1 /*
2  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3  *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4  *
5  *    Description:
6  *      Architecture- / platform-specific boot-time initialization code for
7  *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
8  *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9  *      <dan@net4x.com>.
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16 
17 #undef DEBUG
18 
19 #include <linux/init.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/seq_file.h>
25 #include <linux/kdev_t.h>
26 #include <linux/kexec.h>
27 #include <linux/major.h>
28 #include <linux/root_dev.h>
29 #include <linux/kernel.h>
30 #include <linux/hrtimer.h>
31 #include <linux/tick.h>
32 
33 #include <asm/processor.h>
34 #include <asm/machdep.h>
35 #include <asm/page.h>
36 #include <asm/mmu.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu_context.h>
39 #include <asm/cputable.h>
40 #include <asm/sections.h>
41 #include <asm/iommu.h>
42 #include <asm/firmware.h>
43 #include <asm/system.h>
44 #include <asm/time.h>
45 #include <asm/paca.h>
46 #include <asm/cache.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iseries/hv_lp_config.h>
49 #include <asm/iseries/hv_call_event.h>
50 #include <asm/iseries/hv_call_xm.h>
51 #include <asm/iseries/it_lp_queue.h>
52 #include <asm/iseries/mf.h>
53 #include <asm/iseries/hv_lp_event.h>
54 #include <asm/iseries/lpar_map.h>
55 #include <asm/udbg.h>
56 #include <asm/irq.h>
57 
58 #include "naca.h"
59 #include "setup.h"
60 #include "irq.h"
61 #include "vpd_areas.h"
62 #include "processor_vpd.h"
63 #include "it_lp_naca.h"
64 #include "main_store.h"
65 #include "call_sm.h"
66 #include "call_hpt.h"
67 #include "pci.h"
68 
69 #ifdef DEBUG
70 #define DBG(fmt...) udbg_printf(fmt)
71 #else
72 #define DBG(fmt...)
73 #endif
74 
75 /* Function Prototypes */
76 static unsigned long build_iSeries_Memory_Map(void);
77 static void iseries_shared_idle(void);
78 static void iseries_dedicated_idle(void);
79 
80 
81 struct MemoryBlock {
82 	unsigned long absStart;
83 	unsigned long absEnd;
84 	unsigned long logicalStart;
85 	unsigned long logicalEnd;
86 };
87 
88 /*
89  * Process the main store vpd to determine where the holes in memory are
90  * and return the number of physical blocks and fill in the array of
91  * block data.
92  */
iSeries_process_Condor_mainstore_vpd(struct MemoryBlock * mb_array,unsigned long max_entries)93 static unsigned long iSeries_process_Condor_mainstore_vpd(
94 		struct MemoryBlock *mb_array, unsigned long max_entries)
95 {
96 	unsigned long holeFirstChunk, holeSizeChunks;
97 	unsigned long numMemoryBlocks = 1;
98 	struct IoHriMainStoreSegment4 *msVpd =
99 		(struct IoHriMainStoreSegment4 *)xMsVpd;
100 	unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
101 	unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
102 	unsigned long holeSize = holeEnd - holeStart;
103 
104 	printk("Mainstore_VPD: Condor\n");
105 	/*
106 	 * Determine if absolute memory has any
107 	 * holes so that we can interpret the
108 	 * access map we get back from the hypervisor
109 	 * correctly.
