1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10
11 #include <drm/i915_drm.h>
12 #include <drm/intel-gtt.h>
13
14 #include "gem/i915_gem_lmem.h"
15
16 #include "intel_ggtt_gmch.h"
17 #include "intel_gt.h"
18 #include "intel_gt_regs.h"
19 #include "intel_pci_config.h"
20 #include "i915_drv.h"
21 #include "i915_pci.h"
22 #include "i915_scatterlist.h"
23 #include "i915_utils.h"
24 #include "i915_vgpu.h"
25
26 #include "intel_gtt.h"
27 #include "gen8_ppgtt.h"
28
suspend_retains_ptes(struct i915_address_space * vm)29 static inline bool suspend_retains_ptes(struct i915_address_space *vm)
30 {
31 return GRAPHICS_VER(vm->i915) >= 8 &&
32 !HAS_LMEM(vm->i915) &&
33 vm->is_ggtt;
34 }
35
i915_ggtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)36 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
37 unsigned long color,
38 u64 *start,
39 u64 *end)
40 {
41 if (i915_node_color_differs(node, color))
42 *start += I915_GTT_PAGE_SIZE;
43
44 /*
45 * Also leave a space between the unallocated reserved node after the
46 * GTT and any objects within the GTT, i.e. we use the color adjustment
47 * to insert a guard page to prevent prefetches crossing over the
48 * GTT boundary.
49 */
50 node = list_next_entry(node, node_list);
51 if (node->color != color)
52 *end -= I915_GTT_PAGE_SIZE;
53 }
54
ggtt_init_hw(struct i915_ggtt * ggtt)55 static int ggtt_init_hw(struct i915_ggtt *ggtt)
56 {
57 struct drm_i915_private *i915 = ggtt->vm.i915;
58
59 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
60
61 ggtt->vm.is_ggtt = true;
62
63 /* Only VLV supports read-only GGTT mappings */
64 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
65
66 if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
67 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
68
69 if (ggtt->mappable_end) {
70 if (!io_mapping_init_wc(&ggtt->iomap,
71 ggtt->gmadr.start,
72 ggtt->mappable_end)) {
73 ggtt->vm.cleanup(&ggtt->vm);
74 return -EIO;
75 }
76
77 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
78 ggtt->mappable_end);
79 }
80
81 intel_ggtt_init_fences(ggtt);
82
83 return 0;
84 }
85
86 /**
87 * i915_ggtt_init_hw - Initialize GGTT hardware
88 * @i915: i915 device
89 */
i915_ggtt_init_hw(struct drm_i915_private * i915)90 int i915_ggtt_init_hw(struct drm_i915_private *i915)
91 {
92 int ret;
93
94 /*
95 * Note that we use page colouring to enforce a guard page at the
96 * end of the address space. This is required as the CS may prefetch
97 * beyond the end of the batch buffer, across the page boundary,
98 * and beyond the end of the GTT if we do not provide a guard.
99 */
100 ret = ggtt_init_hw(to_gt(i915)->ggtt);
101 if (ret)
102 return ret;
103
104 return 0;
105 }
106
107 /*
108 * Return the value of the last GGTT pte cast to an u64, if
109 * the system is supposed to retain ptes across resume. 0 otherwise.
110 */
read_last_pte(struct i915_address_space * vm)111 static u64 read_last_pte(struct i915_address_space *vm)
112 {
113 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
114 gen8_pte_t __iomem *ptep;
115
116 if (!suspend_retains_ptes(vm))
117 return 0;
118
119 GEM_BUG_ON(GRAPHICS_VER(vm->i915) < 8);
120 ptep = (typeof(ptep))ggtt->gsm + (ggtt_total_entries(ggtt) - 1);
121 return readq(ptep);
122 }
123
124 /**
125 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
126 * @vm: The VM to suspend the mappings for
127 *
128 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
129 * DPT page table.
130 */
i915_ggtt_suspend_vm(struct i915_address_space * vm)131 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
132 {
133 struct i915_vma *vma, *vn;
134 int save_skip_rewrite;
135
136 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
137
138 retry:
139 i915_gem_drain_freed_objects(vm->i915);
140
141 mutex_lock(&vm->mutex);
142
143 /*
144 * Skip rewriting PTE on VMA unbind.
145 * FIXME: Use an argument to i915_vma_unbind() instead?
