	struct inode *inode = page->mapping->host;
2695 	int ret = 0;
2696 	int update_sd = 0;
2697 	struct reiserfs_transaction_handle *th;
2698 	unsigned start;
2699 	int lock_depth = 0;
2700 	bool locked = false;
2701 
2702 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2703 		pos ++;
2704 
2705 	reiserfs_wait_on_write_block(inode->i_sb);
2706 	if (reiserfs_transaction_running(inode->i_sb))
2707 		th = current->journal_info;
2708 	else
2709 		th = NULL;
2710 
2711 	start = pos & (PAGE_CACHE_SIZE - 1);
2712 	if (unlikely(copied < len)) {
2713 		if (!PageUptodate(page))
2714 			copied = 0;
2715 
2716 		page_zero_new_buffers(page, start + copied, start + len);
2717 	}
2718 	flush_dcache_page(page);
2719 
2720 	reiserfs_commit_page(inode, page, start, start + copied);
2721 
2722 	/* generic_commit_write does this for us, but does not update the
2723 	 ** transaction tracking stuff when the size changes.  So, we have
2724 	 ** to do the i_size updates here.
2725 	 */
2726 	if (pos + copied > inode->i_size) {
2727 		struct reiserfs_transaction_handle myth;
2728 		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2729 		locked = true;
2730 		/* If the file have grown beyond the border where it
2731 		   can have a tail, unmark it as needing a tail
2732 		   packing */
2733 		if ((have_large_tails(inode->i_sb)
2734 		     && inode->i_size > i_block_size(inode) * 4)
2735 		    || (have_small_tails(inode->i_sb)
2736 			&& inode->i_size > i_block_size(inode)))
2737 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2738 
2739 		ret = journal_begin(&myth, inode->i_sb, 1);
2740 		if (ret)
2741 			goto journal_error;
2742 
2743 		reiserfs_update_inode_transaction(inode);
2744 		inode->i_size = pos + copied;
2745 		/*
2746 		 * this will just nest into our transaction.  It's important
2747 		 * to use mark_inode_dirty so the inode gets pushed around on the
2748 		 * dirty lists, and so that O_SYNC works as expected
2749 		 */
2750 		mark_inode_dirty(inode);
2751 		reiserfs_update_sd(&myth, inode);
2752 		update_sd = 1;
2753 		ret = journal_end(&myth, inode->i_sb, 1);
2754 		if (ret)
2755 			goto journal_error;
2756 	}
2757 	if (th) {
2758 		if (!locked) {
2759 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2760 			locked = true;
2761 		}
2762 		if (!update_sd)
2763 			mark_inode_dirty(inode);
2764 		ret = reiserfs_end_persistent_transaction(th);
2765 		if (ret)
2766 			goto out;
2767 	}
2768 
2769       out:
2770 	if (locked)
2771 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2772 	unlock_page(page);
2773 	page_cache_release(page);
2774 
2775 	if (pos + len > inode->i_size)
2776 		reiserfs_truncate_failed_write(inode);
2777 
2778 	return ret == 0 ? copied : ret;
2779 
2780       journal_error:
2781 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2782 	locked = false;
2783 	if (th) {
2784 		if (!update_sd)
2785 			reiserfs_update_sd(th, inode);
2786 		ret = reiserfs_end_persistent_transaction(th);
2787 	}
2788 	goto out;
2789 }
2790 
reiserfs_commit_write(struct file * f,struct page * page,unsigned from,unsigned to)2791 int reiserfs_commit_write(struct file *f, struct page *page,
2792 			  unsigned from, unsigned to)
2793 {
2794 	struct inode *inode = page->mapping->host;
2795 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2796 	int ret = 0;
2797 	int update_sd = 0;
2798 	struct reiserfs_transaction_handle *th = NULL;
2799 
2800 	reiserfs_write_unlock(inode->i_sb);
2801 	reiserfs_wait_on_write_block(inode->i_sb);
2802 	reiserfs_write_lock(inode->i_sb);
2803 
2804 	if (reiserfs_transaction_running(inode->i_sb)) {
2805 		th = current->journal_info;
2806 	}
2807 	reiserfs_commit_page(inode, page, from, to);
2808 
2809 	/* generic_commit_write does this for us, but does not update the
2810 	 ** transaction tracking stuff when the size changes.  So, we have
2811 	 ** to do the i_size updates here.
