1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
33
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_breadcrumbs.h"
36 #include "gt/intel_context.h"
37 #include "gt/intel_engine.h"
38 #include "gt/intel_engine_heartbeat.h"
39 #include "gt/intel_engine_regs.h"
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_reset.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_rps.h"
44
45 #include "i915_active.h"
46 #include "i915_deps.h"
47 #include "i915_driver.h"
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "intel_pm.h"
51
52 struct execute_cb {
53 struct irq_work work;
54 struct i915_sw_fence *fence;
55 struct i915_request *signal;
56 };
57
58 static struct kmem_cache *slab_requests;
59 static struct kmem_cache *slab_execute_cbs;
60
i915_fence_get_driver_name(struct dma_fence * fence)61 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
62 {
63 return dev_name(to_request(fence)->engine->i915->drm.dev);
64 }
65
i915_fence_get_timeline_name(struct dma_fence * fence)66 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
67 {
68 const struct i915_gem_context *ctx;
69
70 /*
71 * The timeline struct (as part of the ppgtt underneath a context)
72 * may be freed when the request is no longer in use by the GPU.
73 * We could extend the life of a context to beyond that of all
74 * fences, possibly keeping the hw resource around indefinitely,
75 * or we just give them a false name. Since
76 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
77 * lie seems justifiable.
78 */
79 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
80 return "signaled";
81
82 ctx = i915_request_gem_context(to_request(fence));
83 if (!ctx)
84 return "[" DRIVER_NAME "]";
85
86 return ctx->name;
87 }
88
i915_fence_signaled(struct dma_fence * fence)89 static bool i915_fence_signaled(struct dma_fence *fence)
90 {
91 return i915_request_completed(to_request(fence));
92 }
93
i915_fence_enable_signaling(struct dma_fence * fence)94 static bool i915_fence_enable_signaling(struct dma_fence *fence)
95 {
96 return i915_request_enable_breadcrumb(to_request(fence));
97 }
98
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)99 static signed long i915_fence_wait(struct dma_fence *fence,
100 bool interruptible,
101 signed long timeout)
102 {
103 return i915_request_wait_timeout(to_request(fence),
104 interruptible | I915_WAIT_PRIORITY,
105 timeout);
106 }
107
i915_request_slab_cache(void)108 struct kmem_cache *i915_request_slab_cache(void)
109 {
110 return slab_requests;
111 }
112
i915_fence_release(struct dma_fence * fence)113 static void i915_fence_release(struct dma_fence *fence)
114 {
115 struct i915_request *rq = to_request(fence);
116
117 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
118 rq->guc_prio != GUC_PRIO_FINI);
119
120 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
121 if (rq->batch_res) {
122 i915_vma_resource_put(rq->batch_res);
123 rq->batch_res = NULL;
124 }
125
126 /*
127 * The request is put onto a RCU freelist (i.e. the address
128 * is immediately reused), mark the fences as being freed now.
129 * Otherwise the debugobjects for the fences are only marked as
130 * freed when the slab cache itself is freed, and so we would get
131 * caught trying to reuse dead objects.
132 */
133 i915_sw_fence_fini(&rq->submit);
134 i915_sw_fence_fini(&rq->semaphore);
135
136 /*
137 * Keep one request on each engine for reserved use under mempressure,
138 * do not use with virtual engines as this really is only needed for
139 * kernel contexts.
140 */
141 if (!intel_engine_is_virtual(rq->engine) &&
142 !cmpxchg(&rq->engine->request_pool, NULL, rq)) {
143 intel_context_put(rq->context);
144 return;
145 }
146
147 intel_context_put(rq->context);
148
149 kmem_cache_free(slab_requests, rq);
150 }
151
152 const struct dma_fence_ops i915_fence_ops = {
153 .get_driver_name = i915_fence_get_driver_name,
154 .get_timeline_name = i915_fence_get_timeline_name,
155 .enable_signaling = i915_fence_enable_signaling,
156 .signaled = i915_fence_signaled,
157 .wait = i915_fence_wait,
158 .release = i915_fence_release,
159 };
160
irq_execute_cb(struct irq_work * wrk)161 static void irq_execute_cb(struct irq_work *wrk)
162 {
163 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
164
165 i915_sw_fence_complete(cb->fence);
166 kmem_cache_free(slab_execute_cbs, cb);
167 }
168
169 static __always_inline void
__notify_execute_cb(struct i915_request * rq,bool (* fn)(struct irq_work * wrk))170 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
171 {
172 struct execute_cb *cb, *cn;
173
174 if (llist_empty(&rq->execute_cb))
175 return;
176
177 llist_for_each_entry_safe(cb, cn,
178 llist_del_all(&rq->execute_cb),
179 work.node.llist)
180 fn(&cb->work);
181 }
182
__notify_execute_cb_irq(struct i915_request * rq)183 static void __notify_execute_cb_irq(struct i915_request *rq)
184 {
185 __notify_execute_cb(rq, irq_work_queue);
186 }
187
irq_work_imm(struct irq_work * wrk)188 static bool irq_work_imm(struct irq_work *wrk)
189 {
190 wrk->func(wrk);
191 return false;
192 }
193
i915_request_notify_execute_cb_imm(struct i915_request * rq)194 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
195 {
196 __notify_execute_cb(rq, irq_work_imm);
197 }
198
__i915_request_fill(struct i915_request * rq,u8 val)199 static void __i915_request_fill(struct i915_request *rq, u8 val)
200 {
201 void *vaddr = rq->ring->vaddr;
202 u32 head;
203
204 head = rq->infix;
205 if (rq->postfix < head) {
206 memset(vaddr + head, val, rq->ring->size - head);
207 head = 0;
208 }
209 memset(vaddr + head, val, rq->postfix - head);
210 }
211
212 /**
213 * i915_request_active_engine
214 * @rq: request to inspect
215 * @active: pointer in which to return the active engine
216 *
217 * Fills the currently active engine to the @active pointer if the request
218 * is active and still not completed.
219 *
220 * Returns true if request was active or false otherwise.
221 */
222 bool
i915_request_active_engine(struct i915_request * rq,struct intel_engine_cs ** active)223 i915_request_active_engine(struct i915_request *rq,
224 struct intel_engine_cs **active)
225 {
226 struct intel_engine_cs *engine, *locked;
227 bool ret = false;
228
229 /*
230 * Serialise with __i915_request_submit() so that it sees
231 * is-banned?, or we know the request is already inflight.
232 *
233 * Note that rq->engine is unstable, and so we double
234 * check that we have acquired the lock on the final engine.
235 */
236 locked = READ_ONCE(rq->engine);
237 spin_lock_irq(&locked->sched_engine->lock);
238 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
239 spin_unlock(&locked->sched_engine->lock);
240 locked = engine;
241 spin_lock(&locked->sched_engine->lock);
242 }
243
244 if (i915_request_is_active(rq)) {
245 if (!__i915_request_is_complete(rq))
246 *active = locked;
247 ret = true;
248 }
249
250 spin_unlock_irq(&locked->sched_engine->lock);
251
252 return ret;
253 }
254
__rq_init_watchdog(struct i915_request * rq)255 static void __rq_init_watchdog(struct i915_request *rq)
256 {
257 rq->watchdog.timer.function = NULL;
258 }
259
__rq_watchdog_expired(struct hrtimer * hrtimer)260 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
261 {
262 struct i915_request *rq =
263 container_of(hrtimer, struct i915_request, watchdog.timer);
264 struct intel_gt *gt = rq->engine->gt;
265
266 if (!i915_request_completed(rq)) {
267 if (llist_add(&rq->watchdog.link, >->watchdog.list))
268 schedule_work(>->watchdog.work);
269 } else {
270 i915_request_put(rq);
271 }
272
273 return HRTIMER_NORESTART;
274 }
275
__rq_arm_watchdog(struct i915_request * rq)276 static void __rq_arm_watchdog(struct i915_request *rq)
277 {
278 struct i915_request_watchdog *wdg = &rq->watchdog;
279 struct intel_context *ce = rq->context;
280
281 if (!ce->watchdog.timeout_us)
282 return;
283
284 i915_request_get(rq);
285
286 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
287 wdg->timer.function = __rq_watchdog_expired;
288 hrtimer_start_range_ns(&wdg->timer,
289 ns_to_ktime(ce->watchdog.timeout_us *
290 NSEC_PER_USEC),
291 NSEC_PER_MSEC,
292 HRTIMER_MODE_REL);
293 }
294
__rq_cancel_watchdog(struct i915_request * rq)295 static void __rq_cancel_watchdog(struct i915_request *rq)
296 {
297 struct i915_request_watchdog *wdg = &rq->watchdog;
298
299 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
300 i915_request_put(rq);
301 }
302
303 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
304
305 /**
306 * i915_request_free_capture_list - Free a capture list
307 * @capture: Pointer to the first list item or NULL
308 *
309 */
i915_request_free_capture_list(struct i915_capture_list * capture)310 void i915_request_free_capture_list(struct i915_capture_list *capture)
311 {
312 while (capture) {
313 struct i915_capture_list *next = capture->next;
314
315 i915_vma_resource_put(capture->vma_res);
316 kfree(capture);
317 capture = next;
318 }
319 }
320
321 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
322
323 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
324
325 #else
326
327 #define i915_request_free_capture_list(_a) do {} while (0)
328
329 #define assert_capture_list_is_null(_a) do {} while (0)
330
331 #define clear_capture_list(_rq) do {} while (0)
332
333 #endif
334
i915_request_retire(struct i915_request * rq)335 bool i915_request_retire(struct i915_request *rq)
336 {
337 if (!__i915_request_is_complete(rq))
338 return false;
339
340 RQ_TRACE(rq, "\n");
341
342 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
343 trace_i915_request_retire(rq);
344 i915_request_mark_complete(rq);
345
346 __rq_cancel_watchdog(rq);
347
348 /*
349 * We know the GPU must have read the request to have
350 * sent us the seqno + interrupt, so use the position
351 * of tail of the request to update the last known position
352 * of the GPU head.