110 	 */
111 	mb_array[0].logicalStart = 0;
112 	mb_array[0].logicalEnd = 0x100000000UL;
113 	mb_array[0].absStart = 0;
114 	mb_array[0].absEnd = 0x100000000UL;
115 
116 	if (holeSize) {
117 		numMemoryBlocks = 2;
118 		holeStart = holeStart & 0x000fffffffffffffUL;
119 		holeStart = addr_to_chunk(holeStart);
120 		holeFirstChunk = holeStart;
121 		holeSize = addr_to_chunk(holeSize);
122 		holeSizeChunks = holeSize;
123 		printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
124 				holeFirstChunk, holeSizeChunks );
125 		mb_array[0].logicalEnd = holeFirstChunk;
126 		mb_array[0].absEnd = holeFirstChunk;
127 		mb_array[1].logicalStart = holeFirstChunk;
128 		mb_array[1].logicalEnd = 0x100000000UL - holeSizeChunks;
129 		mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
130 		mb_array[1].absEnd = 0x100000000UL;
131 	}
132 	return numMemoryBlocks;
133 }
134 
135 #define MaxSegmentAreas			32
136 #define MaxSegmentAdrRangeBlocks	128
137 #define MaxAreaRangeBlocks		4
138 
iSeries_process_Regatta_mainstore_vpd(struct MemoryBlock * mb_array,unsigned long max_entries)139 static unsigned long iSeries_process_Regatta_mainstore_vpd(
140 		struct MemoryBlock *mb_array, unsigned long max_entries)
141 {
142 	struct IoHriMainStoreSegment5 *msVpdP =
143 		(struct IoHriMainStoreSegment5 *)xMsVpd;
144 	unsigned long numSegmentBlocks = 0;
145 	u32 existsBits = msVpdP->msAreaExists;
146 	unsigned long area_num;
147 
148 	printk("Mainstore_VPD: Regatta\n");
149 
150 	for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
151 		unsigned long numAreaBlocks;
152 		struct IoHriMainStoreArea4 *currentArea;
153 
154 		if (existsBits & 0x80000000) {
155 			unsigned long block_num;
156 
157 			currentArea = &msVpdP->msAreaArray[area_num];
158 			numAreaBlocks = currentArea->numAdrRangeBlocks;
159 			printk("ms_vpd: processing area %2ld  blocks=%ld",
160 					area_num, numAreaBlocks);
161 			for (block_num = 0; block_num < numAreaBlocks;
162 					++block_num ) {
163 				/* Process an address range block */
164 				struct MemoryBlock tempBlock;
165 				unsigned long i;
166 
167 				tempBlock.absStart =
168 					(unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
169 				tempBlock.absEnd =
170 					(unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
171 				tempBlock.logicalStart = 0;
172 				tempBlock.logicalEnd   = 0;
173 				printk("\n          block %ld absStart=%016lx absEnd=%016lx",
174 						block_num, tempBlock.absStart,
175 						tempBlock.absEnd);
176 
177 				for (i = 0; i < numSegmentBlocks; ++i) {
178 					if (mb_array[i].absStart ==
179 							tempBlock.absStart)
180 						break;
181 				}
182 				if (i == numSegmentBlocks) {
183 					if (numSegmentBlocks == max_entries)
184 						panic("iSeries_process_mainstore_vpd: too many memory blocks");
185 					mb_array[numSegmentBlocks] = tempBlock;
186 					++numSegmentBlocks;
187 				} else
188 					printk(" (duplicate)");
189 			}
190 			printk("\n");
191 		}
192 		existsBits <<= 1;
193 	}
194 	/* Now sort the blocks found into ascending sequence */
195 	if (numSegmentBlocks > 1) {
196 		unsigned long m, n;
197 
198 		for (m = 0; m < numSegmentBlocks - 1; ++m) {
199 			for (n = numSegmentBlocks - 1; m < n; --n) {
200 				if (mb_array[n].absStart <
201 						mb_array[n-1].absStart) {
202 					struct MemoryBlock tempBlock;
203 
204 					tempBlock = mb_array[n];
205 					mb_array[n] = mb_array[n-1];
206 					mb_array[n-1] = tempBlock;
207 				}
208 			}
209 		}
210 	}
211 	/*
212 	 * Assign "logical" addresses to each block.  These
213 	 * addresses correspond to the hypervisor "bitmap" space.
214 	 * Convert all addresses into units of 256K chunks.
