1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
50 static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
61
62
63 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,size_t size)64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66 {
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69 }
70
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,size_t size)71 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73 {
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76 }
77
78 static int
i915_gem_wait_for_error(struct drm_device * dev)79 i915_gem_wait_for_error(struct drm_device *dev)
80 {
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
98 */
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
102 }
103 return 0;
104 }
105
i915_mutex_lock_interruptible(struct drm_device * dev)106 int i915_mutex_lock_interruptible(struct drm_device *dev)
107 {
108 int ret;
109
110 ret = i915_gem_wait_for_error(dev);
111 if (ret)
112 return ret;
113
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
117
118 WARN_ON(i915_verify_lists(dev));
119 return 0;
120 }
121
122 static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object * obj)123 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124 {
125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
126 }
127
i915_gem_do_init(struct drm_device * dev,unsigned long start,unsigned long mappable_end,unsigned long end)128 void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
132 {
133 drm_i915_private_t *dev_priv = dev->dev_private;
134
135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
140 dev_priv->mm.gtt_total = end - start;
141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
145 }
146
147 int
i915_gem_init_ioctl(struct drm_device * dev,void * data,struct drm_file * file)148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
150 {
151 struct drm_i915_gem_init *args = data;
152
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
156
157 mutex_lock(&dev->struct_mutex);
158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
159 mutex_unlock(&dev->struct_mutex);
160
161 return 0;
162 }
163
164 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)165 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
166 struct drm_file *file)
167 {
168 struct drm_i915_private *dev_priv = dev->dev_private;
169 struct drm_i915_gem_get_aperture *args = data;
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
172
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
175
176 pinned = 0;
177 mutex_lock(&dev->struct_mutex);
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
180 mutex_unlock(&dev->struct_mutex);
181
182 args->aper_size = dev_priv->mm.gtt_total;
183 args->aper_available_size = args->aper_size -pinned;
184
185 return 0;
186 }
187
188 static int
i915_gem_create(struct drm_file * file,struct drm_device * dev,uint64_t size,uint32_t * handle_p)189 i915_gem_create(struct drm_file *file,
190 struct drm_device *dev,
191 uint64_t size,
192 uint32_t *handle_p)
193 {
194 struct drm_i915_gem_object *obj;
195 int ret;
196 u32 handle;
197
198 size = roundup(size, PAGE_SIZE);
199
200 /* Allocate the new object */
201 obj = i915_gem_alloc_object(dev, size);
202 if (obj == NULL)
203 return -ENOMEM;
204
205 ret = drm_gem_handle_create(file, &obj->base, &handle);
206 if (ret) {
207 drm_gem_object_release(&obj->base);
208 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
209 kfree(obj);
210 return ret;
211 }
212
213 /* drop reference from allocate - handle holds it now */
214 drm_gem_object_unreference(&obj->base);
215 trace_i915_gem_object_create(obj);
216
217 *handle_p = handle;
218 return 0;
219 }
220
221 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)222 i915_gem_dumb_create(struct drm_file *file,
223 struct drm_device *dev,
224 struct drm_mode_create_dumb *args)
225 {
226 /* have to work out size/pitch and return them */
227 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
228 args->size = args->pitch * args->height;
229 return i915_gem_create(file, dev,
230 args->size, &args->handle);
231 }
232
i915_gem_dumb_destroy(struct drm_file * file,struct drm_device * dev,uint32_t handle)233 int i915_gem_dumb_destroy(struct drm_file *file,
234 struct drm_device *dev,
235 uint32_t handle)
236 {
237 return drm_gem_handle_delete(file, handle);
238 }
239
240 /**
241 * Creates a new mm object and returns a handle to it.
242 */
243 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)244 i915_gem_create_ioctl(struct drm_device *dev, void *data,
245 struct drm_file *file)
246 {
247 struct drm_i915_gem_create *args = data;
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250 }
251
i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object * obj)252 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253 {
254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255
256 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257 obj->tiling_mode != I915_TILING_NONE;
258 }
259
260 static inline void
slow_shmem_copy(struct page * dst_page,int dst_offset,struct page * src_page,int src_offset,int length)261 slow_shmem_copy(struct page *dst_page,
262 int dst_offset,
263 struct page *src_page,
264 int src_offset,
265 int length)
266 {
267 char *dst_vaddr, *src_vaddr;
268
269 dst_vaddr = kmap(dst_page);
270 src_vaddr = kmap(src_page);
271
272 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
273
274 kunmap(src_page);
275 kunmap(dst_page);
276 }
277
278 static inline void
slow_shmem_bit17_copy(struct page * gpu_page,int gpu_offset,struct page * cpu_page,int cpu_offset,int length,int is_read)279 slow_shmem_bit17_copy(struct page *gpu_page,
280 int gpu_offset,
281 struct page *cpu_page,
282 int cpu_offset,
283 int length,
284 int is_read)
285 {
286 char *gpu_vaddr, *cpu_vaddr;
287
288 /* Use the unswizzled path if this page isn't affected. */
289 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
290 if (is_read)
291 return slow_shmem_copy(cpu_page, cpu_offset,
292 gpu_page, gpu_offset, length);
293 else
294 return slow_shmem_copy(gpu_page, gpu_offset,
295 cpu_page, cpu_offset, length);
296 }
297
298 gpu_vaddr = kmap(gpu_page);
299 cpu_vaddr = kmap(cpu_page);
300
301 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
302 * XORing with the other bits (A9 for Y, A9 and A10 for X)
303 */
304 while (length > 0) {
305 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 int this_length = min(cacheline_end - gpu_offset, length);
307 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309 if (is_read) {
310 memcpy(cpu_vaddr + cpu_offset,
311 gpu_vaddr + swizzled_gpu_offset,
312 this_length);
313 } else {
314 memcpy(gpu_vaddr + swizzled_gpu_offset,
315 cpu_vaddr + cpu_offset,
316 this_length);
317 }
318 cpu_offset += this_length;
319 gpu_offset += this_length;
320 length -= this_length;
321 }
322
323 kunmap(cpu_page);
324 kunmap(gpu_page);
325 }
326
327 /**
328 * This is the fast shmem pread path, which attempts to copy_from_user directly
329 * from the backing pages of the object to the user's address space. On a
330 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
331 */
332 static int
i915_gem_shmem_pread_fast(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args,struct drm_file * file)333 i915_gem_shmem_pread_fast(struct drm_device *dev,
334 struct drm_i915_gem_object *obj,
335 struct drm_i915_gem_pread *args,
336 struct drm_file *file)
337 {
338 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
339 ssize_t remain;
340 loff_t offset;
341 char __user *user_data;
342 int page_offset, page_length;
343
344 user_data = (char __user *) (uintptr_t) args->data_ptr;
345 remain = args->size;
346
347 offset = args->offset;
348
349 while (remain > 0) {
350 struct page *page;
351 char *vaddr;
352 int ret;
353
354 /* Operation in this page
355 *
356 * page_offset = offset within page
357 * page_length = bytes to copy for this page
358 */
359 page_offset = offset & (PAGE_SIZE-1);
360 page_length = remain;
361 if ((page_offset + remain) > PAGE_SIZE)
362 page_length = PAGE_SIZE - page_offset;
363
364 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
365 GFP_HIGHUSER | __GFP_RECLAIMABLE);
366 if (IS_ERR(page))
367 return PTR_ERR(page);
368
369 vaddr = kmap_atomic(page);
370 ret = __copy_to_user_inatomic(user_data,
371 vaddr + page_offset,
372 page_length);
373 kunmap_atomic(vaddr);
374
375 mark_page_accessed(page);
376 page_cache_release(page);
377 if (ret)
378 return -EFAULT;
379
380 remain -= page_length;
381 user_data += page_length;
382 offset += page_length;
383 }
384
385 return 0;
386 }
387
388 /**
389 * This is the fallback shmem pread path, which allocates temporary storage
390 * in kernel space to copy_to_user into outside of the struct_mutex, so we
391 * can copy out of the object's backing pages while holding the struct mutex
392 * and not take page faults.
393 */
394 static int
i915_gem_shmem_pread_slow(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args,struct drm_file * file)395 i915_gem_shmem_pread_slow(struct drm_device *dev,
396 struct drm_i915_gem_object *obj,
397 struct drm_i915_gem_pread *args,
398 struct drm_file *file)
399 {
400 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
401 struct mm_struct *mm = current->mm;
402 struct page **user_pages;
403 ssize_t remain;
404 loff_t offset, pinned_pages, i;
405 loff_t first_data_page, last_data_page, num_pages;
406 int shmem_page_offset;
407 int data_page_index, data_page_offset;
408 int page_length;
409 int ret;
410 uint64_t data_ptr = args->data_ptr;
411 int do_bit17_swizzling;
412
413 remain = args->size;
414
415 /* Pin the user pages containing the data. We can't fault while
416 * holding the struct mutex, yet we want to hold it while
417 * dereferencing the user data.
418 */
419 first_data_page = data_ptr / PAGE_SIZE;
420 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
421 num_pages = last_data_page - first_data_page + 1;
422
423 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
424 if (user_pages == NULL)
425 return -ENOMEM;
426
427 mutex_unlock(&dev->struct_mutex);
428 down_read(&mm->mmap_sem);
429 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
430 num_pages, 1, 0, user_pages, NULL);
431 up_read(&mm->mmap_sem);
432 mutex_lock(&dev->struct_mutex);
433 if (pinned_pages < num_pages) {
434 ret = -EFAULT;
435 goto out;
436 }
437
438 ret = i915_gem_object_set_cpu_read_domain_range(obj,
439 args->offset,
440 args->size);
441 if (ret)
442 goto out;
443
444 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
445
446 offset = args->offset;
447
448 while (remain > 0) {
449 struct page *page;
450
451 /* Operation in this page
452 *
453 * shmem_page_offset = offset within page in shmem file
454 * data_page_index = page number in get_user_pages return
455 * data_page_offset = offset with data_page_index page.
456 * page_length = bytes to copy for this page
457 */
458 shmem_page_offset = offset & ~PAGE_MASK;
459 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460 data_page_offset = data_ptr & ~PAGE_MASK;
461
462 page_length = remain;
463 if ((shmem_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - shmem_page_offset;
465 if ((data_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - data_page_offset;
467
468 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
469 GFP_HIGHUSER | __GFP_RECLAIMABLE);
470 if (IS_ERR(page))
471 return PTR_ERR(page);
472
473 if (do_bit17_swizzling) {
474 slow_shmem_bit17_copy(page,
475 shmem_page_offset,
476 user_pages[data_page_index],
477 data_page_offset,
478 page_length,
479 1);
480 } else {
481 slow_shmem_copy(user_pages[data_page_index],
482 data_page_offset,
483 page,
484 shmem_page_offset,
485 page_length);
486 }
487
488 mark_page_accessed(page);
489 page_cache_release(page);
490
491 remain -= page_length;
492 data_ptr += page_length;
493 offset += page_length;
494 }
495
496 out:
497 for (i = 0; i < pinned_pages; i++) {
498 SetPageDirty(user_pages[i]);
499 mark_page_accessed(user_pages[i]);
500 page_cache_release(user_pages[i]);
501 }
502 drm_free_large(user_pages);
503
504 return ret;
505 }
506
507 /**
508 * Reads data from the object referenced by handle.
509 *
510 * On error, the contents of *data are undefined.
511 */
512 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)513 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
514 struct drm_file *file)
515 {
516 struct drm_i915_gem_pread *args = data;
517 struct drm_i915_gem_object *obj;
518 int ret = 0;
519
520 if (args->size == 0)
521 return 0;
522
523 if (!access_ok(VERIFY_WRITE,
524 (char __user *)(uintptr_t)args->data_ptr,
525 args->size))
526 return -EFAULT;
527
528 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
529 args->size);
530 if (ret)
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
552 ret = i915_gem_object_set_cpu_read_domain_range(obj,
553 args->offset,
554 args->size);
555 if (ret)
556 goto out;
557
558 ret = -EFAULT;
559 if (!i915_gem_object_needs_bit17_swizzle(obj))
560 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
561 if (ret == -EFAULT)
562 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
563
564 out:
565 drm_gem_object_unreference(&obj->base);
566 unlock:
567 mutex_unlock(&dev->struct_mutex);
568 return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572 * page faults in the source data
573 */
574
575 static inline int
fast_user_write(struct io_mapping * mapping,loff_t page_base,int page_offset,char __user * user_data,int length)576 fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
580 {
581 char *vaddr_atomic;
582 unsigned long unwritten;
583
584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
585 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
586 user_data, length);
587 io_mapping_unmap_atomic(vaddr_atomic);
588 return unwritten;
589 }
590
591 /* Here's the write path which can sleep for
592 * page faults
593 */
594
595 static inline void
slow_kernel_write(struct io_mapping * mapping,loff_t gtt_base,int gtt_offset,struct page * user_page,int user_offset,int length)596 slow_kernel_write(struct io_mapping *mapping,
597 loff_t gtt_base, int gtt_offset,
598 struct page *user_page, int user_offset,
599 int length)
600 {
601 char __iomem *dst_vaddr;
602 char *src_vaddr;
603
604 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
605 src_vaddr = kmap(user_page);
606
607 memcpy_toio(dst_vaddr + gtt_offset,
608 src_vaddr + user_offset,
609 length);
610
611 kunmap(user_page);
612 io_mapping_unmap(dst_vaddr);
613 }
614
615 /**
616 * This is the fast pwrite path, where we copy the data directly from the
617 * user into the GTT, uncached.
618 */
619 static int
i915_gem_gtt_pwrite_fast(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)620 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
621 struct drm_i915_gem_object *obj,
622 struct drm_i915_gem_pwrite *args,
623 struct drm_file *file)
624 {
625 drm_i915_private_t *dev_priv = dev->dev_private;
626 ssize_t remain;
627 loff_t offset, page_base;
628 char __user *user_data;
629 int page_offset, page_length;
630
631 user_data = (char __user *) (uintptr_t) args->data_ptr;
632 remain = args->size;
633
634 offset = obj->gtt_offset + args->offset;
635
636 while (remain > 0) {
637 /* Operation in this page
638 *
639 * page_base = page offset within aperture
640 * page_offset = offset within page
641 * page_length = bytes to copy for this page
642 */
643 page_base = (offset & ~(PAGE_SIZE-1));
644 page_offset = offset & (PAGE_SIZE-1);
645 page_length = remain;
646 if ((page_offset + remain) > PAGE_SIZE)
647 page_length = PAGE_SIZE - page_offset;
648
649 /* If we get a fault while copying data, then (presumably) our
650 * source page isn't available. Return the error and we'll
651 * retry in the slow path.
652 */
653 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
654 page_offset, user_data, page_length))
655
656 return -EFAULT;
657
658 remain -= page_length;
659 user_data += page_length;
660 offset += page_length;
661 }
662
663 return 0;
664 }
665
666 /**
667 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
668 * the memory and maps it using kmap_atomic for copying.
