1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28
29 #include "display/intel_display.h"
30 #include "display/intel_frontbuffer.h"
31 #include "gem/i915_gem_lmem.h"
32 #include "gem/i915_gem_tiling.h"
33 #include "gt/intel_engine.h"
34 #include "gt/intel_engine_heartbeat.h"
35 #include "gt/intel_gt.h"
36 #include "gt/intel_gt_requests.h"
37 #include "gt/intel_tlb.h"
38
39 #include "i915_drv.h"
40 #include "i915_gem_evict.h"
41 #include "i915_sw_fence_work.h"
42 #include "i915_trace.h"
43 #include "i915_vma.h"
44 #include "i915_vma_resource.h"
45
assert_vma_held_evict(const struct i915_vma * vma)46 static inline void assert_vma_held_evict(const struct i915_vma *vma)
47 {
48 /*
49 * We may be forced to unbind when the vm is dead, to clean it up.
50 * This is the only exception to the requirement of the object lock
51 * being held.
52 */
53 if (kref_read(&vma->vm->ref))
54 assert_object_held_shared(vma->obj);
55 }
56
57 static struct kmem_cache *slab_vmas;
58
i915_vma_alloc(void)59 static struct i915_vma *i915_vma_alloc(void)
60 {
61 return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
62 }
63
i915_vma_free(struct i915_vma * vma)64 static void i915_vma_free(struct i915_vma *vma)
65 {
66 return kmem_cache_free(slab_vmas, vma);
67 }
68
69 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
70
71 #include <linux/stackdepot.h>
72
vma_print_allocator(struct i915_vma * vma,const char * reason)73 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
74 {
75 char buf[512];
76
77 if (!vma->node.stack) {
78 drm_dbg(vma->obj->base.dev,
79 "vma.node [%08llx + %08llx] %s: unknown owner\n",
80 vma->node.start, vma->node.size, reason);
81 return;
82 }
83
84 stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
85 drm_dbg(vma->obj->base.dev,
86 "vma.node [%08llx + %08llx] %s: inserted at %s\n",
87 vma->node.start, vma->node.size, reason, buf);
88 }
89
90 #else
91
vma_print_allocator(struct i915_vma * vma,const char * reason)92 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
93 {
94 }
95
96 #endif
97
active_to_vma(struct i915_active * ref)98 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
99 {
100 return container_of(ref, typeof(struct i915_vma), active);
101 }
102
__i915_vma_active(struct i915_active * ref)103 static int __i915_vma_active(struct i915_active *ref)
104 {
105 return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
106 }
107
__i915_vma_retire(struct i915_active * ref)108 static void __i915_vma_retire(struct i915_active *ref)
109 {
110 i915_vma_put(active_to_vma(ref));
111 }
112
113 static struct i915_vma *
vma_create(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_gtt_view * view)114 vma_create(struct drm_i915_gem_object *obj,
115 struct i915_address_space *vm,
116 const struct i915_gtt_view *view)
117 {
118 struct i915_vma *pos = ERR_PTR(-E2BIG);
119 struct i915_vma *vma;
120 struct rb_node *rb, **p;
121 int err;
122
123 /* The aliasing_ppgtt should never be used directly! */
124 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
125
126 vma = i915_vma_alloc();
127 if (vma == NULL)
128 return ERR_PTR(-ENOMEM);
129
130 vma->ops = &vm->vma_ops;
131 vma->obj = obj;
132 vma->size = obj->base.size;
133 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
134
135 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
136
137 /* Declare ourselves safe for use inside shrinkers */
138 if (IS_ENABLED(CONFIG_LOCKDEP)) {
139 fs_reclaim_acquire(GFP_KERNEL);
140 might_lock(&vma->active.mutex);
141 fs_reclaim_release(GFP_KERNEL);
142 }
143
144 INIT_LIST_HEAD(&vma->closed_link);
145 INIT_LIST_HEAD(&vma->obj_link);
146 RB_CLEAR_NODE(&vma->obj_node);
147
148 if (view && view->type != I915_GTT_VIEW_NORMAL) {
149 vma->gtt_view = *view;
150 if (view->type == I915_GTT_VIEW_PARTIAL) {
151 GEM_BUG_ON(range_overflows_t(u64,
152 view->partial.offset,
153 view->partial.size,
154 obj->base.size >> PAGE_SHIFT));
155 vma->size = view->partial.size;
156 vma->size <<= PAGE_SHIFT;
157 GEM_BUG_ON(vma->size > obj->base.size);
158 } else if (view->type == I915_GTT_VIEW_ROTATED) {
159 vma->size = intel_rotation_info_size(&view->rotated);
160 vma->size <<= PAGE_SHIFT;
161 } else if (view->type == I915_GTT_VIEW_REMAPPED) {
162 vma->size = intel_remapped_info_size(&view->remapped);
163 vma->size <<= PAGE_SHIFT;
164 }
165 }
166
167 if (unlikely(vma->size > vm->total))
168 goto err_vma;
169
170 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
171
172 err = mutex_lock_interruptible(&vm->mutex);
173 if (err) {
174 pos = ERR_PTR(err);
175 goto err_vma;
176 }
177
178 vma->vm = vm;
179 list_add_tail(&vma->vm_link, &vm->unbound_list);
180
181 spin_lock(&obj->vma.lock);
182 if (i915_is_ggtt(vm)) {
183 if (unlikely(overflows_type(vma->size, u32)))
184 goto err_unlock;
185
186 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
187 i915_gem_object_get_tiling(obj),
188 i915_gem_object_get_stride(obj));
189 if (unlikely(vma->fence_size < vma->size || /* overflow */
190 vma->fence_size > vm->total))
191 goto err_unlock;
192
193 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
194
195 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
196 i915_gem_object_get_tiling(obj),
197 i915_gem_object_get_stride(obj));
198 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
199
200 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
201 }
202
203 rb = NULL;
204 p = &obj->vma.tree.rb_node;
205 while (*p) {
206 long cmp;
207
208 rb = *p;
209 pos = rb_entry(rb, struct i915_vma, obj_node);
210
211 /*
212 * If the view already exists in the tree, another thread
213 * already created a matching vma, so return the older instance
214 * and dispose of ours.
215 */
216 cmp = i915_vma_compare(pos, vm, view);
217 if (cmp < 0)
218 p = &rb->rb_right;
219 else if (cmp > 0)
220 p = &rb->rb_left;
221 else
222 goto err_unlock;
223 }
224 rb_link_node(&vma->obj_node, rb, p);
225 rb_insert_color(&vma->obj_node, &obj->vma.tree);
226
227 if (i915_vma_is_ggtt(vma))
228 /*
229 * We put the GGTT vma at the start of the vma-list, followed
230 * by the ppGGTT vma. This allows us to break early when
231 * iterating over only the GGTT vma for an object, see
232 * for_each_ggtt_vma()
233 */
234 list_add(&vma->obj_link, &obj->vma.list);
235 else
236 list_add_tail(&vma->obj_link, &obj->vma.list);
237
238 spin_unlock(&obj->vma.lock);
239 mutex_unlock(&vm->mutex);
240
241 return vma;
242
243 err_unlock:
244 spin_unlock(&obj->vma.lock);
245 list_del_init(&vma->vm_link);
246 mutex_unlock(&vm->mutex);
247 err_vma:
248 i915_vma_free(vma);
249 return pos;
250 }
251
252 static struct i915_vma *
i915_vma_lookup(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_gtt_view * view)253 i915_vma_lookup(struct drm_i915_gem_object *obj,
254 struct i915_address_space *vm,
255 const struct i915_gtt_view *view)
256 {
257 struct rb_node *rb;
258
259 rb = obj->vma.tree.rb_node;
260 while (rb) {
261 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
262 long cmp;
263
264 cmp = i915_vma_compare(vma, vm, view);
265 if (cmp == 0)
266 return vma;
267
268 if (cmp < 0)
269 rb = rb->rb_right;
270 else
271 rb = rb->rb_left;
272 }
273
274 return NULL;
275 }
276
277 /**
278 * i915_vma_instance - return the singleton instance of the VMA
279 * @obj: parent &struct drm_i915_gem_object to be mapped
280 * @vm: address space in which the mapping is located
281 * @view: additional mapping requirements
282 *
283 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
284 * the same @view characteristics. If a match is not found, one is created.
285 * Once created, the VMA is kept until either the object is freed, or the
286 * address space is closed.
287 *
288 * Returns the vma, or an error pointer.
