1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
33
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_breadcrumbs.h"
36 #include "gt/intel_context.h"
37 #include "gt/intel_engine.h"
38 #include "gt/intel_engine_heartbeat.h"
39 #include "gt/intel_engine_regs.h"
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_reset.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_rps.h"
44
45 #include "i915_active.h"
46 #include "i915_deps.h"
47 #include "i915_driver.h"
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "intel_pm.h"
51
52 struct execute_cb {
53 struct irq_work work;
54 struct i915_sw_fence *fence;
55 struct i915_request *signal;
56 };
57
58 static struct kmem_cache *slab_requests;
59 static struct kmem_cache *slab_execute_cbs;
60
i915_fence_get_driver_name(struct dma_fence * fence)61 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
62 {
63 return dev_name(to_request(fence)->i915->drm.dev);
64 }
65
i915_fence_get_timeline_name(struct dma_fence * fence)66 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
67 {
68 const struct i915_gem_context *ctx;
69
70 /*
71 * The timeline struct (as part of the ppgtt underneath a context)
72 * may be freed when the request is no longer in use by the GPU.
73 * We could extend the life of a context to beyond that of all
74 * fences, possibly keeping the hw resource around indefinitely,
75 * or we just give them a false name. Since
76 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
77 * lie seems justifiable.
78 */
79 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
80 return "signaled";
81
82 ctx = i915_request_gem_context(to_request(fence));
83 if (!ctx)
84 return "[" DRIVER_NAME "]";
85
86 return ctx->name;
87 }
88
i915_fence_signaled(struct dma_fence * fence)89 static bool i915_fence_signaled(struct dma_fence *fence)
90 {
91 return i915_request_completed(to_request(fence));
92 }
93
i915_fence_enable_signaling(struct dma_fence * fence)94 static bool i915_fence_enable_signaling(struct dma_fence *fence)
95 {
96 return i915_request_enable_breadcrumb(to_request(fence));
97 }
98
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)99 static signed long i915_fence_wait(struct dma_fence *fence,
100 bool interruptible,
101 signed long timeout)
102 {
103 return i915_request_wait_timeout(to_request(fence),
104 interruptible | I915_WAIT_PRIORITY,
105 timeout);
106 }
107
i915_request_slab_cache(void)108 struct kmem_cache *i915_request_slab_cache(void)
109 {
110 return slab_requests;
111 }
112
i915_fence_release(struct dma_fence * fence)113 static void i915_fence_release(struct dma_fence *fence)
114 {
115 struct i915_request *rq = to_request(fence);
116
117 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
118 rq->guc_prio != GUC_PRIO_FINI);
119
120 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
121 if (rq->batch_res) {
122 i915_vma_resource_put(rq->batch_res);
123 rq->batch_res = NULL;
124 }
125
126 /*
127 * The request is put onto a RCU freelist (i.e. the address
128 * is immediately reused), mark the fences as being freed now.
129 * Otherwise the debugobjects for the fences are only marked as
130 * freed when the slab cache itself is freed, and so we would get
131 * caught trying to reuse dead objects.
132 */
133 i915_sw_fence_fini(&rq->submit);
134 i915_sw_fence_fini(&rq->semaphore);
135
136 /*
137 * Keep one request on each engine for reserved use under mempressure
138 * do not use with virtual engines as this really is only needed for
139 * kernel contexts.
140 *
141 * We do not hold a reference to the engine here and so have to be
142 * very careful in what rq->engine we poke. The virtual engine is
143 * referenced via the rq->context and we released that ref during
144 * i915_request_retire(), ergo we must not dereference a virtual
145 * engine here. Not that we would want to, as the only consumer of
146 * the reserved engine->request_pool is the power management parking,
147 * which must-not-fail, and that is only run on the physical engines.
148 *
149 * Since the request must have been executed to be have completed,
150 * we know that it will have been processed by the HW and will
151 * not be unsubmitted again, so rq->engine and rq->execution_mask
152 * at this point is stable. rq->execution_mask will be a single
153 * bit if the last and _only_ engine it could execution on was a
154 * physical engine, if it's multiple bits then it started on and
155 * could still be on a virtual engine. Thus if the mask is not a
156 * power-of-two we assume that rq->engine may still be a virtual
157 * engine and so a dangling invalid pointer that we cannot dereference
158 *
159 * For example, consider the flow of a bonded request through a virtual
160 * engine. The request is created with a wide engine mask (all engines
161 * that we might execute on). On processing the bond, the request mask
162 * is reduced to one or more engines. If the request is subsequently
163 * bound to a single engine, it will then be constrained to only
164 * execute on that engine and never returned to the virtual engine
165 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
166 * know that if the rq->execution_mask is a single bit, rq->engine
167 * can be a physical engine with the exact corresponding mask.
168 */
169 if (!intel_engine_is_virtual(rq->engine) &&
170 is_power_of_2(rq->execution_mask) &&
171 !cmpxchg(&rq->engine->request_pool, NULL, rq))
172 return;
173
174 kmem_cache_free(slab_requests, rq);
175 }
176
177 const struct dma_fence_ops i915_fence_ops = {
178 .get_driver_name = i915_fence_get_driver_name,
179 .get_timeline_name = i915_fence_get_timeline_name,
180 .enable_signaling = i915_fence_enable_signaling,
181 .signaled = i915_fence_signaled,
182 .wait = i915_fence_wait,
183 .release = i915_fence_release,
184 };
185
irq_execute_cb(struct irq_work * wrk)186 static void irq_execute_cb(struct irq_work *wrk)
187 {
188 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
189
190 i915_sw_fence_complete(cb->fence);
191 kmem_cache_free(slab_execute_cbs, cb);
192 }
193
194 static __always_inline void
__notify_execute_cb(struct i915_request * rq,bool (* fn)(struct irq_work * wrk))195 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
196 {
197 struct execute_cb *cb, *cn;
198
199 if (llist_empty(&rq->execute_cb))
200 return;
201
202 llist_for_each_entry_safe(cb, cn,
203 llist_del_all(&rq->execute_cb),
204 work.node.llist)
205 fn(&cb->work);
206 }
207
__notify_execute_cb_irq(struct i915_request * rq)208 static void __notify_execute_cb_irq(struct i915_request *rq)
209 {
210 __notify_execute_cb(rq, irq_work_queue);
211 }
212
irq_work_imm(struct irq_work * wrk)213 static bool irq_work_imm(struct irq_work *wrk)
214 {
215 wrk->func(wrk);
216 return false;
217 }
218
i915_request_notify_execute_cb_imm(struct i915_request * rq)219 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
220 {
221 __notify_execute_cb(rq, irq_work_imm);
222 }
223
__i915_request_fill(struct i915_request * rq,u8 val)224 static void __i915_request_fill(struct i915_request *rq, u8 val)
225 {
226 void *vaddr = rq->ring->vaddr;
227 u32 head;
228
229 head = rq->infix;
230 if (rq->postfix < head) {
231 memset(vaddr + head, val, rq->ring->size - head);
232 head = 0;
233 }
234 memset(vaddr + head, val, rq->postfix - head);
235 }
236
237 /**
238 * i915_request_active_engine
239 * @rq: request to inspect
240 * @active: pointer in which to return the active engine
241 *
242 * Fills the currently active engine to the @active pointer if the request
243 * is active and still not completed.
244 *
245 * Returns true if request was active or false otherwise.
246 */
247 bool
i915_request_active_engine(struct i915_request * rq,struct intel_engine_cs ** active)248 i915_request_active_engine(struct i915_request *rq,
249 struct intel_engine_cs **active)
250 {
251 struct intel_engine_cs *engine, *locked;
252 bool ret = false;
253
254 /*
255 * Serialise with __i915_request_submit() so that it sees
256 * is-banned?, or we know the request is already inflight.
257 *
258 * Note that rq->engine is unstable, and so we double
259 * check that we have acquired the lock on the final engine.