669 *
670 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
671 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
672 */
673 static int
i915_gem_gtt_pwrite_slow(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)674 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
675 struct drm_i915_gem_object *obj,
676 struct drm_i915_gem_pwrite *args,
677 struct drm_file *file)
678 {
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t gtt_page_base, offset;
682 loff_t first_data_page, last_data_page, num_pages;
683 loff_t pinned_pages, i;
684 struct page **user_pages;
685 struct mm_struct *mm = current->mm;
686 int gtt_page_offset, data_page_offset, data_page_index, page_length;
687 int ret;
688 uint64_t data_ptr = args->data_ptr;
689
690 remain = args->size;
691
692 /* Pin the user pages containing the data. We can't fault while
693 * holding the struct mutex, and all of the pwrite implementations
694 * want to hold it while dereferencing the user data.
695 */
696 first_data_page = data_ptr / PAGE_SIZE;
697 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
698 num_pages = last_data_page - first_data_page + 1;
699
700 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
701 if (user_pages == NULL)
702 return -ENOMEM;
703
704 mutex_unlock(&dev->struct_mutex);
705 down_read(&mm->mmap_sem);
706 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
707 num_pages, 0, 0, user_pages, NULL);
708 up_read(&mm->mmap_sem);
709 mutex_lock(&dev->struct_mutex);
710 if (pinned_pages < num_pages) {
711 ret = -EFAULT;
712 goto out_unpin_pages;
713 }
714
715 ret = i915_gem_object_set_to_gtt_domain(obj, true);
716 if (ret)
717 goto out_unpin_pages;
718
719 ret = i915_gem_object_put_fence(obj);
720 if (ret)
721 goto out_unpin_pages;
722
723 offset = obj->gtt_offset + args->offset;
724
725 while (remain > 0) {
726 /* Operation in this page
727 *
728 * gtt_page_base = page offset within aperture
729 * gtt_page_offset = offset within page in aperture
730 * data_page_index = page number in get_user_pages return
731 * data_page_offset = offset with data_page_index page.
732 * page_length = bytes to copy for this page
733 */
734 gtt_page_base = offset & PAGE_MASK;
735 gtt_page_offset = offset & ~PAGE_MASK;
736 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737 data_page_offset = data_ptr & ~PAGE_MASK;
738
739 page_length = remain;
740 if ((gtt_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - gtt_page_offset;
742 if ((data_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - data_page_offset;
744
745 slow_kernel_write(dev_priv->mm.gtt_mapping,
746 gtt_page_base, gtt_page_offset,
747 user_pages[data_page_index],
748 data_page_offset,
749 page_length);
750
751 remain -= page_length;
752 offset += page_length;
753 data_ptr += page_length;
754 }
755
756 out_unpin_pages:
757 for (i = 0; i < pinned_pages; i++)
758 page_cache_release(user_pages[i]);
759 drm_free_large(user_pages);
760
761 return ret;
762 }
763
764 /**
765 * This is the fast shmem pwrite path, which attempts to directly
766 * copy_from_user into the kmapped pages backing the object.
767 */
768 static int
i915_gem_shmem_pwrite_fast(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)769 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
770 struct drm_i915_gem_object *obj,
771 struct drm_i915_gem_pwrite *args,
772 struct drm_file *file)
773 {
774 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
775 ssize_t remain;
776 loff_t offset;
777 char __user *user_data;
778 int page_offset, page_length;
779
780 user_data = (char __user *) (uintptr_t) args->data_ptr;
781 remain = args->size;
782
783 offset = args->offset;
784 obj->dirty = 1;
785
786 while (remain > 0) {
787 struct page *page;
788 char *vaddr;
789 int ret;
790
791 /* Operation in this page
792 *
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
795 */
796 page_offset = offset & (PAGE_SIZE-1);
797 page_length = remain;
798 if ((page_offset + remain) > PAGE_SIZE)
799 page_length = PAGE_SIZE - page_offset;
800
801 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
802 GFP_HIGHUSER | __GFP_RECLAIMABLE);
803 if (IS_ERR(page))
804 return PTR_ERR(page);
805
806 vaddr = kmap_atomic(page, KM_USER0);
807 ret = __copy_from_user_inatomic(vaddr + page_offset,
808 user_data,
809 page_length);
810 kunmap_atomic(vaddr, KM_USER0);
811
812 set_page_dirty(page);
813 mark_page_accessed(page);
814 page_cache_release(page);
815
816 /* If we get a fault while copying data, then (presumably) our
817 * source page isn't available. Return the error and we'll
818 * retry in the slow path.
819 */
820 if (ret)
821 return -EFAULT;
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
828 return 0;
829 }
830
831 /**
832 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
833 * the memory and maps it using kmap_atomic for copying.
834 *
835 * This avoids taking mmap_sem for faulting on the user's address while the
836 * struct_mutex is held.
837 */
838 static int
i915_gem_shmem_pwrite_slow(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)839 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
840 struct drm_i915_gem_object *obj,
841 struct drm_i915_gem_pwrite *args,
842 struct drm_file *file)
843 {
844 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
845 struct mm_struct *mm = current->mm;
846 struct page **user_pages;
847 ssize_t remain;
848 loff_t offset, pinned_pages, i;
849 loff_t first_data_page, last_data_page, num_pages;
850 int shmem_page_offset;
851 int data_page_index, data_page_offset;
852 int page_length;
853 int ret;
854 uint64_t data_ptr = args->data_ptr;
855 int do_bit17_swizzling;
856
857 remain = args->size;
858
859 /* Pin the user pages containing the data. We can't fault while
860 * holding the struct mutex, and all of the pwrite implementations
861 * want to hold it while dereferencing the user data.
862 */
863 first_data_page = data_ptr / PAGE_SIZE;
864 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
865 num_pages = last_data_page - first_data_page + 1;
866
867 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
868 if (user_pages == NULL)
869 return -ENOMEM;
870
871 mutex_unlock(&dev->struct_mutex);
872 down_read(&mm->mmap_sem);
873 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
874 num_pages, 0, 0, user_pages, NULL);
875 up_read(&mm->mmap_sem);
876 mutex_lock(&dev->struct_mutex);
877 if (pinned_pages < num_pages) {
878 ret = -EFAULT;
879 goto out;
880 }
881
882 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
883 if (ret)
884 goto out;
885
886 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
887
888 offset = args->offset;
889 obj->dirty = 1;
890
891 while (remain > 0) {
892 struct page *page;
893
894 /* Operation in this page
895 *
896 * shmem_page_offset = offset within page in shmem file
897 * data_page_index = page number in get_user_pages return
898 * data_page_offset = offset with data_page_index page.
899 * page_length = bytes to copy for this page
900 */
901 shmem_page_offset = offset & ~PAGE_MASK;
902 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
903 data_page_offset = data_ptr & ~PAGE_MASK;
904
905 page_length = remain;
906 if ((shmem_page_offset + page_length) > PAGE_SIZE)
907 page_length = PAGE_SIZE - shmem_page_offset;
908 if ((data_page_offset + page_length) > PAGE_SIZE)
909 page_length = PAGE_SIZE - data_page_offset;
910
911 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
912 GFP_HIGHUSER | __GFP_RECLAIMABLE);
913 if (IS_ERR(page)) {
914 ret = PTR_ERR(page);
915 goto out;
916 }
917
918 if (do_bit17_swizzling) {
919 slow_shmem_bit17_copy(page,
920 shmem_page_offset,
921 user_pages[data_page_index],
922 data_page_offset,
923 page_length,
924 0);
925 } else {
926 slow_shmem_copy(page,
927 shmem_page_offset,
928 user_pages[data_page_index],
929 data_page_offset,
930 page_length);
931 }
932
933 set_page_dirty(page);
934 mark_page_accessed(page);
935 page_cache_release(page);
936
937 remain -= page_length;
938 data_ptr += page_length;
939 offset += page_length;
940 }
941
942 out:
943 for (i = 0; i < pinned_pages; i++)
944 page_cache_release(user_pages[i]);
945 drm_free_large(user_pages);
946
947 return ret;
948 }
949
950 /**
951 * Writes data to the object referenced by handle.
952 *
953 * On error, the contents of the buffer that were to be modified are undefined.
954 */
955 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)956 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
957 struct drm_file *file)
958 {
959 struct drm_i915_gem_pwrite *args = data;
960 struct drm_i915_gem_object *obj;
961 int ret;
962
963 if (args->size == 0)
964 return 0;
965
966 if (!access_ok(VERIFY_READ,
967 (char __user *)(uintptr_t)args->data_ptr,
968 args->size))
969 return -EFAULT;
970
971 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
972 args->size);
973 if (ret)
974 return -EFAULT;
975
976 ret = i915_mutex_lock_interruptible(dev);
977 if (ret)
978 return ret;
979
980 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
981 if (&obj->base == NULL) {
982 ret = -ENOENT;
983 goto unlock;
984 }
985
986 /* Bounds check destination. */
987 if (args->offset > obj->base.size ||
988 args->size > obj->base.size - args->offset) {
989 ret = -EINVAL;
990 goto out;
991 }
992
993 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
994
995 /* We can only do the GTT pwrite on untiled buffers, as otherwise
996 * it would end up going through the fenced access, and we'll get
997 * different detiling behavior between reading and writing.
998 * pread/pwrite currently are reading and writing from the CPU
999 * perspective, requiring manual detiling by the client.
1000 */
1001 if (obj->phys_obj)
1002 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1003 else if (obj->gtt_space &&
1004 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1005 ret = i915_gem_object_pin(obj, 0, true);
1006 if (ret)
1007 goto out;
1008
1009 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1010 if (ret)
1011 goto out_unpin;
1012
1013 ret = i915_gem_object_put_fence(obj);
1014 if (ret)
1015 goto out_unpin;
1016
1017 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1018 if (ret == -EFAULT)
1019 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1020
1021 out_unpin:
1022 i915_gem_object_unpin(obj);
1023 } else {
1024 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1025 if (ret)
1026 goto out;
1027
1028 ret = -EFAULT;
1029 if (!i915_gem_object_needs_bit17_swizzle(obj))
1030 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1031 if (ret == -EFAULT)
1032 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1033 }
1034
1035 out:
1036 drm_gem_object_unreference(&obj->base);
1037 unlock:
1038 mutex_unlock(&dev->struct_mutex);
1039 return ret;
1040 }
1041
1042 /**
1043 * Called when user space prepares to use an object with the CPU, either
1044 * through the mmap ioctl's mapping or a GTT mapping.
1045 */
1046 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1047 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1048 struct drm_file *file)
1049 {
1050 struct drm_i915_gem_set_domain *args = data;
1051 struct drm_i915_gem_object *obj;
1052 uint32_t read_domains = args->read_domains;
1053 uint32_t write_domain = args->write_domain;
1054 int ret;
1055
1056 if (!(dev->driver->driver_features & DRIVER_GEM))
1057 return -ENODEV;
1058
1059 /* Only handle setting domains to types used by the CPU. */
1060 if (write_domain & I915_GEM_GPU_DOMAINS)
1061 return -EINVAL;
1062
1063 if (read_domains & I915_GEM_GPU_DOMAINS)
1064 return -EINVAL;
1065
1066 /* Having something in the write domain implies it's in the read
1067 * domain, and only that read domain. Enforce that in the request.
1068 */
1069 if (write_domain != 0 && read_domains != write_domain)
1070 return -EINVAL;
1071
1072 ret = i915_mutex_lock_interruptible(dev);
1073 if (ret)
1074 return ret;
1075
1076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077 if (&obj->base == NULL) {
1078 ret = -ENOENT;
1079 goto unlock;
1080 }
1081
1082 if (read_domains & I915_GEM_DOMAIN_GTT) {
1083 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1084
1085 /* Silently promote "you're not bound, there was nothing to do"
1086 * to success, since the client was just asking us to
1087 * make sure everything was done.
1088 */
1089 if (ret == -EINVAL)
1090 ret = 0;
1091 } else {
1092 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1093 }
1094
1095 drm_gem_object_unreference(&obj->base);
1096 unlock:
1097 mutex_unlock(&dev->struct_mutex);
1098 return ret;
1099 }
1100
1101 /**
1102 * Called when user space has done writes to this buffer
1103 */
1104 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1105 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1106 struct drm_file *file)
1107 {
1108 struct drm_i915_gem_sw_finish *args = data;
1109 struct drm_i915_gem_object *obj;
1110 int ret = 0;
1111
1112 if (!(dev->driver->driver_features & DRIVER_GEM))
1113 return -ENODEV;
1114
1115 ret = i915_mutex_lock_interruptible(dev);
1116 if (ret)
1117 return ret;
1118
1119 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1120 if (&obj->base == NULL) {
1121 ret = -ENOENT;
1122 goto unlock;
1123 }
1124
1125 /* Pinned buffers may be scanout, so flush the cache */
1126 if (obj->pin_count)
1127 i915_gem_object_flush_cpu_write_domain(obj);
1128
1129 drm_gem_object_unreference(&obj->base);
1130 unlock:
1131 mutex_unlock(&dev->struct_mutex);
1132 return ret;
1133 }
1134
1135 /**
1136 * Maps the contents of an object, returning the address it is mapped
1137 * into.
1138 *
1139 * While the mapping holds a reference on the contents of the object, it doesn't
1140 * imply a ref on the object itself.
1141 */
1142 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1143 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1144 struct drm_file *file)
1145 {
1146 struct drm_i915_private *dev_priv = dev->dev_private;
1147 struct drm_i915_gem_mmap *args = data;
1148 struct drm_gem_object *obj;
1149 unsigned long addr;
1150
1151 if (!(dev->driver->driver_features & DRIVER_GEM))
1152 return -ENODEV;
1153
1154 obj = drm_gem_object_lookup(dev, file, args->handle);
1155 if (obj == NULL)
1156 return -ENOENT;
1157
1158 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1159 drm_gem_object_unreference_unlocked(obj);
1160 return -E2BIG;
1161 }
1162
1163 down_write(¤t->mm->mmap_sem);
1164 addr = do_mmap(obj->filp, 0, args->size,
1165 PROT_READ | PROT_WRITE, MAP_SHARED,
1166 args->offset);
1167 up_write(¤t->mm->mmap_sem);
1168 drm_gem_object_unreference_unlocked(obj);
1169 if (IS_ERR((void *)addr))
1170 return addr;
1171
1172 args->addr_ptr = (uint64_t) addr;
1173
1174 return 0;
1175 }
1176
1177 /**
1178 * i915_gem_fault - fault a page into the GTT
1179 * vma: VMA in question
1180 * vmf: fault info
1181 *
1182 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1183 * from userspace. The fault handler takes care of binding the object to
1184 * the GTT (if needed), allocating and programming a fence register (again,
1185 * only if needed based on whether the old reg is still valid or the object
1186 * is tiled) and inserting a new PTE into the faulting process.
1187 *
1188 * Note that the faulting process may involve evicting existing objects
1189 * from the GTT and/or fence registers to make room. So performance may
1190 * suffer if the GTT working set is large or there are few fence registers
1191 * left.
