1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include <linux/shmem_fs.h>
7
8 #include <drm/ttm/ttm_placement.h>
9 #include <drm/ttm/ttm_tt.h>
10 #include <drm/drm_buddy.h>
11
12 #include "i915_drv.h"
13 #include "i915_ttm_buddy_manager.h"
14 #include "intel_memory_region.h"
15 #include "intel_region_ttm.h"
16
17 #include "gem/i915_gem_mman.h"
18 #include "gem/i915_gem_object.h"
19 #include "gem/i915_gem_region.h"
20 #include "gem/i915_gem_ttm.h"
21 #include "gem/i915_gem_ttm_move.h"
22 #include "gem/i915_gem_ttm_pm.h"
23 #include "gt/intel_gpu_commands.h"
24
25 #define I915_TTM_PRIO_PURGE 0
26 #define I915_TTM_PRIO_NO_PAGES 1
27 #define I915_TTM_PRIO_HAS_PAGES 2
28 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3
29
30 /*
31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
32 */
33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
34
35 /**
36 * struct i915_ttm_tt - TTM page vector with additional private information
37 * @ttm: The base TTM page vector.
38 * @dev: The struct device used for dma mapping and unmapping.
39 * @cached_rsgt: The cached scatter-gather table.
40 * @is_shmem: Set if using shmem.
41 * @filp: The shmem file, if using shmem backend.
42 *
43 * Note that DMA may be going on right up to the point where the page-
44 * vector is unpopulated in delayed destroy. Hence keep the
45 * scatter-gather table mapped and cached up to that point. This is
46 * different from the cached gem object io scatter-gather table which
47 * doesn't have an associated dma mapping.
48 */
49 struct i915_ttm_tt {
50 struct ttm_tt ttm;
51 struct device *dev;
52 struct i915_refct_sgt cached_rsgt;
53
54 bool is_shmem;
55 struct file *filp;
56 };
57
58 static const struct ttm_place sys_placement_flags = {
59 .fpfn = 0,
60 .lpfn = 0,
61 .mem_type = I915_PL_SYSTEM,
62 .flags = 0,
63 };
64
65 static struct ttm_placement i915_sys_placement = {
66 .num_placement = 1,
67 .placement = &sys_placement_flags,
68 .num_busy_placement = 1,
69 .busy_placement = &sys_placement_flags,
70 };
71
72 /**
73 * i915_ttm_sys_placement - Return the struct ttm_placement to be
74 * used for an object in system memory.
75 *
76 * Rather than making the struct extern, use this
77 * function.
78 *
79 * Return: A pointer to a static variable for sys placement.
80 */
i915_ttm_sys_placement(void)81 struct ttm_placement *i915_ttm_sys_placement(void)
82 {
83 return &i915_sys_placement;
84 }
85
i915_ttm_err_to_gem(int err)86 static int i915_ttm_err_to_gem(int err)
87 {
88 /* Fastpath */
89 if (likely(!err))
90 return 0;
91
92 switch (err) {
93 case -EBUSY:
94 /*
95 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
96 * restart the operation, since we don't record the contending
97 * lock. We use -EAGAIN to restart.
98 */
99 return -EAGAIN;
100 case -ENOSPC:
101 /*
102 * Memory type / region is full, and we can't evict.
103 * Except possibly system, that returns -ENOMEM;
104 */
105 return -ENXIO;
106 default:
107 break;
108 }
109
110 return err;
111 }
112
113 static enum ttm_caching
i915_ttm_select_tt_caching(const struct drm_i915_gem_object * obj)114 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
115 {
116 /*
117 * Objects only allowed in system get cached cpu-mappings, or when
118 * evicting lmem-only buffers to system for swapping. Other objects get
119 * WC mapping for now. Even if in system.
120 */
121 if (obj->mm.n_placements <= 1)
122 return ttm_cached;
123
124 return ttm_write_combined;
125 }
126
127 static void
i915_ttm_place_from_region(const struct intel_memory_region * mr,struct ttm_place * place,resource_size_t offset,resource_size_t size,unsigned int flags)128 i915_ttm_place_from_region(const struct intel_memory_region *mr,
129 struct ttm_place *place,
130 resource_size_t offset,
131 resource_size_t size,
132 unsigned int flags)
133 {
134 memset(place, 0, sizeof(*place));
135 place->mem_type = intel_region_to_ttm_type(mr);
136
137 if (mr->type == INTEL_MEMORY_SYSTEM)
138 return;
139
140 if (flags & I915_BO_ALLOC_CONTIGUOUS)
141 place->flags |= TTM_PL_FLAG_CONTIGUOUS;
142 if (offset != I915_BO_INVALID_OFFSET) {
143 WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn));
144 place->fpfn = offset >> PAGE_SHIFT;
145 WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn));
146 place->lpfn = place->fpfn + (size >> PAGE_SHIFT);
147 } else if (mr->io_size && mr->io_size < mr->total) {
148 if (flags & I915_BO_ALLOC_GPU_ONLY) {
149 place->flags |= TTM_PL_FLAG_TOPDOWN;
150 } else {
151 place->fpfn = 0;
152 WARN_ON(overflows_type(mr->io_size >> PAGE_SHIFT, place->lpfn));
153 place->lpfn = mr->io_size >> PAGE_SHIFT;
154 }
155 }
156 }
157
158 static void
i915_ttm_placement_from_obj(const struct drm_i915_gem_object * obj,struct ttm_place * requested,struct ttm_place * busy,struct ttm_placement * placement)159 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
160 struct ttm_place *requested,
161 struct ttm_place *busy,
162 struct ttm_placement *placement)
163 {
164 unsigned int num_allowed = obj->mm.n_placements;
165 unsigned int flags = obj->flags;
166 unsigned int i;
167
168 placement->num_placement = 1;
169 i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
170 obj->mm.region, requested, obj->bo_offset,
171 obj->base.size, flags);
172
173 /* Cache this on object? */
174 placement->num_busy_placement = num_allowed;
175 for (i = 0; i < placement->num_busy_placement; ++i)
176 i915_ttm_place_from_region(obj->mm.placements[i], busy + i,
177 obj->bo_offset, obj->base.size, flags);
178
179 if (num_allowed == 0) {
180 *busy = *requested;
181 placement->num_busy_placement = 1;
182 }
183
184 placement->placement = requested;
185 placement->busy_placement = busy;