353 *
354 * Note this requires that we are always called in request
355 * completion order.
356 */
357 GEM_BUG_ON(!list_is_first(&rq->link,
358 &i915_request_timeline(rq)->requests));
359 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
360 /* Poison before we release our space in the ring */
361 __i915_request_fill(rq, POISON_FREE);
362 rq->ring->head = rq->postfix;
363
364 if (!i915_request_signaled(rq)) {
365 spin_lock_irq(&rq->lock);
366 dma_fence_signal_locked(&rq->fence);
367 spin_unlock_irq(&rq->lock);
368 }
369
370 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
371 intel_rps_dec_waiters(&rq->engine->gt->rps);
372
373 /*
374 * We only loosely track inflight requests across preemption,
375 * and so we may find ourselves attempting to retire a _completed_
376 * request that we have removed from the HW and put back on a run
377 * queue.
378 *
379 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
380 * after removing the breadcrumb and signaling it, so that we do not
381 * inadvertently attach the breadcrumb to a completed request.
382 */
383 rq->engine->remove_active_request(rq);
384 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
385
386 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
387
388 intel_context_exit(rq->context);
389 intel_context_unpin(rq->context);
390
391 i915_sched_node_fini(&rq->sched);
392 i915_request_put(rq);
393
394 return true;
395 }
396
i915_request_retire_upto(struct i915_request * rq)397 void i915_request_retire_upto(struct i915_request *rq)
398 {
399 struct intel_timeline * const tl = i915_request_timeline(rq);
400 struct i915_request *tmp;
401
402 RQ_TRACE(rq, "\n");
403 GEM_BUG_ON(!__i915_request_is_complete(rq));
404
405 do {
406 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
407 GEM_BUG_ON(!i915_request_completed(tmp));
408 } while (i915_request_retire(tmp) && tmp != rq);
409 }
410
411 static struct i915_request * const *
__engine_active(struct intel_engine_cs * engine)412 __engine_active(struct intel_engine_cs *engine)
413 {
414 return READ_ONCE(engine->execlists.active);
415 }
416
__request_in_flight(const struct i915_request * signal)417 static bool __request_in_flight(const struct i915_request *signal)
418 {
419 struct i915_request * const *port, *rq;
420 bool inflight = false;
421
422 if (!i915_request_is_ready(signal))
423 return false;
424
425 /*
426 * Even if we have unwound the request, it may still be on
427 * the GPU (preempt-to-busy). If that request is inside an
428 * unpreemptible critical section, it will not be removed. Some
429 * GPU functions may even be stuck waiting for the paired request
430 * (__await_execution) to be submitted and cannot be preempted
431 * until the bond is executing.
432 *
433 * As we know that there are always preemption points between
434 * requests, we know that only the currently executing request
435 * may be still active even though we have cleared the flag.
436 * However, we can't rely on our tracking of ELSP[0] to know
437 * which request is currently active and so maybe stuck, as
438 * the tracking maybe an event behind. Instead assume that
439 * if the context is still inflight, then it is still active
440 * even if the active flag has been cleared.
441 *
442 * To further complicate matters, if there a pending promotion, the HW
443 * may either perform a context switch to the second inflight execlists,
444 * or it may switch to the pending set of execlists. In the case of the
445 * latter, it may send the ACK and we process the event copying the
446 * pending[] over top of inflight[], _overwriting_ our *active. Since
447 * this implies the HW is arbitrating and not struck in *active, we do
448 * not worry about complete accuracy, but we do require no read/write
449 * tearing of the pointer [the read of the pointer must be valid, even
450 * as the array is being overwritten, for which we require the writes
451 * to avoid tearing.]
452 *
453 * Note that the read of *execlists->active may race with the promotion
454 * of execlists->pending[] to execlists->inflight[], overwritting
455 * the value at *execlists->active. This is fine. The promotion implies
456 * that we received an ACK from the HW, and so the context is not
457 * stuck -- if we do not see ourselves in *active, the inflight status
458 * is valid. If instead we see ourselves being copied into *active,
459 * we are inflight and may signal the callback.
460 */
461 if (!intel_context_inflight(signal->context))
462 return false;
463
464 rcu_read_lock();
465 for (port = __engine_active(signal->engine);
466 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
467 port++) {
468 if (rq->context == signal->context) {
469 inflight = i915_seqno_passed(rq->fence.seqno,
470 signal->fence.seqno);
471 break;
472 }
473 }
474 rcu_read_unlock();
475
476 return inflight;
477 }
478
479 static int
__await_execution(struct i915_request * rq,struct i915_request * signal,gfp_t gfp)480 __await_execution(struct i915_request *rq,
481 struct i915_request *signal,
482 gfp_t gfp)
483 {
484 struct execute_cb *cb;
485
486 if (i915_request_is_active(signal))
487 return 0;
488
489 cb = kmem_cache_alloc(slab_execute_cbs, gfp);
490 if (!cb)
491 return -ENOMEM;
492
493 cb->fence = &rq->submit;
494 i915_sw_fence_await(cb->fence);
495 init_irq_work(&cb->work, irq_execute_cb);
496
497 /*
498 * Register the callback first, then see if the signaler is already
499 * active. This ensures that if we race with the
500 * __notify_execute_cb from i915_request_submit() and we are not
501 * included in that list, we get a second bite of the cherry and
502 * execute it ourselves. After this point, a future
503 * i915_request_submit() will notify us.
504 *
505 * In i915_request_retire() we set the ACTIVE bit on a completed
506 * request (then flush the execute_cb). So by registering the
507 * callback first, then checking the ACTIVE bit, we serialise with
508 * the completed/retired request.
509 */
510 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
511 if (i915_request_is_active(signal) ||
512 __request_in_flight(signal))
513 i915_request_notify_execute_cb_imm(signal);
514 }
515
516 return 0;
517 }
518
fatal_error(int error)519 static bool fatal_error(int error)
520 {
521 switch (error) {
522 case 0: /* not an error! */
523 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
524 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
525 return false;
526 default:
527 return true;
528 }
529 }
530
__i915_request_skip(struct i915_request * rq)531 void __i915_request_skip(struct i915_request *rq)
532 {
533 GEM_BUG_ON(!fatal_error(rq->fence.error));
534
535 if (rq->infix == rq->postfix)
536 return;
537
538 RQ_TRACE(rq, "error: %d\n", rq->fence.error);
539
540 /*
541 * As this request likely depends on state from the lost
542 * context, clear out all the user operations leaving the
543 * breadcrumb at the end (so we get the fence notifications).
544 */
545 __i915_request_fill(rq, 0);
546 rq->infix = rq->postfix;
547 }
548
i915_request_set_error_once(struct i915_request * rq,int error)549 bool i915_request_set_error_once(struct i915_request *rq, int error)
550 {
551 int old;
552
553 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
554
555 if (i915_request_signaled(rq))
556 return false;
557
558 old = READ_ONCE(rq->fence.error);
559 do {
560 if (fatal_error(old))
561 return false;
562 } while (!try_cmpxchg(&rq->fence.error, &old, error));
563
564 return true;
565 }
566
i915_request_mark_eio(struct i915_request * rq)567 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
568 {
569 if (__i915_request_is_complete(rq))
570 return NULL;
571
572 GEM_BUG_ON(i915_request_signaled(rq));
573
574 /* As soon as the request is completed, it may be retired */
575 rq = i915_request_get(rq);
576
577 i915_request_set_error_once(rq, -EIO);
578 i915_request_mark_complete(rq);
579
580 return rq;
581 }
582
__i915_request_submit(struct i915_request * request)583 bool __i915_request_submit(struct i915_request *request)
584 {
585 struct intel_engine_cs *engine = request->engine;
586 bool result = false;
587
588 RQ_TRACE(request, "\n");
589
590 GEM_BUG_ON(!irqs_disabled());
591 lockdep_assert_held(&engine->sched_engine->lock);
592
593 /*
594 * With the advent of preempt-to-busy, we frequently encounter
595 * requests that we have unsubmitted from HW, but left running
596 * until the next ack and so have completed in the meantime. On
597 * resubmission of that completed request, we can skip
598 * updating the payload, and execlists can even skip submitting
599 * the request.
600 *
601 * We must remove the request from the caller's priority queue,
602 * and the caller must only call us when the request is in their
603 * priority queue, under the sched_engine->lock. This ensures that the
604 * request has *not* yet been retired and we can safely move
605 * the request into the engine->active.list where it will be
606 * dropped upon retiring. (Otherwise if resubmit a *retired*
607 * request, this would be a horrible use-after-free.)