1192 */
i915_gem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1193 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1194 {
1195 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1196 struct drm_device *dev = obj->base.dev;
1197 drm_i915_private_t *dev_priv = dev->dev_private;
1198 pgoff_t page_offset;
1199 unsigned long pfn;
1200 int ret = 0;
1201 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1202
1203 /* We don't use vmf->pgoff since that has the fake offset */
1204 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1205 PAGE_SHIFT;
1206
1207 ret = i915_mutex_lock_interruptible(dev);
1208 if (ret)
1209 goto out;
1210
1211 trace_i915_gem_object_fault(obj, page_offset, true, write);
1212
1213 /* Now bind it into the GTT if needed */
1214 if (!obj->map_and_fenceable) {
1215 ret = i915_gem_object_unbind(obj);
1216 if (ret)
1217 goto unlock;
1218 }
1219 if (!obj->gtt_space) {
1220 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1221 if (ret)
1222 goto unlock;
1223 }
1224
1225 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1226 if (ret)
1227 goto unlock;
1228
1229 if (obj->tiling_mode == I915_TILING_NONE)
1230 ret = i915_gem_object_put_fence(obj);
1231 else
1232 ret = i915_gem_object_get_fence(obj, NULL);
1233 if (ret)
1234 goto unlock;
1235
1236 if (i915_gem_object_is_inactive(obj))
1237 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1238
1239 obj->fault_mappable = true;
1240
1241 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1242 page_offset;
1243
1244 /* Finally, remap it using the new GTT offset */
1245 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1246 unlock:
1247 mutex_unlock(&dev->struct_mutex);
1248 out:
1249 switch (ret) {
1250 case -EIO:
1251 case -EAGAIN:
1252 /* Give the error handler a chance to run and move the
1253 * objects off the GPU active list. Next time we service the
1254 * fault, we should be able to transition the page into the
1255 * GTT without touching the GPU (and so avoid further
1256 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1257 * with coherency, just lost writes.
1258 */
1259 set_need_resched();
1260 case 0:
1261 case -ERESTARTSYS:
1262 case -EINTR:
1263 return VM_FAULT_NOPAGE;
1264 case -ENOMEM:
1265 return VM_FAULT_OOM;
1266 default:
1267 return VM_FAULT_SIGBUS;
1268 }
1269 }
1270
1271 /**
1272 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1273 * @obj: obj in question
1274 *
1275 * GEM memory mapping works by handing back to userspace a fake mmap offset
1276 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1277 * up the object based on the offset and sets up the various memory mapping
1278 * structures.
1279 *
1280 * This routine allocates and attaches a fake offset for @obj.
1281 */
1282 static int
i915_gem_create_mmap_offset(struct drm_i915_gem_object * obj)1283 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1284 {
1285 struct drm_device *dev = obj->base.dev;
1286 struct drm_gem_mm *mm = dev->mm_private;
1287 struct drm_map_list *list;
1288 struct drm_local_map *map;
1289 int ret = 0;
1290
1291 /* Set the object up for mmap'ing */
1292 list = &obj->base.map_list;
1293 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1294 if (!list->map)
1295 return -ENOMEM;
1296
1297 map = list->map;
1298 map->type = _DRM_GEM;
1299 map->size = obj->base.size;
1300 map->handle = obj;
1301
1302 /* Get a DRM GEM mmap offset allocated... */
1303 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1304 obj->base.size / PAGE_SIZE,
1305 0, 0);
1306 if (!list->file_offset_node) {
1307 DRM_ERROR("failed to allocate offset for bo %d\n",
1308 obj->base.name);
1309 ret = -ENOSPC;
1310 goto out_free_list;
1311 }
1312
1313 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1314 obj->base.size / PAGE_SIZE,
1315 0);
1316 if (!list->file_offset_node) {
1317 ret = -ENOMEM;
1318 goto out_free_list;
1319 }
1320
1321 list->hash.key = list->file_offset_node->start;
1322 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1323 if (ret) {
1324 DRM_ERROR("failed to add to map hash\n");
1325 goto out_free_mm;
1326 }
1327
1328 return 0;
1329
1330 out_free_mm:
1331 drm_mm_put_block(list->file_offset_node);
1332 out_free_list:
1333 kfree(list->map);
1334 list->map = NULL;
1335
1336 return ret;
1337 }
1338
1339 /**
1340 * i915_gem_release_mmap - remove physical page mappings
1341 * @obj: obj in question
1342 *
1343 * Preserve the reservation of the mmapping with the DRM core code, but
1344 * relinquish ownership of the pages back to the system.
1345 *
1346 * It is vital that we remove the page mapping if we have mapped a tiled
1347 * object through the GTT and then lose the fence register due to
1348 * resource pressure. Similarly if the object has been moved out of the
1349 * aperture, than pages mapped into userspace must be revoked. Removing the
1350 * mapping will then trigger a page fault on the next user access, allowing
1351 * fixup by i915_gem_fault().
1352 */
1353 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)1354 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1355 {
1356 if (!obj->fault_mappable)
1357 return;
1358
1359 if (obj->base.dev->dev_mapping)
1360 unmap_mapping_range(obj->base.dev->dev_mapping,
1361 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1362 obj->base.size, 1);
1363
1364 obj->fault_mappable = false;
1365 }
1366
1367 static void
i915_gem_free_mmap_offset(struct drm_i915_gem_object * obj)1368 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1369 {
1370 struct drm_device *dev = obj->base.dev;
1371 struct drm_gem_mm *mm = dev->mm_private;
1372 struct drm_map_list *list = &obj->base.map_list;
1373
1374 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1375 drm_mm_put_block(list->file_offset_node);
1376 kfree(list->map);
1377 list->map = NULL;
1378 }
1379
1380 static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object * obj)1381 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1382 {
1383 struct drm_device *dev = obj->base.dev;
1384 uint32_t size;
1385
1386 if (INTEL_INFO(dev)->gen >= 4 ||
1387 obj->tiling_mode == I915_TILING_NONE)
1388 return obj->base.size;
1389
1390 /* Previous chips need a power-of-two fence region when tiling */
1391 if (INTEL_INFO(dev)->gen == 3)
1392 size = 1024*1024;
1393 else
1394 size = 512*1024;
1395
1396 while (size < obj->base.size)
1397 size <<= 1;
1398
1399 return size;
1400 }
1401
1402 /**
1403 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1404 * @obj: object to check
1405 *
1406 * Return the required GTT alignment for an object, taking into account
1407 * potential fence register mapping.
1408 */
1409 static uint32_t
i915_gem_get_gtt_alignment(struct drm_i915_gem_object * obj)1410 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1411 {
1412 struct drm_device *dev = obj->base.dev;
1413
1414 /*
1415 * Minimum alignment is 4k (GTT page size), but might be greater
1416 * if a fence register is needed for the object.
1417 */
1418 if (INTEL_INFO(dev)->gen >= 4 ||
1419 obj->tiling_mode == I915_TILING_NONE)
1420 return 4096;
1421
1422 /*
1423 * Previous chips need to be aligned to the size of the smallest
1424 * fence register that can contain the object.
1425 */
1426 return i915_gem_get_gtt_size(obj);
1427 }
1428
1429 /**
1430 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1431 * unfenced object
1432 * @obj: object to check
1433 *
1434 * Return the required GTT alignment for an object, only taking into account
1435 * unfenced tiled surface requirements.
1436 */
1437 uint32_t
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object * obj)1438 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1439 {
1440 struct drm_device *dev = obj->base.dev;
1441 int tile_height;
1442
1443 /*
1444 * Minimum alignment is 4k (GTT page size) for sane hw.
1445 */
1446 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1447 obj->tiling_mode == I915_TILING_NONE)
1448 return 4096;
1449
1450 /*
1451 * Older chips need unfenced tiled buffers to be aligned to the left
1452 * edge of an even tile row (where tile rows are counted as if the bo is
1453 * placed in a fenced gtt region).
1454 */
1455 if (IS_GEN2(dev) ||
1456 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1457 tile_height = 32;
1458 else
1459 tile_height = 8;
1460
1461 return tile_height * obj->stride * 2;
1462 }
1463
1464 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)1465 i915_gem_mmap_gtt(struct drm_file *file,
1466 struct drm_device *dev,
1467 uint32_t handle,
1468 uint64_t *offset)
1469 {
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471 struct drm_i915_gem_object *obj;
1472 int ret;
1473
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1476
1477 ret = i915_mutex_lock_interruptible(dev);
1478 if (ret)
1479 return ret;
1480
1481 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1482 if (&obj->base == NULL) {
1483 ret = -ENOENT;
1484 goto unlock;
1485 }
1486
1487 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1488 ret = -E2BIG;
1489 goto unlock;
1490 }
1491
1492 if (obj->madv != I915_MADV_WILLNEED) {
1493 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1494 ret = -EINVAL;
1495 goto out;
1496 }
1497
1498 if (!obj->base.map_list.map) {
1499 ret = i915_gem_create_mmap_offset(obj);
1500 if (ret)
1501 goto out;
1502 }
1503
1504 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1505
1506 out:
1507 drm_gem_object_unreference(&obj->base);
1508 unlock:
1509 mutex_unlock(&dev->struct_mutex);
1510 return ret;
1511 }
1512
1513 /**
1514 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1515 * @dev: DRM device
1516 * @data: GTT mapping ioctl data
1517 * @file: GEM object info
1518 *
1519 * Simply returns the fake offset to userspace so it can mmap it.
1520 * The mmap call will end up in drm_gem_mmap(), which will set things
1521 * up so we can get faults in the handler above.
1522 *
1523 * The fault handler will take care of binding the object into the GTT
1524 * (since it may have been evicted to make room for something), allocating
1525 * a fence register, and mapping the appropriate aperture address into
1526 * userspace.
1527 */
1528 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1529 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1530 struct drm_file *file)
1531 {
1532 struct drm_i915_gem_mmap_gtt *args = data;
1533
1534 if (!(dev->driver->driver_features & DRIVER_GEM))
1535 return -ENODEV;
1536
1537 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1538 }
1539
1540
1541 static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj,gfp_t gfpmask)1542 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1543 gfp_t gfpmask)
1544 {
1545 int page_count, i;
1546 struct address_space *mapping;
1547 struct inode *inode;
1548 struct page *page;
1549
1550 /* Get the list of pages out of our struct file. They'll be pinned
1551 * at this point until we release them.
1552 */
1553 page_count = obj->base.size / PAGE_SIZE;
1554 BUG_ON(obj->pages != NULL);
1555 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1556 if (obj->pages == NULL)
1557 return -ENOMEM;
1558
1559 inode = obj->base.filp->f_path.dentry->d_inode;
1560 mapping = inode->i_mapping;
1561 for (i = 0; i < page_count; i++) {
1562 page = read_cache_page_gfp(mapping, i,
1563 GFP_HIGHUSER |
1564 __GFP_COLD |
1565 __GFP_RECLAIMABLE |
1566 gfpmask);
1567 if (IS_ERR(page))
1568 goto err_pages;
1569
1570 obj->pages[i] = page;
1571 }
1572
1573 if (obj->tiling_mode != I915_TILING_NONE)
1574 i915_gem_object_do_bit_17_swizzle(obj);
1575
1576 return 0;
1577
1578 err_pages:
1579 while (i--)
1580 page_cache_release(obj->pages[i]);
1581
1582 drm_free_large(obj->pages);
1583 obj->pages = NULL;
1584 return PTR_ERR(page);
1585 }
1586
1587 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj)1588 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1589 {
1590 int page_count = obj->base.size / PAGE_SIZE;
1591 int i;
1592
1593 BUG_ON(obj->madv == __I915_MADV_PURGED);
1594
1595 if (obj->tiling_mode != I915_TILING_NONE)
1596 i915_gem_object_save_bit_17_swizzle(obj);
1597
1598 if (obj->madv == I915_MADV_DONTNEED)
1599 obj->dirty = 0;
1600
1601 for (i = 0; i < page_count; i++) {
1602 if (obj->dirty)
1603 set_page_dirty(obj->pages[i]);
1604
1605 if (obj->madv == I915_MADV_WILLNEED)
1606 mark_page_accessed(obj->pages[i]);
1607
1608 page_cache_release(obj->pages[i]);
1609 }
1610 obj->dirty = 0;
1611
1612 drm_free_large(obj->pages);
1613 obj->pages = NULL;
1614 }
1615
1616 void
i915_gem_object_move_to_active(struct drm_i915_gem_object * obj,struct intel_ring_buffer * ring,u32 seqno)1617 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1618 struct intel_ring_buffer *ring,
1619 u32 seqno)
1620 {
1621 struct drm_device *dev = obj->base.dev;
1622 struct drm_i915_private *dev_priv = dev->dev_private;
1623
1624 BUG_ON(ring == NULL);
1625 obj->ring = ring;
1626
1627 /* Add a reference if we're newly entering the active list. */
1628 if (!obj->active) {
1629 drm_gem_object_reference(&obj->base);
1630 obj->active = 1;
1631 }
1632
1633 /* Move from whatever list we were on to the tail of execution. */
1634 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1635 list_move_tail(&obj->ring_list, &ring->active_list);
1636
1637 obj->last_rendering_seqno = seqno;
1638 if (obj->fenced_gpu_access) {
1639 struct drm_i915_fence_reg *reg;
1640
1641 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1642
1643 obj->last_fenced_seqno = seqno;
1644 obj->last_fenced_ring = ring;
1645
1646 reg = &dev_priv->fence_regs[obj->fence_reg];
1647 list_move_tail(®->lru_list, &dev_priv->mm.fence_list);
1648 }
1649 }
1650
1651 static void
i915_gem_object_move_off_active(struct drm_i915_gem_object * obj)1652 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1653 {
1654 list_del_init(&obj->ring_list);
1655 obj->last_rendering_seqno = 0;
1656 }
1657
1658 static void
i915_gem_object_move_to_flushing(struct drm_i915_gem_object * obj)1659 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1660 {
1661 struct drm_device *dev = obj->base.dev;
1662 drm_i915_private_t *dev_priv = dev->dev_private;
1663
1664 BUG_ON(!obj->active);
1665 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1666
1667 i915_gem_object_move_off_active(obj);
1668 }
1669
1670 static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object * obj)1671 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1672 {
1673 struct drm_device *dev = obj->base.dev;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675
1676 if (obj->pin_count != 0)
1677 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1678 else
1679 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1680
1681 BUG_ON(!list_empty(&obj->gpu_write_list));
1682 BUG_ON(!obj->active);
1683 obj->ring = NULL;
1684
1685 i915_gem_object_move_off_active(obj);
1686 obj->fenced_gpu_access = false;
1687
1688 obj->active = 0;
1689 obj->pending_gpu_write = false;
1690 drm_gem_object_unreference(&obj->base);
1691
1692 WARN_ON(i915_verify_lists(dev));
1693 }
1694
1695 /* Immediately discard the backing storage */
1696 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)1697 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1698 {
1699 struct inode *inode;
1700
1701 /* Our goal here is to return as much of the memory as
1702 * is possible back to the system as we are called from OOM.
1703 * To do this we must instruct the shmfs to drop all of its
1704 * backing pages, *now*. Here we mirror the actions taken
1705 * when by shmem_delete_inode() to release the backing store.