146 */
147 save_skip_rewrite = vm->skip_pte_rewrite;
148 vm->skip_pte_rewrite = true;
149
150 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
151 struct drm_i915_gem_object *obj = vma->obj;
152
153 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
154
155 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
156 continue;
157
158 /* unlikely to race when GPU is idle, so no worry about slowpath.. */
159 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
160 /*
161 * No dead objects should appear here, GPU should be
162 * completely idle, and userspace suspended
163 */
164 i915_gem_object_get(obj);
165
166 mutex_unlock(&vm->mutex);
167
168 i915_gem_object_lock(obj, NULL);
169 GEM_WARN_ON(i915_vma_unbind(vma));
170 i915_gem_object_unlock(obj);
171 i915_gem_object_put(obj);
172
173 vm->skip_pte_rewrite = save_skip_rewrite;
174 goto retry;
175 }
176
177 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
178 i915_vma_wait_for_bind(vma);
179
180 __i915_vma_evict(vma, false);
181 drm_mm_remove_node(&vma->node);
182 }
183
184 i915_gem_object_unlock(obj);
185 }
186
187 if (!suspend_retains_ptes(vm))
188 vm->clear_range(vm, 0, vm->total);
189 else
190 i915_vm_to_ggtt(vm)->probed_pte = read_last_pte(vm);
191
192 vm->skip_pte_rewrite = save_skip_rewrite;
193
194 mutex_unlock(&vm->mutex);
195 }
196
i915_ggtt_suspend(struct i915_ggtt * ggtt)197 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
198 {
199 i915_ggtt_suspend_vm(&ggtt->vm);
200 ggtt->invalidate(ggtt);
201
202 intel_gt_check_and_clear_faults(ggtt->vm.gt);
203 }
204
gen6_ggtt_invalidate(struct i915_ggtt * ggtt)205 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
206 {
207 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
208
209 spin_lock_irq(&uncore->lock);
210 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
211 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
212 spin_unlock_irq(&uncore->lock);
213 }
214
gen8_ggtt_invalidate(struct i915_ggtt * ggtt)215 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
216 {
217 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
218
219 /*
220 * Note that as an uncached mmio write, this will flush the
221 * WCB of the writes into the GGTT before it triggers the invalidate.
222 */
223 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
224 }
225
guc_ggtt_invalidate(struct i915_ggtt * ggtt)226 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
227 {
228 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
229 struct drm_i915_private *i915 = ggtt->vm.i915;
230
231 gen8_ggtt_invalidate(ggtt);
232
233 if (GRAPHICS_VER(i915) >= 12)
234 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
235 GEN12_GUC_TLB_INV_CR_INVALIDATE);
236 else
237 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
238 }
239
gen8_ggtt_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)240 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
241 enum i915_cache_level level,
242 u32 flags)
243 {
244 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
245
246 if (flags & PTE_LM)
247 pte |= GEN12_GGTT_PTE_LM;
248
249 return pte;
250 }
251
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)252 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
253 {
254 writeq(pte, addr);
255 }
256
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 flags)257 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
258 dma_addr_t addr,
259 u64 offset,
260 enum i915_cache_level level,
261 u32 flags)
262 {
263 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
264 gen8_pte_t __iomem *pte =
265 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
266
267 gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags));
268
269 ggtt->invalidate(ggtt);
270 }
271
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,enum i915_cache_level level,u32 flags)272 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
273 struct i915_vma_resource *vma_res,
274 enum i915_cache_level level,
275 u32 flags)
276 {
277 const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags);
278 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
279 gen8_pte_t __iomem *gte;
280 gen8_pte_t __iomem *end;
281 struct sgt_iter iter;
282 dma_addr_t addr;
283
284 /*
285 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
286 * not to allow the user to override access to a read only page.
287 */
288
289 gte = (gen8_pte_t __iomem *)ggtt->gsm;
290 gte += vma_res->start / I915_GTT_PAGE_SIZE;
291 end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE;
292
293 for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
294 gen8_set_pte(gte++, pte_encode | addr);
295 GEM_BUG_ON(gte > end);
296
297 /* Fill the allocated but "unused" space beyond the end of the buffer */
298 while (gte < end)
299 gen8_set_pte(gte++, vm->scratch[0]->encode);
300
301 /*
302 * We want to flush the TLBs only after we're certain all the PTE
303 * updates have finished.
304 */
305 ggtt->invalidate(ggtt);
306 }
307
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 flags)308 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
309 dma_addr_t addr,
310 u64 offset,
311 enum i915_cache_level level,
312 u32 flags)
313 {
314 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
315 gen6_pte_t __iomem *pte =
316 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
317
318 iowrite32(vm->pte_encode(addr, level, flags), pte);
319
320 ggtt->invalidate(ggtt);
321 }
322
323 /*
324 * Binds an object into the global gtt with the specified cache level.
325 * The object will be accessible to the GPU via commands whose operands
326 * reference offsets within the global GTT as well as accessible by the GPU
327 * through the GMADR mapped BAR (i915->mm.gtt->gtt).
328 */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,enum i915_cache_level level,u32 flags)329 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
330 struct i915_vma_resource *vma_res,
331 enum i915_cache_level level,
332 u32 flags)
333 {
334 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
335 gen6_pte_t __iomem *gte;
336 gen6_pte_t __iomem *end;
337 struct sgt_iter iter;
338 dma_addr_t addr;
339
340 gte = (gen6_pte_t __iomem *)ggtt->gsm;
341 gte += vma_res->start / I915_GTT_PAGE_SIZE;
342 end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE;
343
344 for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
345 iowrite32(vm->pte_encode(addr, level, flags), gte++);
346 GEM_BUG_ON(gte > end);
347
348 /* Fill the allocated but "unused" space beyond the end of the buffer */
349 while (gte < end)
350 iowrite32(vm->scratch[0]->encode, gte++);
351
352 /*
353 * We want to flush the TLBs only after we're certain all the PTE
354 * updates have finished.