260 */
261 locked = READ_ONCE(rq->engine);
262 spin_lock_irq(&locked->sched_engine->lock);
263 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
264 spin_unlock(&locked->sched_engine->lock);
265 locked = engine;
266 spin_lock(&locked->sched_engine->lock);
267 }
268
269 if (i915_request_is_active(rq)) {
270 if (!__i915_request_is_complete(rq))
271 *active = locked;
272 ret = true;
273 }
274
275 spin_unlock_irq(&locked->sched_engine->lock);
276
277 return ret;
278 }
279
__rq_init_watchdog(struct i915_request * rq)280 static void __rq_init_watchdog(struct i915_request *rq)
281 {
282 rq->watchdog.timer.function = NULL;
283 }
284
__rq_watchdog_expired(struct hrtimer * hrtimer)285 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
286 {
287 struct i915_request *rq =
288 container_of(hrtimer, struct i915_request, watchdog.timer);
289 struct intel_gt *gt = rq->engine->gt;
290
291 if (!i915_request_completed(rq)) {
292 if (llist_add(&rq->watchdog.link, >->watchdog.list))
293 schedule_work(>->watchdog.work);
294 } else {
295 i915_request_put(rq);
296 }
297
298 return HRTIMER_NORESTART;
299 }
300
__rq_arm_watchdog(struct i915_request * rq)301 static void __rq_arm_watchdog(struct i915_request *rq)
302 {
303 struct i915_request_watchdog *wdg = &rq->watchdog;
304 struct intel_context *ce = rq->context;
305
306 if (!ce->watchdog.timeout_us)
307 return;
308
309 i915_request_get(rq);
310
311 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
312 wdg->timer.function = __rq_watchdog_expired;
313 hrtimer_start_range_ns(&wdg->timer,
314 ns_to_ktime(ce->watchdog.timeout_us *
315 NSEC_PER_USEC),
316 NSEC_PER_MSEC,
317 HRTIMER_MODE_REL);
318 }
319
__rq_cancel_watchdog(struct i915_request * rq)320 static void __rq_cancel_watchdog(struct i915_request *rq)
321 {
322 struct i915_request_watchdog *wdg = &rq->watchdog;
323
324 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
325 i915_request_put(rq);
326 }
327
328 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
329
330 /**
331 * i915_request_free_capture_list - Free a capture list
332 * @capture: Pointer to the first list item or NULL
333 *
334 */
i915_request_free_capture_list(struct i915_capture_list * capture)335 void i915_request_free_capture_list(struct i915_capture_list *capture)
336 {
337 while (capture) {
338 struct i915_capture_list *next = capture->next;
339
340 i915_vma_resource_put(capture->vma_res);
341 kfree(capture);
342 capture = next;
343 }
344 }
345
346 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
347
348 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
349
350 #else
351
352 #define i915_request_free_capture_list(_a) do {} while (0)
353
354 #define assert_capture_list_is_null(_a) do {} while (0)
355
356 #define clear_capture_list(_rq) do {} while (0)
357
358 #endif
359
i915_request_retire(struct i915_request * rq)360 bool i915_request_retire(struct i915_request *rq)
361 {
362 if (!__i915_request_is_complete(rq))
363 return false;
364
365 RQ_TRACE(rq, "\n");
366
367 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
368 trace_i915_request_retire(rq);
369 i915_request_mark_complete(rq);
370
371 __rq_cancel_watchdog(rq);
372
373 /*
374 * We know the GPU must have read the request to have
375 * sent us the seqno + interrupt, so use the position
376 * of tail of the request to update the last known position
377 * of the GPU head.
378 *
379 * Note this requires that we are always called in request
380 * completion order.
381 */
382 GEM_BUG_ON(!list_is_first(&rq->link,
383 &i915_request_timeline(rq)->requests));
384 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
385 /* Poison before we release our space in the ring */
386 __i915_request_fill(rq, POISON_FREE);
387 rq->ring->head = rq->postfix;
388
389 if (!i915_request_signaled(rq)) {
390 spin_lock_irq(&rq->lock);
391 dma_fence_signal_locked(&rq->fence);
392 spin_unlock_irq(&rq->lock);
393 }
394
395 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
396 intel_rps_dec_waiters(&rq->engine->gt->rps);
397
398 /*
399 * We only loosely track inflight requests across preemption,
400 * and so we may find ourselves attempting to retire a _completed_
401 * request that we have removed from the HW and put back on a run
402 * queue.
403 *
404 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
405 * after removing the breadcrumb and signaling it, so that we do not
406 * inadvertently attach the breadcrumb to a completed request.
407 */
408 rq->engine->remove_active_request(rq);
409 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
410
411 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
412
413 intel_context_exit(rq->context);
414 intel_context_unpin(rq->context);
415
416 i915_sched_node_fini(&rq->sched);
417 i915_request_put(rq);
418
419 return true;
420 }
421
i915_request_retire_upto(struct i915_request * rq)422 void i915_request_retire_upto(struct i915_request *rq)
423 {
424 struct intel_timeline * const tl = i915_request_timeline(rq);
425 struct i915_request *tmp;
426
427 RQ_TRACE(rq, "\n");
428 GEM_BUG_ON(!__i915_request_is_complete(rq));
429
430 do {
431 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
432 GEM_BUG_ON(!i915_request_completed(tmp));
433 } while (i915_request_retire(tmp) && tmp != rq);
434 }
435
436 static struct i915_request * const *
__engine_active(struct intel_engine_cs * engine)437 __engine_active(struct intel_engine_cs *engine)
438 {
439 return READ_ONCE(engine->execlists.active);
440 }
441
__request_in_flight(const struct i915_request * signal)442 static bool __request_in_flight(const struct i915_request *signal)
443 {
444 struct i915_request * const *port, *rq;
445 bool inflight = false;
446
447 if (!i915_request_is_ready(signal))
448 return false;
449
450 /*
451 * Even if we have unwound the request, it may still be on
452 * the GPU (preempt-to-busy). If that request is inside an
453 * unpreemptible critical section, it will not be removed. Some
454 * GPU functions may even be stuck waiting for the paired request
455 * (__await_execution) to be submitted and cannot be preempted
456 * until the bond is executing.
457 *
458 * As we know that there are always preemption points between
459 * requests, we know that only the currently executing request
460 * may be still active even though we have cleared the flag.
461 * However, we can't rely on our tracking of ELSP[0] to know
462 * which request is currently active and so maybe stuck, as
463 * the tracking maybe an event behind. Instead assume that
464 * if the context is still inflight, then it is still active
465 * even if the active flag has been cleared.
466 *
467 * To further complicate matters, if there a pending promotion, the HW
468 * may either perform a context switch to the second inflight execlists,
469 * or it may switch to the pending set of execlists. In the case of the
470 * latter, it may send the ACK and we process the event copying the
471 * pending[] over top of inflight[], _overwriting_ our *active. Since
472 * this implies the HW is arbitrating and not struck in *active, we do
473 * not worry about complete accuracy, but we do require no read/write
474 * tearing of the pointer [the read of the pointer must be valid, even
475 * as the array is being overwritten, for which we require the writes
476 * to avoid tearing.]
477 *
478 * Note that the read of *execlists->active may race with the promotion
479 * of execlists->pending[] to execlists->inflight[], overwritting
480 * the value at *execlists->active. This is fine. The promotion implies
481 * that we received an ACK from the HW, and so the context is not
482 * stuck -- if we do not see ourselves in *active, the inflight status
483 * is valid. If instead we see ourselves being copied into *active,
484 * we are inflight and may signal the callback.
485 */
486 if (!intel_context_inflight(signal->context))
487 return false;
488
489 rcu_read_lock();
490 for (port = __engine_active(signal->engine);
491 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
492 port++) {
493 if (rq->context == signal->context) {
494 inflight = i915_seqno_passed(rq->fence.seqno,
495 signal->fence.seqno);
496 break;
497 }
498 }
499 rcu_read_unlock();
500
501 return inflight;
502 }
503
504 static int
__await_execution(struct i915_request * rq,struct i915_request * signal,gfp_t gfp)505 __await_execution(struct i915_request *rq,
506 struct i915_request *signal,
507 gfp_t gfp)
508 {
509 struct execute_cb *cb;
510
511 if (i915_request_is_active(signal))
512 return 0;
513
514 cb = kmem_cache_alloc(slab_execute_cbs, gfp);
515 if (!cb)
516 return -ENOMEM;
517
518 cb->fence = &rq->submit;
519 i915_sw_fence_await(cb->fence);
520 init_irq_work(&cb->work, irq_execute_cb);
521
522 /*
523 * Register the callback first, then see if the signaler is already
524 * active. This ensures that if we race with the
525 * __notify_execute_cb from i915_request_submit() and we are not
526 * included in that list, we get a second bite of the cherry and
527 * execute it ourselves. After this point, a future
528 * i915_request_submit() will notify us.
529 *
530 * In i915_request_retire() we set the ACTIVE bit on a completed
531 * request (then flush the execute_cb). So by registering the
532 * callback first, then checking the ACTIVE bit, we serialise with
533 * the completed/retired request.
534 */
535 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
536 if (i915_request_is_active(signal) ||
537 __request_in_flight(signal))
538 i915_request_notify_execute_cb_imm(signal);
539 }
540
541 return 0;
542 }
543
fatal_error(int error)544 static bool fatal_error(int error)
545 {
546 switch (error) {
547 case 0: /* not an error! */
548 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
549 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
550 return false;
551 default:
552 return true;
553 }
554 }
555
__i915_request_skip(struct i915_request * rq)556 void __i915_request_skip(struct i915_request *rq)
557 {
558 GEM_BUG_ON(!fatal_error(rq->fence.error));
559
560 if (rq->infix == rq->postfix)
561 return;
562
563 RQ_TRACE(rq, "error: %d\n", rq->fence.error);
564
565 /*
566 * As this request likely depends on state from the lost
567 * context, clear out all the user operations leaving the
568 * breadcrumb at the end (so we get the fence notifications).