608 */
609 if (__i915_request_is_complete(request)) {
610 list_del_init(&request->sched.link);
611 goto active;
612 }
613
614 if (unlikely(intel_context_is_banned(request->context)))
615 i915_request_set_error_once(request, -EIO);
616
617 if (unlikely(fatal_error(request->fence.error)))
618 __i915_request_skip(request);
619
620 /*
621 * Are we using semaphores when the gpu is already saturated?
622 *
623 * Using semaphores incurs a cost in having the GPU poll a
624 * memory location, busywaiting for it to change. The continual
625 * memory reads can have a noticeable impact on the rest of the
626 * system with the extra bus traffic, stalling the cpu as it too
627 * tries to access memory across the bus (perf stat -e bus-cycles).
628 *
629 * If we installed a semaphore on this request and we only submit
630 * the request after the signaler completed, that indicates the
631 * system is overloaded and using semaphores at this time only
632 * increases the amount of work we are doing. If so, we disable
633 * further use of semaphores until we are idle again, whence we
634 * optimistically try again.
635 */
636 if (request->sched.semaphores &&
637 i915_sw_fence_signaled(&request->semaphore))
638 engine->saturated |= request->sched.semaphores;
639
640 engine->emit_fini_breadcrumb(request,
641 request->ring->vaddr + request->postfix);
642
643 trace_i915_request_execute(request);
644 if (engine->bump_serial)
645 engine->bump_serial(engine);
646 else
647 engine->serial++;
648
649 result = true;
650
651 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
652 engine->add_active_request(request);
653 active:
654 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
655 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
656
657 /*
658 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
659 *
660 * In the future, perhaps when we have an active time-slicing scheduler,
661 * it will be interesting to unsubmit parallel execution and remove
662 * busywaits from the GPU until their master is restarted. This is
663 * quite hairy, we have to carefully rollback the fence and do a
664 * preempt-to-idle cycle on the target engine, all the while the
665 * master execute_cb may refire.
666 */
667 __notify_execute_cb_irq(request);
668
669 /* We may be recursing from the signal callback of another i915 fence */
670 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
671 i915_request_enable_breadcrumb(request);
672
673 return result;
674 }
675
i915_request_submit(struct i915_request * request)676 void i915_request_submit(struct i915_request *request)
677 {
678 struct intel_engine_cs *engine = request->engine;
679 unsigned long flags;
680
681 /* Will be called from irq-context when using foreign fences. */
682 spin_lock_irqsave(&engine->sched_engine->lock, flags);
683
684 __i915_request_submit(request);
685
686 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
687 }
688
__i915_request_unsubmit(struct i915_request * request)689 void __i915_request_unsubmit(struct i915_request *request)
690 {
691 struct intel_engine_cs *engine = request->engine;
692
693 /*
694 * Only unwind in reverse order, required so that the per-context list
695 * is kept in seqno/ring order.
696 */
697 RQ_TRACE(request, "\n");
698
699 GEM_BUG_ON(!irqs_disabled());
700 lockdep_assert_held(&engine->sched_engine->lock);
701
702 /*
703 * Before we remove this breadcrumb from the signal list, we have
704 * to ensure that a concurrent dma_fence_enable_signaling() does not
705 * attach itself. We first mark the request as no longer active and
706 * make sure that is visible to other cores, and then remove the
707 * breadcrumb if attached.
708 */
709 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
710 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
711 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
712 i915_request_cancel_breadcrumb(request);
713
714 /* We've already spun, don't charge on resubmitting. */
715 if (request->sched.semaphores && __i915_request_has_started(request))
716 request->sched.semaphores = 0;
717
718 /*
719 * We don't need to wake_up any waiters on request->execute, they
720 * will get woken by any other event or us re-adding this request
721 * to the engine timeline (__i915_request_submit()). The waiters
722 * should be quite adapt at finding that the request now has a new
723 * global_seqno to the one they went to sleep on.
724 */
725 }
726
i915_request_unsubmit(struct i915_request * request)727 void i915_request_unsubmit(struct i915_request *request)
728 {
729 struct intel_engine_cs *engine = request->engine;
730 unsigned long flags;
731
732 /* Will be called from irq-context when using foreign fences. */
733 spin_lock_irqsave(&engine->sched_engine->lock, flags);
734
735 __i915_request_unsubmit(request);
736
737 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
738 }
739
i915_request_cancel(struct i915_request * rq,int error)740 void i915_request_cancel(struct i915_request *rq, int error)
741 {
742 if (!i915_request_set_error_once(rq, error))
743 return;
744
745 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
746
747 intel_context_cancel_request(rq->context, rq);
748 }
749
750 static int
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)751 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
752 {
753 struct i915_request *request =
754 container_of(fence, typeof(*request), submit);
755
756 switch (state) {
757 case FENCE_COMPLETE:
758 trace_i915_request_submit(request);
759
760 if (unlikely(fence->error))
761 i915_request_set_error_once(request, fence->error);
762 else
763 __rq_arm_watchdog(request);
764
765 /*
766 * We need to serialize use of the submit_request() callback
767 * with its hotplugging performed during an emergency
768 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
769 * critical section in order to force i915_gem_set_wedged() to
770 * wait until the submit_request() is completed before
771 * proceeding.
772 */
773 rcu_read_lock();
774 request->engine->submit_request(request);
775 rcu_read_unlock();
776 break;
777
778 case FENCE_FREE:
779 i915_request_put(request);
780 break;
781 }
782
783 return NOTIFY_DONE;
784 }
785
786 static int
semaphore_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)787 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
788 {
789 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
790
791 switch (state) {
792 case FENCE_COMPLETE:
793 break;
794
795 case FENCE_FREE:
796 i915_request_put(rq);
797 break;
798 }
799
800 return NOTIFY_DONE;
801 }
802
retire_requests(struct intel_timeline * tl)803 static void retire_requests(struct intel_timeline *tl)
804 {
805 struct i915_request *rq, *rn;
806
807 list_for_each_entry_safe(rq, rn, &tl->requests, link)
808 if (!i915_request_retire(rq))
809 break;
810 }
811
812 static noinline struct i915_request *
request_alloc_slow(struct intel_timeline * tl,struct i915_request ** rsvd,gfp_t gfp)813 request_alloc_slow(struct intel_timeline *tl,
814 struct i915_request **rsvd,
815 gfp_t gfp)
816 {
817 struct i915_request *rq;
818
819 /* If we cannot wait, dip into our reserves */
820 if (!gfpflags_allow_blocking(gfp)) {
821 rq = xchg(rsvd, NULL);
822 if (!rq) /* Use the normal failure path for one final WARN */
823 goto out;
824
825 return rq;
826 }
827
828 if (list_empty(&tl->requests))
829 goto out;
830
831 /* Move our oldest request to the slab-cache (if not in use!) */
832 rq = list_first_entry(&tl->requests, typeof(*rq), link);
833 i915_request_retire(rq);
834
835 rq = kmem_cache_alloc(slab_requests,
836 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
837 if (rq)
838 return rq;
839
840 /* Ratelimit ourselves to prevent oom from malicious clients */
841 rq = list_last_entry(&tl->requests, typeof(*rq), link);
842 cond_synchronize_rcu(rq->rcustate);
843
844 /* Retire our old requests in the hope that we free some */
845 retire_requests(tl);
846
847 out:
848 return kmem_cache_alloc(slab_requests, gfp);
849 }
850
__i915_request_ctor(void * arg)851 static void __i915_request_ctor(void *arg)
852 {
853 struct i915_request *rq = arg;
854
855 spin_lock_init(&rq->lock);
856 i915_sched_node_init(&rq->sched);
857 i915_sw_fence_init(&rq->submit, submit_notify);
858 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
859
860 clear_capture_list(rq);
861 rq->batch_res = NULL;
862
863 init_llist_head(&rq->execute_cb);
864 }
865
866 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
867 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
868 #else
869 #define clear_batch_ptr(_a) do {} while (0)
870 #endif
871
872 struct i915_request *
__i915_request_create(struct intel_context * ce,gfp_t gfp)873 __i915_request_create(struct intel_context *ce, gfp_t gfp)
874 {
875 struct intel_timeline *tl = ce->timeline;
876 struct i915_request *rq;
877 u32 seqno;
878 int ret;
879
880 might_alloc(gfp);
881
882 /* Check that the caller provided an already pinned context */
883 __intel_context_pin(ce);
884
885 /*
886 * Beware: Dragons be flying overhead.
887 *
888 * We use RCU to look up requests in flight. The lookups may
889 * race with the request being allocated from the slab freelist.
890 * That is the request we are writing to here, may be in the process
891 * of being read by __i915_active_request_get_rcu(). As such,
892 * we have to be very careful when overwriting the contents. During
893 * the RCU lookup, we change chase the request->engine pointer,
894 * read the request->global_seqno and increment the reference count.
895 *
896 * The reference count is incremented atomically. If it is zero,
897 * the lookup knows the request is unallocated and complete. Otherwise,
898 * it is either still in use, or has been reallocated and reset
899 * with dma_fence_init(). This increment is safe for release as we
900 * check that the request we have a reference to and matches the active
901 * request.