1706 */
1707 inode = obj->base.filp->f_path.dentry->d_inode;
1708 truncate_inode_pages(inode->i_mapping, 0);
1709 if (inode->i_op->truncate_range)
1710 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1711
1712 obj->madv = __I915_MADV_PURGED;
1713 }
1714
1715 static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object * obj)1716 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1717 {
1718 return obj->madv == I915_MADV_DONTNEED;
1719 }
1720
1721 static void
i915_gem_process_flushing_list(struct intel_ring_buffer * ring,uint32_t flush_domains)1722 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1723 uint32_t flush_domains)
1724 {
1725 struct drm_i915_gem_object *obj, *next;
1726
1727 list_for_each_entry_safe(obj, next,
1728 &ring->gpu_write_list,
1729 gpu_write_list) {
1730 if (obj->base.write_domain & flush_domains) {
1731 uint32_t old_write_domain = obj->base.write_domain;
1732
1733 obj->base.write_domain = 0;
1734 list_del_init(&obj->gpu_write_list);
1735 i915_gem_object_move_to_active(obj, ring,
1736 i915_gem_next_request_seqno(ring));
1737
1738 trace_i915_gem_object_change_domain(obj,
1739 obj->base.read_domains,
1740 old_write_domain);
1741 }
1742 }
1743 }
1744
1745 int
i915_add_request(struct intel_ring_buffer * ring,struct drm_file * file,struct drm_i915_gem_request * request)1746 i915_add_request(struct intel_ring_buffer *ring,
1747 struct drm_file *file,
1748 struct drm_i915_gem_request *request)
1749 {
1750 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1751 uint32_t seqno;
1752 int was_empty;
1753 int ret;
1754
1755 BUG_ON(request == NULL);
1756
1757 ret = ring->add_request(ring, &seqno);
1758 if (ret)
1759 return ret;
1760
1761 trace_i915_gem_request_add(ring, seqno);
1762
1763 request->seqno = seqno;
1764 request->ring = ring;
1765 request->emitted_jiffies = jiffies;
1766 was_empty = list_empty(&ring->request_list);
1767 list_add_tail(&request->list, &ring->request_list);
1768
1769 if (file) {
1770 struct drm_i915_file_private *file_priv = file->driver_priv;
1771
1772 spin_lock(&file_priv->mm.lock);
1773 request->file_priv = file_priv;
1774 list_add_tail(&request->client_list,
1775 &file_priv->mm.request_list);
1776 spin_unlock(&file_priv->mm.lock);
1777 }
1778
1779 ring->outstanding_lazy_request = false;
1780
1781 if (!dev_priv->mm.suspended) {
1782 mod_timer(&dev_priv->hangcheck_timer,
1783 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1784 if (was_empty)
1785 queue_delayed_work(dev_priv->wq,
1786 &dev_priv->mm.retire_work, HZ);
1787 }
1788 return 0;
1789 }
1790
1791 static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request * request)1792 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1793 {
1794 struct drm_i915_file_private *file_priv = request->file_priv;
1795
1796 if (!file_priv)
1797 return;
1798
1799 spin_lock(&file_priv->mm.lock);
1800 if (request->file_priv) {
1801 list_del(&request->client_list);
1802 request->file_priv = NULL;
1803 }
1804 spin_unlock(&file_priv->mm.lock);
1805 }
1806
i915_gem_reset_ring_lists(struct drm_i915_private * dev_priv,struct intel_ring_buffer * ring)1807 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1808 struct intel_ring_buffer *ring)
1809 {
1810 while (!list_empty(&ring->request_list)) {
1811 struct drm_i915_gem_request *request;
1812
1813 request = list_first_entry(&ring->request_list,
1814 struct drm_i915_gem_request,
1815 list);
1816
1817 list_del(&request->list);
1818 i915_gem_request_remove_from_client(request);
1819 kfree(request);
1820 }
1821
1822 while (!list_empty(&ring->active_list)) {
1823 struct drm_i915_gem_object *obj;
1824
1825 obj = list_first_entry(&ring->active_list,
1826 struct drm_i915_gem_object,
1827 ring_list);
1828
1829 obj->base.write_domain = 0;
1830 list_del_init(&obj->gpu_write_list);
1831 i915_gem_object_move_to_inactive(obj);
1832 }
1833 }
1834
i915_gem_reset_fences(struct drm_device * dev)1835 static void i915_gem_reset_fences(struct drm_device *dev)
1836 {
1837 struct drm_i915_private *dev_priv = dev->dev_private;
1838 int i;
1839
1840 for (i = 0; i < 16; i++) {
1841 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1842 struct drm_i915_gem_object *obj = reg->obj;
1843
1844 if (!obj)
1845 continue;
1846
1847 if (obj->tiling_mode)
1848 i915_gem_release_mmap(obj);
1849
1850 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1851 reg->obj->fenced_gpu_access = false;
1852 reg->obj->last_fenced_seqno = 0;
1853 reg->obj->last_fenced_ring = NULL;
1854 i915_gem_clear_fence_reg(dev, reg);
1855 }
1856 }
1857
i915_gem_reset(struct drm_device * dev)1858 void i915_gem_reset(struct drm_device *dev)
1859 {
1860 struct drm_i915_private *dev_priv = dev->dev_private;
1861 struct drm_i915_gem_object *obj;
1862 int i;
1863
1864 for (i = 0; i < I915_NUM_RINGS; i++)
1865 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1866
1867 /* Remove anything from the flushing lists. The GPU cache is likely
1868 * to be lost on reset along with the data, so simply move the
1869 * lost bo to the inactive list.
1870 */
1871 while (!list_empty(&dev_priv->mm.flushing_list)) {
1872 obj= list_first_entry(&dev_priv->mm.flushing_list,
1873 struct drm_i915_gem_object,
1874 mm_list);
1875
1876 obj->base.write_domain = 0;
1877 list_del_init(&obj->gpu_write_list);
1878 i915_gem_object_move_to_inactive(obj);
1879 }
1880
1881 /* Move everything out of the GPU domains to ensure we do any
1882 * necessary invalidation upon reuse.
1883 */
1884 list_for_each_entry(obj,
1885 &dev_priv->mm.inactive_list,
1886 mm_list)
1887 {
1888 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1889 }
1890
1891 /* The fence registers are invalidated so clear them out */
1892 i915_gem_reset_fences(dev);
1893 }
1894
1895 /**
1896 * This function clears the request list as sequence numbers are passed.
1897 */
1898 static void
i915_gem_retire_requests_ring(struct intel_ring_buffer * ring)1899 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1900 {
1901 uint32_t seqno;
1902 int i;
1903
1904 if (list_empty(&ring->request_list))
1905 return;
1906
1907 WARN_ON(i915_verify_lists(ring->dev));
1908
1909 seqno = ring->get_seqno(ring);
1910
1911 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1912 if (seqno >= ring->sync_seqno[i])
1913 ring->sync_seqno[i] = 0;
1914
1915 while (!list_empty(&ring->request_list)) {
1916 struct drm_i915_gem_request *request;
1917
1918 request = list_first_entry(&ring->request_list,
1919 struct drm_i915_gem_request,
1920 list);
1921
1922 if (!i915_seqno_passed(seqno, request->seqno))
1923 break;
1924
1925 trace_i915_gem_request_retire(ring, request->seqno);
1926
1927 list_del(&request->list);
1928 i915_gem_request_remove_from_client(request);
1929 kfree(request);
1930 }
1931
1932 /* Move any buffers on the active list that are no longer referenced
1933 * by the ringbuffer to the flushing/inactive lists as appropriate.
1934 */
1935 while (!list_empty(&ring->active_list)) {
1936 struct drm_i915_gem_object *obj;
1937
1938 obj= list_first_entry(&ring->active_list,
1939 struct drm_i915_gem_object,
1940 ring_list);
1941
1942 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1943 break;
1944
1945 if (obj->base.write_domain != 0)
1946 i915_gem_object_move_to_flushing(obj);
1947 else
1948 i915_gem_object_move_to_inactive(obj);
1949 }
1950
1951 if (unlikely(ring->trace_irq_seqno &&
1952 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1953 ring->irq_put(ring);
1954 ring->trace_irq_seqno = 0;
1955 }
1956
1957 WARN_ON(i915_verify_lists(ring->dev));
1958 }
1959
1960 void
i915_gem_retire_requests(struct drm_device * dev)1961 i915_gem_retire_requests(struct drm_device *dev)
1962 {
1963 drm_i915_private_t *dev_priv = dev->dev_private;
1964 int i;
1965
1966 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1967 struct drm_i915_gem_object *obj, *next;
1968
1969 /* We must be careful that during unbind() we do not
1970 * accidentally infinitely recurse into retire requests.
1971 * Currently:
1972 * retire -> free -> unbind -> wait -> retire_ring
1973 */
1974 list_for_each_entry_safe(obj, next,
1975 &dev_priv->mm.deferred_free_list,
1976 mm_list)
1977 i915_gem_free_object_tail(obj);
1978 }
1979
1980 for (i = 0; i < I915_NUM_RINGS; i++)
1981 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1982 }
1983
1984 static void
i915_gem_retire_work_handler(struct work_struct * work)1985 i915_gem_retire_work_handler(struct work_struct *work)
1986 {
1987 drm_i915_private_t *dev_priv;
1988 struct drm_device *dev;
1989 bool idle;
1990 int i;
1991
1992 dev_priv = container_of(work, drm_i915_private_t,
1993 mm.retire_work.work);
1994 dev = dev_priv->dev;
1995
1996 /* Come back later if the device is busy... */
1997 if (!mutex_trylock(&dev->struct_mutex)) {
1998 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1999 return;
2000 }
2001
2002 i915_gem_retire_requests(dev);
2003
2004 /* Send a periodic flush down the ring so we don't hold onto GEM
2005 * objects indefinitely.
2006 */
2007 idle = true;
2008 for (i = 0; i < I915_NUM_RINGS; i++) {
2009 struct intel_ring_buffer *ring = &dev_priv->ring[i];
2010
2011 if (!list_empty(&ring->gpu_write_list)) {
2012 struct drm_i915_gem_request *request;
2013 int ret;
2014
2015 ret = i915_gem_flush_ring(ring,
2016 0, I915_GEM_GPU_DOMAINS);
2017 request = kzalloc(sizeof(*request), GFP_KERNEL);
2018 if (ret || request == NULL ||
2019 i915_add_request(ring, NULL, request))
2020 kfree(request);
2021 }
2022
2023 idle &= list_empty(&ring->request_list);
2024 }
2025
2026 if (!dev_priv->mm.suspended && !idle)
2027 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2028
2029 mutex_unlock(&dev->struct_mutex);
2030 }
2031
2032 /**
2033 * Waits for a sequence number to be signaled, and cleans up the
2034 * request and object lists appropriately for that event.
2035 */
2036 int
i915_wait_request(struct intel_ring_buffer * ring,uint32_t seqno)2037 i915_wait_request(struct intel_ring_buffer *ring,
2038 uint32_t seqno)
2039 {
2040 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2041 u32 ier;
2042 int ret = 0;
2043
2044 BUG_ON(seqno == 0);
2045
2046 if (atomic_read(&dev_priv->mm.wedged)) {
2047 struct completion *x = &dev_priv->error_completion;
2048 bool recovery_complete;
2049 unsigned long flags;
2050
2051 /* Give the error handler a chance to run. */
2052 spin_lock_irqsave(&x->wait.lock, flags);
2053 recovery_complete = x->done > 0;
2054 spin_unlock_irqrestore(&x->wait.lock, flags);
2055
2056 return recovery_complete ? -EIO : -EAGAIN;
2057 }
2058
2059 if (seqno == ring->outstanding_lazy_request) {
2060 struct drm_i915_gem_request *request;
2061
2062 request = kzalloc(sizeof(*request), GFP_KERNEL);
2063 if (request == NULL)
2064 return -ENOMEM;
2065
2066 ret = i915_add_request(ring, NULL, request);
2067 if (ret) {
2068 kfree(request);
2069 return ret;
2070 }
2071
2072 seqno = request->seqno;
2073 }
2074
2075 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2076 if (HAS_PCH_SPLIT(ring->dev))
2077 ier = I915_READ(DEIER) | I915_READ(GTIER);
2078 else
2079 ier = I915_READ(IER);
2080 if (!ier) {
2081 DRM_ERROR("something (likely vbetool) disabled "
2082 "interrupts, re-enabling\n");
2083 i915_driver_irq_preinstall(ring->dev);
2084 i915_driver_irq_postinstall(ring->dev);
2085 }
2086
2087 trace_i915_gem_request_wait_begin(ring, seqno);
2088
2089 ring->waiting_seqno = seqno;
2090 if (ring->irq_get(ring)) {
2091 if (dev_priv->mm.interruptible)
2092 ret = wait_event_interruptible(ring->irq_queue,
2093 i915_seqno_passed(ring->get_seqno(ring), seqno)
2094 || atomic_read(&dev_priv->mm.wedged));
2095 else
2096 wait_event(ring->irq_queue,
2097 i915_seqno_passed(ring->get_seqno(ring), seqno)
2098 || atomic_read(&dev_priv->mm.wedged));
2099
2100 ring->irq_put(ring);
2101 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2102 seqno) ||
2103 atomic_read(&dev_priv->mm.wedged), 3000))
2104 ret = -EBUSY;
2105 ring->waiting_seqno = 0;
2106
2107 trace_i915_gem_request_wait_end(ring, seqno);
2108 }
2109 if (atomic_read(&dev_priv->mm.wedged))
2110 ret = -EAGAIN;
2111
2112 if (ret && ret != -ERESTARTSYS)
2113 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2114 __func__, ret, seqno, ring->get_seqno(ring),
2115 dev_priv->next_seqno);
2116
2117 /* Directly dispatch request retiring. While we have the work queue
2118 * to handle this, the waiter on a request often wants an associated
2119 * buffer to have made it to the inactive list, and we would need
2120 * a separate wait queue to handle that.
2121 */
2122 if (ret == 0)
2123 i915_gem_retire_requests_ring(ring);
2124
2125 return ret;
2126 }
2127
2128 /**
2129 * Ensures that all rendering to the object has completed and the object is
2130 * safe to unbind from the GTT or access from the CPU.
2131 */
2132 int
i915_gem_object_wait_rendering(struct drm_i915_gem_object * obj)2133 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2134 {
2135 int ret;
2136
2137 /* This function only exists to support waiting for existing rendering,
2138 * not for emitting required flushes.
2139 */
2140 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2141
2142 /* If there is rendering queued on the buffer being evicted, wait for
2143 * it.
2144 */
2145 if (obj->active) {
2146 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2147 if (ret)
2148 return ret;
2149 }
2150
2151 return 0;
2152 }
2153
2154 /**
2155 * Unbinds an object from the GTT aperture.