186 }
187
i915_ttm_tt_shmem_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)188 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
189 struct ttm_tt *ttm,
190 struct ttm_operation_ctx *ctx)
191 {
192 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
193 struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
194 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
195 const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
196 const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
197 struct file *filp = i915_tt->filp;
198 struct sgt_iter sgt_iter;
199 struct sg_table *st;
200 struct page *page;
201 unsigned long i;
202 int err;
203
204 if (!filp) {
205 struct address_space *mapping;
206 gfp_t mask;
207
208 filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
209 if (IS_ERR(filp))
210 return PTR_ERR(filp);
211
212 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
213
214 mapping = filp->f_mapping;
215 mapping_set_gfp_mask(mapping, mask);
216 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
217
218 i915_tt->filp = filp;
219 }
220
221 st = &i915_tt->cached_rsgt.table;
222 err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
223 max_segment);
224 if (err)
225 return err;
226
227 err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
228 DMA_ATTR_SKIP_CPU_SYNC);
229 if (err)
230 goto err_free_st;
231
232 i = 0;
233 for_each_sgt_page(page, sgt_iter, st)
234 ttm->pages[i++] = page;
235
236 if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
237 ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
238
239 return 0;
240
241 err_free_st:
242 shmem_sg_free_table(st, filp->f_mapping, false, false);
243
244 return err;
245 }
246
i915_ttm_tt_shmem_unpopulate(struct ttm_tt * ttm)247 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
248 {
249 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
250 bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
251 struct sg_table *st = &i915_tt->cached_rsgt.table;
252
253 shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
254 backup, backup);
255 }
256
i915_ttm_tt_release(struct kref * ref)257 static void i915_ttm_tt_release(struct kref *ref)
258 {
259 struct i915_ttm_tt *i915_tt =
260 container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
261 struct sg_table *st = &i915_tt->cached_rsgt.table;
262
263 GEM_WARN_ON(st->sgl);
264
265 kfree(i915_tt);
266 }
267
268 static const struct i915_refct_sgt_ops tt_rsgt_ops = {
269 .release = i915_ttm_tt_release
270 };
271
i915_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)272 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
273 uint32_t page_flags)
274 {
275 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
276 bdev);
277 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
278 unsigned long ccs_pages = 0;
279 enum ttm_caching caching;
280 struct i915_ttm_tt *i915_tt;
281 int ret;
282
283 if (i915_ttm_is_ghost_object(bo))
284 return NULL;
285
286 i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
287 if (!i915_tt)
288 return NULL;
289
290 if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource ||
291 ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt))
292 page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
293
294 caching = i915_ttm_select_tt_caching(obj);
295 if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
296 page_flags |= TTM_TT_FLAG_EXTERNAL |
297 TTM_TT_FLAG_EXTERNAL_MAPPABLE;
298 i915_tt->is_shmem = true;
299 }
300
301 if (i915_gem_object_needs_ccs_pages(obj))
302 ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size,
303 NUM_BYTES_PER_CCS_BYTE),
304 PAGE_SIZE);
305
306 ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages);
307 if (ret)
308 goto err_free;
309
310 __i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
311 &tt_rsgt_ops);
312
313 i915_tt->dev = obj->base.dev->dev;
314
315 return &i915_tt->ttm;
316
317 err_free:
318 kfree(i915_tt);
319 return NULL;
320 }
321
i915_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)322 static int i915_ttm_tt_populate(struct ttm_device *bdev,
323 struct ttm_tt *ttm,
324 struct ttm_operation_ctx *ctx)
325 {
326 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
327
328 if (i915_tt->is_shmem)
329 return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
330
331 return ttm_pool_alloc(&bdev->pool, ttm, ctx);
332 }
333
i915_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)334 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
335 {
336 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
337 struct sg_table *st = &i915_tt->cached_rsgt.table;
338
339 if (st->sgl)
340 dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
341
342 if (i915_tt->is_shmem) {
343 i915_ttm_tt_shmem_unpopulate(ttm);
344 } else {
345 sg_free_table(st);
346 ttm_pool_free(&bdev->pool, ttm);
347 }
348 }
349
i915_ttm_tt_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)350 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
351 {
352 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
353
354 if (i915_tt->filp)
355 fput(i915_tt->filp);
356
357 ttm_tt_fini(ttm);
358 i915_refct_sgt_put(&i915_tt->cached_rsgt);
359 }
360
i915_ttm_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)361 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
362 const struct ttm_place *place)
363 {
364 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
365
366 if (i915_ttm_is_ghost_object(bo))
367 return false;
368
369 /*
370 * EXTERNAL objects should never be swapped out by TTM, instead we need
371 * to handle that ourselves. TTM will already skip such objects for us,
372 * but we would like to avoid grabbing locks for no good reason.