902 *
903 * Before we increment the refcount, we chase the request->engine
904 * pointer. We must not call kmem_cache_zalloc() or else we set
905 * that pointer to NULL and cause a crash during the lookup. If
906 * we see the request is completed (based on the value of the
907 * old engine and seqno), the lookup is complete and reports NULL.
908 * If we decide the request is not completed (new engine or seqno),
909 * then we grab a reference and double check that it is still the
910 * active request - which it won't be and restart the lookup.
911 *
912 * Do not use kmem_cache_zalloc() here!
913 */
914 rq = kmem_cache_alloc(slab_requests,
915 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
916 if (unlikely(!rq)) {
917 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
918 if (!rq) {
919 ret = -ENOMEM;
920 goto err_unreserve;
921 }
922 }
923
924 /*
925 * Hold a reference to the intel_context over life of an i915_request.
926 * Without this an i915_request can exist after the context has been
927 * destroyed (e.g. request retired, context closed, but user space holds
928 * a reference to the request from an out fence). In the case of GuC
929 * submission + virtual engine, the engine that the request references
930 * is also destroyed which can trigger bad pointer dref in fence ops
931 * (e.g. i915_fence_get_driver_name). We could likely change these
932 * functions to avoid touching the engine but let's just be safe and
933 * hold the intel_context reference. In execlist mode the request always
934 * eventually points to a physical engine so this isn't an issue.
935 */
936 rq->context = intel_context_get(ce);
937 rq->engine = ce->engine;
938 rq->ring = ce->ring;
939 rq->execution_mask = ce->engine->mask;
940
941 ret = intel_timeline_get_seqno(tl, rq, &seqno);
942 if (ret)
943 goto err_free;
944
945 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
946 tl->fence_context, seqno);
947
948 RCU_INIT_POINTER(rq->timeline, tl);
949 rq->hwsp_seqno = tl->hwsp_seqno;
950 GEM_BUG_ON(__i915_request_is_complete(rq));
951
952 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
953
954 rq->guc_prio = GUC_PRIO_INIT;
955
956 /* We bump the ref for the fence chain */
957 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
958 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
959
960 i915_sched_node_reinit(&rq->sched);
961
962 /* No zalloc, everything must be cleared after use */
963 clear_batch_ptr(rq);
964 __rq_init_watchdog(rq);
965 assert_capture_list_is_null(rq);
966 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
967 GEM_BUG_ON(rq->batch_res);
968
969 /*
970 * Reserve space in the ring buffer for all the commands required to
971 * eventually emit this request. This is to guarantee that the
972 * i915_request_add() call can't fail. Note that the reserve may need
973 * to be redone if the request is not actually submitted straight
974 * away, e.g. because a GPU scheduler has deferred it.
975 *
976 * Note that due to how we add reserved_space to intel_ring_begin()
977 * we need to double our request to ensure that if we need to wrap
978 * around inside i915_request_add() there is sufficient space at
979 * the beginning of the ring as well.
980 */
981 rq->reserved_space =
982 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
983
984 /*
985 * Record the position of the start of the request so that
986 * should we detect the updated seqno part-way through the
987 * GPU processing the request, we never over-estimate the
988 * position of the head.
989 */
990 rq->head = rq->ring->emit;
991
992 ret = rq->engine->request_alloc(rq);
993 if (ret)
994 goto err_unwind;
995
996 rq->infix = rq->ring->emit; /* end of header; start of user payload */
997
998 intel_context_mark_active(ce);
999 list_add_tail_rcu(&rq->link, &tl->requests);
1000
1001 return rq;
1002
1003 err_unwind:
1004 ce->ring->emit = rq->head;
1005
1006 /* Make sure we didn't add ourselves to external state before freeing */
1007 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1008 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1009
1010 err_free:
1011 intel_context_put(ce);
1012 kmem_cache_free(slab_requests, rq);
1013 err_unreserve:
1014 intel_context_unpin(ce);
1015 return ERR_PTR(ret);
1016 }
1017
1018 struct i915_request *
i915_request_create(struct intel_context * ce)1019 i915_request_create(struct intel_context *ce)
1020 {
1021 struct i915_request *rq;
1022 struct intel_timeline *tl;
1023
1024 tl = intel_context_timeline_lock(ce);
1025 if (IS_ERR(tl))
1026 return ERR_CAST(tl);
1027
1028 /* Move our oldest request to the slab-cache (if not in use!) */
1029 rq = list_first_entry(&tl->requests, typeof(*rq), link);
1030 if (!list_is_last(&rq->link, &tl->requests))
1031 i915_request_retire(rq);
1032
1033 intel_context_enter(ce);
1034 rq = __i915_request_create(ce, GFP_KERNEL);
1035 intel_context_exit(ce); /* active reference transferred to request */
1036 if (IS_ERR(rq))
1037 goto err_unlock;
1038
1039 /* Check that we do not interrupt ourselves with a new request */
1040 rq->cookie = lockdep_pin_lock(&tl->mutex);
1041
1042 return rq;
1043
1044 err_unlock:
1045 intel_context_timeline_unlock(tl);
1046 return rq;
1047 }
1048
1049 static int
i915_request_await_start(struct i915_request * rq,struct i915_request * signal)1050 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1051 {
1052 struct dma_fence *fence;
1053 int err;
1054
1055 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1056 return 0;
1057
1058 if (i915_request_started(signal))
1059 return 0;
1060
1061 /*
1062 * The caller holds a reference on @signal, but we do not serialise
1063 * against it being retired and removed from the lists.
1064 *
1065 * We do not hold a reference to the request before @signal, and
1066 * so must be very careful to ensure that it is not _recycled_ as
1067 * we follow the link backwards.
1068 */
1069 fence = NULL;
1070 rcu_read_lock();
1071 do {
1072 struct list_head *pos = READ_ONCE(signal->link.prev);
1073 struct i915_request *prev;
1074
1075 /* Confirm signal has not been retired, the link is valid */
1076 if (unlikely(__i915_request_has_started(signal)))
1077 break;
1078
1079 /* Is signal the earliest request on its timeline? */
1080 if (pos == &rcu_dereference(signal->timeline)->requests)
1081 break;
1082
1083 /*
1084 * Peek at the request before us in the timeline. That
1085 * request will only be valid before it is retired, so
1086 * after acquiring a reference to it, confirm that it is
1087 * still part of the signaler's timeline.
1088 */
1089 prev = list_entry(pos, typeof(*prev), link);
1090 if (!i915_request_get_rcu(prev))
1091 break;
1092
1093 /* After the strong barrier, confirm prev is still attached */
1094 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1095 i915_request_put(prev);
1096 break;
1097 }
1098
1099 fence = &prev->fence;
1100 } while (0);
1101 rcu_read_unlock();
1102 if (!fence)
1103 return 0;
1104
1105 err = 0;
1106 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1107 err = i915_sw_fence_await_dma_fence(&rq->submit,
1108 fence, 0,
1109 I915_FENCE_GFP);
1110 dma_fence_put(fence);
1111
1112 return err;
1113 }
1114
1115 static intel_engine_mask_t
already_busywaiting(struct i915_request * rq)1116 already_busywaiting(struct i915_request *rq)
1117 {
1118 /*
1119 * Polling a semaphore causes bus traffic, delaying other users of
1120 * both the GPU and CPU. We want to limit the impact on others,
1121 * while taking advantage of early submission to reduce GPU
1122 * latency. Therefore we restrict ourselves to not using more
1123 * than one semaphore from each source, and not using a semaphore
1124 * if we have detected the engine is saturated (i.e. would not be
1125 * submitted early and cause bus traffic reading an already passed
1126 * semaphore).
1127 *
1128 * See the are-we-too-late? check in __i915_request_submit().
1129 */
1130 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1131 }
1132
1133 static int
__emit_semaphore_wait(struct i915_request * to,struct i915_request * from,u32 seqno)1134 __emit_semaphore_wait(struct i915_request *to,
1135 struct i915_request *from,
1136 u32 seqno)
1137 {
1138 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1139 u32 hwsp_offset;
1140 int len, err;
1141 u32 *cs;
1142
1143 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1144 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1145
1146 /* We need to pin the signaler's HWSP until we are finished reading. */
1147 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1148 if (err)
1149 return err;
1150
1151 len = 4;
1152 if (has_token)
1153 len += 2;
1154
1155 cs = intel_ring_begin(to, len);
1156 if (IS_ERR(cs))
1157 return PTR_ERR(cs);
1158
1159 /*
1160 * Using greater-than-or-equal here means we have to worry
1161 * about seqno wraparound. To side step that issue, we swap
1162 * the timeline HWSP upon wrapping, so that everyone listening
1163 * for the old (pre-wrap) values do not see the much smaller
1164 * (post-wrap) values than they were expecting (and so wait
1165 * forever).