289 */
290 struct i915_vma *
i915_vma_instance(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_gtt_view * view)291 i915_vma_instance(struct drm_i915_gem_object *obj,
292 struct i915_address_space *vm,
293 const struct i915_gtt_view *view)
294 {
295 struct i915_vma *vma;
296
297 GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
298 GEM_BUG_ON(!kref_read(&vm->ref));
299
300 spin_lock(&obj->vma.lock);
301 vma = i915_vma_lookup(obj, vm, view);
302 spin_unlock(&obj->vma.lock);
303
304 /* vma_create() will resolve the race if another creates the vma */
305 if (unlikely(!vma))
306 vma = vma_create(obj, vm, view);
307
308 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
309 return vma;
310 }
311
312 struct i915_vma_work {
313 struct dma_fence_work base;
314 struct i915_address_space *vm;
315 struct i915_vm_pt_stash stash;
316 struct i915_vma_resource *vma_res;
317 struct drm_i915_gem_object *obj;
318 struct i915_sw_dma_fence_cb cb;
319 unsigned int pat_index;
320 unsigned int flags;
321 };
322
__vma_bind(struct dma_fence_work * work)323 static void __vma_bind(struct dma_fence_work *work)
324 {
325 struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
326 struct i915_vma_resource *vma_res = vw->vma_res;
327
328 /*
329 * We are about the bind the object, which must mean we have already
330 * signaled the work to potentially clear/move the pages underneath. If
331 * something went wrong at that stage then the object should have
332 * unknown_state set, in which case we need to skip the bind.
333 */
334 if (i915_gem_object_has_unknown_state(vw->obj))
335 return;
336
337 vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
338 vma_res, vw->pat_index, vw->flags);
339 }
340
__vma_release(struct dma_fence_work * work)341 static void __vma_release(struct dma_fence_work *work)
342 {
343 struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
344
345 if (vw->obj)
346 i915_gem_object_put(vw->obj);
347
348 i915_vm_free_pt_stash(vw->vm, &vw->stash);
349 if (vw->vma_res)
350 i915_vma_resource_put(vw->vma_res);
351 }
352
353 static const struct dma_fence_work_ops bind_ops = {
354 .name = "bind",
355 .work = __vma_bind,
356 .release = __vma_release,
357 };
358
i915_vma_work(void)359 struct i915_vma_work *i915_vma_work(void)
360 {
361 struct i915_vma_work *vw;
362
363 vw = kzalloc(sizeof(*vw), GFP_KERNEL);
364 if (!vw)
365 return NULL;
366
367 dma_fence_work_init(&vw->base, &bind_ops);
368 vw->base.dma.error = -EAGAIN; /* disable the worker by default */
369
370 return vw;
371 }
372
i915_vma_wait_for_bind(struct i915_vma * vma)373 int i915_vma_wait_for_bind(struct i915_vma *vma)
374 {
375 int err = 0;
376
377 if (rcu_access_pointer(vma->active.excl.fence)) {
378 struct dma_fence *fence;
379
380 rcu_read_lock();
381 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
382 rcu_read_unlock();
383 if (fence) {
384 err = dma_fence_wait(fence, true);
385 dma_fence_put(fence);
386 }
387 }
388
389 return err;
390 }
391
392 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
i915_vma_verify_bind_complete(struct i915_vma * vma)393 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
394 {
395 struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
396 int err;
397
398 if (!fence)
399 return 0;
400
401 if (dma_fence_is_signaled(fence))
402 err = fence->error;
403 else
404 err = -EBUSY;
405
406 dma_fence_put(fence);
407
408 return err;
409 }
410 #else
411 #define i915_vma_verify_bind_complete(_vma) 0
412 #endif
413
414 I915_SELFTEST_EXPORT void
i915_vma_resource_init_from_vma(struct i915_vma_resource * vma_res,struct i915_vma * vma)415 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
416 struct i915_vma *vma)
417 {
418 struct drm_i915_gem_object *obj = vma->obj;
419
420 i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
421 obj->mm.rsgt, i915_gem_object_is_readonly(obj),
422 i915_gem_object_is_lmem(obj), obj->mm.region,
423 vma->ops, vma->private, __i915_vma_offset(vma),
424 __i915_vma_size(vma), vma->size, vma->guard);
425 }
426
427 /**
428 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
429 * @vma: VMA to map
430 * @pat_index: PAT index to set in PTE
431 * @flags: flags like global or local mapping
432 * @work: preallocated worker for allocating and binding the PTE
433 * @vma_res: pointer to a preallocated vma resource. The resource is either
434 * consumed or freed.
435 *
436 * DMA addresses are taken from the scatter-gather table of this object (or of
437 * this VMA in case of non-default GGTT views) and PTE entries set up.
438 * Note that DMA addresses are also the only part of the SG table we care about.
439 */
i915_vma_bind(struct i915_vma * vma,unsigned int pat_index,u32 flags,struct i915_vma_work * work,struct i915_vma_resource * vma_res)440 int i915_vma_bind(struct i915_vma *vma,
441 unsigned int pat_index,
442 u32 flags,
443 struct i915_vma_work *work,
444 struct i915_vma_resource *vma_res)
445 {
446 u32 bind_flags;
447 u32 vma_flags;
448 int ret;
449
450 lockdep_assert_held(&vma->vm->mutex);
451 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
452 GEM_BUG_ON(vma->size > i915_vma_size(vma));
453
454 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
455 vma->node.size,
456 vma->vm->total))) {
457 i915_vma_resource_free(vma_res);
458 return -ENODEV;
459 }
460
461 if (GEM_DEBUG_WARN_ON(!flags)) {
462 i915_vma_resource_free(vma_res);
463 return -EINVAL;
464 }
465
466 bind_flags = flags;
467 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
468
469 vma_flags = atomic_read(&vma->flags);
470 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
471
472 bind_flags &= ~vma_flags;
473 if (bind_flags == 0) {
474 i915_vma_resource_free(vma_res);
475 return 0;
476 }
477
478 GEM_BUG_ON(!atomic_read(&vma->pages_count));
479
480 /* Wait for or await async unbinds touching our range */
481 if (work && bind_flags & vma->vm->bind_async_flags)
482 ret = i915_vma_resource_bind_dep_await(vma->vm,
483 &work->base.chain,
484 vma->node.start,
485 vma->node.size,
486 true,
487 GFP_NOWAIT |
488 __GFP_RETRY_MAYFAIL |
489 __GFP_NOWARN);
490 else
491 ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
492 vma->node.size, true);
493 if (ret) {
494 i915_vma_resource_free(vma_res);
495 return ret;
496 }
497
498 if (vma->resource || !vma_res) {
499 /* Rebinding with an additional I915_VMA_*_BIND */
500 GEM_WARN_ON(!vma_flags);
501 i915_vma_resource_free(vma_res);
502 } else {
503 i915_vma_resource_init_from_vma(vma_res, vma);
504 vma->resource = vma_res;
505 }
506 trace_i915_vma_bind(vma, bind_flags);
507 if (work && bind_flags & vma->vm->bind_async_flags) {
508 struct dma_fence *prev;
509
510 work->vma_res = i915_vma_resource_get(vma->resource);
511 work->pat_index = pat_index;
512 work->flags = bind_flags;
513
514 /*
515 * Note we only want to chain up to the migration fence on
516 * the pages (not the object itself). As we don't track that,
517 * yet, we have to use the exclusive fence instead.
518 *
519 * Also note that we do not want to track the async vma as
520 * part of the obj->resv->excl_fence as it only affects
521 * execution and not content or object's backing store lifetime.