373 */
374 if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
375 return false;
376
377 /* Will do for now. Our pinned objects are still on TTM's LRU lists */
378 if (!i915_gem_object_evictable(obj))
379 return false;
380
381 return ttm_bo_eviction_valuable(bo, place);
382 }
383
i915_ttm_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)384 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
385 struct ttm_placement *placement)
386 {
387 *placement = i915_sys_placement;
388 }
389
390 /**
391 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
392 * @obj: The GEM object
393 * This function frees any LMEM-related information that is cached on
394 * the object. For example the radix tree for fast page lookup and the
395 * cached refcounted sg-table
396 */
i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object * obj)397 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
398 {
399 struct radix_tree_iter iter;
400 void __rcu **slot;
401
402 if (!obj->ttm.cached_io_rsgt)
403 return;
404
405 rcu_read_lock();
406 radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
407 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
408 rcu_read_unlock();
409
410 i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
411 obj->ttm.cached_io_rsgt = NULL;
412 }
413
414 /**
415 * i915_ttm_purge - Clear an object of its memory
416 * @obj: The object
417 *
418 * This function is called to clear an object of it's memory when it is
419 * marked as not needed anymore.
420 *
421 * Return: 0 on success, negative error code on failure.
422 */
i915_ttm_purge(struct drm_i915_gem_object * obj)423 int i915_ttm_purge(struct drm_i915_gem_object *obj)
424 {
425 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
426 struct i915_ttm_tt *i915_tt =
427 container_of(bo->ttm, typeof(*i915_tt), ttm);
428 struct ttm_operation_ctx ctx = {
429 .interruptible = true,
430 .no_wait_gpu = false,
431 };
432 struct ttm_placement place = {};
433 int ret;
434
435 if (obj->mm.madv == __I915_MADV_PURGED)
436 return 0;
437
438 ret = ttm_bo_validate(bo, &place, &ctx);
439 if (ret)
440 return ret;
441
442 if (bo->ttm && i915_tt->filp) {
443 /*
444 * The below fput(which eventually calls shmem_truncate) might
445 * be delayed by worker, so when directly called to purge the
446 * pages(like by the shrinker) we should try to be more
447 * aggressive and release the pages immediately.
448 */
449 shmem_truncate_range(file_inode(i915_tt->filp),
450 0, (loff_t)-1);
451 fput(fetch_and_zero(&i915_tt->filp));
452 }
453
454 obj->write_domain = 0;
455 obj->read_domains = 0;
456 i915_ttm_adjust_gem_after_move(obj);
457 i915_ttm_free_cached_io_rsgt(obj);
458 obj->mm.madv = __I915_MADV_PURGED;
459
460 return 0;
461 }
462
i915_ttm_shrink(struct drm_i915_gem_object * obj,unsigned int flags)463 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
464 {
465 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
466 struct i915_ttm_tt *i915_tt =
467 container_of(bo->ttm, typeof(*i915_tt), ttm);
468 struct ttm_operation_ctx ctx = {
469 .interruptible = true,
470 .no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT,
471 };
472 struct ttm_placement place = {};
473 int ret;
474
475 if (!bo->ttm || i915_ttm_cpu_maps_iomem(bo->resource))
476 return 0;
477
478 GEM_BUG_ON(!i915_tt->is_shmem);
479
480 if (!i915_tt->filp)
481 return 0;
482
483 ret = ttm_bo_wait_ctx(bo, &ctx);
484 if (ret)
485 return ret;
486
487 switch (obj->mm.madv) {
488 case I915_MADV_DONTNEED:
489 return i915_ttm_purge(obj);
490 case __I915_MADV_PURGED:
491 return 0;
492 }
493
494 if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
495 return 0;
496
497 bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
498 ret = ttm_bo_validate(bo, &place, &ctx);
499 if (ret) {
500 bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
501 return ret;
502 }
503
504 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
505 __shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
506
507 return 0;
508 }
509
i915_ttm_delete_mem_notify(struct ttm_buffer_object * bo)510 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
511 {
512 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
513
514 /*
515 * This gets called twice by ttm, so long as we have a ttm resource or
516 * ttm_tt then we can still safely call this. Due to pipeline-gutting,
517 * we maybe have NULL bo->resource, but in that case we should always
518 * have a ttm alive (like if the pages are swapped out).
519 */
520 if ((bo->resource || bo->ttm) && !i915_ttm_is_ghost_object(bo)) {
521 __i915_gem_object_pages_fini(obj);
522 i915_ttm_free_cached_io_rsgt(obj);
523 }
524 }
525
i915_ttm_tt_get_st(struct ttm_tt * ttm)526 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
527 {
528 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
529 struct sg_table *st;
530 int ret;
531
532 if (i915_tt->cached_rsgt.table.sgl)
533 return i915_refct_sgt_get(&i915_tt->cached_rsgt);
534
535 st = &i915_tt->cached_rsgt.table;
536 ret = sg_alloc_table_from_pages_segment(st,
537 ttm->pages, ttm->num_pages,
538 0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
539 i915_sg_segment_size(i915_tt->dev), GFP_KERNEL);
540 if (ret) {
541 st->sgl = NULL;
542 return ERR_PTR(ret);
543 }
544
545 ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
546 if (ret) {
547 sg_free_table(st);
548 return ERR_PTR(ret);
549 }
550
551 return i915_refct_sgt_get(&i915_tt->cached_rsgt);
552 }
553
554 /**
555 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
556 * resource memory
557 * @obj: The GEM object used for sg-table caching
558 * @res: The struct ttm_resource for which an sg-table is requested.
559 *
560 * This function returns a refcounted sg-table representing the memory
561 * pointed to by @res. If @res is the object's current resource it may also
562 * cache the sg_table on the object or attempt to access an already cached
563 * sg-table. The refcounted sg-table needs to be put when no-longer in use.