355 */
356 ggtt->invalidate(ggtt);
357 }
358
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)359 static void nop_clear_range(struct i915_address_space *vm,
360 u64 start, u64 length)
361 {
362 }
363
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)364 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
365 u64 start, u64 length)
366 {
367 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
368 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
369 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
370 const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
371 gen8_pte_t __iomem *gtt_base =
372 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
373 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
374 int i;
375
376 if (WARN(num_entries > max_entries,
377 "First entry = %d; Num entries = %d (max=%d)\n",
378 first_entry, num_entries, max_entries))
379 num_entries = max_entries;
380
381 for (i = 0; i < num_entries; i++)
382 gen8_set_pte(>t_base[i], scratch_pte);
383 }
384
bxt_vtd_ggtt_wa(struct i915_address_space * vm)385 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
386 {
387 /*
388 * Make sure the internal GAM fifo has been cleared of all GTT
389 * writes before exiting stop_machine(). This guarantees that
390 * any aperture accesses waiting to start in another process
391 * cannot back up behind the GTT writes causing a hang.
392 * The register can be any arbitrary GAM register.
393 */
394 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
395 }
396
397 struct insert_page {
398 struct i915_address_space *vm;
399 dma_addr_t addr;
400 u64 offset;
401 enum i915_cache_level level;
402 };
403
bxt_vtd_ggtt_insert_page__cb(void * _arg)404 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
405 {
406 struct insert_page *arg = _arg;
407
408 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
409 bxt_vtd_ggtt_wa(arg->vm);
410
411 return 0;
412 }
413
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 unused)414 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
415 dma_addr_t addr,
416 u64 offset,
417 enum i915_cache_level level,
418 u32 unused)
419 {
420 struct insert_page arg = { vm, addr, offset, level };
421
422 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
423 }
424
425 struct insert_entries {
426 struct i915_address_space *vm;
427 struct i915_vma_resource *vma_res;
428 enum i915_cache_level level;
429 u32 flags;
430 };
431
bxt_vtd_ggtt_insert_entries__cb(void * _arg)432 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
433 {
434 struct insert_entries *arg = _arg;
435
436 gen8_ggtt_insert_entries(arg->vm, arg->vma_res, arg->level, arg->flags);
437 bxt_vtd_ggtt_wa(arg->vm);
438
439 return 0;
440 }
441
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma_resource * vma_res,enum i915_cache_level level,u32 flags)442 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
443 struct i915_vma_resource *vma_res,
444 enum i915_cache_level level,
445 u32 flags)
446 {
447 struct insert_entries arg = { vm, vma_res, level, flags };
448
449 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
450 }
451
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)452 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
453 u64 start, u64 length)
454 {
455 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
456 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
457 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
458 gen6_pte_t scratch_pte, __iomem *gtt_base =
459 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
460 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
461 int i;
462
463 if (WARN(num_entries > max_entries,
464 "First entry = %d; Num entries = %d (max=%d)\n",
465 first_entry, num_entries, max_entries))
466 num_entries = max_entries;
467
468 scratch_pte = vm->scratch[0]->encode;
469 for (i = 0; i < num_entries; i++)
470 iowrite32(scratch_pte, >t_base[i]);
471 }
472
intel_ggtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,enum i915_cache_level cache_level,u32 flags)473 void intel_ggtt_bind_vma(struct i915_address_space *vm,
474 struct i915_vm_pt_stash *stash,
475 struct i915_vma_resource *vma_res,
476 enum i915_cache_level cache_level,
477 u32 flags)
478 {
479 u32 pte_flags;
480
481 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
482 return;
483
484 vma_res->bound_flags |= flags;
485
486 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
487 pte_flags = 0;
488 if (vma_res->bi.readonly)
489 pte_flags |= PTE_READ_ONLY;
490 if (vma_res->bi.lmem)
491 pte_flags |= PTE_LM;
492
493 vm->insert_entries(vm, vma_res, cache_level, pte_flags);
494 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
495 }
496
intel_ggtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)497 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
498 struct i915_vma_resource *vma_res)
499 {
500 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
501 }
502
ggtt_reserve_guc_top(struct i915_ggtt * ggtt)503 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
504 {
505 u64 size;
506 int ret;
507
508 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
509 return 0;
510
511 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
512 size = ggtt->vm.total - GUC_GGTT_TOP;
513
514 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, size,
515 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
516 PIN_NOEVICT);
517 if (ret)
518 drm_dbg(&ggtt->vm.i915->drm,
519 "Failed to reserve top of GGTT for GuC\n");
520
521 return ret;
522 }
523
ggtt_release_guc_top(struct i915_ggtt * ggtt)524 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
525 {
526 if (drm_mm_node_allocated(&ggtt->uc_fw))
527 drm_mm_remove_node(&ggtt->uc_fw);
528 }
529
cleanup_init_ggtt(struct i915_ggtt * ggtt)530 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
531 {
532 ggtt_release_guc_top(ggtt);
533 if (drm_mm_node_allocated(&ggtt->error_capture))
534 drm_mm_remove_node(&ggtt->error_capture);
535 mutex_destroy(&ggtt->error_mutex);
536 }
537
init_ggtt(struct i915_ggtt * ggtt)538 static int init_ggtt(struct i915_ggtt *ggtt)
539 {
540 /*
541 * Let GEM Manage all of the aperture.