569 */
570 __i915_request_fill(rq, 0);
571 rq->infix = rq->postfix;
572 }
573
i915_request_set_error_once(struct i915_request * rq,int error)574 bool i915_request_set_error_once(struct i915_request *rq, int error)
575 {
576 int old;
577
578 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
579
580 if (i915_request_signaled(rq))
581 return false;
582
583 old = READ_ONCE(rq->fence.error);
584 do {
585 if (fatal_error(old))
586 return false;
587 } while (!try_cmpxchg(&rq->fence.error, &old, error));
588
589 return true;
590 }
591
i915_request_mark_eio(struct i915_request * rq)592 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
593 {
594 if (__i915_request_is_complete(rq))
595 return NULL;
596
597 GEM_BUG_ON(i915_request_signaled(rq));
598
599 /* As soon as the request is completed, it may be retired */
600 rq = i915_request_get(rq);
601
602 i915_request_set_error_once(rq, -EIO);
603 i915_request_mark_complete(rq);
604
605 return rq;
606 }
607
__i915_request_submit(struct i915_request * request)608 bool __i915_request_submit(struct i915_request *request)
609 {
610 struct intel_engine_cs *engine = request->engine;
611 bool result = false;
612
613 RQ_TRACE(request, "\n");
614
615 GEM_BUG_ON(!irqs_disabled());
616 lockdep_assert_held(&engine->sched_engine->lock);
617
618 /*
619 * With the advent of preempt-to-busy, we frequently encounter
620 * requests that we have unsubmitted from HW, but left running
621 * until the next ack and so have completed in the meantime. On
622 * resubmission of that completed request, we can skip
623 * updating the payload, and execlists can even skip submitting
624 * the request.
625 *
626 * We must remove the request from the caller's priority queue,
627 * and the caller must only call us when the request is in their
628 * priority queue, under the sched_engine->lock. This ensures that the
629 * request has *not* yet been retired and we can safely move
630 * the request into the engine->active.list where it will be
631 * dropped upon retiring. (Otherwise if resubmit a *retired*
632 * request, this would be a horrible use-after-free.)
633 */
634 if (__i915_request_is_complete(request)) {
635 list_del_init(&request->sched.link);
636 goto active;
637 }
638
639 if (unlikely(!intel_context_is_schedulable(request->context)))
640 i915_request_set_error_once(request, -EIO);
641
642 if (unlikely(fatal_error(request->fence.error)))
643 __i915_request_skip(request);
644
645 /*
646 * Are we using semaphores when the gpu is already saturated?
647 *
648 * Using semaphores incurs a cost in having the GPU poll a
649 * memory location, busywaiting for it to change. The continual
650 * memory reads can have a noticeable impact on the rest of the
651 * system with the extra bus traffic, stalling the cpu as it too
652 * tries to access memory across the bus (perf stat -e bus-cycles).
653 *
654 * If we installed a semaphore on this request and we only submit
655 * the request after the signaler completed, that indicates the
656 * system is overloaded and using semaphores at this time only
657 * increases the amount of work we are doing. If so, we disable
658 * further use of semaphores until we are idle again, whence we
659 * optimistically try again.
660 */
661 if (request->sched.semaphores &&
662 i915_sw_fence_signaled(&request->semaphore))
663 engine->saturated |= request->sched.semaphores;
664
665 engine->emit_fini_breadcrumb(request,
666 request->ring->vaddr + request->postfix);
667
668 trace_i915_request_execute(request);
669 if (engine->bump_serial)
670 engine->bump_serial(engine);
671 else
672 engine->serial++;
673
674 result = true;
675
676 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
677 engine->add_active_request(request);
678 active:
679 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
680 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
681
682 /*
683 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
684 *
685 * In the future, perhaps when we have an active time-slicing scheduler,
686 * it will be interesting to unsubmit parallel execution and remove
687 * busywaits from the GPU until their master is restarted. This is
688 * quite hairy, we have to carefully rollback the fence and do a
689 * preempt-to-idle cycle on the target engine, all the while the
690 * master execute_cb may refire.
691 */
692 __notify_execute_cb_irq(request);
693
694 /* We may be recursing from the signal callback of another i915 fence */
695 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
696 i915_request_enable_breadcrumb(request);
697
698 return result;
699 }
700
i915_request_submit(struct i915_request * request)701 void i915_request_submit(struct i915_request *request)
702 {
703 struct intel_engine_cs *engine = request->engine;
704 unsigned long flags;
705
706 /* Will be called from irq-context when using foreign fences. */
707 spin_lock_irqsave(&engine->sched_engine->lock, flags);
708
709 __i915_request_submit(request);
710
711 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
712 }
713
__i915_request_unsubmit(struct i915_request * request)714 void __i915_request_unsubmit(struct i915_request *request)
715 {
716 struct intel_engine_cs *engine = request->engine;
717
718 /*
719 * Only unwind in reverse order, required so that the per-context list
720 * is kept in seqno/ring order.
721 */
722 RQ_TRACE(request, "\n");
723
724 GEM_BUG_ON(!irqs_disabled());
725 lockdep_assert_held(&engine->sched_engine->lock);
726
727 /*
728 * Before we remove this breadcrumb from the signal list, we have
729 * to ensure that a concurrent dma_fence_enable_signaling() does not
730 * attach itself. We first mark the request as no longer active and
731 * make sure that is visible to other cores, and then remove the
732 * breadcrumb if attached.
733 */
734 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
735 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
736 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
737 i915_request_cancel_breadcrumb(request);
738
739 /* We've already spun, don't charge on resubmitting. */
740 if (request->sched.semaphores && __i915_request_has_started(request))
741 request->sched.semaphores = 0;
742
743 /*
744 * We don't need to wake_up any waiters on request->execute, they
745 * will get woken by any other event or us re-adding this request
746 * to the engine timeline (__i915_request_submit()). The waiters
747 * should be quite adapt at finding that the request now has a new
748 * global_seqno to the one they went to sleep on.
749 */
750 }
751
i915_request_unsubmit(struct i915_request * request)752 void i915_request_unsubmit(struct i915_request *request)
753 {
754 struct intel_engine_cs *engine = request->engine;
755 unsigned long flags;
756
757 /* Will be called from irq-context when using foreign fences. */
758 spin_lock_irqsave(&engine->sched_engine->lock, flags);
759
760 __i915_request_unsubmit(request);
761
762 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
763 }
764
i915_request_cancel(struct i915_request * rq,int error)765 void i915_request_cancel(struct i915_request *rq, int error)
766 {
767 if (!i915_request_set_error_once(rq, error))
768 return;
769
770 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
771
772 intel_context_cancel_request(rq->context, rq);
773 }
774
775 static int
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)776 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
777 {
778 struct i915_request *request =
779 container_of(fence, typeof(*request), submit);
780
781 switch (state) {
782 case FENCE_COMPLETE:
783 trace_i915_request_submit(request);
784
785 if (unlikely(fence->error))
786 i915_request_set_error_once(request, fence->error);
787 else
788 __rq_arm_watchdog(request);
789
790 /*
791 * We need to serialize use of the submit_request() callback
792 * with its hotplugging performed during an emergency
793 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
794 * critical section in order to force i915_gem_set_wedged() to
795 * wait until the submit_request() is completed before
796 * proceeding.
797 */
798 rcu_read_lock();
799 request->engine->submit_request(request);
800 rcu_read_unlock();
801 break;
802
803 case FENCE_FREE:
804 i915_request_put(request);
805 break;
806 }
807
808 return NOTIFY_DONE;
809 }
810
811 static int
semaphore_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)812 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
813 {
814 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
815
816 switch (state) {
817 case FENCE_COMPLETE:
818 break;
819
820 case FENCE_FREE:
821 i915_request_put(rq);
822 break;
823 }
824
825 return NOTIFY_DONE;
826 }
827
retire_requests(struct intel_timeline * tl)828 static void retire_requests(struct intel_timeline *tl)
829 {
830 struct i915_request *rq, *rn;
831
832 list_for_each_entry_safe(rq, rn, &tl->requests, link)
833 if (!i915_request_retire(rq))
834 break;
835 }
836
837 static noinline struct i915_request *
request_alloc_slow(struct intel_timeline * tl,struct i915_request ** rsvd,gfp_t gfp)838 request_alloc_slow(struct intel_timeline *tl,
839 struct i915_request **rsvd,
840 gfp_t gfp)
841 {
842 struct i915_request *rq;
843
844 /* If we cannot wait, dip into our reserves */
845 if (!gfpflags_allow_blocking(gfp)) {
846 rq = xchg(rsvd, NULL);
847 if (!rq) /* Use the normal failure path for one final WARN */
848 goto out;
849
850 return rq;
851 }
852
853 if (list_empty(&tl->requests))
854 goto out;
855
856 /* Move our oldest request to the slab-cache (if not in use!) */
857 rq = list_first_entry(&tl->requests, typeof(*rq), link);
858 i915_request_retire(rq);
859
860 rq = kmem_cache_alloc(slab_requests,
861 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
862 if (rq)
863 return rq;
864
865 /* Ratelimit ourselves to prevent oom from malicious clients */
866 rq = list_last_entry(&tl->requests, typeof(*rq), link);
867 cond_synchronize_rcu(rq->rcustate);
868
869 /* Retire our old requests in the hope that we free some */
870 retire_requests(tl);
871
872 out:
873 return kmem_cache_alloc(slab_requests, gfp);
874 }
875
__i915_request_ctor(void * arg)876 static void __i915_request_ctor(void *arg)
877 {
878 struct i915_request *rq = arg;
879
880 spin_lock_init(&rq->lock);
881 i915_sched_node_init(&rq->sched);
882 i915_sw_fence_init(&rq->submit, submit_notify);
883 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
884
885 clear_capture_list(rq);
886 rq->batch_res = NULL;
887
888 init_llist_head(&rq->execute_cb);
889 }
890
891 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
892 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
893 #else
894 #define clear_batch_ptr(_a) do {} while (0)
895 #endif
896
897 struct i915_request *
__i915_request_create(struct intel_context * ce,gfp_t gfp)898 __i915_request_create(struct intel_context *ce, gfp_t gfp)
899 {
900 struct intel_timeline *tl = ce->timeline;
901 struct i915_request *rq;
902 u32 seqno;
903 int ret;
904
905 might_alloc(gfp);
906
907 /* Check that the caller provided an already pinned context */
908 __intel_context_pin(ce);
909
910 /*
911 * Beware: Dragons be flying overhead.
