1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28
29 #include "display/intel_frontbuffer.h"
30 #include "gem/i915_gem_lmem.h"
31 #include "gem/i915_gem_tiling.h"
32 #include "gt/intel_engine.h"
33 #include "gt/intel_engine_heartbeat.h"
34 #include "gt/intel_gt.h"
35 #include "gt/intel_gt_requests.h"
36
37 #include "i915_drv.h"
38 #include "i915_gem_evict.h"
39 #include "i915_sw_fence_work.h"
40 #include "i915_trace.h"
41 #include "i915_vma.h"
42 #include "i915_vma_resource.h"
43
assert_vma_held_evict(const struct i915_vma * vma)44 static inline void assert_vma_held_evict(const struct i915_vma *vma)
45 {
46 /*
47 * We may be forced to unbind when the vm is dead, to clean it up.
48 * This is the only exception to the requirement of the object lock
49 * being held.
50 */
51 if (kref_read(&vma->vm->ref))
52 assert_object_held_shared(vma->obj);
53 }
54
55 static struct kmem_cache *slab_vmas;
56
i915_vma_alloc(void)57 static struct i915_vma *i915_vma_alloc(void)
58 {
59 return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
60 }
61
i915_vma_free(struct i915_vma * vma)62 static void i915_vma_free(struct i915_vma *vma)
63 {
64 return kmem_cache_free(slab_vmas, vma);
65 }
66
67 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
68
69 #include <linux/stackdepot.h>
70
vma_print_allocator(struct i915_vma * vma,const char * reason)71 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
72 {
73 char buf[512];
74
75 if (!vma->node.stack) {
76 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n",
77 vma->node.start, vma->node.size, reason);
78 return;
79 }
80
81 stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
82 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n",
83 vma->node.start, vma->node.size, reason, buf);
84 }
85
86 #else
87
vma_print_allocator(struct i915_vma * vma,const char * reason)88 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
89 {
90 }
91
92 #endif
93
active_to_vma(struct i915_active * ref)94 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
95 {
96 return container_of(ref, typeof(struct i915_vma), active);
97 }
98
__i915_vma_active(struct i915_active * ref)99 static int __i915_vma_active(struct i915_active *ref)
100 {
101 return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
102 }
103
__i915_vma_retire(struct i915_active * ref)104 static void __i915_vma_retire(struct i915_active *ref)
105 {
106 i915_vma_put(active_to_vma(ref));
107 }
108
109 static struct i915_vma *
vma_create(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * view)110 vma_create(struct drm_i915_gem_object *obj,
111 struct i915_address_space *vm,
112 const struct i915_ggtt_view *view)
113 {
114 struct i915_vma *pos = ERR_PTR(-E2BIG);
115 struct i915_vma *vma;
116 struct rb_node *rb, **p;
117 int err;
118
119 /* The aliasing_ppgtt should never be used directly! */
120 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
121
122 vma = i915_vma_alloc();
123 if (vma == NULL)
124 return ERR_PTR(-ENOMEM);
125
126 vma->ops = &vm->vma_ops;
127 vma->obj = obj;
128 vma->size = obj->base.size;
129 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
130
131 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
132
133 /* Declare ourselves safe for use inside shrinkers */
134 if (IS_ENABLED(CONFIG_LOCKDEP)) {
135 fs_reclaim_acquire(GFP_KERNEL);
136 might_lock(&vma->active.mutex);
137 fs_reclaim_release(GFP_KERNEL);
138 }
139
140 INIT_LIST_HEAD(&vma->closed_link);
141 INIT_LIST_HEAD(&vma->obj_link);
142 RB_CLEAR_NODE(&vma->obj_node);
143
144 if (view && view->type != I915_GGTT_VIEW_NORMAL) {
145 vma->ggtt_view = *view;
146 if (view->type == I915_GGTT_VIEW_PARTIAL) {
147 GEM_BUG_ON(range_overflows_t(u64,
148 view->partial.offset,
149 view->partial.size,
150 obj->base.size >> PAGE_SHIFT));
151 vma->size = view->partial.size;
152 vma->size <<= PAGE_SHIFT;
153 GEM_BUG_ON(vma->size > obj->base.size);
154 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
155 vma->size = intel_rotation_info_size(&view->rotated);
156 vma->size <<= PAGE_SHIFT;
157 } else if (view->type == I915_GGTT_VIEW_REMAPPED) {
158 vma->size = intel_remapped_info_size(&view->remapped);
159 vma->size <<= PAGE_SHIFT;
160 }
161 }
162
163 if (unlikely(vma->size > vm->total))
164 goto err_vma;
165
166 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
167
168 err = mutex_lock_interruptible(&vm->mutex);
169 if (err) {
170 pos = ERR_PTR(err);
171 goto err_vma;
172 }
173
174 vma->vm = vm;
175 list_add_tail(&vma->vm_link, &vm->unbound_list);
176
177 spin_lock(&obj->vma.lock);
178 if (i915_is_ggtt(vm)) {
179 if (unlikely(overflows_type(vma->size, u32)))
180 goto err_unlock;
181
182 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
183 i915_gem_object_get_tiling(obj),
184 i915_gem_object_get_stride(obj));
185 if (unlikely(vma->fence_size < vma->size || /* overflow */
186 vma->fence_size > vm->total))
187 goto err_unlock;
188
189 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
190
191 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
192 i915_gem_object_get_tiling(obj),
193 i915_gem_object_get_stride(obj));
194 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
195
196 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
197 }
198
199 rb = NULL;
200 p = &obj->vma.tree.rb_node;
201 while (*p) {
202 long cmp;
203
204 rb = *p;
205 pos = rb_entry(rb, struct i915_vma, obj_node);
206
207 /*
208 * If the view already exists in the tree, another thread
209 * already created a matching vma, so return the older instance
210 * and dispose of ours.
211 */
212 cmp = i915_vma_compare(pos, vm, view);
213 if (cmp < 0)
214 p = &rb->rb_right;
215 else if (cmp > 0)
216 p = &rb->rb_left;
217 else
218 goto err_unlock;
219 }
220 rb_link_node(&vma->obj_node, rb, p);
221 rb_insert_color(&vma->obj_node, &obj->vma.tree);
222
223 if (i915_vma_is_ggtt(vma))
224 /*
225 * We put the GGTT vma at the start of the vma-list, followed
226 * by the ppGGTT vma. This allows us to break early when
227 * iterating over only the GGTT vma for an object, see
228 * for_each_ggtt_vma()
229 */
230 list_add(&vma->obj_link, &obj->vma.list);
231 else
232 list_add_tail(&vma->obj_link, &obj->vma.list);
233
234 spin_unlock(&obj->vma.lock);
235 mutex_unlock(&vm->mutex);
236
237 return vma;
238
239 err_unlock:
240 spin_unlock(&obj->vma.lock);
241 list_del_init(&vma->vm_link);
242 mutex_unlock(&vm->mutex);
243 err_vma:
244 i915_vma_free(vma);
245 return pos;
246 }
247
248 static struct i915_vma *
i915_vma_lookup(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * view)249 i915_vma_lookup(struct drm_i915_gem_object *obj,
250 struct i915_address_space *vm,
251 const struct i915_ggtt_view *view)
252 {
253 struct rb_node *rb;
254
255 rb = obj->vma.tree.rb_node;
256 while (rb) {
257 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
258 long cmp;
259
260 cmp = i915_vma_compare(vma, vm, view);
261 if (cmp == 0)
262 return vma;
263
264 if (cmp < 0)
265 rb = rb->rb_right;
266 else
267 rb = rb->rb_left;
268 }
269
270 return NULL;
271 }
272
273 /**
274 * i915_vma_instance - return the singleton instance of the VMA
275 * @obj: parent &struct drm_i915_gem_object to be mapped
276 * @vm: address space in which the mapping is located
277 * @view: additional mapping requirements
278 *
279 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
280 * the same @view characteristics. If a match is not found, one is created.
281 * Once created, the VMA is kept until either the object is freed, or the
282 * address space is closed.
283 *
284 * Returns the vma, or an error pointer.