522 */
523 prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
524 if (prev) {
525 __i915_sw_fence_await_dma_fence(&work->base.chain,
526 prev,
527 &work->cb);
528 dma_fence_put(prev);
529 }
530
531 work->base.dma.error = 0; /* enable the queue_work() */
532 work->obj = i915_gem_object_get(vma->obj);
533 } else {
534 ret = i915_gem_object_wait_moving_fence(vma->obj, true);
535 if (ret) {
536 i915_vma_resource_free(vma->resource);
537 vma->resource = NULL;
538
539 return ret;
540 }
541 vma->ops->bind_vma(vma->vm, NULL, vma->resource, pat_index,
542 bind_flags);
543 }
544
545 atomic_or(bind_flags, &vma->flags);
546 return 0;
547 }
548
i915_vma_pin_iomap(struct i915_vma * vma)549 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
550 {
551 void __iomem *ptr;
552 int err;
553
554 if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
555 return IOMEM_ERR_PTR(-EINVAL);
556
557 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
558 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
559 GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
560
561 ptr = READ_ONCE(vma->iomap);
562 if (ptr == NULL) {
563 /*
564 * TODO: consider just using i915_gem_object_pin_map() for lmem
565 * instead, which already supports mapping non-contiguous chunks
566 * of pages, that way we can also drop the
567 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
568 */
569 if (i915_gem_object_is_lmem(vma->obj)) {
570 ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
571 vma->obj->base.size);
572 } else if (i915_vma_is_map_and_fenceable(vma)) {
573 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
574 i915_vma_offset(vma),
575 i915_vma_size(vma));
576 } else {
577 ptr = (void __iomem *)
578 i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
579 if (IS_ERR(ptr)) {
580 err = PTR_ERR(ptr);
581 goto err;
582 }
583 ptr = page_pack_bits(ptr, 1);
584 }
585
586 if (ptr == NULL) {
587 err = -ENOMEM;
588 goto err;
589 }
590
591 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
592 if (page_unmask_bits(ptr))
593 __i915_gem_object_release_map(vma->obj);
594 else
595 io_mapping_unmap(ptr);
596 ptr = vma->iomap;
597 }
598 }
599
600 __i915_vma_pin(vma);
601
602 err = i915_vma_pin_fence(vma);
603 if (err)
604 goto err_unpin;
605
606 i915_vma_set_ggtt_write(vma);
607
608 /* NB Access through the GTT requires the device to be awake. */
609 return page_mask_bits(ptr);
610
611 err_unpin:
612 __i915_vma_unpin(vma);
613 err:
614 return IOMEM_ERR_PTR(err);
615 }
616
i915_vma_flush_writes(struct i915_vma * vma)617 void i915_vma_flush_writes(struct i915_vma *vma)
618 {
619 if (i915_vma_unset_ggtt_write(vma))
620 intel_gt_flush_ggtt_writes(vma->vm->gt);
621 }
622
i915_vma_unpin_iomap(struct i915_vma * vma)623 void i915_vma_unpin_iomap(struct i915_vma *vma)
624 {
625 GEM_BUG_ON(vma->iomap == NULL);
626
627 /* XXX We keep the mapping until __i915_vma_unbind()/evict() */
628
629 i915_vma_flush_writes(vma);
630
631 i915_vma_unpin_fence(vma);
632 i915_vma_unpin(vma);
633 }
634
i915_vma_unpin_and_release(struct i915_vma ** p_vma,unsigned int flags)635 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
636 {
637 struct i915_vma *vma;
638 struct drm_i915_gem_object *obj;
639
640 vma = fetch_and_zero(p_vma);
641 if (!vma)
642 return;
643
644 obj = vma->obj;
645 GEM_BUG_ON(!obj);
646
647 i915_vma_unpin(vma);
648
649 if (flags & I915_VMA_RELEASE_MAP)
650 i915_gem_object_unpin_map(obj);
651
652 i915_gem_object_put(obj);
653 }
654
i915_vma_misplaced(const struct i915_vma * vma,u64 size,u64 alignment,u64 flags)655 bool i915_vma_misplaced(const struct i915_vma *vma,
656 u64 size, u64 alignment, u64 flags)
657 {
658 if (!drm_mm_node_allocated(&vma->node))
659 return false;
660
661 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
662 return true;
663
664 if (i915_vma_size(vma) < size)
665 return true;
666
667 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
668 if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment))
669 return true;
670
671 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
672 return true;
673
674 if (flags & PIN_OFFSET_BIAS &&
675 i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK))
676 return true;
677
678 if (flags & PIN_OFFSET_FIXED &&
679 i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK))
680 return true;
681
682 if (flags & PIN_OFFSET_GUARD &&
683 vma->guard < (flags & PIN_OFFSET_MASK))
684 return true;
685
686 return false;
687 }
688
__i915_vma_set_map_and_fenceable(struct i915_vma * vma)689 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
690 {
691 bool mappable, fenceable;
692
693 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
694 GEM_BUG_ON(!vma->fence_size);
695
696 fenceable = (i915_vma_size(vma) >= vma->fence_size &&
697 IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment));
698
699 mappable = i915_ggtt_offset(vma) + vma->fence_size <=
700 i915_vm_to_ggtt(vma->vm)->mappable_end;
701
702 if (mappable && fenceable)
703 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
704 else
705 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
706 }
707
i915_gem_valid_gtt_space(struct i915_vma * vma,unsigned long color)708 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
709 {
710 struct drm_mm_node *node = &vma->node;
711 struct drm_mm_node *other;
712
713 /*
714 * On some machines we have to be careful when putting differing types
715 * of snoopable memory together to avoid the prefetcher crossing memory
716 * domains and dying. During vm initialisation, we decide whether or not
717 * these constraints apply and set the drm_mm.color_adjust
718 * appropriately.
719 */
720 if (!i915_vm_has_cache_coloring(vma->vm))
721 return true;
722
723 /* Only valid to be called on an already inserted vma */
724 GEM_BUG_ON(!drm_mm_node_allocated(node));
725 GEM_BUG_ON(list_empty(&node->node_list));
726
727 other = list_prev_entry(node, node_list);
728 if (i915_node_color_differs(other, color) &&
729 !drm_mm_hole_follows(other))
730 return false;
731
732 other = list_next_entry(node, node_list);
733 if (i915_node_color_differs(other, color) &&
734 !drm_mm_hole_follows(node))
735 return false;
736
737 return true;
738 }
739
740 /**
741 * i915_vma_insert - finds a slot for the vma in its address space
742 * @vma: the vma
743 * @ww: An optional struct i915_gem_ww_ctx
744 * @size: requested size in bytes (can be larger than the VMA)
745 * @alignment: required alignment
746 * @flags: mask of PIN_* flags to use
747 *
748 * First we try to allocate some free space that meets the requirements for
749 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
750 * preferrably the oldest idle entry to make room for the new VMA.
751 *
752 * Returns:
753 * 0 on success, negative error code otherwise.
754 */
755 static int
i915_vma_insert(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u64 size,u64 alignment,u64 flags)756 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
757 u64 size, u64 alignment, u64 flags)
758 {
759 unsigned long color, guard;
760 u64 start, end;
761 int ret;
762
763 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
764 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
765 GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1);
766
767 size = max(size, vma->size);
768 alignment = max_t(typeof(alignment), alignment, vma->display_alignment);
769 if (flags & PIN_MAPPABLE) {
770 size = max_t(typeof(size), size, vma->fence_size);
771 alignment = max_t(typeof(alignment),
772 alignment, vma->fence_alignment);
773 }
774
775 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
776 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
777 GEM_BUG_ON(!is_power_of_2(alignment));
778
779 guard = vma->guard; /* retain guard across rebinds */
780 if (flags & PIN_OFFSET_GUARD) {
781 GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32));
782 guard = max_t(u32, guard, flags & PIN_OFFSET_MASK);
783 }
784 /*
785 * As we align the node upon insertion, but the hardware gets
786 * node.start + guard, the easiest way to make that work is
787 * to make the guard a multiple of the alignment size.
788 */
789 guard = ALIGN(guard, alignment);
790
791 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
792 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
793
794 end = vma->vm->total;
795 if (flags & PIN_MAPPABLE)
796 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
797 if (flags & PIN_ZONE_4G)
798 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
799 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
800
801 alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
802
803 /*
804 * If binding the object/GGTT view requires more space than the entire
805 * aperture has, reject it early before evicting everything in a vain
806 * attempt to find space.
807 */
808 if (size > end - 2 * guard) {
809 drm_dbg(vma->obj->base.dev,
810 "Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
811 size, flags & PIN_MAPPABLE ? "mappable" : "total", end);
812 return -ENOSPC;
813 }
814
815 color = 0;
816
817 if (i915_vm_has_cache_coloring(vma->vm))
818 color = vma->obj->pat_index;
819
820 if (flags & PIN_OFFSET_FIXED) {
821 u64 offset = flags & PIN_OFFSET_MASK;
822 if (!IS_ALIGNED(offset, alignment) ||
823 range_overflows(offset, size, end))
824 return -EINVAL;
825 /*
826 * The caller knows not of the guard added by others and
827 * requests for the offset of the start of its buffer
828 * to be fixed, which may not be the same as the position
829 * of the vma->node due to the guard pages.
830 */
831 if (offset < guard || offset + size > end - guard)
832 return -ENOSPC;
833
834 ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
835 size + 2 * guard,
836 offset - guard,
837 color, flags);
838 if (ret)
839 return ret;
840 } else {
841 size += 2 * guard;
842 /*
843 * We only support huge gtt pages through the 48b PPGTT,
844 * however we also don't want to force any alignment for
845 * objects which need to be tightly packed into the low 32bits.
846 *
847 * Note that we assume that GGTT are limited to 4GiB for the
848 * forseeable future. See also i915_ggtt_offset().
849 */
850 if (upper_32_bits(end - 1) &&
851 vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
852 !HAS_64K_PAGES(vma->vm->i915)) {
853 /*
854 * We can't mix 64K and 4K PTEs in the same page-table
855 * (2M block), and so to avoid the ugliness and
856 * complexity of coloring we opt for just aligning 64K
857 * objects to 2M.
858 */
859 u64 page_alignment =
860 rounddown_pow_of_two(vma->page_sizes.sg |
861 I915_GTT_PAGE_SIZE_2M);
862
863 /*
864 * Check we don't expand for the limited Global GTT
865 * (mappable aperture is even more precious!). This
866 * also checks that we exclude the aliasing-ppgtt.
867 */
868 GEM_BUG_ON(i915_vma_is_ggtt(vma));
869
870 alignment = max(alignment, page_alignment);
871
872 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
873 size = round_up(size, I915_GTT_PAGE_SIZE_2M);
874 }
875
876 ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
877 size, alignment, color,
878 start, end, flags);
879 if (ret)
880 return ret;
881
882 GEM_BUG_ON(vma->node.start < start);
883 GEM_BUG_ON(vma->node.start + vma->node.size > end);
884 }
885 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
886 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
887
888 list_move_tail(&vma->vm_link, &vma->vm->bound_list);
889 vma->guard = guard;
890
891 return 0;
892 }
893
894 static void
i915_vma_detach(struct i915_vma * vma)895 i915_vma_detach(struct i915_vma *vma)
896 {
897 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
898 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
899
900 /*
901 * And finally now the object is completely decoupled from this
902 * vma, we can drop its hold on the backing storage and allow
903 * it to be reaped by the shrinker.