564 *
565 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
566 * failure.
567 */
568 struct i915_refct_sgt *
i915_ttm_resource_get_st(struct drm_i915_gem_object * obj,struct ttm_resource * res)569 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
570 struct ttm_resource *res)
571 {
572 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
573 u32 page_alignment;
574
575 if (!i915_ttm_gtt_binds_lmem(res))
576 return i915_ttm_tt_get_st(bo->ttm);
577
578 page_alignment = bo->page_alignment << PAGE_SHIFT;
579 if (!page_alignment)
580 page_alignment = obj->mm.region->min_page_size;
581
582 /*
583 * If CPU mapping differs, we need to add the ttm_tt pages to
584 * the resulting st. Might make sense for GGTT.
585 */
586 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
587 if (bo->resource == res) {
588 if (!obj->ttm.cached_io_rsgt) {
589 struct i915_refct_sgt *rsgt;
590
591 rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
592 res,
593 page_alignment);
594 if (IS_ERR(rsgt))
595 return rsgt;
596
597 obj->ttm.cached_io_rsgt = rsgt;
598 }
599 return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
600 }
601
602 return intel_region_ttm_resource_to_rsgt(obj->mm.region, res,
603 page_alignment);
604 }
605
i915_ttm_truncate(struct drm_i915_gem_object * obj)606 static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
607 {
608 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
609 long err;
610
611 WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
612
613 err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
614 true, 15 * HZ);
615 if (err < 0)
616 return err;
617 if (err == 0)
618 return -EBUSY;
619
620 err = i915_ttm_move_notify(bo);
621 if (err)
622 return err;
623
624 return i915_ttm_purge(obj);
625 }
626
i915_ttm_swap_notify(struct ttm_buffer_object * bo)627 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
628 {
629 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
630 int ret;
631
632 if (i915_ttm_is_ghost_object(bo))
633 return;
634
635 ret = i915_ttm_move_notify(bo);
636 GEM_WARN_ON(ret);
637 GEM_WARN_ON(obj->ttm.cached_io_rsgt);
638 if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
639 i915_ttm_purge(obj);
640 }
641
642 /**
643 * i915_ttm_resource_mappable - Return true if the ttm resource is CPU
644 * accessible.
645 * @res: The TTM resource to check.
646 *
647 * This is interesting on small-BAR systems where we may encounter lmem objects
648 * that can't be accessed via the CPU.
649 */
i915_ttm_resource_mappable(struct ttm_resource * res)650 bool i915_ttm_resource_mappable(struct ttm_resource *res)
651 {
652 struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res);
653
654 if (!i915_ttm_cpu_maps_iomem(res))
655 return true;
656
657 return bman_res->used_visible_size == PFN_UP(bman_res->base.size);
658 }
659
i915_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)660 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
661 {
662 struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo);
663 bool unknown_state;
664
665 if (i915_ttm_is_ghost_object(mem->bo))
666 return -EINVAL;
667
668 if (!kref_get_unless_zero(&obj->base.refcount))
669 return -EINVAL;
670
671 assert_object_held(obj);
672
673 unknown_state = i915_gem_object_has_unknown_state(obj);
674 i915_gem_object_put(obj);
675 if (unknown_state)
676 return -EINVAL;
677
678 if (!i915_ttm_cpu_maps_iomem(mem))
679 return 0;
680
681 if (!i915_ttm_resource_mappable(mem))
682 return -EINVAL;
683
684 mem->bus.caching = ttm_write_combined;
685 mem->bus.is_iomem = true;
686
687 return 0;
688 }
689
i915_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)690 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
691 unsigned long page_offset)
692 {
693 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
694 struct scatterlist *sg;
695 unsigned long base;
696 unsigned int ofs;
697
698 GEM_BUG_ON(i915_ttm_is_ghost_object(bo));
699 GEM_WARN_ON(bo->ttm);
700
701 base = obj->mm.region->iomap.base - obj->mm.region->region.start;
702 sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs);
703
704 return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
705 }
706
i915_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)707 static int i915_ttm_access_memory(struct ttm_buffer_object *bo,
708 unsigned long offset, void *buf,
709 int len, int write)
710 {
711 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
712 resource_size_t iomap = obj->mm.region->iomap.base -
713 obj->mm.region->region.start;
714 unsigned long page = offset >> PAGE_SHIFT;
715 unsigned long bytes_left = len;
716
717 /*
718 * TODO: For now just let it fail if the resource is non-mappable,
719 * otherwise we need to perform the memcpy from the gpu here, without
720 * interfering with the object (like moving the entire thing).
721 */
722 if (!i915_ttm_resource_mappable(bo->resource))
723 return -EIO;
724
725 offset -= page << PAGE_SHIFT;
726 do {
727 unsigned long bytes = min(bytes_left, PAGE_SIZE - offset);
728 void __iomem *ptr;
729 dma_addr_t daddr;
730
731 daddr = i915_gem_object_get_dma_address(obj, page);
732 ptr = ioremap_wc(iomap + daddr + offset, bytes);
733 if (!ptr)
734 return -EIO;
735
736 if (write)
737 memcpy_toio(ptr, buf, bytes);
738 else
739 memcpy_fromio(buf, ptr, bytes);
740 iounmap(ptr);
741
742 page++;
743 buf += bytes;
744 bytes_left -= bytes;
745 offset = 0;
746 } while (bytes_left);
747
748 return len;
749 }
750
751 /*
752 * All callbacks need to take care not to downcast a struct ttm_buffer_object
753 * without checking its subclass, since it might be a TTM ghost object.