285 */
286 struct i915_vma *
i915_vma_instance(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * view)287 i915_vma_instance(struct drm_i915_gem_object *obj,
288 struct i915_address_space *vm,
289 const struct i915_ggtt_view *view)
290 {
291 struct i915_vma *vma;
292
293 GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
294 GEM_BUG_ON(!kref_read(&vm->ref));
295
296 spin_lock(&obj->vma.lock);
297 vma = i915_vma_lookup(obj, vm, view);
298 spin_unlock(&obj->vma.lock);
299
300 /* vma_create() will resolve the race if another creates the vma */
301 if (unlikely(!vma))
302 vma = vma_create(obj, vm, view);
303
304 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
305 return vma;
306 }
307
308 struct i915_vma_work {
309 struct dma_fence_work base;
310 struct i915_address_space *vm;
311 struct i915_vm_pt_stash stash;
312 struct i915_vma_resource *vma_res;
313 struct drm_i915_gem_object *pinned;
314 struct i915_sw_dma_fence_cb cb;
315 enum i915_cache_level cache_level;
316 unsigned int flags;
317 };
318
__vma_bind(struct dma_fence_work * work)319 static void __vma_bind(struct dma_fence_work *work)
320 {
321 struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
322 struct i915_vma_resource *vma_res = vw->vma_res;
323
324 vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
325 vma_res, vw->cache_level, vw->flags);
326
327 }
328
__vma_release(struct dma_fence_work * work)329 static void __vma_release(struct dma_fence_work *work)
330 {
331 struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
332
333 if (vw->pinned)
334 i915_gem_object_put(vw->pinned);
335
336 i915_vm_free_pt_stash(vw->vm, &vw->stash);
337 if (vw->vma_res)
338 i915_vma_resource_put(vw->vma_res);
339 }
340
341 static const struct dma_fence_work_ops bind_ops = {
342 .name = "bind",
343 .work = __vma_bind,
344 .release = __vma_release,
345 };
346
i915_vma_work(void)347 struct i915_vma_work *i915_vma_work(void)
348 {
349 struct i915_vma_work *vw;
350
351 vw = kzalloc(sizeof(*vw), GFP_KERNEL);
352 if (!vw)
353 return NULL;
354
355 dma_fence_work_init(&vw->base, &bind_ops);
356 vw->base.dma.error = -EAGAIN; /* disable the worker by default */
357
358 return vw;
359 }
360
i915_vma_wait_for_bind(struct i915_vma * vma)361 int i915_vma_wait_for_bind(struct i915_vma *vma)
362 {
363 int err = 0;
364
365 if (rcu_access_pointer(vma->active.excl.fence)) {
366 struct dma_fence *fence;
367
368 rcu_read_lock();
369 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
370 rcu_read_unlock();
371 if (fence) {
372 err = dma_fence_wait(fence, true);
373 dma_fence_put(fence);
374 }
375 }
376
377 return err;
378 }
379
380 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
i915_vma_verify_bind_complete(struct i915_vma * vma)381 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
382 {
383 struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
384 int err;
385
386 if (!fence)
387 return 0;
388
389 if (dma_fence_is_signaled(fence))
390 err = fence->error;
391 else
392 err = -EBUSY;
393
394 dma_fence_put(fence);
395
396 return err;
397 }
398 #else
399 #define i915_vma_verify_bind_complete(_vma) 0
400 #endif
401
402 I915_SELFTEST_EXPORT void
i915_vma_resource_init_from_vma(struct i915_vma_resource * vma_res,struct i915_vma * vma)403 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
404 struct i915_vma *vma)
405 {
406 struct drm_i915_gem_object *obj = vma->obj;
407
408 i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
409 obj->mm.rsgt, i915_gem_object_is_readonly(obj),
410 i915_gem_object_is_lmem(obj), obj->mm.region,
411 vma->ops, vma->private, vma->node.start,
412 vma->node.size, vma->size);
413 }
414
415 /**
416 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
417 * @vma: VMA to map
418 * @cache_level: mapping cache level
419 * @flags: flags like global or local mapping
420 * @work: preallocated worker for allocating and binding the PTE
421 * @vma_res: pointer to a preallocated vma resource. The resource is either
422 * consumed or freed.
423 *
424 * DMA addresses are taken from the scatter-gather table of this object (or of
425 * this VMA in case of non-default GGTT views) and PTE entries set up.
426 * Note that DMA addresses are also the only part of the SG table we care about.
427 */
i915_vma_bind(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags,struct i915_vma_work * work,struct i915_vma_resource * vma_res)428 int i915_vma_bind(struct i915_vma *vma,
429 enum i915_cache_level cache_level,
430 u32 flags,
431 struct i915_vma_work *work,
432 struct i915_vma_resource *vma_res)
433 {
434 u32 bind_flags;
435 u32 vma_flags;
436 int ret;
437
438 lockdep_assert_held(&vma->vm->mutex);
439 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
440 GEM_BUG_ON(vma->size > vma->node.size);
441
442 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
443 vma->node.size,
444 vma->vm->total))) {
445 i915_vma_resource_free(vma_res);
446 return -ENODEV;
447 }
448
449 if (GEM_DEBUG_WARN_ON(!flags)) {
450 i915_vma_resource_free(vma_res);
451 return -EINVAL;
452 }
453
454 bind_flags = flags;
455 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
456
457 vma_flags = atomic_read(&vma->flags);
458 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
459
460 bind_flags &= ~vma_flags;
461 if (bind_flags == 0) {
462 i915_vma_resource_free(vma_res);
463 return 0;
464 }
465
466 GEM_BUG_ON(!atomic_read(&vma->pages_count));
467
468 /* Wait for or await async unbinds touching our range */
469 if (work && bind_flags & vma->vm->bind_async_flags)
470 ret = i915_vma_resource_bind_dep_await(vma->vm,
471 &work->base.chain,
472 vma->node.start,
473 vma->node.size,
474 true,
475 GFP_NOWAIT |
476 __GFP_RETRY_MAYFAIL |
477 __GFP_NOWARN);
478 else
479 ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
480 vma->node.size, true);
481 if (ret) {
482 i915_vma_resource_free(vma_res);
483 return ret;
484 }
485
486 if (vma->resource || !vma_res) {
487 /* Rebinding with an additional I915_VMA_*_BIND */
488 GEM_WARN_ON(!vma_flags);
489 i915_vma_resource_free(vma_res);
490 } else {
491 i915_vma_resource_init_from_vma(vma_res, vma);
492 vma->resource = vma_res;
493 }
494 trace_i915_vma_bind(vma, bind_flags);
495 if (work && bind_flags & vma->vm->bind_async_flags) {
496 struct dma_fence *prev;
497
498 work->vma_res = i915_vma_resource_get(vma->resource);
499 work->cache_level = cache_level;
500 work->flags = bind_flags;
501
502 /*
503 * Note we only want to chain up to the migration fence on
504 * the pages (not the object itself). As we don't track that,
505 * yet, we have to use the exclusive fence instead.
506 *
507 * Also note that we do not want to track the async vma as
508 * part of the obj->resv->excl_fence as it only affects
509 * execution and not content or object's backing store lifetime.
510 */
511 prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
512 if (prev) {
513 __i915_sw_fence_await_dma_fence(&work->base.chain,
514 prev,
515 &work->cb);
516 dma_fence_put(prev);
517 }
518
519 work->base.dma.error = 0; /* enable the queue_work() */
520
521 /*
522 * If we don't have the refcounted pages list, keep a reference
523 * on the object to avoid waiting for the async bind to
524 * complete in the object destruction path.