912 *
913 * We use RCU to look up requests in flight. The lookups may
914 * race with the request being allocated from the slab freelist.
915 * That is the request we are writing to here, may be in the process
916 * of being read by __i915_active_request_get_rcu(). As such,
917 * we have to be very careful when overwriting the contents. During
918 * the RCU lookup, we change chase the request->engine pointer,
919 * read the request->global_seqno and increment the reference count.
920 *
921 * The reference count is incremented atomically. If it is zero,
922 * the lookup knows the request is unallocated and complete. Otherwise,
923 * it is either still in use, or has been reallocated and reset
924 * with dma_fence_init(). This increment is safe for release as we
925 * check that the request we have a reference to and matches the active
926 * request.
927 *
928 * Before we increment the refcount, we chase the request->engine
929 * pointer. We must not call kmem_cache_zalloc() or else we set
930 * that pointer to NULL and cause a crash during the lookup. If
931 * we see the request is completed (based on the value of the
932 * old engine and seqno), the lookup is complete and reports NULL.
933 * If we decide the request is not completed (new engine or seqno),
934 * then we grab a reference and double check that it is still the
935 * active request - which it won't be and restart the lookup.
936 *
937 * Do not use kmem_cache_zalloc() here!
938 */
939 rq = kmem_cache_alloc(slab_requests,
940 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
941 if (unlikely(!rq)) {
942 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
943 if (!rq) {
944 ret = -ENOMEM;
945 goto err_unreserve;
946 }
947 }
948
949 rq->context = ce;
950 rq->engine = ce->engine;
951 rq->ring = ce->ring;
952 rq->execution_mask = ce->engine->mask;
953 rq->i915 = ce->engine->i915;
954
955 ret = intel_timeline_get_seqno(tl, rq, &seqno);
956 if (ret)
957 goto err_free;
958
959 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
960 tl->fence_context, seqno);
961
962 RCU_INIT_POINTER(rq->timeline, tl);
963 rq->hwsp_seqno = tl->hwsp_seqno;
964 GEM_BUG_ON(__i915_request_is_complete(rq));
965
966 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
967
968 rq->guc_prio = GUC_PRIO_INIT;
969
970 /* We bump the ref for the fence chain */
971 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
972 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
973
974 i915_sched_node_reinit(&rq->sched);
975
976 /* No zalloc, everything must be cleared after use */
977 clear_batch_ptr(rq);
978 __rq_init_watchdog(rq);
979 assert_capture_list_is_null(rq);
980 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
981 GEM_BUG_ON(rq->batch_res);
982
983 /*
984 * Reserve space in the ring buffer for all the commands required to
985 * eventually emit this request. This is to guarantee that the
986 * i915_request_add() call can't fail. Note that the reserve may need
987 * to be redone if the request is not actually submitted straight
988 * away, e.g. because a GPU scheduler has deferred it.
989 *
990 * Note that due to how we add reserved_space to intel_ring_begin()
991 * we need to double our request to ensure that if we need to wrap
992 * around inside i915_request_add() there is sufficient space at
993 * the beginning of the ring as well.
994 */
995 rq->reserved_space =
996 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
997
998 /*
999 * Record the position of the start of the request so that
1000 * should we detect the updated seqno part-way through the
1001 * GPU processing the request, we never over-estimate the
1002 * position of the head.
1003 */
1004 rq->head = rq->ring->emit;
1005
1006 ret = rq->engine->request_alloc(rq);
1007 if (ret)
1008 goto err_unwind;
1009
1010 rq->infix = rq->ring->emit; /* end of header; start of user payload */
1011
1012 intel_context_mark_active(ce);
1013 list_add_tail_rcu(&rq->link, &tl->requests);
1014
1015 return rq;
1016
1017 err_unwind:
1018 ce->ring->emit = rq->head;
1019
1020 /* Make sure we didn't add ourselves to external state before freeing */
1021 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1022 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1023
1024 err_free:
1025 kmem_cache_free(slab_requests, rq);
1026 err_unreserve:
1027 intel_context_unpin(ce);
1028 return ERR_PTR(ret);
1029 }
1030
1031 struct i915_request *
i915_request_create(struct intel_context * ce)1032 i915_request_create(struct intel_context *ce)
1033 {
1034 struct i915_request *rq;
1035 struct intel_timeline *tl;
1036
1037 tl = intel_context_timeline_lock(ce);
1038 if (IS_ERR(tl))
1039 return ERR_CAST(tl);
1040
1041 /* Move our oldest request to the slab-cache (if not in use!) */
1042 rq = list_first_entry(&tl->requests, typeof(*rq), link);
1043 if (!list_is_last(&rq->link, &tl->requests))
1044 i915_request_retire(rq);
1045
1046 intel_context_enter(ce);
1047 rq = __i915_request_create(ce, GFP_KERNEL);
1048 intel_context_exit(ce); /* active reference transferred to request */
1049 if (IS_ERR(rq))
1050 goto err_unlock;
1051
1052 /* Check that we do not interrupt ourselves with a new request */
1053 rq->cookie = lockdep_pin_lock(&tl->mutex);
1054
1055 return rq;
1056
1057 err_unlock:
1058 intel_context_timeline_unlock(tl);
1059 return rq;
1060 }
1061
1062 static int
i915_request_await_start(struct i915_request * rq,struct i915_request * signal)1063 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1064 {
1065 struct dma_fence *fence;
1066 int err;
1067
1068 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1069 return 0;
1070
1071 if (i915_request_started(signal))
1072 return 0;
1073
1074 /*
1075 * The caller holds a reference on @signal, but we do not serialise
1076 * against it being retired and removed from the lists.
1077 *
1078 * We do not hold a reference to the request before @signal, and
1079 * so must be very careful to ensure that it is not _recycled_ as
1080 * we follow the link backwards.
1081 */
1082 fence = NULL;
1083 rcu_read_lock();
1084 do {
1085 struct list_head *pos = READ_ONCE(signal->link.prev);
1086 struct i915_request *prev;
1087
1088 /* Confirm signal has not been retired, the link is valid */
1089 if (unlikely(__i915_request_has_started(signal)))
1090 break;
1091
1092 /* Is signal the earliest request on its timeline? */
1093 if (pos == &rcu_dereference(signal->timeline)->requests)
1094 break;
1095
1096 /*
1097 * Peek at the request before us in the timeline. That
1098 * request will only be valid before it is retired, so
1099 * after acquiring a reference to it, confirm that it is
1100 * still part of the signaler's timeline.
1101 */
1102 prev = list_entry(pos, typeof(*prev), link);
1103 if (!i915_request_get_rcu(prev))
1104 break;
1105
1106 /* After the strong barrier, confirm prev is still attached */
1107 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1108 i915_request_put(prev);
1109 break;
1110 }
1111
1112 fence = &prev->fence;
1113 } while (0);
1114 rcu_read_unlock();
1115 if (!fence)
1116 return 0;
1117
1118 err = 0;
1119 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1120 err = i915_sw_fence_await_dma_fence(&rq->submit,
1121 fence, 0,
1122 I915_FENCE_GFP);
1123 dma_fence_put(fence);
1124
1125 return err;
1126 }
1127
1128 static intel_engine_mask_t
already_busywaiting(struct i915_request * rq)1129 already_busywaiting(struct i915_request *rq)
1130 {
1131 /*
1132 * Polling a semaphore causes bus traffic, delaying other users of
1133 * both the GPU and CPU. We want to limit the impact on others,
1134 * while taking advantage of early submission to reduce GPU
1135 * latency. Therefore we restrict ourselves to not using more
1136 * than one semaphore from each source, and not using a semaphore
1137 * if we have detected the engine is saturated (i.e. would not be
1138 * submitted early and cause bus traffic reading an already passed
1139 * semaphore).
1140 *
1141 * See the are-we-too-late? check in __i915_request_submit().
1142 */
1143 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1144 }
1145
1146 static int
__emit_semaphore_wait(struct i915_request * to,struct i915_request * from,u32 seqno)1147 __emit_semaphore_wait(struct i915_request *to,
1148 struct i915_request *from,
1149 u32 seqno)
1150 {
1151 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1152 u32 hwsp_offset;
1153 int len, err;
1154 u32 *cs;
1155
1156 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1157 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1158
1159 /* We need to pin the signaler's HWSP until we are finished reading. */
1160 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1161 if (err)
1162 return err;
1163
1164 len = 4;
1165 if (has_token)
1166 len += 2;
1167
1168 cs = intel_ring_begin(to, len);
1169 if (IS_ERR(cs))
1170 return PTR_ERR(cs);
1171
1172 /*
1173 * Using greater-than-or-equal here means we have to worry
1174 * about seqno wraparound. To side step that issue, we swap
1175 * the timeline HWSP upon wrapping, so that everyone listening
1176 * for the old (pre-wrap) values do not see the much smaller
1177 * (post-wrap) values than they were expecting (and so wait
1178 * forever).