2156 */
2157 int
i915_gem_object_unbind(struct drm_i915_gem_object * obj)2158 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2159 {
2160 int ret = 0;
2161
2162 if (obj->gtt_space == NULL)
2163 return 0;
2164
2165 if (obj->pin_count != 0) {
2166 DRM_ERROR("Attempting to unbind pinned buffer\n");
2167 return -EINVAL;
2168 }
2169
2170 /* blow away mappings if mapped through GTT */
2171 i915_gem_release_mmap(obj);
2172
2173 /* Move the object to the CPU domain to ensure that
2174 * any possible CPU writes while it's not in the GTT
2175 * are flushed when we go to remap it. This will
2176 * also ensure that all pending GPU writes are finished
2177 * before we unbind.
2178 */
2179 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2180 if (ret == -ERESTARTSYS)
2181 return ret;
2182 /* Continue on if we fail due to EIO, the GPU is hung so we
2183 * should be safe and we need to cleanup or else we might
2184 * cause memory corruption through use-after-free.
2185 */
2186 if (ret) {
2187 i915_gem_clflush_object(obj);
2188 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2189 }
2190
2191 /* release the fence reg _after_ flushing */
2192 ret = i915_gem_object_put_fence(obj);
2193 if (ret == -ERESTARTSYS)
2194 return ret;
2195
2196 trace_i915_gem_object_unbind(obj);
2197
2198 i915_gem_gtt_unbind_object(obj);
2199 i915_gem_object_put_pages_gtt(obj);
2200
2201 list_del_init(&obj->gtt_list);
2202 list_del_init(&obj->mm_list);
2203 /* Avoid an unnecessary call to unbind on rebind. */
2204 obj->map_and_fenceable = true;
2205
2206 drm_mm_put_block(obj->gtt_space);
2207 obj->gtt_space = NULL;
2208 obj->gtt_offset = 0;
2209
2210 if (i915_gem_object_is_purgeable(obj))
2211 i915_gem_object_truncate(obj);
2212
2213 return ret;
2214 }
2215
2216 int
i915_gem_flush_ring(struct intel_ring_buffer * ring,uint32_t invalidate_domains,uint32_t flush_domains)2217 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2218 uint32_t invalidate_domains,
2219 uint32_t flush_domains)
2220 {
2221 int ret;
2222
2223 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2224 return 0;
2225
2226 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2227
2228 ret = ring->flush(ring, invalidate_domains, flush_domains);
2229 if (ret)
2230 return ret;
2231
2232 if (flush_domains & I915_GEM_GPU_DOMAINS)
2233 i915_gem_process_flushing_list(ring, flush_domains);
2234
2235 return 0;
2236 }
2237
i915_ring_idle(struct intel_ring_buffer * ring)2238 static int i915_ring_idle(struct intel_ring_buffer *ring)
2239 {
2240 int ret;
2241
2242 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2243 return 0;
2244
2245 if (!list_empty(&ring->gpu_write_list)) {
2246 ret = i915_gem_flush_ring(ring,
2247 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2248 if (ret)
2249 return ret;
2250 }
2251
2252 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2253 }
2254
2255 int
i915_gpu_idle(struct drm_device * dev)2256 i915_gpu_idle(struct drm_device *dev)
2257 {
2258 drm_i915_private_t *dev_priv = dev->dev_private;
2259 bool lists_empty;
2260 int ret, i;
2261
2262 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2263 list_empty(&dev_priv->mm.active_list));
2264 if (lists_empty)
2265 return 0;
2266
2267 /* Flush everything onto the inactive list. */
2268 for (i = 0; i < I915_NUM_RINGS; i++) {
2269 ret = i915_ring_idle(&dev_priv->ring[i]);
2270 if (ret)
2271 return ret;
2272 }
2273
2274 return 0;
2275 }
2276
sandybridge_write_fence_reg(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)2277 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2278 struct intel_ring_buffer *pipelined)
2279 {
2280 struct drm_device *dev = obj->base.dev;
2281 drm_i915_private_t *dev_priv = dev->dev_private;
2282 u32 size = obj->gtt_space->size;
2283 int regnum = obj->fence_reg;
2284 uint64_t val;
2285
2286 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2287 0xfffff000) << 32;
2288 val |= obj->gtt_offset & 0xfffff000;
2289 val |= (uint64_t)((obj->stride / 128) - 1) <<
2290 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2291
2292 if (obj->tiling_mode == I915_TILING_Y)
2293 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2294 val |= I965_FENCE_REG_VALID;
2295
2296 if (pipelined) {
2297 int ret = intel_ring_begin(pipelined, 6);
2298 if (ret)
2299 return ret;
2300
2301 intel_ring_emit(pipelined, MI_NOOP);
2302 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2303 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2304 intel_ring_emit(pipelined, (u32)val);
2305 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2306 intel_ring_emit(pipelined, (u32)(val >> 32));
2307 intel_ring_advance(pipelined);
2308 } else
2309 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2310
2311 return 0;
2312 }
2313
i965_write_fence_reg(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)2314 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2315 struct intel_ring_buffer *pipelined)
2316 {
2317 struct drm_device *dev = obj->base.dev;
2318 drm_i915_private_t *dev_priv = dev->dev_private;
2319 u32 size = obj->gtt_space->size;
2320 int regnum = obj->fence_reg;
2321 uint64_t val;
2322
2323 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2324 0xfffff000) << 32;
2325 val |= obj->gtt_offset & 0xfffff000;
2326 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2327 if (obj->tiling_mode == I915_TILING_Y)
2328 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2329 val |= I965_FENCE_REG_VALID;
2330
2331 if (pipelined) {
2332 int ret = intel_ring_begin(pipelined, 6);
2333 if (ret)
2334 return ret;
2335
2336 intel_ring_emit(pipelined, MI_NOOP);
2337 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2338 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2339 intel_ring_emit(pipelined, (u32)val);
2340 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2341 intel_ring_emit(pipelined, (u32)(val >> 32));
2342 intel_ring_advance(pipelined);
2343 } else
2344 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2345
2346 return 0;
2347 }
2348
i915_write_fence_reg(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)2349 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2350 struct intel_ring_buffer *pipelined)
2351 {
2352 struct drm_device *dev = obj->base.dev;
2353 drm_i915_private_t *dev_priv = dev->dev_private;
2354 u32 size = obj->gtt_space->size;
2355 u32 fence_reg, val, pitch_val;
2356 int tile_width;
2357
2358 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2359 (size & -size) != size ||
2360 (obj->gtt_offset & (size - 1)),
2361 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2362 obj->gtt_offset, obj->map_and_fenceable, size))
2363 return -EINVAL;
2364
2365 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2366 tile_width = 128;
2367 else
2368 tile_width = 512;
2369
2370 /* Note: pitch better be a power of two tile widths */
2371 pitch_val = obj->stride / tile_width;
2372 pitch_val = ffs(pitch_val) - 1;
2373
2374 val = obj->gtt_offset;
2375 if (obj->tiling_mode == I915_TILING_Y)
2376 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2377 val |= I915_FENCE_SIZE_BITS(size);
2378 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2379 val |= I830_FENCE_REG_VALID;
2380
2381 fence_reg = obj->fence_reg;
2382 if (fence_reg < 8)
2383 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2384 else
2385 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2386
2387 if (pipelined) {
2388 int ret = intel_ring_begin(pipelined, 4);
2389 if (ret)
2390 return ret;
2391
2392 intel_ring_emit(pipelined, MI_NOOP);
2393 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2394 intel_ring_emit(pipelined, fence_reg);
2395 intel_ring_emit(pipelined, val);
2396 intel_ring_advance(pipelined);
2397 } else
2398 I915_WRITE(fence_reg, val);
2399
2400 return 0;
2401 }
2402
i830_write_fence_reg(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)2403 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2404 struct intel_ring_buffer *pipelined)
2405 {
2406 struct drm_device *dev = obj->base.dev;
2407 drm_i915_private_t *dev_priv = dev->dev_private;
2408 u32 size = obj->gtt_space->size;
2409 int regnum = obj->fence_reg;
2410 uint32_t val;
2411 uint32_t pitch_val;
2412
2413 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2414 (size & -size) != size ||
2415 (obj->gtt_offset & (size - 1)),
2416 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2417 obj->gtt_offset, size))
2418 return -EINVAL;
2419
2420 pitch_val = obj->stride / 128;
2421 pitch_val = ffs(pitch_val) - 1;
2422
2423 val = obj->gtt_offset;
2424 if (obj->tiling_mode == I915_TILING_Y)
2425 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2426 val |= I830_FENCE_SIZE_BITS(size);
2427 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2428 val |= I830_FENCE_REG_VALID;
2429
2430 if (pipelined) {
2431 int ret = intel_ring_begin(pipelined, 4);
2432 if (ret)
2433 return ret;
2434
2435 intel_ring_emit(pipelined, MI_NOOP);
2436 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2437 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2438 intel_ring_emit(pipelined, val);
2439 intel_ring_advance(pipelined);
2440 } else
2441 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2442
2443 return 0;
2444 }
2445
ring_passed_seqno(struct intel_ring_buffer * ring,u32 seqno)2446 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2447 {
2448 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2449 }
2450
2451 static int
i915_gem_object_flush_fence(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)2452 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2453 struct intel_ring_buffer *pipelined)
2454 {
2455 int ret;
2456
2457 if (obj->fenced_gpu_access) {
2458 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2459 ret = i915_gem_flush_ring(obj->last_fenced_ring,
2460 0, obj->base.write_domain);
2461 if (ret)
2462 return ret;
2463 }
2464
2465 obj->fenced_gpu_access = false;
2466 }
2467
2468 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2469 if (!ring_passed_seqno(obj->last_fenced_ring,
2470 obj->last_fenced_seqno)) {
2471 ret = i915_wait_request(obj->last_fenced_ring,
2472 obj->last_fenced_seqno);
2473 if (ret)
2474 return ret;
2475 }
2476
2477 obj->last_fenced_seqno = 0;
2478 obj->last_fenced_ring = NULL;
2479 }
2480
2481 /* Ensure that all CPU reads are completed before installing a fence
2482 * and all writes before removing the fence.
2483 */
2484 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2485 mb();
2486
2487 return 0;
2488 }
2489
2490 int
i915_gem_object_put_fence(struct drm_i915_gem_object * obj)2491 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2492 {
2493 int ret;
2494
2495 if (obj->tiling_mode)
2496 i915_gem_release_mmap(obj);
2497
2498 ret = i915_gem_object_flush_fence(obj, NULL);
2499 if (ret)
2500 return ret;
2501
2502 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2503 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2504 i915_gem_clear_fence_reg(obj->base.dev,
2505 &dev_priv->fence_regs[obj->fence_reg]);
2506
2507 obj->fence_reg = I915_FENCE_REG_NONE;
2508 }
2509
2510 return 0;
2511 }
2512
2513 static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device * dev,struct intel_ring_buffer * pipelined)2514 i915_find_fence_reg(struct drm_device *dev,
2515 struct intel_ring_buffer *pipelined)
2516 {
2517 struct drm_i915_private *dev_priv = dev->dev_private;
2518 struct drm_i915_fence_reg *reg, *first, *avail;
2519 int i;
2520
2521 /* First try to find a free reg */
2522 avail = NULL;
2523 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2524 reg = &dev_priv->fence_regs[i];
2525 if (!reg->obj)
2526 return reg;
2527
2528 if (!reg->obj->pin_count)
2529 avail = reg;
2530 }
2531
2532 if (avail == NULL)
2533 return NULL;
2534
2535 /* None available, try to steal one or wait for a user to finish */
2536 avail = first = NULL;
2537 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2538 if (reg->obj->pin_count)
2539 continue;
2540
2541 if (first == NULL)
2542 first = reg;
2543
2544 if (!pipelined ||
2545 !reg->obj->last_fenced_ring ||
2546 reg->obj->last_fenced_ring == pipelined) {
2547 avail = reg;
2548 break;
2549 }
2550 }
2551
2552 if (avail == NULL)
2553 avail = first;
2554
2555 return avail;
2556 }
2557
2558 /**
2559 * i915_gem_object_get_fence - set up a fence reg for an object
2560 * @obj: object to map through a fence reg
2561 * @pipelined: ring on which to queue the change, or NULL for CPU access
2562 * @interruptible: must we wait uninterruptibly for the register to retire?
2563 *
2564 * When mapping objects through the GTT, userspace wants to be able to write
2565 * to them without having to worry about swizzling if the object is tiled.
2566 *
2567 * This function walks the fence regs looking for a free one for @obj,
2568 * stealing one if it can't find any.
2569 *
2570 * It then sets up the reg based on the object's properties: address, pitch
2571 * and tiling format.
2572 */
2573 int
i915_gem_object_get_fence(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)2574 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2575 struct intel_ring_buffer *pipelined)
2576 {
2577 struct drm_device *dev = obj->base.dev;
2578 struct drm_i915_private *dev_priv = dev->dev_private;
2579 struct drm_i915_fence_reg *reg;
2580 int ret;
2581
2582 /* XXX disable pipelining. There are bugs. Shocking. */
2583 pipelined = NULL;
2584
2585 /* Just update our place in the LRU if our fence is getting reused. */
2586 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2587 reg = &dev_priv->fence_regs[obj->fence_reg];
2588 list_move_tail(®->lru_list, &dev_priv->mm.fence_list);
2589
2590 if (obj->tiling_changed) {
2591 ret = i915_gem_object_flush_fence(obj, pipelined);
2592 if (ret)
2593 return ret;
2594
2595 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2596 pipelined = NULL;
2597
2598 if (pipelined) {
2599 reg->setup_seqno =
2600 i915_gem_next_request_seqno(pipelined);
2601 obj->last_fenced_seqno = reg->setup_seqno;
2602 obj->last_fenced_ring = pipelined;
2603 }
2604
2605 goto update;
2606 }
2607
2608 if (!pipelined) {
2609 if (reg->setup_seqno) {
2610 if (!ring_passed_seqno(obj->last_fenced_ring,
2611 reg->setup_seqno)) {
2612 ret = i915_wait_request(obj->last_fenced_ring,
2613 reg->setup_seqno);
2614 if (ret)
2615 return ret;
2616 }
2617
2618 reg->setup_seqno = 0;
2619 }
2620 } else if (obj->last_fenced_ring &&
2621 obj->last_fenced_ring != pipelined) {
2622 ret = i915_gem_object_flush_fence(obj, pipelined);
2623 if (ret)
2624 return ret;
2625 }
2626
2627 return 0;
2628 }
2629
2630 reg = i915_find_fence_reg(dev, pipelined);
2631 if (reg == NULL)
2632 return -ENOSPC;
2633
2634 ret = i915_gem_object_flush_fence(obj, pipelined);
2635 if (ret)
2636 return ret;
2637
2638 if (reg->obj) {
2639 struct drm_i915_gem_object *old = reg->obj;
2640
2641 drm_gem_object_reference(&old->base);
2642
2643 if (old->tiling_mode)
2644 i915_gem_release_mmap(old);
2645
2646 ret = i915_gem_object_flush_fence(old, pipelined);
2647 if (ret) {
2648 drm_gem_object_unreference(&old->base);
2649 return ret;
2650 }
2651
2652 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2653 pipelined = NULL;
2654
2655 old->fence_reg = I915_FENCE_REG_NONE;
2656 old->last_fenced_ring = pipelined;
2657 old->last_fenced_seqno =
2658 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2659
2660 drm_gem_object_unreference(&old->base);
2661 } else if (obj->last_fenced_seqno == 0)
2662 pipelined = NULL;
2663
2664 reg->obj = obj;
2665 list_move_tail(®->lru_list, &dev_priv->mm.fence_list);
2666 obj->fence_reg = reg - dev_priv->fence_regs;
2667 obj->last_fenced_ring = pipelined;
2668
2669 reg->setup_seqno =
2670 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2671 obj->last_fenced_seqno = reg->setup_seqno;
2672
2673 update:
2674 obj->tiling_changed = false;
2675 switch (INTEL_INFO(dev)->gen) {
2676 case 6:
2677 ret = sandybridge_write_fence_reg(obj, pipelined);
2678 break;
2679 case 5:
2680 case 4:
2681 ret = i965_write_fence_reg(obj, pipelined);
2682 break;
2683 case 3:
2684 ret = i915_write_fence_reg(obj, pipelined);
2685 break;
2686 case 2:
2687 ret = i830_write_fence_reg(obj, pipelined);
2688 break;
2689 }
2690
2691 return ret;
2692 }
2693
2694 /**
2695 * i915_gem_clear_fence_reg - clear out fence register info
2696 * @obj: object to clear
2697 *
2698 * Zeroes out the fence register itself and clears out the associated
2699 * data structures in dev_priv and obj.