542 *
543 * However, leave one page at the end still bound to the scratch page.
544 * There are a number of places where the hardware apparently prefetches
545 * past the end of the object, and we've seen multiple hangs with the
546 * GPU head pointer stuck in a batchbuffer bound at the last page of the
547 * aperture. One page should be enough to keep any prefetching inside
548 * of the aperture.
549 */
550 unsigned long hole_start, hole_end;
551 struct drm_mm_node *entry;
552 int ret;
553
554 ggtt->pte_lost = true;
555
556 /*
557 * GuC requires all resources that we're sharing with it to be placed in
558 * non-WOPCM memory. If GuC is not present or not in use we still need a
559 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
560 * why.
561 */
562 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
563 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
564
565 ret = intel_vgt_balloon(ggtt);
566 if (ret)
567 return ret;
568
569 mutex_init(&ggtt->error_mutex);
570 if (ggtt->mappable_end) {
571 /*
572 * Reserve a mappable slot for our lockless error capture.
573 *
574 * We strongly prefer taking address 0x0 in order to protect
575 * other critical buffers against accidental overwrites,
576 * as writing to address 0 is a very common mistake.
577 *
578 * Since 0 may already be in use by the system (e.g. the BIOS
579 * framebuffer), we let the reservation fail quietly and hope
580 * 0 remains reserved always.
581 *
582 * If we fail to reserve 0, and then fail to find any space
583 * for an error-capture, remain silent. We can afford not
584 * to reserve an error_capture node as we have fallback
585 * paths, and we trust that 0 will remain reserved. However,
586 * the only likely reason for failure to insert is a driver
587 * bug, which we expect to cause other failures...
588 */
589 ggtt->error_capture.size = I915_GTT_PAGE_SIZE;
590 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
591 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
592 drm_mm_insert_node_in_range(&ggtt->vm.mm,
593 &ggtt->error_capture,
594 ggtt->error_capture.size, 0,
595 ggtt->error_capture.color,
596 0, ggtt->mappable_end,
597 DRM_MM_INSERT_LOW);
598 }
599 if (drm_mm_node_allocated(&ggtt->error_capture))
600 drm_dbg(&ggtt->vm.i915->drm,
601 "Reserved GGTT:[%llx, %llx] for use by error capture\n",
602 ggtt->error_capture.start,
603 ggtt->error_capture.start + ggtt->error_capture.size);
604
605 /*
606 * The upper portion of the GuC address space has a sizeable hole
607 * (several MB) that is inaccessible by GuC. Reserve this range within
608 * GGTT as it can comfortably hold GuC/HuC firmware images.
609 */
610 ret = ggtt_reserve_guc_top(ggtt);
611 if (ret)
612 goto err;
613
614 /* Clear any non-preallocated blocks */
615 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
616 drm_dbg(&ggtt->vm.i915->drm,
617 "clearing unused GTT space: [%lx, %lx]\n",
618 hole_start, hole_end);
619 ggtt->vm.clear_range(&ggtt->vm, hole_start,
620 hole_end - hole_start);
621 }
622
623 /* And finally clear the reserved guard page */
624 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
625
626 return 0;
627
628 err:
629 cleanup_init_ggtt(ggtt);
630 return ret;
631 }
632
aliasing_gtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,enum i915_cache_level cache_level,u32 flags)633 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
634 struct i915_vm_pt_stash *stash,
635 struct i915_vma_resource *vma_res,
636 enum i915_cache_level cache_level,
637 u32 flags)
638 {
639 u32 pte_flags;
640
641 /* Currently applicable only to VLV */
642 pte_flags = 0;
643 if (vma_res->bi.readonly)
644 pte_flags |= PTE_READ_ONLY;
645
646 if (flags & I915_VMA_LOCAL_BIND)
647 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
648 stash, vma_res, cache_level, flags);
649
650 if (flags & I915_VMA_GLOBAL_BIND)
651 vm->insert_entries(vm, vma_res, cache_level, pte_flags);
652
653 vma_res->bound_flags |= flags;
654 }
655
aliasing_gtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)656 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
657 struct i915_vma_resource *vma_res)
658 {
659 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
660 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
661
662 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
663 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
664 }
665
init_aliasing_ppgtt(struct i915_ggtt * ggtt)666 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
667 {
668 struct i915_vm_pt_stash stash = {};
669 struct i915_ppgtt *ppgtt;
670 int err;
671
672 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
673 if (IS_ERR(ppgtt))
674 return PTR_ERR(ppgtt);
675
676 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
677 err = -ENODEV;
678 goto err_ppgtt;
679 }
680
681 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
682 if (err)
683 goto err_ppgtt;
684
685 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
686 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
687 i915_gem_object_unlock(ppgtt->vm.scratch[0]);
688 if (err)
689 goto err_stash;
690
691 /*
692 * Note we only pre-allocate as far as the end of the global
693 * GTT. On 48b / 4-level page-tables, the difference is very,
694 * very significant! We have to preallocate as GVT/vgpu does
695 * not like the page directory disappearing.