1179 */
1180 *cs++ = (MI_SEMAPHORE_WAIT |
1181 MI_SEMAPHORE_GLOBAL_GTT |
1182 MI_SEMAPHORE_POLL |
1183 MI_SEMAPHORE_SAD_GTE_SDD) +
1184 has_token;
1185 *cs++ = seqno;
1186 *cs++ = hwsp_offset;
1187 *cs++ = 0;
1188 if (has_token) {
1189 *cs++ = 0;
1190 *cs++ = MI_NOOP;
1191 }
1192
1193 intel_ring_advance(to, cs);
1194 return 0;
1195 }
1196
1197 static bool
can_use_semaphore_wait(struct i915_request * to,struct i915_request * from)1198 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1199 {
1200 return to->engine->gt->ggtt == from->engine->gt->ggtt;
1201 }
1202
1203 static int
emit_semaphore_wait(struct i915_request * to,struct i915_request * from,gfp_t gfp)1204 emit_semaphore_wait(struct i915_request *to,
1205 struct i915_request *from,
1206 gfp_t gfp)
1207 {
1208 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1209 struct i915_sw_fence *wait = &to->submit;
1210
1211 if (!can_use_semaphore_wait(to, from))
1212 goto await_fence;
1213
1214 if (!intel_context_use_semaphores(to->context))
1215 goto await_fence;
1216
1217 if (i915_request_has_initial_breadcrumb(to))
1218 goto await_fence;
1219
1220 /*
1221 * If this or its dependents are waiting on an external fence
1222 * that may fail catastrophically, then we want to avoid using
1223 * sempahores as they bypass the fence signaling metadata, and we
1224 * lose the fence->error propagation.
1225 */
1226 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1227 goto await_fence;
1228
1229 /* Just emit the first semaphore we see as request space is limited. */
1230 if (already_busywaiting(to) & mask)
1231 goto await_fence;
1232
1233 if (i915_request_await_start(to, from) < 0)
1234 goto await_fence;
1235
1236 /* Only submit our spinner after the signaler is running! */
1237 if (__await_execution(to, from, gfp))
1238 goto await_fence;
1239
1240 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1241 goto await_fence;
1242
1243 to->sched.semaphores |= mask;
1244 wait = &to->semaphore;
1245
1246 await_fence:
1247 return i915_sw_fence_await_dma_fence(wait,
1248 &from->fence, 0,
1249 I915_FENCE_GFP);
1250 }
1251
intel_timeline_sync_has_start(struct intel_timeline * tl,struct dma_fence * fence)1252 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1253 struct dma_fence *fence)
1254 {
1255 return __intel_timeline_sync_is_later(tl,
1256 fence->context,
1257 fence->seqno - 1);
1258 }
1259
intel_timeline_sync_set_start(struct intel_timeline * tl,const struct dma_fence * fence)1260 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1261 const struct dma_fence *fence)
1262 {
1263 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1264 }
1265
1266 static int
__i915_request_await_execution(struct i915_request * to,struct i915_request * from)1267 __i915_request_await_execution(struct i915_request *to,
1268 struct i915_request *from)
1269 {
1270 int err;
1271
1272 GEM_BUG_ON(intel_context_is_barrier(from->context));
1273
1274 /* Submit both requests at the same time */
1275 err = __await_execution(to, from, I915_FENCE_GFP);
1276 if (err)
1277 return err;
1278
1279 /* Squash repeated depenendices to the same timelines */
1280 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1281 &from->fence))
1282 return 0;
1283
1284 /*
1285 * Wait until the start of this request.
1286 *
1287 * The execution cb fires when we submit the request to HW. But in
1288 * many cases this may be long before the request itself is ready to
1289 * run (consider that we submit 2 requests for the same context, where
1290 * the request of interest is behind an indefinite spinner). So we hook
1291 * up to both to reduce our queues and keep the execution lag minimised
1292 * in the worst case, though we hope that the await_start is elided.
1293 */
1294 err = i915_request_await_start(to, from);
1295 if (err < 0)
1296 return err;
1297
1298 /*
1299 * Ensure both start together [after all semaphores in signal]
1300 *
1301 * Now that we are queued to the HW at roughly the same time (thanks
1302 * to the execute cb) and are ready to run at roughly the same time
1303 * (thanks to the await start), our signaler may still be indefinitely
1304 * delayed by waiting on a semaphore from a remote engine. If our
1305 * signaler depends on a semaphore, so indirectly do we, and we do not
1306 * want to start our payload until our signaler also starts theirs.
1307 * So we wait.
1308 *
1309 * However, there is also a second condition for which we need to wait
1310 * for the precise start of the signaler. Consider that the signaler
1311 * was submitted in a chain of requests following another context
1312 * (with just an ordinary intra-engine fence dependency between the
1313 * two). In this case the signaler is queued to HW, but not for
1314 * immediate execution, and so we must wait until it reaches the
1315 * active slot.
1316 */
1317 if (can_use_semaphore_wait(to, from) &&
1318 intel_engine_has_semaphores(to->engine) &&
1319 !i915_request_has_initial_breadcrumb(to)) {
1320 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1321 if (err < 0)
1322 return err;
1323 }
1324
1325 /* Couple the dependency tree for PI on this exposed to->fence */
1326 if (to->engine->sched_engine->schedule) {
1327 err = i915_sched_node_add_dependency(&to->sched,
1328 &from->sched,
1329 I915_DEPENDENCY_WEAK);
1330 if (err < 0)
1331 return err;
1332 }
1333
1334 return intel_timeline_sync_set_start(i915_request_timeline(to),
1335 &from->fence);
1336 }
1337
mark_external(struct i915_request * rq)1338 static void mark_external(struct i915_request *rq)
1339 {
1340 /*
1341 * The downside of using semaphores is that we lose metadata passing
1342 * along the signaling chain. This is particularly nasty when we
1343 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1344 * fatal errors we want to scrub the request before it is executed,
1345 * which means that we cannot preload the request onto HW and have
1346 * it wait upon a semaphore.
1347 */
1348 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1349 }
1350
1351 static int
__i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1352 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1353 {
1354 mark_external(rq);
1355 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1356 i915_fence_context_timeout(rq->engine->i915,
1357 fence->context),
1358 I915_FENCE_GFP);
1359 }
1360
1361 static int
i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1362 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1363 {
1364 struct dma_fence *iter;
1365 int err = 0;
1366
1367 if (!to_dma_fence_chain(fence))
1368 return __i915_request_await_external(rq, fence);
1369
1370 dma_fence_chain_for_each(iter, fence) {
1371 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1372
1373 if (!dma_fence_is_i915(chain->fence)) {
1374 err = __i915_request_await_external(rq, iter);
1375 break;
1376 }
1377
1378 err = i915_request_await_dma_fence(rq, chain->fence);
1379 if (err < 0)
1380 break;
1381 }
1382
1383 dma_fence_put(iter);
1384 return err;
1385 }
1386
is_parallel_rq(struct i915_request * rq)1387 static inline bool is_parallel_rq(struct i915_request *rq)
1388 {
1389 return intel_context_is_parallel(rq->context);
1390 }
1391
request_to_parent(struct i915_request * rq)1392 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1393 {
1394 return intel_context_to_parent(rq->context);
1395 }
1396
is_same_parallel_context(struct i915_request * to,struct i915_request * from)1397 static bool is_same_parallel_context(struct i915_request *to,
1398 struct i915_request *from)
1399 {
1400 if (is_parallel_rq(to))
1401 return request_to_parent(to) == request_to_parent(from);
1402
1403 return false;
1404 }
1405
1406 int
i915_request_await_execution(struct i915_request * rq,struct dma_fence * fence)1407 i915_request_await_execution(struct i915_request *rq,
1408 struct dma_fence *fence)
1409 {
1410 struct dma_fence **child = &fence;
1411 unsigned int nchild = 1;
1412 int ret;
1413
1414 if (dma_fence_is_array(fence)) {
1415 struct dma_fence_array *array = to_dma_fence_array(fence);
1416
1417 /* XXX Error for signal-on-any fence arrays */
1418
1419 child = array->fences;
1420 nchild = array->num_fences;
1421 GEM_BUG_ON(!nchild);
1422 }
1423
1424 do {
1425 fence = *child++;
1426 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1427 continue;
1428
1429 if (fence->context == rq->fence.context)
1430 continue;
1431
1432 /*
1433 * We don't squash repeated fence dependencies here as we
1434 * want to run our callback in all cases.
1435 */
1436
1437 if (dma_fence_is_i915(fence)) {
1438 if (is_same_parallel_context(rq, to_request(fence)))
1439 continue;
1440 ret = __i915_request_await_execution(rq,
1441 to_request(fence));
1442 } else {
1443 ret = i915_request_await_external(rq, fence);
1444 }
1445 if (ret < 0)
1446 return ret;
1447 } while (--nchild);
1448
1449 return 0;
1450 }
1451
1452 static int
await_request_submit(struct i915_request * to,struct i915_request * from)1453 await_request_submit(struct i915_request *to, struct i915_request *from)
1454 {
1455 /*
1456 * If we are waiting on a virtual engine, then it may be
1457 * constrained to execute on a single engine *prior* to submission.
1458 * When it is submitted, it will be first submitted to the virtual
1459 * engine and then passed to the physical engine. We cannot allow
1460 * the waiter to be submitted immediately to the physical engine
1461 * as it may then bypass the virtual request.