754 */
755 static struct ttm_device_funcs i915_ttm_bo_driver = {
756 .ttm_tt_create = i915_ttm_tt_create,
757 .ttm_tt_populate = i915_ttm_tt_populate,
758 .ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
759 .ttm_tt_destroy = i915_ttm_tt_destroy,
760 .eviction_valuable = i915_ttm_eviction_valuable,
761 .evict_flags = i915_ttm_evict_flags,
762 .move = i915_ttm_move,
763 .swap_notify = i915_ttm_swap_notify,
764 .delete_mem_notify = i915_ttm_delete_mem_notify,
765 .io_mem_reserve = i915_ttm_io_mem_reserve,
766 .io_mem_pfn = i915_ttm_io_mem_pfn,
767 .access_memory = i915_ttm_access_memory,
768 };
769
770 /**
771 * i915_ttm_driver - Return a pointer to the TTM device funcs
772 *
773 * Return: Pointer to statically allocated TTM device funcs.
774 */
i915_ttm_driver(void)775 struct ttm_device_funcs *i915_ttm_driver(void)
776 {
777 return &i915_ttm_bo_driver;
778 }
779
__i915_ttm_get_pages(struct drm_i915_gem_object * obj,struct ttm_placement * placement)780 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
781 struct ttm_placement *placement)
782 {
783 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
784 struct ttm_operation_ctx ctx = {
785 .interruptible = true,
786 .no_wait_gpu = false,
787 };
788 int real_num_busy;
789 int ret;
790
791 /* First try only the requested placement. No eviction. */
792 real_num_busy = fetch_and_zero(&placement->num_busy_placement);
793 ret = ttm_bo_validate(bo, placement, &ctx);
794 if (ret) {
795 ret = i915_ttm_err_to_gem(ret);
796 /*
797 * Anything that wants to restart the operation gets to
798 * do that.
799 */
800 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
801 ret == -EAGAIN)
802 return ret;
803
804 /*
805 * If the initial attempt fails, allow all accepted placements,
806 * evicting if necessary.
807 */
808 placement->num_busy_placement = real_num_busy;
809 ret = ttm_bo_validate(bo, placement, &ctx);
810 if (ret)
811 return i915_ttm_err_to_gem(ret);
812 }
813
814 if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
815 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
816 if (ret)
817 return ret;
818
819 i915_ttm_adjust_domains_after_move(obj);
820 i915_ttm_adjust_gem_after_move(obj);
821 }
822
823 if (!i915_gem_object_has_pages(obj)) {
824 struct i915_refct_sgt *rsgt =
825 i915_ttm_resource_get_st(obj, bo->resource);
826
827 if (IS_ERR(rsgt))
828 return PTR_ERR(rsgt);
829
830 GEM_BUG_ON(obj->mm.rsgt);
831 obj->mm.rsgt = rsgt;
832 __i915_gem_object_set_pages(obj, &rsgt->table);
833 }
834
835 GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages));
836 i915_ttm_adjust_lru(obj);
837 return ret;
838 }
839
i915_ttm_get_pages(struct drm_i915_gem_object * obj)840 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
841 {
842 struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
843 struct ttm_placement placement;
844
845 /* restricted by sg_alloc_table */
846 if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int))
847 return -E2BIG;
848
849 GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
850
851 /* Move to the requested placement. */
852 i915_ttm_placement_from_obj(obj, &requested, busy, &placement);
853
854 return __i915_ttm_get_pages(obj, &placement);
855 }
856
857 /**
858 * DOC: Migration vs eviction
859 *
860 * GEM migration may not be the same as TTM migration / eviction. If
861 * the TTM core decides to evict an object it may be evicted to a
862 * TTM memory type that is not in the object's allowable GEM regions, or
863 * in fact theoretically to a TTM memory type that doesn't correspond to
864 * a GEM memory region. In that case the object's GEM region is not
865 * updated, and the data is migrated back to the GEM region at
866 * get_pages time. TTM may however set up CPU ptes to the object even
867 * when it is evicted.
868 * Gem forced migration using the i915_ttm_migrate() op, is allowed even
869 * to regions that are not in the object's list of allowable placements.
870 */
__i915_ttm_migrate(struct drm_i915_gem_object * obj,struct intel_memory_region * mr,unsigned int flags)871 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj,
872 struct intel_memory_region *mr,
873 unsigned int flags)
874 {
875 struct ttm_place requested;
876 struct ttm_placement placement;
877 int ret;
878
879 i915_ttm_place_from_region(mr, &requested, obj->bo_offset,
880 obj->base.size, flags);
881 placement.num_placement = 1;
882 placement.num_busy_placement = 1;
883 placement.placement = &requested;
884 placement.busy_placement = &requested;
885
886 ret = __i915_ttm_get_pages(obj, &placement);
887 if (ret)
888 return ret;
889
890 /*
891 * Reinitialize the region bindings. This is primarily
892 * required for objects where the new region is not in
893 * its allowable placements.
894 */
895 if (obj->mm.region != mr) {
896 i915_gem_object_release_memory_region(obj);
897 i915_gem_object_init_memory_region(obj, mr);
898 }
899
900 return 0;
901 }
902
i915_ttm_migrate(struct drm_i915_gem_object * obj,struct intel_memory_region * mr,unsigned int flags)903 static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
904 struct intel_memory_region *mr,
905 unsigned int flags)
906 {
907 return __i915_ttm_migrate(obj, mr, flags);
908 }
909
i915_ttm_put_pages(struct drm_i915_gem_object * obj,struct sg_table * st)910 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
911 struct sg_table *st)
912 {
913 /*
914 * We're currently not called from a shrinker, so put_pages()
915 * typically means the object is about to destroyed, or called
916 * from move_notify(). So just avoid doing much for now.