525 */
526 if (!work->vma_res->bi.pages_rsgt)
527 work->pinned = i915_gem_object_get(vma->obj);
528 } else {
529 ret = i915_gem_object_wait_moving_fence(vma->obj, true);
530 if (ret) {
531 i915_vma_resource_free(vma->resource);
532 vma->resource = NULL;
533
534 return ret;
535 }
536 vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
537 bind_flags);
538 }
539
540 atomic_or(bind_flags, &vma->flags);
541 return 0;
542 }
543
i915_vma_pin_iomap(struct i915_vma * vma)544 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
545 {
546 void __iomem *ptr;
547 int err;
548
549 if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
550 return IOMEM_ERR_PTR(-EINVAL);
551
552 if (!i915_gem_object_is_lmem(vma->obj)) {
553 if (GEM_WARN_ON(!i915_vma_is_map_and_fenceable(vma))) {
554 err = -ENODEV;
555 goto err;
556 }
557 }
558
559 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
560 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
561 GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
562
563 ptr = READ_ONCE(vma->iomap);
564 if (ptr == NULL) {
565 /*
566 * TODO: consider just using i915_gem_object_pin_map() for lmem
567 * instead, which already supports mapping non-contiguous chunks
568 * of pages, that way we can also drop the
569 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
570 */
571 if (i915_gem_object_is_lmem(vma->obj))
572 ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
573 vma->obj->base.size);
574 else
575 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
576 vma->node.start,
577 vma->node.size);
578 if (ptr == NULL) {
579 err = -ENOMEM;
580 goto err;
581 }
582
583 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
584 io_mapping_unmap(ptr);
585 ptr = vma->iomap;
586 }
587 }
588
589 __i915_vma_pin(vma);
590
591 err = i915_vma_pin_fence(vma);
592 if (err)
593 goto err_unpin;
594
595 i915_vma_set_ggtt_write(vma);
596
597 /* NB Access through the GTT requires the device to be awake. */
598 return ptr;
599
600 err_unpin:
601 __i915_vma_unpin(vma);
602 err:
603 return IOMEM_ERR_PTR(err);
604 }
605
i915_vma_flush_writes(struct i915_vma * vma)606 void i915_vma_flush_writes(struct i915_vma *vma)
607 {
608 if (i915_vma_unset_ggtt_write(vma))
609 intel_gt_flush_ggtt_writes(vma->vm->gt);
610 }
611
i915_vma_unpin_iomap(struct i915_vma * vma)612 void i915_vma_unpin_iomap(struct i915_vma *vma)
613 {
614 GEM_BUG_ON(vma->iomap == NULL);
615
616 i915_vma_flush_writes(vma);
617
618 i915_vma_unpin_fence(vma);
619 i915_vma_unpin(vma);
620 }
621
i915_vma_unpin_and_release(struct i915_vma ** p_vma,unsigned int flags)622 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
623 {
624 struct i915_vma *vma;
625 struct drm_i915_gem_object *obj;
626
627 vma = fetch_and_zero(p_vma);
628 if (!vma)
629 return;
630
631 obj = vma->obj;
632 GEM_BUG_ON(!obj);
633
634 i915_vma_unpin(vma);
635
636 if (flags & I915_VMA_RELEASE_MAP)
637 i915_gem_object_unpin_map(obj);
638
639 i915_gem_object_put(obj);
640 }
641
i915_vma_misplaced(const struct i915_vma * vma,u64 size,u64 alignment,u64 flags)642 bool i915_vma_misplaced(const struct i915_vma *vma,
643 u64 size, u64 alignment, u64 flags)
644 {
645 if (!drm_mm_node_allocated(&vma->node))
646 return false;
647
648 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
649 return true;
650
651 if (vma->node.size < size)
652 return true;
653
654 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
655 if (alignment && !IS_ALIGNED(vma->node.start, alignment))
656 return true;
657
658 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
659 return true;
660
661 if (flags & PIN_OFFSET_BIAS &&
662 vma->node.start < (flags & PIN_OFFSET_MASK))
663 return true;
664
665 if (flags & PIN_OFFSET_FIXED &&
666 vma->node.start != (flags & PIN_OFFSET_MASK))
667 return true;
668
669 return false;
670 }
671
__i915_vma_set_map_and_fenceable(struct i915_vma * vma)672 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
673 {
674 bool mappable, fenceable;
675
676 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
677 GEM_BUG_ON(!vma->fence_size);
678
679 fenceable = (vma->node.size >= vma->fence_size &&
680 IS_ALIGNED(vma->node.start, vma->fence_alignment));
681
682 mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end;
683
684 if (mappable && fenceable)
685 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
686 else
687 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
688 }
689
i915_gem_valid_gtt_space(struct i915_vma * vma,unsigned long color)690 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
691 {
692 struct drm_mm_node *node = &vma->node;
693 struct drm_mm_node *other;
694
695 /*
696 * On some machines we have to be careful when putting differing types
697 * of snoopable memory together to avoid the prefetcher crossing memory
698 * domains and dying. During vm initialisation, we decide whether or not
699 * these constraints apply and set the drm_mm.color_adjust
700 * appropriately.
701 */
702 if (!i915_vm_has_cache_coloring(vma->vm))
703 return true;
704
705 /* Only valid to be called on an already inserted vma */
706 GEM_BUG_ON(!drm_mm_node_allocated(node));
707 GEM_BUG_ON(list_empty(&node->node_list));
708
709 other = list_prev_entry(node, node_list);
710 if (i915_node_color_differs(other, color) &&
711 !drm_mm_hole_follows(other))
712 return false;
713
714 other = list_next_entry(node, node_list);
715 if (i915_node_color_differs(other, color) &&
716 !drm_mm_hole_follows(node))
717 return false;
718
719 return true;
720 }
721
722 /**
723 * i915_vma_insert - finds a slot for the vma in its address space
724 * @vma: the vma
725 * @size: requested size in bytes (can be larger than the VMA)
726 * @alignment: required alignment
727 * @flags: mask of PIN_* flags to use
728 *
729 * First we try to allocate some free space that meets the requirements for
730 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
731 * preferrably the oldest idle entry to make room for the new VMA.
732 *
733 * Returns:
734 * 0 on success, negative error code otherwise.
735 */
736 static int
i915_vma_insert(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u64 size,u64 alignment,u64 flags)737 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
738 u64 size, u64 alignment, u64 flags)
739 {
740 unsigned long color;
741 u64 start, end;
742 int ret;
743
744 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
745 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
746
747 size = max(size, vma->size);
748 alignment = max(alignment, vma->display_alignment);
749 if (flags & PIN_MAPPABLE) {
750 size = max_t(typeof(size), size, vma->fence_size);
751 alignment = max_t(typeof(alignment),
752 alignment, vma->fence_alignment);
753 }
754
755 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
756 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
757 GEM_BUG_ON(!is_power_of_2(alignment));
758
759 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
760 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
761
762 end = vma->vm->total;
763 if (flags & PIN_MAPPABLE)
764 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
765 if (flags & PIN_ZONE_4G)
766 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
767 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
768
769 alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
770 /*
771 * for compact-pt we round up the reservation to prevent
772 * any smaller pages being used within the same PDE
773 */
774 if (NEEDS_COMPACT_PT(vma->vm->i915))
775 size = round_up(size, alignment);
776
777 /* If binding the object/GGTT view requires more space than the entire
778 * aperture has, reject it early before evicting everything in a vain
779 * attempt to find space.
780 */
781 if (size > end) {
782 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
783 size, flags & PIN_MAPPABLE ? "mappable" : "total",
784 end);
785 return -ENOSPC;
786 }
787
788 color = 0;
789
790 if (i915_vm_has_cache_coloring(vma->vm))
791 color = vma->obj->cache_level;
792
793 if (flags & PIN_OFFSET_FIXED) {
794 u64 offset = flags & PIN_OFFSET_MASK;
795 if (!IS_ALIGNED(offset, alignment) ||
796 range_overflows(offset, size, end))
797 return -EINVAL;
798
799 ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
800 size, offset, color,
801 flags);
802 if (ret)
803 return ret;
804 } else {
805 /*
806 * We only support huge gtt pages through the 48b PPGTT,
807 * however we also don't want to force any alignment for
808 * objects which need to be tightly packed into the low 32bits.
809 *
810 * Note that we assume that GGTT are limited to 4GiB for the
811 * forseeable future. See also i915_ggtt_offset().
812 */
813 if (upper_32_bits(end - 1) &&
814 vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
815 /*
816 * We can't mix 64K and 4K PTEs in the same page-table
817 * (2M block), and so to avoid the ugliness and
818 * complexity of coloring we opt for just aligning 64K
819 * objects to 2M.
820 */
821 u64 page_alignment =
822 rounddown_pow_of_two(vma->page_sizes.sg |
823 I915_GTT_PAGE_SIZE_2M);
824
825 /*
826 * Check we don't expand for the limited Global GTT
827 * (mappable aperture is even more precious!). This
828 * also checks that we exclude the aliasing-ppgtt.
829 */
830 GEM_BUG_ON(i915_vma_is_ggtt(vma));
831
832 alignment = max(alignment, page_alignment);
833
834 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
835 size = round_up(size, I915_GTT_PAGE_SIZE_2M);
836 }
837
838 ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
839 size, alignment, color,
840 start, end, flags);
841 if (ret)
842 return ret;
843
844 GEM_BUG_ON(vma->node.start < start);
845 GEM_BUG_ON(vma->node.start + vma->node.size > end);
846 }
847 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
848 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
849
850 list_move_tail(&vma->vm_link, &vma->vm->bound_list);
851
852 return 0;
853 }
854
855 static void
i915_vma_detach(struct i915_vma * vma)856 i915_vma_detach(struct i915_vma *vma)
857 {
858 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
859 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
860
861 /*
862 * And finally now the object is completely decoupled from this
863 * vma, we can drop its hold on the backing storage and allow
864 * it to be reaped by the shrinker.