1166 */
1167 *cs++ = (MI_SEMAPHORE_WAIT |
1168 MI_SEMAPHORE_GLOBAL_GTT |
1169 MI_SEMAPHORE_POLL |
1170 MI_SEMAPHORE_SAD_GTE_SDD) +
1171 has_token;
1172 *cs++ = seqno;
1173 *cs++ = hwsp_offset;
1174 *cs++ = 0;
1175 if (has_token) {
1176 *cs++ = 0;
1177 *cs++ = MI_NOOP;
1178 }
1179
1180 intel_ring_advance(to, cs);
1181 return 0;
1182 }
1183
1184 static bool
can_use_semaphore_wait(struct i915_request * to,struct i915_request * from)1185 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1186 {
1187 return to->engine->gt->ggtt == from->engine->gt->ggtt;
1188 }
1189
1190 static int
emit_semaphore_wait(struct i915_request * to,struct i915_request * from,gfp_t gfp)1191 emit_semaphore_wait(struct i915_request *to,
1192 struct i915_request *from,
1193 gfp_t gfp)
1194 {
1195 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1196 struct i915_sw_fence *wait = &to->submit;
1197
1198 if (!can_use_semaphore_wait(to, from))
1199 goto await_fence;
1200
1201 if (!intel_context_use_semaphores(to->context))
1202 goto await_fence;
1203
1204 if (i915_request_has_initial_breadcrumb(to))
1205 goto await_fence;
1206
1207 /*
1208 * If this or its dependents are waiting on an external fence
1209 * that may fail catastrophically, then we want to avoid using
1210 * sempahores as they bypass the fence signaling metadata, and we
1211 * lose the fence->error propagation.
1212 */
1213 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1214 goto await_fence;
1215
1216 /* Just emit the first semaphore we see as request space is limited. */
1217 if (already_busywaiting(to) & mask)
1218 goto await_fence;
1219
1220 if (i915_request_await_start(to, from) < 0)
1221 goto await_fence;
1222
1223 /* Only submit our spinner after the signaler is running! */
1224 if (__await_execution(to, from, gfp))
1225 goto await_fence;
1226
1227 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1228 goto await_fence;
1229
1230 to->sched.semaphores |= mask;
1231 wait = &to->semaphore;
1232
1233 await_fence:
1234 return i915_sw_fence_await_dma_fence(wait,
1235 &from->fence, 0,
1236 I915_FENCE_GFP);
1237 }
1238
intel_timeline_sync_has_start(struct intel_timeline * tl,struct dma_fence * fence)1239 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1240 struct dma_fence *fence)
1241 {
1242 return __intel_timeline_sync_is_later(tl,
1243 fence->context,
1244 fence->seqno - 1);
1245 }
1246
intel_timeline_sync_set_start(struct intel_timeline * tl,const struct dma_fence * fence)1247 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1248 const struct dma_fence *fence)
1249 {
1250 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1251 }
1252
1253 static int
__i915_request_await_execution(struct i915_request * to,struct i915_request * from)1254 __i915_request_await_execution(struct i915_request *to,
1255 struct i915_request *from)
1256 {
1257 int err;
1258
1259 GEM_BUG_ON(intel_context_is_barrier(from->context));
1260
1261 /* Submit both requests at the same time */
1262 err = __await_execution(to, from, I915_FENCE_GFP);
1263 if (err)
1264 return err;
1265
1266 /* Squash repeated depenendices to the same timelines */
1267 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1268 &from->fence))
1269 return 0;
1270
1271 /*
1272 * Wait until the start of this request.
1273 *
1274 * The execution cb fires when we submit the request to HW. But in
1275 * many cases this may be long before the request itself is ready to
1276 * run (consider that we submit 2 requests for the same context, where
1277 * the request of interest is behind an indefinite spinner). So we hook
1278 * up to both to reduce our queues and keep the execution lag minimised
1279 * in the worst case, though we hope that the await_start is elided.
1280 */
1281 err = i915_request_await_start(to, from);
1282 if (err < 0)
1283 return err;
1284
1285 /*
1286 * Ensure both start together [after all semaphores in signal]
1287 *
1288 * Now that we are queued to the HW at roughly the same time (thanks
1289 * to the execute cb) and are ready to run at roughly the same time
1290 * (thanks to the await start), our signaler may still be indefinitely
1291 * delayed by waiting on a semaphore from a remote engine. If our
1292 * signaler depends on a semaphore, so indirectly do we, and we do not
1293 * want to start our payload until our signaler also starts theirs.
1294 * So we wait.
1295 *
1296 * However, there is also a second condition for which we need to wait
1297 * for the precise start of the signaler. Consider that the signaler
1298 * was submitted in a chain of requests following another context
1299 * (with just an ordinary intra-engine fence dependency between the
1300 * two). In this case the signaler is queued to HW, but not for
1301 * immediate execution, and so we must wait until it reaches the
1302 * active slot.
1303 */
1304 if (can_use_semaphore_wait(to, from) &&
1305 intel_engine_has_semaphores(to->engine) &&
1306 !i915_request_has_initial_breadcrumb(to)) {
1307 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1308 if (err < 0)
1309 return err;
1310 }
1311
1312 /* Couple the dependency tree for PI on this exposed to->fence */
1313 if (to->engine->sched_engine->schedule) {
1314 err = i915_sched_node_add_dependency(&to->sched,
1315 &from->sched,
1316 I915_DEPENDENCY_WEAK);
1317 if (err < 0)
1318 return err;
1319 }
1320
1321 return intel_timeline_sync_set_start(i915_request_timeline(to),
1322 &from->fence);
1323 }
1324
mark_external(struct i915_request * rq)1325 static void mark_external(struct i915_request *rq)
1326 {
1327 /*
1328 * The downside of using semaphores is that we lose metadata passing
1329 * along the signaling chain. This is particularly nasty when we
1330 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1331 * fatal errors we want to scrub the request before it is executed,
1332 * which means that we cannot preload the request onto HW and have
1333 * it wait upon a semaphore.
1334 */
1335 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1336 }
1337
1338 static int
__i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1339 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1340 {
1341 mark_external(rq);
1342 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1343 i915_fence_context_timeout(rq->engine->i915,
1344 fence->context),
1345 I915_FENCE_GFP);
1346 }
1347
1348 static int
i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1349 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1350 {
1351 struct dma_fence *iter;
1352 int err = 0;
1353
1354 if (!to_dma_fence_chain(fence))
1355 return __i915_request_await_external(rq, fence);
1356
1357 dma_fence_chain_for_each(iter, fence) {
1358 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1359
1360 if (!dma_fence_is_i915(chain->fence)) {
1361 err = __i915_request_await_external(rq, iter);
1362 break;
1363 }
1364
1365 err = i915_request_await_dma_fence(rq, chain->fence);
1366 if (err < 0)
1367 break;
1368 }
1369
1370 dma_fence_put(iter);
1371 return err;
1372 }
1373
is_parallel_rq(struct i915_request * rq)1374 static inline bool is_parallel_rq(struct i915_request *rq)
1375 {
1376 return intel_context_is_parallel(rq->context);
1377 }
1378
request_to_parent(struct i915_request * rq)1379 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1380 {
1381 return intel_context_to_parent(rq->context);
1382 }
1383
is_same_parallel_context(struct i915_request * to,struct i915_request * from)1384 static bool is_same_parallel_context(struct i915_request *to,
1385 struct i915_request *from)
1386 {
1387 if (is_parallel_rq(to))
1388 return request_to_parent(to) == request_to_parent(from);
1389
1390 return false;
1391 }
1392
1393 int
i915_request_await_execution(struct i915_request * rq,struct dma_fence * fence)1394 i915_request_await_execution(struct i915_request *rq,
1395 struct dma_fence *fence)
1396 {
1397 struct dma_fence **child = &fence;
1398 unsigned int nchild = 1;
1399 int ret;
1400
1401 if (dma_fence_is_array(fence)) {
1402 struct dma_fence_array *array = to_dma_fence_array(fence);
1403
1404 /* XXX Error for signal-on-any fence arrays */
1405
1406 child = array->fences;
1407 nchild = array->num_fences;
1408 GEM_BUG_ON(!nchild);
1409 }
1410
1411 do {
1412 fence = *child++;
1413 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1414 continue;
1415
1416 if (fence->context == rq->fence.context)
1417 continue;
1418
1419 /*
1420 * We don't squash repeated fence dependencies here as we
1421 * want to run our callback in all cases.
1422 */
1423
1424 if (dma_fence_is_i915(fence)) {
1425 if (is_same_parallel_context(rq, to_request(fence)))
1426 continue;
1427 ret = __i915_request_await_execution(rq,
1428 to_request(fence));
1429 } else {
1430 ret = i915_request_await_external(rq, fence);
1431 }
1432 if (ret < 0)
1433 return ret;
1434 } while (--nchild);
1435
1436 return 0;
1437 }
1438
1439 static int
await_request_submit(struct i915_request * to,struct i915_request * from)1440 await_request_submit(struct i915_request *to, struct i915_request *from)
1441 {
1442 /*
1443 * If we are waiting on a virtual engine, then it may be
1444 * constrained to execute on a single engine *prior* to submission.
1445 * When it is submitted, it will be first submitted to the virtual
1446 * engine and then passed to the physical engine. We cannot allow
1447 * the waiter to be submitted immediately to the physical engine
1448 * as it may then bypass the virtual request.