904 */
905 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
906 }
907
try_qad_pin(struct i915_vma * vma,unsigned int flags)908 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
909 {
910 unsigned int bound;
911
912 bound = atomic_read(&vma->flags);
913
914 if (flags & PIN_VALIDATE) {
915 flags &= I915_VMA_BIND_MASK;
916
917 return (flags & bound) == flags;
918 }
919
920 /* with the lock mandatory for unbind, we don't race here */
921 flags &= I915_VMA_BIND_MASK;
922 do {
923 if (unlikely(flags & ~bound))
924 return false;
925
926 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
927 return false;
928
929 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
930 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
931
932 return true;
933 }
934
935 static struct scatterlist *
rotate_pages(struct drm_i915_gem_object * obj,unsigned int offset,unsigned int width,unsigned int height,unsigned int src_stride,unsigned int dst_stride,struct sg_table * st,struct scatterlist * sg)936 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
937 unsigned int width, unsigned int height,
938 unsigned int src_stride, unsigned int dst_stride,
939 struct sg_table *st, struct scatterlist *sg)
940 {
941 unsigned int column, row;
942 pgoff_t src_idx;
943
944 for (column = 0; column < width; column++) {
945 unsigned int left;
946
947 src_idx = src_stride * (height - 1) + column + offset;
948 for (row = 0; row < height; row++) {
949 st->nents++;
950 /*
951 * We don't need the pages, but need to initialize
952 * the entries so the sg list can be happily traversed.
953 * The only thing we need are DMA addresses.
954 */
955 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
956 sg_dma_address(sg) =
957 i915_gem_object_get_dma_address(obj, src_idx);
958 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
959 sg = sg_next(sg);
960 src_idx -= src_stride;
961 }
962
963 left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
964
965 if (!left)
966 continue;
967
968 st->nents++;
969
970 /*
971 * The DE ignores the PTEs for the padding tiles, the sg entry
972 * here is just a conenience to indicate how many padding PTEs
973 * to insert at this spot.
974 */
975 sg_set_page(sg, NULL, left, 0);
976 sg_dma_address(sg) = 0;
977 sg_dma_len(sg) = left;
978 sg = sg_next(sg);
979 }
980
981 return sg;
982 }
983
984 static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info * rot_info,struct drm_i915_gem_object * obj)985 intel_rotate_pages(struct intel_rotation_info *rot_info,
986 struct drm_i915_gem_object *obj)
987 {
988 unsigned int size = intel_rotation_info_size(rot_info);
989 struct drm_i915_private *i915 = to_i915(obj->base.dev);
990 struct sg_table *st;
991 struct scatterlist *sg;
992 int ret = -ENOMEM;
993 int i;
994
995 /* Allocate target SG list. */
996 st = kmalloc(sizeof(*st), GFP_KERNEL);
997 if (!st)
998 goto err_st_alloc;
999
1000 ret = sg_alloc_table(st, size, GFP_KERNEL);
1001 if (ret)
1002 goto err_sg_alloc;
1003
1004 st->nents = 0;
1005 sg = st->sgl;
1006
1007 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1008 sg = rotate_pages(obj, rot_info->plane[i].offset,
1009 rot_info->plane[i].width, rot_info->plane[i].height,
1010 rot_info->plane[i].src_stride,
1011 rot_info->plane[i].dst_stride,
1012 st, sg);
1013
1014 return st;
1015
1016 err_sg_alloc:
1017 kfree(st);
1018 err_st_alloc:
1019
1020 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1021 obj->base.size, rot_info->plane[0].width,
1022 rot_info->plane[0].height, size);
1023
1024 return ERR_PTR(ret);
1025 }
1026
1027 static struct scatterlist *
add_padding_pages(unsigned int count,struct sg_table * st,struct scatterlist * sg)1028 add_padding_pages(unsigned int count,
1029 struct sg_table *st, struct scatterlist *sg)
1030 {
1031 st->nents++;
1032
1033 /*
1034 * The DE ignores the PTEs for the padding tiles, the sg entry
1035 * here is just a convenience to indicate how many padding PTEs
1036 * to insert at this spot.
1037 */
1038 sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1039 sg_dma_address(sg) = 0;
1040 sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1041 sg = sg_next(sg);
1042
1043 return sg;
1044 }
1045
1046 static struct scatterlist *
remap_tiled_color_plane_pages(struct drm_i915_gem_object * obj,unsigned long offset,unsigned int alignment_pad,unsigned int width,unsigned int height,unsigned int src_stride,unsigned int dst_stride,struct sg_table * st,struct scatterlist * sg,unsigned int * gtt_offset)1047 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1048 unsigned long offset, unsigned int alignment_pad,
1049 unsigned int width, unsigned int height,
1050 unsigned int src_stride, unsigned int dst_stride,
1051 struct sg_table *st, struct scatterlist *sg,
1052 unsigned int *gtt_offset)
1053 {
1054 unsigned int row;
1055
1056 if (!width || !height)
1057 return sg;
1058
1059 if (alignment_pad)
1060 sg = add_padding_pages(alignment_pad, st, sg);
1061
1062 for (row = 0; row < height; row++) {
1063 unsigned int left = width * I915_GTT_PAGE_SIZE;
1064
1065 while (left) {
1066 dma_addr_t addr;
1067 unsigned int length;
1068
1069 /*
1070 * We don't need the pages, but need to initialize
1071 * the entries so the sg list can be happily traversed.
1072 * The only thing we need are DMA addresses.
1073 */
1074
1075 addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1076
1077 length = min(left, length);
1078
1079 st->nents++;
1080
1081 sg_set_page(sg, NULL, length, 0);
1082 sg_dma_address(sg) = addr;
1083 sg_dma_len(sg) = length;
1084 sg = sg_next(sg);
1085
1086 offset += length / I915_GTT_PAGE_SIZE;
1087 left -= length;
1088 }
1089
1090 offset += src_stride - width;
1091
1092 left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1093
1094 if (!left)
1095 continue;
1096
1097 sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1098 }
1099
1100 *gtt_offset += alignment_pad + dst_stride * height;
1101
1102 return sg;
1103 }
1104
1105 static struct scatterlist *
remap_contiguous_pages(struct drm_i915_gem_object * obj,pgoff_t obj_offset,unsigned int count,struct sg_table * st,struct scatterlist * sg)1106 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1107 pgoff_t obj_offset,
1108 unsigned int count,
1109 struct sg_table *st, struct scatterlist *sg)
1110 {
1111 struct scatterlist *iter;
1112 unsigned int offset;
1113
1114 iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1115 GEM_BUG_ON(!iter);
1116
1117 do {
1118 unsigned int len;
1119
1120 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1121 count << PAGE_SHIFT);
1122 sg_set_page(sg, NULL, len, 0);
1123 sg_dma_address(sg) =
1124 sg_dma_address(iter) + (offset << PAGE_SHIFT);
1125 sg_dma_len(sg) = len;
1126
1127 st->nents++;
1128 count -= len >> PAGE_SHIFT;
1129 if (count == 0)
1130 return sg;
1131
1132 sg = __sg_next(sg);
1133 iter = __sg_next(iter);
1134 offset = 0;
1135 } while (1);
1136 }
1137
1138 static struct scatterlist *
remap_linear_color_plane_pages(struct drm_i915_gem_object * obj,pgoff_t obj_offset,unsigned int alignment_pad,unsigned int size,struct sg_table * st,struct scatterlist * sg,unsigned int * gtt_offset)1139 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1140 pgoff_t obj_offset, unsigned int alignment_pad,
1141 unsigned int size,
1142 struct sg_table *st, struct scatterlist *sg,
1143 unsigned int *gtt_offset)
1144 {
1145 if (!size)
1146 return sg;
1147
1148 if (alignment_pad)
1149 sg = add_padding_pages(alignment_pad, st, sg);
1150
1151 sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1152 sg = sg_next(sg);
1153
1154 *gtt_offset += alignment_pad + size;
1155
1156 return sg;
1157 }
1158
1159 static struct scatterlist *
remap_color_plane_pages(const struct intel_remapped_info * rem_info,struct drm_i915_gem_object * obj,int color_plane,struct sg_table * st,struct scatterlist * sg,unsigned int * gtt_offset)1160 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1161 struct drm_i915_gem_object *obj,
1162 int color_plane,
1163 struct sg_table *st, struct scatterlist *sg,
1164 unsigned int *gtt_offset)
1165 {
1166 unsigned int alignment_pad = 0;
1167
1168 if (rem_info->plane_alignment)
1169 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1170
1171 if (rem_info->plane[color_plane].linear)
1172 sg = remap_linear_color_plane_pages(obj,
1173 rem_info->plane[color_plane].offset,
1174 alignment_pad,
1175 rem_info->plane[color_plane].size,
1176 st, sg,
1177 gtt_offset);
1178
1179 else
1180 sg = remap_tiled_color_plane_pages(obj,
1181 rem_info->plane[color_plane].offset,