2812 	 */
2813 	if (pos > inode->i_size) {
2814 		struct reiserfs_transaction_handle myth;
2815 		/* If the file have grown beyond the border where it
2816 		   can have a tail, unmark it as needing a tail
2817 		   packing */
2818 		if ((have_large_tails(inode->i_sb)
2819 		     && inode->i_size > i_block_size(inode) * 4)
2820 		    || (have_small_tails(inode->i_sb)
2821 			&& inode->i_size > i_block_size(inode)))
2822 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2823 
2824 		ret = journal_begin(&myth, inode->i_sb, 1);
2825 		if (ret)
2826 			goto journal_error;
2827 
2828 		reiserfs_update_inode_transaction(inode);
2829 		inode->i_size = pos;
2830 		/*
2831 		 * this will just nest into our transaction.  It's important
2832 		 * to use mark_inode_dirty so the inode gets pushed around on the
2833 		 * dirty lists, and so that O_SYNC works as expected
2834 		 */
2835 		mark_inode_dirty(inode);
2836 		reiserfs_update_sd(&myth, inode);
2837 		update_sd = 1;
2838 		ret = journal_end(&myth, inode->i_sb, 1);
2839 		if (ret)
2840 			goto journal_error;
2841 	}
2842 	if (th) {
2843 		if (!update_sd)
2844 			mark_inode_dirty(inode);
2845 		ret = reiserfs_end_persistent_transaction(th);
2846 		if (ret)
2847 			goto out;
2848 	}
2849 
2850       out:
2851 	return ret;
2852 
2853       journal_error:
2854 	if (th) {
2855 		if (!update_sd)
2856 			reiserfs_update_sd(th, inode);
2857 		ret = reiserfs_end_persistent_transaction(th);
2858 	}
2859 
2860 	return ret;
2861 }
2862 
sd_attrs_to_i_attrs(__u16 sd_attrs,struct inode * inode)2863 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2864 {
2865 	if (reiserfs_attrs(inode->i_sb)) {
2866 		if (sd_attrs & REISERFS_SYNC_FL)
2867 			inode->i_flags |= S_SYNC;
2868 		else
2869 			inode->i_flags &= ~S_SYNC;
2870 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2871 			inode->i_flags |= S_IMMUTABLE;
2872 		else
2873 			inode->i_flags &= ~S_IMMUTABLE;
2874 		if (sd_attrs & REISERFS_APPEND_FL)
2875 			inode->i_flags |= S_APPEND;
2876 		else
2877 			inode->i_flags &= ~S_APPEND;
2878 		if (sd_attrs & REISERFS_NOATIME_FL)
2879 			inode->i_flags |= S_NOATIME;
2880 		else
2881 			inode->i_flags &= ~S_NOATIME;
2882 		if (sd_attrs & REISERFS_NOTAIL_FL)
2883 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2884 		else
2885 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2886 	}
2887 }
2888 
i_attrs_to_sd_attrs(struct inode * inode,__u16 * sd_attrs)2889 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2890 {
2891 	if (reiserfs_attrs(inode->i_sb)) {
2892 		if (inode->i_flags & S_IMMUTABLE)
2893 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2894 		else
2895 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2896 		if (inode->i_flags & S_SYNC)
2897 			*sd_attrs |= REISERFS_SYNC_FL;
2898 		else
2899 			*sd_attrs &= ~REISERFS_SYNC_FL;
2900 		if (inode->i_flags & S_NOATIME)
2901 			*sd_attrs |= REISERFS_NOATIME_FL;
2902 		else
2903 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2904 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2905 			*sd_attrs |= REISERFS_NOTAIL_FL;
2906 		else
2907 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2908 	}
2909 }
2910 
2911 /* decide if this buffer needs to stay around for data logging or ordered
2912 ** write purposes
2913 */
invalidatepage_can_drop(struct inode * inode,struct buffer_head * bh)2914 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2915 {
2916 	int ret = 1;
2917 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2918 
2919 	lock_buffer(bh);
2920 	spin_lock(&j->j_dirty_buffers_lock);
2921 	if (!buffer_mapped(bh)) {
2922 		goto free_jh;
2923 	}
2924 	/* the page is locked, and the only places that log a data buffer
2925 	 * also lock the page.
2926 	 */
2927 	if (reiserfs_file_data_log(inode)) {
2928 		/*
2929 		 * very conservative, leave the buffer pinned if
2930 		 * anyone might need it.
2931 		 */
2932 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2933 			ret = 0;
2934 		}
2935 	} else  if (buffer_dirty(bh)) {
2936 		struct reiserfs_journal_list *jl;
2937 		struct reiserfs_jh *jh = bh->b_private;
2938 
2939 		/* why is this safe?
2940 		 * reiserfs_setattr updates i_size in the on disk
2941 		 * stat data before allowing vmtruncate to be called.
2942 		 *
2943 		 * If buffer was put onto the ordered list for this
2944 		 * transaction, we know for sure either this transaction
2945 		 * or an older one already has updated i_size on disk,
2946 		 * and this ordered data won't be referenced in the file
2947 		 * if we crash.