1462 */
1463 if (to->engine == READ_ONCE(from->engine))
1464 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1465 &from->submit,
1466 I915_FENCE_GFP);
1467 else
1468 return __i915_request_await_execution(to, from);
1469 }
1470
1471 static int
i915_request_await_request(struct i915_request * to,struct i915_request * from)1472 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1473 {
1474 int ret;
1475
1476 GEM_BUG_ON(to == from);
1477 GEM_BUG_ON(to->timeline == from->timeline);
1478
1479 if (i915_request_completed(from)) {
1480 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1481 return 0;
1482 }
1483
1484 if (to->engine->sched_engine->schedule) {
1485 ret = i915_sched_node_add_dependency(&to->sched,
1486 &from->sched,
1487 I915_DEPENDENCY_EXTERNAL);
1488 if (ret < 0)
1489 return ret;
1490 }
1491
1492 if (!intel_engine_uses_guc(to->engine) &&
1493 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1494 ret = await_request_submit(to, from);
1495 else
1496 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1497 if (ret < 0)
1498 return ret;
1499
1500 return 0;
1501 }
1502
1503 int
i915_request_await_dma_fence(struct i915_request * rq,struct dma_fence * fence)1504 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1505 {
1506 struct dma_fence **child = &fence;
1507 unsigned int nchild = 1;
1508 int ret;
1509
1510 /*
1511 * Note that if the fence-array was created in signal-on-any mode,
1512 * we should *not* decompose it into its individual fences. However,
1513 * we don't currently store which mode the fence-array is operating
1514 * in. Fortunately, the only user of signal-on-any is private to
1515 * amdgpu and we should not see any incoming fence-array from
1516 * sync-file being in signal-on-any mode.
1517 */
1518 if (dma_fence_is_array(fence)) {
1519 struct dma_fence_array *array = to_dma_fence_array(fence);
1520
1521 child = array->fences;
1522 nchild = array->num_fences;
1523 GEM_BUG_ON(!nchild);
1524 }
1525
1526 do {
1527 fence = *child++;
1528 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1529 continue;
1530
1531 /*
1532 * Requests on the same timeline are explicitly ordered, along
1533 * with their dependencies, by i915_request_add() which ensures
1534 * that requests are submitted in-order through each ring.
1535 */
1536 if (fence->context == rq->fence.context)
1537 continue;
1538
1539 /* Squash repeated waits to the same timelines */
1540 if (fence->context &&
1541 intel_timeline_sync_is_later(i915_request_timeline(rq),
1542 fence))
1543 continue;
1544
1545 if (dma_fence_is_i915(fence)) {
1546 if (is_same_parallel_context(rq, to_request(fence)))
1547 continue;
1548 ret = i915_request_await_request(rq, to_request(fence));
1549 } else {
1550 ret = i915_request_await_external(rq, fence);
1551 }
1552 if (ret < 0)
1553 return ret;
1554
1555 /* Record the latest fence used against each timeline */
1556 if (fence->context)
1557 intel_timeline_sync_set(i915_request_timeline(rq),
1558 fence);
1559 } while (--nchild);
1560
1561 return 0;
1562 }
1563
1564 /**
1565 * i915_request_await_deps - set this request to (async) wait upon a struct
1566 * i915_deps dma_fence collection
1567 * @rq: request we are wishing to use
1568 * @deps: The struct i915_deps containing the dependencies.
1569 *
1570 * Returns 0 if successful, negative error code on error.
1571 */
i915_request_await_deps(struct i915_request * rq,const struct i915_deps * deps)1572 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1573 {
1574 int i, err;
1575
1576 for (i = 0; i < deps->num_deps; ++i) {
1577 err = i915_request_await_dma_fence(rq, deps->fences[i]);
1578 if (err)
1579 return err;
1580 }
1581
1582 return 0;
1583 }
1584
1585 /**
1586 * i915_request_await_object - set this request to (async) wait upon a bo
1587 * @to: request we are wishing to use
1588 * @obj: object which may be in use on another ring.
1589 * @write: whether the wait is on behalf of a writer
1590 *
1591 * This code is meant to abstract object synchronization with the GPU.
1592 * Conceptually we serialise writes between engines inside the GPU.
1593 * We only allow one engine to write into a buffer at any time, but
1594 * multiple readers. To ensure each has a coherent view of memory, we must:
1595 *
1596 * - If there is an outstanding write request to the object, the new
1597 * request must wait for it to complete (either CPU or in hw, requests
1598 * on the same ring will be naturally ordered).
1599 *
1600 * - If we are a write request (pending_write_domain is set), the new
1601 * request must wait for outstanding read requests to complete.
1602 *
1603 * Returns 0 if successful, else propagates up the lower layer error.
1604 */
1605 int
i915_request_await_object(struct i915_request * to,struct drm_i915_gem_object * obj,bool write)1606 i915_request_await_object(struct i915_request *to,
1607 struct drm_i915_gem_object *obj,
1608 bool write)
1609 {
1610 struct dma_resv_iter cursor;
1611 struct dma_fence *fence;
1612 int ret = 0;
1613
1614 dma_resv_for_each_fence(&cursor, obj->base.resv,
1615 dma_resv_usage_rw(write), fence) {
1616 ret = i915_request_await_dma_fence(to, fence);
1617 if (ret)
1618 break;
1619 }
1620
1621 return ret;
1622 }
1623
1624 static struct i915_request *
__i915_request_ensure_parallel_ordering(struct i915_request * rq,struct intel_timeline * timeline)1625 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1626 struct intel_timeline *timeline)
1627 {
1628 struct i915_request *prev;
1629
1630 GEM_BUG_ON(!is_parallel_rq(rq));
1631
1632 prev = request_to_parent(rq)->parallel.last_rq;
1633 if (prev) {
1634 if (!__i915_request_is_complete(prev)) {
1635 i915_sw_fence_await_sw_fence(&rq->submit,
1636 &prev->submit,
1637 &rq->submitq);
1638
1639 if (rq->engine->sched_engine->schedule)
1640 __i915_sched_node_add_dependency(&rq->sched,
1641 &prev->sched,
1642 &rq->dep,
1643 0);
1644 }
1645 i915_request_put(prev);
1646 }
1647
1648 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1649
1650 return to_request(__i915_active_fence_set(&timeline->last_request,
1651 &rq->fence));
1652 }
1653
1654 static struct i915_request *
__i915_request_ensure_ordering(struct i915_request * rq,struct intel_timeline * timeline)1655 __i915_request_ensure_ordering(struct i915_request *rq,
1656 struct intel_timeline *timeline)
1657 {
1658 struct i915_request *prev;
1659
1660 GEM_BUG_ON(is_parallel_rq(rq));
1661
1662 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1663 &rq->fence));
1664
1665 if (prev && !__i915_request_is_complete(prev)) {
1666 bool uses_guc = intel_engine_uses_guc(rq->engine);
1667 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1668 rq->engine->mask);
1669 bool same_context = prev->context == rq->context;
1670
1671 /*
1672 * The requests are supposed to be kept in order. However,
1673 * we need to be wary in case the timeline->last_request
1674 * is used as a barrier for external modification to this
1675 * context.
1676 */
1677 GEM_BUG_ON(same_context &&
1678 i915_seqno_passed(prev->fence.seqno,
1679 rq->fence.seqno));
1680
1681 if ((same_context && uses_guc) || (!uses_guc && pow2))
1682 i915_sw_fence_await_sw_fence(&rq->submit,
1683 &prev->submit,
1684 &rq->submitq);
1685 else
1686 __i915_sw_fence_await_dma_fence(&rq->submit,
1687 &prev->fence,
1688 &rq->dmaq);
1689 if (rq->engine->sched_engine->schedule)
1690 __i915_sched_node_add_dependency(&rq->sched,
1691 &prev->sched,
1692 &rq->dep,
1693 0);
1694 }
1695
1696 return prev;
1697 }
1698
1699 static struct i915_request *
__i915_request_add_to_timeline(struct i915_request * rq)1700 __i915_request_add_to_timeline(struct i915_request *rq)
1701 {
1702 struct intel_timeline *timeline = i915_request_timeline(rq);
1703 struct i915_request *prev;
1704
1705 /*
1706 * Dependency tracking and request ordering along the timeline
1707 * is special cased so that we can eliminate redundant ordering
1708 * operations while building the request (we know that the timeline
1709 * itself is ordered, and here we guarantee it).
1710 *
1711 * As we know we will need to emit tracking along the timeline,
1712 * we embed the hooks into our request struct -- at the cost of
1713 * having to have specialised no-allocation interfaces (which will
1714 * be beneficial elsewhere).
1715 *
1716 * A second benefit to open-coding i915_request_await_request is
1717 * that we can apply a slight variant of the rules specialised
1718 * for timelines that jump between engines (such as virtual engines).
1719 * If we consider the case of virtual engine, we must emit a dma-fence
1720 * to prevent scheduling of the second request until the first is
1721 * complete (to maximise our greedy late load balancing) and this
1722 * precludes optimising to use semaphores serialisation of a single
1723 * timeline across engines.
1724 *
1725 * We do not order parallel submission requests on the timeline as each
1726 * parallel submission context has its own timeline and the ordering
1727 * rules for parallel requests are that they must be submitted in the
1728 * order received from the execbuf IOCTL. So rather than using the
1729 * timeline we store a pointer to last request submitted in the
1730 * relationship in the gem context and insert a submission fence
1731 * between that request and request passed into this function or
1732 * alternatively we use completion fence if gem context has a single
1733 * timeline and this is the first submission of an execbuf IOCTL.