865 */
866 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
867 }
868
try_qad_pin(struct i915_vma * vma,unsigned int flags)869 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
870 {
871 unsigned int bound;
872
873 bound = atomic_read(&vma->flags);
874
875 if (flags & PIN_VALIDATE) {
876 flags &= I915_VMA_BIND_MASK;
877
878 return (flags & bound) == flags;
879 }
880
881 /* with the lock mandatory for unbind, we don't race here */
882 flags &= I915_VMA_BIND_MASK;
883 do {
884 if (unlikely(flags & ~bound))
885 return false;
886
887 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
888 return false;
889
890 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
891 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
892
893 return true;
894 }
895
896 static struct scatterlist *
rotate_pages(struct drm_i915_gem_object * obj,unsigned int offset,unsigned int width,unsigned int height,unsigned int src_stride,unsigned int dst_stride,struct sg_table * st,struct scatterlist * sg)897 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
898 unsigned int width, unsigned int height,
899 unsigned int src_stride, unsigned int dst_stride,
900 struct sg_table *st, struct scatterlist *sg)
901 {
902 unsigned int column, row;
903 unsigned int src_idx;
904
905 for (column = 0; column < width; column++) {
906 unsigned int left;
907
908 src_idx = src_stride * (height - 1) + column + offset;
909 for (row = 0; row < height; row++) {
910 st->nents++;
911 /*
912 * We don't need the pages, but need to initialize
913 * the entries so the sg list can be happily traversed.
914 * The only thing we need are DMA addresses.
915 */
916 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
917 sg_dma_address(sg) =
918 i915_gem_object_get_dma_address(obj, src_idx);
919 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
920 sg = sg_next(sg);
921 src_idx -= src_stride;
922 }
923
924 left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
925
926 if (!left)
927 continue;
928
929 st->nents++;
930
931 /*
932 * The DE ignores the PTEs for the padding tiles, the sg entry
933 * here is just a conenience to indicate how many padding PTEs
934 * to insert at this spot.
935 */
936 sg_set_page(sg, NULL, left, 0);
937 sg_dma_address(sg) = 0;
938 sg_dma_len(sg) = left;
939 sg = sg_next(sg);
940 }
941
942 return sg;
943 }
944
945 static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info * rot_info,struct drm_i915_gem_object * obj)946 intel_rotate_pages(struct intel_rotation_info *rot_info,
947 struct drm_i915_gem_object *obj)
948 {
949 unsigned int size = intel_rotation_info_size(rot_info);
950 struct drm_i915_private *i915 = to_i915(obj->base.dev);
951 struct sg_table *st;
952 struct scatterlist *sg;
953 int ret = -ENOMEM;
954 int i;
955
956 /* Allocate target SG list. */
957 st = kmalloc(sizeof(*st), GFP_KERNEL);
958 if (!st)
959 goto err_st_alloc;
960
961 ret = sg_alloc_table(st, size, GFP_KERNEL);
962 if (ret)
963 goto err_sg_alloc;
964
965 st->nents = 0;
966 sg = st->sgl;
967
968 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
969 sg = rotate_pages(obj, rot_info->plane[i].offset,
970 rot_info->plane[i].width, rot_info->plane[i].height,
971 rot_info->plane[i].src_stride,
972 rot_info->plane[i].dst_stride,
973 st, sg);
974
975 return st;
976
977 err_sg_alloc:
978 kfree(st);
979 err_st_alloc:
980
981 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
982 obj->base.size, rot_info->plane[0].width,
983 rot_info->plane[0].height, size);
984
985 return ERR_PTR(ret);
986 }
987
988 static struct scatterlist *
add_padding_pages(unsigned int count,struct sg_table * st,struct scatterlist * sg)989 add_padding_pages(unsigned int count,
990 struct sg_table *st, struct scatterlist *sg)
991 {
992 st->nents++;
993
994 /*
995 * The DE ignores the PTEs for the padding tiles, the sg entry
996 * here is just a convenience to indicate how many padding PTEs
997 * to insert at this spot.
998 */
999 sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1000 sg_dma_address(sg) = 0;
1001 sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1002 sg = sg_next(sg);
1003
1004 return sg;
1005 }
1006
1007 static struct scatterlist *
remap_tiled_color_plane_pages(struct drm_i915_gem_object * obj,unsigned int offset,unsigned int alignment_pad,unsigned int width,unsigned int height,unsigned int src_stride,unsigned int dst_stride,struct sg_table * st,struct scatterlist * sg,unsigned int * gtt_offset)1008 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1009 unsigned int offset, unsigned int alignment_pad,
1010 unsigned int width, unsigned int height,
1011 unsigned int src_stride, unsigned int dst_stride,
1012 struct sg_table *st, struct scatterlist *sg,
1013 unsigned int *gtt_offset)
1014 {
1015 unsigned int row;
1016
1017 if (!width || !height)
1018 return sg;
1019
1020 if (alignment_pad)
1021 sg = add_padding_pages(alignment_pad, st, sg);
1022
1023 for (row = 0; row < height; row++) {
1024 unsigned int left = width * I915_GTT_PAGE_SIZE;
1025
1026 while (left) {
1027 dma_addr_t addr;
1028 unsigned int length;
1029
1030 /*
1031 * We don't need the pages, but need to initialize
1032 * the entries so the sg list can be happily traversed.
1033 * The only thing we need are DMA addresses.
1034 */
1035
1036 addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1037
1038 length = min(left, length);
1039
1040 st->nents++;
1041
1042 sg_set_page(sg, NULL, length, 0);
1043 sg_dma_address(sg) = addr;
1044 sg_dma_len(sg) = length;
1045 sg = sg_next(sg);
1046
1047 offset += length / I915_GTT_PAGE_SIZE;
1048 left -= length;
1049 }
1050
1051 offset += src_stride - width;
1052
1053 left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1054
1055 if (!left)
1056 continue;
1057
1058 sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1059 }
1060
1061 *gtt_offset += alignment_pad + dst_stride * height;
1062
1063 return sg;
1064 }
1065
1066 static struct scatterlist *
remap_contiguous_pages(struct drm_i915_gem_object * obj,unsigned int obj_offset,unsigned int count,struct sg_table * st,struct scatterlist * sg)1067 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1068 unsigned int obj_offset,
1069 unsigned int count,
1070 struct sg_table *st, struct scatterlist *sg)
1071 {
1072 struct scatterlist *iter;
1073 unsigned int offset;
1074
1075 iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1076 GEM_BUG_ON(!iter);
1077
1078 do {
1079 unsigned int len;
1080
1081 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1082 count << PAGE_SHIFT);
1083 sg_set_page(sg, NULL, len, 0);
1084 sg_dma_address(sg) =
1085 sg_dma_address(iter) + (offset << PAGE_SHIFT);
1086 sg_dma_len(sg) = len;
1087
1088 st->nents++;
1089 count -= len >> PAGE_SHIFT;
1090 if (count == 0)
1091 return sg;
1092
1093 sg = __sg_next(sg);
1094 iter = __sg_next(iter);
1095 offset = 0;
1096 } while (1);
1097 }
1098
1099 static struct scatterlist *
remap_linear_color_plane_pages(struct drm_i915_gem_object * obj,unsigned int obj_offset,unsigned int alignment_pad,unsigned int size,struct sg_table * st,struct scatterlist * sg,unsigned int * gtt_offset)1100 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1101 unsigned int obj_offset, unsigned int alignment_pad,
1102 unsigned int size,
1103 struct sg_table *st, struct scatterlist *sg,
1104 unsigned int *gtt_offset)
1105 {
1106 if (!size)
1107 return sg;
1108
1109 if (alignment_pad)
1110 sg = add_padding_pages(alignment_pad, st, sg);
1111
1112 sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1113 sg = sg_next(sg);
1114
1115 *gtt_offset += alignment_pad + size;
1116
1117 return sg;
1118 }
1119
1120 static struct scatterlist *
remap_color_plane_pages(const struct intel_remapped_info * rem_info,struct drm_i915_gem_object * obj,int color_plane,struct sg_table * st,struct scatterlist * sg,unsigned int * gtt_offset)1121 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1122 struct drm_i915_gem_object *obj,
1123 int color_plane,
1124 struct sg_table *st, struct scatterlist *sg,
1125 unsigned int *gtt_offset)
1126 {
1127 unsigned int alignment_pad = 0;
1128
1129 if (rem_info->plane_alignment)
1130 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1131
1132 if (rem_info->plane[color_plane].linear)
1133 sg = remap_linear_color_plane_pages(obj,
1134 rem_info->plane[color_plane].offset,
1135 alignment_pad,
1136 rem_info->plane[color_plane].size,
1137 st, sg,
1138 gtt_offset);
1139
1140 else
1141 sg = remap_tiled_color_plane_pages(obj,