696 */
697 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
698
699 ggtt->alias = ppgtt;
700 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
701
702 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
703 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
704
705 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
706 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
707
708 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
709 return 0;
710
711 err_stash:
712 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
713 err_ppgtt:
714 i915_vm_put(&ppgtt->vm);
715 return err;
716 }
717
fini_aliasing_ppgtt(struct i915_ggtt * ggtt)718 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
719 {
720 struct i915_ppgtt *ppgtt;
721
722 ppgtt = fetch_and_zero(&ggtt->alias);
723 if (!ppgtt)
724 return;
725
726 i915_vm_put(&ppgtt->vm);
727
728 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
729 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
730 }
731
i915_init_ggtt(struct drm_i915_private * i915)732 int i915_init_ggtt(struct drm_i915_private *i915)
733 {
734 int ret;
735
736 ret = init_ggtt(to_gt(i915)->ggtt);
737 if (ret)
738 return ret;
739
740 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
741 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
742 if (ret)
743 cleanup_init_ggtt(to_gt(i915)->ggtt);
744 }
745
746 return 0;
747 }
748
ggtt_cleanup_hw(struct i915_ggtt * ggtt)749 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
750 {
751 struct i915_vma *vma, *vn;
752
753 flush_workqueue(ggtt->vm.i915->wq);
754 i915_gem_drain_freed_objects(ggtt->vm.i915);
755
756 mutex_lock(&ggtt->vm.mutex);
757
758 ggtt->vm.skip_pte_rewrite = true;
759
760 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
761 struct drm_i915_gem_object *obj = vma->obj;
762 bool trylock;
763
764 trylock = i915_gem_object_trylock(obj, NULL);
765 WARN_ON(!trylock);
766
767 WARN_ON(__i915_vma_unbind(vma));
768 if (trylock)
769 i915_gem_object_unlock(obj);
770 }
771
772 if (drm_mm_node_allocated(&ggtt->error_capture))
773 drm_mm_remove_node(&ggtt->error_capture);
774 mutex_destroy(&ggtt->error_mutex);
775
776 ggtt_release_guc_top(ggtt);
777 intel_vgt_deballoon(ggtt);
778
779 ggtt->vm.cleanup(&ggtt->vm);
780
781 mutex_unlock(&ggtt->vm.mutex);
782 i915_address_space_fini(&ggtt->vm);
783
784 arch_phys_wc_del(ggtt->mtrr);
785
786 if (ggtt->iomap.size)
787 io_mapping_fini(&ggtt->iomap);
788 }
789
790 /**
791 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
792 * @i915: i915 device
793 */
i915_ggtt_driver_release(struct drm_i915_private * i915)794 void i915_ggtt_driver_release(struct drm_i915_private *i915)
795 {
796 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
797
798 fini_aliasing_ppgtt(ggtt);
799
800 intel_ggtt_fini_fences(ggtt);
801 ggtt_cleanup_hw(ggtt);
802 }
803
804 /**
805 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
806 * all free objects have been drained.
807 * @i915: i915 device
808 */
i915_ggtt_driver_late_release(struct drm_i915_private * i915)809 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
810 {
811 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
812
813 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
814 dma_resv_fini(&ggtt->vm._resv);
815 }
816
gen6_get_total_gtt_size(u16 snb_gmch_ctl)817 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
818 {
819 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
820 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
821 return snb_gmch_ctl << 20;
822 }
823
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)824 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
825 {
826 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
827 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
828 if (bdw_gmch_ctl)
829 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
830
831 #ifdef CONFIG_X86_32
832 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
833 if (bdw_gmch_ctl > 4)
834 bdw_gmch_ctl = 4;
835 #endif
836
837 return bdw_gmch_ctl << 20;
838 }
839
chv_get_total_gtt_size(u16 gmch_ctrl)840 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
841 {
842 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
843 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
844
845 if (gmch_ctrl)
846 return 1 << (20 + gmch_ctrl);
847
848 return 0;
849 }
850
gen6_gttmmadr_size(struct drm_i915_private * i915)851 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
852 {
853 /*
854 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
855 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
856 */
857 GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
858 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
859 }
860
gen6_gttadr_offset(struct drm_i915_private * i915)861 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
862 {
863 return gen6_gttmmadr_size(i915) / 2;
864 }
865
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)866 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
867 {
868 struct drm_i915_private *i915 = ggtt->vm.i915;
869 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
870 phys_addr_t phys_addr;
871 u32 pte_flags;
872 int ret;
873
874 GEM_WARN_ON(pci_resource_len(pdev, GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
875 phys_addr = pci_resource_start(pdev, GTTMMADR_BAR) + gen6_gttadr_offset(i915);
876
877 /*
878 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
879 * will be dropped. For WC mappings in general we have 64 byte burst
880 * writes when the WC buffer is flushed, so we can't use it, but have to
881 * resort to an uncached mapping. The WC issue is easily caught by the
882 * readback check when writing GTT PTE entries.