1182 alignment_pad,
1183 rem_info->plane[color_plane].width,
1184 rem_info->plane[color_plane].height,
1185 rem_info->plane[color_plane].src_stride,
1186 rem_info->plane[color_plane].dst_stride,
1187 st, sg,
1188 gtt_offset);
1189
1190 return sg;
1191 }
1192
1193 static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info * rem_info,struct drm_i915_gem_object * obj)1194 intel_remap_pages(struct intel_remapped_info *rem_info,
1195 struct drm_i915_gem_object *obj)
1196 {
1197 unsigned int size = intel_remapped_info_size(rem_info);
1198 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1199 struct sg_table *st;
1200 struct scatterlist *sg;
1201 unsigned int gtt_offset = 0;
1202 int ret = -ENOMEM;
1203 int i;
1204
1205 /* Allocate target SG list. */
1206 st = kmalloc(sizeof(*st), GFP_KERNEL);
1207 if (!st)
1208 goto err_st_alloc;
1209
1210 ret = sg_alloc_table(st, size, GFP_KERNEL);
1211 if (ret)
1212 goto err_sg_alloc;
1213
1214 st->nents = 0;
1215 sg = st->sgl;
1216
1217 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1218 sg = remap_color_plane_pages(rem_info, obj, i, st, sg, >t_offset);
1219
1220 i915_sg_trim(st);
1221
1222 return st;
1223
1224 err_sg_alloc:
1225 kfree(st);
1226 err_st_alloc:
1227
1228 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1229 obj->base.size, rem_info->plane[0].width,
1230 rem_info->plane[0].height, size);
1231
1232 return ERR_PTR(ret);
1233 }
1234
1235 static noinline struct sg_table *
intel_partial_pages(const struct i915_gtt_view * view,struct drm_i915_gem_object * obj)1236 intel_partial_pages(const struct i915_gtt_view *view,
1237 struct drm_i915_gem_object *obj)
1238 {
1239 struct sg_table *st;
1240 struct scatterlist *sg;
1241 unsigned int count = view->partial.size;
1242 int ret = -ENOMEM;
1243
1244 st = kmalloc(sizeof(*st), GFP_KERNEL);
1245 if (!st)
1246 goto err_st_alloc;
1247
1248 ret = sg_alloc_table(st, count, GFP_KERNEL);
1249 if (ret)
1250 goto err_sg_alloc;
1251
1252 st->nents = 0;
1253
1254 sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1255
1256 sg_mark_end(sg);
1257 i915_sg_trim(st); /* Drop any unused tail entries. */
1258
1259 return st;
1260
1261 err_sg_alloc:
1262 kfree(st);
1263 err_st_alloc:
1264 return ERR_PTR(ret);
1265 }
1266
1267 static int
__i915_vma_get_pages(struct i915_vma * vma)1268 __i915_vma_get_pages(struct i915_vma *vma)
1269 {
1270 struct sg_table *pages;
1271
1272 /*
1273 * The vma->pages are only valid within the lifespan of the borrowed
1274 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1275 * must be the vma->pages. A simple rule is that vma->pages must only
1276 * be accessed when the obj->mm.pages are pinned.
1277 */
1278 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1279
1280 switch (vma->gtt_view.type) {
1281 default:
1282 GEM_BUG_ON(vma->gtt_view.type);
1283 fallthrough;
1284 case I915_GTT_VIEW_NORMAL:
1285 pages = vma->obj->mm.pages;
1286 break;
1287
1288 case I915_GTT_VIEW_ROTATED:
1289 pages =
1290 intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1291 break;
1292
1293 case I915_GTT_VIEW_REMAPPED:
1294 pages =
1295 intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1296 break;
1297
1298 case I915_GTT_VIEW_PARTIAL:
1299 pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1300 break;
1301 }
1302
1303 if (IS_ERR(pages)) {
1304 drm_err(&vma->vm->i915->drm,
1305 "Failed to get pages for VMA view type %u (%ld)!\n",
1306 vma->gtt_view.type, PTR_ERR(pages));
1307 return PTR_ERR(pages);
1308 }
1309
1310 vma->pages = pages;
1311
1312 return 0;
1313 }
1314
i915_vma_get_pages(struct i915_vma * vma)1315 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1316 {
1317 int err;
1318
1319 if (atomic_add_unless(&vma->pages_count, 1, 0))
1320 return 0;
1321
1322 err = i915_gem_object_pin_pages(vma->obj);
1323 if (err)
1324 return err;
1325
1326 err = __i915_vma_get_pages(vma);
1327 if (err)
1328 goto err_unpin;
1329
1330 vma->page_sizes = vma->obj->mm.page_sizes;
1331 atomic_inc(&vma->pages_count);
1332
1333 return 0;
1334
1335 err_unpin:
1336 __i915_gem_object_unpin_pages(vma->obj);
1337
1338 return err;
1339 }
1340
vma_invalidate_tlb(struct i915_address_space * vm,u32 * tlb)1341 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1342 {
1343 struct intel_gt *gt;
1344 int id;
1345
1346 if (!tlb)
1347 return;
1348
1349 /*
1350 * Before we release the pages that were bound by this vma, we
1351 * must invalidate all the TLBs that may still have a reference
1352 * back to our physical address. It only needs to be done once,
1353 * so after updating the PTE to point away from the pages, record
1354 * the most recent TLB invalidation seqno, and if we have not yet
1355 * flushed the TLBs upon release, perform a full invalidation.
1356 */
1357 for_each_gt(gt, vm->i915, id)
1358 WRITE_ONCE(tlb[id],
1359 intel_gt_next_invalidate_tlb_full(gt));
1360 }
1361
__vma_put_pages(struct i915_vma * vma,unsigned int count)1362 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1363 {
1364 /* We allocate under vma_get_pages, so beware the shrinker */
1365 GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1366
1367 if (atomic_sub_return(count, &vma->pages_count) == 0) {
1368 if (vma->pages != vma->obj->mm.pages) {
1369 sg_free_table(vma->pages);
1370 kfree(vma->pages);
1371 }
1372 vma->pages = NULL;
1373
1374 i915_gem_object_unpin_pages(vma->obj);
1375 }
1376 }
1377
i915_vma_put_pages(struct i915_vma * vma)1378 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1379 {
1380 if (atomic_add_unless(&vma->pages_count, -1, 1))
1381 return;
1382
1383 __vma_put_pages(vma, 1);
1384 }
1385
vma_unbind_pages(struct i915_vma * vma)1386 static void vma_unbind_pages(struct i915_vma *vma)
1387 {
1388 unsigned int count;
1389
1390 lockdep_assert_held(&vma->vm->mutex);
1391
1392 /* The upper portion of pages_count is the number of bindings */
1393 count = atomic_read(&vma->pages_count);
1394 count >>= I915_VMA_PAGES_BIAS;
1395 GEM_BUG_ON(!count);
1396
1397 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1398 }
1399
i915_vma_pin_ww(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u64 size,u64 alignment,u64 flags)1400 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1401 u64 size, u64 alignment, u64 flags)
1402 {
1403 struct i915_vma_work *work = NULL;
1404 struct dma_fence *moving = NULL;
1405 struct i915_vma_resource *vma_res = NULL;
1406 intel_wakeref_t wakeref = 0;
1407 unsigned int bound;
1408 int err;
1409
1410 assert_vma_held(vma);
1411 GEM_BUG_ON(!ww);
1412
1413 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1414 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1415
1416 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1417
1418 /* First try and grab the pin without rebinding the vma */
1419 if (try_qad_pin(vma, flags))
1420 return 0;
1421
1422 err = i915_vma_get_pages(vma);
1423 if (err)
1424 return err;
1425
1426 if (flags & PIN_GLOBAL)
1427 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1428
1429 if (flags & vma->vm->bind_async_flags) {
1430 /* lock VM */
1431 err = i915_vm_lock_objects(vma->vm, ww);
1432 if (err)
1433 goto err_rpm;
1434
1435 work = i915_vma_work();
1436 if (!work) {
1437 err = -ENOMEM;
1438 goto err_rpm;
1439 }
1440
1441 work->vm = vma->vm;
1442
1443 err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1444 if (err)
1445 goto err_rpm;
1446
1447 dma_fence_work_chain(&work->base, moving);
1448
1449 /* Allocate enough page directories to used PTE */
1450 if (vma->vm->allocate_va_range) {
1451 err = i915_vm_alloc_pt_stash(vma->vm,
1452 &work->stash,
1453 vma->size);
1454 if (err)
1455 goto err_fence;
1456
1457 err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1458 if (err)
1459 goto err_fence;
1460 }
1461 }
1462
1463 vma_res = i915_vma_resource_alloc();
1464 if (IS_ERR(vma_res)) {
1465 err = PTR_ERR(vma_res);
1466 goto err_fence;
1467 }
1468
1469 /*
1470 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1471 *
1472 * We conflate the Global GTT with the user's vma when using the
1473 * aliasing-ppgtt, but it is still vitally important to try and
1474 * keep the use cases distinct. For example, userptr objects are
1475 * not allowed inside the Global GTT as that will cause lock
1476 * inversions when we have to evict them the mmu_notifier callbacks -
1477 * but they are allowed to be part of the user ppGTT which can never
1478 * be mapped. As such we try to give the distinct users of the same
1479 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1480 * and i915_ppgtt separate].