1142 rem_info->plane[color_plane].offset,
1143 alignment_pad,
1144 rem_info->plane[color_plane].width,
1145 rem_info->plane[color_plane].height,
1146 rem_info->plane[color_plane].src_stride,
1147 rem_info->plane[color_plane].dst_stride,
1148 st, sg,
1149 gtt_offset);
1150
1151 return sg;
1152 }
1153
1154 static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info * rem_info,struct drm_i915_gem_object * obj)1155 intel_remap_pages(struct intel_remapped_info *rem_info,
1156 struct drm_i915_gem_object *obj)
1157 {
1158 unsigned int size = intel_remapped_info_size(rem_info);
1159 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1160 struct sg_table *st;
1161 struct scatterlist *sg;
1162 unsigned int gtt_offset = 0;
1163 int ret = -ENOMEM;
1164 int i;
1165
1166 /* Allocate target SG list. */
1167 st = kmalloc(sizeof(*st), GFP_KERNEL);
1168 if (!st)
1169 goto err_st_alloc;
1170
1171 ret = sg_alloc_table(st, size, GFP_KERNEL);
1172 if (ret)
1173 goto err_sg_alloc;
1174
1175 st->nents = 0;
1176 sg = st->sgl;
1177
1178 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1179 sg = remap_color_plane_pages(rem_info, obj, i, st, sg, >t_offset);
1180
1181 i915_sg_trim(st);
1182
1183 return st;
1184
1185 err_sg_alloc:
1186 kfree(st);
1187 err_st_alloc:
1188
1189 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1190 obj->base.size, rem_info->plane[0].width,
1191 rem_info->plane[0].height, size);
1192
1193 return ERR_PTR(ret);
1194 }
1195
1196 static noinline struct sg_table *
intel_partial_pages(const struct i915_ggtt_view * view,struct drm_i915_gem_object * obj)1197 intel_partial_pages(const struct i915_ggtt_view *view,
1198 struct drm_i915_gem_object *obj)
1199 {
1200 struct sg_table *st;
1201 struct scatterlist *sg;
1202 unsigned int count = view->partial.size;
1203 int ret = -ENOMEM;
1204
1205 st = kmalloc(sizeof(*st), GFP_KERNEL);
1206 if (!st)
1207 goto err_st_alloc;
1208
1209 ret = sg_alloc_table(st, count, GFP_KERNEL);
1210 if (ret)
1211 goto err_sg_alloc;
1212
1213 st->nents = 0;
1214
1215 sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1216
1217 sg_mark_end(sg);
1218 i915_sg_trim(st); /* Drop any unused tail entries. */
1219
1220 return st;
1221
1222 err_sg_alloc:
1223 kfree(st);
1224 err_st_alloc:
1225 return ERR_PTR(ret);
1226 }
1227
1228 static int
__i915_vma_get_pages(struct i915_vma * vma)1229 __i915_vma_get_pages(struct i915_vma *vma)
1230 {
1231 struct sg_table *pages;
1232
1233 /*
1234 * The vma->pages are only valid within the lifespan of the borrowed
1235 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1236 * must be the vma->pages. A simple rule is that vma->pages must only
1237 * be accessed when the obj->mm.pages are pinned.
1238 */
1239 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1240
1241 switch (vma->ggtt_view.type) {
1242 default:
1243 GEM_BUG_ON(vma->ggtt_view.type);
1244 fallthrough;
1245 case I915_GGTT_VIEW_NORMAL:
1246 pages = vma->obj->mm.pages;
1247 break;
1248
1249 case I915_GGTT_VIEW_ROTATED:
1250 pages =
1251 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1252 break;
1253
1254 case I915_GGTT_VIEW_REMAPPED:
1255 pages =
1256 intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1257 break;
1258
1259 case I915_GGTT_VIEW_PARTIAL:
1260 pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1261 break;
1262 }
1263
1264 if (IS_ERR(pages)) {
1265 drm_err(&vma->vm->i915->drm,
1266 "Failed to get pages for VMA view type %u (%ld)!\n",
1267 vma->ggtt_view.type, PTR_ERR(pages));
1268 return PTR_ERR(pages);
1269 }
1270
1271 vma->pages = pages;
1272
1273 return 0;
1274 }
1275
i915_vma_get_pages(struct i915_vma * vma)1276 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1277 {
1278 int err;
1279
1280 if (atomic_add_unless(&vma->pages_count, 1, 0))
1281 return 0;
1282
1283 err = i915_gem_object_pin_pages(vma->obj);
1284 if (err)
1285 return err;
1286
1287 err = __i915_vma_get_pages(vma);
1288 if (err)
1289 goto err_unpin;
1290
1291 vma->page_sizes = vma->obj->mm.page_sizes;
1292 atomic_inc(&vma->pages_count);
1293
1294 return 0;
1295
1296 err_unpin:
1297 __i915_gem_object_unpin_pages(vma->obj);
1298
1299 return err;
1300 }
1301
vma_invalidate_tlb(struct i915_address_space * vm,u32 * tlb)1302 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1303 {
1304 /*
1305 * Before we release the pages that were bound by this vma, we
1306 * must invalidate all the TLBs that may still have a reference
1307 * back to our physical address. It only needs to be done once,
1308 * so after updating the PTE to point away from the pages, record
1309 * the most recent TLB invalidation seqno, and if we have not yet
1310 * flushed the TLBs upon release, perform a full invalidation.
1311 */
1312 WRITE_ONCE(*tlb, intel_gt_next_invalidate_tlb_full(vm->gt));
1313 }
1314
__vma_put_pages(struct i915_vma * vma,unsigned int count)1315 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1316 {
1317 /* We allocate under vma_get_pages, so beware the shrinker */
1318 GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1319
1320 if (atomic_sub_return(count, &vma->pages_count) == 0) {
1321 if (vma->pages != vma->obj->mm.pages) {
1322 sg_free_table(vma->pages);
1323 kfree(vma->pages);
1324 }
1325 vma->pages = NULL;
1326
1327 i915_gem_object_unpin_pages(vma->obj);
1328 }
1329 }
1330
i915_vma_put_pages(struct i915_vma * vma)1331 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1332 {
1333 if (atomic_add_unless(&vma->pages_count, -1, 1))
1334 return;
1335
1336 __vma_put_pages(vma, 1);
1337 }
1338
vma_unbind_pages(struct i915_vma * vma)1339 static void vma_unbind_pages(struct i915_vma *vma)
1340 {
1341 unsigned int count;
1342
1343 lockdep_assert_held(&vma->vm->mutex);
1344
1345 /* The upper portion of pages_count is the number of bindings */
1346 count = atomic_read(&vma->pages_count);
1347 count >>= I915_VMA_PAGES_BIAS;
1348 GEM_BUG_ON(!count);
1349
1350 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1351 }
1352
i915_vma_pin_ww(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u64 size,u64 alignment,u64 flags)1353 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1354 u64 size, u64 alignment, u64 flags)
1355 {
1356 struct i915_vma_work *work = NULL;
1357 struct dma_fence *moving = NULL;
1358 struct i915_vma_resource *vma_res = NULL;
1359 intel_wakeref_t wakeref = 0;
1360 unsigned int bound;
1361 int err;
1362
1363 assert_vma_held(vma);
1364 GEM_BUG_ON(!ww);
1365
1366 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1367 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1368
1369 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1370
1371 /* First try and grab the pin without rebinding the vma */
1372 if (try_qad_pin(vma, flags))
1373 return 0;
1374
1375 err = i915_vma_get_pages(vma);
1376 if (err)
1377 return err;
1378
1379 if (flags & PIN_GLOBAL)
1380 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1381
1382 if (flags & vma->vm->bind_async_flags) {
1383 /* lock VM */
1384 err = i915_vm_lock_objects(vma->vm, ww);
1385 if (err)
1386 goto err_rpm;
1387
1388 work = i915_vma_work();
1389 if (!work) {
1390 err = -ENOMEM;
1391 goto err_rpm;
1392 }
1393
1394 work->vm = vma->vm;
1395
1396 err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1397 if (err)
1398 goto err_rpm;
1399
1400 dma_fence_work_chain(&work->base, moving);
1401
1402 /* Allocate enough page directories to used PTE */
1403 if (vma->vm->allocate_va_range) {
1404 err = i915_vm_alloc_pt_stash(vma->vm,
1405 &work->stash,
1406 vma->size);
1407 if (err)
1408 goto err_fence;
1409
1410 err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1411 if (err)
1412 goto err_fence;
1413 }
1414 }
1415
1416 vma_res = i915_vma_resource_alloc();
1417 if (IS_ERR(vma_res)) {
1418 err = PTR_ERR(vma_res);
1419 goto err_fence;
1420 }
1421
1422 /*
1423 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1424 *
1425 * We conflate the Global GTT with the user's vma when using the
1426 * aliasing-ppgtt, but it is still vitally important to try and
1427 * keep the use cases distinct. For example, userptr objects are
1428 * not allowed inside the Global GTT as that will cause lock
1429 * inversions when we have to evict them the mmu_notifier callbacks -
1430 * but they are allowed to be part of the user ppGTT which can never
1431 * be mapped. As such we try to give the distinct users of the same
1432 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1433 * and i915_ppgtt separate].