215 	 */
216 	{
217 	unsigned long i, nextBitmapAddress;
218 
219 	printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
220 	nextBitmapAddress = 0;
221 	for (i = 0; i < numSegmentBlocks; ++i) {
222 		unsigned long length = mb_array[i].absEnd -
223 			mb_array[i].absStart;
224 
225 		mb_array[i].logicalStart = nextBitmapAddress;
226 		mb_array[i].logicalEnd = nextBitmapAddress + length;
227 		nextBitmapAddress += length;
228 		printk("          Bitmap range: %016lx - %016lx\n"
229 				"        Absolute range: %016lx - %016lx\n",
230 				mb_array[i].logicalStart,
231 				mb_array[i].logicalEnd,
232 				mb_array[i].absStart, mb_array[i].absEnd);
233 		mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
234 				0x000fffffffffffffUL);
235 		mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
236 				0x000fffffffffffffUL);
237 		mb_array[i].logicalStart =
238 			addr_to_chunk(mb_array[i].logicalStart);
239 		mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
240 	}
241 	}
242 
243 	return numSegmentBlocks;
244 }
245 
iSeries_process_mainstore_vpd(struct MemoryBlock * mb_array,unsigned long max_entries)246 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
247 		unsigned long max_entries)
248 {
249 	unsigned long i;
250 	unsigned long mem_blocks = 0;
251 
252 	if (cpu_has_feature(CPU_FTR_SLB))
253 		mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
254 				max_entries);
255 	else
256 		mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
257 				max_entries);
258 
259 	printk("Mainstore_VPD: numMemoryBlocks = %ld\n", mem_blocks);
260 	for (i = 0; i < mem_blocks; ++i) {
261 		printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
262 		       "                             abs chunks %016lx - %016lx\n",
263 			i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
264 			mb_array[i].absStart, mb_array[i].absEnd);
265 	}
266 	return mem_blocks;
267 }
268 
iSeries_get_cmdline(void)269 static void __init iSeries_get_cmdline(void)
270 {
271 	char *p, *q;
272 
273 	/* copy the command line parameter from the primary VSP  */
274 	HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
275 			HvLpDma_Direction_RemoteToLocal);
276 
277 	p = cmd_line;
278 	q = cmd_line + 255;
279 	while(p < q) {
280 		if (!*p || *p == '\n')
281 			break;
282 		++p;
283 	}
284 	*p = 0;
285 }
286 
iSeries_init_early(void)287 static void __init iSeries_init_early(void)
288 {
289 	DBG(" -> iSeries_init_early()\n");
290 
291 	/* Snapshot the timebase, for use in later recalibration */
292 	iSeries_time_init_early();
293 
294 	/*
295 	 * Initialize the DMA/TCE management
296 	 */
297 	iommu_init_early_iSeries();
298 
299 	/* Initialize machine-dependency vectors */
300 #ifdef CONFIG_SMP
301 	smp_init_iSeries();
302 #endif
303 
304 	/* Associate Lp Event Queue 0 with processor 0 */
305 	HvCallEvent_setLpEventQueueInterruptProc(0, 0);
306 
307 	mf_init();
308 
309 	DBG(" <- iSeries_init_early()\n");
310 }
311 
312 struct mschunks_map mschunks_map = {
313 	/* XXX We don't use these, but Piranha might need them. */
314 	.chunk_size  = MSCHUNKS_CHUNK_SIZE,
315 	.chunk_shift = MSCHUNKS_CHUNK_SHIFT,
316 	.chunk_mask  = MSCHUNKS_OFFSET_MASK,
317 };
318 EXPORT_SYMBOL(mschunks_map);
319 
mschunks_alloc(unsigned long num_chunks)320 static void mschunks_alloc(unsigned long num_chunks)
321 {
322 	klimit = _ALIGN(klimit, sizeof(u32));
323 	mschunks_map.mapping = (u32 *)klimit;
324 	klimit += num_chunks * sizeof(u32);
325 	mschunks_map.num_chunks = num_chunks;
326 }
327 
328 /*
329  * The iSeries may have very large memories ( > 128 GB ) and a partition
330  * may get memory in "chunks" that may be anywhere in the 2**52 real
331  * address space.  The chunks are 256K in size.  To map this to the
332  * memory model Linux expects, the AS/400 specific code builds a
333  * translation table to translate what Linux thinks are "physical"
334  * addresses to the actual real addresses.  This allows us to make
335  * it appear to Linux that we have contiguous memory starting at
336  * physical address zero while in fact this could be far from the truth.
337  * To avoid confusion, I'll let the words physical and/or real address
338  * apply to the Linux addresses while I'll use "absolute address" to
339  * refer to the actual hardware real address.