883 */
884 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11)
885 ggtt->gsm = ioremap(phys_addr, size);
886 else
887 ggtt->gsm = ioremap_wc(phys_addr, size);
888 if (!ggtt->gsm) {
889 drm_err(&i915->drm, "Failed to map the ggtt page table\n");
890 return -ENOMEM;
891 }
892
893 kref_init(&ggtt->vm.resv_ref);
894 ret = setup_scratch_page(&ggtt->vm);
895 if (ret) {
896 drm_err(&i915->drm, "Scratch setup failed\n");
897 /* iounmap will also get called at remove, but meh */
898 iounmap(ggtt->gsm);
899 return ret;
900 }
901
902 pte_flags = 0;
903 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
904 pte_flags |= PTE_LM;
905
906 ggtt->vm.scratch[0]->encode =
907 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
908 I915_CACHE_NONE, pte_flags);
909
910 return 0;
911 }
912
gen6_gmch_remove(struct i915_address_space * vm)913 static void gen6_gmch_remove(struct i915_address_space *vm)
914 {
915 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
916
917 iounmap(ggtt->gsm);
918 free_scratch(vm);
919 }
920
pci_resource(struct pci_dev * pdev,int bar)921 static struct resource pci_resource(struct pci_dev *pdev, int bar)
922 {
923 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
924 pci_resource_len(pdev, bar));
925 }
926
gen8_gmch_probe(struct i915_ggtt * ggtt)927 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
928 {
929 struct drm_i915_private *i915 = ggtt->vm.i915;
930 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
931 unsigned int size;
932 u16 snb_gmch_ctl;
933
934 if (!HAS_LMEM(i915)) {
935 if (!i915_pci_resource_valid(pdev, GTT_APERTURE_BAR))
936 return -ENXIO;
937
938 ggtt->gmadr = pci_resource(pdev, GTT_APERTURE_BAR);
939 ggtt->mappable_end = resource_size(&ggtt->gmadr);
940 }
941
942 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
943 if (IS_CHERRYVIEW(i915))
944 size = chv_get_total_gtt_size(snb_gmch_ctl);
945 else
946 size = gen8_get_total_gtt_size(snb_gmch_ctl);
947
948 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
949 ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
950 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
951
952 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
953 ggtt->vm.cleanup = gen6_gmch_remove;
954 ggtt->vm.insert_page = gen8_ggtt_insert_page;
955 ggtt->vm.clear_range = nop_clear_range;
956 if (intel_scanout_needs_vtd_wa(i915))
957 ggtt->vm.clear_range = gen8_ggtt_clear_range;
958
959 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
960
961 /*
962 * Serialize GTT updates with aperture access on BXT if VT-d is on,
963 * and always on CHV.
964 */
965 if (intel_vm_no_concurrent_access_wa(i915)) {
966 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
967 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
968
969 /*
970 * Calling stop_machine() version of GGTT update function
971 * at error capture/reset path will raise lockdep warning.
972 * Allow calling gen8_ggtt_insert_* directly at reset path
973 * which is safe from parallel GGTT updates.