2948 		 *
2949 		 * if the buffer was put onto the ordered list for an older
2950 		 * transaction, we need to leave it around
2951 		 */
2952 		if (jh && (jl = jh->jl)
2953 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2954 			ret = 0;
2955 	}
2956       free_jh:
2957 	if (ret && bh->b_private) {
2958 		reiserfs_free_jh(bh);
2959 	}
2960 	spin_unlock(&j->j_dirty_buffers_lock);
2961 	unlock_buffer(bh);
2962 	return ret;
2963 }
2964 
2965 /* clm -- taken from fs/buffer.c:block_invalidate_page */
reiserfs_invalidatepage(struct page * page,unsigned long offset)2966 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2967 {
2968 	struct buffer_head *head, *bh, *next;
2969 	struct inode *inode = page->mapping->host;
2970 	unsigned int curr_off = 0;
2971 	int ret = 1;
2972 
2973 	BUG_ON(!PageLocked(page));
2974 
2975 	if (offset == 0)
2976 		ClearPageChecked(page);
2977 
2978 	if (!page_has_buffers(page))
2979 		goto out;
2980 
2981 	head = page_buffers(page);
2982 	bh = head;
2983 	do {
2984 		unsigned int next_off = curr_off + bh->b_size;
2985 		next = bh->b_this_page;
2986 
2987 		/*
2988 		 * is this block fully invalidated?
2989 		 */
2990 		if (offset <= curr_off) {
2991 			if (invalidatepage_can_drop(inode, bh))
2992 				reiserfs_unmap_buffer(bh);
2993 			else
2994 				ret = 0;
2995 		}
2996 		curr_off = next_off;
2997 		bh = next;
2998 	} while (bh != head);
2999 
3000 	/*
3001 	 * We release buffers only if the entire page is being invalidated.
3002 	 * The get_block cached value has been unconditionally invalidated,
3003 	 * so real IO is not possible anymore.
3004 	 */
3005 	if (!offset && ret) {
3006 		ret = try_to_release_page(page, 0);
3007 		/* maybe should BUG_ON(!ret); - neilb */
3008 	}
3009       out:
3010 	return;
3011 }
3012 
reiserfs_set_page_dirty(struct page * page)3013 static int reiserfs_set_page_dirty(struct page *page)
3014 {
3015 	struct inode *inode = page->mapping->host;
3016 	if (reiserfs_file_data_log(inode)) {
3017 		SetPageChecked(page);
3018 		return __set_page_dirty_nobuffers(page);
3019 	}
3020 	return __set_page_dirty_buffers(page);
3021 }
3022 
3023 /*
3024  * Returns 1 if the page's buffers were dropped.  The page is locked.
3025  *
3026  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3027  * in the buffers at page_buffers(page).
3028  *
3029  * even in -o notail mode, we can't be sure an old mount without -o notail
3030  * didn't create files with tails.
3031  */
reiserfs_releasepage(struct page * page,gfp_t unused_gfp_flags)3032 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3033 {
3034 	struct inode *inode = page->mapping->host;
3035 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3036 	struct buffer_head *head;
3037 	struct buffer_head *bh;
3038 	int ret = 1;
3039 
3040 	WARN_ON(PageChecked(page));
3041 	spin_lock(&j->j_dirty_buffers_lock);
3042 	head = page_buffers(page);
3043 	bh = head;
3044 	do {
3045 		if (bh->b_private) {
3046 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3047 				reiserfs_free_jh(bh);
3048 			} else {
3049 				ret = 0;
3050 				break;
3051 			}
3052 		}
3053 		bh = bh->b_this_page;
3054 	} while (bh != head);
3055 	if (ret)
3056 		ret = try_to_free_buffers(page);
3057 	spin_unlock(&j->j_dirty_buffers_lock);
3058 	return ret;
3059 }
3060 
3061 /* We thank Mingming Cao for helping us understand in great detail what
3062    to do in this section of the code. */
reiserfs_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)3063 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3064 				  const struct iovec *iov, loff_t offset,
3065 				  unsigned long nr_segs)
3066 {
3067 	struct file *file = iocb->ki_filp;
3068 	struct inode *inode = file->f_mapping->host;
3069 	ssize_t ret;
3070 
3071 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3072 				  offset, nr_segs,
3073 				  reiserfs_get_blocks_direct_io, NULL);
3074 
3075 	/*
3076 	 * In case of error extending write may have instantiated a few
3077 	 * blocks outside i_size. Trim these off again.