340  *
341  * build_iSeries_Memory_Map gets information from the Hypervisor and
342  * looks at the Main Store VPD to determine the absolute addresses
343  * of the memory that has been assigned to our partition and builds
344  * a table used to translate Linux's physical addresses to these
345  * absolute addresses.  Absolute addresses are needed when
346  * communicating with the hypervisor (e.g. to build HPT entries)
347  *
348  * Returns the physical memory size
349  */
350 
build_iSeries_Memory_Map(void)351 static unsigned long __init build_iSeries_Memory_Map(void)
352 {
353 	u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
354 	u32 nextPhysChunk;
355 	u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
356 	u32 totalChunks,moreChunks;
357 	u32 currChunk, thisChunk, absChunk;
358 	u32 currDword;
359 	u32 chunkBit;
360 	u64 map;
361 	struct MemoryBlock mb[32];
362 	unsigned long numMemoryBlocks, curBlock;
363 
364 	/* Chunk size on iSeries is 256K bytes */
365 	totalChunks = (u32)HvLpConfig_getMsChunks();
366 	mschunks_alloc(totalChunks);
367 
368 	/*
369 	 * Get absolute address of our load area
370 	 * and map it to physical address 0
371 	 * This guarantees that the loadarea ends up at physical 0
372 	 * otherwise, it might not be returned by PLIC as the first
373 	 * chunks
374 	 */
375 
376 	loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
377 	loadAreaSize =  itLpNaca.xLoadAreaChunks;
378 
379 	/*
380 	 * Only add the pages already mapped here.
381 	 * Otherwise we might add the hpt pages
382 	 * The rest of the pages of the load area
383 	 * aren't in the HPT yet and can still
384 	 * be assigned an arbitrary physical address
385 	 */
386 	if ((loadAreaSize * 64) > HvPagesToMap)
387 		loadAreaSize = HvPagesToMap / 64;
388 
389 	loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
390 
391 	/*
392 	 * TODO Do we need to do something if the HPT is in the 64MB load area?
393 	 * This would be required if the itLpNaca.xLoadAreaChunks includes
394 	 * the HPT size
395 	 */
396 
397 	printk("Mapping load area - physical addr = 0000000000000000\n"
398 		"                    absolute addr = %016lx\n",
399 		chunk_to_addr(loadAreaFirstChunk));
400 	printk("Load area size %dK\n", loadAreaSize * 256);
401 
402 	for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
403 		mschunks_map.mapping[nextPhysChunk] =
404 			loadAreaFirstChunk + nextPhysChunk;
405 
406 	/*
407 	 * Get absolute address of our HPT and remember it so
408 	 * we won't map it to any physical address
409 	 */
410 	hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
411 	hptSizePages = (u32)HvCallHpt_getHptPages();
412 	hptSizeChunks = hptSizePages >>
413 		(MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
414 	hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
415 
416 	printk("HPT absolute addr = %016lx, size = %dK\n",
417 			chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
418 
419 	/*
420 	 * Determine if absolute memory has any
421 	 * holes so that we can interpret the
422 	 * access map we get back from the hypervisor
423 	 * correctly.
424 	 */
425 	numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
426 
427 	/*
428 	 * Process the main store access map from the hypervisor
429 	 * to build up our physical -> absolute translation table
430 	 */
431 	curBlock = 0;
432 	currChunk = 0;
433 	currDword = 0;
434 	moreChunks = totalChunks;
435 
436 	while (moreChunks) {
437 		map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
438 				currDword);
439 		thisChunk = currChunk;
440 		while (map) {
441 			chunkBit = map >> 63;
442 			map <<= 1;
443 			if (chunkBit) {
444 				--moreChunks;
445 				while (thisChunk >= mb[curBlock].logicalEnd) {
446 					++curBlock;
447 					if (curBlock >= numMemoryBlocks)
448 						panic("out of memory blocks");
449 				}
450 				if (thisChunk < mb[curBlock].logicalStart)
451 					panic("memory block error");
452 
453 				absChunk = mb[curBlock].absStart +
454 					(thisChunk - mb[curBlock].logicalStart);
455 				if (((absChunk < hptFirstChunk) ||
456 				     (absChunk > hptLastChunk)) &&
457 				    ((absChunk < loadAreaFirstChunk) ||
458 				     (absChunk > loadAreaLastChunk))) {
459 					mschunks_map.mapping[nextPhysChunk] =
460 						absChunk;
461 					++nextPhysChunk;
462 				}
463 			}
464 			++thisChunk;
465 		}
466 		++currDword;
467 		currChunk += 64;
468 	}
469 
470 	/*
471 	 * main store size (in chunks) is
472 	 *   totalChunks - hptSizeChunks
473 	 * which should be equal to
474 	 *   nextPhysChunk
475 	 */
476 	return chunk_to_addr(nextPhysChunk);
477 }
478 
479 /*
480  * Document me.