1449 */
1450 if (to->engine == READ_ONCE(from->engine))
1451 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1452 &from->submit,
1453 I915_FENCE_GFP);
1454 else
1455 return __i915_request_await_execution(to, from);
1456 }
1457
1458 static int
i915_request_await_request(struct i915_request * to,struct i915_request * from)1459 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1460 {
1461 int ret;
1462
1463 GEM_BUG_ON(to == from);
1464 GEM_BUG_ON(to->timeline == from->timeline);
1465
1466 if (i915_request_completed(from)) {
1467 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1468 return 0;
1469 }
1470
1471 if (to->engine->sched_engine->schedule) {
1472 ret = i915_sched_node_add_dependency(&to->sched,
1473 &from->sched,
1474 I915_DEPENDENCY_EXTERNAL);
1475 if (ret < 0)
1476 return ret;
1477 }
1478
1479 if (!intel_engine_uses_guc(to->engine) &&
1480 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1481 ret = await_request_submit(to, from);
1482 else
1483 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1484 if (ret < 0)
1485 return ret;
1486
1487 return 0;
1488 }
1489
1490 int
i915_request_await_dma_fence(struct i915_request * rq,struct dma_fence * fence)1491 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1492 {
1493 struct dma_fence **child = &fence;
1494 unsigned int nchild = 1;
1495 int ret;
1496
1497 /*
1498 * Note that if the fence-array was created in signal-on-any mode,
1499 * we should *not* decompose it into its individual fences. However,
1500 * we don't currently store which mode the fence-array is operating
1501 * in. Fortunately, the only user of signal-on-any is private to
1502 * amdgpu and we should not see any incoming fence-array from
1503 * sync-file being in signal-on-any mode.
1504 */
1505 if (dma_fence_is_array(fence)) {
1506 struct dma_fence_array *array = to_dma_fence_array(fence);
1507
1508 child = array->fences;
1509 nchild = array->num_fences;
1510 GEM_BUG_ON(!nchild);
1511 }
1512
1513 do {
1514 fence = *child++;
1515 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1516 continue;
1517
1518 /*
1519 * Requests on the same timeline are explicitly ordered, along
1520 * with their dependencies, by i915_request_add() which ensures
1521 * that requests are submitted in-order through each ring.
1522 */
1523 if (fence->context == rq->fence.context)
1524 continue;
1525
1526 /* Squash repeated waits to the same timelines */
1527 if (fence->context &&
1528 intel_timeline_sync_is_later(i915_request_timeline(rq),
1529 fence))
1530 continue;
1531
1532 if (dma_fence_is_i915(fence)) {
1533 if (is_same_parallel_context(rq, to_request(fence)))
1534 continue;
1535 ret = i915_request_await_request(rq, to_request(fence));
1536 } else {
1537 ret = i915_request_await_external(rq, fence);
1538 }
1539 if (ret < 0)
1540 return ret;
1541
1542 /* Record the latest fence used against each timeline */
1543 if (fence->context)
1544 intel_timeline_sync_set(i915_request_timeline(rq),
1545 fence);
1546 } while (--nchild);
1547
1548 return 0;
1549 }
1550
1551 /**
1552 * i915_request_await_deps - set this request to (async) wait upon a struct
1553 * i915_deps dma_fence collection
1554 * @rq: request we are wishing to use
1555 * @deps: The struct i915_deps containing the dependencies.
1556 *
1557 * Returns 0 if successful, negative error code on error.
1558 */
i915_request_await_deps(struct i915_request * rq,const struct i915_deps * deps)1559 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1560 {
1561 int i, err;
1562
1563 for (i = 0; i < deps->num_deps; ++i) {
1564 err = i915_request_await_dma_fence(rq, deps->fences[i]);
1565 if (err)
1566 return err;
1567 }
1568
1569 return 0;
1570 }
1571
1572 /**
1573 * i915_request_await_object - set this request to (async) wait upon a bo
1574 * @to: request we are wishing to use
1575 * @obj: object which may be in use on another ring.
1576 * @write: whether the wait is on behalf of a writer
1577 *
1578 * This code is meant to abstract object synchronization with the GPU.
1579 * Conceptually we serialise writes between engines inside the GPU.
1580 * We only allow one engine to write into a buffer at any time, but
1581 * multiple readers. To ensure each has a coherent view of memory, we must:
1582 *
1583 * - If there is an outstanding write request to the object, the new
1584 * request must wait for it to complete (either CPU or in hw, requests
1585 * on the same ring will be naturally ordered).
1586 *
1587 * - If we are a write request (pending_write_domain is set), the new
1588 * request must wait for outstanding read requests to complete.
1589 *
1590 * Returns 0 if successful, else propagates up the lower layer error.
1591 */
1592 int
i915_request_await_object(struct i915_request * to,struct drm_i915_gem_object * obj,bool write)1593 i915_request_await_object(struct i915_request *to,
1594 struct drm_i915_gem_object *obj,
1595 bool write)
1596 {
1597 struct dma_resv_iter cursor;
1598 struct dma_fence *fence;
1599 int ret = 0;
1600
1601 dma_resv_for_each_fence(&cursor, obj->base.resv,
1602 dma_resv_usage_rw(write), fence) {
1603 ret = i915_request_await_dma_fence(to, fence);
1604 if (ret)
1605 break;
1606 }
1607
1608 return ret;
1609 }
1610
1611 static struct i915_request *
__i915_request_ensure_parallel_ordering(struct i915_request * rq,struct intel_timeline * timeline)1612 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1613 struct intel_timeline *timeline)
1614 {
1615 struct i915_request *prev;
1616
1617 GEM_BUG_ON(!is_parallel_rq(rq));
1618
1619 prev = request_to_parent(rq)->parallel.last_rq;
1620 if (prev) {
1621 if (!__i915_request_is_complete(prev)) {
1622 i915_sw_fence_await_sw_fence(&rq->submit,
1623 &prev->submit,
1624 &rq->submitq);
1625
1626 if (rq->engine->sched_engine->schedule)
1627 __i915_sched_node_add_dependency(&rq->sched,
1628 &prev->sched,
1629 &rq->dep,
1630 0);
1631 }
1632 i915_request_put(prev);
1633 }
1634
1635 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1636
1637 return to_request(__i915_active_fence_set(&timeline->last_request,
1638 &rq->fence));
1639 }
1640
1641 static struct i915_request *
__i915_request_ensure_ordering(struct i915_request * rq,struct intel_timeline * timeline)1642 __i915_request_ensure_ordering(struct i915_request *rq,
1643 struct intel_timeline *timeline)
1644 {
1645 struct i915_request *prev;
1646
1647 GEM_BUG_ON(is_parallel_rq(rq));
1648
1649 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1650 &rq->fence));
1651
1652 if (prev && !__i915_request_is_complete(prev)) {
1653 bool uses_guc = intel_engine_uses_guc(rq->engine);
1654 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1655 rq->engine->mask);
1656 bool same_context = prev->context == rq->context;
1657
1658 /*
1659 * The requests are supposed to be kept in order. However,
1660 * we need to be wary in case the timeline->last_request
1661 * is used as a barrier for external modification to this
1662 * context.
1663 */
1664 GEM_BUG_ON(same_context &&
1665 i915_seqno_passed(prev->fence.seqno,
1666 rq->fence.seqno));
1667
1668 if ((same_context && uses_guc) || (!uses_guc && pow2))
1669 i915_sw_fence_await_sw_fence(&rq->submit,
1670 &prev->submit,
1671 &rq->submitq);
1672 else
1673 __i915_sw_fence_await_dma_fence(&rq->submit,
1674 &prev->fence,
1675 &rq->dmaq);
1676 if (rq->engine->sched_engine->schedule)
1677 __i915_sched_node_add_dependency(&rq->sched,
1678 &prev->sched,
1679 &rq->dep,
1680 0);
1681 }
1682
1683 return prev;
1684 }
1685
1686 static struct i915_request *
__i915_request_add_to_timeline(struct i915_request * rq)1687 __i915_request_add_to_timeline(struct i915_request *rq)
1688 {
1689 struct intel_timeline *timeline = i915_request_timeline(rq);
1690 struct i915_request *prev;
1691
1692 /*
1693 * Dependency tracking and request ordering along the timeline
1694 * is special cased so that we can eliminate redundant ordering
1695 * operations while building the request (we know that the timeline
1696 * itself is ordered, and here we guarantee it).
1697 *
1698 * As we know we will need to emit tracking along the timeline,
1699 * we embed the hooks into our request struct -- at the cost of
1700 * having to have specialised no-allocation interfaces (which will
1701 * be beneficial elsewhere).
1702 *
1703 * A second benefit to open-coding i915_request_await_request is
1704 * that we can apply a slight variant of the rules specialised
1705 * for timelines that jump between engines (such as virtual engines).
1706 * If we consider the case of virtual engine, we must emit a dma-fence
1707 * to prevent scheduling of the second request until the first is
1708 * complete (to maximise our greedy late load balancing) and this
1709 * precludes optimising to use semaphores serialisation of a single
1710 * timeline across engines.
1711 *
1712 * We do not order parallel submission requests on the timeline as each
1713 * parallel submission context has its own timeline and the ordering
1714 * rules for parallel requests are that they must be submitted in the
1715 * order received from the execbuf IOCTL. So rather than using the
1716 * timeline we store a pointer to last request submitted in the
1717 * relationship in the gem context and insert a submission fence
1718 * between that request and request passed into this function or
1719 * alternatively we use completion fence if gem context has a single
1720 * timeline and this is the first submission of an execbuf IOCTL.