1481 *
1482 * NB this may cause us to mask real lock inversions -- while the
1483 * code is safe today, lockdep may not be able to spot future
1484 * transgressions.
1485 */
1486 err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1487 !(flags & PIN_GLOBAL));
1488 if (err)
1489 goto err_vma_res;
1490
1491 /* No more allocations allowed now we hold vm->mutex */
1492
1493 if (unlikely(i915_vma_is_closed(vma))) {
1494 err = -ENOENT;
1495 goto err_unlock;
1496 }
1497
1498 bound = atomic_read(&vma->flags);
1499 if (unlikely(bound & I915_VMA_ERROR)) {
1500 err = -ENOMEM;
1501 goto err_unlock;
1502 }
1503
1504 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1505 err = -EAGAIN; /* pins are meant to be fairly temporary */
1506 goto err_unlock;
1507 }
1508
1509 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1510 if (!(flags & PIN_VALIDATE))
1511 __i915_vma_pin(vma);
1512 goto err_unlock;
1513 }
1514
1515 err = i915_active_acquire(&vma->active);
1516 if (err)
1517 goto err_unlock;
1518
1519 if (!(bound & I915_VMA_BIND_MASK)) {
1520 err = i915_vma_insert(vma, ww, size, alignment, flags);
1521 if (err)
1522 goto err_active;
1523
1524 if (i915_is_ggtt(vma->vm))
1525 __i915_vma_set_map_and_fenceable(vma);
1526 }
1527
1528 GEM_BUG_ON(!vma->pages);
1529 err = i915_vma_bind(vma,
1530 vma->obj->pat_index,
1531 flags, work, vma_res);
1532 vma_res = NULL;
1533 if (err)
1534 goto err_remove;
1535
1536 /* There should only be at most 2 active bindings (user, global) */
1537 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1538 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1539 list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1540
1541 if (!(flags & PIN_VALIDATE)) {
1542 __i915_vma_pin(vma);
1543 GEM_BUG_ON(!i915_vma_is_pinned(vma));
1544 }
1545 GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1546 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1547
1548 err_remove:
1549 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1550 i915_vma_detach(vma);
1551 drm_mm_remove_node(&vma->node);
1552 }
1553 err_active:
1554 i915_active_release(&vma->active);
1555 err_unlock:
1556 mutex_unlock(&vma->vm->mutex);
1557 err_vma_res:
1558 i915_vma_resource_free(vma_res);
1559 err_fence:
1560 if (work)
1561 dma_fence_work_commit_imm(&work->base);
1562 err_rpm:
1563 if (wakeref)
1564 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1565
1566 if (moving)
1567 dma_fence_put(moving);
1568
1569 i915_vma_put_pages(vma);
1570 return err;
1571 }
1572
flush_idle_contexts(struct intel_gt * gt)1573 static void flush_idle_contexts(struct intel_gt *gt)
1574 {
1575 struct intel_engine_cs *engine;
1576 enum intel_engine_id id;
1577
1578 for_each_engine(engine, gt, id)
1579 intel_engine_flush_barriers(engine);
1580
1581 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1582 }
1583
__i915_ggtt_pin(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u32 align,unsigned int flags)1584 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1585 u32 align, unsigned int flags)
1586 {
1587 struct i915_address_space *vm = vma->vm;
1588 struct intel_gt *gt;
1589 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1590 int err;
1591
1592 do {
1593 err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1594
1595 if (err != -ENOSPC) {
1596 if (!err) {
1597 err = i915_vma_wait_for_bind(vma);
1598 if (err)
1599 i915_vma_unpin(vma);
1600 }
1601 return err;
1602 }
1603
1604 /* Unlike i915_vma_pin, we don't take no for an answer! */
1605 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1606 flush_idle_contexts(gt);
1607 if (mutex_lock_interruptible(&vm->mutex) == 0) {
1608 /*
1609 * We pass NULL ww here, as we don't want to unbind
1610 * locked objects when called from execbuf when pinning
1611 * is removed. This would probably regress badly.
1612 */
1613 i915_gem_evict_vm(vm, NULL, NULL);
1614 mutex_unlock(&vm->mutex);
1615 }
1616 } while (1);
1617 }
1618
i915_ggtt_pin(struct i915_vma * vma,struct i915_gem_ww_ctx * ww,u32 align,unsigned int flags)1619 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1620 u32 align, unsigned int flags)
1621 {
1622 struct i915_gem_ww_ctx _ww;
1623 int err;
1624
1625 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1626
1627 if (ww)
1628 return __i915_ggtt_pin(vma, ww, align, flags);
1629
1630 lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1631
1632 for_i915_gem_ww(&_ww, err, true) {
1633 err = i915_gem_object_lock(vma->obj, &_ww);
1634 if (!err)
1635 err = __i915_ggtt_pin(vma, &_ww, align, flags);
1636 }
1637
1638 return err;
1639 }
1640
1641 /**
1642 * i915_ggtt_clear_scanout - Clear scanout flag for all objects ggtt vmas
1643 * @obj: i915 GEM object
1644 * This function clears scanout flags for objects ggtt vmas. These flags are set
1645 * when object is pinned for display use and this function to clear them all is
1646 * targeted to be called by frontbuffer tracking code when the frontbuffer is
1647 * about to be released.
1648 */
i915_ggtt_clear_scanout(struct drm_i915_gem_object * obj)1649 void i915_ggtt_clear_scanout(struct drm_i915_gem_object *obj)
1650 {
1651 struct i915_vma *vma;
1652
1653 spin_lock(&obj->vma.lock);
1654 for_each_ggtt_vma(vma, obj) {
1655 i915_vma_clear_scanout(vma);
1656 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
1657 }
1658 spin_unlock(&obj->vma.lock);
1659 }
1660
__vma_close(struct i915_vma * vma,struct intel_gt * gt)1661 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1662 {
1663 /*
1664 * We defer actually closing, unbinding and destroying the VMA until
1665 * the next idle point, or if the object is freed in the meantime. By
1666 * postponing the unbind, we allow for it to be resurrected by the
1667 * client, avoiding the work required to rebind the VMA. This is
1668 * advantageous for DRI, where the client/server pass objects
1669 * between themselves, temporarily opening a local VMA to the
1670 * object, and then closing it again. The same object is then reused
1671 * on the next frame (or two, depending on the depth of the swap queue)
1672 * causing us to rebind the VMA once more. This ends up being a lot
1673 * of wasted work for the steady state.
1674 */
1675 GEM_BUG_ON(i915_vma_is_closed(vma));
1676 list_add(&vma->closed_link, >->closed_vma);
1677 }
1678
i915_vma_close(struct i915_vma * vma)1679 void i915_vma_close(struct i915_vma *vma)
1680 {
1681 struct intel_gt *gt = vma->vm->gt;
1682 unsigned long flags;
1683
1684 if (i915_vma_is_ggtt(vma))
1685 return;
1686
1687 GEM_BUG_ON(!atomic_read(&vma->open_count));
1688 if (atomic_dec_and_lock_irqsave(&vma->open_count,
1689 >->closed_lock,
1690 flags)) {
1691 __vma_close(vma, gt);
1692 spin_unlock_irqrestore(>->closed_lock, flags);
1693 }
1694 }
1695
__i915_vma_remove_closed(struct i915_vma * vma)1696 static void __i915_vma_remove_closed(struct i915_vma *vma)
1697 {
1698 list_del_init(&vma->closed_link);
1699 }
1700
i915_vma_reopen(struct i915_vma * vma)1701 void i915_vma_reopen(struct i915_vma *vma)
1702 {
1703 struct intel_gt *gt = vma->vm->gt;
1704
1705 spin_lock_irq(>->closed_lock);
1706 if (i915_vma_is_closed(vma))
1707 __i915_vma_remove_closed(vma);
1708 spin_unlock_irq(>->closed_lock);
1709 }
1710
force_unbind(struct i915_vma * vma)1711 static void force_unbind(struct i915_vma *vma)
1712 {
1713 if (!drm_mm_node_allocated(&vma->node))
1714 return;
1715
1716 atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1717 WARN_ON(__i915_vma_unbind(vma));
1718 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1719 }
1720
release_references(struct i915_vma * vma,struct intel_gt * gt,bool vm_ddestroy)1721 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1722 bool vm_ddestroy)
1723 {
1724 struct drm_i915_gem_object *obj = vma->obj;
1725
1726 GEM_BUG_ON(i915_vma_is_active(vma));
1727
1728 spin_lock(&obj->vma.lock);
1729 list_del(&vma->obj_link);
1730 if (!RB_EMPTY_NODE(&vma->obj_node))
1731 rb_erase(&vma->obj_node, &obj->vma.tree);
1732
1733 spin_unlock(&obj->vma.lock);
1734
1735 spin_lock_irq(>->closed_lock);
1736 __i915_vma_remove_closed(vma);
1737 spin_unlock_irq(>->closed_lock);
1738
1739 if (vm_ddestroy)
1740 i915_vm_resv_put(vma->vm);
1741
1742 /* Wait for async active retire */
1743 i915_active_wait(&vma->active);
1744 i915_active_fini(&vma->active);
1745 GEM_WARN_ON(vma->resource);
1746 i915_vma_free(vma);
1747 }
1748
1749 /*
1750 * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1751 * the initial reference.