481  */
iSeries_setup_arch(void)482 static void __init iSeries_setup_arch(void)
483 {
484 	if (get_lppaca()->shared_proc) {
485 		ppc_md.idle_loop = iseries_shared_idle;
486 		printk(KERN_DEBUG "Using shared processor idle loop\n");
487 	} else {
488 		ppc_md.idle_loop = iseries_dedicated_idle;
489 		printk(KERN_DEBUG "Using dedicated idle loop\n");
490 	}
491 
492 	/* Setup the Lp Event Queue */
493 	setup_hvlpevent_queue();
494 
495 	printk("Max  logical processors = %d\n",
496 			itVpdAreas.xSlicMaxLogicalProcs);
497 	printk("Max physical processors = %d\n",
498 			itVpdAreas.xSlicMaxPhysicalProcs);
499 
500 	iSeries_pcibios_init();
501 }
502 
iSeries_show_cpuinfo(struct seq_file * m)503 static void iSeries_show_cpuinfo(struct seq_file *m)
504 {
505 	seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
506 }
507 
iSeries_progress(char * st,unsigned short code)508 static void __init iSeries_progress(char * st, unsigned short code)
509 {
510 	printk("Progress: [%04x] - %s\n", (unsigned)code, st);
511 	mf_display_progress(code);
512 }
513 
iSeries_fixup_klimit(void)514 static void __init iSeries_fixup_klimit(void)
515 {
516 	/*
517 	 * Change klimit to take into account any ram disk
518 	 * that may be included
519 	 */
520 	if (naca.xRamDisk)
521 		klimit = KERNELBASE + (u64)naca.xRamDisk +
522 			(naca.xRamDiskSize * HW_PAGE_SIZE);
523 }
524 
iSeries_src_init(void)525 static int __init iSeries_src_init(void)
526 {
527         /* clear the progress line */
528 	if (firmware_has_feature(FW_FEATURE_ISERIES))
529 		ppc_md.progress(" ", 0xffff);
530         return 0;
531 }
532 
533 late_initcall(iSeries_src_init);
534 
process_iSeries_events(void)535 static inline void process_iSeries_events(void)
536 {
537 	asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
538 }
539 
yield_shared_processor(void)540 static void yield_shared_processor(void)
541 {
542 	unsigned long tb;
543 
544 	HvCall_setEnabledInterrupts(HvCall_MaskIPI |
545 				    HvCall_MaskLpEvent |
546 				    HvCall_MaskLpProd |
547 				    HvCall_MaskTimeout);
548 
549 	tb = get_tb();
550 	/* Compute future tb value when yield should expire */
551 	HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
552 
553 	/*
554 	 * The decrementer stops during the yield.  Force a fake decrementer
555 	 * here and let the timer_interrupt code sort out the actual time.