1734 */
1735 if (likely(!is_parallel_rq(rq)))
1736 prev = __i915_request_ensure_ordering(rq, timeline);
1737 else
1738 prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1739
1740 /*
1741 * Make sure that no request gazumped us - if it was allocated after
1742 * our i915_request_alloc() and called __i915_request_add() before
1743 * us, the timeline will hold its seqno which is later than ours.
1744 */
1745 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1746
1747 return prev;
1748 }
1749
1750 /*
1751 * NB: This function is not allowed to fail. Doing so would mean the the
1752 * request is not being tracked for completion but the work itself is
1753 * going to happen on the hardware. This would be a Bad Thing(tm).
1754 */
__i915_request_commit(struct i915_request * rq)1755 struct i915_request *__i915_request_commit(struct i915_request *rq)
1756 {
1757 struct intel_engine_cs *engine = rq->engine;
1758 struct intel_ring *ring = rq->ring;
1759 u32 *cs;
1760
1761 RQ_TRACE(rq, "\n");
1762
1763 /*
1764 * To ensure that this call will not fail, space for its emissions
1765 * should already have been reserved in the ring buffer. Let the ring
1766 * know that it is time to use that space up.
1767 */
1768 GEM_BUG_ON(rq->reserved_space > ring->space);
1769 rq->reserved_space = 0;
1770 rq->emitted_jiffies = jiffies;
1771
1772 /*
1773 * Record the position of the start of the breadcrumb so that
1774 * should we detect the updated seqno part-way through the
1775 * GPU processing the request, we never over-estimate the
1776 * position of the ring's HEAD.
1777 */
1778 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1779 GEM_BUG_ON(IS_ERR(cs));
1780 rq->postfix = intel_ring_offset(rq, cs);
1781
1782 return __i915_request_add_to_timeline(rq);
1783 }
1784
__i915_request_queue_bh(struct i915_request * rq)1785 void __i915_request_queue_bh(struct i915_request *rq)
1786 {
1787 i915_sw_fence_commit(&rq->semaphore);
1788 i915_sw_fence_commit(&rq->submit);
1789 }
1790
__i915_request_queue(struct i915_request * rq,const struct i915_sched_attr * attr)1791 void __i915_request_queue(struct i915_request *rq,
1792 const struct i915_sched_attr *attr)
1793 {
1794 /*
1795 * Let the backend know a new request has arrived that may need
1796 * to adjust the existing execution schedule due to a high priority
1797 * request - i.e. we may want to preempt the current request in order
1798 * to run a high priority dependency chain *before* we can execute this
1799 * request.
1800 *
1801 * This is called before the request is ready to run so that we can
1802 * decide whether to preempt the entire chain so that it is ready to
1803 * run at the earliest possible convenience.
1804 */
1805 if (attr && rq->engine->sched_engine->schedule)
1806 rq->engine->sched_engine->schedule(rq, attr);
1807
1808 local_bh_disable();
1809 __i915_request_queue_bh(rq);
1810 local_bh_enable(); /* kick tasklets */
1811 }
1812
i915_request_add(struct i915_request * rq)1813 void i915_request_add(struct i915_request *rq)
1814 {
1815 struct intel_timeline * const tl = i915_request_timeline(rq);
1816 struct i915_sched_attr attr = {};
1817 struct i915_gem_context *ctx;
1818
1819 lockdep_assert_held(&tl->mutex);
1820 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1821
1822 trace_i915_request_add(rq);
1823 __i915_request_commit(rq);
1824
1825 /* XXX placeholder for selftests */
1826 rcu_read_lock();
1827 ctx = rcu_dereference(rq->context->gem_context);
1828 if (ctx)
1829 attr = ctx->sched;
1830 rcu_read_unlock();
1831
1832 __i915_request_queue(rq, &attr);
1833
1834 mutex_unlock(&tl->mutex);
1835 }
1836
local_clock_ns(unsigned int * cpu)1837 static unsigned long local_clock_ns(unsigned int *cpu)
1838 {
1839 unsigned long t;
1840
1841 /*
1842 * Cheaply and approximately convert from nanoseconds to microseconds.
1843 * The result and subsequent calculations are also defined in the same
1844 * approximate microseconds units. The principal source of timing
1845 * error here is from the simple truncation.
1846 *
1847 * Note that local_clock() is only defined wrt to the current CPU;
1848 * the comparisons are no longer valid if we switch CPUs. Instead of
1849 * blocking preemption for the entire busywait, we can detect the CPU
1850 * switch and use that as indicator of system load and a reason to
1851 * stop busywaiting, see busywait_stop().
1852 */
1853 *cpu = get_cpu();
1854 t = local_clock();
1855 put_cpu();
1856
1857 return t;
1858 }
1859
busywait_stop(unsigned long timeout,unsigned int cpu)1860 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1861 {
1862 unsigned int this_cpu;
1863
1864 if (time_after(local_clock_ns(&this_cpu), timeout))
1865 return true;
1866
1867 return this_cpu != cpu;
1868 }
1869
__i915_spin_request(struct i915_request * const rq,int state)1870 static bool __i915_spin_request(struct i915_request * const rq, int state)
1871 {
1872 unsigned long timeout_ns;
1873 unsigned int cpu;
1874
1875 /*
1876 * Only wait for the request if we know it is likely to complete.
1877 *
1878 * We don't track the timestamps around requests, nor the average
1879 * request length, so we do not have a good indicator that this
1880 * request will complete within the timeout. What we do know is the
1881 * order in which requests are executed by the context and so we can
1882 * tell if the request has been started. If the request is not even
1883 * running yet, it is a fair assumption that it will not complete
1884 * within our relatively short timeout.
1885 */
1886 if (!i915_request_is_running(rq))
1887 return false;
1888
1889 /*
1890 * When waiting for high frequency requests, e.g. during synchronous
1891 * rendering split between the CPU and GPU, the finite amount of time
1892 * required to set up the irq and wait upon it limits the response
1893 * rate. By busywaiting on the request completion for a short while we
1894 * can service the high frequency waits as quick as possible. However,
1895 * if it is a slow request, we want to sleep as quickly as possible.
1896 * The tradeoff between waiting and sleeping is roughly the time it
1897 * takes to sleep on a request, on the order of a microsecond.
1898 */
1899
1900 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1901 timeout_ns += local_clock_ns(&cpu);
1902 do {
1903 if (dma_fence_is_signaled(&rq->fence))
1904 return true;
1905
1906 if (signal_pending_state(state, current))
1907 break;
1908
1909 if (busywait_stop(timeout_ns, cpu))
1910 break;
1911
1912 cpu_relax();
1913 } while (!need_resched());
1914
1915 return false;
1916 }
1917
1918 struct request_wait {
1919 struct dma_fence_cb cb;
1920 struct task_struct *tsk;
1921 };
1922
request_wait_wake(struct dma_fence * fence,struct dma_fence_cb * cb)1923 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1924 {
1925 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1926
1927 wake_up_process(fetch_and_zero(&wait->tsk));
1928 }
1929
1930 /**
1931 * i915_request_wait_timeout - wait until execution of request has finished
1932 * @rq: the request to wait upon
1933 * @flags: how to wait
1934 * @timeout: how long to wait in jiffies
1935 *
1936 * i915_request_wait_timeout() waits for the request to be completed, for a
1937 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1938 * unbounded wait).
1939 *
1940 * Returns the remaining time (in jiffies) if the request completed, which may
1941 * be zero if the request is unfinished after the timeout expires.
1942 * If the timeout is 0, it will return 1 if the fence is signaled.
1943 *
1944 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1945 * pending before the request completes.
1946 *
1947 * NOTE: This function has the same wait semantics as dma-fence.
1948 */
i915_request_wait_timeout(struct i915_request * rq,unsigned int flags,long timeout)1949 long i915_request_wait_timeout(struct i915_request *rq,
1950 unsigned int flags,
1951 long timeout)
1952 {
1953 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1954 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1955 struct request_wait wait;
1956
1957 might_sleep();
1958 GEM_BUG_ON(timeout < 0);
1959
1960 if (dma_fence_is_signaled(&rq->fence))
1961 return timeout ?: 1;
1962
1963 if (!timeout)
1964 return -ETIME;
1965
1966 trace_i915_request_wait_begin(rq, flags);
1967
1968 /*
1969 * We must never wait on the GPU while holding a lock as we
1970 * may need to perform a GPU reset. So while we don't need to
1971 * serialise wait/reset with an explicit lock, we do want
1972 * lockdep to detect potential dependency cycles.
1973 */
1974 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1975
1976 /*
1977 * Optimistic spin before touching IRQs.
1978 *
1979 * We may use a rather large value here to offset the penalty of
1980 * switching away from the active task. Frequently, the client will
1981 * wait upon an old swapbuffer to throttle itself to remain within a
1982 * frame of the gpu. If the client is running in lockstep with the gpu,
1983 * then it should not be waiting long at all, and a sleep now will incur
1984 * extra scheduler latency in producing the next frame. To try to
1985 * avoid adding the cost of enabling/disabling the interrupt to the
1986 * short wait, we first spin to see if the request would have completed
1987 * in the time taken to setup the interrupt.