1752 *
1753 * This function should be called when it's decided the vma isn't needed
1754 * anymore. The caller must assure that it doesn't race with another lookup
1755 * plus destroy, typically by taking an appropriate reference.
1756 *
1757 * Current callsites are
1758 * - __i915_gem_object_pages_fini()
1759 * - __i915_vm_close() - Blocks the above function by taking a reference on
1760 * the object.
1761 * - __i915_vma_parked() - Blocks the above functions by taking a reference
1762 * on the vm and a reference on the object. Also takes the object lock so
1763 * destruction from __i915_vma_parked() can be blocked by holding the
1764 * object lock. Since the object lock is only allowed from within i915 with
1765 * an object refcount, holding the object lock also implicitly blocks the
1766 * vma freeing from __i915_gem_object_pages_fini().
1767 *
1768 * Because of locks taken during destruction, a vma is also guaranteed to
1769 * stay alive while the following locks are held if it was looked up while
1770 * holding one of the locks:
1771 * - vm->mutex
1772 * - obj->vma.lock
1773 * - gt->closed_lock
1774 */
i915_vma_destroy_locked(struct i915_vma * vma)1775 void i915_vma_destroy_locked(struct i915_vma *vma)
1776 {
1777 lockdep_assert_held(&vma->vm->mutex);
1778
1779 force_unbind(vma);
1780 list_del_init(&vma->vm_link);
1781 release_references(vma, vma->vm->gt, false);
1782 }
1783
i915_vma_destroy(struct i915_vma * vma)1784 void i915_vma_destroy(struct i915_vma *vma)
1785 {
1786 struct intel_gt *gt;
1787 bool vm_ddestroy;
1788
1789 mutex_lock(&vma->vm->mutex);
1790 force_unbind(vma);
1791 list_del_init(&vma->vm_link);
1792 vm_ddestroy = vma->vm_ddestroy;
1793 vma->vm_ddestroy = false;
1794
1795 /* vma->vm may be freed when releasing vma->vm->mutex. */
1796 gt = vma->vm->gt;
1797 mutex_unlock(&vma->vm->mutex);
1798 release_references(vma, gt, vm_ddestroy);
1799 }
1800
i915_vma_parked(struct intel_gt * gt)1801 void i915_vma_parked(struct intel_gt *gt)
1802 {
1803 struct i915_vma *vma, *next;
1804 LIST_HEAD(closed);
1805
1806 spin_lock_irq(>->closed_lock);
1807 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) {
1808 struct drm_i915_gem_object *obj = vma->obj;
1809 struct i915_address_space *vm = vma->vm;
1810
1811 /* XXX All to avoid keeping a reference on i915_vma itself */
1812
1813 if (!kref_get_unless_zero(&obj->base.refcount))
1814 continue;
1815
1816 if (!i915_vm_tryget(vm)) {
1817 i915_gem_object_put(obj);
1818 continue;
1819 }
1820
1821 list_move(&vma->closed_link, &closed);
1822 }
1823 spin_unlock_irq(>->closed_lock);
1824
1825 /* As the GT is held idle, no vma can be reopened as we destroy them */
1826 list_for_each_entry_safe(vma, next, &closed, closed_link) {
1827 struct drm_i915_gem_object *obj = vma->obj;
1828 struct i915_address_space *vm = vma->vm;
1829
1830 if (i915_gem_object_trylock(obj, NULL)) {
1831 INIT_LIST_HEAD(&vma->closed_link);
1832 i915_vma_destroy(vma);
1833 i915_gem_object_unlock(obj);
1834 } else {
1835 /* back you go.. */
1836 spin_lock_irq(>->closed_lock);
1837 list_add(&vma->closed_link, >->closed_vma);
1838 spin_unlock_irq(>->closed_lock);
1839 }
1840
1841 i915_gem_object_put(obj);
1842 i915_vm_put(vm);
1843 }
1844 }
1845
__i915_vma_iounmap(struct i915_vma * vma)1846 static void __i915_vma_iounmap(struct i915_vma *vma)
1847 {
1848 GEM_BUG_ON(i915_vma_is_pinned(vma));
1849
1850 if (vma->iomap == NULL)
1851 return;
1852
1853 if (page_unmask_bits(vma->iomap))
1854 __i915_gem_object_release_map(vma->obj);
1855 else
1856 io_mapping_unmap(vma->iomap);
1857 vma->iomap = NULL;
1858 }
1859
i915_vma_revoke_mmap(struct i915_vma * vma)1860 void i915_vma_revoke_mmap(struct i915_vma *vma)
1861 {
1862 struct drm_vma_offset_node *node;
1863 u64 vma_offset;
1864
1865 if (!i915_vma_has_userfault(vma))
1866 return;
1867
1868 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1869 GEM_BUG_ON(!vma->obj->userfault_count);
1870
1871 node = &vma->mmo->vma_node;
1872 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1873 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1874 drm_vma_node_offset_addr(node) + vma_offset,
1875 vma->size,
1876 1);
1877
1878 i915_vma_unset_userfault(vma);
1879 if (!--vma->obj->userfault_count)
1880 list_del(&vma->obj->userfault_link);
1881 }
1882
1883 static int
__i915_request_await_bind(struct i915_request * rq,struct i915_vma * vma)1884 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1885 {
1886 return __i915_request_await_exclusive(rq, &vma->active);
1887 }
1888
__i915_vma_move_to_active(struct i915_vma * vma,struct i915_request * rq)1889 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1890 {
1891 int err;
1892
1893 /* Wait for the vma to be bound before we start! */
1894 err = __i915_request_await_bind(rq, vma);
1895 if (err)
1896 return err;
1897
1898 return i915_active_add_request(&vma->active, rq);
1899 }
1900
_i915_vma_move_to_active(struct i915_vma * vma,struct i915_request * rq,struct dma_fence * fence,unsigned int flags)1901 int _i915_vma_move_to_active(struct i915_vma *vma,
1902 struct i915_request *rq,
1903 struct dma_fence *fence,
1904 unsigned int flags)
1905 {
1906 struct drm_i915_gem_object *obj = vma->obj;
1907 int err;
1908
1909 assert_object_held(obj);
1910
1911 GEM_BUG_ON(!vma->pages);
1912
1913 if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) {
1914 err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE);
1915 if (unlikely(err))
1916 return err;
1917 }
1918 err = __i915_vma_move_to_active(vma, rq);
1919 if (unlikely(err))
1920 return err;
1921
1922 /*
1923 * Reserve fences slot early to prevent an allocation after preparing
1924 * the workload and associating fences with dma_resv.
1925 */
1926 if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1927 struct dma_fence *curr;
1928 int idx;
1929
1930 dma_fence_array_for_each(curr, idx, fence)
1931 ;
1932 err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1933 if (unlikely(err))
1934 return err;
1935 }
1936
1937 if (flags & EXEC_OBJECT_WRITE) {
1938 struct intel_frontbuffer *front;
1939
1940 front = i915_gem_object_get_frontbuffer(obj);
1941 if (unlikely(front)) {
1942 if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1943 i915_active_add_request(&front->write, rq);
1944 intel_frontbuffer_put(front);
1945 }
1946 }
1947
1948 if (fence) {
1949 struct dma_fence *curr;
1950 enum dma_resv_usage usage;
1951 int idx;
1952
1953 if (flags & EXEC_OBJECT_WRITE) {
1954 usage = DMA_RESV_USAGE_WRITE;
1955 obj->write_domain = I915_GEM_DOMAIN_RENDER;
1956 obj->read_domains = 0;
1957 } else {
1958 usage = DMA_RESV_USAGE_READ;
1959 obj->write_domain = 0;
1960 }
1961
1962 dma_fence_array_for_each(curr, idx, fence)
1963 dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1964 }
1965
1966 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1967 i915_active_add_request(&vma->fence->active, rq);
1968
1969 obj->read_domains |= I915_GEM_GPU_DOMAINS;
1970 obj->mm.dirty = true;
1971
1972 GEM_BUG_ON(!i915_vma_is_active(vma));
1973 return 0;
1974 }
1975
__i915_vma_evict(struct i915_vma * vma,bool async)1976 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1977 {
1978 struct i915_vma_resource *vma_res = vma->resource;
1979 struct dma_fence *unbind_fence;
1980
1981 GEM_BUG_ON(i915_vma_is_pinned(vma));
1982 assert_vma_held_evict(vma);
1983
1984 if (i915_vma_is_map_and_fenceable(vma)) {
1985 /* Force a pagefault for domain tracking on next user access */
1986 i915_vma_revoke_mmap(vma);
1987
1988 /*
1989 * Check that we have flushed all writes through the GGTT
1990 * before the unbind, other due to non-strict nature of those
1991 * indirect writes they may end up referencing the GGTT PTE
1992 * after the unbind.