2700 */
2701 static void
i915_gem_clear_fence_reg(struct drm_device * dev,struct drm_i915_fence_reg * reg)2702 i915_gem_clear_fence_reg(struct drm_device *dev,
2703 struct drm_i915_fence_reg *reg)
2704 {
2705 drm_i915_private_t *dev_priv = dev->dev_private;
2706 uint32_t fence_reg = reg - dev_priv->fence_regs;
2707
2708 switch (INTEL_INFO(dev)->gen) {
2709 case 6:
2710 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2711 break;
2712 case 5:
2713 case 4:
2714 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2715 break;
2716 case 3:
2717 if (fence_reg >= 8)
2718 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2719 else
2720 case 2:
2721 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2722
2723 I915_WRITE(fence_reg, 0);
2724 break;
2725 }
2726
2727 list_del_init(®->lru_list);
2728 reg->obj = NULL;
2729 reg->setup_seqno = 0;
2730 }
2731
2732 /**
2733 * Finds free space in the GTT aperture and binds the object there.
2734 */
2735 static int
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object * obj,unsigned alignment,bool map_and_fenceable)2736 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2737 unsigned alignment,
2738 bool map_and_fenceable)
2739 {
2740 struct drm_device *dev = obj->base.dev;
2741 drm_i915_private_t *dev_priv = dev->dev_private;
2742 struct drm_mm_node *free_space;
2743 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2744 u32 size, fence_size, fence_alignment, unfenced_alignment;
2745 bool mappable, fenceable;
2746 int ret;
2747
2748 if (obj->madv != I915_MADV_WILLNEED) {
2749 DRM_ERROR("Attempting to bind a purgeable object\n");
2750 return -EINVAL;
2751 }
2752
2753 fence_size = i915_gem_get_gtt_size(obj);
2754 fence_alignment = i915_gem_get_gtt_alignment(obj);
2755 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2756
2757 if (alignment == 0)
2758 alignment = map_and_fenceable ? fence_alignment :
2759 unfenced_alignment;
2760 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2761 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2762 return -EINVAL;
2763 }
2764
2765 size = map_and_fenceable ? fence_size : obj->base.size;
2766
2767 /* If the object is bigger than the entire aperture, reject it early
2768 * before evicting everything in a vain attempt to find space.
2769 */
2770 if (obj->base.size >
2771 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2772 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2773 return -E2BIG;
2774 }
2775
2776 search_free:
2777 if (map_and_fenceable)
2778 free_space =
2779 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2780 size, alignment, 0,
2781 dev_priv->mm.gtt_mappable_end,
2782 0);
2783 else
2784 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2785 size, alignment, 0);
2786
2787 if (free_space != NULL) {
2788 if (map_and_fenceable)
2789 obj->gtt_space =
2790 drm_mm_get_block_range_generic(free_space,
2791 size, alignment, 0,
2792 dev_priv->mm.gtt_mappable_end,
2793 0);
2794 else
2795 obj->gtt_space =
2796 drm_mm_get_block(free_space, size, alignment);
2797 }
2798 if (obj->gtt_space == NULL) {
2799 /* If the gtt is empty and we're still having trouble
2800 * fitting our object in, we're out of memory.
2801 */
2802 ret = i915_gem_evict_something(dev, size, alignment,
2803 map_and_fenceable);
2804 if (ret)
2805 return ret;
2806
2807 goto search_free;
2808 }
2809
2810 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2811 if (ret) {
2812 drm_mm_put_block(obj->gtt_space);
2813 obj->gtt_space = NULL;
2814
2815 if (ret == -ENOMEM) {
2816 /* first try to reclaim some memory by clearing the GTT */
2817 ret = i915_gem_evict_everything(dev, false);
2818 if (ret) {
2819 /* now try to shrink everyone else */
2820 if (gfpmask) {
2821 gfpmask = 0;
2822 goto search_free;
2823 }
2824
2825 return -ENOMEM;
2826 }
2827
2828 goto search_free;
2829 }
2830
2831 return ret;
2832 }
2833
2834 ret = i915_gem_gtt_bind_object(obj);
2835 if (ret) {
2836 i915_gem_object_put_pages_gtt(obj);
2837 drm_mm_put_block(obj->gtt_space);
2838 obj->gtt_space = NULL;
2839
2840 if (i915_gem_evict_everything(dev, false))
2841 return ret;
2842
2843 goto search_free;
2844 }
2845
2846 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2847 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2848
2849 /* Assert that the object is not currently in any GPU domain. As it
2850 * wasn't in the GTT, there shouldn't be any way it could have been in
2851 * a GPU cache
2852 */
2853 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2854 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2855
2856 obj->gtt_offset = obj->gtt_space->start;
2857
2858 fenceable =
2859 obj->gtt_space->size == fence_size &&
2860 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2861
2862 mappable =
2863 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2864
2865 obj->map_and_fenceable = mappable && fenceable;
2866
2867 trace_i915_gem_object_bind(obj, map_and_fenceable);
2868 return 0;
2869 }
2870
2871 void
i915_gem_clflush_object(struct drm_i915_gem_object * obj)2872 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2873 {
2874 /* If we don't have a page list set up, then we're not pinned
2875 * to GPU, and we can ignore the cache flush because it'll happen
2876 * again at bind time.
2877 */
2878 if (obj->pages == NULL)
2879 return;
2880
2881 trace_i915_gem_object_clflush(obj);
2882
2883 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2884 }
2885
2886 /** Flushes any GPU write domain for the object if it's dirty. */
2887 static int
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object * obj)2888 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2889 {
2890 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2891 return 0;
2892
2893 /* Queue the GPU write cache flushing we need. */
2894 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2895 }
2896
2897 /** Flushes the GTT write domain for the object if it's dirty. */
2898 static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object * obj)2899 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2900 {
2901 uint32_t old_write_domain;
2902
2903 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2904 return;
2905
2906 /* No actual flushing is required for the GTT write domain. Writes
2907 * to it immediately go to main memory as far as we know, so there's
2908 * no chipset flush. It also doesn't land in render cache.
2909 *
2910 * However, we do have to enforce the order so that all writes through
2911 * the GTT land before any writes to the device, such as updates to
2912 * the GATT itself.
2913 */
2914 wmb();
2915
2916 i915_gem_release_mmap(obj);
2917
2918 old_write_domain = obj->base.write_domain;
2919 obj->base.write_domain = 0;
2920
2921 trace_i915_gem_object_change_domain(obj,
2922 obj->base.read_domains,
2923 old_write_domain);
2924 }
2925
2926 /** Flushes the CPU write domain for the object if it's dirty. */
2927 static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object * obj)2928 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2929 {
2930 uint32_t old_write_domain;
2931
2932 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2933 return;
2934
2935 i915_gem_clflush_object(obj);
2936 intel_gtt_chipset_flush();
2937 old_write_domain = obj->base.write_domain;
2938 obj->base.write_domain = 0;
2939
2940 trace_i915_gem_object_change_domain(obj,
2941 obj->base.read_domains,
2942 old_write_domain);
2943 }
2944
2945 /**
2946 * Moves a single object to the GTT read, and possibly write domain.
2947 *
2948 * This function returns when the move is complete, including waiting on
2949 * flushes to occur.
2950 */
2951 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)2952 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2953 {
2954 uint32_t old_write_domain, old_read_domains;
2955 int ret;
2956
2957 /* Not valid to be called on unbound objects. */
2958 if (obj->gtt_space == NULL)
2959 return -EINVAL;
2960
2961 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2962 return 0;
2963
2964 ret = i915_gem_object_flush_gpu_write_domain(obj);
2965 if (ret)
2966 return ret;
2967
2968 if (obj->pending_gpu_write || write) {
2969 ret = i915_gem_object_wait_rendering(obj);
2970 if (ret)
2971 return ret;
2972 }
2973
2974 i915_gem_object_flush_cpu_write_domain(obj);
2975
2976 old_write_domain = obj->base.write_domain;
2977 old_read_domains = obj->base.read_domains;
2978
2979 /* It should now be out of any other write domains, and we can update
2980 * the domain values for our changes.
2981 */
2982 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2983 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2984 if (write) {
2985 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2986 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2987 obj->dirty = 1;
2988 }
2989
2990 trace_i915_gem_object_change_domain(obj,
2991 old_read_domains,
2992 old_write_domain);
2993
2994 return 0;
2995 }
2996
2997 /*
2998 * Prepare buffer for display plane. Use uninterruptible for possible flush
2999 * wait, as in modesetting process we're not supposed to be interrupted.
3000 */
3001 int
i915_gem_object_set_to_display_plane(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)3002 i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
3003 struct intel_ring_buffer *pipelined)
3004 {
3005 uint32_t old_read_domains;
3006 int ret;
3007
3008 /* Not valid to be called on unbound objects. */
3009 if (obj->gtt_space == NULL)
3010 return -EINVAL;
3011
3012 ret = i915_gem_object_flush_gpu_write_domain(obj);
3013 if (ret)
3014 return ret;
3015
3016
3017 /* Currently, we are always called from an non-interruptible context. */
3018 if (pipelined != obj->ring) {
3019 ret = i915_gem_object_wait_rendering(obj);
3020 if (ret)
3021 return ret;
3022 }
3023
3024 i915_gem_object_flush_cpu_write_domain(obj);
3025
3026 old_read_domains = obj->base.read_domains;
3027 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3028
3029 trace_i915_gem_object_change_domain(obj,
3030 old_read_domains,
3031 obj->base.write_domain);
3032
3033 return 0;
3034 }
3035
3036 int
i915_gem_object_flush_gpu(struct drm_i915_gem_object * obj)3037 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
3038 {
3039 int ret;
3040
3041 if (!obj->active)
3042 return 0;
3043
3044 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3045 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3046 if (ret)
3047 return ret;
3048 }
3049
3050 return i915_gem_object_wait_rendering(obj);
3051 }
3052
3053 /**
3054 * Moves a single object to the CPU read, and possibly write domain.
3055 *
3056 * This function returns when the move is complete, including waiting on
3057 * flushes to occur.
3058 */
3059 static int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)3060 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3061 {
3062 uint32_t old_write_domain, old_read_domains;
3063 int ret;
3064
3065 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3066 return 0;
3067
3068 ret = i915_gem_object_flush_gpu_write_domain(obj);
3069 if (ret)
3070 return ret;
3071
3072 ret = i915_gem_object_wait_rendering(obj);
3073 if (ret)
3074 return ret;
3075
3076 i915_gem_object_flush_gtt_write_domain(obj);
3077
3078 /* If we have a partially-valid cache of the object in the CPU,
3079 * finish invalidating it and free the per-page flags.
3080 */
3081 i915_gem_object_set_to_full_cpu_read_domain(obj);
3082
3083 old_write_domain = obj->base.write_domain;
3084 old_read_domains = obj->base.read_domains;
3085
3086 /* Flush the CPU cache if it's still invalid. */
3087 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3088 i915_gem_clflush_object(obj);
3089
3090 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3091 }
3092
3093 /* It should now be out of any other write domains, and we can update
3094 * the domain values for our changes.
3095 */
3096 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3097
3098 /* If we're writing through the CPU, then the GPU read domains will
3099 * need to be invalidated at next use.
3100 */
3101 if (write) {
3102 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3103 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3104 }
3105
3106 trace_i915_gem_object_change_domain(obj,
3107 old_read_domains,
3108 old_write_domain);
3109
3110 return 0;
3111 }
3112
3113 /**
3114 * Moves the object from a partially CPU read to a full one.
3115 *
3116 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3117 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3118 */
3119 static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object * obj)3120 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3121 {
3122 if (!obj->page_cpu_valid)
3123 return;
3124
3125 /* If we're partially in the CPU read domain, finish moving it in.
3126 */
3127 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3128 int i;
3129
3130 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3131 if (obj->page_cpu_valid[i])
3132 continue;
3133 drm_clflush_pages(obj->pages + i, 1);
3134 }
3135 }
3136
3137 /* Free the page_cpu_valid mappings which are now stale, whether
3138 * or not we've got I915_GEM_DOMAIN_CPU.
3139 */
3140 kfree(obj->page_cpu_valid);
3141 obj->page_cpu_valid = NULL;
3142 }
3143
3144 /**
3145 * Set the CPU read domain on a range of the object.
3146 *
3147 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3148 * not entirely valid. The page_cpu_valid member of the object flags which
3149 * pages have been flushed, and will be respected by
3150 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3151 * of the whole object.
3152 *
3153 * This function returns when the move is complete, including waiting on
3154 * flushes to occur.
3155 */
3156 static int
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object * obj,uint64_t offset,uint64_t size)3157 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3158 uint64_t offset, uint64_t size)
3159 {
3160 uint32_t old_read_domains;
3161 int i, ret;
3162
3163 if (offset == 0 && size == obj->base.size)
3164 return i915_gem_object_set_to_cpu_domain(obj, 0);
3165
3166 ret = i915_gem_object_flush_gpu_write_domain(obj);
3167 if (ret)
3168 return ret;
3169
3170 ret = i915_gem_object_wait_rendering(obj);
3171 if (ret)
3172 return ret;
3173
3174 i915_gem_object_flush_gtt_write_domain(obj);
3175
3176 /* If we're already fully in the CPU read domain, we're done. */
3177 if (obj->page_cpu_valid == NULL &&
3178 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3179 return 0;
3180
3181 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3182 * newly adding I915_GEM_DOMAIN_CPU
3183 */
3184 if (obj->page_cpu_valid == NULL) {
3185 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3186 GFP_KERNEL);
3187 if (obj->page_cpu_valid == NULL)
3188 return -ENOMEM;
3189 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3190 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3191
3192 /* Flush the cache on any pages that are still invalid from the CPU's
3193 * perspective.