1721 */
1722 if (likely(!is_parallel_rq(rq)))
1723 prev = __i915_request_ensure_ordering(rq, timeline);
1724 else
1725 prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1726
1727 /*
1728 * Make sure that no request gazumped us - if it was allocated after
1729 * our i915_request_alloc() and called __i915_request_add() before
1730 * us, the timeline will hold its seqno which is later than ours.
1731 */
1732 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1733
1734 return prev;
1735 }
1736
1737 /*
1738 * NB: This function is not allowed to fail. Doing so would mean the the
1739 * request is not being tracked for completion but the work itself is
1740 * going to happen on the hardware. This would be a Bad Thing(tm).
1741 */
__i915_request_commit(struct i915_request * rq)1742 struct i915_request *__i915_request_commit(struct i915_request *rq)
1743 {
1744 struct intel_engine_cs *engine = rq->engine;
1745 struct intel_ring *ring = rq->ring;
1746 u32 *cs;
1747
1748 RQ_TRACE(rq, "\n");
1749
1750 /*
1751 * To ensure that this call will not fail, space for its emissions
1752 * should already have been reserved in the ring buffer. Let the ring
1753 * know that it is time to use that space up.
1754 */
1755 GEM_BUG_ON(rq->reserved_space > ring->space);
1756 rq->reserved_space = 0;
1757 rq->emitted_jiffies = jiffies;
1758
1759 /*
1760 * Record the position of the start of the breadcrumb so that
1761 * should we detect the updated seqno part-way through the
1762 * GPU processing the request, we never over-estimate the
1763 * position of the ring's HEAD.
1764 */
1765 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1766 GEM_BUG_ON(IS_ERR(cs));
1767 rq->postfix = intel_ring_offset(rq, cs);
1768
1769 return __i915_request_add_to_timeline(rq);
1770 }
1771
__i915_request_queue_bh(struct i915_request * rq)1772 void __i915_request_queue_bh(struct i915_request *rq)
1773 {
1774 i915_sw_fence_commit(&rq->semaphore);
1775 i915_sw_fence_commit(&rq->submit);
1776 }
1777
__i915_request_queue(struct i915_request * rq,const struct i915_sched_attr * attr)1778 void __i915_request_queue(struct i915_request *rq,
1779 const struct i915_sched_attr *attr)
1780 {
1781 /*
1782 * Let the backend know a new request has arrived that may need
1783 * to adjust the existing execution schedule due to a high priority
1784 * request - i.e. we may want to preempt the current request in order
1785 * to run a high priority dependency chain *before* we can execute this
1786 * request.
1787 *
1788 * This is called before the request is ready to run so that we can
1789 * decide whether to preempt the entire chain so that it is ready to
1790 * run at the earliest possible convenience.
1791 */
1792 if (attr && rq->engine->sched_engine->schedule)
1793 rq->engine->sched_engine->schedule(rq, attr);
1794
1795 local_bh_disable();
1796 __i915_request_queue_bh(rq);
1797 local_bh_enable(); /* kick tasklets */
1798 }
1799
i915_request_add(struct i915_request * rq)1800 void i915_request_add(struct i915_request *rq)
1801 {
1802 struct intel_timeline * const tl = i915_request_timeline(rq);
1803 struct i915_sched_attr attr = {};
1804 struct i915_gem_context *ctx;
1805
1806 lockdep_assert_held(&tl->mutex);
1807 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1808
1809 trace_i915_request_add(rq);
1810 __i915_request_commit(rq);
1811
1812 /* XXX placeholder for selftests */
1813 rcu_read_lock();
1814 ctx = rcu_dereference(rq->context->gem_context);
1815 if (ctx)
1816 attr = ctx->sched;
1817 rcu_read_unlock();
1818
1819 __i915_request_queue(rq, &attr);
1820
1821 mutex_unlock(&tl->mutex);
1822 }
1823
local_clock_ns(unsigned int * cpu)1824 static unsigned long local_clock_ns(unsigned int *cpu)
1825 {
1826 unsigned long t;
1827
1828 /*
1829 * Cheaply and approximately convert from nanoseconds to microseconds.
1830 * The result and subsequent calculations are also defined in the same
1831 * approximate microseconds units. The principal source of timing
1832 * error here is from the simple truncation.
1833 *
1834 * Note that local_clock() is only defined wrt to the current CPU;
1835 * the comparisons are no longer valid if we switch CPUs. Instead of
1836 * blocking preemption for the entire busywait, we can detect the CPU
1837 * switch and use that as indicator of system load and a reason to
1838 * stop busywaiting, see busywait_stop().
1839 */
1840 *cpu = get_cpu();
1841 t = local_clock();
1842 put_cpu();
1843
1844 return t;
1845 }
1846
busywait_stop(unsigned long timeout,unsigned int cpu)1847 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1848 {
1849 unsigned int this_cpu;
1850
1851 if (time_after(local_clock_ns(&this_cpu), timeout))
1852 return true;
1853
1854 return this_cpu != cpu;
1855 }
1856
__i915_spin_request(struct i915_request * const rq,int state)1857 static bool __i915_spin_request(struct i915_request * const rq, int state)
1858 {
1859 unsigned long timeout_ns;
1860 unsigned int cpu;
1861
1862 /*
1863 * Only wait for the request if we know it is likely to complete.
1864 *
1865 * We don't track the timestamps around requests, nor the average
1866 * request length, so we do not have a good indicator that this
1867 * request will complete within the timeout. What we do know is the
1868 * order in which requests are executed by the context and so we can
1869 * tell if the request has been started. If the request is not even
1870 * running yet, it is a fair assumption that it will not complete
1871 * within our relatively short timeout.
1872 */
1873 if (!i915_request_is_running(rq))
1874 return false;
1875
1876 /*
1877 * When waiting for high frequency requests, e.g. during synchronous
1878 * rendering split between the CPU and GPU, the finite amount of time
1879 * required to set up the irq and wait upon it limits the response
1880 * rate. By busywaiting on the request completion for a short while we
1881 * can service the high frequency waits as quick as possible. However,
1882 * if it is a slow request, we want to sleep as quickly as possible.
1883 * The tradeoff between waiting and sleeping is roughly the time it
1884 * takes to sleep on a request, on the order of a microsecond.
1885 */
1886
1887 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1888 timeout_ns += local_clock_ns(&cpu);
1889 do {
1890 if (dma_fence_is_signaled(&rq->fence))
1891 return true;
1892
1893 if (signal_pending_state(state, current))
1894 break;
1895
1896 if (busywait_stop(timeout_ns, cpu))
1897 break;
1898
1899 cpu_relax();
1900 } while (!need_resched());
1901
1902 return false;
1903 }
1904
1905 struct request_wait {
1906 struct dma_fence_cb cb;
1907 struct task_struct *tsk;
1908 };
1909
request_wait_wake(struct dma_fence * fence,struct dma_fence_cb * cb)1910 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1911 {
1912 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1913
1914 wake_up_process(fetch_and_zero(&wait->tsk));
1915 }
1916
1917 /**
1918 * i915_request_wait_timeout - wait until execution of request has finished
1919 * @rq: the request to wait upon
1920 * @flags: how to wait
1921 * @timeout: how long to wait in jiffies
1922 *
1923 * i915_request_wait_timeout() waits for the request to be completed, for a
1924 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1925 * unbounded wait).
1926 *
1927 * Returns the remaining time (in jiffies) if the request completed, which may
1928 * be zero if the request is unfinished after the timeout expires.
1929 * If the timeout is 0, it will return 1 if the fence is signaled.
1930 *
1931 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1932 * pending before the request completes.
1933 *
1934 * NOTE: This function has the same wait semantics as dma-fence.
1935 */
i915_request_wait_timeout(struct i915_request * rq,unsigned int flags,long timeout)1936 long i915_request_wait_timeout(struct i915_request *rq,
1937 unsigned int flags,
1938 long timeout)
1939 {
1940 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1941 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1942 struct request_wait wait;
1943
1944 might_sleep();
1945 GEM_BUG_ON(timeout < 0);
1946
1947 if (dma_fence_is_signaled(&rq->fence))
1948 return timeout ?: 1;
1949
1950 if (!timeout)
1951 return -ETIME;
1952
1953 trace_i915_request_wait_begin(rq, flags);
1954
1955 /*
1956 * We must never wait on the GPU while holding a lock as we
1957 * may need to perform a GPU reset. So while we don't need to
1958 * serialise wait/reset with an explicit lock, we do want
1959 * lockdep to detect potential dependency cycles.
1960 */
1961 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1962
1963 /*
1964 * Optimistic spin before touching IRQs.
1965 *
1966 * We may use a rather large value here to offset the penalty of
1967 * switching away from the active task. Frequently, the client will
1968 * wait upon an old swapbuffer to throttle itself to remain within a
1969 * frame of the gpu. If the client is running in lockstep with the gpu,
1970 * then it should not be waiting long at all, and a sleep now will incur
1971 * extra scheduler latency in producing the next frame. To try to
1972 * avoid adding the cost of enabling/disabling the interrupt to the
1973 * short wait, we first spin to see if the request would have completed
1974 * in the time taken to setup the interrupt.