1434 *
1435 * NB this may cause us to mask real lock inversions -- while the
1436 * code is safe today, lockdep may not be able to spot future
1437 * transgressions.
1438 */
1439 err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1440 !(flags & PIN_GLOBAL));
1441 if (err)
1442 goto err_vma_res;
1443
1444 /* No more allocations allowed now we hold vm->mutex */
1445
1446 if (unlikely(i915_vma_is_closed(vma))) {
1447 err = -ENOENT;
1448 goto err_unlock;
1449 }
1450
1451 bound = atomic_read(&vma->flags);
1452 if (unlikely(bound & I915_VMA_ERROR)) {
1453 err = -ENOMEM;
1454 goto err_unlock;
1455 }
1456
1457 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1458 err = -EAGAIN; /* pins are meant to be fairly temporary */
1459 goto err_unlock;
1460 }
1461
1462 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1463 if (!(flags & PIN_VALIDATE))
1464 __i915_vma_pin(vma);
1465 goto err_unlock;
1466 }
1467
1468 err = i915_active_acquire(&vma->active);
1469 if (err)
1470 goto err_unlock;
1471
1472 if (!(bound & I915_VMA_BIND_MASK)) {
1473 err = i915_vma_insert(vma, ww, size, alignment, flags);
1474 if (err)
1475 goto err_active;
1476
1477 if (i915_is_ggtt(vma->vm))
1478 __i915_vma_set_map_and_fenceable(vma);
1479 }
1480
1481 GEM_BUG_ON(!vma->pages);
1482 err = i915_vma_bind(vma,
1483 vma->obj->cache_level,
1484 flags, work, vma_res);
1485 vma_res = NULL;
1486 if (err)
1487 goto err_remove;
1488
1489 /* There should only be at most 2 active bindings (user, global) */
1490 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1491 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1492 list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1493
1494 if (!(flags & PIN_VALIDATE)) {
1495 __i915_vma_pin(vma);
1496 GEM_BUG_ON(!i915_vma_is_pinned(vma));
1497 }
1498 GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1499 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1500
1501 err_remove:
1502 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1503 i915_vma_detach(vma);
1504 drm_mm_remove_node(&vma->node);
1505 }
1506 err_active:
1507 i915_active_release(&vma->active);
1508 err_unlock:
1509 mutex_unlock(&vma->vm->mutex);
1510 err_vma_res:
1511 i915_vma_resource_free(vma_res);
1512 err_fence:
1513 if (work)
1514 dma_fence_work_commit_imm(&work->base);
1515 err_rpm:
1516 if (wakeref)
1517 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1518
1519 if (moving)
1520 dma_fence_put(moving);
1521
1522 i915_vma_put_pages(vma);
1523 return err;
1524 }
1525
flush_idle_contexts(struct intel_gt * gt)1526 static void flush_idle_contexts(struct intel_gt *gt)
1527 {
1528 struct intel_engine_cs *engine;
1529 enum intel_engine_id id;
1530
1531 for_each_engine(engine, gt, id)
1532 intel_engine_flush_barriers(engine);
1533
1534 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1535 }
1536
__i915_ggtt_pin(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u32 align,unsigned int flags)1537 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1538 u32 align, unsigned int flags)
1539 {
1540 struct i915_address_space *vm = vma->vm;
1541 int err;
1542
1543 do {
1544 err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1545
1546 if (err != -ENOSPC) {
1547 if (!err) {
1548 err = i915_vma_wait_for_bind(vma);
1549 if (err)
1550 i915_vma_unpin(vma);
1551 }
1552 return err;
1553 }
1554
1555 /* Unlike i915_vma_pin, we don't take no for an answer! */
1556 flush_idle_contexts(vm->gt);
1557 if (mutex_lock_interruptible(&vm->mutex) == 0) {
1558 /*
1559 * We pass NULL ww here, as we don't want to unbind
1560 * locked objects when called from execbuf when pinning
1561 * is removed. This would probably regress badly.
1562 */
1563 i915_gem_evict_vm(vm, NULL);
1564 mutex_unlock(&vm->mutex);
1565 }
1566 } while (1);
1567 }
1568
i915_ggtt_pin(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u32 align,unsigned int flags)1569 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1570 u32 align, unsigned int flags)
1571 {
1572 struct i915_gem_ww_ctx _ww;
1573 int err;
1574
1575 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1576
1577 if (ww)
1578 return __i915_ggtt_pin(vma, ww, align, flags);
1579
1580 lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1581
1582 for_i915_gem_ww(&_ww, err, true) {
1583 err = i915_gem_object_lock(vma->obj, &_ww);
1584 if (!err)
1585 err = __i915_ggtt_pin(vma, &_ww, align, flags);
1586 }
1587
1588 return err;
1589 }
1590
__vma_close(struct i915_vma * vma,struct intel_gt * gt)1591 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1592 {
1593 /*
1594 * We defer actually closing, unbinding and destroying the VMA until
1595 * the next idle point, or if the object is freed in the meantime. By
1596 * postponing the unbind, we allow for it to be resurrected by the
1597 * client, avoiding the work required to rebind the VMA. This is
1598 * advantageous for DRI, where the client/server pass objects
1599 * between themselves, temporarily opening a local VMA to the
1600 * object, and then closing it again. The same object is then reused
1601 * on the next frame (or two, depending on the depth of the swap queue)
1602 * causing us to rebind the VMA once more. This ends up being a lot
1603 * of wasted work for the steady state.
1604 */
1605 GEM_BUG_ON(i915_vma_is_closed(vma));
1606 list_add(&vma->closed_link, >->closed_vma);
1607 }
1608
i915_vma_close(struct i915_vma * vma)1609 void i915_vma_close(struct i915_vma *vma)
1610 {
1611 struct intel_gt *gt = vma->vm->gt;
1612 unsigned long flags;
1613
1614 if (i915_vma_is_ggtt(vma))
1615 return;
1616
1617 GEM_BUG_ON(!atomic_read(&vma->open_count));
1618 if (atomic_dec_and_lock_irqsave(&vma->open_count,
1619 >->closed_lock,
1620 flags)) {
1621 __vma_close(vma, gt);
1622 spin_unlock_irqrestore(>->closed_lock, flags);
1623 }
1624 }
1625
__i915_vma_remove_closed(struct i915_vma * vma)1626 static void __i915_vma_remove_closed(struct i915_vma *vma)
1627 {
1628 list_del_init(&vma->closed_link);
1629 }
1630
i915_vma_reopen(struct i915_vma * vma)1631 void i915_vma_reopen(struct i915_vma *vma)
1632 {
1633 struct intel_gt *gt = vma->vm->gt;
1634
1635 spin_lock_irq(>->closed_lock);
1636 if (i915_vma_is_closed(vma))
1637 __i915_vma_remove_closed(vma);
1638 spin_unlock_irq(>->closed_lock);
1639 }
1640
force_unbind(struct i915_vma * vma)1641 static void force_unbind(struct i915_vma *vma)
1642 {
1643 if (!drm_mm_node_allocated(&vma->node))
1644 return;
1645
1646 atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1647 WARN_ON(__i915_vma_unbind(vma));
1648 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1649 }
1650
release_references(struct i915_vma * vma,struct intel_gt * gt,bool vm_ddestroy)1651 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1652 bool vm_ddestroy)
1653 {
1654 struct drm_i915_gem_object *obj = vma->obj;
1655
1656 GEM_BUG_ON(i915_vma_is_active(vma));
1657
1658 spin_lock(&obj->vma.lock);
1659 list_del(&vma->obj_link);
1660 if (!RB_EMPTY_NODE(&vma->obj_node))
1661 rb_erase(&vma->obj_node, &obj->vma.tree);
1662
1663 spin_unlock(&obj->vma.lock);
1664
1665 spin_lock_irq(>->closed_lock);
1666 __i915_vma_remove_closed(vma);
1667 spin_unlock_irq(>->closed_lock);
1668
1669 if (vm_ddestroy)
1670 i915_vm_resv_put(vma->vm);
1671
1672 i915_active_fini(&vma->active);
1673 GEM_WARN_ON(vma->resource);
1674 i915_vma_free(vma);
1675 }
1676
1677 /**
1678 * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1679 * the initial reference.