3194 */
3195 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3196 i++) {
3197 if (obj->page_cpu_valid[i])
3198 continue;
3199
3200 drm_clflush_pages(obj->pages + i, 1);
3201
3202 obj->page_cpu_valid[i] = 1;
3203 }
3204
3205 /* It should now be out of any other write domains, and we can update
3206 * the domain values for our changes.
3207 */
3208 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3209
3210 old_read_domains = obj->base.read_domains;
3211 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3212
3213 trace_i915_gem_object_change_domain(obj,
3214 old_read_domains,
3215 obj->base.write_domain);
3216
3217 return 0;
3218 }
3219
3220 /* Throttle our rendering by waiting until the ring has completed our requests
3221 * emitted over 20 msec ago.
3222 *
3223 * Note that if we were to use the current jiffies each time around the loop,
3224 * we wouldn't escape the function with any frames outstanding if the time to
3225 * render a frame was over 20ms.
3226 *
3227 * This should get us reasonable parallelism between CPU and GPU but also
3228 * relatively low latency when blocking on a particular request to finish.
3229 */
3230 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)3231 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3232 {
3233 struct drm_i915_private *dev_priv = dev->dev_private;
3234 struct drm_i915_file_private *file_priv = file->driver_priv;
3235 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3236 struct drm_i915_gem_request *request;
3237 struct intel_ring_buffer *ring = NULL;
3238 u32 seqno = 0;
3239 int ret;
3240
3241 if (atomic_read(&dev_priv->mm.wedged))
3242 return -EIO;
3243
3244 spin_lock(&file_priv->mm.lock);
3245 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3246 if (time_after_eq(request->emitted_jiffies, recent_enough))
3247 break;
3248
3249 ring = request->ring;
3250 seqno = request->seqno;
3251 }
3252 spin_unlock(&file_priv->mm.lock);
3253
3254 if (seqno == 0)
3255 return 0;
3256
3257 ret = 0;
3258 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3259 /* And wait for the seqno passing without holding any locks and
3260 * causing extra latency for others. This is safe as the irq
3261 * generation is designed to be run atomically and so is
3262 * lockless.
3263 */
3264 if (ring->irq_get(ring)) {
3265 ret = wait_event_interruptible(ring->irq_queue,
3266 i915_seqno_passed(ring->get_seqno(ring), seqno)
3267 || atomic_read(&dev_priv->mm.wedged));
3268 ring->irq_put(ring);
3269
3270 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3271 ret = -EIO;
3272 }
3273 }
3274
3275 if (ret == 0)
3276 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3277
3278 return ret;
3279 }
3280
3281 int
i915_gem_object_pin(struct drm_i915_gem_object * obj,uint32_t alignment,bool map_and_fenceable)3282 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3283 uint32_t alignment,
3284 bool map_and_fenceable)
3285 {
3286 struct drm_device *dev = obj->base.dev;
3287 struct drm_i915_private *dev_priv = dev->dev_private;
3288 int ret;
3289
3290 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3291 WARN_ON(i915_verify_lists(dev));
3292
3293 if (obj->gtt_space != NULL) {
3294 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3295 (map_and_fenceable && !obj->map_and_fenceable)) {
3296 WARN(obj->pin_count,
3297 "bo is already pinned with incorrect alignment:"
3298 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3299 " obj->map_and_fenceable=%d\n",
3300 obj->gtt_offset, alignment,
3301 map_and_fenceable,
3302 obj->map_and_fenceable);
3303 ret = i915_gem_object_unbind(obj);
3304 if (ret)
3305 return ret;
3306 }
3307 }
3308
3309 if (obj->gtt_space == NULL) {
3310 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3311 map_and_fenceable);
3312 if (ret)
3313 return ret;
3314 }
3315
3316 if (obj->pin_count++ == 0) {
3317 if (!obj->active)
3318 list_move_tail(&obj->mm_list,
3319 &dev_priv->mm.pinned_list);
3320 }
3321 obj->pin_mappable |= map_and_fenceable;
3322
3323 WARN_ON(i915_verify_lists(dev));
3324 return 0;
3325 }
3326
3327 void
i915_gem_object_unpin(struct drm_i915_gem_object * obj)3328 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3329 {
3330 struct drm_device *dev = obj->base.dev;
3331 drm_i915_private_t *dev_priv = dev->dev_private;
3332
3333 WARN_ON(i915_verify_lists(dev));
3334 BUG_ON(obj->pin_count == 0);
3335 BUG_ON(obj->gtt_space == NULL);
3336
3337 if (--obj->pin_count == 0) {
3338 if (!obj->active)
3339 list_move_tail(&obj->mm_list,
3340 &dev_priv->mm.inactive_list);
3341 obj->pin_mappable = false;
3342 }
3343 WARN_ON(i915_verify_lists(dev));
3344 }
3345
3346 int
i915_gem_pin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3347 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3348 struct drm_file *file)
3349 {
3350 struct drm_i915_gem_pin *args = data;
3351 struct drm_i915_gem_object *obj;
3352 int ret;
3353
3354 ret = i915_mutex_lock_interruptible(dev);
3355 if (ret)
3356 return ret;
3357
3358 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3359 if (&obj->base == NULL) {
3360 ret = -ENOENT;
3361 goto unlock;
3362 }
3363
3364 if (obj->madv != I915_MADV_WILLNEED) {
3365 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3366 ret = -EINVAL;
3367 goto out;
3368 }
3369
3370 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3371 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3372 args->handle);
3373 ret = -EINVAL;
3374 goto out;
3375 }
3376
3377 obj->user_pin_count++;
3378 obj->pin_filp = file;
3379 if (obj->user_pin_count == 1) {
3380 ret = i915_gem_object_pin(obj, args->alignment, true);
3381 if (ret)
3382 goto out;
3383 }
3384
3385 /* XXX - flush the CPU caches for pinned objects
3386 * as the X server doesn't manage domains yet
3387 */
3388 i915_gem_object_flush_cpu_write_domain(obj);
3389 args->offset = obj->gtt_offset;
3390 out:
3391 drm_gem_object_unreference(&obj->base);
3392 unlock:
3393 mutex_unlock(&dev->struct_mutex);
3394 return ret;
3395 }
3396
3397 int
i915_gem_unpin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3398 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3399 struct drm_file *file)
3400 {
3401 struct drm_i915_gem_pin *args = data;
3402 struct drm_i915_gem_object *obj;
3403 int ret;
3404
3405 ret = i915_mutex_lock_interruptible(dev);
3406 if (ret)
3407 return ret;
3408
3409 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3410 if (&obj->base == NULL) {
3411 ret = -ENOENT;
3412 goto unlock;
3413 }
3414
3415 if (obj->pin_filp != file) {
3416 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3417 args->handle);
3418 ret = -EINVAL;
3419 goto out;
3420 }
3421 obj->user_pin_count--;
3422 if (obj->user_pin_count == 0) {
3423 obj->pin_filp = NULL;
3424 i915_gem_object_unpin(obj);
3425 }
3426
3427 out:
3428 drm_gem_object_unreference(&obj->base);
3429 unlock:
3430 mutex_unlock(&dev->struct_mutex);
3431 return ret;
3432 }
3433
3434 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3435 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3436 struct drm_file *file)
3437 {
3438 struct drm_i915_gem_busy *args = data;
3439 struct drm_i915_gem_object *obj;
3440 int ret;
3441
3442 ret = i915_mutex_lock_interruptible(dev);
3443 if (ret)
3444 return ret;
3445
3446 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3447 if (&obj->base == NULL) {
3448 ret = -ENOENT;
3449 goto unlock;
3450 }
3451
3452 /* Count all active objects as busy, even if they are currently not used
3453 * by the gpu. Users of this interface expect objects to eventually
3454 * become non-busy without any further actions, therefore emit any
3455 * necessary flushes here.
3456 */
3457 args->busy = obj->active;
3458 if (args->busy) {
3459 /* Unconditionally flush objects, even when the gpu still uses this
3460 * object. Userspace calling this function indicates that it wants to
3461 * use this buffer rather sooner than later, so issuing the required
3462 * flush earlier is beneficial.
3463 */
3464 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3465 ret = i915_gem_flush_ring(obj->ring,
3466 0, obj->base.write_domain);
3467 } else if (obj->ring->outstanding_lazy_request ==
3468 obj->last_rendering_seqno) {
3469 struct drm_i915_gem_request *request;
3470
3471 /* This ring is not being cleared by active usage,
3472 * so emit a request to do so.
3473 */
3474 request = kzalloc(sizeof(*request), GFP_KERNEL);
3475 if (request)
3476 ret = i915_add_request(obj->ring, NULL,request);
3477 else
3478 ret = -ENOMEM;
3479 }
3480
3481 /* Update the active list for the hardware's current position.
3482 * Otherwise this only updates on a delayed timer or when irqs
3483 * are actually unmasked, and our working set ends up being
3484 * larger than required.
3485 */
3486 i915_gem_retire_requests_ring(obj->ring);
3487
3488 args->busy = obj->active;
3489 }
3490
3491 drm_gem_object_unreference(&obj->base);
3492 unlock:
3493 mutex_unlock(&dev->struct_mutex);
3494 return ret;
3495 }
3496
3497 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)3498 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3499 struct drm_file *file_priv)
3500 {
3501 return i915_gem_ring_throttle(dev, file_priv);
3502 }
3503
3504 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)3505 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3506 struct drm_file *file_priv)
3507 {
3508 struct drm_i915_gem_madvise *args = data;
3509 struct drm_i915_gem_object *obj;
3510 int ret;
3511
3512 switch (args->madv) {
3513 case I915_MADV_DONTNEED:
3514 case I915_MADV_WILLNEED:
3515 break;
3516 default:
3517 return -EINVAL;
3518 }
3519
3520 ret = i915_mutex_lock_interruptible(dev);
3521 if (ret)
3522 return ret;
3523
3524 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3525 if (&obj->base == NULL) {
3526 ret = -ENOENT;
3527 goto unlock;
3528 }
3529
3530 if (obj->pin_count) {
3531 ret = -EINVAL;
3532 goto out;
3533 }
3534
3535 if (obj->madv != __I915_MADV_PURGED)
3536 obj->madv = args->madv;
3537
3538 /* if the object is no longer bound, discard its backing storage */
3539 if (i915_gem_object_is_purgeable(obj) &&
3540 obj->gtt_space == NULL)
3541 i915_gem_object_truncate(obj);
3542
3543 args->retained = obj->madv != __I915_MADV_PURGED;
3544
3545 out:
3546 drm_gem_object_unreference(&obj->base);
3547 unlock:
3548 mutex_unlock(&dev->struct_mutex);
3549 return ret;
3550 }
3551
i915_gem_alloc_object(struct drm_device * dev,size_t size)3552 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3553 size_t size)
3554 {
3555 struct drm_i915_private *dev_priv = dev->dev_private;
3556 struct drm_i915_gem_object *obj;
3557
3558 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3559 if (obj == NULL)
3560 return NULL;
3561
3562 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3563 kfree(obj);
3564 return NULL;
3565 }
3566
3567 i915_gem_info_add_obj(dev_priv, size);
3568
3569 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3570 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3571
3572 obj->agp_type = AGP_USER_MEMORY;
3573 obj->base.driver_private = NULL;
3574 obj->fence_reg = I915_FENCE_REG_NONE;
3575 INIT_LIST_HEAD(&obj->mm_list);
3576 INIT_LIST_HEAD(&obj->gtt_list);
3577 INIT_LIST_HEAD(&obj->ring_list);
3578 INIT_LIST_HEAD(&obj->exec_list);
3579 INIT_LIST_HEAD(&obj->gpu_write_list);
3580 obj->madv = I915_MADV_WILLNEED;
3581 /* Avoid an unnecessary call to unbind on the first bind. */
3582 obj->map_and_fenceable = true;
3583
3584 return obj;
3585 }
3586
i915_gem_init_object(struct drm_gem_object * obj)3587 int i915_gem_init_object(struct drm_gem_object *obj)
3588 {
3589 BUG();
3590
3591 return 0;
3592 }
3593
i915_gem_free_object_tail(struct drm_i915_gem_object * obj)3594 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3595 {
3596 struct drm_device *dev = obj->base.dev;
3597 drm_i915_private_t *dev_priv = dev->dev_private;
3598 int ret;
3599
3600 ret = i915_gem_object_unbind(obj);
3601 if (ret == -ERESTARTSYS) {
3602 list_move(&obj->mm_list,
3603 &dev_priv->mm.deferred_free_list);
3604 return;
3605 }
3606
3607 trace_i915_gem_object_destroy(obj);
3608
3609 if (obj->base.map_list.map)
3610 i915_gem_free_mmap_offset(obj);
3611
3612 drm_gem_object_release(&obj->base);
3613 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3614
3615 kfree(obj->page_cpu_valid);
3616 kfree(obj->bit_17);
3617 kfree(obj);
3618 }
3619
i915_gem_free_object(struct drm_gem_object * gem_obj)3620 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3621 {
3622 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3623 struct drm_device *dev = obj->base.dev;
3624
3625 while (obj->pin_count > 0)
3626 i915_gem_object_unpin(obj);
3627
3628 if (obj->phys_obj)
3629 i915_gem_detach_phys_object(dev, obj);
3630
3631 i915_gem_free_object_tail(obj);
3632 }
3633
3634 int
i915_gem_idle(struct drm_device * dev)3635 i915_gem_idle(struct drm_device *dev)
3636 {
3637 drm_i915_private_t *dev_priv = dev->dev_private;
3638 int ret;
3639
3640 mutex_lock(&dev->struct_mutex);
3641
3642 if (dev_priv->mm.suspended) {
3643 mutex_unlock(&dev->struct_mutex);
3644 return 0;
3645 }
3646
3647 ret = i915_gpu_idle(dev);
3648 if (ret) {
3649 mutex_unlock(&dev->struct_mutex);
3650 return ret;
3651 }
3652
3653 /* Under UMS, be paranoid and evict. */
3654 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3655 ret = i915_gem_evict_inactive(dev, false);
3656 if (ret) {
3657 mutex_unlock(&dev->struct_mutex);
3658 return ret;
3659 }
3660 }
3661
3662 i915_gem_reset_fences(dev);
3663
3664 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3665 * We need to replace this with a semaphore, or something.
3666 * And not confound mm.suspended!