917 * If the object is not destroyed next, The TTM eviction logic
918 * and shrinkers will move it out if needed.
919 */
920
921 if (obj->mm.rsgt)
922 i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
923 }
924
925 /**
926 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
927 * @obj: The object
928 */
i915_ttm_adjust_lru(struct drm_i915_gem_object * obj)929 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
930 {
931 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
932 struct i915_ttm_tt *i915_tt =
933 container_of(bo->ttm, typeof(*i915_tt), ttm);
934 bool shrinkable =
935 bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
936
937 /*
938 * Don't manipulate the TTM LRUs while in TTM bo destruction.
939 * We're called through i915_ttm_delete_mem_notify().
940 */
941 if (!kref_read(&bo->kref))
942 return;
943
944 /*
945 * We skip managing the shrinker LRU in set_pages() and just manage
946 * everything here. This does at least solve the issue with having
947 * temporary shmem mappings(like with evicted lmem) not being visible to
948 * the shrinker. Only our shmem objects are shrinkable, everything else
949 * we keep as unshrinkable.
950 *
951 * To make sure everything plays nice we keep an extra shrink pin in TTM
952 * if the underlying pages are not currently shrinkable. Once we release
953 * our pin, like when the pages are moved to shmem, the pages will then
954 * be added to the shrinker LRU, assuming the caller isn't also holding
955 * a pin.
956 *
957 * TODO: consider maybe also bumping the shrinker list here when we have
958 * already unpinned it, which should give us something more like an LRU.
959 *
960 * TODO: There is a small window of opportunity for this function to
961 * get called from eviction after we've dropped the last GEM refcount,
962 * but before the TTM deleted flag is set on the object. Avoid
963 * adjusting the shrinker list in such cases, since the object is
964 * not available to the shrinker anyway due to its zero refcount.
965 * To fix this properly we should move to a TTM shrinker LRU list for
966 * these objects.
967 */
968 if (kref_get_unless_zero(&obj->base.refcount)) {
969 if (shrinkable != obj->mm.ttm_shrinkable) {
970 if (shrinkable) {
971 if (obj->mm.madv == I915_MADV_WILLNEED)
972 __i915_gem_object_make_shrinkable(obj);
973 else
974 __i915_gem_object_make_purgeable(obj);
975 } else {
976 i915_gem_object_make_unshrinkable(obj);
977 }
978
979 obj->mm.ttm_shrinkable = shrinkable;
980 }
981 i915_gem_object_put(obj);
982 }
983
984 /*
985 * Put on the correct LRU list depending on the MADV status
986 */
987 spin_lock(&bo->bdev->lru_lock);
988 if (shrinkable) {
989 /* Try to keep shmem_tt from being considered for shrinking. */
990 bo->priority = TTM_MAX_BO_PRIORITY - 1;
991 } else if (obj->mm.madv != I915_MADV_WILLNEED) {
992 bo->priority = I915_TTM_PRIO_PURGE;
993 } else if (!i915_gem_object_has_pages(obj)) {
994 bo->priority = I915_TTM_PRIO_NO_PAGES;
995 } else {
996 struct ttm_resource_manager *man =
997 ttm_manager_type(bo->bdev, bo->resource->mem_type);
998
999 /*
1000 * If we need to place an LMEM resource which doesn't need CPU
1001 * access then we should try not to victimize mappable objects
1002 * first, since we likely end up stealing more of the mappable
1003 * portion. And likewise when we try to find space for a mappble
1004 * object, we know not to ever victimize objects that don't
1005 * occupy any mappable pages.
1006 */
1007 if (i915_ttm_cpu_maps_iomem(bo->resource) &&
1008 i915_ttm_buddy_man_visible_size(man) < man->size &&
1009 !(obj->flags & I915_BO_ALLOC_GPU_ONLY))
1010 bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS;
1011 else
1012 bo->priority = I915_TTM_PRIO_HAS_PAGES;
1013 }
1014
1015 ttm_bo_move_to_lru_tail(bo);
1016 spin_unlock(&bo->bdev->lru_lock);
1017 }
1018
1019 /*
1020 * TTM-backed gem object destruction requires some clarification.
1021 * Basically we have two possibilities here. We can either rely on the
1022 * i915 delayed destruction and put the TTM object when the object
1023 * is idle. This would be detected by TTM which would bypass the
1024 * TTM delayed destroy handling. The other approach is to put the TTM
1025 * object early and rely on the TTM destroyed handling, and then free
1026 * the leftover parts of the GEM object once TTM's destroyed list handling is
1027 * complete. For now, we rely on the latter for two reasons:
1028 * a) TTM can evict an object even when it's on the delayed destroy list,
1029 * which in theory allows for complete eviction.
1030 * b) There is work going on in TTM to allow freeing an object even when
1031 * it's not idle, and using the TTM destroyed list handling could help us
1032 * benefit from that.
1033 */
i915_ttm_delayed_free(struct drm_i915_gem_object * obj)1034 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
1035 {
1036 GEM_BUG_ON(!obj->ttm.created);
1037
1038 ttm_bo_put(i915_gem_to_ttm(obj));
1039 }
1040
vm_fault_ttm(struct vm_fault * vmf)1041 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
1042 {
1043 struct vm_area_struct *area = vmf->vma;
1044 struct ttm_buffer_object *bo = area->vm_private_data;
1045 struct drm_device *dev = bo->base.dev;
1046 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1047 intel_wakeref_t wakeref = 0;
1048 vm_fault_t ret;
1049 int idx;
1050
1051 /* Sanity check that we allow writing into this object */
1052 if (unlikely(i915_gem_object_is_readonly(obj) &&
1053 area->vm_flags & VM_WRITE))
1054 return VM_FAULT_SIGBUS;
1055
1056 ret = ttm_bo_vm_reserve(bo, vmf);
1057 if (ret)
1058 return ret;
1059
1060 if (obj->mm.madv != I915_MADV_WILLNEED) {
1061 dma_resv_unlock(bo->base.resv);
1062 return VM_FAULT_SIGBUS;
1063 }
1064
1065 /*
1066 * This must be swapped out with shmem ttm_tt (pipeline-gutting).