1680 *
1681 * This function should be called when it's decided the vma isn't needed
1682 * anymore. The caller must assure that it doesn't race with another lookup
1683 * plus destroy, typically by taking an appropriate reference.
1684 *
1685 * Current callsites are
1686 * - __i915_gem_object_pages_fini()
1687 * - __i915_vm_close() - Blocks the above function by taking a reference on
1688 * the object.
1689 * - __i915_vma_parked() - Blocks the above functions by taking a reference
1690 * on the vm and a reference on the object. Also takes the object lock so
1691 * destruction from __i915_vma_parked() can be blocked by holding the
1692 * object lock. Since the object lock is only allowed from within i915 with
1693 * an object refcount, holding the object lock also implicitly blocks the
1694 * vma freeing from __i915_gem_object_pages_fini().
1695 *
1696 * Because of locks taken during destruction, a vma is also guaranteed to
1697 * stay alive while the following locks are held if it was looked up while
1698 * holding one of the locks:
1699 * - vm->mutex
1700 * - obj->vma.lock
1701 * - gt->closed_lock
1702 */
i915_vma_destroy_locked(struct i915_vma * vma)1703 void i915_vma_destroy_locked(struct i915_vma *vma)
1704 {
1705 lockdep_assert_held(&vma->vm->mutex);
1706
1707 force_unbind(vma);
1708 list_del_init(&vma->vm_link);
1709 release_references(vma, vma->vm->gt, false);
1710 }
1711
i915_vma_destroy(struct i915_vma * vma)1712 void i915_vma_destroy(struct i915_vma *vma)
1713 {
1714 struct intel_gt *gt;
1715 bool vm_ddestroy;
1716
1717 mutex_lock(&vma->vm->mutex);
1718 force_unbind(vma);
1719 list_del_init(&vma->vm_link);
1720 vm_ddestroy = vma->vm_ddestroy;
1721 vma->vm_ddestroy = false;
1722
1723 /* vma->vm may be freed when releasing vma->vm->mutex. */
1724 gt = vma->vm->gt;
1725 mutex_unlock(&vma->vm->mutex);
1726 release_references(vma, gt, vm_ddestroy);
1727 }
1728
i915_vma_parked(struct intel_gt * gt)1729 void i915_vma_parked(struct intel_gt *gt)
1730 {
1731 struct i915_vma *vma, *next;
1732 LIST_HEAD(closed);
1733
1734 spin_lock_irq(>->closed_lock);
1735 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) {
1736 struct drm_i915_gem_object *obj = vma->obj;
1737 struct i915_address_space *vm = vma->vm;
1738
1739 /* XXX All to avoid keeping a reference on i915_vma itself */
1740
1741 if (!kref_get_unless_zero(&obj->base.refcount))
1742 continue;
1743
1744 if (!i915_vm_tryget(vm)) {
1745 i915_gem_object_put(obj);
1746 continue;
1747 }
1748
1749 list_move(&vma->closed_link, &closed);
1750 }
1751 spin_unlock_irq(>->closed_lock);
1752
1753 /* As the GT is held idle, no vma can be reopened as we destroy them */
1754 list_for_each_entry_safe(vma, next, &closed, closed_link) {
1755 struct drm_i915_gem_object *obj = vma->obj;
1756 struct i915_address_space *vm = vma->vm;
1757
1758 if (i915_gem_object_trylock(obj, NULL)) {
1759 INIT_LIST_HEAD(&vma->closed_link);
1760 i915_vma_destroy(vma);
1761 i915_gem_object_unlock(obj);
1762 } else {
1763 /* back you go.. */
1764 spin_lock_irq(>->closed_lock);
1765 list_add(&vma->closed_link, >->closed_vma);
1766 spin_unlock_irq(>->closed_lock);
1767 }
1768
1769 i915_gem_object_put(obj);
1770 i915_vm_put(vm);
1771 }
1772 }
1773
__i915_vma_iounmap(struct i915_vma * vma)1774 static void __i915_vma_iounmap(struct i915_vma *vma)
1775 {
1776 GEM_BUG_ON(i915_vma_is_pinned(vma));
1777
1778 if (vma->iomap == NULL)
1779 return;
1780
1781 io_mapping_unmap(vma->iomap);
1782 vma->iomap = NULL;
1783 }
1784
i915_vma_revoke_mmap(struct i915_vma * vma)1785 void i915_vma_revoke_mmap(struct i915_vma *vma)
1786 {
1787 struct drm_vma_offset_node *node;
1788 u64 vma_offset;
1789
1790 if (!i915_vma_has_userfault(vma))
1791 return;
1792
1793 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1794 GEM_BUG_ON(!vma->obj->userfault_count);
1795
1796 node = &vma->mmo->vma_node;
1797 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
1798 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1799 drm_vma_node_offset_addr(node) + vma_offset,
1800 vma->size,
1801 1);
1802
1803 i915_vma_unset_userfault(vma);
1804 if (!--vma->obj->userfault_count)
1805 list_del(&vma->obj->userfault_link);
1806 }
1807
1808 static int
__i915_request_await_bind(struct i915_request * rq,struct i915_vma * vma)1809 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1810 {
1811 return __i915_request_await_exclusive(rq, &vma->active);
1812 }
1813
__i915_vma_move_to_active(struct i915_vma * vma,struct i915_request * rq)1814 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1815 {
1816 int err;
1817
1818 /* Wait for the vma to be bound before we start! */
1819 err = __i915_request_await_bind(rq, vma);
1820 if (err)
1821 return err;
1822
1823 return i915_active_add_request(&vma->active, rq);
1824 }
1825
_i915_vma_move_to_active(struct i915_vma * vma,struct i915_request * rq,struct dma_fence * fence,unsigned int flags)1826 int _i915_vma_move_to_active(struct i915_vma *vma,
1827 struct i915_request *rq,
1828 struct dma_fence *fence,
1829 unsigned int flags)
1830 {
1831 struct drm_i915_gem_object *obj = vma->obj;
1832 int err;
1833
1834 assert_object_held(obj);
1835
1836 GEM_BUG_ON(!vma->pages);
1837
1838 err = __i915_vma_move_to_active(vma, rq);
1839 if (unlikely(err))
1840 return err;
1841
1842 /*
1843 * Reserve fences slot early to prevent an allocation after preparing
1844 * the workload and associating fences with dma_resv.
1845 */
1846 if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1847 struct dma_fence *curr;
1848 int idx;
1849
1850 dma_fence_array_for_each(curr, idx, fence)
1851 ;
1852 err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1853 if (unlikely(err))
1854 return err;
1855 }
1856
1857 if (flags & EXEC_OBJECT_WRITE) {
1858 struct intel_frontbuffer *front;
1859
1860 front = __intel_frontbuffer_get(obj);
1861 if (unlikely(front)) {
1862 if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1863 i915_active_add_request(&front->write, rq);
1864 intel_frontbuffer_put(front);
1865 }
1866 }
1867
1868 if (fence) {
1869 struct dma_fence *curr;
1870 enum dma_resv_usage usage;
1871 int idx;
1872
1873 obj->read_domains = 0;
1874 if (flags & EXEC_OBJECT_WRITE) {
1875 usage = DMA_RESV_USAGE_WRITE;
1876 obj->write_domain = I915_GEM_DOMAIN_RENDER;
1877 } else {
1878 usage = DMA_RESV_USAGE_READ;
1879 }
1880
1881 dma_fence_array_for_each(curr, idx, fence)
1882 dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1883 }
1884
1885 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1886 i915_active_add_request(&vma->fence->active, rq);
1887
1888 obj->read_domains |= I915_GEM_GPU_DOMAINS;
1889 obj->mm.dirty = true;
1890
1891 GEM_BUG_ON(!i915_vma_is_active(vma));
1892 return 0;
1893 }
1894
__i915_vma_evict(struct i915_vma * vma,bool async)1895 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1896 {
1897 struct i915_vma_resource *vma_res = vma->resource;
1898 struct dma_fence *unbind_fence;
1899
1900 GEM_BUG_ON(i915_vma_is_pinned(vma));
1901 assert_vma_held_evict(vma);
1902
1903 if (i915_vma_is_map_and_fenceable(vma)) {
1904 /* Force a pagefault for domain tracking on next user access */
1905 i915_vma_revoke_mmap(vma);
1906
1907 /*
1908 * Check that we have flushed all writes through the GGTT
1909 * before the unbind, other due to non-strict nature of those
1910 * indirect writes they may end up referencing the GGTT PTE
1911 * after the unbind.