974 */
975 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
976 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
977
978 ggtt->vm.bind_async_flags =
979 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
980 }
981
982 ggtt->invalidate = gen8_ggtt_invalidate;
983
984 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
985 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
986
987 ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
988
989 setup_private_pat(ggtt->vm.gt->uncore);
990
991 return ggtt_probe_common(ggtt, size);
992 }
993
snb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)994 static u64 snb_pte_encode(dma_addr_t addr,
995 enum i915_cache_level level,
996 u32 flags)
997 {
998 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
999
1000 switch (level) {
1001 case I915_CACHE_L3_LLC:
1002 case I915_CACHE_LLC:
1003 pte |= GEN6_PTE_CACHE_LLC;
1004 break;
1005 case I915_CACHE_NONE:
1006 pte |= GEN6_PTE_UNCACHED;
1007 break;
1008 default:
1009 MISSING_CASE(level);
1010 }
1011
1012 return pte;
1013 }
1014
ivb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)1015 static u64 ivb_pte_encode(dma_addr_t addr,
1016 enum i915_cache_level level,
1017 u32 flags)
1018 {
1019 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1020
1021 switch (level) {
1022 case I915_CACHE_L3_LLC:
1023 pte |= GEN7_PTE_CACHE_L3_LLC;
1024 break;
1025 case I915_CACHE_LLC:
1026 pte |= GEN6_PTE_CACHE_LLC;
1027 break;
1028 case I915_CACHE_NONE:
1029 pte |= GEN6_PTE_UNCACHED;
1030 break;
1031 default:
1032 MISSING_CASE(level);
1033 }
1034
1035 return pte;
1036 }
1037
byt_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)1038 static u64 byt_pte_encode(dma_addr_t addr,
1039 enum i915_cache_level level,
1040 u32 flags)
1041 {
1042 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1043
1044 if (!(flags & PTE_READ_ONLY))
1045 pte |= BYT_PTE_WRITEABLE;
1046
1047 if (level != I915_CACHE_NONE)
1048 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1049
1050 return pte;
1051 }
1052
hsw_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)1053 static u64 hsw_pte_encode(dma_addr_t addr,
1054 enum i915_cache_level level,
1055 u32 flags)
1056 {
1057 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1058
1059 if (level != I915_CACHE_NONE)
1060 pte |= HSW_WB_LLC_AGE3;
1061
1062 return pte;
1063 }
1064
iris_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)1065 static u64 iris_pte_encode(dma_addr_t addr,
1066 enum i915_cache_level level,
1067 u32 flags)
1068 {
1069 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1070
1071 switch (level) {
1072 case I915_CACHE_NONE:
1073 break;
1074 case I915_CACHE_WT:
1075 pte |= HSW_WT_ELLC_LLC_AGE3;
1076 break;
1077 default:
1078 pte |= HSW_WB_ELLC_LLC_AGE3;
1079 break;
1080 }
1081
1082 return pte;
1083 }
1084
gen6_gmch_probe(struct i915_ggtt * ggtt)1085 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1086 {
1087 struct drm_i915_private *i915 = ggtt->vm.i915;
1088 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1089 unsigned int size;
1090 u16 snb_gmch_ctl;
1091
1092 if (!i915_pci_resource_valid(pdev, GTT_APERTURE_BAR))
1093 return -ENXIO;
1094
1095 ggtt->gmadr = pci_resource(pdev, GTT_APERTURE_BAR);
1096 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1097
1098 /*
1099 * 64/512MB is the current min/max we actually know of, but this is
1100 * just a coarse sanity check.
1101 */
1102 if (ggtt->mappable_end < (64 << 20) ||
1103 ggtt->mappable_end > (512 << 20)) {
1104 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1105 &ggtt->mappable_end);
1106 return -ENXIO;
1107 }
1108
1109 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1110
1111 size = gen6_get_total_gtt_size(snb_gmch_ctl);
1112 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1113
1114 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1115 ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1116
1117 ggtt->vm.clear_range = nop_clear_range;
1118 if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1119 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1120 ggtt->vm.insert_page = gen6_ggtt_insert_page;
1121 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1122 ggtt->vm.cleanup = gen6_gmch_remove;
1123
1124 ggtt->invalidate = gen6_ggtt_invalidate;
1125
1126 if (HAS_EDRAM(i915))
1127 ggtt->vm.pte_encode = iris_pte_encode;
1128 else if (IS_HASWELL(i915))
1129 ggtt->vm.pte_encode = hsw_pte_encode;
1130 else if (IS_VALLEYVIEW(i915))
1131 ggtt->vm.pte_encode = byt_pte_encode;
1132 else if (GRAPHICS_VER(i915) >= 7)
1133 ggtt->vm.pte_encode = ivb_pte_encode;
1134 else
1135 ggtt->vm.pte_encode = snb_pte_encode;
1136
1137 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1138 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1139
1140 return ggtt_probe_common(ggtt, size);
1141 }
1142
ggtt_probe_hw(struct i915_ggtt * ggtt,struct intel_gt * gt)1143 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1144 {
1145 struct drm_i915_private *i915 = gt->i915;
1146 int ret;
1147
1148 ggtt->vm.gt = gt;
1149 ggtt->vm.i915 = i915;
1150 ggtt->vm.dma = i915->drm.dev;