556 	 */
557 	get_lppaca()->int_dword.fields.decr_int = 1;
558 	ppc64_runlatch_on();
559 	process_iSeries_events();
560 }
561 
iseries_shared_idle(void)562 static void iseries_shared_idle(void)
563 {
564 	while (1) {
565 		tick_nohz_stop_sched_tick(1);
566 		while (!need_resched() && !hvlpevent_is_pending()) {
567 			local_irq_disable();
568 			ppc64_runlatch_off();
569 
570 			/* Recheck with irqs off */
571 			if (!need_resched() && !hvlpevent_is_pending())
572 				yield_shared_processor();
573 
574 			HMT_medium();
575 			local_irq_enable();
576 		}
577 
578 		ppc64_runlatch_on();
579 		tick_nohz_restart_sched_tick();
580 
581 		if (hvlpevent_is_pending())
582 			process_iSeries_events();
583 
584 		preempt_enable_no_resched();
585 		schedule();
586 		preempt_disable();
587 	}
588 }
589 
iseries_dedicated_idle(void)590 static void iseries_dedicated_idle(void)
591 {
592 	set_thread_flag(TIF_POLLING_NRFLAG);
593 
594 	while (1) {
595 		tick_nohz_stop_sched_tick(1);
596 		if (!need_resched()) {
597 			while (!need_resched()) {
598 				ppc64_runlatch_off();
599 				HMT_low();
600 
601 				if (hvlpevent_is_pending()) {
602 					HMT_medium();
603 					ppc64_runlatch_on();
604 					process_iSeries_events();
605 				}
606 			}
607 
608 			HMT_medium();
609 		}
610 
611 		ppc64_runlatch_on();
612 		tick_nohz_restart_sched_tick();
613 		preempt_enable_no_resched();
614 		schedule();
615 		preempt_disable();
616 	}
617 }
618 
iseries_ioremap(phys_addr_t address,unsigned long size,unsigned long flags,void * caller)619 static void __iomem *iseries_ioremap(phys_addr_t address, unsigned long size,
620 				     unsigned long flags, void *caller)
621 {
622 	return (void __iomem *)address;
623 }
624 
iseries_iounmap(volatile void __iomem * token)625 static void iseries_iounmap(volatile void __iomem *token)
626 {
627 }
628 
iseries_probe(void)629 static int __init iseries_probe(void)
630 {
631 	unsigned long root = of_get_flat_dt_root();
632 	if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
633 		return 0;
634 
635 	hpte_init_iSeries();
636 	/* iSeries does not support 16M pages */
637 	cur_cpu_spec->cpu_features &= ~CPU_FTR_16M_PAGE;
638 
639 	return 1;
640 }
641 
642 #ifdef CONFIG_KEXEC
iseries_kexec_prepare(struct kimage * image)643 static int iseries_kexec_prepare(struct kimage *image)
644 {
645 	return -ENOSYS;
646 }
647 #endif
648 
define_machine(iseries)649 define_machine(iseries) {
650 	.name			= "iSeries",
651 	.setup_arch		= iSeries_setup_arch,
652 	.show_cpuinfo		= iSeries_show_cpuinfo,
653 	.init_IRQ		= iSeries_init_IRQ,
654 	.get_irq		= iSeries_get_irq,
655 	.init_early		= iSeries_init_early,
656 	.pcibios_fixup		= iSeries_pci_final_fixup,
657 	.pcibios_fixup_resources= iSeries_pcibios_fixup_resources,
658 	.restart		= mf_reboot,
659 	.power_off		= mf_power_off,
660 	.halt			= mf_power_off,
661 	.get_boot_time		= iSeries_get_boot_time,
662 	.set_rtc_time		= iSeries_set_rtc_time,
663 	.get_rtc_time		= iSeries_get_rtc_time,
664 	.calibrate_decr		= generic_calibrate_decr,
665 	.progress		= iSeries_progress,
666 	.probe			= iseries_probe,
667 	.ioremap		= iseries_ioremap,
668 	.iounmap		= iseries_iounmap,
669 #ifdef CONFIG_KEXEC
670 	.machine_kexec_prepare	= iseries_kexec_prepare,
671 #endif
672 	/* XXX Implement enable_pmcs for iSeries */
673 };
674 
iSeries_early_setup(void)675 void * __init iSeries_early_setup(void)
676 {
677 	unsigned long phys_mem_size;
678 
679 	/* Identify CPU type. This is done again by the common code later
680 	 * on but calling this function multiple times is fine.
681 	 */
682 	identify_cpu(0, mfspr(SPRN_PVR));
683 	initialise_paca(&boot_paca, 0);
684 
685 	powerpc_firmware_features |= FW_FEATURE_ISERIES;
686 	powerpc_firmware_features |= FW_FEATURE_LPAR;
687 
688 	iSeries_fixup_klimit();
689 
690 	/*
691 	 * Initialize the table which translate Linux physical addresses to
692 	 * AS/400 absolute addresses
693 	 */
694 	phys_mem_size = build_iSeries_Memory_Map();
695 
696 	iSeries_get_cmdline();
697 
698 	return (void *) __pa(build_flat_dt(phys_mem_size));
699 }
700 
hvputc(char c)701 static void hvputc(char c)
702 {
703 	if (c == '\n')
704 		hvputc('\r');
705 
706 	HvCall_writeLogBuffer(&c, 1);
707 }
708 
udbg_init_iseries(void)709 void __init udbg_init_iseries(void)
710 {
711 	udbg_putc = hvputc;
712 }
713