3078 	 */
3079 	if (unlikely((rw & WRITE) && ret < 0)) {
3080 		loff_t isize = i_size_read(inode);
3081 		loff_t end = offset + iov_length(iov, nr_segs);
3082 
3083 		if (end > isize)
3084 			vmtruncate(inode, isize);
3085 	}
3086 
3087 	return ret;
3088 }
3089 
reiserfs_setattr(struct dentry * dentry,struct iattr * attr)3090 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3091 {
3092 	struct inode *inode = dentry->d_inode;
3093 	unsigned int ia_valid;
3094 	int depth;
3095 	int error;
3096 
3097 	error = inode_change_ok(inode, attr);
3098 	if (error)
3099 		return error;
3100 
3101 	/* must be turned off for recursive notify_change calls */
3102 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3103 
3104 	depth = reiserfs_write_lock_once(inode->i_sb);
3105 	if (is_quota_modification(inode, attr))
3106 		dquot_initialize(inode);
3107 
3108 	if (attr->ia_valid & ATTR_SIZE) {
3109 		/* version 2 items will be caught by the s_maxbytes check
3110 		 ** done for us in vmtruncate
3111 		 */
3112 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3113 		    attr->ia_size > MAX_NON_LFS) {
3114 			error = -EFBIG;
3115 			goto out;
3116 		}
3117 		/* fill in hole pointers in the expanding truncate case. */
3118 		if (attr->ia_size > inode->i_size) {
3119 			error = generic_cont_expand_simple(inode, attr->ia_size);
3120 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3121 				int err;
3122 				struct reiserfs_transaction_handle th;
3123 				/* we're changing at most 2 bitmaps, inode + super */
3124 				err = journal_begin(&th, inode->i_sb, 4);
3125 				if (!err) {
3126 					reiserfs_discard_prealloc(&th, inode);
3127 					err = journal_end(&th, inode->i_sb, 4);
3128 				}
3129 				if (err)
3130 					error = err;
3131 			}
3132 			if (error)
3133 				goto out;
3134 			/*
3135 			 * file size is changed, ctime and mtime are
3136 			 * to be updated
3137 			 */
3138 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3139 		}
3140 	}
3141 
3142 	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3143 	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3144 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3145 		/* stat data of format v3.5 has 16 bit uid and gid */
3146 		error = -EINVAL;
3147 		goto out;
3148 	}
3149 
3150 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3151 	    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3152 		struct reiserfs_transaction_handle th;
3153 		int jbegin_count =
3154 		    2 *
3155 		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3156 		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3157 		    2;
3158 
3159 		error = reiserfs_chown_xattrs(inode, attr);
3160 
3161 		if (error)
3162 			return error;
3163 
3164 		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3165 		error = journal_begin(&th, inode->i_sb, jbegin_count);
3166 		if (error)
3167 			goto out;
3168 		error = dquot_transfer(inode, attr);
3169 		if (error) {
3170 			journal_end(&th, inode->i_sb, jbegin_count);
3171 			goto out;
3172 		}
3173 
3174 		/* Update corresponding info in inode so that everything is in
3175 		 * one transaction */
3176 		if (attr->ia_valid & ATTR_UID)
3177 			inode->i_uid = attr->ia_uid;
3178 		if (attr->ia_valid & ATTR_GID)
3179 			inode->i_gid = attr->ia_gid;
3180 		mark_inode_dirty(inode);
3181 		error = journal_end(&th, inode->i_sb, jbegin_count);
3182 		if (error)
3183 			goto out;
3184 	}
3185 
3186 	/*
3187 	 * Relax the lock here, as it might truncate the
3188 	 * inode pages and wait for inode pages locks.
3189 	 * To release such page lock, the owner needs the
3190 	 * reiserfs lock
3191 	 */
3192 	reiserfs_write_unlock_once(inode->i_sb, depth);
3193 	if ((attr->ia_valid & ATTR_SIZE) &&
3194 	    attr->ia_size != i_size_read(inode))
3195 		error = vmtruncate(inode, attr->ia_size);
3196 
3197 	if (!error) {
3198 		setattr_copy(inode, attr);
3199 		mark_inode_dirty(inode);
3200 	}
3201 	depth = reiserfs_write_lock_once(inode->i_sb);
3202 
3203 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3204 		if (attr->ia_valid & ATTR_MODE)
3205 			error = reiserfs_acl_chmod(inode);
3206 	}
3207 
3208       out:
3209 	reiserfs_write_unlock_once(inode->i_sb, depth);
3210 
3211 	return error;
3212 }
3213 
3214 const struct address_space_operations reiserfs_address_space_operations = {
3215 	.writepage = reiserfs_writepage,
3216 	.readpage = reiserfs_readpage,
3217 	.readpages = reiserfs_readpages,
3218 	.releasepage = reiserfs_releasepage,
3219 	.invalidatepage = reiserfs_invalidatepage,
3220 	.write_begin = reiserfs_write_begin,
3221 	.write_end = reiserfs_write_end,
3222 	.bmap = reiserfs_aop_bmap,
3223 	.direct_IO = reiserfs_direct_IO,
3224 	.set_page_dirty = reiserfs_set_page_dirty,
3225 };
3226