1988 *
1989 * We need upto 5us to enable the irq, and upto 20us to hide the
1990 * scheduler latency of a context switch, ignoring the secondary
1991 * impacts from a context switch such as cache eviction.
1992 *
1993 * The scheme used for low-latency IO is called "hybrid interrupt
1994 * polling". The suggestion there is to sleep until just before you
1995 * expect to be woken by the device interrupt and then poll for its
1996 * completion. That requires having a good predictor for the request
1997 * duration, which we currently lack.
1998 */
1999 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2000 __i915_spin_request(rq, state))
2001 goto out;
2002
2003 /*
2004 * This client is about to stall waiting for the GPU. In many cases
2005 * this is undesirable and limits the throughput of the system, as
2006 * many clients cannot continue processing user input/output whilst
2007 * blocked. RPS autotuning may take tens of milliseconds to respond
2008 * to the GPU load and thus incurs additional latency for the client.
2009 * We can circumvent that by promoting the GPU frequency to maximum
2010 * before we sleep. This makes the GPU throttle up much more quickly
2011 * (good for benchmarks and user experience, e.g. window animations),
2012 * but at a cost of spending more power processing the workload
2013 * (bad for battery).
2014 */
2015 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2016 intel_rps_boost(rq);
2017
2018 wait.tsk = current;
2019 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2020 goto out;
2021
2022 /*
2023 * Flush the submission tasklet, but only if it may help this request.
2024 *
2025 * We sometimes experience some latency between the HW interrupts and
2026 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2027 * be due to lazy CS events), so lets run the tasklet manually if there
2028 * is a chance it may submit this request. If the request is not ready
2029 * to run, as it is waiting for other fences to be signaled, flushing
2030 * the tasklet is busy work without any advantage for this client.
2031 *
2032 * If the HW is being lazy, this is the last chance before we go to
2033 * sleep to catch any pending events. We will check periodically in
2034 * the heartbeat to flush the submission tasklets as a last resort
2035 * for unhappy HW.
2036 */
2037 if (i915_request_is_ready(rq))
2038 __intel_engine_flush_submission(rq->engine, false);
2039
2040 for (;;) {
2041 set_current_state(state);
2042
2043 if (dma_fence_is_signaled(&rq->fence))
2044 break;
2045
2046 if (signal_pending_state(state, current)) {
2047 timeout = -ERESTARTSYS;
2048 break;
2049 }
2050
2051 if (!timeout) {
2052 timeout = -ETIME;
2053 break;
2054 }
2055
2056 timeout = io_schedule_timeout(timeout);
2057 }
2058 __set_current_state(TASK_RUNNING);
2059
2060 if (READ_ONCE(wait.tsk))
2061 dma_fence_remove_callback(&rq->fence, &wait.cb);
2062 GEM_BUG_ON(!list_empty(&wait.cb.node));
2063
2064 out:
2065 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2066 trace_i915_request_wait_end(rq);
2067 return timeout;
2068 }
2069
2070 /**
2071 * i915_request_wait - wait until execution of request has finished
2072 * @rq: the request to wait upon
2073 * @flags: how to wait
2074 * @timeout: how long to wait in jiffies
2075 *
2076 * i915_request_wait() waits for the request to be completed, for a
2077 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2078 * unbounded wait).
2079 *
2080 * Returns the remaining time (in jiffies) if the request completed, which may
2081 * be zero or -ETIME if the request is unfinished after the timeout expires.
2082 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2083 * pending before the request completes.
2084 *
2085 * NOTE: This function behaves differently from dma-fence wait semantics for
2086 * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2087 */
i915_request_wait(struct i915_request * rq,unsigned int flags,long timeout)2088 long i915_request_wait(struct i915_request *rq,
2089 unsigned int flags,
2090 long timeout)
2091 {
2092 long ret = i915_request_wait_timeout(rq, flags, timeout);
2093
2094 if (!ret)
2095 return -ETIME;
2096
2097 if (ret > 0 && !timeout)
2098 return 0;
2099
2100 return ret;
2101 }
2102
print_sched_attr(const struct i915_sched_attr * attr,char * buf,int x,int len)2103 static int print_sched_attr(const struct i915_sched_attr *attr,
2104 char *buf, int x, int len)
2105 {
2106 if (attr->priority == I915_PRIORITY_INVALID)
2107 return x;
2108
2109 x += snprintf(buf + x, len - x,
2110 " prio=%d", attr->priority);
2111
2112 return x;
2113 }
2114
queue_status(const struct i915_request * rq)2115 static char queue_status(const struct i915_request *rq)
2116 {
2117 if (i915_request_is_active(rq))
2118 return 'E';
2119
2120 if (i915_request_is_ready(rq))
2121 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2122
2123 return 'U';
2124 }
2125
run_status(const struct i915_request * rq)2126 static const char *run_status(const struct i915_request *rq)
2127 {
2128 if (__i915_request_is_complete(rq))
2129 return "!";
2130
2131 if (__i915_request_has_started(rq))
2132 return "*";
2133
2134 if (!i915_sw_fence_signaled(&rq->semaphore))
2135 return "&";
2136
2137 return "";
2138 }
2139
fence_status(const struct i915_request * rq)2140 static const char *fence_status(const struct i915_request *rq)
2141 {
2142 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2143 return "+";
2144
2145 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2146 return "-";
2147
2148 return "";
2149 }
2150
i915_request_show(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent)2151 void i915_request_show(struct drm_printer *m,
2152 const struct i915_request *rq,
2153 const char *prefix,
2154 int indent)
2155 {
2156 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2157 char buf[80] = "";
2158 int x = 0;
2159
2160 /*
2161 * The prefix is used to show the queue status, for which we use
2162 * the following flags:
2163 *
2164 * U [Unready]
2165 * - initial status upon being submitted by the user
2166 *
2167 * - the request is not ready for execution as it is waiting
2168 * for external fences
2169 *
2170 * R [Ready]
2171 * - all fences the request was waiting on have been signaled,
2172 * and the request is now ready for execution and will be
2173 * in a backend queue
2174 *
2175 * - a ready request may still need to wait on semaphores
2176 * [internal fences]
2177 *
2178 * V [Ready/virtual]
2179 * - same as ready, but queued over multiple backends
2180 *
2181 * E [Executing]
2182 * - the request has been transferred from the backend queue and
2183 * submitted for execution on HW
2184 *
2185 * - a completed request may still be regarded as executing, its
2186 * status may not be updated until it is retired and removed
2187 * from the lists
2188 */
2189
2190 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2191
2192 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2193 prefix, indent, " ",
2194 queue_status(rq),
2195 rq->fence.context, rq->fence.seqno,
2196 run_status(rq),
2197 fence_status(rq),
2198 buf,
2199 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2200 name);
2201 }
2202
engine_match_ring(struct intel_engine_cs * engine,struct i915_request * rq)2203 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2204 {
2205 u32 ring = ENGINE_READ(engine, RING_START);
2206
2207 return ring == i915_ggtt_offset(rq->ring->vma);
2208 }
2209
match_ring(struct i915_request * rq)2210 static bool match_ring(struct i915_request *rq)
2211 {
2212 struct intel_engine_cs *engine;
2213 bool found;
2214 int i;
2215
2216 if (!intel_engine_is_virtual(rq->engine))
2217 return engine_match_ring(rq->engine, rq);
2218
2219 found = false;
2220 i = 0;
2221 while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2222 found = engine_match_ring(engine, rq);
2223 if (found)
2224 break;
2225 }
2226
2227 return found;
2228 }
2229
i915_test_request_state(struct i915_request * rq)2230 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2231 {
2232 if (i915_request_completed(rq))
2233 return I915_REQUEST_COMPLETE;
2234
2235 if (!i915_request_started(rq))
2236 return I915_REQUEST_PENDING;
2237
2238 if (match_ring(rq))
2239 return I915_REQUEST_ACTIVE;
2240
2241 return I915_REQUEST_QUEUED;
2242 }
2243
2244 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2245 #include "selftests/mock_request.c"
2246 #include "selftests/i915_request.c"
2247 #endif
2248
i915_request_module_exit(void)2249 void i915_request_module_exit(void)
2250 {
2251 kmem_cache_destroy(slab_execute_cbs);
2252 kmem_cache_destroy(slab_requests);
2253 }
2254
i915_request_module_init(void)2255 int __init i915_request_module_init(void)
2256 {
2257 slab_requests =
2258 kmem_cache_create("i915_request",
2259 sizeof(struct i915_request),
2260 __alignof__(struct i915_request),
2261 SLAB_HWCACHE_ALIGN |
2262 SLAB_RECLAIM_ACCOUNT |
2263 SLAB_TYPESAFE_BY_RCU,
2264 __i915_request_ctor);
2265 if (!slab_requests)
2266 return -ENOMEM;
2267
2268 slab_execute_cbs = KMEM_CACHE(execute_cb,
2269 SLAB_HWCACHE_ALIGN |
2270 SLAB_RECLAIM_ACCOUNT |
2271 SLAB_TYPESAFE_BY_RCU);
2272 if (!slab_execute_cbs)
2273 goto err_requests;
2274
2275 return 0;
2276
2277 err_requests:
2278 kmem_cache_destroy(slab_requests);
2279 return -ENOMEM;
2280 }
2281