1975 *
1976 * We need upto 5us to enable the irq, and upto 20us to hide the
1977 * scheduler latency of a context switch, ignoring the secondary
1978 * impacts from a context switch such as cache eviction.
1979 *
1980 * The scheme used for low-latency IO is called "hybrid interrupt
1981 * polling". The suggestion there is to sleep until just before you
1982 * expect to be woken by the device interrupt and then poll for its
1983 * completion. That requires having a good predictor for the request
1984 * duration, which we currently lack.
1985 */
1986 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
1987 __i915_spin_request(rq, state))
1988 goto out;
1989
1990 /*
1991 * This client is about to stall waiting for the GPU. In many cases
1992 * this is undesirable and limits the throughput of the system, as
1993 * many clients cannot continue processing user input/output whilst
1994 * blocked. RPS autotuning may take tens of milliseconds to respond
1995 * to the GPU load and thus incurs additional latency for the client.
1996 * We can circumvent that by promoting the GPU frequency to maximum
1997 * before we sleep. This makes the GPU throttle up much more quickly
1998 * (good for benchmarks and user experience, e.g. window animations),
1999 * but at a cost of spending more power processing the workload
2000 * (bad for battery).
2001 */
2002 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2003 intel_rps_boost(rq);
2004
2005 wait.tsk = current;
2006 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2007 goto out;
2008
2009 /*
2010 * Flush the submission tasklet, but only if it may help this request.
2011 *
2012 * We sometimes experience some latency between the HW interrupts and
2013 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2014 * be due to lazy CS events), so lets run the tasklet manually if there
2015 * is a chance it may submit this request. If the request is not ready
2016 * to run, as it is waiting for other fences to be signaled, flushing
2017 * the tasklet is busy work without any advantage for this client.
2018 *
2019 * If the HW is being lazy, this is the last chance before we go to
2020 * sleep to catch any pending events. We will check periodically in
2021 * the heartbeat to flush the submission tasklets as a last resort
2022 * for unhappy HW.
2023 */
2024 if (i915_request_is_ready(rq))
2025 __intel_engine_flush_submission(rq->engine, false);
2026
2027 for (;;) {
2028 set_current_state(state);
2029
2030 if (dma_fence_is_signaled(&rq->fence))
2031 break;
2032
2033 if (signal_pending_state(state, current)) {
2034 timeout = -ERESTARTSYS;
2035 break;
2036 }
2037
2038 if (!timeout) {
2039 timeout = -ETIME;
2040 break;
2041 }
2042
2043 timeout = io_schedule_timeout(timeout);
2044 }
2045 __set_current_state(TASK_RUNNING);
2046
2047 if (READ_ONCE(wait.tsk))
2048 dma_fence_remove_callback(&rq->fence, &wait.cb);
2049 GEM_BUG_ON(!list_empty(&wait.cb.node));
2050
2051 out:
2052 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2053 trace_i915_request_wait_end(rq);
2054 return timeout;
2055 }
2056
2057 /**
2058 * i915_request_wait - wait until execution of request has finished
2059 * @rq: the request to wait upon
2060 * @flags: how to wait
2061 * @timeout: how long to wait in jiffies
2062 *
2063 * i915_request_wait() waits for the request to be completed, for a
2064 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2065 * unbounded wait).
2066 *
2067 * Returns the remaining time (in jiffies) if the request completed, which may
2068 * be zero or -ETIME if the request is unfinished after the timeout expires.
2069 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2070 * pending before the request completes.
2071 *
2072 * NOTE: This function behaves differently from dma-fence wait semantics for
2073 * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2074 */
i915_request_wait(struct i915_request * rq,unsigned int flags,long timeout)2075 long i915_request_wait(struct i915_request *rq,
2076 unsigned int flags,
2077 long timeout)
2078 {
2079 long ret = i915_request_wait_timeout(rq, flags, timeout);
2080
2081 if (!ret)
2082 return -ETIME;
2083
2084 if (ret > 0 && !timeout)
2085 return 0;
2086
2087 return ret;
2088 }
2089
print_sched_attr(const struct i915_sched_attr * attr,char * buf,int x,int len)2090 static int print_sched_attr(const struct i915_sched_attr *attr,
2091 char *buf, int x, int len)
2092 {
2093 if (attr->priority == I915_PRIORITY_INVALID)
2094 return x;
2095
2096 x += snprintf(buf + x, len - x,
2097 " prio=%d", attr->priority);
2098
2099 return x;
2100 }
2101
queue_status(const struct i915_request * rq)2102 static char queue_status(const struct i915_request *rq)
2103 {
2104 if (i915_request_is_active(rq))
2105 return 'E';
2106
2107 if (i915_request_is_ready(rq))
2108 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2109
2110 return 'U';
2111 }
2112
run_status(const struct i915_request * rq)2113 static const char *run_status(const struct i915_request *rq)
2114 {
2115 if (__i915_request_is_complete(rq))
2116 return "!";
2117
2118 if (__i915_request_has_started(rq))
2119 return "*";
2120
2121 if (!i915_sw_fence_signaled(&rq->semaphore))
2122 return "&";
2123
2124 return "";
2125 }
2126
fence_status(const struct i915_request * rq)2127 static const char *fence_status(const struct i915_request *rq)
2128 {
2129 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2130 return "+";
2131
2132 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2133 return "-";
2134
2135 return "";
2136 }
2137
i915_request_show(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent)2138 void i915_request_show(struct drm_printer *m,
2139 const struct i915_request *rq,
2140 const char *prefix,
2141 int indent)
2142 {
2143 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2144 char buf[80] = "";
2145 int x = 0;
2146
2147 /*
2148 * The prefix is used to show the queue status, for which we use
2149 * the following flags:
2150 *
2151 * U [Unready]
2152 * - initial status upon being submitted by the user
2153 *
2154 * - the request is not ready for execution as it is waiting
2155 * for external fences
2156 *
2157 * R [Ready]
2158 * - all fences the request was waiting on have been signaled,
2159 * and the request is now ready for execution and will be
2160 * in a backend queue
2161 *
2162 * - a ready request may still need to wait on semaphores
2163 * [internal fences]
2164 *
2165 * V [Ready/virtual]
2166 * - same as ready, but queued over multiple backends
2167 *
2168 * E [Executing]
2169 * - the request has been transferred from the backend queue and
2170 * submitted for execution on HW
2171 *
2172 * - a completed request may still be regarded as executing, its
2173 * status may not be updated until it is retired and removed
2174 * from the lists
2175 */
2176
2177 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2178
2179 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2180 prefix, indent, " ",
2181 queue_status(rq),
2182 rq->fence.context, rq->fence.seqno,
2183 run_status(rq),
2184 fence_status(rq),
2185 buf,
2186 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2187 name);
2188 }
2189
engine_match_ring(struct intel_engine_cs * engine,struct i915_request * rq)2190 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2191 {
2192 u32 ring = ENGINE_READ(engine, RING_START);
2193
2194 return ring == i915_ggtt_offset(rq->ring->vma);
2195 }
2196
match_ring(struct i915_request * rq)2197 static bool match_ring(struct i915_request *rq)
2198 {
2199 struct intel_engine_cs *engine;
2200 bool found;
2201 int i;
2202
2203 if (!intel_engine_is_virtual(rq->engine))
2204 return engine_match_ring(rq->engine, rq);
2205
2206 found = false;
2207 i = 0;
2208 while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2209 found = engine_match_ring(engine, rq);
2210 if (found)
2211 break;
2212 }
2213
2214 return found;
2215 }
2216
i915_test_request_state(struct i915_request * rq)2217 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2218 {
2219 if (i915_request_completed(rq))
2220 return I915_REQUEST_COMPLETE;
2221
2222 if (!i915_request_started(rq))
2223 return I915_REQUEST_PENDING;
2224
2225 if (match_ring(rq))
2226 return I915_REQUEST_ACTIVE;
2227
2228 return I915_REQUEST_QUEUED;
2229 }
2230
2231 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2232 #include "selftests/mock_request.c"
2233 #include "selftests/i915_request.c"
2234 #endif
2235
i915_request_module_exit(void)2236 void i915_request_module_exit(void)
2237 {
2238 kmem_cache_destroy(slab_execute_cbs);
2239 kmem_cache_destroy(slab_requests);
2240 }
2241
i915_request_module_init(void)2242 int __init i915_request_module_init(void)
2243 {
2244 slab_requests =
2245 kmem_cache_create("i915_request",
2246 sizeof(struct i915_request),
2247 __alignof__(struct i915_request),
2248 SLAB_HWCACHE_ALIGN |
2249 SLAB_RECLAIM_ACCOUNT |
2250 SLAB_TYPESAFE_BY_RCU,
2251 __i915_request_ctor);
2252 if (!slab_requests)
2253 return -ENOMEM;
2254
2255 slab_execute_cbs = KMEM_CACHE(execute_cb,
2256 SLAB_HWCACHE_ALIGN |
2257 SLAB_RECLAIM_ACCOUNT |
2258 SLAB_TYPESAFE_BY_RCU);
2259 if (!slab_execute_cbs)
2260 goto err_requests;
2261
2262 return 0;
2263
2264 err_requests:
2265 kmem_cache_destroy(slab_requests);
2266 return -ENOMEM;
2267 }
2268