1151 dma_resv_init(&ggtt->vm._resv);
1152
1153 if (GRAPHICS_VER(i915) >= 8)
1154 ret = gen8_gmch_probe(ggtt);
1155 else if (GRAPHICS_VER(i915) >= 6)
1156 ret = gen6_gmch_probe(ggtt);
1157 else
1158 ret = intel_ggtt_gmch_probe(ggtt);
1159
1160 if (ret) {
1161 dma_resv_fini(&ggtt->vm._resv);
1162 return ret;
1163 }
1164
1165 if ((ggtt->vm.total - 1) >> 32) {
1166 drm_err(&i915->drm,
1167 "We never expected a Global GTT with more than 32bits"
1168 " of address space! Found %lldM!\n",
1169 ggtt->vm.total >> 20);
1170 ggtt->vm.total = 1ULL << 32;
1171 ggtt->mappable_end =
1172 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1173 }
1174
1175 if (ggtt->mappable_end > ggtt->vm.total) {
1176 drm_err(&i915->drm,
1177 "mappable aperture extends past end of GGTT,"
1178 " aperture=%pa, total=%llx\n",
1179 &ggtt->mappable_end, ggtt->vm.total);
1180 ggtt->mappable_end = ggtt->vm.total;
1181 }
1182
1183 /* GMADR is the PCI mmio aperture into the global GTT. */
1184 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1185 drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1186 (u64)ggtt->mappable_end >> 20);
1187 drm_dbg(&i915->drm, "DSM size = %lluM\n",
1188 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1189
1190 return 0;
1191 }
1192
1193 /**
1194 * i915_ggtt_probe_hw - Probe GGTT hardware location
1195 * @i915: i915 device
1196 */
i915_ggtt_probe_hw(struct drm_i915_private * i915)1197 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1198 {
1199 int ret;
1200
1201 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1202 if (ret)
1203 return ret;
1204
1205 if (i915_vtd_active(i915))
1206 drm_info(&i915->drm, "VT-d active for gfx access\n");
1207
1208 return 0;
1209 }
1210
i915_ggtt_enable_hw(struct drm_i915_private * i915)1211 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1212 {
1213 if (GRAPHICS_VER(i915) < 6)
1214 return intel_ggtt_gmch_enable_hw(i915);
1215
1216 return 0;
1217 }
1218
i915_ggtt_enable_guc(struct i915_ggtt * ggtt)1219 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1220 {
1221 GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1222
1223 ggtt->invalidate = guc_ggtt_invalidate;
1224
1225 ggtt->invalidate(ggtt);
1226 }
1227
i915_ggtt_disable_guc(struct i915_ggtt * ggtt)1228 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1229 {
1230 /* XXX Temporary pardon for error unload */
1231 if (ggtt->invalidate == gen8_ggtt_invalidate)
1232 return;
1233
1234 /* We should only be called after i915_ggtt_enable_guc() */
1235 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1236
1237 ggtt->invalidate = gen8_ggtt_invalidate;
1238
1239 ggtt->invalidate(ggtt);
1240 }
1241
1242 /**
1243 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1244 * @vm: The VM to restore the mappings for
1245 *
1246 * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1247 * DPT page table.
1248 *
1249 * Returns %true if restoring the mapping for any object that was in a write
1250 * domain before suspend.
1251 */
i915_ggtt_resume_vm(struct i915_address_space * vm)1252 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1253 {
1254 struct i915_vma *vma;
1255 bool write_domain_objs = false;
1256 bool retained_ptes;
1257
1258 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1259
1260 /*
1261 * First fill our portion of the GTT with scratch pages if
1262 * they were not retained across suspend.
1263 */
1264 retained_ptes = suspend_retains_ptes(vm) &&
1265 !i915_vm_to_ggtt(vm)->pte_lost &&
1266 !GEM_WARN_ON(i915_vm_to_ggtt(vm)->probed_pte != read_last_pte(vm));
1267
1268 if (!retained_ptes)
1269 vm->clear_range(vm, 0, vm->total);
1270
1271 /* clflush objects bound into the GGTT and rebind them. */
1272 list_for_each_entry(vma, &vm->bound_list, vm_link) {
1273 struct drm_i915_gem_object *obj = vma->obj;
1274 unsigned int was_bound =
1275 atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1276
1277 GEM_BUG_ON(!was_bound);
1278 if (!retained_ptes) {
1279 /*
1280 * Clear the bound flags of the vma resource to allow
1281 * ptes to be repopulated.
1282 */
1283 vma->resource->bound_flags = 0;
1284 vma->ops->bind_vma(vm, NULL, vma->resource,
1285 obj ? obj->cache_level : 0,
1286 was_bound);
1287 }
1288 if (obj) { /* only used during resume => exclusive access */
1289 write_domain_objs |= fetch_and_zero(&obj->write_domain);
1290 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1291 }
1292 }
1293
1294 return write_domain_objs;
1295 }
1296
i915_ggtt_resume(struct i915_ggtt * ggtt)1297 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1298 {
1299 bool flush;
1300
1301 intel_gt_check_and_clear_faults(ggtt->vm.gt);
1302
1303 flush = i915_ggtt_resume_vm(&ggtt->vm);
1304
1305 ggtt->invalidate(ggtt);
1306
1307 if (flush)
1308 wbinvd_on_all_cpus();
1309
1310 if (GRAPHICS_VER(ggtt->vm.i915) >= 8)
1311 setup_private_pat(ggtt->vm.gt->uncore);
1312
1313 intel_ggtt_restore_fences(ggtt);
1314 }
1315
i915_ggtt_mark_pte_lost(struct drm_i915_private * i915,bool val)1316 void i915_ggtt_mark_pte_lost(struct drm_i915_private *i915, bool val)
1317 {
1318 to_gt(i915)->ggtt->pte_lost = val;
1319 }
1320