1067 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as
1068 * far as far doing a ttm_bo_move_null(), which should skip all the
1069 * other junk.
1070 */
1071 if (!bo->resource) {
1072 struct ttm_operation_ctx ctx = {
1073 .interruptible = true,
1074 .no_wait_gpu = true, /* should be idle already */
1075 };
1076 int err;
1077
1078 GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED));
1079
1080 err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx);
1081 if (err) {
1082 dma_resv_unlock(bo->base.resv);
1083 return VM_FAULT_SIGBUS;
1084 }
1085 } else if (!i915_ttm_resource_mappable(bo->resource)) {
1086 int err = -ENODEV;
1087 int i;
1088
1089 for (i = 0; i < obj->mm.n_placements; i++) {
1090 struct intel_memory_region *mr = obj->mm.placements[i];
1091 unsigned int flags;
1092
1093 if (!mr->io_size && mr->type != INTEL_MEMORY_SYSTEM)
1094 continue;
1095
1096 flags = obj->flags;
1097 flags &= ~I915_BO_ALLOC_GPU_ONLY;
1098 err = __i915_ttm_migrate(obj, mr, flags);
1099 if (!err)
1100 break;
1101 }
1102
1103 if (err) {
1104 drm_dbg(dev, "Unable to make resource CPU accessible(err = %pe)\n",
1105 ERR_PTR(err));
1106 dma_resv_unlock(bo->base.resv);
1107 ret = VM_FAULT_SIGBUS;
1108 goto out_rpm;
1109 }
1110 }
1111
1112 if (i915_ttm_cpu_maps_iomem(bo->resource))
1113 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1114
1115 if (drm_dev_enter(dev, &idx)) {
1116 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1117 TTM_BO_VM_NUM_PREFAULT);
1118 drm_dev_exit(idx);
1119 } else {
1120 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1121 }
1122
1123 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1124 goto out_rpm;
1125
1126 /*
1127 * ttm_bo_vm_reserve() already has dma_resv_lock.
1128 * userfault_count is protected by dma_resv lock and rpm wakeref.
1129 */
1130 if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) {
1131 obj->userfault_count = 1;
1132 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1133 list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list);
1134 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1135
1136 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource));
1137 }
1138
1139 if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)
1140 intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref,
1141 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
1142
1143 i915_ttm_adjust_lru(obj);
1144
1145 dma_resv_unlock(bo->base.resv);
1146
1147 out_rpm:
1148 if (wakeref)
1149 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1150
1151 return ret;
1152 }
1153
1154 static int
vm_access_ttm(struct vm_area_struct * area,unsigned long addr,void * buf,int len,int write)1155 vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
1156 void *buf, int len, int write)
1157 {
1158 struct drm_i915_gem_object *obj =
1159 i915_ttm_to_gem(area->vm_private_data);
1160
1161 if (i915_gem_object_is_readonly(obj) && write)
1162 return -EACCES;
1163
1164 return ttm_bo_vm_access(area, addr, buf, len, write);
1165 }
1166
ttm_vm_open(struct vm_area_struct * vma)1167 static void ttm_vm_open(struct vm_area_struct *vma)
1168 {
1169 struct drm_i915_gem_object *obj =
1170 i915_ttm_to_gem(vma->vm_private_data);
1171
1172 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1173 i915_gem_object_get(obj);
1174 }
1175
ttm_vm_close(struct vm_area_struct * vma)1176 static void ttm_vm_close(struct vm_area_struct *vma)
1177 {
1178 struct drm_i915_gem_object *obj =
1179 i915_ttm_to_gem(vma->vm_private_data);
1180
1181 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1182 i915_gem_object_put(obj);
1183 }
1184
1185 static const struct vm_operations_struct vm_ops_ttm = {
1186 .fault = vm_fault_ttm,
1187 .access = vm_access_ttm,
1188 .open = ttm_vm_open,
1189 .close = ttm_vm_close,
1190 };
1191
i915_ttm_mmap_offset(struct drm_i915_gem_object * obj)1192 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
1193 {
1194 /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
1195 GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
1196
1197 return drm_vma_node_offset_addr(&obj->base.vma_node);
1198 }
1199
i915_ttm_unmap_virtual(struct drm_i915_gem_object * obj)1200 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
1201 {
1202 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
1203 intel_wakeref_t wakeref = 0;
1204
1205 assert_object_held_shared(obj);
1206
1207 if (i915_ttm_cpu_maps_iomem(bo->resource)) {
1208 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1209
1210 /* userfault_count is protected by obj lock and rpm wakeref. */
1211 if (obj->userfault_count) {
1212 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1213 list_del(&obj->userfault_link);
1214 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1215 obj->userfault_count = 0;
1216 }
1217 }
1218
1219 GEM_WARN_ON(obj->userfault_count);
1220
1221 ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
1222
1223 if (wakeref)
1224 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1225 }
1226
1227 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
1228 .name = "i915_gem_object_ttm",
1229 .flags = I915_GEM_OBJECT_IS_SHRINKABLE |
1230 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
1231
1232 .get_pages = i915_ttm_get_pages,
1233 .put_pages = i915_ttm_put_pages,
1234 .truncate = i915_ttm_truncate,
1235 .shrink = i915_ttm_shrink,
1236
1237 .adjust_lru = i915_ttm_adjust_lru,
1238 .delayed_free = i915_ttm_delayed_free,
1239 .migrate = i915_ttm_migrate,
1240
1241 .mmap_offset = i915_ttm_mmap_offset,
1242 .unmap_virtual = i915_ttm_unmap_virtual,
1243 .mmap_ops = &vm_ops_ttm,
1244 };
1245
i915_ttm_bo_destroy(struct ttm_buffer_object * bo)1246 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
1247 {
1248 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1249
1250 i915_gem_object_release_memory_region(obj);
1251 mutex_destroy(&obj->ttm.get_io_page.lock);
1252
1253 if (obj->ttm.created) {
1254 /*
1255 * We freely manage the shrinker LRU outide of the mm.pages life
1256 * cycle. As a result when destroying the object we should be
1257 * extra paranoid and ensure we remove it from the LRU, before
1258 * we free the object.