1912 *
1913 * Note that we may be concurrently poking at the GGTT_WRITE
1914 * bit from set-domain, as we mark all GGTT vma associated
1915 * with an object. We know this is for another vma, as we
1916 * are currently unbinding this one -- so if this vma will be
1917 * reused, it will be refaulted and have its dirty bit set
1918 * before the next write.
1919 */
1920 i915_vma_flush_writes(vma);
1921
1922 /* release the fence reg _after_ flushing */
1923 i915_vma_revoke_fence(vma);
1924
1925 __i915_vma_iounmap(vma);
1926 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1927 }
1928 GEM_BUG_ON(vma->fence);
1929 GEM_BUG_ON(i915_vma_has_userfault(vma));
1930
1931 /* Object backend must be async capable. */
1932 GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1933
1934 /* If vm is not open, unbind is a nop. */
1935 vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1936 kref_read(&vma->vm->ref);
1937 vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
1938 vma->vm->skip_pte_rewrite;
1939 trace_i915_vma_unbind(vma);
1940
1941 if (async)
1942 unbind_fence = i915_vma_resource_unbind(vma_res,
1943 &vma->obj->mm.tlb);
1944 else
1945 unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
1946
1947 vma->resource = NULL;
1948
1949 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
1950 &vma->flags);
1951
1952 i915_vma_detach(vma);
1953
1954 if (!async) {
1955 if (unbind_fence) {
1956 dma_fence_wait(unbind_fence, false);
1957 dma_fence_put(unbind_fence);
1958 unbind_fence = NULL;
1959 }
1960 vma_invalidate_tlb(vma->vm, &vma->obj->mm.tlb);
1961 }
1962
1963 /*
1964 * Binding itself may not have completed until the unbind fence signals,
1965 * so don't drop the pages until that happens, unless the resource is
1966 * async_capable.
1967 */
1968
1969 vma_unbind_pages(vma);
1970 return unbind_fence;
1971 }
1972
__i915_vma_unbind(struct i915_vma * vma)1973 int __i915_vma_unbind(struct i915_vma *vma)
1974 {
1975 int ret;
1976
1977 lockdep_assert_held(&vma->vm->mutex);
1978 assert_vma_held_evict(vma);
1979
1980 if (!drm_mm_node_allocated(&vma->node))
1981 return 0;
1982
1983 if (i915_vma_is_pinned(vma)) {
1984 vma_print_allocator(vma, "is pinned");
1985 return -EAGAIN;
1986 }
1987
1988 /*
1989 * After confirming that no one else is pinning this vma, wait for
1990 * any laggards who may have crept in during the wait (through
1991 * a residual pin skipping the vm->mutex) to complete.
1992 */
1993 ret = i915_vma_sync(vma);
1994 if (ret)
1995 return ret;
1996
1997 GEM_BUG_ON(i915_vma_is_active(vma));
1998 __i915_vma_evict(vma, false);
1999
2000 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2001 return 0;
2002 }
2003
__i915_vma_unbind_async(struct i915_vma * vma)2004 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2005 {
2006 struct dma_fence *fence;
2007
2008 lockdep_assert_held(&vma->vm->mutex);
2009
2010 if (!drm_mm_node_allocated(&vma->node))
2011 return NULL;
2012
2013 if (i915_vma_is_pinned(vma) ||
2014 &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2015 return ERR_PTR(-EAGAIN);
2016
2017 /*
2018 * We probably need to replace this with awaiting the fences of the
2019 * object's dma_resv when the vma active goes away. When doing that
2020 * we need to be careful to not add the vma_resource unbind fence
2021 * immediately to the object's dma_resv, because then unbinding
2022 * the next vma from the object, in case there are many, will
2023 * actually await the unbinding of the previous vmas, which is
2024 * undesirable.
2025 */
2026 if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2027 I915_ACTIVE_AWAIT_EXCL |
2028 I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2029 return ERR_PTR(-EBUSY);
2030 }
2031
2032 fence = __i915_vma_evict(vma, true);
2033
2034 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2035
2036 return fence;
2037 }
2038
i915_vma_unbind(struct i915_vma * vma)2039 int i915_vma_unbind(struct i915_vma *vma)
2040 {
2041 struct i915_address_space *vm = vma->vm;
2042 intel_wakeref_t wakeref = 0;
2043 int err;
2044
2045 assert_object_held_shared(vma->obj);
2046
2047 /* Optimistic wait before taking the mutex */
2048 err = i915_vma_sync(vma);
2049 if (err)
2050 return err;
2051
2052 if (!drm_mm_node_allocated(&vma->node))
2053 return 0;
2054
2055 if (i915_vma_is_pinned(vma)) {
2056 vma_print_allocator(vma, "is pinned");
2057 return -EAGAIN;
2058 }
2059
2060 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2061 /* XXX not always required: nop_clear_range */
2062 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2063
2064 err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2065 if (err)
2066 goto out_rpm;
2067
2068 err = __i915_vma_unbind(vma);
2069 mutex_unlock(&vm->mutex);
2070
2071 out_rpm:
2072 if (wakeref)
2073 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2074 return err;
2075 }
2076
i915_vma_unbind_async(struct i915_vma * vma,bool trylock_vm)2077 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2078 {
2079 struct drm_i915_gem_object *obj = vma->obj;
2080 struct i915_address_space *vm = vma->vm;
2081 intel_wakeref_t wakeref = 0;
2082 struct dma_fence *fence;
2083 int err;
2084
2085 /*
2086 * We need the dma-resv lock since we add the
2087 * unbind fence to the dma-resv object.
2088 */
2089 assert_object_held(obj);
2090
2091 if (!drm_mm_node_allocated(&vma->node))
2092 return 0;
2093
2094 if (i915_vma_is_pinned(vma)) {
2095 vma_print_allocator(vma, "is pinned");
2096 return -EAGAIN;
2097 }
2098
2099 if (!obj->mm.rsgt)
2100 return -EBUSY;
2101
2102 err = dma_resv_reserve_fences(obj->base.resv, 1);
2103 if (err)
2104 return -EBUSY;
2105
2106 /*
2107 * It would be great if we could grab this wakeref from the
2108 * async unbind work if needed, but we can't because it uses
2109 * kmalloc and it's in the dma-fence signalling critical path.
2110 */
2111 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2112 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2113
2114 if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2115 err = -EBUSY;
2116 goto out_rpm;
2117 } else if (!trylock_vm) {
2118 err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2119 if (err)
2120 goto out_rpm;
2121 }
2122
2123 fence = __i915_vma_unbind_async(vma);
2124 mutex_unlock(&vm->mutex);
2125 if (IS_ERR_OR_NULL(fence)) {
2126 err = PTR_ERR_OR_ZERO(fence);
2127 goto out_rpm;
2128 }
2129
2130 dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2131 dma_fence_put(fence);
2132
2133 out_rpm:
2134 if (wakeref)
2135 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2136 return err;
2137 }
2138
i915_vma_unbind_unlocked(struct i915_vma * vma)2139 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2140 {
2141 int err;
2142
2143 i915_gem_object_lock(vma->obj, NULL);
2144 err = i915_vma_unbind(vma);
2145 i915_gem_object_unlock(vma->obj);
2146
2147 return err;
2148 }
2149
i915_vma_make_unshrinkable(struct i915_vma * vma)2150 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2151 {
2152 i915_gem_object_make_unshrinkable(vma->obj);
2153 return vma;
2154 }
2155
i915_vma_make_shrinkable(struct i915_vma * vma)2156 void i915_vma_make_shrinkable(struct i915_vma *vma)
2157 {
2158 i915_gem_object_make_shrinkable(vma->obj);
2159 }
2160
i915_vma_make_purgeable(struct i915_vma * vma)2161 void i915_vma_make_purgeable(struct i915_vma *vma)
2162 {
2163 i915_gem_object_make_purgeable(vma->obj);
2164 }
2165
2166 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2167 #include "selftests/i915_vma.c"
2168 #endif
2169
i915_vma_module_exit(void)2170 void i915_vma_module_exit(void)
2171 {
2172 kmem_cache_destroy(slab_vmas);
2173 }
2174
i915_vma_module_init(void)2175 int __init i915_vma_module_init(void)
2176 {
2177 slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2178 if (!slab_vmas)
2179 return -ENOMEM;
2180
2181 return 0;
2182 }
2183