3667 */
3668 dev_priv->mm.suspended = 1;
3669 del_timer_sync(&dev_priv->hangcheck_timer);
3670
3671 i915_kernel_lost_context(dev);
3672 i915_gem_cleanup_ringbuffer(dev);
3673
3674 mutex_unlock(&dev->struct_mutex);
3675
3676 /* Cancel the retire work handler, which should be idle now. */
3677 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3678
3679 return 0;
3680 }
3681
3682 int
i915_gem_init_ringbuffer(struct drm_device * dev)3683 i915_gem_init_ringbuffer(struct drm_device *dev)
3684 {
3685 drm_i915_private_t *dev_priv = dev->dev_private;
3686 int ret;
3687
3688 ret = intel_init_render_ring_buffer(dev);
3689 if (ret)
3690 return ret;
3691
3692 if (HAS_BSD(dev)) {
3693 ret = intel_init_bsd_ring_buffer(dev);
3694 if (ret)
3695 goto cleanup_render_ring;
3696 }
3697
3698 if (HAS_BLT(dev)) {
3699 ret = intel_init_blt_ring_buffer(dev);
3700 if (ret)
3701 goto cleanup_bsd_ring;
3702 }
3703
3704 dev_priv->next_seqno = 1;
3705
3706 return 0;
3707
3708 cleanup_bsd_ring:
3709 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3710 cleanup_render_ring:
3711 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3712 return ret;
3713 }
3714
3715 void
i915_gem_cleanup_ringbuffer(struct drm_device * dev)3716 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3717 {
3718 drm_i915_private_t *dev_priv = dev->dev_private;
3719 int i;
3720
3721 for (i = 0; i < I915_NUM_RINGS; i++)
3722 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3723 }
3724
3725 int
i915_gem_entervt_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)3726 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3727 struct drm_file *file_priv)
3728 {
3729 drm_i915_private_t *dev_priv = dev->dev_private;
3730 int ret, i;
3731
3732 if (drm_core_check_feature(dev, DRIVER_MODESET))
3733 return 0;
3734
3735 if (atomic_read(&dev_priv->mm.wedged)) {
3736 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3737 atomic_set(&dev_priv->mm.wedged, 0);
3738 }
3739
3740 mutex_lock(&dev->struct_mutex);
3741 dev_priv->mm.suspended = 0;
3742
3743 ret = i915_gem_init_ringbuffer(dev);
3744 if (ret != 0) {
3745 mutex_unlock(&dev->struct_mutex);
3746 return ret;
3747 }
3748
3749 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3750 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3751 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3752 for (i = 0; i < I915_NUM_RINGS; i++) {
3753 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3754 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3755 }
3756 mutex_unlock(&dev->struct_mutex);
3757
3758 ret = drm_irq_install(dev);
3759 if (ret)
3760 goto cleanup_ringbuffer;
3761
3762 return 0;
3763
3764 cleanup_ringbuffer:
3765 mutex_lock(&dev->struct_mutex);
3766 i915_gem_cleanup_ringbuffer(dev);
3767 dev_priv->mm.suspended = 1;
3768 mutex_unlock(&dev->struct_mutex);
3769
3770 return ret;
3771 }
3772
3773 int
i915_gem_leavevt_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)3774 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3775 struct drm_file *file_priv)
3776 {
3777 if (drm_core_check_feature(dev, DRIVER_MODESET))
3778 return 0;
3779
3780 drm_irq_uninstall(dev);
3781 return i915_gem_idle(dev);
3782 }
3783
3784 void
i915_gem_lastclose(struct drm_device * dev)3785 i915_gem_lastclose(struct drm_device *dev)
3786 {
3787 int ret;
3788
3789 if (drm_core_check_feature(dev, DRIVER_MODESET))
3790 return;
3791
3792 ret = i915_gem_idle(dev);
3793 if (ret)
3794 DRM_ERROR("failed to idle hardware: %d\n", ret);
3795 }
3796
3797 static void
init_ring_lists(struct intel_ring_buffer * ring)3798 init_ring_lists(struct intel_ring_buffer *ring)
3799 {
3800 INIT_LIST_HEAD(&ring->active_list);
3801 INIT_LIST_HEAD(&ring->request_list);
3802 INIT_LIST_HEAD(&ring->gpu_write_list);
3803 }
3804
3805 void
i915_gem_load(struct drm_device * dev)3806 i915_gem_load(struct drm_device *dev)
3807 {
3808 int i;
3809 drm_i915_private_t *dev_priv = dev->dev_private;
3810
3811 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3812 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3813 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3814 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3815 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3816 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3817 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3818 for (i = 0; i < I915_NUM_RINGS; i++)
3819 init_ring_lists(&dev_priv->ring[i]);
3820 for (i = 0; i < 16; i++)
3821 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3822 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3823 i915_gem_retire_work_handler);
3824 init_completion(&dev_priv->error_completion);
3825
3826 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3827 if (IS_GEN3(dev)) {
3828 u32 tmp = I915_READ(MI_ARB_STATE);
3829 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3830 /* arb state is a masked write, so set bit + bit in mask */
3831 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3832 I915_WRITE(MI_ARB_STATE, tmp);
3833 }
3834 }
3835
3836 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3837
3838 /* Old X drivers will take 0-2 for front, back, depth buffers */
3839 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3840 dev_priv->fence_reg_start = 3;
3841
3842 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3843 dev_priv->num_fence_regs = 16;
3844 else
3845 dev_priv->num_fence_regs = 8;
3846
3847 /* Initialize fence registers to zero */
3848 switch (INTEL_INFO(dev)->gen) {
3849 case 6:
3850 for (i = 0; i < 16; i++)
3851 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3852 break;
3853 case 5:
3854 case 4:
3855 for (i = 0; i < 16; i++)
3856 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3857 break;
3858 case 3:
3859 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3860 for (i = 0; i < 8; i++)
3861 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3862 case 2:
3863 for (i = 0; i < 8; i++)
3864 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3865 break;
3866 }
3867 i915_gem_detect_bit_6_swizzle(dev);
3868 init_waitqueue_head(&dev_priv->pending_flip_queue);
3869
3870 dev_priv->mm.interruptible = true;
3871
3872 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3873 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3874 register_shrinker(&dev_priv->mm.inactive_shrinker);
3875 }
3876
3877 /*
3878 * Create a physically contiguous memory object for this object
3879 * e.g. for cursor + overlay regs
3880 */
i915_gem_init_phys_object(struct drm_device * dev,int id,int size,int align)3881 static int i915_gem_init_phys_object(struct drm_device *dev,
3882 int id, int size, int align)
3883 {
3884 drm_i915_private_t *dev_priv = dev->dev_private;
3885 struct drm_i915_gem_phys_object *phys_obj;
3886 int ret;
3887
3888 if (dev_priv->mm.phys_objs[id - 1] || !size)
3889 return 0;
3890
3891 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3892 if (!phys_obj)
3893 return -ENOMEM;
3894
3895 phys_obj->id = id;
3896
3897 phys_obj->handle = drm_pci_alloc(dev, size, align);
3898 if (!phys_obj->handle) {
3899 ret = -ENOMEM;
3900 goto kfree_obj;
3901 }
3902 #ifdef CONFIG_X86
3903 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3904 #endif
3905
3906 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3907
3908 return 0;
3909 kfree_obj:
3910 kfree(phys_obj);
3911 return ret;
3912 }
3913
i915_gem_free_phys_object(struct drm_device * dev,int id)3914 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3915 {
3916 drm_i915_private_t *dev_priv = dev->dev_private;
3917 struct drm_i915_gem_phys_object *phys_obj;
3918
3919 if (!dev_priv->mm.phys_objs[id - 1])
3920 return;
3921
3922 phys_obj = dev_priv->mm.phys_objs[id - 1];
3923 if (phys_obj->cur_obj) {
3924 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3925 }
3926
3927 #ifdef CONFIG_X86
3928 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3929 #endif
3930 drm_pci_free(dev, phys_obj->handle);
3931 kfree(phys_obj);
3932 dev_priv->mm.phys_objs[id - 1] = NULL;
3933 }
3934
i915_gem_free_all_phys_object(struct drm_device * dev)3935 void i915_gem_free_all_phys_object(struct drm_device *dev)
3936 {
3937 int i;
3938
3939 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3940 i915_gem_free_phys_object(dev, i);
3941 }
3942
i915_gem_detach_phys_object(struct drm_device * dev,struct drm_i915_gem_object * obj)3943 void i915_gem_detach_phys_object(struct drm_device *dev,
3944 struct drm_i915_gem_object *obj)
3945 {
3946 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3947 char *vaddr;
3948 int i;
3949 int page_count;
3950
3951 if (!obj->phys_obj)
3952 return;
3953 vaddr = obj->phys_obj->handle->vaddr;
3954
3955 page_count = obj->base.size / PAGE_SIZE;
3956 for (i = 0; i < page_count; i++) {
3957 struct page *page = read_cache_page_gfp(mapping, i,
3958 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3959 if (!IS_ERR(page)) {
3960 char *dst = kmap_atomic(page);
3961 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3962 kunmap_atomic(dst);
3963
3964 drm_clflush_pages(&page, 1);
3965
3966 set_page_dirty(page);
3967 mark_page_accessed(page);
3968 page_cache_release(page);
3969 }
3970 }
3971 intel_gtt_chipset_flush();
3972
3973 obj->phys_obj->cur_obj = NULL;
3974 obj->phys_obj = NULL;
3975 }
3976
3977 int
i915_gem_attach_phys_object(struct drm_device * dev,struct drm_i915_gem_object * obj,int id,int align)3978 i915_gem_attach_phys_object(struct drm_device *dev,
3979 struct drm_i915_gem_object *obj,
3980 int id,
3981 int align)
3982 {
3983 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3984 drm_i915_private_t *dev_priv = dev->dev_private;
3985 int ret = 0;
3986 int page_count;
3987 int i;
3988
3989 if (id > I915_MAX_PHYS_OBJECT)
3990 return -EINVAL;
3991
3992 if (obj->phys_obj) {
3993 if (obj->phys_obj->id == id)
3994 return 0;
3995 i915_gem_detach_phys_object(dev, obj);
3996 }
3997
3998 /* create a new object */
3999 if (!dev_priv->mm.phys_objs[id - 1]) {
4000 ret = i915_gem_init_phys_object(dev, id,
4001 obj->base.size, align);
4002 if (ret) {
4003 DRM_ERROR("failed to init phys object %d size: %zu\n",
4004 id, obj->base.size);
4005 return ret;
4006 }
4007 }
4008
4009 /* bind to the object */
4010 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4011 obj->phys_obj->cur_obj = obj;
4012
4013 page_count = obj->base.size / PAGE_SIZE;
4014
4015 for (i = 0; i < page_count; i++) {
4016 struct page *page;
4017 char *dst, *src;
4018
4019 page = read_cache_page_gfp(mapping, i,
4020 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4021 if (IS_ERR(page))
4022 return PTR_ERR(page);
4023
4024 src = kmap_atomic(page);
4025 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4026 memcpy(dst, src, PAGE_SIZE);
4027 kunmap_atomic(src);
4028
4029 mark_page_accessed(page);
4030 page_cache_release(page);
4031 }
4032
4033 return 0;
4034 }
4035
4036 static int
i915_gem_phys_pwrite(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file_priv)4037 i915_gem_phys_pwrite(struct drm_device *dev,
4038 struct drm_i915_gem_object *obj,
4039 struct drm_i915_gem_pwrite *args,
4040 struct drm_file *file_priv)
4041 {
4042 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4043 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4044
4045 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4046 unsigned long unwritten;
4047
4048 /* The physical object once assigned is fixed for the lifetime
4049 * of the obj, so we can safely drop the lock and continue
4050 * to access vaddr.
4051 */
4052 mutex_unlock(&dev->struct_mutex);
4053 unwritten = copy_from_user(vaddr, user_data, args->size);
4054 mutex_lock(&dev->struct_mutex);
4055 if (unwritten)
4056 return -EFAULT;
4057 }
4058
4059 intel_gtt_chipset_flush();
4060 return 0;
4061 }
4062
i915_gem_release(struct drm_device * dev,struct drm_file * file)4063 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4064 {
4065 struct drm_i915_file_private *file_priv = file->driver_priv;
4066
4067 /* Clean up our request list when the client is going away, so that
4068 * later retire_requests won't dereference our soon-to-be-gone
4069 * file_priv.
4070 */
4071 spin_lock(&file_priv->mm.lock);
4072 while (!list_empty(&file_priv->mm.request_list)) {
4073 struct drm_i915_gem_request *request;
4074
4075 request = list_first_entry(&file_priv->mm.request_list,
4076 struct drm_i915_gem_request,
4077 client_list);
4078 list_del(&request->client_list);
4079 request->file_priv = NULL;
4080 }
4081 spin_unlock(&file_priv->mm.lock);
4082 }
4083
4084 static int
i915_gpu_is_active(struct drm_device * dev)4085 i915_gpu_is_active(struct drm_device *dev)
4086 {
4087 drm_i915_private_t *dev_priv = dev->dev_private;
4088 int lists_empty;
4089
4090 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4091 list_empty(&dev_priv->mm.active_list);
4092
4093 return !lists_empty;
4094 }
4095
4096 static int
i915_gem_inactive_shrink(struct shrinker * shrinker,int nr_to_scan,gfp_t gfp_mask)4097 i915_gem_inactive_shrink(struct shrinker *shrinker,
4098 int nr_to_scan,
4099 gfp_t gfp_mask)
4100 {
4101 struct drm_i915_private *dev_priv =
4102 container_of(shrinker,
4103 struct drm_i915_private,
4104 mm.inactive_shrinker);
4105 struct drm_device *dev = dev_priv->dev;
4106 struct drm_i915_gem_object *obj, *next;
4107 int cnt;
4108
4109 if (!mutex_trylock(&dev->struct_mutex))
4110 return 0;
4111
4112 /* "fast-path" to count number of available objects */
4113 if (nr_to_scan == 0) {
4114 cnt = 0;
4115 list_for_each_entry(obj,
4116 &dev_priv->mm.inactive_list,
4117 mm_list)
4118 cnt++;
4119 mutex_unlock(&dev->struct_mutex);
4120 return cnt / 100 * sysctl_vfs_cache_pressure;
4121 }
4122
4123 rescan:
4124 /* first scan for clean buffers */
4125 i915_gem_retire_requests(dev);
4126
4127 list_for_each_entry_safe(obj, next,
4128 &dev_priv->mm.inactive_list,
4129 mm_list) {
4130 if (i915_gem_object_is_purgeable(obj)) {
4131 if (i915_gem_object_unbind(obj) == 0 &&
4132 --nr_to_scan == 0)
4133 break;
4134 }
4135 }
4136
4137 /* second pass, evict/count anything still on the inactive list */
4138 cnt = 0;
4139 list_for_each_entry_safe(obj, next,
4140 &dev_priv->mm.inactive_list,
4141 mm_list) {
4142 if (nr_to_scan &&
4143 i915_gem_object_unbind(obj) == 0)
4144 nr_to_scan--;
4145 else
4146 cnt++;
4147 }
4148
4149 if (nr_to_scan && i915_gpu_is_active(dev)) {
4150 /*
4151 * We are desperate for pages, so as a last resort, wait
4152 * for the GPU to finish and discard whatever we can.
4153 * This has a dramatic impact to reduce the number of
4154 * OOM-killer events whilst running the GPU aggressively.
4155 */
4156 if (i915_gpu_idle(dev) == 0)
4157 goto rescan;
4158 }
4159 mutex_unlock(&dev->struct_mutex);
4160 return cnt / 100 * sysctl_vfs_cache_pressure;
4161 }
4162