1259 *
1260 * Touching the ttm_shrinkable outside of the object lock here
1261 * should be safe now that the last GEM object ref was dropped.
1262 */
1263 if (obj->mm.ttm_shrinkable)
1264 i915_gem_object_make_unshrinkable(obj);
1265
1266 i915_ttm_backup_free(obj);
1267
1268 /* This releases all gem object bindings to the backend. */
1269 __i915_gem_free_object(obj);
1270
1271 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
1272 } else {
1273 __i915_gem_object_fini(obj);
1274 }
1275 }
1276
1277 /*
1278 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
1279 * @mem: The initial memory region for the object.
1280 * @obj: The gem object.
1281 * @size: Object size in bytes.
1282 * @flags: gem object flags.
1283 *
1284 * Return: 0 on success, negative error code on failure.
1285 */
__i915_gem_ttm_object_init(struct intel_memory_region * mem,struct drm_i915_gem_object * obj,resource_size_t offset,resource_size_t size,resource_size_t page_size,unsigned int flags)1286 int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
1287 struct drm_i915_gem_object *obj,
1288 resource_size_t offset,
1289 resource_size_t size,
1290 resource_size_t page_size,
1291 unsigned int flags)
1292 {
1293 static struct lock_class_key lock_class;
1294 struct drm_i915_private *i915 = mem->i915;
1295 struct ttm_operation_ctx ctx = {
1296 .interruptible = true,
1297 .no_wait_gpu = false,
1298 };
1299 enum ttm_bo_type bo_type;
1300 int ret;
1301
1302 drm_gem_private_object_init(&i915->drm, &obj->base, size);
1303 i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
1304
1305 obj->bo_offset = offset;
1306
1307 /* Don't put on a region list until we're either locked or fully initialized. */
1308 obj->mm.region = mem;
1309 INIT_LIST_HEAD(&obj->mm.region_link);
1310
1311 INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
1312 mutex_init(&obj->ttm.get_io_page.lock);
1313 bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
1314 ttm_bo_type_kernel;
1315
1316 obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
1317
1318 /* Forcing the page size is kernel internal only */
1319 GEM_BUG_ON(page_size && obj->mm.n_placements);
1320
1321 /*
1322 * Keep an extra shrink pin to prevent the object from being made
1323 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
1324 * drop the pin. The TTM backend manages the shrinker LRU itself,
1325 * outside of the normal mm.pages life cycle.
1326 */
1327 i915_gem_object_make_unshrinkable(obj);
1328
1329 /*
1330 * If this function fails, it will call the destructor, but
1331 * our caller still owns the object. So no freeing in the
1332 * destructor until obj->ttm.created is true.
1333 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
1334 * until successful initialization.
1335 */
1336 ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type,
1337 &i915_sys_placement, page_size >> PAGE_SHIFT,
1338 &ctx, NULL, NULL, i915_ttm_bo_destroy);
1339
1340 /*
1341 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size
1342 * is too big to add vma. The direct function that returns -ENOSPC is
1343 * drm_mm_insert_node_in_range(). To handle the same error as other code
1344 * that returns -E2BIG when the size is too large, it converts -ENOSPC to
1345 * -E2BIG.
1346 */
1347 if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC)
1348 ret = -E2BIG;
1349
1350 if (ret)
1351 return i915_ttm_err_to_gem(ret);
1352
1353 obj->ttm.created = true;
1354 i915_gem_object_release_memory_region(obj);
1355 i915_gem_object_init_memory_region(obj, mem);
1356 i915_ttm_adjust_domains_after_move(obj);
1357 i915_ttm_adjust_gem_after_move(obj);
1358 i915_gem_object_unlock(obj);
1359
1360 return 0;
1361 }
1362
1363 static const struct intel_memory_region_ops ttm_system_region_ops = {
1364 .init_object = __i915_gem_ttm_object_init,
1365 .release = intel_region_ttm_fini,
1366 };
1367
1368 struct intel_memory_region *
i915_gem_ttm_system_setup(struct drm_i915_private * i915,u16 type,u16 instance)1369 i915_gem_ttm_system_setup(struct drm_i915_private *i915,
1370 u16 type, u16 instance)
1371 {
1372 struct intel_memory_region *mr;
1373
1374 mr = intel_memory_region_create(i915, 0,
1375 totalram_pages() << PAGE_SHIFT,
1376 PAGE_SIZE, 0, 0,
1377 type, instance,
1378 &ttm_system_region_ops);
1379 if (IS_ERR(mr))
1380 return mr;
1381
1382 intel_memory_region_set_name(mr, "system-ttm");
1383 return mr;
1384 }
1385