1993 *
1994 * Note that we may be concurrently poking at the GGTT_WRITE
1995 * bit from set-domain, as we mark all GGTT vma associated
1996 * with an object. We know this is for another vma, as we
1997 * are currently unbinding this one -- so if this vma will be
1998 * reused, it will be refaulted and have its dirty bit set
1999 * before the next write.
2000 */
2001 i915_vma_flush_writes(vma);
2002
2003 /* release the fence reg _after_ flushing */
2004 i915_vma_revoke_fence(vma);
2005
2006 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
2007 }
2008
2009 __i915_vma_iounmap(vma);
2010
2011 GEM_BUG_ON(vma->fence);
2012 GEM_BUG_ON(i915_vma_has_userfault(vma));
2013
2014 /* Object backend must be async capable. */
2015 GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
2016
2017 /* If vm is not open, unbind is a nop. */
2018 vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
2019 kref_read(&vma->vm->ref);
2020 vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
2021 vma->vm->skip_pte_rewrite;
2022 trace_i915_vma_unbind(vma);
2023
2024 if (async)
2025 unbind_fence = i915_vma_resource_unbind(vma_res,
2026 vma->obj->mm.tlb);
2027 else
2028 unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
2029
2030 vma->resource = NULL;
2031
2032 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2033 &vma->flags);
2034
2035 i915_vma_detach(vma);
2036
2037 if (!async) {
2038 if (unbind_fence) {
2039 dma_fence_wait(unbind_fence, false);
2040 dma_fence_put(unbind_fence);
2041 unbind_fence = NULL;
2042 }
2043 vma_invalidate_tlb(vma->vm, vma->obj->mm.tlb);
2044 }
2045
2046 /*
2047 * Binding itself may not have completed until the unbind fence signals,
2048 * so don't drop the pages until that happens, unless the resource is
2049 * async_capable.
2050 */
2051
2052 vma_unbind_pages(vma);
2053 return unbind_fence;
2054 }
2055
__i915_vma_unbind(struct i915_vma * vma)2056 int __i915_vma_unbind(struct i915_vma *vma)
2057 {
2058 int ret;
2059
2060 lockdep_assert_held(&vma->vm->mutex);
2061 assert_vma_held_evict(vma);
2062
2063 if (!drm_mm_node_allocated(&vma->node))
2064 return 0;
2065
2066 if (i915_vma_is_pinned(vma)) {
2067 vma_print_allocator(vma, "is pinned");
2068 return -EAGAIN;
2069 }
2070
2071 /*
2072 * After confirming that no one else is pinning this vma, wait for
2073 * any laggards who may have crept in during the wait (through
2074 * a residual pin skipping the vm->mutex) to complete.
2075 */
2076 ret = i915_vma_sync(vma);
2077 if (ret)
2078 return ret;
2079
2080 GEM_BUG_ON(i915_vma_is_active(vma));
2081 __i915_vma_evict(vma, false);
2082
2083 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2084 return 0;
2085 }
2086
__i915_vma_unbind_async(struct i915_vma * vma)2087 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2088 {
2089 struct dma_fence *fence;
2090
2091 lockdep_assert_held(&vma->vm->mutex);
2092
2093 if (!drm_mm_node_allocated(&vma->node))
2094 return NULL;
2095
2096 if (i915_vma_is_pinned(vma) ||
2097 &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2098 return ERR_PTR(-EAGAIN);
2099
2100 /*
2101 * We probably need to replace this with awaiting the fences of the
2102 * object's dma_resv when the vma active goes away. When doing that
2103 * we need to be careful to not add the vma_resource unbind fence
2104 * immediately to the object's dma_resv, because then unbinding
2105 * the next vma from the object, in case there are many, will
2106 * actually await the unbinding of the previous vmas, which is
2107 * undesirable.
2108 */
2109 if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2110 I915_ACTIVE_AWAIT_EXCL |
2111 I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2112 return ERR_PTR(-EBUSY);
2113 }
2114
2115 fence = __i915_vma_evict(vma, true);
2116
2117 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2118
2119 return fence;
2120 }
2121
i915_vma_unbind(struct i915_vma * vma)2122 int i915_vma_unbind(struct i915_vma *vma)
2123 {
2124 struct i915_address_space *vm = vma->vm;
2125 intel_wakeref_t wakeref = 0;
2126 int err;
2127
2128 assert_object_held_shared(vma->obj);
2129
2130 /* Optimistic wait before taking the mutex */
2131 err = i915_vma_sync(vma);
2132 if (err)
2133 return err;
2134
2135 if (!drm_mm_node_allocated(&vma->node))
2136 return 0;
2137
2138 if (i915_vma_is_pinned(vma)) {
2139 vma_print_allocator(vma, "is pinned");
2140 return -EAGAIN;
2141 }
2142
2143 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2144 /* XXX not always required: nop_clear_range */
2145 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2146
2147 err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2148 if (err)
2149 goto out_rpm;
2150
2151 err = __i915_vma_unbind(vma);
2152 mutex_unlock(&vm->mutex);
2153
2154 out_rpm:
2155 if (wakeref)
2156 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2157 return err;
2158 }
2159
i915_vma_unbind_async(struct i915_vma * vma,bool trylock_vm)2160 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2161 {
2162 struct drm_i915_gem_object *obj = vma->obj;
2163 struct i915_address_space *vm = vma->vm;
2164 intel_wakeref_t wakeref = 0;
2165 struct dma_fence *fence;
2166 int err;
2167
2168 /*
2169 * We need the dma-resv lock since we add the
2170 * unbind fence to the dma-resv object.
2171 */
2172 assert_object_held(obj);
2173
2174 if (!drm_mm_node_allocated(&vma->node))
2175 return 0;
2176
2177 if (i915_vma_is_pinned(vma)) {
2178 vma_print_allocator(vma, "is pinned");
2179 return -EAGAIN;
2180 }
2181
2182 if (!obj->mm.rsgt)
2183 return -EBUSY;
2184
2185 err = dma_resv_reserve_fences(obj->base.resv, 2);
2186 if (err)
2187 return -EBUSY;
2188
2189 /*
2190 * It would be great if we could grab this wakeref from the
2191 * async unbind work if needed, but we can't because it uses
2192 * kmalloc and it's in the dma-fence signalling critical path.
2193 */
2194 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2195 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2196
2197 if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2198 err = -EBUSY;
2199 goto out_rpm;
2200 } else if (!trylock_vm) {
2201 err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2202 if (err)
2203 goto out_rpm;
2204 }
2205
2206 fence = __i915_vma_unbind_async(vma);
2207 mutex_unlock(&vm->mutex);
2208 if (IS_ERR_OR_NULL(fence)) {
2209 err = PTR_ERR_OR_ZERO(fence);
2210 goto out_rpm;
2211 }
2212
2213 dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2214 dma_fence_put(fence);
2215
2216 out_rpm:
2217 if (wakeref)
2218 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2219 return err;
2220 }
2221
i915_vma_unbind_unlocked(struct i915_vma * vma)2222 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2223 {
2224 int err;
2225
2226 i915_gem_object_lock(vma->obj, NULL);
2227 err = i915_vma_unbind(vma);
2228 i915_gem_object_unlock(vma->obj);
2229
2230 return err;
2231 }
2232
i915_vma_make_unshrinkable(struct i915_vma * vma)2233 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2234 {
2235 i915_gem_object_make_unshrinkable(vma->obj);
2236 return vma;
2237 }
2238
i915_vma_make_shrinkable(struct i915_vma * vma)2239 void i915_vma_make_shrinkable(struct i915_vma *vma)
2240 {
2241 i915_gem_object_make_shrinkable(vma->obj);
2242 }
2243
i915_vma_make_purgeable(struct i915_vma * vma)2244 void i915_vma_make_purgeable(struct i915_vma *vma)
2245 {
2246 i915_gem_object_make_purgeable(vma->obj);
2247 }
2248
2249 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2250 #include "selftests/i915_vma.c"
2251 #endif
2252
i915_vma_module_exit(void)2253 void i915_vma_module_exit(void)
2254 {
2255 kmem_cache_destroy(slab_vmas);
2256 }
2257
i915_vma_module_init(void)2258 int __init i915_vma_module_init(void)
2259 {
2260 slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2261 if (!slab_vmas)
2262 return -ENOMEM;
2263
2264 return 0;
2265 }
2266